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Abstract 

 
The exponential growth of Remote Sensing technologies has open new frontiers for 

hydrology, allowing the accurate study of areas that were close to inaccessible only some 

decades ago. 

In this study, a distributed hydrological model, FEST-EWB, has been calibrated in the Heihe 

river basin, an inland river basin in China. The calibration has been conducted using Land 

Surface Temperature data obtained from Remote Sensing. The model is then to be 

validated with evapotranspiration data from ground measurements and from a Chinese 

remote sensing model. 

Land Surface Temperature data is easily retrieved using Remote Sensing, and is available 

in different time- and spatial-resolutions. In the first part of this study, a survey of some 

of these sources has been conducted. LST data of the basin, coming from the available 

data with the highest spatial but low temporal resolution (LANDSAT 7 ETM+), has been 

compared with low resolution daily Terra’s MODIS data and two temperature downscaling 

algorithms (StarFM and Kustas) over 11 test dates in year 2012. The results have also been 

filtered through land cover classification and lighting degree (“in light” or “in shadow”) of 

each pixel. 

After having chosen Terra’s MODIS as the best LST source, its data have been applied for 

the calibration of the hydrological model: soil and vegetation parameters have been 

modified in order to fit the forecasts of the model to the actual, remotely sensed, LSTs. 
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Sintesi 

 
Il progressivo sviluppo delle tecniche di telerilevamento ha aperto nuove frontiere in 

moltissimi campi, fra i quali è compresa l’idrologia. Queste tecniche, infatti, hanno reso 

possibile la raccolta dati in zone sino a qualche decennio fa assai poco conosciute. Nel 

caso dei modelli idrologici, la calibrazione è tradizionalmente effettuata impiegando dati 

di portata ottenuti dalle stazioni idrometriche poste lungo le aste dei fiumi. Tuttavia, 

specie in anni recenti, si è andata sviluppando la tecnica di calibrazione tramite LST (Land 

Surface Temperature, Temperatura Superficiale Terrestre). Quest’ultima, a differenza dei 

dati di portata, è facilmente ottenibile tramite satellite, in diversi formati e con diverse 

risoluzioni temporali e spaziali, a seconda delle necessità. 

Scopo di questo studio è determinare quale sia la miglior fonte di LST per la calibrazione 

del modello idrologico distribuito FEST-EWB sul bacino endoreico del fiume Heihe, in 

Cina. In seguito, è stata effettuata la calibrazione del modello impiegando le misure di LST 

scelte in precedenza. Infine, è da portare avanti una procedura di validazione del modello 

tramite dati di evapotraspirazione provenienti da misurazioni al terreno ed un modello 

cinese che utilizza dati da satellite. 

Nella prima parte, ci si è concentrati sull’analisi delle diverse fonti di LST. In particolare, si 

sono studiate quattro categorie di LST: i dati con risoluzione 30 m dell’ETM+ (strumento 

a bordo del satellite LANDSAT 7); i dati a risoluzione 1000 m del MODIS (strumento del 

satellite Terra); i dati ottenuti a 30 m di risoluzione dall’algoritmo StarFM; i dati ottenuti a 

30 m di risoluzione dall’algoritmo di Kustas. 

Ciascuna di queste fonti è descritta nei suoi punti forti e nelle sue debolezze; il LANDSAT 

è risultato il dato più preciso, ma la sua rada frequenza temporale e l’impossibilità di 

coprire tutto il bacino in un’unica immagine lo rendono poco appetibile per la calibrazione 

del modello su questo bacino. Per determinare quale degli altri tre metodi (che forniscono 



 xvi 

un’immagine di LST ogni giorno) sia il più preciso, si è svolto un confronto con il LANDSAT. 

Questo confronto ha riguardato una zona centrale del bacino, in 11 date dell’anno di 

interesse per questo studio, il 2012. 

L’analisi è stata condotta sia in termini generali, sia filtrando i risultati attraverso 6 macro-

categorie di copertura del suolo e 2 possibili stati di illuminazione (“pixel illuminato” o 

“pixel in ombra”). Il dato del MODIS (l’unico originalmente a 1000 m e ri-scalato a 30 m 

per il confronto) si è rivelato essere il più preciso ed è stato quindi impiegato nella 

successiva calibrazione. 

La fase di calibrazione ha previsto che i dati riguardanti il suolo e la vegetazione fossero 

modificati a più riprese per cercare di adattare le temperature superficiali previste dal 

modello a quelle effettivamente misurate dal MODIS. 
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Introduction 

 
Research Contest 
Studying the mechanics of river basins is the first step in optimizing the use of the water 

resource [Li et al, 2015] [Zhang et al, 2017]. Understanding each mass transfer in the mass 

balance can be a useful tool with both assigning water quotas for irrigation [Wang et al, 

2015] and a helpful instrument to forecast future water availability [Yin et al, 2017]. 

Numerous models exist that sum up each contribution to the water budget [Arnold et al, 

2012], ranging from the simplest expressions (which describe the output as a fixed fraction 

of the input) to more complex systems which feature both a mass and an energy balance 

equation [Corbari-Ravazzani-Mancini, 2012] [Corbari et al, 2010] [Wang et al, 2009]. 

Some approaches compute the river runoff as a result of energy balances which need Land 

Surface Temperature (LST) as an input variable. These are divided in one-source schemes, 

which lump all land cover types as one (such as SEBAL [Bastiaanssen et al., 1998] or SEBS 

[Su, 2002]), and two-source ones, which distinguish bare soil from vegetated one (like 

TSEB, [Norman et al, 1995]; [Yang et al, 2015]). More comprehensive models work on a 

number of input parameters to compute all energy and water balances in a continuous 

way. Thus, LST becomes an output variable, suitable for calibration and validation needs. 

FEST-EWB (Flash-Flood Event-based Spatially-distributed rainfall-runoff Transformation – 

Energy/Water Balance), developed by [Corbari-Ravazzani-Mancini, 2012], is one such 

model. 
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Remote sensing has hugely developed in recent years, with new image products that fit a 

wide range of possible applications: estimating surface temperature for lakes [Zhang et al, 

2014] and rivers [Handcock et al, 2012]; estimating river discharge [Tarpanelli et al, 2011]; 

modelling energy and mass fluxes [Corbari et al, 2012], [Corbari et al, 2015]; mapping soil 

moisture [Campo et al, 2011]; monitoring snow coverage [Corbari et al, 2008]; identifying 

vegetation dynamics [Yin et al, 2015]; understanding the role of land cover in energy 

transfers [Parida et al, 2007]. 

Many hydrological models are calibrated employing flow discharge time series. Some 

allow for a double-calibration, involving also Land Surface Temperature (LST) data 

[Corbari-Mancini, 2014] [Corbari et al, 2012]. Developing accuracy in this type of 

calibration is key to understand basins for which discharge data is lacking or has low 

quality. LST data are available with different spatial resolutions and time frequencies, and 

the debate on which is the best-suited for this kind of studies is still open. 

Some studies (for example concerning cultivated areas organised in little fields [Platonov 

et al, 2008] [Farg et al, 2016] [Senay et al, 2016], [Cuenca et al, 2013]) may require daily, 

high-resolution data. As high spatial resolution is often associated with (relatively) low 

temporal frequency, the need for the development of temperature downscaling 

techniques arises. The problem may be tackled in two ways: either data from different 

satellite instruments is combined based on statistic and physically-based principles [Gao 

et al, 2006] [Gutierrez et al, 2012] [Hamlet et al, 2010] [Pang et al, 2017] [Weng et al, 2014], 

or a relation is established between the desired variable and other satellite products, which 

in turn are available at the desired resolution [Kustas et al, 2003]. 

The combination of climate change, population growth and urbanization calls for a direct 

tackling of the water resource problem [Wang et al, 2015] [Yan et al, 2014] [Wu et al, 2014] 

[Geng et al, 2015] [Huang et al, 2017] [Liu et al, 2013]. Better understanding the dynamics 

described in this study is the first step in doing so. 
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Thesis goals 
The goal of this study can be summarized as such: 

To apply the FEST-EWB hydrological model to the Heihe River Basin in China, calibrating 

it with Land Surface Temperature data, retrieved using Remote Sensing. A number of 

different LST sources will be compared, in order to determine the most useful. 

 

Outline 
The first chapter of this study, called “Methodology”, introduces the instruments of this 

analysis. In its first section, the hydrological model FEST-EWB is explained, with a complete 

description of its ruling equations and needed parameters. In the second section, the four 

LST sources are described in their origin and characteristics. 

The second chapter, called “Case Study Overview”, surveys the Heihe River basin. First, a 

historical-political overview, then a detailed description of the basin’s geomorphology, 

pedology and its climatic and meteorological conditions. 

The third chapter of the study, called “LST Downscaling, a performance comparison”, 

contrasts the LST data provided by three of the available sources with the data from 

LANDSAT 7 ETM+, which are the ones with the highest spatial resolution but have low 

temporal frequency. 

The fourth chapter, called “Model Calibration”, illustrates the calibration process of the 

model, following its statistics and the evolution of the soil and vegetation parameters. 

The fifth chapter, called “Conclusions & Recommendations”, gathers up all the results of 

the study and proposes further work on the subject. 
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Chapter 1 

Methodology 

 
In this chapter, the methodology followed by the thesis is described. The first part deals 

with the description of the hydrological model FEST-EWB and its main processes and 

variables, in the second part the analysis and downscaling of satellite images of Land 

Surface Temperature are described. 

 

1.1 FEST-EWB hydrological model 
 

1.1.1 Overview 
The FEST-EWB (Flash-flood Event-based Spatially-distributed rainfall-runoff 

Transformation – Energy and Water Balance) is a hydrological model which converts 

rainfall and other inputs, such as snowmelt, into river runoff [Mancini, 1990] [Corbari et al., 

2011]. Being a distributed model, it closes each water and energy balance at pixel level, 

considering a certain soil depth (until an impermeable layer below) and the lower 

atmosphere immediately above. 

Each vertical mass/energy flux is computed to obtain the runoff volume from the single 

cell, which is then channelled through the hydrologic network established by the elevation 

raster, in the form of a Digital Elevation Model (DEM). 
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In order to compute the runoff, the model applies the SCS-CN (Soil Conservation Service 

– Curve Number), updating the retention potential of each cell before each precipitation 

event and employing the Muskingum-Cunge algorithm. 

Figure 2 - The Water Cycle [available at https://water.usgs.gov/edu/watercycle.html] 

Figure 1 - FEST-EWB scheme [from Corbari-Ravazzani-Mancini, 2012] 
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The model requires some input data: 

o Atmospheric data, like air temperature, wind velocity, precipitation or air humidity 

o Digital Elevation Model (DEM) 

o Soil data, as for example hydraulic conductivity or soil depth 

o Vegetation data, such as Leaf Area Index (LAI) or vegetation height 

The model is based on a system of two equations, the mass and the energy balances, 

whose variables are the cell runoff (R) and the Representative Equilibrium Temperature 

(RET). The latter is the surface temperature that closes the balance. Both variables can be 

compared with measurements for the calibration process. 

 

{

𝜕𝑆𝑀

𝜕𝑡
=

𝑃 − 𝑅 − 𝑃𝐸 − 𝐸𝑇

𝑑𝑧
,                                             𝑚𝑎𝑠𝑠 𝑏𝑎𝑙𝑎𝑛𝑐e

𝑅𝑛 − 𝐺 − (𝐻𝑠 + 𝐻𝑐) − (𝐿𝐸𝑠 + 𝐿𝐸𝑐) =
∆𝑊

∆𝑡
, 𝑒𝑛𝑒𝑟𝑔𝑦 𝑏𝑎𝑙𝑎𝑛𝑐e

 

(1) 

 (2) 

 

1.1.2 Water balance equation 
The first equation weighs the water mass fluxes through the cell unit. Any temporal 

variation of Soil Moisture (SM) results from the imbalance of four main contributes, such 

as: 

(a) Rainfall (P), the amount of water effectively reaching the ground; it can be gathered 

using data from meteorological stations or satellites 

(b) Runoff flux (R), the superficial fraction of the total runoff, usually far bigger than 

its topsoil counterpart 

Figure 3 - The elements of the mass and energy balances [Corbari-Ravazzani-Mancini, 2012] 
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(c) Deep Percolation (PE), the amount of water “lost” to lower aquifers, depends on 

soil permeability and amount of water in soil 

(d) Evapotranspiration (ET), the combination of the water directly evaporated from the 

soil and all the collecting surfaces (E) and the water transferred to the atmosphere 

by the canopy during the photosynthesis process (T). 

 

1.1.3 Energy Balance Equation 
The amount of energy “stored” in the single cell unit can vary over time because of the 

energy fluxes both incoming and outgoing. However, at a spatial resolution as low as the 

one used in this study (around 1000m), such a variation can be safely assumed to be 

negligible. This means that the net balance of the other contributions will be null. 

The net radiation (Rn) involves the balance between incoming and outgoing short-wave 

and long-wave radiation. 

 𝑅𝑛 = 𝑅𝑛(𝑙𝑜𝑛𝑔𝑤𝑎𝑣𝑒) + 𝑅𝑛(𝑠ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒) (3) 

Longwave radiation is associated with wavelengths bigger than the infrared. This makes 

them the chief emission radiating from the Earth itself or the atmosphere immediately 

above the ground. Thus, the net longwave radiation comes from the positive contribution 

of the atmosphere aboveground (of temperature TA) and the negative one of the soil (RET), 

through the application of Stefan-Boltzmann law: 

 𝑅𝑛(𝑙𝑜𝑛𝑔𝑤𝑎𝑣𝑒) = 휀𝐴𝜎𝑇𝐴
4 − 휀𝑠𝑜𝑖𝑙 𝜎𝑅𝐸𝑇4 (4) 

Where the varying emissivity ε accounts for the lower atmosphere and the topsoil not 

being black bodies; σ, instead, is Stefan-Boltzmann’s constant (5.67 10-8 W m-2 K-4). 

