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Sommario

Introduzione

Fin dagli albori della chirurgia mini invasiva (Minimally Invasive Surgery, MIS) furono

evidenti sia i suoi numerosi vantaggi rispetto alla chirurgia tradizionale sia i suoi limiti.

Infatti, se da un lato la MIS giocava un ruolo chiave nel ridurre i tempi di degenza

ospedaliera e le possibili complicazioni legate ad interventi complessi [1], dall’altro, si

poteva applicare solo ad un ristretto numero di operazioni chirurgiche a causa della

postura chirurgica necessaria e degli strumenti usati [2]. Questi limiti tecnici e tec-

nologici spinsero il campo della robotica a sviluppare sistemi alternativi che perme-

ttessero il pieno sfruttamento delle potenzialità della chirurgia mini invasiva, dando

vita alla chirurgia mini invasiva assistita da robot (Robot-Assisted Minimally Inva-

sive Surgery, RAMIS). Al giorno d’oggi sempre più operazioni chirurgiche vengono

eseguite attraverso l’uso di protocolli RAMIS, sfruttando l’impiego del popolare robot

da Vinci Surgical System (dVSS), prodotto da Intuive Surgical Inc., o di altri sis-

temi analoghi. Nonostante gli innumerevoli vantaggi portati da questi nuovi protocolli,

poichè in RAMIS i robot vengono manipolati in maniera telematica, le operazioni ese-

guite risultano essere di lunga durata e faticose [3, 4]. Per rimediare a questi svantaggi,

i robot hanno iniziato ad essere provvisti di algoritmi di apprendimento automatico

grazie ad i quali riescono ad eseguire autonomamente operazioni elementari [5] o a fa-

cilitare l’acquisizione delle abilità motorie necessarie ai chirurghi nelle varie operazioni

[6]. Infatti, I robot intelligenti possono valutare in modo oggettivo le esercitazioni

degli studenti di chirurgia indirizzando e consigliando protocolli di addestramento

specifici. Inoltre, possono riconoscere le varie procedure chirurgiche intervenendo in

aiuto del chirurgo eseguendo in autonomia operazioni elementari, riducendone la du-

rata dell’esecuzione e la fatica connessa.

Questa tesi vuole presentare un metodo di apprendimento automatico che perme-
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tta al robot il riconoscimento simultaneo del tipo di operazione chirurgica eseguita

dagli utenti, caratterizzando pienamente ogni movimento effettuato. Per questo scopo

sono stati studiati diversi approcci: il primo metodo esplorato cerca di caratterizzare

direttamente ed in tempo reale ogni azione eseguita in operazioni chirurgiche senza

considerare il particolare tipo di operazione effettuata. Il secondo approccio adottato

esegue l’analisi dei gesti chirurgici in tempo reale ma, al contrario, in funzione del tipo

specifico di operazione chirurgica effettuata.

Materiali e metodi

I dati chirurgici necessari per la creazione dei metodi sopracitati sono stati ottenuti

grazie all’interfaccia API [7] creata per l’acquisizione di dati dal dVSS. Nello specifico

questi dati provengono da due manipolatori lato paziente (Patient Side Manipulators,

PSMs) composti da braccia seriali a 7 gradi di libertà ciascuna [8]. I dati acquisiti sono

relativi all’esecuzione di 3 diverse procedure chirurgiche quali: sutura, passaggio di ago

ed esecuzione di un nodo, eseguite per 5 volte da 8 chirurghi differenti. Questi dati

cinematici relativi alla posizione dell’estremità dei due PSMs, dalla loro rotazione e

velocità lineare insieme con le informazioni angolari riguardanti le pinze, sono raccolti

all’interno del set di dati chiamato JHU-ISI Gesture and Skill Assessment Working Set

(JIGSAWS) [9]. È importante notare che i dati cinematici all’interno del JIGSAWS

sono dotati di indicazioni manuali dei gesti che i dati stessi rappresentano. Questi gesti

vengono definiti come azioni atomiche singole, indicatrici della particolare procedura

chirurgica eseguita [10, 11, 12] e verranno utilizzati per l’addestramento dei modelli

usati.

Al fine di addestrare e di valutare i modelli che permettono il riconoscimento della

particolare operazione chirurgica e dei gesti contenuti in essa, il set di dati JIGSAWS

è stato suddiviso in due diverse configurazioni di cross-validazione. Nella prima, la

sessione d’acquisizione i-esima eseguita da ogni chirurgo viene utilizzata per la va-

lutazione degli algoritmi. Nella seconda configurazione di cross-validazione, tutte

le sessioni d’acquisizione relative ad un determinato chirurgo, sono a turno escluse
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dall’addestramento ed utilizzate per la valutazione degli algoritmi [13]. Usando queste

configurazioni di dati differenti, lo scopo della tesi viene raggiunto attraverso lo studio

di due diversi approcci. In particolare:

• Il primo metodo proposto va ad individuare e a caratterizzare ogni gesto di

un’operazione chirurgica senza considerare di che tipo di operazione si tratti.

Al fine di perseguire questo scopo è stato progettato un classificatore di gesti

generico (Generic Gesture Classifier GGC), composto da Modelli di Marcov Hid-

den (Hidden Markov Moldes, HMMs) uniti per poter identificare i gesti in ogni

possibile operazione chirurgica.

• Il secondo metodo studiato effettua prima di tutto un riconoscimento in tempo

reale del tipo di operazione chirurgica eseguita e, successivamente, indirizza la

caratterizzazione dei gesti in funzione dell’operazione individuata. Il metodo

risulta composto da due algoritmi indipendenti: il primo effettua il riconosci-

mento dell’operazione (Task-Related Task Recognizer, TRTR) utilizzando tre

HMMs a tre stati ciascuno e definiti per il riconoscimento specifico di ogni op-

erazione chirurgica. Il secondo algoritmo, il classificatore di gesti (Task-Specific

Gesture Classifier, TSGC) è suddiviso in tre parti ed ognuna è composta da

HMMs uniti per poter identificare i gesti di una specifica operazione chirurgica.

Risultati e discussione

I metodi proposti sono in primo luogo ottimizzati per fare in modo che risultino ro-

busti ed affidabili. Successivamente considerando la prestazione temporale degli al-

goritmi cos̀ı come la loro accuratezza nella classificazione è stato possibile valutarli e

confrontarli con lo stato dell’arte.

Considerando lo scopo per cui l’algoritmo GGC è stato creato, è possibile affer-

mare che esso risulta capace di effettuare la caratterizzazione dei gesti di una generica

operazione chirurgica in tempo reale e senza nessuna informazione a priori riguardo

al tipo di procedura eseguita. Anche se a differenza dei valori in letteratura questi
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risultati sono stati raggiunti in tempo reale, è necessario sottolineare che l’accuratezza

finale raggiunta nella classificazione dei gesti risulta essere troppo bassa per l’utilizzo

immediato dell’algoritmo in possibili applicazioni.

Il secondo approccio presentato è composto da due algoritmi diversi: il riconosc-

itore di operazioni chirurgiche TRTR ed il classificatore di gesti TSGC. È possibile

affermare, considerando i risultati ottenuti, che il TRTR si è dimostrato più accurato

nel riconoscimento delle operazioni chirurgiche degli algoritmi proposti in letteratura.

Esso, inoltre si è dimostrato esssere più veloce, infatti è capace di processare in tempo

reale i dati acquisiti dal dVSS, ottenendo, già con il 12% dell’operazione completata,

il pieno riconoscimento della procedura chirurgica in esecuzione. Riguardo al TSGC,

è possibile affermare che l’algoritmo, a differenza di quelli presentati in letteratura,

è capace di processare in tempo reale i dati provenienti dal dVSS. Il riconoscimento

dei gesti eseguiti avviene con un’accuratezza finale simile, anche se di poco inferire, a

quella riportata dallo stato dell’arte.
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Summary

Introduction

Since the very beginning of Minimally Invasive Surgery (MIS), its advantages with re-

spect to the traditional open surgery as well as its limitations appeared evident. If, from

one side, MIS played a key role in reducing disabilities and hospital stays enhancing life

expectancy [1], on the other, the used tools and the particular surgeon required skills

limited the positive effects of MIS on a restrict subset of surgical operations [2]. These

technological limitations inspired the robotic branch to develop alternative systems

exploiting completely MIS, giving birth to the Robotic-Assisted Minimally Invasive

Surgery (RAMIS). More and more clinical operations are being performed every day in

RAMIS, using the popular robot da Vinci Surgical System (dVSS) from Intuitive Sur-

gical Inc. or analogous setups. However, since RAMIS involved tele-operated robotic

assistants, surgical operations results to be tedious and time consuming [3, 4]. To face

these drawbacks, surgical robots are starting to implement Machine Learning strate-

gies to actively assist surgeons in improving their expertise level [5] or in automatizing

time-demanding elementary operations[6]. Indeed, intelligent robots can objectively

evaluate trainee surgeons making more profitable their training curricula, and, at the

same time, intelligent robotic surgical assistants can autonomously perform elementary

surgical tasks reducing fatigue and execution time.

By implementing a Machine Learning approach, this dissertation wants to present a

framework that allows robots to perform simultaneous recognition of different surgical

tasks characterizing them by capturing their underlying surgical motion. In particular:

a first method tried to characterize every action in surgical trials in real time, without

any consideration on the particular kind of operation. A different framework has been

subsequently adopted to address real time action recognition as a function of the specific

surgical task.
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Materials and methods

The surgical data used to setup the aforementioned frameworks are provided by the

dVSS and collected thanks to the Human Robot Interface API [7] from 2 Patient Side

Manipulators (PSMs), robotic serial arms with 7-degree-of-freedom each [8]. Data are

acquired while 8 surgeons, with a various expertise level, were repeating 3 very com-

mon surgical tasks as suturing, needle passing and knot tying, 5 times each. Kinematic

records from the two PSMs were stored in the JHU-ISI Gesture and Skill Assessment

Working Set (JIGSAWS) [9]. This dataset, not only contains kinematic data such as

tool tip positions, rotation matrices, gripper angular velocity, tool tip linear and ro-

tational velocities but also it incorporates manually annotated labels of ground-truth

atomic gestures used to train the models. In particular, gestures are defined as mean-

ingful single motion sequences used to deeply characterize each surgical task [10, 11, 12].

The JIGSAWS dataset is divided into two different cross-validation setups used to

train and to evaluate the proposed approaches. In the first one the i-th session of each

surgeon is used as a test set, while, in the second validation scheme, all sessions from

each surgeon in turn are taken as test set [13]. By using these setups, three different

Machine Learning models are designed and trained to accomplish the goal of the thesis.

In particular:

• A first framework characterizes every gesture in surgical trials without any con-

sideration on the particular kind of operation. This aim is accomplished by

a designed Generic Gesture Classifier (GGC) based on Hidden Markov Models

(HMMs) [14] linked together, following the gestures in every possible surgical

tasks.

• The second studied framework addresses a task-specific gesture classification

thanks a first task recognizer. Thus, the method is composed of two disjoint

algorithms: a Task-Related Task Recognizer (TRTR) that uses a three state

left-to-right HMM to model and classify each surgical task and a Task-Specific

Gesture Classifier (TSGC), based on HMMs linked together, following the ges-

tures in one task, able to perform the final gesture classification.
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Results and Conclusions

The proposed algorithms are firstly optimized in order to setup models as robust as

possible. Subsequently, by considering the time performances and the classification

accuracies, algorithms are evaluated and compared with the actual state of art.

Considering the final purpose of the GGC algorithm, this approach results to be

able to accomplish real time gesture classification without any prior assumption over

the undergoing task. It is necessary to report that even if the GGC time performances

are interesting, and not achieved in literature yet, the reached final classification accu-

racy results too low to allow possible immediate applications.

The second framework previously presented, is composed of two different algorithm:

the task recognizer TRTR and the gesture classifier TSGC. It is possible to remark that

the TRTR proved to be more accurate than the state of art reaching a real time stable

task recognition with less then the 12% of the task accomplished, outperforming the

literature. About the TSGC, with respect to the literature, it is able to work in real

time reaching good gesture classification accuracies similar, but not as high as the ones

reported to be the state of art.
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Chapter 1

INTRODUCTION

As well as antibiotics and sterilization, one of the most important innovation that

enhanced the role of medicine in improving general wellness is the introduction of

Minimally Invasive Surgery (MIS) in 1987. Surgical procedures started to apply new

protocols that have been able to reduce the invasiveness of surgery resulting in higher

rate of success in operations (see Figure 1.1). Moreover, MIS played a key role: pain

and disability were finally reduced, patients expectancy of life after operations increased

and social costs related to hospitals were finally controlled [15].

Unlike the classic open surgery, MIS is performed by using laparoscopic tools that en-

ter inside patients body through small incisions of about 1 centimetre. Surgeons can

control these instruments having a view of the internal operating area thanks to an

endoscopic camera.

The aforementioned set up has signed a real revolution in the surgery field allowing,

for the first time in history, the entry of precision instruments in operation rooms. Even

if this kind of surgery has become a gold standard its technical limitations appeared

clear [2]:

• Instead of using hands, as in open surgery, surgeons have to use laparoscopic

instruments reducing their degrees of freedom in the patient body from 7 per

arm to only 4.
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Chapter 1. INTRODUCTION

Figure 1.1: Comparison between incisions necessary to perform colon resection: A) Open surgery.

B) MIS. Image form www.houstoncolon.com.

• Surgeons trembling are rigidly transmitted and amplified through laparoscopic

tools up to the patient side.

• Instruments are controlled by surgeons while watching a 2-dimensional screen

right in front of them or, most likely on their side. This unnatural operative pos-

ture causes fatigue to surgeons making their performances even more challenging.

Figure 1.2 represents a typical posture held by surgeons during MIS procedures.

• Finally, the unnatural operative posture leads to work in a counterintuitive way:

in order to move tools towards a specific target, surgeons should turn them in the

opposite direction. Indeed, this fulcrum effect created by the trocar, the contain-

ing instrument for surgical tools in incision, in the insertion point, compromises

the hand-eye coordination.

These technological limitations inspired research and development in robotics lead-

ing to alternative systems able to exploit completely MIS overcoming these important

disadvantages.
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Chapter 1. INTRODUCTION

Figure 1.2: Maintained posture and used tools during MIS. Image from www.muhc.ca

1.1 Robot Assisted Minimally Invasive Surgery

Robotics entered in MIS in 1994 with AESOP (voice controlled camera holder). This

has been the first robot approved by the United States Food and Drugs Administra-

tion (FDA) [16]. Following this first attempt to overpass MIS limitations many other

systems have been created, however only in 1997 with the da Vinci Surgical System

(dVSS) prototype (Intuitive Surgical Inc.) the technology changes decisively.

By using the concept of telesurgery, first developed for military aims, the dVSS allows

surgeons to perform surgical procedures from remote. Surgeons control dexterous ma-

nipulators (master), through which the motion is transmitted to a second ones (slave)

which perform the surgery in another workspace (for ex. see Figure 1.3).

Thanks to this revolutionary setting the surgeon sits in with an ergonomic position in

front of a 3D stereo viewer which shows the scene inside the patient. The aforemen-

tioned fulcrum effect is autonomously compensated recovering hand-eye coordination,

while, 7 degree of freedom tools enlarge the surgeon’s range of motion up to the natural

condition enhancing dexterity. In addition to this, appropriate hardware and software

filters compensate involuntary movement securing the patient and increasing overall

precision.
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Chapter 1. INTRODUCTION

Figure 1.3: The dVSS robot with all its components: master tool manipulators (MTMs), High-

Resolution Stereo Viewer (HRSV), foot pedals, patient-side manipulators (PSMs) and Endoscopic

CCD-Camera Manipulator(ECM) [17]

1.1.1 Open issues

Thanks to its incredible performances more and more clinical operations are being

performed every day using dVSS or equivalent systems. Robot-Assisted Minimally

Invasive Surgery (RAMIS) has become a standard approach in many surgical fields

and the number of robotic systems installed worldwide increases every year (rate of

new installations by year represented in Figure 1.4).