Short-wave radiation involves wavelengths between the near-ultraviolet (NUV) and near-

infrared (NIR) spectra (λ = 300-1400 nm). The actual absorbed radiation depends on a 

number of factors: each day in the solar year sees a different amount of solar radiation 

reach the Earth; of such amount, only the orthogonal component participates in the 

energy transfers, and this varies with latitude, longitude and sampling time; local weather 

can affect the actual amount of energy absorbed, both because of cloud cover and 

atmospheric refraction (even in clear sky conditions); local topography plays a pivotal role, 

as neighbouring terrain can either shield the pixel from the direct irradiation (by 

shadowing) or reflect part of the solar radiation to the pixel itself. 
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The theoretical radiation R* is in first place determined as the component orthogonal to 

the Earth surface of the incoming solar radiation: 

 𝑅∗ = 𝐼𝑒 + 𝐷 (5) 

Where Ie is the expected radiation intensity obtained by correcting the solar constant Io 

(which is the mean radiation influx throughout the year and amounts to 1353 W/m2) 

with the solar elevation angle h and the atmospheric attenuation χ: 

 𝐼𝑒 = 𝐼𝑜 ∙ sin (ℎ) ∙ 𝜒 (6) 

 sin(ℎ) = sin(𝜑) ∙ sin(𝛿) + cos (𝜑) ∙ cos (𝛿) ∙ cos (𝜏) (7) 

 𝛿 = 23.45° ∙ sin [
360

365
∙ (284 + 𝐷𝑂𝑌)] (8) 

 𝜒 = exp (−
𝑠

sin(ℎ)
) (9) 

 𝑠 = 𝑠𝑜 ∙
𝑃

𝑃𝑜
= 𝑠𝑜 ∙ [

288 − 0.0065 ∙ 𝑧

288
]

5.256

 (10) 

The solar elevation angle h is obtained using the latitude φ, the hour angle τ (which 

accounts for time zones and possible summer times) and the declination ð. The 

atmospheric attenuation χ is an exponential function of the atmospheric optical depth s, 

itself a function of the atmospheric height z. 

 

Figure 4 - The rationale and evolution of the Solar Declination [available at reuk.co.uk] 
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D computes the scattering effect of the atmosphere, using a brightness coefficient Kb 

 𝐷 = 𝐾𝑏 ∙ (𝐼𝑜 ∙ sin(ℎ) − 𝐼𝑒) = 𝐾𝑏 ∙ (1 − 𝜒) ∙ 𝐼𝑜 ∙ sin (ℎ) (11) 

However, actually measured radiation (Rs) can be even lower than the expected amount; 

this underperformance of the equation can be obtained from past experience as a scaling 

coefficient Kt. The scattered energy is computed as 

 𝐷𝐹 = min [𝑅𝑠 ∙ 𝐷 ∙ (1 − 𝐾𝑡); 𝑅𝑠 ∙ 𝐾𝑡] (12) 

So that the direct radiation component is Q=Rs-DF. To account for topographic 

characteristics, the actual incoming energy QA is computed 

 𝑄𝐴 = 𝑄 ∙
cos (C)

sin (ℎ)
 (13) 

Where C is the angle between the sunbeam direction and the perpendicular to the ground, 

evaluated as 

 cos(𝐶) = cos(ℎ) ∙ sin(𝛼) ∙ cos(𝐴𝑧 − 𝐸) + sin (ℎ) ∙ cos (𝛼) (14) 

Where α is the mountain slope, E the mountain aspect and Az the Solar Azimuth angle. 

The last quantity to compute is the radiation reflected from neighbouring terrain A, which 

is obtained from the slope and the albedo (r) as 

 𝐴 = 𝑄𝐴 ∙ 𝑟 ∙ 𝛼 180⁄ ° (15) 

The last step in the algorithm requires the computation of the topographical angle ψ, 

which is the angle, in the Solar Azimuth direction, between the tallest obstacle as seen 

from the cell in question and the ground. It will simply be 

 𝜓 = atan [
𝑧𝑚 − 𝑧𝑂

√(𝑥𝑚 − 𝑥𝑂)2 + (𝑦𝑚 − 𝑦𝑂)2
] (16) 

Where (xO,yO,zO) are the three spatial coordinates of the observation point (the cell in 

question); (xm,ym,zm) indicate the position of the tallest obstacle in the sunbeam’s direction 

(the Solar Azimuth). 

All in all, if the pixel is shadowed by some obstacle, only the scattered radiation (DF) will 

be accounted for; otherwise, also the reflection from neighbouring pixels (A) and the 

actual incoming radiation RS will be considered. 

 𝑅𝑛(𝑠ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒) = (1 − 𝑟) ∙ 𝑅𝑠,   𝑅𝑠 = {
𝐷𝐹,                         𝑖𝑓 𝜓 ≤ ℎ
𝑄𝐴 + 𝐷𝐹 + 𝐴,      𝑖𝑓 𝜓 > ℎ

 (17) 

Soil heat flux is due to the fact that, while the topsoil temperature (RET) varies with the 

sun patterns, the lower part of the ground stays substantially isolated (Tsoil), creating a 
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temperature gradient within the soil itself. This drives a certain amount of energy either 

downwards (in summer, when the topsoil is warmer) or upwards (in winter, when it is 

colder). The rate at which this heat is transferred depends on the soil’s thermal 

conductivity (gterm), which is a function of soil moisture; the more air is present within the 

soil pores (so the less the soil moisture is), the slower the heat is transferred. 

 𝐺 =
𝑔𝑡𝑒𝑟𝑚

𝑑𝑧
∙ (𝑅𝐸𝑇 − 𝑇𝑠𝑜𝑖𝑙 ) (18) 

The existence of a temperature difference between topsoil (RET) and lower atmosphere 

(TA) prompts a certain amount of heat to be transferred in the direction of the existing 

gradient. This heat transmission is ruled by different factors depending on the presence 

or absence of canopy. For the vegetated fraction of the basin (fV) it depends on the 

aerodynamic resistance of the given canopy (rA
(canopy)); for the remaining part, it is 

regulated by a “bare soil” equivalent of the aerodynamic resistance: 

 𝐻 = 𝐻𝑐𝑎𝑛𝑜𝑝𝑦 + 𝐻𝑏𝑎𝑟𝑒𝑠𝑜𝑖𝑙 = 𝑓𝑉 ∙
𝜌ℎ𝑎𝑐𝑝

𝑟𝐴
(𝑐𝑎𝑛𝑜𝑝𝑦)

+ (1 − 𝑓𝑉) ∙
𝜌ℎ𝑎𝑐𝑝

𝑟𝐴
(𝑏𝑎𝑟𝑒𝑠𝑜𝑖𝑙)

 (19) 

Where ρha is the density of humid air and cP is its specific heat (the energy to be transferred 

to change by one degree the temperature of a unit mass). 

The latent heat flux is a measure of the heat employed for the direct evaporation of some 

of the soil moisture. Similarly to the sensible heat, it is expressed by: 

 𝐿𝐸 = 𝑓 ∙
𝜌𝑐

𝑟𝐴
(𝑡𝑜𝑡)

∙
∆𝑒

𝛾
 (20) 

Where the “total” aerodynamic resistance is obtained considering both the soil and 

canopy one. Both depend on the amount of moisture in the ground (θ), as relative to the 

saturation amount or the (wilting point – field capacity) range. 

 𝑟𝐴
(𝑠𝑜𝑖𝑙)

= 3.5 ∙ (
𝜃𝑠𝑎𝑡

𝜃
)

2.3

+ 33.5 (21) 

 𝑟𝐴
(𝑐𝑎𝑛𝑜𝑝𝑦)

=
𝑟𝑆,𝑚𝑖𝑛

𝐿𝐴𝐼
∙

𝐹𝐶 − 𝑊𝑃

𝜃 − 𝑊𝑃
 (22) 

The Δe is the vapour pressure excess of the saturation value over the actual one, as it 

constitutes the major driving force of the process. 

The Latent Heat is also connected to the Evapotraspiration (ET) element in the water mass 

balance, through the latent heat of vaporization (λ) and water density ρW: 

 𝐿𝐸 = 𝜆 ∙ 𝜌𝑊 ∙ 𝐸𝑇 (23) 
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Summing up, most of these processes have a strong link with the water bass balance which 

constitutes the other half of the governing mechanism of the FEST-EWB model. 

 

1.2 Satellite Land Surface Temperature 

downscaling 
The variable chosen for calibration of the FEST-EWB model is the Land Surface 

Temperature (LST). While discharge calibration requires data from hydrometric stations, 

temperature can be more easily retrieved using remote sensing (RS) [Corbari et al., 2014] 

[Corbari-Mancini, 2014]. The quality of data thus obtained, however, can vary significantly. 

Four main sources will be investigated: 

(1) MODIS 

(2) LANDSAT 

(3) StarFM downscaling algorithm 

(4) Kustas downscaling algorithm 

 

1.2.1 MODIS 
MODIS (MODerate resolution Imaging Spectroradiometer) is an instrument aboard the 

satellite Terra. Using its 2330 km swath it provides the most complete image among all 

the Terra instruments. It can detect 36 bands of the electromagnetic spectrum, between 

620 nm and 14385 nm; a wide range of possible applications can be met, from detecting 

cloud top altitude (bands 33-36) to atmospheric water vapour (17-19). Its orbit around the 

Earth has it passing from north to south across the equator every morning, thus sampling 

Figure 5 - The links between the elements of the mass and energy balances 
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every place on planet Earth at least once a day. The sampling occurs at around 12:00 am 

local time, with products at 1000m spatial resolution. 

Data from MODIS can be obtained “as-is” or already pre-processed into the required 

variable. In the LST product, clouded pixels are flagged with a “0” value; thus, a cloud cover 

mask can be obtained and applied to all the other methods. 

The main advantage of such a source is the high temporal frequency. This allows to have 

a numerous calibration pool even after excluding excessively clouded pixels. However, the 

relatively “low” spatial resolution of these images can be a problem for basins with areas 

of important heterogeneity, like mountainous regions, where notable temperature 

differences occur within less than the 1000m distance of the resolution. 

 

1.2.2 ETM+ (LANDSAT 7) 
The LANDSAT program is made up of a network of satellites orbiting around the Earth 

since July 1972. A number of different satellites have been launched, the most recent being 

LANDSAT 8 in February 2013. For the purpose of this study, which looks at 2012, data from 

LANDSAT 7 (launched in April 1999) will be used. LANDSAT 7 has a slower orbit than 

MODIS, completing a full survey of the Earth in 16 days (against the single one of MODIS). 

 

The instrument aboard LANDSAT 7 is named Enhanced Thematic Mapper Plus (ETM+), and 

samples within 450 nm and 2350 nm, collecting these data in 8 bands. LANDSAT 7 

organizes its images in scenes of 170km (across-path) x 180km (along-path); all the scenes 

sampled in a day belong to the same “path”, which follows the course of the satellite. The 

paths partially juxtapose with each other, thus having some areas sampled just once every 

16 days and other more than once. 

Figure 6 - The LANDSAT program [https://landsat.usgs.gov/landsat-missions-timeline] 
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The band of interest for LANDSAT is Band 6, the only one sampled at 60m resolution but 

then re-sampled at 30m. Thus, however more sparse in time, LANDSAT images have better 

precision than MODIS’. 

 

The Scan line corrector (SLC) is a tool of the LANDSAT satellite which compensates for 

LANDSAT’s forward motion. In May 2003 it failed, thus creating problems with the images. 

The result is a zigzag sampling pattern: some areas have a “double” sampling, while others 

are not sampled at all. This means that groups of “NoData” cells “pollute” the image, losing 

an average 10% of ‘Data’ cells for each image. 

Figure 7 - An example of LANDSAT 7 ETM+ scene from path 134, row 32 - band 6 (low gain) 

Figure 8 - The data acquisition with (left) and without (right) the SLC tool 
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Data from LANDSAT is organized in paths, that is strings of images that follow, more or 

less “north-to-south”, the trajectory of the satellite. Each path has a reference number, and 

partly overlaps with the neighbouring ones; this will be called “across-path juxtaposition”. 

Within a single path, the satellite divides the total sampled area in scenes, each one part 

of a numbered “row”. Each of these rows overlaps for a 5% of its length with the preceding 

and following ones, creating an “along-path juxtaposition”. 

 

Data from Landsat is not pre-processed as MODIS’ is. The downloadable data consists of 

radiance values, measured “at-sensor”. The pre-processing, needed to obtain land surface 

temperature, will thus consist first in a “translation” of the data, so to obtain the “at-

ground” version; then a conversion will be required to pass from radiance to temperature. 