Even if RAMIS has already defined a significant step forward in surgery, present-

ing many advantages with respect to both open surgery and MIS, developments can

still be made to make it less demanding than open procedures. Actually, many oper-

ations still present significant manipulation complications: for instance, to tie a knot

in laparoscopy (robotic or not) can take more than 3 minutes while in open surgery it

takes less than 2 seconds [4], almost 200 times less. Even if these problems seem to be

irrelevant, they open important issues:

• Since the technological aspect of the machine as well as the tools manipulation is

complex, the training of new surgeons is longer, more expensive and problematic

to be assessed.

• Surgical operations increase in difficulty, thus surgeons take more time to accom-
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Chapter 1. INTRODUCTION

Figure 1.4: Number of installed robot bases by years, from Intuitive Surgical. Source company

reports www.seekingalpha.com

plish their task forcing more aggressive strategies to anaesthetize patients.

• Costs for RAMIS are incredibility high, between 10,269 CAD$ to 26,608 CAD$

for each prostatectomy performed [18]. Taking into account that a considerable

part of these expenses is due to the use of disposable tools, longer and more

complex operations lead to higher costs.

• A final drawback of these demanding procedures is the technical workload to

which surgeons are exposed that increases with the lengthening of surgical pro-

cedures.

In order to face these issues, a new border has been signed: surgical robotics are

starting to use Machine Learning to imitate human skills enabling surgeons to over-

come all these limits. Using learning strategies, researchers are trying to allow robots to

assist surgeons during operations by automatizing some time-demanding, elementary

tasks. Moreover, other studies are testing new algorithms that learn how to objectively

evaluate trainee surgeons to make more profitable their training curricula.

Intelligent robots can improve patient health by enhancing surgeons performances

in terms of both reducing medical errors and improving their expertise level with tar-

geted training programs.
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Chapter 1. INTRODUCTION

1.2 Aims

By following the future of autonomous robot control, this thesis wants to present a new

approach that allows robots to learn how to characterize different surgical procedures.

Specifically, the presented algorithms should learn from expert demonstrations of many

different surgical operations, capturing their underlying surgical motion. Once the ma-

chine learning approach has been defined it can be used to accomplish a real time

recognition of the undergoing task and its internal structures.

To face real time task recognition and gesture classification different approaches

has been explored. Gesture classification has been studied, in first place from a gen-

eral point of view, without any considerations on the kind of the undergoing task.

Subsequently, a different approach that addresses gesture classification through task

recognition has been adopted.

1.2.1 Task recognition

Starting from kinematic data collected from dVSS through a Human Robot Interface

(HRI) a first algorithm is defined to identify which task is under performance. The

task recognizer looks at the general flow of the kinematic samples identifying online

the undergoing surgical task addressing a finer-grained scale characterization of the

surgical movements.

The task recognizer is able to understand the surgeon activity with a overall classifica-

tion accuracy of more than 95%, in about 15 seconds, having from 4% to 15% of the

task accomplished.

6
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1.2.2 Gesture segmentation and classification

Since the task recognizer is not able to deeply characterize each surgical procedure

and its peculiar and fundamental steps, it is necessary to set up a classifier that works

recognizing every movement, or gesture (Section 2.2), in winch it is possible to segment

the task.

Considering kinematic data collected from dVSS during different surgical procedures a

first classifier has been defined to assess real time gesture segmentation and identifica-

tion without any a priori knowledge about the undergoing task. A second classifier has

been subsequently developed to identify activities in surgical procedures considering the

previous knowledge about the kind of task under execution. After the initial real time

task recognition of the kind of the undergoing surgical procedure, the Task-Specific

Gesture Classifier (TSGC) can classify online the peculiar activities accomplished dur-

ing the operation.

As soon as the task is characterized, the gesture classifier starts to identify gestures in

the task: every time frame is classified in less than 0.15 seconds as belonging to one

particular gesture. By using this algorithm it is possible to reach an overall accuracy

in gesture classification over 3 different surgical task comparable with the actual state

of art.

1.3 Overall organization

In order to present all the proposed algorithms the discussion will follow this flow:

• Firstly, the state of the art on recognition and gesture classification is exposed

with particular attention to what has been achieved and what is the current

knowledge on this particular field.

• Subsequently the necessary algorithms to accomplish task and gesture classifica-

tion are explained considering and motivating all their parts.

• Chapters Results and Discussion will show the results achieved by using the

7



Chapter 1. INTRODUCTION

presented methods for recognition and classification. A further possible interpre-

tation is then provided.

• Final conclusions about the work and possible future developments are then taken

into consideration in the last chapter of this work.
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Chapter 2

LITERATURE REVIEW

2.1 Automatic task recognition

Autonomous task recognition, thanks to the increasing amount of data collected by

sensory systems, opens a wide new world of applications.

Inspired by the success in speech recognition of the Hidden Markov Models (HMMs),

Sánchez et al. [19] applies this algorithm to detect hospital activities in order to im-

prove the provided information services. The aim of this project was to develop a smart

information system able to adapt the users interface according to their working profile

(nurses, physicians etc.) and to their most probable queries to the hospital informa-

tion services. Using contextual data regarding people involved in hospital procedures

and also the tools they commonly use to accomplish generic tasks, three HMMs have

been trained, one for each working profile. Each one of these models was composed

by two HMMs running in parallel: one was necessary to model the used tools, the

other to characterize all possible interactions between people. The final model was

able to classify undergoing activities with an accuracy around 92%, enough to improve

the performance of the hospital information system. Following the idea of improving

everyday life of residents, Singla et al. [20] designed a smart home environment relying

on artificial intelligence, able to adapt itself to inhabitants routine. In order to attack

the problem of activity recognition in a real environment, they built a Markov Model

9
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(MM) to probabilistically determine all the most likely phases of a more complex activ-

ity under observation. Thanks to this recognition they were able to track and recognize

the correct actions with an overall accuracy of 88.6%.

Even in Surgical environments, the automatic recognition of surgeons activity has

been proposed initiating new many possible application to be introduced.

A robust task classifier to model a laparoscopic cholecystectomy has been proposed

by Han et al. [21]. Using 17 kinematic signals collected from 12 surgeons perform-

ing the aforementioned operation, authors built an initial HMM model in which every

action from every training example is represented by one state leading to overfitting.

By iteratively merging two states, a more compact model is generated, able to better

generalize over new data and eventually characterize every action in the task, with an

offline classification accuracy of 99%. A Convolutional Neural Network (CNN), called

EndoNet, is designed to carry out activity recognition to characterize laparoscopic

cholecystectomy [22]. Based on videos, EndoNet addresses task recognition, not only

considering the steps in which each task can be divided but also the involved tools. Af-

ter 5 convolutional layers and 2 fully-connected layers (Figure 2.1) the tool is detected;

then this information is concatenated with an additional fully-connected layer which

is used as an input for one-vs-all multi-class Support Vector Machine (SVM) classifier

which gives the observations for a two-levels HMM. Finally, this latter performs the

task classification considering both inter-phase and intra-phase dependencies, achiev-

ing the 92% of accuracy in offline phase recognition.

Considering stages in actual trauma resuscitations [23] accomplishes a multi-class clas-

sification. Without any pre processing they use Radio Frequency Identification signals

(RFID) to train a network composed of three convolutional layers followed by 3 fully

(dense) connected layers. The last fully connected layer provides the classification of

one out of five possible stages in which trauma resuscitation can be decomposed with

an overall classification accuracy of about 72%.

Other approaches see the task recognition, achieved in many different ways, as a

starting key-point for further investigations and applications.

10
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Figure 2.1: EndoNet [22] architecture for phase recognition; this algorithm is based on the AlexNet

network for tool detection.

A first applicative scenario aims to reduce the workload of surgeons by automating

parts of the task. Firstly, robotic assistants have to consider the particular situation

to interact with surgeons and eventually, autonomously take over. In [24], experts

motion structure is gathered using a Gaussian Mixture Model (GMM) over kinematic

data aligned trough Dynamic time Warping (DTW); subsequently the task is actuated

trough smoothed trajectory generated in open loop by a Gaussian Mixture Regression

(GMR). Murali et al. [6] tries to reduce the surgeon’s fatigue by autonomously repeat-

ing task as debridement, cutting and suturing. Considering video recordings from two

fixed stereo cameras they define a Finite State Machine (FSM) able to learn structures

behind activities and to repeat sequences of movements. Even if they demonstrate

the effectiveness of their method for automating surgical tasks, they were able to per-

form operations only at half of speed of expert humans. Another work, [3], uses an

apprenticeship learning approach to extract reference trajectories from human demon-

strations. Using a Kalman smoother over a Gaussian distribution estimated from the

human demonstrations, authors fit parameters of the robot dynamic model. By using

this fitted dynamic model with a robot controller, performances are enhanced along

the task execution. Speeding up performances they succeed in repeating the reference

trajectory up to 10 times the human velocity.

Another popular scenario uses the automatic recognition of performed surgical tasks to

go towards user’s skill assessment. Building trainees performance models and statisti-

cally comparing them with others it is possible to understand the particular expertise

level contained in the trials. Considering the analogy between spoken languages and
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surgical performances, in [25], Markov Models are used to characterize surgical perfor-

mances of 30 surgeons with a different expertise level. Kinematic data coming from

a system called ”BLUE DRAGON” [26] are merged with tools information and then

grouped into 15 states used to describe tasks. The characterization of states by unique

sets of forces, torques and velocities, make the model able to recognize them even

if surgical performances were executed in a slightly different way, just like language

models recognize words pronounced with different accents. A reference learning curve

was finally defined: measuring the quantitative statistical distance between expert and

trainee MM models, an objective measure of their expertise level was found. Improv-

ing the model of novices and experts, both Megali et al. [27] and Reiley et al. [10]

proved the reliability of comparisons between models to obtain an objective measure

about users’ skills. In particular: Megali et al. [27] builds HMMs out of performed

trajectories considering the evolution of frequency content in kinematic time series ex-

ploiting Short Time Fourier Transform (STFT). Even if with a small dataset, authors

characterize each hidden state of the model clustering the frequency features and, by

using a specific metrics, provide a quantitative evaluation of the surgical performance.

In parallel Reiley et al [10], using again motion data processed trough STFT, compares

two methods implementing HMMs to analyse skill assessment: one modelling the whole

task and the other considering a finer-grained scale: the gesture level [11] (see Section

2.2). They finally indicate that HMMs are a useful method to classify skill of unknown

trials. Moreover they suggest that using HMMs built at the gesture level, it is possible

to improve the accuracy in skill evaluation.

The great majority of these presented works propose HMMs as the best classifica-

tion algorithm to face the task recognition. However, the recent explosion of interest in

small devices (as wearable ones), typically limited in computational power, have cre-

ated a growing need for more efficient algorithm in terms of time and computational

cost. The basic k nearest neighbour algorithm (k-NN) with Dynamic Time Warping

(DTW) as embedded measurement system, in all its forms, has become popular[28, 29]

especially for comparing and classifying time series.

Starting from the kinematic data of three surgical tasks, acquired from the dVSS and
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collected into the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) [9],

Fard [5] accomplishes to classify surgical tasks by using a kNN-DTW algorithm. She

brings very promising results, especially considering real time performances: after 6 to

20% of samples in a demonstration, the model was able to understand which of the

three possible tasks was that sequence representing.

Task recognition is a challenging problem, the same action can be performed in

various ways in a non-predictable environment requiring different amount of time. In

addition to this, surgical procedures are usually complex and composed of many dif-

ferent meaningful steps. This common structure makes the surgical task recognition

more confusing and less effective. Moreover, usually task classification is accomplished

in a top hierarchy level, too high with respect to the one in which it is necessary to

investigate to characterize a so critical and crucial procedure.

2.2 Gesture segmentation and classification

To characterize more precisely an elaborate task, many works address the analysis on

a finer-grained scale, allowing the recognition to be more robust since each part of the

whole surgical operation is defined and classified.

The finer-grained scale investigation aims to distinguish meaningful single motion se-

quences called gestures or surgemes [11, 10, 12]. These gestures are considered as mod-

ular building blocks of every task and just reassembling them it’s possible to create

new operations, like recombining syllables makes possible to form new words.

In order to better understand the different approaches used to classify surgical ges-

tures, it is possible to divide them into two groups taking advantage of a peculiar as-

pect of these algorithms: the learning process. This stage is usually performed through

which is broadly defined as Learning from demonstration (LfD) [30, 31]: starting from

human-executed demonstrations, it is possible to sharpen predictive parameters asso-

ciated to a particular task useful to classify the unknown sequences.
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The LfD learning process uses data from human-executed demonstrations to learn

about the classification. Several works integrate autonomous systems to fit the predic-

tive parameters directly from the training data without considering any other external

information; these algorithms are called unsupervised since no information is given

on the structure of the dataset. Instead, other researches provide with algorithms a

manual segmentation and annotation of tasks adding information regarding the classi-

fication of values. These algorithms perform the training phase in a supervised way by

adapting their predictive parameters to fit the provided division into gestures of the

dataset.

2.2.1 Unsupervised gesture classification

As anticipated before, the unsupervised learning process is performed autonomously

by algorithms which iteratively adapts their parameters to understand the real divi-

sion of training datasets in order to assess gesture classification. The lack of human

intervention leads to many advantages:

• Users cognitive workload is remarkably reduced since their are not request to

manually segment and label the whole dataset

• Labels do not contain errors due to human distraction

• Parameters are adapted considering the evolution of the dataset in a fine-grained

scale maybe too fine to be detected by humans.

Researchers have proposed a variety of possible solutions to accomplish unsupervised

gesture classification, some of these use adapted versions of already existing algorithm,

others approach classification from a new perspective.

Using a limited dataset composed of human actions and facial expressions, actions

are found without assuming any knowledge on either their number or their interpre-

tation: these latter are used to represent the whole performance [32]. A meaningful
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action primitive is defined as ”[...] one which can be illustrated visually and described

textually (e.g., left arm moving upward, right leg moving outward)[...]”. Main regions

of interest in images are highlighted with bounding boxes constructed by considering

the optical flow difference in consecutive frames. Starting from these regions, defined

in D disjoint videos, a K-means algorithm is used to cluster each box into K possible

clusters which will become the Gaussian components of a Gaussian Mixture Model.

A certain action primitive, as it is defined, should be common and repeated in subse-

quent analysed videos. Considering this concept, clusters related in time are grouped

into Gaussian mixture distributions. Finally complete actions are recognized with a

competitive accuracy, thanks to the relationships between primitives inferred through

an HMM.

Also Wu et al. [33] focuses on modelling human activities comprising multiple actions

with an unsupervised setting. By using videos representing human daily activities,

researchers were able to model long-term movements considering temporal relations

and pairwise co-occurrences. In particular they define action-words as a sequence of

short-term actions in the video and activities as about a set of action-topics indicating

which actions are present into recordings. Following the proposed workflow (Figure

2.2), video are sequenced into overlapping temporal snippets, subsequently, visual fea-

tures concerning human skeletons are extracted from clips and clustered through a

k-means algorithm to form an action-dictionary in which each action-word is repre-

sented by each k-th centre. Videos can be seen as sequences of action-words taken

from the dictionary and grouped in action-topics considering movements composed of

more than a single word. An unsupervised learning model is set up based on both

the correlations between topics and time distributions of occurring action-words. The

model can assign action-words to topics allowing a proper segmentation and recog-

nition by merging continuous clips with the same assigned topic and considering the

meaning of the considered topic.

A different unsupervised approach is used in [34], it is called Transition State Clustering

(TSC). In a robot-assisted minimally invasive surgery (RAMIS) context, this work tries

to segment demonstrated trajectories to facilitate robot learning. The TSC algorithm

fits local linear dynamic models to the demonstrations, after, to improve robustness,
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Figure 2.2: Pipeline used in [33] to: (1) first decompose the video in temporal clips. (2,3) Clustering

these clips and map them into action-words in an action-dictionary. (4) Learn the model from the

action-words representations. (5) Assign action-words in the video with action-topics.

multiple clustering and pruning steps are done to remove sparse groups. More in detail,

the model is composed of four different levels:

• The first one a GMM is fitted over each demonstrated trajectory and identifies

consecutive times with other most-likely mixture components; mixture compo-

nents which are sets of candidate transitions.

• The consecutive levels cluster these latter over demonstrations: the second level

applies GMMs with a fixed number of clusters previously defined by the Dirichlet

process (DP) over kinematic data.

• The third one applies a DP-GMM over sensory features.

• The last level of DP-GMM fits over the time axis to incorporate also time related

information

The final result contains sub-clusters indexed both in the state space and in time. A

final pruning process is necessary to increase the algorithm robustness in identifying

those clusters that correspond to common state and time transition conditions.

By using both video and kinematic data provided by the aforementioned JIGSAWS

dataset [9] an evolution of the precedent TSC method has been presented: the Tran-

sition State Clustering with a Deep Learning (TSC-DL) algorithm [35]. Promising
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results of the TSC-DL approach are reached integrating visual features with tradi-

tional kinematic data in order to give more information to the internal TSC process

that can accomplish segmentation in a more reliable way. Visual features are derived

frame-by-frame from video recordings through pre-trained Convolutional Neural Net-

works, as the AlexNet [36] in Figure 2.1. After a dimensionality reduction, visual

features are paired with kinematic variables and fed into a TSC algorithm which per-

forms hierarchical clustering and pruning, firstly in the visual space and then in the

kinematic one, as aforementioned. The final accuracy in classifying gestures achieved

by the TSC-DL algorithm is around the 73% on suturing tasks and around 55% on

needle passing operations.

2.2.2 Supervised classification

In some cases datasets are provided with additional information about data they con-

tain. Using this knowledge it is possible to set up learning processes able to iteratively

adjust their parameters to minimize loss functions. This allow decoded classes to be-

come closer and closer to the ones contained in the provided manual annotations of

the dataset. To manually encode all the labels and annotations necessary to train a

robust classifier can be tedious and stressing. However, sometimes, having the sup-

port of an expert can mange ambiguous data and save time that otherwise would be

put in efforts to set up autonomous/unsupervised algorithms. In Robotic Assisted

Minimally Invasive Surgery, supervised classifiers have spread considerably in the last

decades showing different solutions to face all the critical points in a so demanding field.

Lin at al. [11] in order to analyse the skill level of trainee surgeons proposed a less

computationally expensive algorithm able to distinguish gestures online. This method

reduces 72 kinematic variable retrieved by the Da Vinci system to a more compact

space, improving the overall efficiency. After a first feature normalization, Lynear Dis-

criminant Analysis (LDA)[37] is applied to project high-dimensional feature vectors

into a lower-dimensional space while optimizing the loss of class discriminatory in-

formation. Using a Bayes classifier, they proved the reliability of the LDA reduction
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Figure 2.3: Three states left-to-right HMM model, as proposed in [11], to model each gesture in

surgical tasks. Every state S of the HMM represents a sub-phase of a particular gesture deeply

characterizing every internal movement.

approach to simplify the gesture recognition problem, reducing the complexity of the

system.

Removing the assumption of working in an online framework a Markov/semi-Markov

Conditional Random field (MsM-CRF) model is proposed for a more complete descrip-

tion of the surgical scenario [38]. Both kinematic data and video recordings form the

JIGSAWS set are used in this synergistic model to capture local and global cues thanks

to its Markov and semi-Markov components. In particular: the unary CRF compo-

nent with its integrated SVM is able to classify gestures out of single frames. Since

gestures are composed of many frames, a first control on results is done considering the

temporal coherence of these low level labels. The unary semi-CRF component assigns

gesture labels to a group of frames, thereby it gathers global features related to overall

gestures. Moreover, considering how it has been defined, two consecutive segments

should not have the same label increasing robustness of the whole process.

In accordance with [39] it is necessary to improve gesture classification because: ”[...]

as the pool of subjects increases, variation in surgical techniques and unanticipated mo-

tion increases [...]”. Following this idea, the authors in [39] first demonstrated that the

model proposed in [11] is too simplistic and not able to generalize over more complex

dataset. To continue, they introduced in the projected LDA space the use of a Hidden

Markov Model (Figure 2.3) to characterize each gesture in suturing tasks performed

by different surgeons. This new model, with a higher level of complexity (three state

left-to right HMM), was able to better understand all the possible variations related to

different users as it could deeply characterize gestures considering also intra-gestures

changes.

Taking into account the knowledge about sub-gestures called dexemes, Varadarajan et
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al. [12] tries to highlight their meaning by applying twice the LDA. In addition, consid-

ering encouraging results in the sub-gesture research, he removes the assumptions that

in order to optimally characterize gestures models must be composed of three-state

left-to-right HMMs. Varadarajan understood that even if the first aim of LDA is to re-

duce the dimensionality of features without losing information, with the new approach

that exploits dexemes, it was necessary to investigate whether it was better to per-

form LDA to discriminate between sub-gestures rather than entire gestures. To apply

LDA at this finer level, a manual segmentation of the dataset into dexemes is required

but not provided. In order to overcome this issue a three-state left-to-right HMMs is

trained, afterwards feeding this model into the Viterbi algorithm [40] a dexeme seg-

mentation of each gesture is estimated. The resulting dexeme labels are finally input to

a second LDA reduction granting a proper training of more performing HMMs based

on dexemes. The second effort in [12] is done to deal with the fact that each gesture is

not only time dependent but also context related, meaning that a temporal structure

left-to-right of the HMMs is not enough to capture all the variance in gestures. For

this purpose Data-Derived HMMs (DD-HMM) are built to collect context-dependent

variations of gestures using greedy algorithms: starting with a single-state HMM for

each gesture, its parameters jointly with the number of states are estimated via Suc-

cessive State Splitting (SSS) [41]. The last model presented has a peculiar number of

states for each HMM modelling a gesture, considering also different transitions between

them (Figure 2.4). Despite of promising concepts behind the DD-HMMs construction,

accuracy in gesture recognition is basically not improved and maintained similar to

state of art results. However, this new algorithm proved its ability in automatically

discovering and modelling gestures, supporting dexemes analysis even if the labelling

of gestures is very coarse grained or absent.

2.3 Datasets

Recent developments in robotic surgical techniques have provided a significant source

of data acquired during surgical operations. These data defined a new output from op-
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Figure 2.4: DD-HMM proposed in [12] used to characterize a single gesture by using 5 internal states

and their possibles transitions.

eration room, making the use of robotics fundamental to reach a new point of view and

achieve a new comprehension of what are the main clues during surgical procedures.

Robotic surgical systems have paved the path for future approaches providing us inter-

nal kinematic data and stereoscopic images able to better characterize the environment

of study.

The Da Vinci Surgical System (dVSS) [8], from Intuitive Surgical, Mountain View,

CA, thanks to its research interface (da Vinci API) [7] allows to retrieve information

on kinematics variables from both Patient Side Manipulators (PSMs) and Master Tool

Manipulator (MTMs) joining them with images obtained by cameras.

In order to access these data for further analysis and studies, many data set considering

different tasks have been collected. In particular, this work is based on data provided by

the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) [9]. This dataset

contains data taken from 8 surgeons with a different expertise level, performing three

basilar and common surgical tasks: Suturing, Needle Passing and Knot-Tying. For

more details about the JIGSAWS working set see Chapter 3.
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2.4 Overall approach

In order to accomplish simultaneous task and gesture classification, two different ap-

proaches are studied: the first approach directly performs real time gesture classifica-

tion without any information on the specific kind of task under analysis. The second

framework, instead, performs gesture classification after a previous task recognition

accomplished by a another algorithm.

2.4.1 Generic gesture classification

The first part of this work aims to develop an efficient real time gesture classifier that

does not consider any information about the kind of the particular undergoing surgical

task, to accomplish gesture classification. This Generic Gesture Classifier (GGC) is

composed by a set of three states left-to-right HMMs. Each of these models attempts

to characterize an underlying gesture of the task by fitting a GMM to it. Since a

surgical procedure is a flow of continuous gestures, to allow a continuous classification,

these HMMs are linked together considering every possible transition among gestures.

2.4.2 Task recognition to address gesture classification

The second used approach intents to identify the undergoing surgical performance

to address an accurate and specific gesture classification. The first algorithm of this

jointed framework is an efficient real time task recognizer able to perform task recogni-

tion, addressing a further task-specific gesture classification accomplished by a second

model.

Using data provided by the JIGSAWS dataset [9], the real time task recognizer is

based on HMMs. Groups of 3 Gaussians each are used to fit and characterize any of the

three surgical task in the working set. These Gaussians are linked together to compose

a final 9 states left-to-right HMM useful to recognize any of the proposed tasks. The

task recognition is accomplished thanks to the Viterbi algorithm [40]. It is important

to report that since the classification is done in real time for every single sample, if a

classification error has occurred, the algorithm is able to recover by changing online

task estimation (see Chapter 3 for further information).
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After the identification of the surgical task, the task recognizer addresses the ges-

ture classification by activating a task-specific gesture classifier. It si possible to define

the task-specific gesture classifier as a composite HMM [13]. This model is able to

identify gestures in surgical tasks linking them together and describing their relation-

ships. Each state of this composite algorithm will be a particular pre-trained HMM

describing a single gesture. Using the underlying structure of the task to link gestures

together it is possible to increase the final classification accuracy. In fact, these struc-

tures, as grammatical constrains, narrows the research field of classification algorithm

that can ignore impossible transitions. It is important to notice that, since the compos-

ite HMM contains inter-gesture links, peculiarity of each task, the model is naturally

task-dependent.
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MATERIALS AND METHODS

The aim of this project is to implement an efficient algorithm able to accomplish

simultaneous task recognition and gesture classification, considering different surgical

operations as Suturing, Needle-Passing and Knot-Tying tasks.

Two different framework are studied for this purpose. In the first one a Generic Gesture

Classifier (GGC) is developed to accomplish real time gesture classification over all the

surgical procedures. In the second one a task recognizer autonomously addresses real

time the gesture identification to a task-specific gesture classifier.

The discussion about the used algorithms is organized as follows:

• To start, the first section analyses the dataset used for this work: the JIGSWAS

working set.

• The second part describes the core of the algorithms implemented in this disser-

tation with their sub-parts: Markov Chains and Hidden Markov Models. This

section is focused on defining the mathematical aspect of models as well as their

key processes.

• The third and the fourth section show all derivations of composite HMMs made

to accomplish: a gesture classification without considering any particular task,

surgical procedure recognition and a subsequent task-specific gesture classifica-

tion.
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• Finally, the last paragraph indicates how the different approaches are evaluated

and compared with other works in literature.

3.1 Dataset

In this dissertation all the studies are accomplished by using the data provided by the

JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) [9] acquired from the

da Vinci Surgical System (dVSS) through a specific Human Robot interface called API

(see Section 7.1 for further information).

3.1.1 Surgical tasks and data description

Data in the JIGSAWS are collected from 8 surgeons, with a different expertise level,

while they are performing three elementary surgical tasks on bench-top models.

As anticipated before, the included tasks in the JIGSAWS are: Suturing (SU),

Needle-Passing (NP) and Knot-Tying (KT) which are very popular and part of surgical

training courses. In a more descriptive way we can summarize them as it follows:

• Suturing (SU): surgeons pick up the needle, approach a vertical line in the phan-

tom (to simulate incisions) and pass the needle though the tissue in correspon-

dence of paired dots. After the first needle pass, surgeons extract the needle from

the tissue, change their hand, and go further to the other marked points (Figure

3.1 A).

• Needle-Passing (NP): surgeons pick up the needle and pass it through 4 small

rings from left to right (Figure 3.1 B).

• Knot-Tying (KT): surgeons tie a single loop knot by taking one end of a suture

tied to a flexible phantom (Figure 3.1 C).
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Figure 3.1: Snapshots of surgical tasks, respectively taken from: A)Suturing, B) Needle Passing and

C)Knot-Tying videos contained in [9]

Surgeons who are performing the tasks in the JIGSAWS have a different expertise

level and surgical experience. In particular,

• Two surgeons are considered experts since they reported to have more than 100

hours of robotic surgical practice.

• Two surgeons can be considered intermediate, having between 10 to 100 hours of

experience.

• Finally, 4 surgeons are considered novices as they reported to have less than 10

hours of practice.

Doctors repeat each task 5 times and each repetition is considered a trail. Authors

reported some problems during the acquisition of certain trials which lead to their

elimination from the resulting final dataset composed of 39 trials of SU, 36 trials of

KT, and 28 trials of NP.
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Column indices Number of variables Description of variables

1-3 3 Left MTM tool tip position (xyz)

4-12 9 Left MTM tool tip rotation matrix (R)

13-15 3 Left MTM tool tip linear velocity (x′y′z′)

16-18 3 Left MTM tool tip rotational velocity (α′β′γ′)

19 1 Left MTM gripper angle velocity (θ)

20-38 19 Right MTM kinematics

39-41 3 PSM1 tool tip position (xyz)

42-50 9 PSM1 tool tip rotation matrix (R)

51-53 3 PSM1 tool tip linear velocity (x′y′z′)

54-56 3 PSM1 tool tip rotational velocity (α′β′γ′)

57 1 PSM1 gripper angle velocity (θ)

58-76 19 PSM2 kinematics

Table 3.1: Kinematic variables included in [9], table taken from the same paper.

As described in Table 3.1, 19 motion variables from each MTM and PSM of the

dVSS are collected through the API interface with a sampling frequency of 30Hz. Con-

sidering together data from left and right PSMs as well as the left and right MTMs,

76 kinematic variables are finally used in the JIGSAWS to describe movements in each

frame. The 76 motion variables in Table 3.1, collected with respect to a common ref-

erence system, include: Cartesian positions, rotation matrix, linear velocities, angular

velocities (described in terms of Euler angles) and a gripper angle.

Video data are synchronized with the same sampling rate of the kinematic variables,

such that each video frame corresponds to a kinematic data sample captured.

In order to set up the algorithms proposed in this dissertation, only the kinematic

variables from the two PSMs will be taken into consideration.
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Gesture index Gesture description

G1 Reaching for needle with right hand

G2 Positioning needle

G3 Pushing needle through tissue

G4 Transferring needle from left to right

G5 Moving to center with needle in grip

G6 Pulling suture with left hand

G7 Pulling suture with right hand

G8 Orienting needle

G9 Using right hand to help tighten suture

G10 Loosening more suture

G11 Dropping suture at end and moving to end points

G12 Reaching for needle with left hand

G13 Making C loop around right hand

G14 Reaching for suture with right hand

G15 Pulling suture with both hands.

Table 3.2: Gesture vocabulary [13], taken from the same paper.

3.1.2 Manual Annotations

The JIGSAWS working set provides the manually labelled ground-truth set of gestures

in each trial. In particular the dataset divides each repetition of every task in a set of

gestures taken from a specified common vocabulary of 15 atomic gestures summarized

in Table 3.2. Annotations about gestures are taken by watching videos with experi-

enced gynaecological surgeons: each annotation includes the name of the gesture and

its start and end in terms of video and kinematics frames.

Gestures used to describe a surgical task are considered to be taken from a com-

mon vocabulary, however not all of them are used in each task. Every procedure is
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characterized by a specific subset of gestures: it may contain gestures observed in more

than one task as specific gestures of that particular task. For instance, considering

Figure 3.2 that shows all gestures in each task, it is possible to observe that while G1

is included in every operation, G12 is performed only in KT. Specifically each subset

of gestures used to characterize the performances is formed as follow:

• The SU subset contains the gestures from G1 to G6, and from G8 to G11.