A simple way to obtain the correction of the radiance values is to apply a Radiative Transfer 

Model (RTM), that is a relation which “transfers” the data from the sensor to the ground 

accounting for the atmospheric conditions at the time of sampling [Coll et al, 2010]. As 

Figure 9 - Across-path (above) and along-path (below) juxtapositions 
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input, RTMs require the transmissivity τ(λ), the upwelling radiative flux (Lu(λ)) and the 

downwelling one (Ld(λ)). They all depend on the sampling frequency range and on the 

humidity conditions of the atmosphere. The “at-ground” radiance Lg will be: 

 𝐿𝑔(𝜆) =
𝐿𝑠(𝜆) − 𝐿𝑢(𝜆)

휀 ∙ 𝜏(𝜆)
−

1 − 휀

휀
∙ 𝐿𝑑(𝜆) (24) 

Where Ls(λ) is the “at-sensor” radiance measured by LANDSAT. The emissivity ε(λ) can be 

retrieved from online libraries, such as ASTER’s (ASTER is another instrument aboard the 

Terra satellite). In these libraries, a number of materials are stored, and for every material 

there is a reflectance (ρ) plot. From the reflectance values, the emissivity is obtained from 

the simple relation 

 휀(𝜆) = 1 − 𝜌(𝜆) (25) 

 

Studying the pixel’s land cover, a main material can be associated to each cell in the basin, 

thus allowing to choose the correct plot. A mean value of emissivity is then computed 

within the wavelength range of interest. 

The other three parameters can be obtained, for a given point on Earth, from a NASA 

online tool called Atmospheric Correction Parameter Calculator, which computes them 

starting from climatic models that simulate the weather conditions for the given spot at 

the sampling time. Such calculation can be performed pixel-by-pixel or the values (Ld(λ), 

Lu(λ), τ(λ)) can be obtained for a limited number of control points and then inferred back 

for all the other basin pixels. 

Figure 10 - Black Loam emissivity plot (data from ASTER spectral library) 
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Once the corrected radiance is obtained, land surface temperature is given by Planck’s 

Law: 

 𝐿𝑔(𝜆, 𝑇) =
2ℎc2

𝜆5
∙

1

exp (
ℎc

𝜆𝑘𝐵𝑇
) − 1

→ 𝑇(𝜆, 𝑊) =
(ℎc/λ𝑘𝐵)

ln (
2ℎc2

𝜆5𝐿𝑔
+ 1)

 (26) 

Where h is Planck’s constant (6.626 10-34 Js), c is the speed of light (300000 km/s), λ is the 

reference wavelength (~11 μm), kB is Boltzmann’s constant (1.38 10-23 J/K). 

LANDSAT’s own metafile (used to describe all the data within each path-row combination) 

shortens up this relation to the form: 

 
𝑇 =

1282.71

ln (
666.09

𝐿𝑔 + 1)
 (27) 

With the result already expressed in Kelvin. 

 

1.2.3 StarFM downscaling algorithm 
This method has been developed by Monica Herrero-Huerta, Susana Lagüela, Silvia Alfieri 

and Massimo Menenti [Herrero-Huerta et al., 2017] at Technische Universiteit Delft. 

As MODIS’ data is highly frequent but too coarse, while LANDSAT’s is sparser and finer, a 

method has been devised to combine the two with the aim of having each day one 30m-

resolution image. Using the illustrated schematics, the algorithm uses LANDSAT radiance 

data on days 1 and 3 (wavy squares) and MODIS radiance data on days 1, 2, 3 (straight-

lined squares) to obtain a synthetic, “LANDSAT-like” image on day 2. The algorithm is here 

explained in its simpler form, when using just data from days 1 and 2 to obtain the target 

image on day 2. Each equation can be extended to include data from day 3. 

Figure 11 - StarFM operational scheme (straight lines stand for MODIS data, wavy ones for LANDSAT) 
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Neglecting geolocation errors and divergencies in atmospheric correction, the other 

differences between LANDSAT and MODIS (caused by slightly different retrieval times, and 

thus solar geometry, or different bandwidth) can be collected in the epsilon parameter in: 

 𝐿(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘) = 𝑀(𝑥𝑖 , 𝑦𝑗, 𝑡𝑘) + 휀𝑘 (28) 

where L is the LANDSAT radiance value, M the MODIS one and each (xi,yj)I,j identifies a 

single pixel at LANDSAT’s resolution, to which MODIS’ data is resampled. Assuming the 

error εk to be constant with time k, for any (0,k) time instants the relation is 

 𝐿(𝑥𝑖 , 𝑦𝑗, 𝑡0) = 𝑀(𝑥𝑖 , 𝑦𝑗, 𝑡0) + 𝐿(𝑥𝑖 , 𝑦𝑗, 𝑡𝑘) − 𝑀(𝑥𝑖 , 𝑦𝑗, 𝑡𝑘) (29) 

Using this relation, each pixel’s L value can be found at time t0, provided that the M values 

at times t0 and tk and the L value at time tk are known. However, this relation neglects the 

possibility that one single MODIS pixel could include different land cover types which are 

instead found at LANDSAT’s resolution. Furthermore, time variations of emissivity 

(because of changing canopy, for example) and solar radiation (because of different 

sunbeam geometries along the year) should be properly accounted for. 

These uncertainties are dealt with introducing more data from neighbouring pixels, 

choosing among spectrally similar ones. Around each pixel, a searching window of 

amplitude w is built, and the final computed value will be 

𝐿(𝑥𝑤/2, 𝑦𝑤/2, 𝑡0) = ∑ ∑ ∑ 𝑊𝑖𝑗𝑘 ∙ [𝑀(𝑥𝑖 , 𝑦𝑗 , 𝑡0) + 𝐿(𝑥𝑖 , 𝑦𝑗, 𝑡𝑘) − 𝑀(𝑥𝑖 , 𝑦𝑗, 𝑡𝑘)]

𝑛

𝑘=1

𝑤

𝑗=1

𝑤

𝑖=1

 (30) 

Where to each neighbouring pixel within the searching window is assigned a weight Wijk, 

depending on three factors: 

(a) Spectral difference between MODIS and LANDSAT data for the same time (Sijk) 

(b) Time variation of MODIS values between t0 and any given tk (Tijk) 

(c) Distance of the “neighbouring” pixel from the interest one (Dijk) 

Using a correcting coefficient B, these parameters are gathered as 

 𝐶𝑖𝑗𝑘 = ln (𝑆𝑖𝑗𝑘 ∙ 𝐵 + 1) ∙ ln (𝑇𝑖𝑗𝑘 ∙ 𝐵 + 1) ∙ 𝐷𝑖𝑗𝑘 (31) 

 𝑊𝑖𝑗𝑘 =
1 𝐶𝑖𝑗𝑘⁄

∑ ∑ ∑ (1 𝐶𝑖𝑗𝑘⁄ )𝑛
𝑘=1

𝑤
𝑗=1

𝑤
𝑖=1

 (32) 

Theoretically, the algorithm can be as complete as described above or simpler, without 

considering neighbouring pixels and/or without weighing properly each contribution to 

the final result. Such an algorithm would undoubtedly be quicker in elaborating the final 
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image. However, [Gao et al, 2006] have proven that both “expansions” of the algorithm 

are quite important. 

They have used synthetic images, defined by a main dimension called “Object Radius” 

(OR). The target image was produced for an increasing Object Radius in three different 

ways: without any spatial information; including neighbouring pixels in the analysis, but 

without any particular weight Wijk; with the complete algorithm. 

Mapping the evolution of the relative error of the prediction, spatial information initially 

was found to cause more problems than benefits: for Object Radiuses lower than ~300m, 

the relative error when using neighbouring pixels was higher than when looking just at 

the single pixel (~30% more for OR=90m, then decreasing). Furthermore, no actual 

difference was found between weighting or not the surrounding pixels. 

After the 300m mark, using neighbouring pixels with weighting meant that the error 

collapsed almost to 0%; without weighting, the error was 10%-30% more; without spatial 

contributions, it could be even 60% more, around 480m. 

This explicates the limits of the model: relatively little objects (like some crop fields, or 

some steep and narrow mountain valleys) can be misrepresented by the model, but the 

accuracy grows with the nominal dimension of the target object. 

 

Figure 12 - Different error patterns for different StarFM configurations, from [Gao et al, 2006] 
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Furthermore, the method was originally [Herrero-Huerta et al, 2017] employed using 

LANDSAT 8 images (which do not suffer of the SLC failure, and so show better quality than 

LANDSAT 7), further refining the image to a 10m resolution raster using the land cover 

data coming from Sentinel 2 MSI data. 

 

1.2.4 Kustas downscaling algorithm 
Another method used to retrieve LST involves a very common index, the Normalized 

Difference Vegetation Index (NDVI), and has been developed by [Kustas et al, 2003]. 

The reason for its involvement is that it is often available at finer pixel resolution than LST 

and for its simple implementation; the aim of the method is to establish a univocal relation 

between NDVI and LST, in order to apply it to the easily-retrieved NDVI fine-resolution 

data to obtain an LST equivalent. 

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑟𝑒𝑑

𝑁𝐼𝑅 + 𝑟𝑒𝑑
 (33) 

The NDVI is the difference between the NIR light reflected by the leaves’ cells (the higher 

the more leaves there are) and the red visible light reflected by the chlorophyll in the 

plants’ cells (the lower the “greener” the vegetation is); this difference is then weighted on 

the total amount of available energy, so that the index conveniently varies within the range 

Figure 13 - Operational scheme employed for [Herrero-Huerta et al, 2017] 
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-1 to +1. This definition means that the more developed the canopy is (the more red light 

is absorbed and NIR is reflected), the higher the NDVI index. Usually, values of NDVI<0.2 

mean an almost bare soil, while values >0.5 correspond to a full canopy cover. 

Assuming that an LST image at low resolution is available (LSTLOW), together with an NDVI 

image at higher resolution (NDVIHIGH), the aim will be to identify the coefficients of a least-

squares fit between the needed LSTHIGH and NDVIHIGH, using a parabolic equation. 

The first step requires to resample the high-resolution NDVI image to LST’s low resolution, 

obtaining NDVILOW. For each pixel (i,j), a couple NDVILOW(i,j) – LSTLOW(i,j) will exist, allowing 

for a parabolic fitting of the type 

 𝐿𝑆�̂�𝐿𝑂𝑊(𝑖, 𝑗) = 𝑎 + 𝑏 ∙ 𝑁𝐷𝑉𝐼𝐿𝑂𝑊(𝑖, 𝑗) + 𝑐 ∙ 𝑁𝐷𝑉𝐼𝐿𝑂𝑊
2 (𝑖, 𝑗) (34) 

The accuracy of this fitting can be measured with indexes like R2 and RMSE/σ. 

 

As a second step, in order to account for space variability (especially because of soil 

moisture effects), an estimation error will be taken into account 

 ∆𝐿𝑆𝑇𝐿𝑂𝑊(𝑖, 𝑗) = 𝐿𝑆𝑇𝐿𝑂𝑊 (𝑖, 𝑗) − 𝐿𝑆�̂�𝐿𝑂𝑊(𝑖, 𝑗) (35) 

Figure 14 - An interpolation example from Kustas et al, 2003 
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Finally, after re-sampling ΔLSTLOW to ΔLSTHIGH, the final value for each pixel is obtained as 

 𝐿𝑆�̂�𝐻𝐼𝐺𝐻(𝑖, 𝑗) = 𝑎 + 𝑏 ∙ 𝑁𝐷𝑉𝐼𝐻𝐼𝐺𝐻(𝑖, 𝑗) + 𝑐 ∙ 𝑁𝐷𝑉𝐼𝐻𝐼𝐺𝐻
2 (𝑖, 𝑗) + ∆𝐿𝑆𝑇𝐻𝐼𝐺𝐻(𝑖, 𝑗) (36) 

[Kustas et al, 2003] have applied the method with interesting results, obtaining accurate 

fittings. 

Their results have shown a good performance for target objects with main dimension 

comparable with MODIS’ resolution (around 1000m). For higher-resolution images, the 

method has been compared with a simple re-sampling of the coarser image to the desired 

resolution. The algorithm has not shown any improvement to this method, in particular 

reaching its worst performance for target resolutions between 200m and 400m. 

 

1.2.5 General comparison 

Source MODIS 
LANDSAT 7 

ETM+ 
StarFM 

algorithm Kustas algorithm 

Input 
Images 

1 image 5 images 
5 images 

(3 MODIS + 2 
ETM+) 

2 images 
(NIR, red at fine res. 
+ LST at coarse res.) 

Input Image 
type Temperature Radiance Radiance Radiance 

Temperature 

Pre-
processing 
parameters 

Scale factor 
ε(λ) Ld(λ) τ(λ) 

Lu(λ) 
ε(λ) Ld(λ) τ(λ) 

Lu(λ) 
ε(λ) Ld(λ) τ(λ) Lu(λ) 

Scale factor 

Availability Everyday Once every 
16 days 

Everyday Everyday 

Spatial 
resolution 

Visibile 500m 
Thermal 1000m 30m 30m 

Same as NIR and red 
data 

 

Table 1 - Characteristics comparison between the LST sources 
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Chapter 2 

Case Study: Heihe River 

 
In this chapter, Section 1 will deal with a general historical and political overview of the 

basin. Section 2 provides information on the geomorphology of the basin, while Section 

3 focuses on the pedologic characteristics of the basin. Section 4 describes some satellite-

retrieved data about vegetation, while Section 5 relates the land cover use of the terrain. 

The climatic an meteorological patterns of the basin are, finally, delved into in the last 

section, Section 6. 

 

2.1 Overview 
The Heihe River Basin is the second largest inland basin in China. “Hei He” literally means 

“Black River” (黑 河), as a reference to the dark black loam it transports. Along its route, it 

has been given other names, like “Ruo Shui” (“Weak Water”, 弱 水), stemming from the 

low discharge in its lower reaches. 