• The NP task contains the gestures from G1 to G6, and G11.

• The KT group encloses the gesture G1 and from G11 to G15.

Figure 3.2 not only represents the characteristic gestures in each task, but also it

shows the constraining links among them. These links define a grammatical structure

which is also specific for a certain surgical operation. This concept should be more clear

considering, for example, G1: this gesture is common to all the tasks, however only

the KT task contains the transition between G1 and G12 which becomes characteristic

for this task. As described in Section 3.5, the property of having specific links within

gestures will be exploited in setting up a Task-specific gesture classifiers.

3.2 Markov Chains and Hidden Markov Models

All presented models to segment and classify surgical procedures are obtained consid-

ering variations of the standard Gaussian Hidden Markov Model (HMM). Considering

the basic HMM, the main characteristic they share, that differentiates them from stan-

dard HMMs, is the usage of a Markov Chain (MC) to link together HMMs each one

representing a gesture within the surgical task. By using a so structured model it is

possible to describe completely a surgical task characterizing, at the same time, two

different levels: the internal or elementary architecture given by HMMs that describe

gestures and the overall flow of different gestures called composite architecture, pro-

vided by MCs.
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Figure 3.2: Gesures and their ”grammatical” links divided by task [13].

Models that are going to be described include and share many algorithm to accom-

plish segmentation and classification problem. In particular, they all implement MCs

and HMMs: these two algorithms define the core of all presented models and so they

are foremost described to have a general overview of the main processes. Other algo-

rithms allow the tuning of models and grants an efficient classification; these processes

will be subsequently discussed in further sections.

3.2.1 Markov Chain

It is possible to consider a MC as the simplest Markov Model [42]: an autonomous

stochastic system is called Markov Chain process or Markov Chain if it goes through

fully observable states. MC processes can be mathematically described by considering

the transition probabilities between their internal states. Figure 3.3 represents a MC

that can be explained through mathematical equations: a set of N states is defined by

the process S = sA, sB...sN . The process starts in one of these states, defined by an
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Figure 3.3: Markov Chain: 3 fully observable states are linked together by defined probabilities

initial probability distribution, and moves forward from one state to the other by single

steps. Each transition probability pi,j denotes the likelihood through which the model

can pass from state si to state sj. It is important to mention that these probabilities

respect the Markov assumption and do not depend on previous state of the chain, they

are fixed and characteristic of processes. Transition probabilities useful to describe the

process can be represented by a transition matrix (see Table 3.3) in which every row

defines a different state from which it is possible to start, and each column a possible

state to which is possible to go.

Considering that all values in a row are probabilities that define the ability to go from si

to one of the other possible states sA,B,..N , their sum should be equal to one: Equation

(3.1).

Pi = piA + piB + ...+ piN =
N∑
j=1

pij = 1 (3.1)

si \sj SA SB SC

SA pAA pAB pAC

SB pBA pBB pBC

SC pCA pCB pCC

Table 3.3: Transition matrix defined for the process in Figure 3.3
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Once that the MC is defined it is possible to predict, given the state si in a particular

moment, what will be the probability of translating to state sj, m steps forward in the

future. This probability is computed by considering independent transitions over each

previous state. Considering a N states MC the p
(m)
ij probability to go from si to sj in

m steps can be computed as follow:

p
(m)
ij =

N∑
k=1

pikpkj (3.2)

In general, with Equation (3.3), it is possible to calculate the distribution of a given

process one steps forward in the future t + 1 by using the starting probability P1 and

the transition matrix T in Table 3.3.

Pt+1 = Pt ∗ T = (Pt−1 ∗ T ) ∗ T = P1 ∗ T t (3.3)

This work uses MCs to characterize transitions from a gestures to another. For this

purpose the transition matrix in one task is computed by considering the frequency rate

of transitions between gestures in training sets. This computation is possible thanks

to the JIGSAWS dataset which provides labels of gestures in each task.

3.2.2 Hidden Markov Model

As specified before, the first algorithm used in our composite approach allows to catch

the probability to move between subsequent gestures in a specific surgical task. Even

if this is an important feature of the whole segmentation and classification process, it

is necessary to go deeper to define the main aspects of gestures in order to recognize

them if presented to the algorithm.

Following previous works as [13, 12], each gestures will be characterized by considering

its internal organization captured through a specific HMM.

A Hidden Markov Model is defined as: ”[...] a doubly stochastic process with an

underlying stochastic process that is not observable (it is hidden), but can only be ob-

served through another set of stochastic processes that produce the sequence of observed
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Figure 3.4: Left-to-right Hidden Markov model with 3 states, it is defined as λ. This particular

structure will be used to characterize each gesture in the JIGSAWS surgical tasks

symbols [...]” [14].

In HMM based problems, a set kinematic vectors or observations O = {o1, o2..oT}

in which ot is the vector at time t, is assumed to be generated by a HMM λ (Fig-

ure 3.4) [43]. These observation vectors are related to gestures appearing in surgi-

cal tasks and modelled by the hidden states of the HMM. Every time step in the

model corresponds to a kinematic vector generated from the probability density func-

tion bj(ot) of an unknown hidden state. As described before for MC, transitions

from state i to state j are probabilistic and also in HMM they are represented by

a transition matrix A and its elements aij as set up in Table 3.3. Considering the

example in Figure 3.4, a stochastic process moves within a three states model fol-

lowing the state sequence S = {start, A, ..., A,B, ..., B, C, ..., C, stop}, in order to

generate the sequence O = {o1, o2, ..., oT} (the start and stop states, are considered

non-emitting, so no observations are generated from them). The probability of the

observations O is finally generated from the model by moving through the states

S = {start, A, ..., A,B, ..., B, C, ..., C, stop}. In particular it can be computed as the

product between the transition aij and the output probabilities. Considering Figure

3.4 that refers to the model λ, the probability that O is generated from the model is:

32



Chapter 3. MATERIALS AND METHODS

P (O, S|λ) = asAbA(o1)aAAbA(o2)aABbB(o3)...aBCbC(oT )aCf (3.4)

Up to now the output probabilities bj(ot) also called emitted probabilities, are still

not determined. These particular values define the possibility for a certain observation

(ot) to belong to a certain state j: if the observation (ot) is very similar to the ones

considered by the state j, bj(ot) will have high value, meaning that the state recognizes

or can emit that kinematic vector, otherwise bj(ot) will be really low. Considering that

kinematic data are continuous parameters, bj(ot) will take the form of a continuous

multivariate Gaussian density function represented by Equation (3.5), with mean µ,

covariance Σ and n as dimensionality of O.

N (O;µ,Σ) =
1√

(2π)n|Σ|
e−

1
2

(O−µ)′Σ−1(O−µ) (3.5)

Due to this hypothesis, the emission probability bj(ot) is finally defined as

bj(ot) =
S∏
s=1

[
Ms∑
m=1

cjsmN (ost;µjsm,Σjsm)

]γs
(3.6)

where Ms is the number of mixture components in the s-th Gaussian mixture model,

also called stream, cjsm is the weight of the m-th component and the exponent γs is a

stream weight used to highlight a particular stream. In the algorithms presented here,

it is going to be considered just one mixture component, and just one stream of Gaus-

sians, thus Ms = s = 1. This assumption is proved to be effective [13, 12] in decreasing

the complexity of the final model and reducing chances for possible overfitting. Due to

this simplification, all the parameters that depend only on m or s are always set equal

to 1 (ex. cjsm, γs).

Even if every member of Equation (3.6) is explained, in a real case that faces

unknown data streams, only observation sequences O are sampled and no further in-

formation is provided about the emitting state sequence S. Without knowing S, it is

impossible to associate the correct emission probability bj to each sample ot, making

the Equation (3.4) unusable to find P (O, S|λ).

33



Chapter 3. MATERIALS AND METHODS

Although the formulation of the problem is not directly tractable, by using iterative

techniques it is possible to learn the model parameters starting form expert demonstra-

tions, with a normal LfD approach (Section 2.2), and then, it is possible to solve the

problem P (O, S|λ) estimating the state sequence S of unseen surgical trials. Rather

than on the final likelihood P (O, S|λ), this dissertation is more focused on optimizing

the accuracy over the state sequence S estimation: this sequence represent, considering

the JIGSAWS data, the time flow of surgical gestures of the operations performed by

8 surgeons. Behind the gesture estimation all the HMM potential is shown: indeed,

they are not only able to classify underlying gestures among unknown trials, but also

they are able to segment these performances recognizing when each gesture starts and

finishes.

In order to be more clear, the usage of an Hidden Markov Model will be divided

into its two peculiar parts: the learning and the inferring, the former is about the way

the algorithm allows learning from expert demonstration, the latter will describe in

detail how to classify gestures and tasks.

3.2.2.1 Learning: the Baum-Welch algorithm

To better understand, mathematical expressions used to characterize HMMs will always

use the following notation:

N Number of states

T Number of observations

O A sequence of observations

ot The observation at time t, 1 ≤ t ≤ T

aij The probability of a transition from state i to j

µj Vector of means for the state j

Σj Covariance matrix for the state j

λ The set of all parameters that define a HMM

Table 3.4: Mathematical notations proposed in [43].
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It is possible to define more functional definitions of Hidden Markov model: in

particular the model λ in Figure 3.4 can be seen as a set of parameters λ = (Π, A,B)

that must be tuned by LfD in order to make the whole model usable. In this compact

notation Π represents the possibility to start in every state of the model, A contains the

transitions probabilities as anticipated before and B defines the emission likelihoods of

the states.

The main an well known approach to accomplish the tuning of Π, A,B parameters

is the Baum-Welch estimation algorithm [40]. The following mathematical explana-

tion of the Baum-Welch process will be made in a simplistic manner. In particular:

no mixture components as well as stream of Gaussian distribution Equation (3.5) are

taken under consideration, since they are not considered in any model presented by

this dissertation. Moreover, the given formulae refers to the case in which only one

set of data observations is used to train each HMM. Considering that the JIGSAWS

dataset contains 5 trials for each user for every task, this assumption is clearly not

valid.

To have a more detailed mathematical proof of what it is implemented in the proposed

algorithms see Appendix 7.1.2 where it is possible to find all the equations necessary

to accomplish the learning of HMMs by using multiple observations.

To provide a good estimation of the model parameters Π, A,B, the Baum-Welch

algorithm first requires rough initialization of them. Afterwards, the process iterates

means and variances in the model considering every state j characterized by an output

Gaussian distribution Equation (3.7).

bj(ot) =
1√

(2π)n|Σj|
e−

1
2

(ot−µj)′Σ−1
j (ot−µj) (3.7)

Since the underlying state sequence is unknown, it is not possible to assign directly

observations to individual states, therefore it is not possible to just estimate means

and variances from the data by using Equations (3.8) and (3.9).
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µ̂j =
1

T

T∑
t=1

ot (3.8)

Σ̂j =
1

T

T∑
t=1

(ot − µj)(ot − µj)′ (3.9)

Even if Equations (3.8) and (3.9) cannot be used by the iterative algorithm, they pro-

vide an efficient way to initialize the mean µj and the variance Σj of each state in the

so called flat start or flat initialization. By using this initialization technique, µj and

Σj for each state are set equal to the mean and the covariance of the whole dataset.

The iterative Baum-Welch algorithm will change them in next steps.

Once the algorithm is initialized, every observation ot is assigned to every state in

accordance to the probability of having ot emitted by the states of the model when

the kinematic vector is sampled. By iteratively applying Equations (3.10) and (3.11),

means and covariances of HMMs are estimated.

µ̂j =

∑T
t=1 Lj(t)ot∑T
t=1 Lj(t)

(3.10)

Σ̂j =

∑T
t=1 Lj(t)(ot − µj)(ot − µj)′∑T

t=1 Lj(t)
(3.11)

In Equations (3.10) and (3.11) the continuous re-estimation of means and covariances

is possible thanks to the Lj(t) term which describes the probability to be in state j at

time t.

By using the same re-estimation concept applied to tune µ and Σ, it is possible to fit

also the transition values contained in the A matrix. The formulae for this complex

process, directly adapted to the case of having multiple trials of observations, are pro-

vided in Appendix 7.2, (see Equations (7.1),(7.3) and (7.4)).

The last fundamental part of the Baum-Welch algorithm is focused on computing

the likelihood of being in state j at time t Lj(t) by using a Forward-Backward algorithm.
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The first variable considered in the Forward-Backward step is the forward term

αj(t), defined as follow:

αj(t) = P (o1, o2, .....ot, x(t) = j|λ) (3.12)

αj(t) represent the joint probability of observing the t kinematic vectors and being in

state j at time t. It and can be computed in a recursive way by using the Equation

(3.13). It is important to note that, even if it is considered as such, αj(t) is not exactly

a probability since the output distributions are densities and not likelihood.

αj(t) =

[
N−1∑
i=2

αi(t− 1)aij

]
bj(ot) (3.13)

The recursion that leads to αj(t) can be explained by considering that the probability

of being in state j at time t, seeing the observation ot, is computed by summing the

α probabilities for all previous states i mediated by their transition terms aij. It is

necessary to consider that, since the first state (start in Figure 3.4 ) and the last

one (stop in Figure 3.4) are non-emitting state, they act as the two boundaries of the

Forward-Backward process.

The initial conditions for the αj(t) computation are

α1(1) = 1 (3.14)

αj(1) = a1jbj(o1), 1 < j < N (3.15)

while considering the final non emitting state, the final condition is given by Equation

(3.16) that, considering the definition of αj(t), leads to Equation (3.17).

αN(T ) =
N−1∑
i=2

αi(T )aiN (3.16)

P (O|λ) = αN(T ) (3.17)

The second and last term considered in the computation of Lj(t), the probability

to be in state j at time t, is the so called backward probability, represented by Equation
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(3.18). Again, this term is not properly a probability.

βj(t) = P (ot+1, ...., oT |x(t) = j, λ) (3.18)

As in the computation of αj(t), even in calculating βi(t) a recursive method is applied:

βi(t) =
N−1∑
j=2

aijbj(ot+1)β(t+ 1) (3.19)

with the initial and final conditions given by Equation (3.20) and (3.21):

βi(T ) = ai,N , 1 < i < N (3.20)

β1(1) =
N−1∑
j=2

a1jbj(o1)βj(1), 1 < i < N (3.21)

αj(t), as it is defined, can be interpreted as a joint probability, while βi(t), thanks to

its definition, is more like a conditional probability. This difference in meaning allows

the probability of state occupation to be determined by taking the product of αj(t)

and βi(t):

αj(t)βi(t) = P (O, x(t) = j|λ) (3.22)

Finally, Lj(t) can be written as

Lj(t) = P (x(t) = j|λ) =
P (O, x(t) = j|λ)

P (O|λ)
=

1

P
αj(t)β(t) (3.23)

A final consideration on the Baum-Welch algorithm can be done considering that

computations of the forward and backward probabilities involve the products of a large

amount of probabilities leading to tiny values. Hence, to avoid numerical problems,

the same formulae can be transposed on a logarithmic scale amplifying the range of

possible results from the interval [0, 1] to ]−∞, 0].
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3.2.2.2 Inferring: the Viterbi Algorithm

The Viterbi algorithm [40] allows to identify the best maximum likelihood state se-

quence and, afterwards, to perform the classification.

To understand how it works it is possible to consider that the Baum-Welch algorithm,

previously described, uses the recursive formulae of forward probabilities to find the

total likelihood or log-likelihood P (O|λ). By properly adapting this approach, it pos-

sible to succeed in identifying the best maximum likelihood state sequence.

Given λ in state j at time t, the maximum likelihood φj(t) of kinematic observations,

from o1 to ot, can be iteratively computed by using the Equation (3.24), or in terms of

log-likelihood to avoid underflow risks using Equation (3.25)

φj(t) = max
i

[φi(t− 1)aij] bj(ot) (3.24)

ψj(t) = max
i

[ψi(t− 1) + log(aij)] + log(bj(ot)) (3.25)

The initial conditions used to compute φj(t) at any time are

φj(1) = 1 (3.26)

φj(1) = a1jbj(o1), 1 < j < N (3.27)

The process stops at the very end of the sequence O (3.28), in other words once reached

the oT sample.

φN(T ) = max
i

[φi(T )aiN ] (3.28)

To have a clearer idea about how the Viterbi algorithm works, it is possible to refer

to Figure 3.5: the algorithm tries to find the best path through a matrix where the

vertical axis represents every states of the HMM while the horizontal defines the kine-

matic frames (time). The probability of any path is computed simply by multiplying

transition probabilities with output probabilities (respectively lines and dots in Figure

3.5) along that path. At time t, each partial path φi(t − 1) is known for all states i
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Figure 3.5: Viterbi algorithm based on model in Figure 3.4, for the recognition of a single gesture

and by using Equation (3.24) or Equation (3.25) φi(t) is computed and partial paths

are extended by one time frame.

3.2.3 Final model

The two models described in the previous section, are joint together to set up what is

called composite HMM. This final model, at the same time, uses the transitions prob-

abilities defined through a Markov Chain to identify the possibility to pass from one

gesture to another while it deeply characterizes each gesture by considering its relative

HMM. In Figure 3.6B it is possible to visualize the general aspect of the final model:

each transition between gestures (orange lines) links two subsequent gestures deeply

characterized by their complete 3 states left-to-right HMMs.

Taking into account the general model and its parts highlighted in Figure 3.6, it is

possible to modify it in order to differentiate its final usage as a function of the scope

of each composite HMM. To define a method for simultaneous task recognition and

gesture classification in surgical robotics, 3 different models have been derived from
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Figure 3.6: A. Overall structure of a composite model, 5 gestures linked together by a Markov Chain.

B. extended structure of a composite HMM: 5 gestures, each one defined by a 3 states left-to-right

HMM, are linked together by a Markov Chain.

the general composite HMM.

• Generic gesture classifier: A three states left-to-right HMM is used to model each

gesture of the same kind in the JIGSAWS. Linked together to form the composite

HMM they must be able to perform real time classification over gestures without

having information regarding the undergoing task.

• Task-related task classifier: for each task in the JIGSAWS, a three states left-to-

right HMM is modelled. The final purpose of these models is to catch the general

flow of each surgical procedure to recognize in real time the overall meaning of

it classifying the task. Every three state left-to-right HMM has 3 Gaussians as

emitting states and their interpretations have no connections to gestures.

• Task-Specific gesture classifier: based on [13], this model uses the a priori knowl-

edge of which task is in progress to classify in real time gestures, by using a

different composite HMM for each task. A three states left-to-right HMM is used

to model each gesture of a specific task. Finally they are subsequently linked

together by using the known structure of that particular task Figure 3.2.
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The structure of each implemented composite HMM is carefully described in the

following sections.

3.3 Generic gesture classifier

With the Generic Gesture Classifier (GGC) gestures are classified in real time without

knowing which surgical procedure is undergoing. This generic approach is essential

for real case scenario, in which the characterization of tasks in a fine-grained scale is

needed but no information is previously given about the operation.

3.3.1 Model description

All trials in the JIGSAWS dataset are merged together, without considering the task

they are part of. To incorporate the temporal context into features the concatenation of

2P+1 consecutive kinematic samples into fifty percent overlapping frames is performed

[12, 44]. Subsequently two possible approaches are followed: in the first, kinematic

features are standardized in each frame using Equation (3.30), in the other they are

not. Features are reduced through LDA and finally subdivided basing on their provided

labels into gestures forming a dataset to train the model. To characterize each gesture in

the dataset a three states left-to-right HMM is set up considering each state described

by a Gaussian. Every possible inter-gesture transition of every task (Figure 3.2) is

captured by a Markov Chain, and merged with the gestures HMMs in a unified system

(as the one in Figure 3.6) that considers the relation between states and gestures.

3.3.2 Model application

The Viterbi algorithm (Described in Section 3.2.2.2) processes unseen trials to have

a final gesture classification. It is important to report that all the possible sequences

of gestures G are computed in real time for every new sample at time t. By taking

the sequence of gestures g, with g ∈ G which maximises the likelihood up to time t

(Equation (3.29)), it is possible to have a real time classification af all the gestures en-
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countered. Moreover, if in the next sample at time t+1 the sequence of gestures g that

maximizes Equation (3.29) changes, the algorithm will recover its inference providing

a new classification.

Linferred sequence(1, t) = max
g
P (O1,t|λg) (3.29)

3.4 Task-related task recognizer

The purpose of the Task-Related Task Recognizer (TRTR) is to understand online

which task is in progress by looking to general features of the trial capturing the main

structure of the process.

3.4.1 Model description

Using the JIGSAWS dataset, three different 3 states left-to-right HMMs are trained

each one over trials that belong to a different task. These HMMs are merged together

in one system which unifies the starting and the transition probabilities of all inde-

pendent models. The starting probability Π of the merged model λ is equal in each

one of these 3 HMMs, thus Π becomes Π = [0.33, 0.33, 0.33] where each value define

the probability of starting in one different HMM. The transition probabilities are also

merged in one unified matrix A defining the probabilities to change state inside the

same HMM since no transitions are allowed between different models. It is important

to report that the correspondence between states in the transition matrix A and the

Gaussians which describe emission probabilities related to each state b is maintained.

3.4.2 Model application

Before the training as well as before the decoding data should be pre-processed. In

particular,
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1. The whole dataset is unified in just one set of samples that contains every trial

from every task. Every sample in this set is labelled with a sign correspondent

to the task to which it belongs and concatenated with others 2P + 1 into fifty

percent overlapping frames, to help incorporating the temporal variance into

features [12, 44].

2. To make the kinematic variables in the training set comparable, a standardization

(see Equation (3.30)) is provided in order to have zero mean and unit variance

variables.

x̂ij =
xij − µj
σj

, 1 < j < length(variables) , 1 < i < length(set) (3.30)

where µj is the mean of the j kinematic variable and σj its variance.

3. The total number of kinematic variables is reduced thanks to LDA [37] consid-

ering the task-label of each sample. This process improves the overall efficiency

of the algorithm maintaining unchanged its discriminant power.

Once that each task-related HMM is trained through the Baum-Welch algorithm

over all the samples of a specific task, the final system is used for real time task recog-

nition.

Every sample is sent to the Viterbi algorithm which considers the HMM of each task,

keeping trace of the best path within HMMs. At any time t the path with the highest

probability is classified as the best path and the related task is recognized. The fol-

lowing expression allows the maximization of the path as a function of surgical tasks:

max
k
P (O1,t|λk), where k represents the surgical task (i.e. SU, NP, KT).

3.5 Task-specific gesture classifier

A Task-Specific Gesture Classifier (TSGC) is built to accomplish real time gesture

classification by using the a priori knowledge of the relationships between gestures (see

Figure 3.2). TSGC is not generic and, in order to perform profitably gesture classifica-

tion it strongly depends on the TRTR (described in Section 3.4) which addresses the
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classification in a generic scenario with multiple possible surgical tasks.

The particular relationships between gestures that characterize each task (repre-

sented in Figure 3.2) are used as additional information to narrow the final classifica-

tion. As anticipated before, this approach can provide a robust classification if paired

with a TRTR classifier that works without any assumption on the surgical task per-

formed, addressing the gesture classification.

3.5.1 Model description

The trials in the JIGSAWS dataset are grouped according to their task, subsequently

these task-related groups are used to train three different classifiers, one for each sur-

gical procedure. In this way, all samples of the same task are processed together: they

are concatenated first into groups of 2P+1 subsequent fifty percent overlapping frames,

then the kinematic variables could be standardized with Equation (3.30) or not, form-

ing 2 different training sets. Finally, original kinematic features, concatenated and, in

case, standardized are reduced through LDA and subdivided basing on their original

gestures.

It is necessary to highlight that since the LDA process reduces features in the task-

related groups of trials considering their subdivision into gestures, and since the gesture

content in each one of these task-related groups is different, the final reduction of fea-

tures, for each task, will be different. In other words, by applying the LDA over

task-dependent datasets, the reduction will be different, leading to a differentiation of

gestures as a function of the task.

Different sets of three states left-to-right HMMs are trained over data of each distinct

gesture of each task. HMMs representing gestures of the same surgical procedure are

merged together in one unique system by using a Markov Chain that defines task-

related constraints as described in Figure 3.2.
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3.5.2 Model application

Through the Viterbi algorithm (Section 3.2.2.2) the gesture classification is achieved.

As in the other algorithms presented before, for every new sample at time t, it is pos-

sible to infer the underlying gesture sequence real time, by finding the sequence g that

maximizes probability max
g
P (O1,t|λg).

3.6 Evaluation protocol

In order to compare the aforementioned techniques with the ones from literature, it is

necessary to use common cross-validation settings and evaluation metrics.

3.6.1 Cross-validation settings

As proposed in [9] two different cross-validation settings are taken into account:

• The first setting is called Leave-One-User-Out (LOUO). Here, all trials performed

by a single surgeon are left out as a test set while the remaining ones are used

as a training set. Considering that the JIGSAWS dataset includes data from 8

different users, by taking out all the sessions of a surgeon in turn, it is possible

to define 8 paired homogeneous groups of training-test datasets. They can give

important information about the way the algorithm can capture variations within

surgeons since, for every group, the test user is unseen and its style unknown.

• The second cross-validation framework, instead, is called Leave-One-Super-Trial-

Out (LOSO). In this case, the i-th trial of each subject is left out as the test set.

Due to the fact that each surgeon repeats the same task 5 times, it is possible to

set up 5 different training-test groups. Since only one instance is taken out for

the test set, the training sets of these groups contain trials of every user, making

them more reliable and less sensitive to changes in performances executed with

different abilities and styles.
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3.6.2 Measurement metrics

The definition of the cross-validation settings makes the computations of following

metrics meaningful insuring their comparability thanks to the homogeneous substrate

over which they are calculated.

Performances of implemented algorithms are measured in terms of micro average ac-

curacy, macro average accuracy and precision, as defined in [7]. In particular, for each

training-test set group g, a confusion matrix Cg is computed considering classes classi-

fied during the gesture recognition as: Cg[i, j] equal to classi predicted as classj. The

complete confusion matrix, considering all cross-validation groups g-th, is computed

by summing-up all confusion matrices Cg:

C = C1 + C2 + ...+ CG =
G∑
g=1

Cg (3.31)

By using the complete confusion matrix (Equation (3.31)), it is possible to define the

first measurement metrics: the micro average accuracy, computed as the average of

the total number of correct predictions over the total number of predictions. Equation

(3.32) provides the formulae for micro average accuracies computation, here n is the

total number of possible classes.

micro =

∑n
i=1 C[i, i]∑n
i,j=1C[i, j]

(3.32)

It is possible to extend the micro average accuracy metrics considering the clas-

sification performances of the algorithm over every kind of surgical operation under

analysis. In particular, averaging the summation of the micro average accuracy com-

puted considering the three surgical tasks, it is possible to find the consolidated accuracy

performance of the model over all the operations (Equation (3.33)).

consolidated accuracy =

∑tottasks
i=1 micro(i)

tottasks
(3.33)
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Here, tottasks is the total number of analysed tasks. Considering the data used in this

dissertation tottasks = 3, and the analysed surgical tasks are: suturing, needle passing

and knot tying.

Another meaningful metrics is the macro average accuracy computed considering

the positive rates for each class by the Equation (3.34). Its standard deviation is defined

through Equation (3.35).

macro =
1

n

n∑
i=1

C[i, i]∑n
j=1C[i, j]

(3.34)

macro std =

√√√√ 1

n− 1

n∑
i=1

(
C[i, i]∑n
j=1C[i, j]

−macro average)2 (3.35)

Finally it is possible to consider the precision (Equation (3.36)) and its standard devi-

ation (Equation (3.37)) of the classification algorithm:

precision =
1

n

n∑
i=1

C[i, i]∑n
k=1C[k, i]

(3.36)

Precision is defined as the sensitivity for confusion matrices: True positives
Predicted Positives

.

precision std =

√√√√ 1

n− 1

n∑
i=1

(
C[i, i]∑n
k=1C[k, i]

− precision)2 (3.37)

In order to be sure that all results are directly comparable and not corrupted, they

are all obtained by running a script in MATLAB 2017b on the same machine. The

computer has the 64 bits version of Windows 10 Enterprise as operating system and the

machine hardware is composed of a processor Intel Xeon CPU E5-2667 v4 (32CPUs)

with a clock frequency of 3.2GHz.
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RESULTS

In order to have the best possible time performances as well as classification accura-

cies, every algorithm presented in this dissertation is optimized considering its internal

parameters. Its performances are presented and compared with the state of the art by

analysing metrics presented in Section 3.6.

Model parameters have a direct role in defining performances of classification algo-

rithms. Thus, the study of every possible combination of the number of concatenated

samples (P) with the number of features (dim) used to characterize each frame is es-

sential for a subsequent task recognition or gesture classification. The tuning of these

parameters affects different aspects of the model, in particular it is possible to optimize

performances of models by considering how different setups change the overall accuracy

and the ability of the model in classifying sequences.

• Overall consolidated accuracy: It is possible to infer a first set of parameters

by analysing how the consolidated accuracy in recognition, computed through

Equation (3.33), changes varying P and dim. Every combination of P and dim

is studied considering the LOSO and LOUO validation scheme.

• Unclassified sequences: By increasing the complexity of the model, the Viterbi

algorithm can fail in processing surgical trials. This phenomenon can be measured

as the percentage of unclassified sequences over the total number of trials. This
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number has to be maintained as lower as possible to have a good reliability of

the model.

Once the optimized model is defined, its best performances are presented in terms

of micro average accuracy, macro average accuracy and in terms of precision as defined

in Section 3.6. It is important to report that, since these algorithms should work online,

also time performances will be taken in consideration. Performances will consider:

• Time: to accomplish real time classification it is necessary to consider that a new

sample is provided with a frequency of 30 Hz. By concatenating P samples with

an overlapping value of 50%, the real frequency to which the algorithm should

work is 30Hz/P . This puts limits in the allowed computational time and it

becomes a key feature.

• Accuracy and relevance: The micro average accuracy is evaluated as presented in

Section 3.6. The robustness of the optimized algorithm is measured, as previously

mentioned, as the percentage of unclassified sequences over the total number of

trials.

4.1 Generic gesture classifier

Following the framework proposed in Figure 4.1, GGC allows to accomplish a real time

gesture classification without considering which particular surgical task is performed.

Every performance is sampled at 30 Hz and every sample, of 38 kinematic variables, is

processed to be concatenated, standardized and reduced in dimensions.
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Figure 4.1: Framework allowing gesture classification through generic gesture classifier. Surgical

trials are collected and pre-processed. Reduced vectors are then classified into 1 out of 15 possible

gestures, according to Table 3.2.

Subsequently, the prepared data are input to the general model which performs real

time gesture classification assigning labels according to Table 3.2.

4.1.1 Parameters

To study the performances of the Generic Gesture Classifier (GGC) it is possible to

define two different approach: in the first one, after a concatenation of P samples,

features are standardized following Equation (3.30). On the other hand, in the second

approach, features are not standardized. It is possible to find a more detailed explana-

tion about a possible standardization in Section 7.3.1, to be more synthetic, here, only

the standardized case will be presented since it proved to be more considerable.