The river originates in the northern ranges of the Qilian mountains, running in south-east 

direction and collecting water from minor streams, on both banks. After about 200 km in 

the narrow valleys of the mountain range, the river turns north towards the valley beyond 

the mountains (the “Hexi Corridor”), creating a number of oases. 

Past the city of Zhangye, the river turns north-west before describing a wide 90° turn along 

which more tributaries reach it from the south. 175 km after the turn, the river splits in two 

distributaries, the “eastern” (Dong He) and the “western” (Xi He) rivers. Each branch runs 
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on another 220 km before emptying in two twin lakes which constitute the Ejina Basin: the 

Sago Nuur (East Juyan Lake) and the Gaxun Nuur (West Juyan Lake), respectively [Yin et 

al, 2015] [Liu et al, 2013] [Cui et al, 2016]. 

 

These last reaches of the river are ephemeral, as the combination of evaporation and 

percolation weakens the river flow, often drying up the lakes and shortening the parallel 

branches. In this last part of its route, the river flows in the alluvial fan it has created during 

the years; this fan, characteristic of inland river deltas, constitutes the westernmost part of 

the Gobi Desert. The Heihe River basin occupies ~152000 km2 with elevations ranging 

from the 5544m of the mountains to the 869m of the terminal lakes. 

 

 

 

 

 

Figure 15 - Heihe River basin from [Cui et al, 2016] 
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The river has the utmost historical importance, as it straddles the Hexi Corridor: this is a 

narrow strip of land, squished between the Gobi and Mongolian deserts to the north and 

north-east and the Qilian mountains to the south. As these latter represent the 

northernmost border of the Tibetan plateau, the corridor constitutes one of the few viable 

ways for land connections between Europe and the Far East. The three main sections of 

the Western Silk Road all come together to pass the corridor, before branching out again. 

The strategic position has led the oases along the way to grow into prosperous cities, like 

Zhangye. This prosperity brought on new population, whose needs were met with 

activities like logging and cultivation, this last one sustained by an extensive network of 

irrigation canals [Li et al, 2018]. Over the years, this has created a desertification danger in 

the area: the river has reached less and less into the desert (traces of old irrigation canals 

have been found in the Ejina oasis area, [Hu et al, 2017]), its riparian vegetation has 

massively decreased, the water table has shrunk in the ground and the topsoil has seen a 

growing salinization [Wang et al, 2015]. 

Water stress (the deficit of the water resource availability with respect to its demand) is a 

foremost problem in China. The combination of climate change effects (more frequent 

droughts and floods) and population growth have led to a critical situation. 

Figure 16 - Ancient Silk Road and location of the Heihe River basin (in red), from chinadiscovery.com 
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The Heihe River basin being amongst the most endangered areas, it has been included in 

a wide governmental campaign of reforestation and re-allocation of the water resource. 

In the specific case of the Heihe River basin, this new policy set out to better distribute the 

water resource between the middle and lower reaches; one of the measures was to always 

save 0.95 billion m3 of water for the flow in the lower stream when the annual runoff at 

the entrance of the middle reaches surpasses 1.58 billion m3 [Huang, 2015]. 

This ecological water diversion project (EWDP) has been implemented in 2000, and has 

since registered encouraging but still partial results [Shi et al, 2014] [Xin et al, 2018], as 

the map above shows. Studies such as this are what is needed to develop the knowledge 

of this basin and the mechanics of its water cycle. 

 

2.2 Geomorphology of the basin 
The basin can be split in three main regions: the upper reaches cover the mountainous 

ground, from the river source down to the Yingluoxia hydrometric station; the middle 

reaches occupy the narrow valley between the mountains and the desert and are the most 

urbanized and the most agriculturally exploited; the lower reaches span the alluvial fan of 

the river and have an arid environment dotted with isolated oases. 

 

 

Figure 17 - Water stress evolution in China, from the World Resources Institute 
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Section Area [km2] Population [in.] Density [in./km2] 

High reaches 27’376 17.94% 3’169’747 10.19% 116 

Middle reaches 25’391 16.64% 23’869’741 76.77% 940 

Low reaches 99’839 65.42% 4’053’878 13.04% 41 
Table 2 - General subdivision of the Heihe River basin (data about population from SEDAC Columbia)  

Figure 18 - Altitude histogram and Digital Elevation Model 
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A list of basin parameters will be featured in the pages to follow. 

The aspect is the exposition (here expressed in azimuthal degrees from the north) of each 

pixel. It is fundamentally important for the solar exposition, and is widely employed in 

FEST’s algorithm. The mountain range in the southern part of the basin has widely varying 

aspects, while the valley immediately downriver has mainly northward aspects, where the 

terrain slopes toward the river. The same holds for the main alluvial fan, where the mainly 

northward direction of the river is reflected in how its solid load is deposited.  

Figure 19 - Aspect map and histogram(legend in Azimuthal degrees [°]) 
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Most of the region is quite plain, with most of the basin below 10% (circa 90% of the total 

area); the mountainous area can be quite steep, with peaks of 56%. 

 

 

Figure 20 - Slope map and frequency curve (legend in Percentage [%]) 
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This plot indicates, for each cell, the number of other cells whose output flows through 

the cell in question. With the “0” tag are labelled all the cells which constitute the “ridges” 

part of the basin, according to the FEST-EWB. This means that they are not part of the 

hydrological network proper, which is the main runoff conveyer of the basin. The flow 

accumulation plot is used by the FEST-EWB model to simplify the computation of the 

hydrological network, reducing it only to the cells labelled as “conveyer” ones. 

Figure 21 - Flow Accumulation map and histogram (legend in nr. of contributing cells) 
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2.3 Pedology of the basin 
The pedology of the basin is a complex matter, as no detailed geological map of the area 

is available. Instead, numerous indexes have been mapped, such as the wilting point, the 

field capacity, the saturated hydraulic conductivity or the saturated water content. 

From these, an ex-post soil classification can be obtained: crossing the available data, to 

each pixel is assigned a probability that the pixel in question belongs to a certain soil 

category. The pedologic class with the highest probability for each pixel is the one 

assigned to the cell itself. The analysis yields the following table. 

Soil class N° of pixels Relative area 
Loamy Sand 18682 12.24% 

Loam 128810 84.41% 
Silt Loam 4142 2.71% 

Sandy Clay Loam 262 0.17% 
Silty Clay Loam 424 0.28% 

Silty Clay 286 0.19% 
Table 3 - Soil classes found in the basin and their incidence 

Figure 22 - Soil texture classes found in the Heihe River basin 
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The most diffused soil class in the basin is “Loam”. This word frames a soil composed 

mostly of sand (particle size bigger than 63 μm) and silt (> 2 μm), with a little amount of 

clay (< 2 μm). By weight, the composition is about 40-40-20%, respectively. The other 

classes detected represent slight variations on that standard proportions. Generally, any 

soil where no clear predominance of one of the three categories is present is labelled as 

“loam”. This soil composition usually holds more nutrients than sandy soils and guarantees 

better infiltration than silty soils. This mix is quite favourable to cultivation, thus being 

partly “responsible” for the agricultural “boom” in the region. 

 

 

 

 

 

Figure 23 - A soil mixtures classification scheme provided by the Handbook of Hydrology. Shadowed in 
blue, the categories found in the Heihe River basin 
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The properties of such soil mixtures are displayed in the table below. For each parameter, 

an average value is given for any single category. 

Soil 
class 

Conductivity 
at saturation 

Brooks-
Corey 
index 

Wilting 
Point 

Field 
Capacity 

Bubbling 
pressure 

Residual 
water 

content 
KSAT [μm/s] λ [-] WP [-] FC [-] hB [cm] θR [-] 

Loamy 
Sand 13.889 0.553 5.50% 12.5% 8.69 3.5% 

Loam 4.1667 0.252 11.7% 27.0% 11.15 2.7% 
Silt 

Loam 
1.3889 0.234 13.3% 33.0% 20.76 1.5% 

Sandy 
Clay 

Loam 
0.9722 0.319 14.8% 25.5% 28.08 6.8% 

Silty 
Clay 

Loam 
0.4167 0.177 20.8% 36.6% 32.56 4.0% 

Silty 
Clay 

0.2778 0.150 25.0% 38.7% 34.19 5.6% 

Table 4 - Average values of hydraulic parameters of certain soil mixtures, from the Handbook of Hydrology 

The table shows the different behaviour of the soil mixtures according to the relative ratio 

of its components. Loamy Sand, for example, is the mixture with the most sand, with clay 

and silt both below 15% and 30%, respectively, at their best. Such a soil offers less 

resistance to the transit of water, hence the highest soil conductivity (at saturation) of the 

basin; the high Brooks-Corey Index (which indicates a more homogeneous pore-size 

distribution than the other categories) and the relatively low WP and FC all agree with this 

assumption. 

On the contrary, the last three categories show a more consistent presence of silt. The 

result is a wider variety of pore sizes, and an increased ability to withhold water (as testified 

by higher WP and FC), typical characteristic of silty soils. However, these pores have little 

communication with the outside of the soil matrix (hence the low conductivity); their small 

dimension (on average) means that the capillary forces which hold the water are higher, 

making it more difficult for plants to extract water (hence the higher FC and, more 

importantly, WP). 
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Field capacity (FC) is the maximum amount of moisture that the soil can withhold after 

any downward infiltration or superficial runoff has concluded. It depends mainly on the 

soil texture and composition, and thus can vary according to the way the river has 

deposited its sediment load over the years. Its strict definition is the amount of water 

retained by a 33 kPa suction. 

Figure 24 - Field capacity map and histogram (legend in volume percentage [-]) 



 35 

 

The wilting point (WP) parameter, as a sort of “counterpart” to the field capacity above, 

expresses the least amount of water in the soil capable of sustaining vegetation. Beneath 

this value, the only water left in the soil is so strongly held by the capillary forces between 

the soil particles, that the suction needed to extract it surpasses the maximum force that 

plants can apply. This suction limit is conventionally set to -1500 kPa, but depends on the 

cultivations and the radical apparatuses of the plants. 

Figure 25 - Wilting point map and histogram (legend in volume percentage [-]) 
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The pore-size distribution index is an empirical parameter connected to the in-soil voids: 

the more homogeneous the pores, the lower the index. It is directly linked to the other 

hydraulic parameters, as more uniform pores favour deep percolation [Assouline, 2005]. It 

derives from a theory developed from Brooks and Corey, with the Bubbling Pressure (Pb): 

 𝑆𝑒 = (
𝑃𝑏

𝑃𝑐
)

𝜆

 (37) 

Where Pc is the capillary pressure (the pressure at the interface between two fluid phases 

coexisting in the soil) and Se is the effective saturation, which corresponds to the actual 

saturation as relative to the residual saturation [Brooks-Corey, 1964]. 

Figure 26 - Pore-size distribution Index map and histogram (legend non-dimensional [-]) 
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The hydraulic conductivity parameter is linked to the soil’s ability to convey water. It has 

its highest value in the saturation condition, and has lower values for intermediate soil 

moistures, following a power function of the SM/SMSAT ratio. 

 

 

Figure 27 - Hydraulic conductivity at saturation map and histogram (legend in [0.1 mm/s]) 
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Saturated Water content is the maximum amount of moisture that the soil can store, 

expressed in volume of water per unit volume of soil. As is evident, it surpasses the field 

capacity because it accounts also for the water stored during rain or irrigation, which is 

lost by infiltration or superficial runoff in a short period of time (a couple of days at best). 

Looking at the unit volume of soil as a water tank, this parameter represents the maximum 

volume of water before the excess is expelled, mainly by superficial runoff or ponding. 

Figure 28 - Saturated water content map and histogram (legend in volume percentage, [-]) 
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These indexes have been obtained indirectly from available data, and this explains the 

little value range with respect to the parameters seen above. The bubbling pressure is part 

of Brooks-Corey model, and has the physical meaning of being the pressure value at 

which, for homogeneous and isotropic media, the first gas flow (hence, “bubbling”) is 

observed. The residual water content has a similarly empirical meaning of being the water 

content retained for high suction. By “high”, it is meant that only the forces present in the 

micropores are able to withhold this amount of water, and no mechanical action can 

extract it. 

Figure 29 - Bubbling pressure (left) and Residual water content (right) map and histogram (legends in [cm] 
and [-], respectively) 
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2.4 MODIS satellite data 
The three plots in this section are obtained from MODIS. In fat, a number of different 

parameters are found within its produts. In particular, both albedo and LAI are present 

with higher resolution than MODIS’ LST data (500 m instead of 1000 m). Furthermore, LAI 

data is sampled once every 4 days, and has been interpolated for the purpose of having 

values every day. All data can be found at the National Aeronautics and Space 

Administration website (www.ladsweb.modaps.eosdis.nasa.gov/). 

 

The albedo is the amount of energy (expressed as fraction of the total incoming one) 

which is reflected back from the given terrain pixel. This amount can change widely 

according to land cover types and can evolve through the year along with “coloration 

changes” of the pixel: snow cover can reflect more solar radiation (thus with a higher 

albedo), as plant withering can absorb more thermal infrared radiation, lowering the 

albedo. 

 

 

 

 

Figure 30 - Albedo patterns for the whole basin (Heihe) and its sub-regions 

http://www.ladsweb.modaps.eosdis.nasa.gov/
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As an example, these maps show the albedo average value for each season. The different 

growing patterns of the various kinds of vegetations could explain the higher albedo in 

the desert area for autumn. The mountain range, on other hand, shows similar values all 

year long. 

This because albedo values depend on a lot of factors, ranging from snow cover to the 

vegetation’s growth stage, to the presence of irrigation systems and paved roads. 

 

 

Figure 31 - Average albedo value for winter (first row, left), spring (first row, right), summer (second row, 
left) and autumn (second row, right) 
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The Leaf Area Index (LAI) is the ratio between the (one-side) leaf area and the total area 

of the pixel. Highly vegetated pixels can have LAI values bigger than the unit, but this 

happens only at pixel scale, as evident in the example map below. This index is 

fundamental in providing some estimate of the transpiration activity of the vegetation 

(which depends on the leaf surface available for the gaseous transfers with the 

atmosphere) and the amount of solar radiation that effectively reaches the ground 

(because of the shadowing mechanisms of a sufficiently dense canopy cover). 

 

Figure 32 - Leaf Area Index plot for the whole basin (Heihe) and its sub-regions 

Figure 33 - Average Leaf Area Index for the summer season 
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The vegetated fraction is the amount of basin area which is classified as “vegetated”. Such 

an index can be easily obtained, for example, by analysing NDVI data for the basin, and it 

is useful to the FEST-EWB model to understand which evapotranspiration law to apply 

from the Penman-Monteith algorithm. 

The almost complete bareness of the desert area is testified by low values all year long, 

while the mountainous area, which has cooler temperatures and higher precipitations, can 

sustain a moderate vegetation growth, with a peak of 28.8% of vegetated area. 

For the purposes of this study, the index has been derived from the LAI index, employing 

a relation between the two [Timmermans, 2011]: 

 𝑓𝑉 = 1 − exp (−0.5 ∙ 𝐿𝐴𝐼) (38) 

 

Figure 34 - Vegetated Fraction plot for the whole basin (Heihe) and its sub-regions 



 44 

2.5 Land cover classes 
Each pixel will be assigned to a specific land cover class, in order to establish an emissivity 

value suited to the characteristics of the emitting/reflecting surface. The European Space 

Agency (ESA) website hosts the Global Land cover Map, which distinguishes 22 classes. 

Figure 35 - Land cover map of the 
Heihe River basin, with legend from 
GlobCover Land Cover map (partial) 
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For the sake of a more straightforward analysis, these can be grouped together in six 

macro-categories: cultivated soil (croplands), high-stem vegetated soil (forests), low-stem 

vegetated soil (shrubs), artificially-covered soil (cities), bare soil (desert) and water/ice-

covered soil (waters). 

Code Land cover type Area Macro 

11 Post-flooding or irrigated croplands (or aquatic) 1.70% croplands 

14 Rainfed croplands 2.21% croplands 

20 Mosaic cropland (50-70%) / vegetation 2.05% croplands 

30 Mosaic vegetation (grassland/shrubland/forest) 4.17% shrubs 

40 Closed to open (>15%) broadleaved evergreen or semi-
deciduous forest (>5m) 0.00% forests 

50 Closed (>40%) broadleaved deciduous forest (>5m) 0.00% forests 

60 
Open (15-40%) broadleaved deciduous forest/woodland 

(>5m) 0.00% forests 

70 Closed (>40%) needleleaved evergreen forest (>5m) 0.33% forests 

90 Open (15-40%) needleleaved deciduous or evergreen 
forest (>5m) 

0.00% forests 

100 Closed to open (>15%) mixed broadleaved and 
needleleaved forest (>5m) 0.12% forests 

110 
Mosaic forest or shrubland (50-70%) / grassland (20-

50%) 0.06% forests 

120 Mosaic grassland (50-70%) / forest or shrubland (20-
50%) 

0.33% shrubs 

130 Closed to open (>15%) (broadleaved or needleleaved, 
evergreen or deciduous) shrubland (<5m) 0.20% shrubs 

140 
Closed to open (>15%) herbaceous vegetation 

(grassland, savannas or lichens/mosses) 11.08% shrubs 

150 Sparse (<15%) vegetation 0.16% shrubs 

160 
Closed to open (>15%) broadleaved forest regularly 
flooded (semi-permanently or temporarily) - Fresh or 

brackish water 
0.00% forests 

170 
Closed (>40%) broadleaved forest or shrubland 
permanently flooded - Saline or brackish water 0.00% forests 

180 
Closed to open (>15%) grassland or woody vegetation 

on regularly flooded or waterlogged soil - Fresh, 
brackish or saline water 

0.01% shrubs 

190 Artificial surfaces and associated areas (Urban areas 
>50%) 

0.07% cities 

200 Bare areas 77.12% deserts 

210 Water bodies 0.09% waters 

220 Permanent snow and ice 0.31% waters 
Table 5 - Land cover re-classification for the Heihe River basin 
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Three different categories have been highlighted for canopy-covered soil. The first one is 

set apart because the agriculture has well-defined seasonal growing patterns, and because 

the “structure” itself of a cultivated field is obviously quite different from the one of wild 

land, and as a consequence the water and energy transfer mechanisms can markedly 

differ. The wild vegetation has been distinguished in low-stem and high-stem for two 

main reasons: the transpiration mechanisms are different between the two types and the 

“terrain cover” they provide is different. Having the ground completely shadowed by tall 

forests changes the dynamics of the water balance, with increased interception (and thus 

more evaporation) and less solar radiation penetrating the canopy cover. 

Cat. ID Name Area [km2] 
1 Croplands 6616 5.95% 
2 Forests 556 0.50% 
3 Shrubs 17743 15.96% 
4 Cities 77 0.07% 
5 Deserts 85717 77.12% 
6 Waters 437 0.39% 

Table 6 – New land cover classes and their incidence over the total basin area 
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2.6 Climatic patterns and meteorological 

data 
The Heihe River Basin qualifies as an area with an Arid cold Desert climate (BWk), 

according to Köppen climate classification. This tag is true for much of the area, except 

some parts of the Qilian mountains (cold/semi-arid climate, BSk). These climates see little 

precipitation, conventionally less than the potential evapotranspiration and usually 

between 25 mm/y and 200 mm/y. Dry summers and cold, dry winters are a common 

pattern. Cold/semi-arid climates are the typical transition between arid and 

Mediterranean/continental-humid areas; these areas show some snow during winter, and 

feature higher precipitations. 

Meteorological data has been gathered for year 2012 at hourly time frequency with a 

coarser spatial resolution than the rest of the data (0.05° or circa 5000m), from the Chinese 

National Atmospheric Research centre.  Looking into the monthly distribution of the rain 

patterns, it is evident how most rains are concentrated in late spring and early summer, in 

particular between May and July. In spite of the lower reaches being the largest by far 

Figure 36 - Monthly precipitation distribution between the sub-regions 
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(almost twice the size of the other two combined), they contribute for less than 5% to the 

total precipitation amount in the basin. The middle reaches contribute for the 15% while 

the remaining 80% of the total precipitations falls in the higher reaches. 

 

Here four rain distribution maps are displayed: they show the total precipitations for 

February, May, August and November. While the central months of the year reach high 

values (peaks of 150 mm/month in May and 450 mm/month in August), the autumn-to-

winter season has barely visible patterns. Most precipitation is concentrated in the 

mountainous area: this creates a “rain shadow” effect towards the region immediately 

northward, contributing to its aridity. 

Figure 37 - Total precipitations for the months of February (first row, left), May (first row, right), August 
(second row, left) and November (second row, right) 2012 in the Heihe River basin (legend in mm/month) 
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Wind conditions are quite influenced by the narrow spaces in the mountain valleys, with 

the highest registered daily mean values in that area. The desert plain, instead, is less 

windy. Wind is an important factor for evaporation and transpiration and affects how the 

theoretical evapotranspiration is effectively converted in actual evapotranspiration as it 

influences the local humidity above the soil. 

Figure 38 - Wind speed map and histogram (legend in [m/s]) 
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Cloud cover is easily retrieved from MODIS’ LST product: each clouded pixel is flagged 

with a “0” value. This has allowed a full reconstruction of the cloud patterns in the basin. 

No clear trend was found, with a seasonal average cloud cover of 42%; winter was found 

to be slightly cloudier, but no important difference between the seasons arose. The map 

above shows the number of days in 2012 in which each pixel was classified as “clouded”. 

As expected, the higher precipitations on the mountain area correspond to a heavier cloud 

presence, with some pixels which have been clouded 300 days out of 366 in 2012. 

 

Figure 40 - Average seasonal values for cloud cover 

Figure 39 - Number of clouded days 
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Chapter 3 

LST downscaling 

A performance analysis 

 
Section 1 deals with a methodology overview of the analysis that will be performed. In 

Section 2 the comparison between MODIS and StarFM is developed, while Section 3 

relates the comparison between MODIS and Kustas. Sections 4 and 5 recap the conclusions 

of the analysis, with some clarifying images from exemplar test dates. 

3.1 Methodology 
In order to assess the best candidate method to obtain the LST data needed for calibration, 

a procedure of validation will be performed. The three different sources (MODIS, StarFM 

algorithm and Kustas algorithm) will be compared with LANDSAT’s own data (the highest 

spatial resolution LST data available but with a temporal resolution of only 16 days). 

The performance of each source will be evaluated with common statistical indexes (mean 

error, RMSE). In order to have more insight, the number of cells (normalized over the whole 

‘data’ cell pool) whose error is located within a given tolerance will be taken into account; 

tolerances of ±1 K, ±2 K, ±3 K and ±4 K have been selected for this purpose. These quantities 

will be referred to as “inclusion rates” ρ (ρ±1K, ρ±2K, ρ±3K and ρ±4K, respectively). 

Furthermore, the comparison will be performed by grouping the pixels according to their 

land cover and their lighting conditions (light/shadow). 
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3.2 MODIS v. StarFM algorithm 
 

3.2.1 Choice of the area of interest 
Of the 4 LANDSAT paths which cover the Heihe River Basin, the scenes from path 134, 

rows 31-32-33 have been selected for validation, because of two main qualities: 

o they are completely framed within the basin; 

o they cover a wide variety of landscapes, from the highest peaks of the Qilian 

mountains to the southern fringe of the Gobi Desert, just upriver of the Eijna Oasis 

area, also comprising the urban areas of Zhangye and the cultivated fields nearby. 

 

Due to LANDSAT’s 16-days revisit time, the interest area has been sampled 23 times in 

2012. However, 9 of these dates (red tag) lack at least one of the three required scenes. 

Of the 14 remaining images, only 7 have LANDSAT images available 16 days before and 

after (green tag). StarFM algorithm does not recognize time shifts between the images it 

is employing, so there would be no differences in using two image couples “close” in time 

Figure 41 - Test-area within Heihe River basin 
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to the target date instead of more distant images; however, the higher-quality results 

would require the closest available images. 

In 4 of the remaining 7 dates, one of the couples was, at best, 32 days distant in time 

(yellow tag). Although their elaboration will necessarily have a higher degree of 

uncertainty than the others’, they’ll be included in the validation as well, enlarging the 

test-dates pool to 11. The remaining three dates are too far-off from the others, and so 

will be neglected (blue tag). This reasoning yields 11 test-dates, unevenly distributed 

through the year. Spring and Summer are represented by 4 dates each, while autumn 

features 2 dates and winter only 1. 

DOY Date Notes 

7 7th January 2012 Data available ◼ 

23 23rd January 2012 Data available ◼ 

39 8th February 2012 Incomplete data ◼ 

55 24th February 2012 Incomplete data ◼ 

71 11th March 2012 Incomplete data ◼ 

87 27th March 2012 Incomplete data ◼ 

103 12th April 2012 Data available ◼ 

119 28th April 2012 Data available ◼ 

135 14th May 2012 Data available ◼ 

151 30th May 2012 Data available ◼ 

167 15th June 2012 Data available ◼ 

183 1st July 2012 Incomplete data ◼ 

199 17th July 2012 Data available ◼ 

215 2nd August 2012 Data available ◼ 

231 18th August 2012 Data available ◼ 

247 3rd September 2012 Data available ◼ 

263 19th September 2012 Incomplete data ◼ 

279 5th October 2012 Data available ◼ 

295 21st October 2012 Data available ◼ 

311 6th November 2012 Data available ◼ 

327 22nd November 2012 Incomplete data ◼ 

343 8th December 2012 Incomplete data ◼ 

359 24th December 2012 Incomplete data ◼ 
 

Table 7 - LANDSAT 7 passages on the test area in 2012 on the respective data availability 
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3.2.2 General comparison 
Before actually comparing the results, the possible dependency of estimation errors on 

the cloud cover will be investigated. The following plots feature the error means and RMSE 

of MODIS and StarFM with respect to the “reference” LANDSAT data. 

The chosen dates have a variety of cloud cover values, all below 30%, but that does not 

seem to influence either RMSE or error mean. An example of that is the difference in the 

error between 2nd August and 21st October, dates that both share a similar value for cloud 

cover (16.3% and 15.1%, respectively), but have quite different errors (RMSE2ago=14.8 K, 

RMSE21ott=4.47 K for MODIS, while RMSE2ago=20 K, RMSE21ott=9.15 K for StarFM). 

 

Figure 42 - Mean error and RMSE for MODIS and StarFM 
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Assessed that cloud cover does not play a part in the sources’ performances, the mean 

error and RMSE are looked into. Error means seem to be biased by a systematic error for 

the MODIS data, as they are all positive (meaning that MODIS overestimates the actual 

temperature); this does not happen for the StarFM, which shows cases of lower mean 

errors (in 3 days the error is lower than 2.23 K, the lowest mean error for MODIS), some of 

which are negative (the StarFM meanly underestimates the temperature). Although MODIS 

data seem to be somewhat biased, their RMSE are, overall, lower than the StarFM’s: 

𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑀𝑂𝐷𝐼𝑆 = 6.73 𝐾 < 15.65 𝐾 = 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅

𝑆𝑡𝑎𝑟𝐹𝑀 

The inclusion rates (relative number of cells whose error falls within a given tolerance) 

show how MODIS’ work is more effective: 9 out of 11 test-dates show an inclusion rate 

higher than 50% at the highest tolerance (±4 K). This means that, 9 times out of 11, more 

than half of the MODIS temperatures do not mistake the actual value for more than 4 K. 