• Overall consolidated accuracy: By optimizing the variation of the consolidated

accuracy over the JIGSAWS tasks as a function of P and dim parameters, it is

possible to define a model.
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Figure 4.2: Consolidated accuracy over all the three tasks, studied for every combination of con-

catenation length (P) and number of features (dim) on the LOSO and LOUO validation schema.

By considering Figure 4.2, it is possible to see that the set of parameters which

optimize the consolidated accuracy for both LOSO and LOUO cross-validation

schema is P = 11 and dim = 9. It is important to report that the maximum

value of consolidated accuracy is higher for the LOSO setup than for the LOUO.

• Unclassified sequences: In order to have a robust algorithm it is necessary to

study the variation of the percentage of unclassified task as function of the P and

dim parameters. This index gives an important clue to the final choice of the

model parameters.

Figure 4.3: Percentage of unclassified sequences, obtained by GGC considering different P and dim

parameters.

In particular, referring to Figure 4.3, it appears that for the LOSO cross val-

idation schema a choice of parameters that maintains as lower as possible the

percentage of unclassified sequences can be P = 9 and dim = 9, while for LOUO
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scheme a good choice is once again P = 11 and dim = 9.

Considering both the two presented measures, the best possible set up is:

– LOSO: P = 11 and dim = 9, reporting that this choice penalizes a bit the

percentage of unclassified sequences.

– LOUO: P = 11 and dim = 9

4.1.2 Performances

• Time: By considering the two set of parameters for LOSO and LOUO cross-

validation schema, in Table 4.1 is presented the total computational time that

takes to process a single frame. Since the algorithm should work in real time ap-

plications the required computational time cannot overpass the threshold defined

considering the overlapped concatenation. This particular time threshold can be

computed as the inverse of the sampling frequency divided by the concatenation

value P, in particular the available time is given by:

available time =
P

30Hz
(4.1)

LOSO (P=11, dim=9) LOUO (P=11, dim=9)

To classify 1 sample 0.092s 0.086 s

available time 0.367s 0.367s

Table 4.1: Time spent by the GGC algorithm to classify one sample, considering the LOSO

and LOUO validation scheme and the respective threshold time for real time applications.

At it is confirmed in Table 4.1, the GGC algorithm respects the time constraints

in both the two cross-validation approaches.

• Accuracy and relevance: Using the metrics defined in Section 3.6 the GGC al-

gorithm can be evaluated in terms of micro/macro average accuracy, precision
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and their respective standard deviations. In Table 4.2 the GGC algorithm is pre-

sented considering its performances over both the LOSO and LOUO validation

scheme.

LOSO (P=11, dim=9) LOUO (P=11, dim=9)

Evaluation Suturing Needle passing Knot tying Suturing Needle passing Knot tying

Micro (%) 79.28 55.94 73.52 63.45 43.29 66.08

Macro± std (%) 76.95± 10.36 46.48± 26.83 64.12± 32.29 51.26± 16.63 36.48± 24.35 57.92± 19.82

Precision± std (%) 54.33± 30.94 42.77± 29.72 41.96± 42.64 43.10± 33.24 33.47± 30.60 36.85± 40.21

Table 4.2: Performances of the GGC, considering the evaluation metrics defined before (Section

3.6) computed over the LOSO and LOUO validation schema. The reported values are expressed as

percentages.

It is necessary to highlights that the overall performances of the GGC algorithm

increases, if the LOSO cross-validation set up is considered.

Always considering LOSO and LOUO cross-validation schema, the percentage

of unclassified sequences for the specific set of parameters previously defined is

presented in Table 4.3. Considering both the two validation sets, less than 1% of

the total number of trials is lost.

LOSO (P=11, dim=9) LOUO (P=11, dim=9)

Unclassified seq. 0.97% 0.97%

Table 4.3: Percentage of unclassified trials, considering the LOSO and LOUO validation schema, for

the particular set of parameters previously defined.

4.1.3 Comparisons

Considering the micro average accuracy, performances of GCC algorithm can be com-

pared with other approaches presented in literature (Table 4.4). In [38] a Markov and

semi Markov Conditional Random Field (MsM-CRF) is proposed to classify gestures
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in surgical tasks. The same purpose is accomplished in [13] thanks to the use of three

different composite HMMs, one for each task in the JIGSAWS.

LOSO LOUO

MsM-CRF* GMM-HMM** GGC MsM-CRF* GMM-HMM** GGC

Suturing 82.1% 82.2% 79.3% 72.6% 74.0% 63.5%

Needle passing 76.8% 70.6% 56.0% 57.1% 64.1% 43.3%

Knot tying 81.1% 80.1% 73.5% 68.8% 72.5% 66.1%

Table 4.4: Comparison between state of art gesture classification micro accuracies, expressed as

percentages. Results from: MsM-CRF* [38], GMM-HMM** [13], and the proposed GGC approach.

As it clearly appears from Table 4.4 the gesture classification results achieved by the

GGC algorithm are inferior with respect to the state of art. However, it is necessary to

report that with respect to literature the GGC performances are completely achieved

in real time.

• Statistical analysis: It is possible to compare more in detail the gesture classifi-

cation results achieved with the proposed GGC approach with the one presented

in [13] and referred to the composite GMM-HMM model.

LOSO LOUO

Suturing Needle passing Knot tying Suturing Needle passing Knot tying

Macro p-value 5.89× 10−14 1.47× 10−33 1.08× 10−32 8.55× 10−19 3.01× 10−34 9.14× 10−23

Precision p-value 2.50× 10−33 2.54× 10−34 2.54× 10−34 6.14× 10−33 2.57× 10−34 2.54× 10−34

Table 4.5: H0 test results between the population achieved by using a GMM-HMM as proposed in

[13] and the one obtained with proposed GGC approach.

The hypothesis H0: the population coming from GMM-HMM algorithm belongs

to the same distribution of the population achieved by using the GGC algorithm is

tested over every surgical procedure by using both macro average and precision

metrics. In particular, in Table 4.5 are shown results of the test in terms of

p-values. Considering the macro average and the precision over every kind of

surgical task, it is possible to see that the proposed GGC algorithm works in a
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different way with respect to the state of art. In Section 7.4.1 more details are

furnished about the tested populations.

4.2 Task recognition and task-specific gesture clas-

sification

Figure 4.4 summarises how to perform a real time surgical gesture classification ad-

dressed by the task recognition. Kinematic data form the two PSMs of the dVSS are

acquired at 30 Hz during generic surgical performances. These data are concatenated,

possibly standardized and reduced to have samples composed of a limited number of

features. Once data are pre-processed, the task recognition is performed online and the

trial is addressed to the proper task-specific gesture classifier for the final segmentation

and classification into gestures.

Figure 4.4: Framework used to perform gesture classification after task recognition. Any of the

surgical trials performed is collected and pre-processed, allowing task recognition over reduced data.

The task recognizer feeds the correct task-specific gesture classifier which performs classification con-

sidering only possible gestures in that specific task Figure as described in Figure 3.2.

In order to achieve the proposed framework, two disjointed systems have been

created: one performing task recognition, the other classifying trials into gestures. The

results coming from these two algorithms will be presented considering the choice of

their constitutive parameters and performances of different used models also compared

with the state of art.
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4.2.1 Task-related task recognition

In order to recognize the undergoing surgical task performed by a surgeon, a Task-

Related Task Recognizer (TRTR) is set up. In particular this algorithm performs a

first data pre-processing and a following task classification through Viterbi process.

Since it has to accomplish real time task recognition time performances as well as the

final classification accuracies are key features to evaluate the overall approach.

4.2.1.1 Parameters

• Overall consolidated accuracy: The first element taken into consideration to tune

model parameters is the consolidated accuracy. It changes by varying P and dim,

and every possible combination of them is studied by considering the LOSO and

LOUO validation schema.

Figure 4.5: Performances of the TRTR are studied in terms of overall consolidated accuracy. This

metrics computed through Equation (3.33) is studied for every combination of concatenation length

(P) and number of features (dim) on the LOSO and LOUO validation schema.

By considering the consolidated accuracy in Figure 4.5, it is possible to define

two distinct sets of model parameters, one for LOSO and one for LOUO cross-

validation scheme. For the LOSO scheme it seems that a good choice for the

number of concatenated samples (P) and the number of considered features (dim)

can be P = 5, dim = 12 or dim = 15 while for LOUO could be P = 7, dim = 9.

From Figure 4.5 it is clear that the maximum peak in consolidate accuracy for

LOSO and for LOUO is different: LOUO set up reaches a lower maximum level

of consolidate accuracy meaning that its performances will be worse.
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• Time performances: The task recognition should be completed online. Moreover

the algorithm should classify the correct task as soon as possible to start the

final gesture classification. This ability is measured in terms of percentage of the

trial that is necessary to have to manage task recognition. Varying P and dim

the real time performances of the TRTR changes, as it is possible to see in the

consolidated graph, for every different cross-validation set up, in Figure 4.6.

Figure 4.6: Percentage of the samples of one trial that is necessary to have to accomplish task

recognition, consolidated over the three surgical tasks and function of the P and dim parameters.

From Figure 4.6 it appears that for LOSO schema, the choice of parameters does

not affect the real time performances that much and the consolidated percentage

of samples that it is necessary to have to infer the task is almost constant. On

the other hand, for LOUO setup, the number of concatenated samples should

be as lower as possible. For LOSO schema, the best choice would be to set

P = 7, dim = 15, but taking into account the relative advantages of this choice

and the loss in consolidated accuracy represented in Figure 4.5, P and dim will

be maintained set as P = 5, dim = 12 or dim = 15 . The best set of parameters

for LOUO could be P = 5, dim = 15, however, considering the choices taken

over the consolidated accuracy, it is better to maintain P = 7, dim = 9: the real

time performances will decrease a bit, but the accuracy is maintained as high as

possible.

• Unclassified sequences: As aforementioned, it is possible to consider robustness

as a key factor to define the TRTR parameters.
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Figure 4.7: Performances of the TRTR are studied in terms of percentage, of unclassified sequences.

Considering Figure 4.7, it is clear that a low level of model complexity it is

necessary for a good reliability. Thus the best choice for the LOSO setup, also

caring for the previous consideration can be P = 5, dim = 12, while, for the

LOUO cross-validation set, P = 7, dim = 9 can be the best choice. Thus the

final choice of parameters is:

– LOSO: P = 5 and dim = 12

– LOUO: P = 7 and dim = 9

Reporting that these choices penalize the percentage of the trial that it is neces-

sary to recognize the task.

4.2.1.2 Performances

• Time: In Table 4.6 is presented the computational time required to classify one

sample and the available computational time allowed by the choice of the LOSO

and LOUO parameters. Due to the overlapped concatenation, the latter is com-

puted as described in Equation (4.1).

LOSO (P=5, dim=12) LOUO (P=7, dim=9)

To classify 1 sample 0.011s 0.009s

Available time 0.167s 0.233s

Table 4.6: Time to classify a sample with TRTR algorithm taking in consideration LOSO

and LOUO schemes and respective times for real time application.

59



Chapter 4. RESULTS

Since the task recognition is the first step of the framework in Figure 4.4, it has

to classify as fast as possible the task in order to address gesture classification.

In Table 4.7 is presented the percentage of trials that it is necessary to have for

every task to accomplish task recognition using TRTR.

LOSO (P=5, dim=12) LOUO (P=7, dim=9)

Suturing 10.80% 13.04%

Needle Passing 15.81% 16.30%

Knot Tying 3.45% 10.58%

Table 4.7: Percentage of samples of the trial necessary to recognize the surgical procedure

using TRTR.

In order to recognize the task from a trial belonging to one specific task, the

TRTR needs to process form the 4% up to 16.3% of the undergoing task.

• Accuracy and relevance: In Table 4.8 the micro average accuracy of TRTR is

shown. In particular, for every kind of surgical procedure the micro average

accuracy is presented as a function of the LOSO and LOUO cross-validation

setup.

LOSO (P=5, dim=12) LOUO (P=7, dim=9)

Suturing 100% 94.87%

Needle Passing 96.43% 85.71%

Knot Tying 97.22% 97.22%

Table 4.8: TRTR micro accuracy, expressed as percentages, over the JIGSAWS surgical tasks.
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The percentage of unclassified trials over the LOSO and LOUO test set is pre-

sented in Table 4.9. As anticipated before this measure is essential to define the

robustness of the TRTR it is fundamental to maintain this measure as low as

possible.

LOSO (P=5, dim=12) LOUO (P=7, dim=9)

Unclassified seq. 1.94% 0%

Table 4.9: Percentage of unclassified trials, considering the LOSO and LOUO validation

schema, for the particular set of parameters previously defined (Section 4.2.1.1).

4.2.1.3 Comparisons

In Table 4.10 the TRTR algorithm is compared with the state of the art. Considering

the micro average accuracy, it is possible to compare the TRTR with two different task

recognizers presented in [5] which are a standard HMM and a DTW-kNN.

LOSO LOUO

HMM* DTW-kNN* TRTR HMM* DTW-kNN* TRTR

Suturing 96.4% 100% 100% 80.7% 84.6% 94.9%

Needle Passing 83.5% 89.3% 96.4% 80.8% 85.7% 85.7%

Knot tying 97.3% 97.2% 97.2% 90.9% 95.8% 97.2%

Table 4.10: Comparison between the state of art task recognition micro average accuracies due to

HMM* and DTW-kNN*, both defined in [5], and the proposed TRTR. The micro average accuracy

is expressed as a percentage

As it is possible to see from Table 4.10, the TRTR approach outperform the state

of task in recognizing almost all the proposed surgical tasks.

It is possible to compare the time performances of the TRTR with the ones presented

in [5] and refereed to the aforementioned DTW-kNN algorithm. In particular, in Table
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4.11 is represented the percentage of the trial that is necessary to have to accomplish

task recognition considering the two approaches.

LOSO LOUO

DTW-kNN* TRTR DTW-kNN* TRTR

Suturing 12.0% 10.8% 20.0% 13.0%

Needle Passing 15.0% 15.8% 22.0% 16.3%

Knot tying 5% 3.45% 8% 10.6%

Table 4.11: Comparison between the state of art percentages of the trial that is necessary to have

to accomplish task recognition and ones needed form the proposed TRTR. DTW-kNN* proposed in

[5].

Table 4.11 summarizes that, in order to achieve the values of micro average accuracy

presented in Table 4.10, the proposed TRTR approach is faster. The percentage of trial

that it is necessary to have in order to permanently classify tasks is inferior.

4.2.2 Task-specific gesture classification

Thanks to the task recognizer the final gesture classification is addressed to a proper

classifier which accomplishes segmentation into gestures and a subsequent gesture iden-

tification through the Viterbi algorithm. The Task-Specific Gesture Classifier (TSGC)

described in Section 3.5, has to be able to perform real time gesture classification. Even

in this case the algorithm should work online, thus, it has to compute every identifica-

tion in time span defined by the sampling frequency of 30 Hz.

It is important to report that the TSGC algorithm is still considered a disjointed

system from the TRTR. Because of that, the TSGC algorithm does not consider the

time previously used by the TRTR to perform task recognition. In a ideal synergistic

system in which the TRTR works together with TSGC it is required also to consider the

impact of the task recognizer since its computational time affects the whole framework
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presented in Figure 4.4.

4.2.2.1 Parameters

With the prior assumption that the two systems composing the framework presented in

Figure 4.4 are disjointed, every model performs its own data pre-processing optimizing

independently its P and dim parameters.

As for the GGC algorithm, even in the TSGC is possible to optimize the accuracy

over gesture classifications as well as time performances by considering a possible stan-

dardization of kinematic variables. A more complete explanation about the possible

advantages in performing features standardization over LOSO and LOUO validation

schema is provided in Section 7.3.2, here, to be more synthetic, only the optimal case

of having standardized variables is presented.

• Overall consolidated accuracy: In Figure 4.8 it is possible to see the consolidated

gesture classification accuracy over three surgical tasks (SU,NP,KT) as a function

of the models parameters and validation scheme.