In most of these cases (6 out of 9) the inclusion rate is higher than 60%, surpassing 70% 

on 21st October. 
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Aggregating the data by season, MODIS keeps outperforming the StarFM. For MODIS, the 

“weakest”-performing season seems to be summer (highest errors and lowest inclusion 

rates), while StarFM works the worst in autumn. 

 

 

Figure 43 - Inclusion rates for MODIS and StarFM 
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At season level, an interesting statistic is the spread between MODIS’ inclusion rate and 

StarFM’s. The most important thing to notice is that, while both MODIS’ and the StarFM’s 

performance grow with the tolerance, MODIS’ inclusion rates grow faster, as witnessed by 

their spreads, which grow with tolerance too. Even though neither method reaches an 

optimal (>90%) inclusion rate within acceptable tolerances, MODIS errors are more 

densely concentrated around the (optimal) zero-error: the gain obtained in adding ±1K to 

the tolerance is far better when using MODIS data than StarFM algorithm. 

 

Data from 7th January seems to stand out as quite different from the rest: StarFM performs 

very well, far better than the rest of the year. Unfortunately, every consideration that could 

be inferred from such behaviour about the sources’ performances during winter would be 

quite weak, because of the lack of other winter data. Data from 7th Jan is reported in the 

rest of the study for the sake of completeness, but without indulging too much on any 

analysis. 

Figure 44 - Seasonally grouped Inclusion rates for MODIS and StarFM 

Figure 45 - Inclusion rate spreads between MODIS and StarFM for different tolerances 
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3.2.3 Analysis by land cover 
Of the 6 macro-categories detected in the basin, water and artificial surfaces are the least 

important. Firstly, because together they account for <0.50% of the whole basin; secondly, 

because the data involving them has some inaccuracies, which will be discussed in the 

proper sections. 

3.2.3.1 Croplands 

Main cultivations in the region are developed in the middle reaches of the river and consist 

of maize and wheat [Wang et al, 2011]. The growing season reaches its apex between July 

and August, but there seems to be no clear pattern visible in the data for that period. 

 

Figure 46 - Mean error and RMSE for MODIS and StarFM (croplands) 
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MODIS, in particular, has too low a resolution to distinguish the single crop fields, and 

shows an overall increase in RMSE (+8.3% on average) over the whole basin. StarFM 

algorithm underperforms as well (on average +9.2% in RMSE), in particular in the June-

July period, a little “out-of-phase” with MODIS. 

The inclusion rates show some “seasonality” in MODIS’ behaviour, with a steady decline in 

performances until the end of July, before recovering the values of the start of the year. 

This can be a result of MODIS’ inability to appreciate what happens at crop field scale 

during the growing period. StarFM algorithm displays a similar pattern, with the best 

results in late summer and autumn, after the growing season. 
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In spite of these underperformances, MODIS keeps working better, as shown by the 

spreads, always above +20% in the medium-high tolerances. 

 

 

 

 

 

 

 

Figure 47 - Inclusion rates for MODIS and StarFM (croplands) 

Figure 48 - Inclusion rate spreads between MODIS and StarFM for different tolerances 
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3.2.3.2 Forests 

Tall vegetation show patterns not too different from the croplands. Higher errors are 

featured in the spring-summer period than in the post-flowering season, between late 

summer and the end of the year. 

 

However similar as the behaviours may be, in this case the RMSE increases markedly: 

StarFM’s surges +20.9% on average, while MODIS’ exceeds the 30% mark (+35.1%). 

This general pattern can be explained by the intermixing between different pixel types: 

“forest” pixels are few (~430’000 pixels, that is ~387km2 or the 0.43% of the whole basin) 

and often next to “cropland” pixels. Thus, the distinction can be ambiguous between the 

Figure 49 - Mean error and RMSE for MODIS and StarFM (forests) 
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two (each pixel is assigned to one category, even if part of it would have belonged to 

another, had a finer resolution been used), and the behaviours do not differ much. 

3.2.3.3 Shrubs 

Shrubs and low-lying vegetation cover the middle-to-high reaches of the river, around the 

highest mountain peaks. 

 

MODIS error means seem to lose their systematisms with 9 days out of 11 showing 

negative values. Overall the RMSE has again surged (+10.4%), but not because of a 

consistent overestimation (as testified by the signs of the error means). The StarFM, 

however less performing (the RMSE grows), shows a slightly better performance than for 

Figure 50 - Mean error and RMSE for MODIS and StarFM (shrubs) 
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cultivated lands or high trees: the average increase in RMSE for StarFM is +8.0% for the 

“shrubs” category, against the +20.9% seen for forests. 

Figure 51 - 
Inclusion rates 
for MODIS and 
StarFM 
(shrubs) 
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No major seasonal pattern is detected; in fact, inclusion rates for MODIS seem to stabilize 

independently of the sampling date: at ±4 K tolerance, ρ values are all found within ±10%, 

and almost all stand above 50% (with the exception of 17th July, with a uniquely low 

performance). 

A little more variety (σRMSE
(StarFM) = 7.7% > 3.9% = σRMSE

(modis)) is found in the StarFM 

performance, but the overall “a-seasonal” behaviour is found also in this source. All this is 

reflected in the spreads, which have comparable patterns all year long. 

 

This category seems to feature the most “stable” data, time-wise. Such a result is coherent 

with the nature of the pixels themselves: wild vegetation is far more diverse than 

cultivations, both in growing patterns and heat emission mechanisms. Such a variety 

cannot result in clear patterns, being the superposition of many different timings and 

mechanisms. 

3.2.3.4 Artificial 

Artificial covers constitute quite a negligible part of the basin (~0.04%) and thus have little 

to no importance in this model’s calibration. However, a little information can be gathered 

by looking at these data. MODIS performs surprisingly well, with a lowering of the average 

RMSE (-5.0%); the performances seem to be particularly good in the winter-autumn dates. 

The StarFM, on the other hand, has a consistent increase in RMSE (the average value surges 

+17.3%), reaching the highest value for the whole study on 17th July: 35.5 K. 

Figure 52 - Inclusion rate spreads between MODIS and StarFM for different 
tolerances (shrubs) 
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These considerations, however, have less “value”, as no thorough analysis on the materials 

used for the artificial covers has been conducted. A representative value for emissivity has 

been used, but a higher level of detail would be required to perform a “scientifically 

orthodox” study. This exceeding the goals of this study, the topic will not be developed 

further. 

3.2.3.5 Desert 

The most consistently present category in the basin (~72% of the test area), it has been 

further characterized with different values for the emissivity to account for the diverse 

composition of the soil. 

 

Figure 53 - Mean error and RMSE for MODIS and StarFM (desert) 
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MODIS data feature a “biased” error mean, characteristic of the whole test area, showing 

a -6.2% average decrease in RMSE. The absence of vegetation is evidently a better setup 

for the instrument’s low resolution, as the area to be sampled has higher homogeneity. 

StarFM too performs well, being this the only land cover type for which its average 

variation of RMSE is a decrease (-4.9%). Generally speaking, the homogeneity of this land 

cover type is simpler to interpret for both MODIS’ 1000m spatial resolution and StarFM’s 

processing algorithm. 
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Inclusion rates seem to be quite stable (except a slight decrease in the end of the year) for 

StarFM, while have an underperformance dip around mid-summer for MODIS. In this 

category, StarFM outperforms MODIS more than in any other: 8 dates out of 11 at ±1K 

tolerance, 7/11 at ±2K, 4/11 at 3K and 2/11 at 4K. This fact is quite strong also at seasonal 

level, as shown by the spreads. 

 

 

 

 

 

Figure 54 - Inclusion rates for MODIS and StarFM (desert) 

Figure 55 - Inclusion rate spreads between MODIS and StarFM for different tolerances (desert) 
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3.2.3.6 Water 

Lastly, the category classified as “water” is discussed. This includes any water status, like 

snow or ice. The lowest inclusion rates (scarcely reaching 50% at ±4K tolerance) are 

obtained for this category, for which both MODIS and the StarFM show an important 

average increase in their RMSE (+48.0% and +32.7%, respectively). This data, however, is 

originally flawed because water-pixel detection has been conducted using a stationary 

mask, which does not account for the extension-retreat of the snow cover or of the two 

terminal lakes in the Ejina Oasis area. In both cases, considering as “water” areas that in 

fact are dry wasteland or rocky and vegetated mountain strongly affects data quality. 

 

3.2.4 Analysis by illumination degree 
Mountainous regions often offer the most difficult challenges to Remote Sensing 

applications. 

o The highly changeable terrain can display features hard to recognize for 

(relatively) low-resolution instruments (like MODIS) 

o The importance of radiance reflected from neighbouring pixels increases, adding 

to the uncertainty already present in the model or instrument 

o Planck’s Law requires Lambertian emitting surfaces, that is isotropic radiation; 

such a hypothesis is actually almost never satisfied, but the error thus generated 

is usually negligible. However, the more rugged the terrain is, the higher the error 

In order to try and “isolate” the more “problematic” pixels, an algorithm (developed by 

[Corbari et al, 2011]) has been employed to detect “shadowed” pixels. This computes the 

position of the sun, expressed through its azimuth and elevation angles, using the 

reference latitude/longitude of each pixel and knowing the exact moment of the satellite 

sampling during the year. The Solar Elevation is then compared with the so-called 

Topographic Angle, which is the angle, with respect to the horizontal, at which the nearest 

obstacle in the Solar Azimuth direction is seen from the observation point. 

Each date shows an almost negligible presence of shadowed pixels, reaching, at best, the 

3.50% of the total area. The light-pixels/shadow-pixels ratio goes as high as 4541, on 17th 

July, when only 0.022% of the area is “in shadow”. 
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3.2.4.1 “In-light” pixels 

At global level, both MODIS and StarFM benefit from the exclusion of shadowed pixels. 

Looking at average RMSE variations, both cases show barely noticeable decreases (-0.85% 

and -0.93%, respectively). The magnitude of such decreases can be explained with the 

little amount of pixels removed. 

Such a (practically negligible) variation does not affect much the inclusion rate patterns, 

date-to-date or at seasonal level, as can be confirmed by the similarity between the error 

plots of the “in light” pixels (in the images below) and the ones of the whole basin seen 

before. 

Figure 56 - Light/Shadow ratio for each test date 
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3.2.4.2 “In-shadow” pixels 

Even if the exclusion of “in-shadow” pixels does not seem to improve effectively the 

results, it can be useful to understand whether the low impact of such exclusion is due 

only to the pixels’ little number, or to an actual low quality. 

In fact, “in-shadow” pixels show a much lower quality, with important average increases 

in RMSE (+24.8% for StarFM, +40% for MODIS). Looking at seasonal data, a different 

pattern than usual is found for the spreads. In summer and autumn they do not reach 

10%: this means that, when dealing with “problematic” pixels, StarFM “suffers” the poor 

quality of the data less than MODIS. The latter still outperforms the former, but with a 

minor margin than usual. This suggests that, when using MODIS data, excluding shadowed 

pixels can be a useful decision, as their quality is usually far inferior than the others’. Such 

a problem is not so heavy for the StarFM, for which shadowed data cause less trouble. 

Figure 57 - Mean error and RMSE for MODIS and StarFM ("in-light" pixels) 

Figure 58 - 
Inclusion rate 
spreads between 
MODIS and StarFM 
for different 
tolerances ("In 
shadow" pixels) 
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3.3 MODIS v. Kustas algorithm 
Before looking at the results, an observation of the starting conditions should be 

conducted. Kustas algorithm works on a linear or parabolic fitting of LST-to-NDVI data, 

and the goodness of these fittings can be important for the efficiency of the whole 

algorithm. For each test date, the values of two fitting statistics, R2 and RMSE/σ, are 

plotted, together with a reference value for each statistic gathered by [Kustas et al, 2003] 

in the last column. While the former is most optimal the closer it is to 1 (by its own 

definition), the other is considered favourably if lower than 0.5. 

 

Unfortunately, the fittings do not seem too close to the actual values: only August to 

September data pass the (R2=0.3) value; these dates are of course also the ones with the 

lowest RMSE/σ value (0.68 at best, on 2nd Aug). Obviously, these numbers do not say 

anything final about the application of this method, but any bad result could be partly 

traced back to them. 

 

The particular structure of LANDSAT 7 data (with the data gaps caused by the SLC failure) 

creates some problems during re-sampling. Many a cell is lost in the process, and the data 

sample on which every statistical analysis in this study is performed is less numerous than 

the ones for MODIS and StarFM. In particular, on average, “data” cells in these sources are 

1.5 times more than for Kustas. A particularly “poor” date, due to an unfortunate 

Figure 59 - Comparison between the fitting statistics of the test dates and an average values for the ones 
found in Kustas et al, 2003 
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combination of cells already missing in the LANDSAT image and cloud cover, is 3rd Sep, 

for which the difference between the data samples almost reaches one full order of 

magnitude. 

 

3.3.1 General comparison 
Looking at the actual results (in the form of the usual mean error and RMSE statistics), they 

seem quite similar to MODIS’, with a systematically positive mean error and RMSE at its 

worst between July and August. The former means that also Kustas’ algorithm 

overestimates, on average, the temperatures, while once again no connection to cloud 

cover can be traced, with the same principles applied for MODIS. 