Figure 4.8: Consolidated accuracy results, over SU,NP and KT surgical tasks, obtained by TSGC

considering different P and dim parameters as well as the LOSO and LOUO validation schema.

In order to maintain gesture classifier micro average accuracy high in surgical

tasks, the best set parameters identified for the LOSO set up is P = 9 and

dim = 9, while, for the LOUO schema an optimal choice is to set P = 11 and

dim = 9. As for the GGC algorithm, even using TSGC, it has to been reported

that the maximum level of consolidated accuracy is reach for the LOSO setup.
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• Unclassified sequences: In Figure 4.9 appears that in order to have consolidated

percentages of unclassified sequences over all the analysed surgical tasks as low

as possible, the system complexity should be small. In particular, for the LOSO

cross-validation schema P = 9 and dim = 9 appear to be the best choices, while

for the LOUO setup the combination is P = 5 or P = 7 and dim = 9.

Figure 4.9: Percentage of unclassified sequences, obtained by TSGC considering different P and dim

parameters.

Considering both the overall accuracy and the percentage of unclassified se-

quences, the best configuration is:

– LOSO: P = 9 and dim = 9

– LOUO: P = 7 and dim = 9

4.2.2.2 Performances

• Time: In Table 4.12 it is shown the total computational time required to process

and classify a single frame. Considering possible real time application for the

TSGC algorithm, the computational time required to process each sample should

remain below the available time span, computed through Equation (4.1).

LOSO (P=9, dim=9) LOUO (P=7, dim=9)

To classify 1 sample 0.061s 0.063s

Available time 0.300s 0.233s

Table 4.12: Time to classify a sample with the TSGC, and the respective available time span

for real time applications.
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At it is confirmed in Table 4.1, the TSGC algorithm respects the time constraints

in both the two cross-validation approaches.

• Accuracy and relevance: In Table 4.13 performances of the TSGC algorithm are

presented following the metrics explained in Section 3.6 over the LOSO and

LOUO validation schema.

LOSO (P=9, dim=9) LOUO (P=7, dim=9)

Evaluation Suturing Needle passing Knot tying Suturing Needle passing Knot tying

Micro (%) 82.05 68.40 80.86 64.66 52.12 80.89

Macro± std (%) 80.75 ± 8.71 50.74 ± 23.13 76.46 ± 15.09 52.57 ± 17.42 39.24 ± 23.12 79.76 ± 12.61

Precision± std (%) 79.01 ± 17.89 66.35 ± 22.62 83.46 ± 11.71 65.60 ± 27.73 54.39 ± 25.55 81.53 ± 10.18

Table 4.13: Performances of the TSGC, considering the evaluation metrics defined before (Section

3.6).The reported values are expressed as percentages.

Considering the performances presented in Table 4.13 it is clear how the per-

formances of the TSGC algorithm decrease in classifying gestures belonging to

suturing and to needle passing trials, for the LOUO cross-validation schema.

The TSGC robustness in decoding sequences is also described as a percentage

unclassified sequences over the total number of trials in Table 4.14.

LOSO (P=9, dim=9) LOUO (P=7, dim=9)

Unclassified seq. 0.97% 1.94%

Table 4.14: Percentage of unclassified trials, for the particular set of parameters previously defined.

4.2.2.3 Comparisons

In Table 4.15, considering the micro average accuracy, performances of the TSGC

algorithm are compared with the ones obtained through a composite GMM-HMM

gesture classifier presented in [13] and the ones achieved by a MsM-CRF in [38].
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LOSO LOUO

MsM-CRF* GMM-HMM** TSGC MsM-CRF* GMM-HMM** TSGC

Suturing 82.1% 82.2% 82.0% 72.6% 74.0% 64.7%

Needle passing 76.8% 70.6% 68.4% 57.1% 64.1% 52.1%

Knot tying 81.1% 80.1% 80.9% 68.8% 72.5% 80.9%

Table 4.15: Comparison between the state of art gesture classification micro average accuracies.

Results from: MsM-CRF* [38], GMM-HMM** [13], and the proposed TSGC approach. The micro

average accuracies are expressed as percentages.

Considering micro accuracy results in Table 4.15 it is possible to see that, even if the

proposed TSGC algorithm reaches the state of art results over LOSO validation schema,

its performances considering the LOUO set up are inferior. However, it is necessary to

report that with respect to literature the TSGC performances are completely measured

in real time.

• Statistical analysis: It is possible to compare more in detail results achieved with

the proposed TSGC with the ones presented in [13] and referred to a composite

GMM-HMM model.

LOSO LOUO

Suturing Needle passing Knot tying Suturing Needle passing Knot tying

Macro p-value 6.80× 10−30 4.40× 10−30 6.10× 10−3 3.71× 10−9 2.70× 10−33 2.17× 10−32

Precision p-value 6.49× 10−15 2.00× 10−2 2.19× 10−5 1.30× 10−4 8.14× 10−12 3.66× 10−32

Table 4.16: H0 test results between the population achieved by using a GMM-HMM in [13] and the

one obtained with proposed TSGC approach.

The hypothesis H0: the population coming from GMM-HMM algorithm belongs

to the same distribution of the population achieved by using the TSGC algorithm

is tested over every kind of surgical procedure by using the macro average and

precision metrics. In particular, in Table 4.16 results of the p-value test are

shown. Considering the macro average measure as well as the precision over

every kind of task, for both LOSO and LOUO cross-validation settings, H0 is
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rejected.

In Appendix 7.4.2 the box plots representing the tested populations are shown.
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DISCUSSION

The final aim of this dissertation is to characterize in real time different surgical pro-

cedures in order to making them understandable for robots. To attack this problem

two different frameworks are presented: the first one, represented in Figure 4.1, tries

to directly accomplish real time gesture classification without any information about

which particular task is performed. The second one, represented in Figure 4.4, uses

the knowledge on the undergoing task, autonomously acquired, to address a real time

task-specific gesture classification.

In order to better describe and discuss the performances of the presented frame-

works, every algorithm composing them will be considered separately. Moreover, each

algorithm will be reviewed divided into sections, as previously done for Chapter 4.

• Parameters, every algorithm is optimized to work considering two different cross-

validation setups called LOSO and LOUO (see Section 3.6). These two setups

are optimized independently with respect to the variable P, which refers to the

number of samples concatenated together in every overlapped frame, and dim

that indicates the number of kinematic features considered. In particular, the

first variable P gives a measure about the temporal context incorporated into

features [12, 44], while dim defines the model complexity.

• Performances, are measured considering the computational time required by the
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algorithm to process one sample, this is a fundamental property of every algo-

rithm since they have to be applied in real time applications. Afterwards, by

using the metrics defined in Section 3.6 the algorithm is evaluated. It is impor-

tant to report that also the ability to recognize trials is considered and measured

as the percentage of unclassified sequences over the total number of trials.

• Comparisons, every algorithm will be finally compared with the state of art.

5.1 Generic gesture classifier

The final aim of the GGC is to accomplish a real time gesture classification over the

different surgical tasks presented in the JIGSAWS dataset. The algorithm works with-

out considering any information about the task that is under performance, thus, it

can be easily applied to real scenario in which surgeons change the surgical operation

continuously.

It is possible to discuss the results obtained with the GGC approach showed in

Section 4.1 considering the aforementioned division into sections.

• Parameters: it is possible to see from Figure 4.2 that the gesture classification

micro accuracy, consolidated considering the three surgical tasks does not change

that much as a function of P and dim. However, it seems that the slight change

in consolidated micro accuracy highlights the tendency of models in favouring

simple configurations (low number of features dim) with a high temporal content

(high P).

The necessity of having simple configurations is remarked also in Figure 4.3, where

it is clear that to maintain an high robustness of the model the dim parameter

must be maintained as low as possible.

• Performances: as mentioned before, considering that the final classification is

computed over 50% overlapped frames constituted by 2P + 1 samples, the choice

of P defines the available time span for real time gesture classifications through

Equation (4.1). It is clear from Table 4.1 that the GGC algorithm respects time
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constraints spending, for every real time classification, less than a quarter of the

total available time.

Less than 1% of the trials results unclassifiable, reporting a good reliability of

the algorithm (see Table 4.3).

Analysing Table 4.2 it is possible to see that the choice of the cross-validation

setup affects the gesture classification micro accuracy over the three surgical

tasks considered. In particular, the LOSO setup results in higher accuracies,

explicable considering that it is less sensitive to different surgical execution styles.

This depends on the fact that in every group of training just one session for every

surgeon is hidden from the algorithm, allowing it to know all the different surgical

styles. Considering macro average accuracy and precision, it is possible to state

that all these values are low and sparse underlining an high variance in detecting

positive rates for every class as well as in sensitivity.

• Comparisons: comparing the achieved gesture classification micro accuracies of

the GGC algorithm with the ones presented in [13] and in [38](see Table 4.4), it

is clear that the proposed algorithm is less effective: its accuracy is, in average,

10% lower than the state of art.

Considering the statistical analysis computed over the hypothesis H0: the popula-

tion coming from GMM-HMM [13] algorithm belongs to the same distribution of

the population achieved by using the GGC algorithm, for every task and both the

macro average and precision metrics, is rejected (p-values of the test reported in

Figure 4.5). Moreover, referring to box plots in Section 7.4.1 representing these

populations, it is clear that the performances are not only different but also lower.

After all these considerations it is possible to say that the algorithm is able to

accomplish online gesture classification over different surgical procedures with different

levels of micro average accuracy. Even if the real time performances are interesting

and not achieved in literature, the micro accuracy in classifying gestures reached by

the algorithm is far for the state of art. A possible explanation can be that without

any a priori assumption about the undergoing task, the classification into gestures can

be ambiguous.
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5.2 Task recognition and gesture classification

The framework presented in 4.4 aims to address a real time gesture classification thanks

to a simultaneous task recognition. This performance identification must be able to

address the undergoing surgical trial to a specific gesture classifier trained for that

particular task. Thus, to accomplish real time gesture classification two disjoint models

are designed: the first one to perform real time task recognition and the second one

for the final task-specific gesture classification.

5.2.1 Task recognition

The goal of the first algorithm in the framework showed in Figure 4.4 is to accomplish

real time task recognition with a high accuracy. Since the TRTR algorithm has to

address a further gesture classification, it has to recognize permanently the undergoing

task as soon as possible.

It is possible to discuss the results obtained with the TRTR algorithm showed in

Section 4.2.1 considering the aforementioned division into sections.

• Parameters: in Figure 4.5,4.6 and 4.7 appears that the TRTR algorithm works

better if the complexity of model is maintained low, with a low level of temporal

context incorporated in each time frame. More in detail, it is clear that even if

the percentage of samples that it is necessary to have to infer the task basically

does not change by varying P and dim (see Figure 4.6), the consolidated micro

accuracy as well as the percentage of unclassified sequences improve lowering the

two parameters.

This determines a first distinction from the aforementioned GGC algorithm,

which needs to incorporate lot of temporal context in order to discriminate be-

tween gestures.

• Performances: as it is shown in Table 4.6 the time constraints defined by the

choice of P are respected: the TRTR satisfies the real time threshold. The

algorithm is able to process one sample in less than 0.02 seconds and with the
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12% of the samples, in average, the whole trial is permanently recognised and

addressed for further gesture classifications.

Once again it is necessary to highlight the difference in performances between

the LOSO and the LOUO cross-validation settings over the two most challenging

surgical task: suturing and needle passing. Indeed, as it appears from Table 4.7,

classification micro accuracies decrease of about 10%. This can be explained by

considering that suturing as well as needle passing involve complex actions which

may vary a lot by using different surgical styles diversely evaluated by the two

validation setups.

Less than 2% of the trials results unclassifiable, reporting a good reliability of

the algorithm (see Table 4.9).

• Comparisons: comparing the task recognition micro accuracies achieved by the

TRTR and the ones presented in [5] computed through a traditional HMM and a

DTW-kNN algorithm, it is possible to define that the proposed TRTR approach

outperforms the state of art. Due to a lack of comparable data in literature, it

is not possible to accomplish a more detailed statistical analysis, however, the

tendency in classification accuracies seems to confirm this idea. The state of

art seems to be outperformed also considering the percentage of trial that it is

necessary to have to accomplish a permanent classification of surgical tasks. The

proposed TRTR approach requires less samples to understand the undergoing

task, turning out to be faster.

Considering the discussed results, it is possible to confirm that the presented TRTR

algorithm is able to perform real time task recognition with final classification micro

average accuracy that overpass the actual state of art. Moreover, it is necessary to

remark the quick response in permanently recognizing the undergoing task that will

define the delay with which the subsequent gesture classifier will start. Indeed with

about the 12% of samples of the undergoing trial, the user performance can be accu-

rately addressed to the correct TSGC for the final gesture classification.
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5.2.2 Task-specific gesture classification

The second system proposed in framework of Figure 4.4 aims to accomplish real time

gesture classification considering also task-related information. Three different clas-

sifiers are trained accordingly to the task analysed. During a surgical performance

anyone of them may activate according to the task identified accomplishing a real time

task-specific gesture classification.

It is possible to discuss the results obtained by TSGC algorithm showed in Section

4.2.1 considering the aforementioned division into sections.

• Parameters: by considering Figure 4.8 it clear that the choice of P and dim pa-

rameters does not strongly affect the consolidated classification micro accuracy.

However, as it is shown in Figure 4.9, the choice of model parameters is funda-

mental to optimize performances, making the model reliable. The model seems

to be optimized when it encapsulates a medium level of temporal context with a

low degree of complexity.

• Performances: considering the time performances of the TSGC algorithm pre-

sented in Table 4.12, it is possible to see that the choice of P does not compro-

mise the real time execution of the model, indeed, the time spent to classify each

sample respects widely the time constraints.

Once again, the reliability of the TSGC algorithm is proved in Table 4.14 in

which it is possible to see that less than the 2% of the total number of trials is

lost during gesture classification.

The evaluation metrics proposed in Section 3.6 are refereed to the TSGC algo-

rithm in Table 4.13. It is necessary to report a drop in the classification mi-

cro accuracy results for suturing and needle passing procedures in the LOUO

cross-validation set. As previously done it is possible to explain this decrease in

performances due to the lack of different styles in the LOUO setup. Considering

macro average and precision in classification it is possible to say that this values

are increased with respect to the ones presented in Table 4.2 for the GGC algo-

rithm. These values are not only increased, their variance is remarkably reduced
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defining a more robust algorithm.

• Comparisons: referring to the Table 4.15, it is possible to say that the TSGC

algorithm, especially for the LOSO setup, achieves the state of art micro average

accuracy performances in gesture classification. The inferior results achieved by

TSGC in suturing and needle passing for the LOUO setting, can be explained, by

the different content in LOUO setup of various styles that seem to be fundamental

to allow TSGC in detecting gestures in these complex procedures. The statistical

analysis accomplished to test H0: the population coming from GMM-HMM [13]

algorithm belongs to the same distribution of the population achieved by using the

TSGC algorithm with respect to macro average and precision metrics is presented

in Table 4.16. Here it is possible to notice that the p-values reject the hypothesis

with a considerable confidence. The performances of the TSGC, in terms of

macro average and precision, are definitely different from the state of art as

confirmed by the p-values, however, by considering also the box plots in Figure

7.13, 7.14,7.15 and 7.16 representing the tested populations, it is possible to say

that these performances are not necessarily worse.

Regarding the discussed results achieved by the TSGC algorithm, it si possible

to say that the aim of the model has been reached. The gesture classifier can work

in real time maintaining constant the initial delay required for task recognition. This

interesting time performances are still not achieved in literature, over the same dataset.

The TSGC reaches good classification micro accuracies, similar but not higher than

the state of art, denoting the need of future developments in this direction.