Figure 60 - Ratios between the number of "Data" pixels in MODIS and the one in Kustas for each test date 

Figure 61 - Mean error and RMSE for Kustas 
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The parallel with MODIS’ result is quite striking: the results are similar in numbers (the 

average RMSE of Kustas’ algorithm is 3.26 K, compared with 3.37 K from MODIS’ data) but 

not in trends. Indeed, looking at inclusion rates (of MODIS and Kustas), a particularly low 

performance is registered on 17th Jul; this is surrounded by relatively poor performances, 

with ρ4K<50% from 30th May to 3rd Sep. This period is coarsely coincident with the 

flowering and growth of the vegetation, to which Kustas’ algorithm is strongly linked 

(through the NDVI). The fitting parameters had foreshadowed a poor interpretation of the 

growth patterns by the algorithm; at a first guess, this could be one cause for such a 

pattern in the inclusion rates. The land cover analyses could provide more critical 

information in this sense. 
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Aggregating the data seasonally, the periods with the most vegetation presence (spring 

and summer) show the worst performance for the algorithm, similarly to MODIS. The 

seasonal inclusion rate show a quite consistent similarity between the two sources, with 

practically identical behaviours and spreads that, in the “worst” case, do not reach even 

+5%. 

 

Figure 62 - Inclusion rates for MODIS and Kustas 
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3.3.2 Analysis by land cover 

3.3.2.1 Croplands 

Looking at the inclusion rates, they show the same general trend of the global basin, with 

both MODIS and Kustas underperforming in the central months of the year. 

 

Figure 63 - Seasonally grouped Inclusion rates for MODIS and Kustas 
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Grouping the data seasonally, the slight underperformance of Kustas’ algorithm with 

respect to MODIS is clear and quite constant throughout the year, growing with respect 

to the whole-basin comparison. 

Figure 64 - Inclusion rates for MODIS and Kustas (croplands) 

Figure 65 - Inclusion rate spreads between MODIS and Kustas for different tolerances 
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This consistent pattern means that Kustas’ underperformance is not linked to the growing 

patterns of the vegetation; in particular, this means that both Kustas and MODIS seem to 

structure their work on the same mechanisms: maybe, Kustas’ “less populous” data pool 

allows low-quality data to have a bigger influence on the overall RMSE and inclusion rates. 

This is also consistent with Kustas’ own average increase in RMSE when extracting crop-

fields data from the whole basin, which is far higher (+21.1%) than MODIS’ (+8.3%) but 

also of StarFM (+9.2%); this could mean that numerosity of the sample is quite important. 

 

3.3.2.2 Forests 

The close link with the preceding category can be easily seen in the inclusion rates: the 

inclusion rate plots are quite alike, even though the differences between MODIS and 

Kustas are less evident than it was for the croplands category.   
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Looking at seasonal values, the similarity is evident: the inclusion rate spreads do not 

overcome the 5% threshold, meaning a closer result than for the croplands category. 

 

Figure 66 - Inclusion rate patterns for MODIS and Kustas (forests) 

Figure 67 - Inclusion rate spreads between MODIS and Kustas for different tolerances (forests) 
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3.3.2.3 Shrubs 

Inclusion rates patterns for Kustas’ algorithm follow MODIS’ once again, although for both 

the performance dip on 17th July seems a more isolated episode, as the inclusion rates ρ4K 

for the other dates all gravitate around 50%. 
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The underperformance of Kustas, once again, is quite little (always less than 5% difference 

in the inclusion rate), meaning that vegetated areas, as a whole (the first three categories) 

are better interpreted by MODIS than Kustas, but only by a slight margin. 

 

 

 

 

 

 

Figure 68 - Inclusion rates for MODIS and Kustas (shrubs) 

Figure 69 - Inclusion rate spreads between MODIS and Kustas for different tolerances (shrubs) 
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3.3.2.4 Deserts 

Inclusion rates show the dominant trend of the basin: low values for the middle of the year 

(June to August period), higher values at the start and the end of the year. 
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Furthermore, the spreads are even smaller than for other categories. The (quasi-)absence 

of vegetation reduces the differences between the two methods, almost nullifying them. 

In some cases Kustas even outperforms MODIS, as their difference is so small that any 

little detail can shift the balance of the single inclusion rate spread in favour of MODIS or 

Kustas. 

 

 

 

 

 

Figure 70 - Inclusion rates for MODIS and Kustas (desert) 

Figure 71 - Inclusion rate spreads between MODIS and Kustas for different tolerances (desert) 
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3.3.3 Analysis by illumination degree 
For Kustas, just as for MODIS, shadowed pixels show worse quality, with far higher errors 

(-0.85% decrease in RMSE for “in-light” pixels and +49.1% increase for “in-shadow”). 

Removing them, a decrease of the total RMSE is obtained, but because of the “light” pixels 

outnumbering the “dark” ones, this benefit is rarely valuable. All things said about MODIS’ 

data characteristics in Section 3.3.4 is fully applicable to Kustas’ data, with no actual 

difference. 

 

3.4 Conclusions on the comparison 
As a result of this analysis, MODIS data have been chosen for the calibration process. The 

StarFM algorithm is fairly outperformed by MODIS, and Kustas offers little advantages, 

given that the procedure to obtain first the NDVI and then the fitting parameters is far 

more time-consuming than obtaining the LST data from MODIS. Land cover results 

suggest that the vegetated areas will be represented less accurately than the desert areas, 

and lighting-degree analysis yields that no useful advantage can come in excluding 

shadowed pixels. 

 

3.5 LSTs image comparison 
In this section LST maps are compared for three example dates (30th May, 18th August and 

5th October 2012). Each date will feature the four scenes (Landsat, MODIS, Kustas and 

StarFM) and a frequency plot. 
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3.5.1 30th May 2012 

 

Figure 72 - LST 
images for 30th 
May 2012. 
LANDSAT (first 
row, left), MODIS 
(first row, right), 
Kustas (second 
row, left) and 
StarFM (second 
row, right). The 
legend is in Kelvin 
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For this date, all sources overestimate LANDSAT’s temperature. MODIS, for example, has 

a good interpretation of the cold mountain areas, but “sees” higher temperatures in the 

desert area. Although less visible because of the numerous ‘NoData’ cells, Kustas follows 

in this path, as witnessed by the frequency plot: the bias between MODIS/Kustas and 

LANDSAT is quite clear. MODIS, however, manages to interpret, in part, the shape of 

LANDSAT’s frequency plot. StarFM has a wider range of temperatures, adapting well to 

the “tail” of the plot in the colder temperatures but coarsely overestimating the desert 

zone. 

 

 

 

 

 

 

 

 

Figure 73 - Frequency plot for LANDSAT, MODIS, Kustas and StarFM on 30th May 
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3.5.2 18th August 2012 

Figure 74 - LST 
images for 18th 
Aug 2012. 
LANDSAT (first 
row, left), MODIS 
(first row, right), 
Kustas (second 
row, left) and 
StarFM (second 
row, right). The 
legend is in Kelvin 
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Both the response from the temperature maps and the frequency plot are not much 

different from the ones of the preceding date. MODIS results the best interpretation of 

the temperature, with Kustas a close second. StarFM behaves well for the low temperatures 

but markedly misses the temperature pattern in the warmer areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 75 - Frequency plot for LANDSAT, MODIS, Kustas and StarFM on 18th Aug 
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3.5.3 5th October 2012 

Figure 76 - LST 
images for 5th Oct 
2012. LANDSAT 
(first row, left), 
MODIS (first row, 
right), Kustas 
(second row, left) 
and StarFM 
(second row, 
right). The legend 
is in Kelvin 
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In this last date the plot is simpler, with only one peak. Both MODIS and Kustas do a good 

job, probably with the lowest bias of these three examples dates (more or less a couple of 

°C). StarFM displays a good plot shape, but still has too much variety (with a resulting 

“low” peak) and a more important bias (around 10°C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 77 - Frequency plots for LANDSAT, MODIS, Kustas and StarFM on 5th Oct 2012 
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Chapter 4 

Model calibration 

 
In Section 1, the calibration methodology is stated. The results are then listed in Sections 

2-5: Section 2 reports the general results; Section 3 delves into the actual calibration 

statistics; Section 4 displays some temperature maps before and after calibration; finally, 

Section 5 relates the “evolution” of the calibration parameters  throughout the different 

simulations. 

 

4.1 Methodology 
Calibration is a process in which a model is adapted to the particular characteristics of the 

situation of interest. The so called “calibration variable” is an output of the model in 

question, which is compared to actually measured values. The calibration consists in 

modifying progressively a number of input parameters so that the output of the model 

resembles the measured values more and more at each run of the model. For this purpose, 

67 measurements of LST in year 2012 have been selected, choosing the dates with the 

least cloud cover (less than 5%) in order to have the best data quality of the whole year. 

Each new simulation features a new set of values. For the first stage of calibration, four 

parameters have been selected: Brooks-Corey Index (“bc”), soil depth (“depth”), hydraulic 

conductivity at saturation (“ksat”) and minimum stomatal resistance (“rsmin”). While the 

first three parameters directly influence the amount of water in soil, the last one is more 

directly linked to the transpiration process and the heat absorption by the vegetation and 

thus can influence only areas with a consistent vegetation presence. These four 
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parameters have been selected based on sensitivity studies performed in the past on the 

model [Corbari-Mancini et al, 2015] [Corbari-Mancini, 2014]. 

The calibration method follows these steps: 

(1) From Simulation-0, RET values are gathered for the whole basin for the 67 selected 

dates and at a time as close as possible to MODIS’ sampling time (circa midday 

local time) 

(2) For each pixel of the basin, the average temperature difference between modelled 

and measured data is stored in one single matrix 

(3) According to the error measured for each pixel, some or all of the four calibration 

parameters are modified 

(4) A new simulation is performed, and the cycle starts again 

The main advantage of this type of calibration is its spatial variability: most calibration 

procedures apply the same variation to the whole basin, while in this case the variation of 

the single parameter depends on the local difference between estimated and measured 

temperature. In such a case, pixels already well-interpreting the LST will not be changed 

much in their soil and vegetation parameters, and the “arbitrary” change in the parameter 

will be performed only where required. 

This procedure cannot go on indefinitely, but requires the calibration variables to stay 

within physically-justified extremes. This, for example, means that the hydraulic 

conductivity at saturation could never reach values as high as 1 m/s (highly-loose gravel) 

or as low as 10-12 m/s (concrete, [Schneider et al, 2012]). 

Another constraint to the process is the coherence of the hydrological balance of the 

model: the possible imbalance between inputs and outputs needs to be within acceptable 

values. In particular, two mass balances will be checked: 

{
𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 = 𝑁𝑒𝑡 𝑝𝑟𝑒𝑐. +𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 − 𝑁𝑒𝑡 𝐷𝑢𝑛𝑛𝑖𝑎𝑛 𝑝𝑟𝑒𝑐. +𝑆𝑛𝑜𝑤𝑠𝑡𝑜𝑟𝑒𝑑 𝑤𝑎𝑡𝑒𝑟

𝐴𝑏𝑠𝑜𝑝𝑟𝑡𝑖𝑜𝑛 = 𝐷𝑒𝑒𝑝 𝑝𝑒𝑟𝑜𝑙𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑣𝑎𝑝𝑜𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 + ∆𝑊
 

The first equation (“at-surface” mass balance) checks the balance between the cumulated 

results of the model: looking at ground level, the weather inputs can either be absorbed 

by the soil or stored as snow, according to the air and surface temperatures. The amount 

of water that does not fit in these categories is the actual net precipitation. The last 

contribution is the “dunnian” net precipitation: according to Dunn’s model [Dunn, 1999], 

it is the amount of water that resurfaces from the ground once the soil is saturated. 
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The second equation (“in-soil” mass balance) checks the water mass balance within the 

soil itself: what in the first equation was generally called “absorption” is characterized as 

an actual enrichment of the in-soil water (ΔW), which is the net amount once the water 

lost to evapotranspiration and deep percolation is removed. The actual increase/decrease 

in soil moisture can be found by calculating the difference between the final and initial 

soil moistures, actualized over the average soil depth of the basin. 

Finally, in order to check whether the calibration process is going in the right “direction”, 

at the end of every simulation a number of statistics will be gathered about the final LST 

output of the model (FEST) against the calibration data (MODIS): 

o Absolute average error (errabs) 𝑒𝑟𝑟𝑎𝑏𝑠 =
∑ |𝑀𝑂𝐷𝐼𝑆𝑖−𝐹𝐸𝑆𝑇𝑖|

𝑛𝑏𝑎𝑠𝑖𝑛
𝑖=1

𝑛𝑏𝑎𝑠𝑖𝑛
 

o Average error (err)   𝑒𝑟𝑟 =
∑ (𝑀𝑂𝐷𝐼𝑆𝑖−𝐹𝐸𝑆𝑇𝑖)

𝑛𝑏𝑎𝑠𝑖𝑛
𝑖=1

𝑛𝑏𝑎𝑠𝑖𝑛
 

o Root Mean Square Error (RMSE) 𝑅𝑀𝑆𝐸 = √
∑ |𝑀𝑂𝐷𝐼𝑆𝑖−𝐹𝐸𝑆𝑇𝑖|2𝑛𝑏𝑎𝑠𝑖𝑛

𝑖=1

𝑛𝑏𝑎𝑠𝑖𝑛
 

o Average relative error (ε)  휀 = (∑
𝑀𝑂𝐷𝐼𝑆𝑖−𝐹𝐸𝑆𝑇𝑖

𝑀𝑂𝐷𝐼𝑆𝑖

𝑛𝑏𝑎𝑠𝑖𝑛
𝑖=1 ) /𝑛𝑏𝑎𝑠𝑖𝑛 

o Nash-Sutcliffe Efficiency (NSE)          𝑁𝑆𝐸 = 1 −
∑ (𝑀𝑂𝐷𝐼𝑆𝑖−𝐹𝐸𝑆𝑇𝑖)2𝑛𝑏𝑎𝑠𝑖𝑛

𝑖=1

∑ (𝑀𝑂𝐷𝐼𝑆𝑖−𝑇𝑚𝑒𝑑𝑖𝑎𝑀𝑂𝐷𝐼𝑆)2𝑛𝑏𝑎𝑠𝑖𝑛
𝑖=1

 

o Average bias    𝑏𝑖𝑎𝑠 = 𝑇𝑚𝑒𝑑𝑖𝑎𝑀𝑂𝐷𝐼𝑆 − 𝑇𝑚𝑒𝑑𝑖𝑎𝐹𝐸𝑆𝑇 

These are just some of a wide range of statistical indexes to describe the results. Of these, 

the RMSE, the NSE and the average bias are the most helpful to understand if the 

calibration has increased in any way the accuracy of the results. 
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4.2 Calibration scheme and first results 
The first calibration stage has required 3 renewals of the parameters, and the following 

table recaps the terminology for the following sub-sections. 

Simulation 
Parameters 

change RMSE NSE Bias 

Sim-0 Starting 
parameters 7.67°C - 0.067 - -2.88°C - 

Sim-1 
Higher depth, 
lower ksat bc 

rsmin 
7.18°C -6.3% 0.167 +12.1% -2.38°C -0.44°C 

Sim-2 Lowered rsmin 7.15°C -0.5% 0.171 +0.9% -2.35°C -0.47°C 

Sim-3 Increased 
depth 6.94°C -2.5% 0.215 +4.7% -1.81°C -0.95°C 

 

Each parameter change is referred to the previous simulation, and thus means a further 

alteration. The displayed statistics are averages for the 67 selected dates. 

The table shows how, at first, the model (on average) overestimates the measured data, 

thus requiring calibration procedures that would decrease the forecast temperature. The 

mass balance check is described in the plots below. First, the at-surface mass balance, then 

the in-soil one. 



 95 

 

contributions Sim-0 Sim-1 Sim-2 Sim-3 

Weather inputs 165.42 mm 165.50 mm 165.50 mm 165.50 mm 

Net precipitation 9.00 mm 9.39 mm 9.38 mm 8.98 mm 

Soil absorption 147.35 mm 147.04 mm 147.05 mm 147.44 mm 

Net Dunnian prec. 0.0247 mm 0.0033 mm 0.0029 mm 0.00 mm 
Snow-stored 

water 7.25 10-6 mm 7.25 10-6 mm 7.25 10-6 mm 7.25 10-6 mm 

Net balance 9.10 mm 9.08 mm 9.08 mm 9.08 mm 
Table 8 - All the elements in the water mass balance for the 4 simulations 

Figure 78 - Water balances at ground level for the 4 simulations 
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Figure 79 - 
Water mass 
balance 
"below-
surface", with 
the relative 
amounts for 
each 
simulation 
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contributions Sim-0 Sim-1 Sim-2 Sim-3 

Soil absorption 147.35 mm 147.04 mm 147.05 mm 147.44 mm 

Deep percolation 48.41 mm 21.20 mm 20.15 mm 3.81 mm 

Evapotranspiration 125.54 mm 177.17 mm 179.38 mm 271.17 mm 

ΔW -28.74 mm -53.69 mm -54.86 mm -127.72 mm 

Net balance 2.15 mm 2.36 mm 2.38 mm 0.18 mm 
Table 9 - "Below-surface" water mass balance with its detailed amounts 

From the first plots it can be gathered that, on a basin sale, most of the meteoric water is 

absorbed by the soil. The effects of calibration, however, are more evident looking into 

the “in-soil” balance equation: most of the water is lost to evapotranspiration (as expected 

for a desert basin) and the net water amount is always negative, as a proof that 2012 was 

a warmer-than-usual year (the soil moisture at the end of the year was found lower than 

the value at the start). 

The first calibration markedly increased evapotranspiration: the changes in ksat, bc and 

depth meant that more water was retained in the ground (and thus less was lost to deep 

percolation) and so was available for the evaporation process; the lowering of rsmin meant 

that water transfers between vegetation and the atmosphere (and so, transpiration) and 

heat absorption by the plants were increased. 

The second calibration intervened on rsmin only, thus affecting just the vegetated part of 

the basin. Evapotranspiration grew even more, surely thanks to the transpiration 

component due to the vegetation. 

The third calibration acted on the soil depth, and thus the amount of water in soil available 

to evaporation. The important and further increase in evapotranspiration means that in 

the basin potential evapotranspiration is quite high, as having more water available 

immediately results in more evaporation. 
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4.3 Statistics 
The three main monitored statistics are RMSE, NSE and temperature bias at basin scale. 

 

For both parameters, the central part of the first half of the year is the one with the highest 

benefits from calibration. While the RMSE seems to follow a decreasing trend with the 

passing of the days (generally lower at the end of the year than at the start), the NSE shows 

a different behaviour, with higher values (quite close to the optimal +1) in the central part 

Figure 80 - RMSE and NSE values of the model results for the different simulations 
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of the year and worse performances in the winter period. This last behaviour could be 

justified with the influence of snow in the water and energy transfers. 

Looking into the temperature biases at basin scale, once again the best gains can be found 

between March and May. Furthermore, the general trend of FEST overestimating the 

temperatures (reflected in the negative values of the bias), is clear and visible here. 

 

4.4 Images 
LST values are mapped for three test-dates: 7th April 2012, 14th July 2012 and 5th October 

2012. For each date, MODIS (target) map is present, then the results from four different 

simulations are displayed; a frequency plot is also provided for all the LST maps of each 

example-date. 

Each group of results is organized as such: on the first row, the MODIS data with the 

colormap; on the second, Sim-0 (left) and Sim-1 (right); on the third and last, Sim-2 (left) 

and Sim-3 (right). 

 

 

 

 

Figure 81 - Difference between the average basin temperatures measured by MODIS and estimated by 
FEST-EWB 
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4.4.1 7th April 2012 

Figure 82 - LST images on 7th Apr 2012. MODIS (target) image in the first row, with the legend in °C; Sim-0 
(left) and Sim-1 (right) in the second row; Sim-2 (left) and Sim-3 (right) in the third row 
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Data from the whole first half of the year seems to be more sensible to the calibration 

process than later one. Simulation-0 shows a consistent temperature overestimation, both 

in the mountain area and the eastern desert area. This is partly recovered after calibration, 

as can be seen from the frequency diagram: data from Simulation-1 and Simulation-2 

(which appear almost overlapping, in the frequency diagram) are the ones with the best 

fit to MODIS’ product. However, as can be seen from the maps, little progress is made in 

interpreting the colder temperatures of the mountainous area. The frequency diagram 

shows how, below 25°C, all simulations fail to emulate the MODIS diagram. 

 

 

 

 

 

 

 

 

 

 

Figure 83 - Frequency plots for MODIS, Sim-0, Sim-1, Sim-2 and Sim-3 on 7th Apr 2012 
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4.4.2 14th July 2012 

 

Figure 84 - LST images on 14th Jul 2012. MODIS (target) image in the first row, with the legend in °C; Sim-
0 (left) and Sim-1 (right) in the second row; Sim-2 (left) and Sim-3 (right) in the third row 
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Data from this date shows less improvement: the maps before and after calibration look 

quite alike, as is witnessed by the frequency plots, which do not vary much. However, in 

this case the desert area of the basin seems well represented: the shape of the frequency 

plot is sufficiently alike, and the maps all seem fairly representative of the MODIS data. 

However, the mountainous area is still badly represented, even though the calibration 

progress, at least in the maps, seem to make some progress in that sense. 

 

 

 

 

 

 

 

 

 

 

 

Figure 85 - Frequency plots for MODIS, Sim-0, Sim-1, Sim-2 and Sim-3 on 14th Jul 2012 



 104 

4.4.3 5th October 2012 

 

Figure 86 - LST images on 5th Oct 2012. MODIS (target) image in the first row, with the legend in °C; Sim-0 (left) 
and Sim-1 (right) in the second row; Sim-2 (left) and Sim-3 (right) in the third row 
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For the 5th October, the model shows less variability than the model. Overall, this may be 

one of the best results for the model, even without a sensible help from calibration, as 

testified by the frequency plots, all almost overlapping. However, the “tail” of the MODIS 

plot towards the lower temperatures, which accounts for the mountain area is still missed 

by the model, independently from calibration. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 87 - Frequency plots for MODIS, Sim-0, Sim-1, Sim-2 and Sim-3 on 5th Oct 2012 
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4.5 Parameter evolution 

4.5.1 Brooks-Corey Index 
 

 

 

The pore-size distribution index has been strongly lowered for most values, in some cases 

even by a full order of magnitude. Since the degree of the parameter modification 

depends upon the temperature difference obtained for each pixel, the mountainous area 

has been the area more affected by calibration, in this case as for the other parameters. 

Figure 88 - Brooks-Corey index maps and frequency plot. The input map on the left, the calibrated version 
on the right. The legend is adimensional. 
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4.5.2 Soil Depth 

 

 

Soil depth is calibrated twice, each time more than doubling its value. As testified by the 

frequency plots, in the last calibration stage the values reach even 4m of soil depth. Once 

again, the most important increase is reserved for the mountainous area. The calibration 

process, in this case, has required a logarithmic scale to plot the different version of the 

parameter, as the changes were quite intense. Moreover, the starting plot was quite 

homogeneous, with a very high frequency for values around 0.3 m of depth; after the 

calibration, the parameter gained in heterogeneity, surely getting closer to reality. 

 

Figure 89 - Soil depth maps and frequency plot. The input map on the left, the calibrated versions in the 
middle (calib-1) and on the right (calib-2). The legend (in logarithmic scale) is in meters [m]. 
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4.5.3 Hydraulic Conductivity at saturation 
 

 

 

Hydraulic conductivity is a parameter quite difficult to simulate, especially without point-

wise on-field measurements. In this case, it has been lowered a lot (requiring a logarithmic 

sale for mapping), evidently because the particular structure of the soil matrix was not 

sufficiently interpreted by the input data. 

 

Figure 90 - Hydraulic Conductivity at Saturation maps and frequency plot. The input map on the left, the 
calibrated version on the right. The legend (logarithmic scale) is in [m/s]. 
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4.5.4 Minimum stomatal resistance 

 

 

Minimum stomatal resistance has been calibrated twice because it has significant values 

for the vegetated area, so the mountainous sub-region. The values of this parameter are 

not continuous, so the (out-of-scale) frequency plot shows how starting values, quite high, 

are lowered down to the final values. Such low resistance to the transfer of water through 

the stomatal apparatuses of the leaves allows for more water to be transpired and a higher 

amount of the solar radiation to be absorbed by the leaf itself. 

 

 

Figure 91 - Minimum stomatal resistance maps and histogram. The input map on the left, the calibrated 
versions in the middle (calib-1) and on the right (calib-2). The legend is in [s/m]. 
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Conclusions & 

Recommendations 

 
In this study, a survey of four Land Surface Temperature sources has been conducted, 

applying different downscaling techniques when necessary, with the aim of determining 

the most useful for the calibration of a distributed hydrological model on a Chinese inland 

river basin; lastly, the calibration has been performed. 

Data from the ETM+ instrument aboard satellite LANDSAT 7, anyhow with high spatial 

resolution, provides too few images for a successful calibration, and cannot cover the 

whole basin in one single image. Data from MODIS instrument aboard Terra, resampled 

to a 30m resolution from its original 1000m, manages to provide high-quality data, 

especially when looking at desert data (the most frequent in the basin of interest). A 

temperature downscaling algorithm developed by Kustas provides data quality slightly 

inferior to MODIS, however requiring a more time-consuming computational effort; thus, 

MODIS is a better choice. An alternative downscaling algorithm, developed at TU Delft 

(Netherlands) and named “StarFM”, tries to combine reflectance data from MODIS and 

ETM+ to obtain every day data at LANDSAT 7 high resolution. However accurate in its 

preceding applications, this algorithm has struggled when applied to a basin so extended, 

and with input data quality worsened by some technical problems with LANDSAT 7. Thus, 

because of its easily-retrieved data and its good performances, MODIS data has been 

selected for the calibration process of the distributed hydrological model FEST-EWB. 

The calibration process has focussed on LST data from 2012, acting at pixel level and 

modifying four soil and vegetation parameters according to the error of the model with 

respect to MODIS measurements. Three steps have improved the statistics of the model, 
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in particular in the first half of the year. The best results for the model are found around 

summer, while the poorest between late autumn and the winter season. This, together 

with the fact that only two autumn dates and just one winter date have been employed in 

this study, means that the application of the model and its calibration to these parts of 

the year require further studies. 

This study leaves open a number of questions for further speculation: would a detailed 

analysis on snow dynamics and snow cover evolution during the year improve the results 

of the model? Which parameters can improve the LST estimates? Which is the accuracy of 

the meteorological inputs? How would an accurate knowledge of the irrigation volumes 

and schemes improve the simulations? 
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