5.3 Final considerations

It is possible to compare the two frameworks proposed in this dissertation and repre-

sented in Figure 4.1 and 4.4.
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LOSO LOUO

GGC TRTR+TSGC GGC TRTR+TSGC

Suturing 79.3% 82.0% 63.5% 61.4%

Needle passing 56.0% 66.0% 43.3% 44.7%

Knot tying 73.5% 78.7% 66.1% 78.7%

Table 5.1: Classification micro accuracies achieved by the framework composed by the GGC an the

one composed by TRTR+TSGC.

It is possible to compare this two approaches analysing their final classification mi-

cro accuracies as summarized in Table 5.1. The final micro average accuracy of the

first framework is expressed as the final performance reached by the GGC algorithm,

while the classification micro accuracy reached by the second approach is computed

as the multiplication between the final micro accuracy reached by TRTR and the one

achieved by TSGC. As it is possible to see, the TRTR-TSGC framework (represented

in Figure 4.4) outperforms the GGC approach which tries to classify gestures without

any information about the undergoing task. Moreover, the TRTR-TSGC framework

outperforms the GGC one also in terms of macro average and precision, as it is possible

to see from the box plots in Section 7.5 representing the generated populations.

In the end we can consider the best presented framework as the one composed by

the TRTR and TSGC algorithms. This approach simultaneously provides the recog-

nition of any task performed by users and a precise characterization of its internal

gestures.
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CONCLUSIONS AND FUTURE

WORK

In this dissertation two possible frameworks are presented to implement simultaneous

task recognizer and gesture classifier based on composite Hidden Markov Models. In

particular, it has been showed that in order to characterize each movement of a surgical

task with a significant accuracy, it is necessary to model gestures and the relationship

lying within them. As discussed before, a possible way to increase gesture classification

performances can be addressing the classification using information related to a specific

undergoing task.

This thesis proposed a framework that, in two steps, allows a real time task recog-

nition which addresses an accurate segmentation and classification of gestures in per-

formed surgical operations. Both the steps are executed online, while the surgeon is

performing the operation. However, the two algorithms are still disjointed and they

need a manual switching to complete gesture classification (See Section 6.1 ).

The whole system achieves similar accuracies in gesture classification to the state of

art, but, in addition, it is able to generalize its classification to different tasks without

knowing a priori what the user is going to perform. Moreover, the entire process works

totally online allowing the implementation of further applications.
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6.1 Future Developments

Even if the main goal of the dissertation has been reached, many future developments

can be done to improve performances of the overall framework. In particular it is

possible to identify some limits limits that can be overpassed:

• The final aim of having simultaneous task recognition and gesture classification

has been treated with success by distinguishing two sub-problems: the online task

recognition and the subsequent online gesture classification. This distinction

leads to an important simplification of the problem and even if the final goal

has been achieved thanks to it, this assumption has led to have two disjointed

systems that need to communicate to have a final gesture classification. A further

improvement can be done integrating and connecting these two main algorithms,

allowing an automatic update of the final gesture classification in case of task

recognition errors or in case of changes in task (i.e. the surgeon goes form suturing

to knot tying in a continuous way).

• Future studies can done to improve the final classification accuracy of the TSGC

algorithm, to finally outperform the state of art.

• As previously explained, the inference time performances of these algorithms

are fundamental features to be considered in order to perform task recognition

and gesture classification in real time. This puts some limits on the systems

used to acquire data. A future work can be addressed to optimize the data

pre-processing phase as well as the subsequent Viterbi classification stages. In

other words, developments can be addressed to optimize and to improve the

time performances of the whole framework in order to be less restrictive in the

acquiring system choice.

• The presented model has been developed by considering the data provided by the

JIGSAWS. Even if this dataset furnishes motion data from 3 different surgical

tasks accomplished by 8 surgeons, it is too limited and fragmented to support

more robust analysis. This limitation in the dataset does not limit the presented
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framework, however a larger dataset could improve the accuracy allowing more

general conclusions.

• Due to limitations imposed by the dataset it was not possible testing any ma-

chine learning approach implementing Neural Networks (NN). NN algorithms

have proved to be very effective in gesture segmentation and classification: in

particular it would be interesting to implement Long-Shot Term Memory NN

(LSTM-NN) to compare final performances.

6.2 Possible applications

The proposed approach can be considered as a part of the so called machine learning

of human skills field. This field have provided a new approach in the application of

Robot-Assisted Minimally Invasive Surgery. The future possibility to have intelligent

robots able to learn and to understand surgeons in operation rooms defines new sce-

narios enhancing surgeons activity performances with a great advantage for patients

health.

It is possible to think different applications for such a new technology. In partic-

ular, a learning algorithm that allows robot to accomplish a real time recognition of

surgical tasks, with different level of granularity, can be fundamental in automating

surgical procedures and tools or, again, in evaluating surgeons to improve their training.

6.2.1 Automating surgical procedures and controls

Automating robotic surgical assistants is one of the main research fields in RAMIS. A

key-point that these studies share is the learning algorithm: in order to interact with

a surgeon, a robot should accurately understand what are the surgeons intentions. In-

deed, only in this way robots can properly predict the surgeon’s next movement helping

him in real time along surgical procedures. The proposed approach enables the real

time segmentation and the characterization of every single movement accomplished by
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surgeons on a different scale, providing the starting point for a proper interaction.

Many works address robots ability in understanding surgeons movements to au-

tomating elementary time-consuming surgical tasks or parts of them. In this way the

surgeons workload as well as surgical costs are notably reduced: all tedious and time

consuming basic operations can be autonomously executed by robots improving the

surgical outcome [6, 24].

Also the surgical environment can improve thanks to the use of intelligent tech-

nologies. Supporting tools as endoscopic cameras, monitors as well as surgical bed

or surgical instruments are increasing everyday their importance in hospital scenarios.

However, only by automatizing them using learning algorithms with different level of

granularity it is possible to define a synergistic environment.

6.2.2 Skill assessment

Nowadays, despite all the advantages in technology, the surgical training is still based

on subjective evaluation carried out by expert who observe trainees during surgical per-

formances and subsequently provide their judgement. Because of its subjective nature

this evaluation is limited in consistency and reliability. In addition, these procedures

are costly and not completely targeted to what trainees eventually would really need [5].

By using machine learning techniques applied to surgical robots, it is possible to

exploit the collected data to perform a more robust and accurate analysis of the surgi-

cal trials executed by trainee surgeons. Considering that, machine learning algorithms,

as the ones proposed here, are able to model surgical trials performed by specific users.

Once the trainee model is defined, it can be compared with one built on an expert to

have a valid and objective skill estimation [25].

Always comparing models, applications can be focused on detecting and identifying

movement not perfectly accomplished. Trainees can understand in real time where

they failed and, thanks to this identification a targeted training curricula can be ad-
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dressed in order to fill specific skill gaps.
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Chapter 7

APPENDIX

7.1 Acquisition system

The da Vinci Surgical System (dVSS) is a tele-robotic surgical platform released by Intuitive

Surgical to enable surgeons to perform Robot Assisted Minimally Invasive Surgery (RAMIS)

operations in different fields: from thoracic surgery to the urologic one. The dVSS has become

a gold standard in RAMIS, allowing a precise control during surgical operations thanks to

its high quality stereo viewer and its human robot interface (HRI) [17].

7.1.1 The robot hardware

The dVSS is a teleguided master-slave robot equipped with 3 robotic serial arms with 7-

degree-of-freedom each, provided by Intuitive Surgical. It is made up of two sub-parts: the

surgeon’s console and the patient side cart.

The master-side console includes: two Master Tool Manipulators (MTMs), used by surgeons

during performances, a High-Resolution Stereo Viewer (HRSV) displaying images from the

endoscopic camera allowing a 3D vision of the operation and foot pedals to switch modality

of work.

The patient-side robot is composed of three patient-side manipulators (PSMs) with 7 degree

of freedom each, considering also the interchangeable tools surgeons place inside the patient’s

body. An Endoscopic CCD-Camera Manipulator(ECM) records and sends images to the

stereo viewer (Figure 1.3) [8].
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7.1.2 da Vinci API

The research interface (da Vinci API) [7] makes the robot internal data exchange accessible for

further analysis, allowing real-time data sampling through Ethernet cable. The API interface

of the dVSS is used to retrieve the camera pose, video data, kinematic data from both MTMs

and PSMs and other noticeable system events. [9]. All these records are converted in a

readable format and stored into the JIGSAWS working set.

7.2 HMM: Baum-Welch algoritm for set o training

observations

If a set of training observations Or, 1 ≤ r ≤ R is used to tune the HMM, the iterative

re-estimation of transition probabilities in A is accomplished through

âij =

∑R
r=1

1
Pr

∑Tr−1
t=1 αri (t)aijbj(o

r
t+1)βrj (t+ 1)∑R

r=1
1
Pr

∑Tr
t=1 α

r
i (t)β

r
i (t)

(7.1)

in which 1 < i < N and 1 < j < N . Pr is defined as the total probability of the r-th

observation:

Pr = P (Or|λ) (7.2)

The transitions from the non-emitting start state are re-estimated by

â1j =
1

R

R∑
r=1

1

Pr
αrj(1)βrj (1), 1 < j < N (7.3)

while transitions of the emitting states up to the stop non-emitting exit state are computed

by

âiN =

∑R
r=1

1
Pr
αri (T )βri (T )∑R

r=1
1
Pr

∑Tr
t=1 α

r
i (t)β

r
i (t)

, 1 < i < N (7.4)

Lj(t), the likelihood of being in state j at time t is modified accordingly by considering d

the particular r-th observation. Thus, it become Equation (7.5) that can be efficiently used to

compute Equation (3.10) and Equation (3.11) in the overall tuning of the HMM parameters.

Lrj(t) =
1

Pr
αj(t)βj(t) (7.5)
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7.3 Standardization

In order to understand if the standardization of the kinematic variables is profitable to im-

prove performances of the presented algorithms, it is possible to study how it impacts on the

consolidated accuracy and on the unclassified sequences as function of P and dim parameters.

7.3.1 Generic gesture classifier

The standardization role is studied over LOSO and LOUO cross-validation sets.

In particular:

• LOSO

1) Overall consolidated accuracy

Figure 7.1: GGC consolidated accuracy performances over LOSO test set, as function of standard-

ization or not of the kinematic variables and P and dim parameters.

2)Unclassified sequences

Figure 7.2: Percentage of unclassified sequences by GGC over LOSO test set, as function of stan-

dardization or not of the kinematic variables and P and dim parameters.
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As it appears from Figure 7.1 and Figure 7.2, the approach with standardized features

improve the performances of the GGC algorithm both in terms of consolidated accuracy

and unclassified sequences.

• LOUO 1) Overall consolidated accuracy

Figure 7.3: GGC consolidated accuracy performances over LOUO test set, as function of standard-

ization or not of the kinematic variables and P and dim parameters.

2)Unclassified sequences

Figure 7.4: Percentage of unclassified sequences by GGC over LOUO test set, as function of stan-

dardization or not of the kinematic variables and P and dim parameters.

Also from the test represented in Figure 7.3 and 7.4 it appears clear that the use of

standardized features increases performances.

7.3.2 Task-specific gesture classifier

The Standardization role is studied over LOSO and LOUO cross-validation sets.

In particular:
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• LOSO

1) Overall consolidated accuracy

Figure 7.5: TSGC consolidated accuracy performances over LOSO test set, as function of standard-

ization or not of the kinematic variables and P and dim parameters.

2)Unclassified sequences

Figure 7.6: Percentage of unclassified sequences by TSGC over LOSO test set, as function of stan-

dardization or not of the kinematic variables and P and dim parameters.

As it is possible to see form Figure 7.5 and Figure 7.6, by adopting the standardiza-

tion of the kinematic variables in the pre-processing stage both consolidated accuracy

performances and percentages of unclassified sequences improve.

• LOUO

1) Overall consolidated accuracy
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Figure 7.7: TSGC consolidated accuracy performances over LOUO test set, as function of standard-

ization or not of the kinematic variables and P and dim parameters.

2)Unclassified sequences

Figure 7.8: Percentage of unclassified sequences by TSGC over LOUO test set, as function of

standardization or not of the kinematic variables and P and dim parameters.

As it is possible to see form Figure 7.7 and Figure 7.8, by adopting the standardiza-

tion of the kinematic variables in the pre-processing stage both consolidated accuracy

performances and percentages of unclassified sequences improve.

7.4 Literature comparisons

7.4.1 Generic gesture classifier

Considering both the cross-validation schema, performances of the GMM-HMM algorithm

proposed in [13] and the ones of the GGC model are compared in terms of macro average

accuracy and precision. The distances between the generated populations, represented in the

following figures, are studied and compared considering the p-value over the Hypothesis, H0:
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the population coming from GMM-HMM algorithm belongs to the same distribution of the

population achieved by using the GGC algorithm.

• LOSO set up

Figure 7.9: Population resulting from the use of GMM-HMM** algorithm [13] and from the proposed

GGC considering the macro average metrics.

In Figure 7.9 populations are generated from the two algorithm considering macro

average.

Figure 7.10: Population resulting from the use of GMM-HMM** algorithm [13] and from the

proposed GGC considering the precision metrics.

In Figure 7.10 populations are dependent on the precision metrics.

• LOUO set up
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Figure 7.11: Population resulting from the use of GMM-HMM** algorithm [13] and from the

proposed GGC considering the macro average metrics. Both these algorithms consider a LOUO

validation schema

In Figure 7.11 populations are generated from the two algorithms considering macro

average.

Figure 7.12: Population resulting from the use of GMM-HMM** algorithm [13] and from the

proposed GGC considering the precision metrics. Both these algorithms consider a LOUO validation

schema

In Figure 7.12 populations are dependent on the precision metrics.

7.4.2 Task-specific gesture classifier

By using the LOSO and the LOUO validation schema performances of the GMM-HMM al-

gorithm proposed in [13] and the ones of the TSGC model are compared in terms of macro
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average accuracy and precision. For every surgical task in the JIGSAWS dataset, each model

generate populations according to the particular metrics analysed.

• LOSO set up

Figure 7.13: Population resulting from the use of GMM-HMM** algorithm [13] and from the

proposed TSGC considering the macro average metrics. Both these algorithms consider a LOSO

validation schema

In Figure 7.13 populations are generated from the two algorithm considering macro

average.

Figure 7.14: Population resulting from the use of GMM-HMM** algorithm [13] and from the

proposed TSGC considering the precision metrics. Both these algorithms consider a LOSO validation

schema

In Figure 7.14 populations are dependent on the precision metrics.
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• LOUO set up

Figure 7.15: Population resulting from the use of GMM-HMM** algorithm [13] and from the

proposed TSGC considering the macro average metrics. Both these algorithms consider a LOUO

validation schema

In Figure 7.15 populations are generated from the two algorithm considering macro

average.

Figure 7.16: Population resulting from the use of GMM-HMM** algorithm [13] and from the

proposed TSGC considering the precision metrics. Both these algorithms consider a LOUO validation

schema

In Figure 7.16 populations are dependent on the precision metrics.
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7.5 Final considerations

It is possible to compare the two proposed approaches, the one composed by the GGC algo-

rithm and the one composed by the couple TRTR+TSGC in terms of generated populations

with respect to micro average accuracy and precision.

Figure 7.17: comparison between the population generated by GGC and by TRTR+TSGC, consid-

ering micro average

Figure 7.18: comparison between the population generated by GGC and by TRTR+TSGC, consid-

ering precision
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Figure 7.19: comparison between the population generated by GGC and by TRTR+TSGC, consid-

ering micro average

Figure 7.20: comparison between the population generated by GGC and by TRTR+TSGC, consid-

ering precision

As it appears in the figures above, the populations generated by the TRTR+TSGC frame-

work clearly overpass the ones due to GGC, denoting a clear superiority in terms of macro

average and precision.
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