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A B S T R A C T

Blind audio source separation aims at extracting a certain number
of acoustic source signals from a set of observation signals; the term
"blind" comes from the fact that in the separation process no (or very
little) information about the sources or the mixing system is available.
The interaction of the acoustic signals with the surrounding environ-
ment causes time delays and reverberations which involve long filter
lengths to be estimated in the time domain. Although the convolu-
tive mixtures can be separated efficiently by Frequency Domain In-
dependent Component Analysis (FDICA) algorithms, all ICA based
algorithms suffer from a permutation ambiguity, which for FDICA al-
gorithms is present at every frequency bin. To solve this problem, the
independent vector analysis (IVA), which employs a multivariate de-
pendency model to capture inter-frequency dependencies, has been
proposed.

In this thesis we focus on an extension of IVA, called Supervised
Independent Vector Analysis, in which the multidimensional source
model of IVA is extended by adding pilot components which are sta-
tistically dependent on the desired sources. These pilot component
signals act as a prior knowledge which enforces the natural gradi-
ent to converge in a limited solution space: thanks to this property,
we are able to perform Audio Source Extraction, i.e. separating and
extracting one particular desired audio source. We investigate the Su-
pervised IVA and the influence of the pilot components on the con-
vergence of the algorithm, starting by some simple oracle models for
the pilot components and, after assessing the improvement provided
to the IVA by adding the pilots, we implement a version in which a
Convolutional Neural Network (CNN) Localizer is used to detect the
Direction-of-Arrival (DOA) and to track the activity of the sources
so that the correspondent pilot component can be added to the basic
IVA. We name this algorithm Informed Independent Vector Analy-
sis (IIVA). Our model is simple and flexible: we are able to improve
the extraction of a speech signal which direction-of-arrival is approx-
imately known.

We simulate realistic scenarios to asses the performances of the pro-
posed method: the experimental results show that the convergence is
stable with respect to the IVA and the objective performances are in



line with those of an existing source extraction algorithm in the litera-
ture. We also show that the frequency components are separated and
included in the solution with high fidelity. Furthermore, we prove
that our algorithm is able to rapidly converge, allowing a real-time
implementation and thus it can be used for several real world appli-
cations.



E S T R AT T O

La separazione alla cieca di sorgenti audio mira a estrarre un certo nu-
mero di segnali sorgente da un insieme di segnali di osservazione; il
termine "alla cieca" è utilizzato perché nessuna (o poca) informazione
a riguardo delle sorgenti o del sistema di mescolamento è disponibile.
L’interazione del segnale sonoro con l’ambiente circostante causa ri-
tardi temporali e riverberazione che richiedono la stima nel dominio
temporale di filtri le cui dimensioni sono molto grandi. Nonostante le
miscelazioni convolutive possano essere separate efficientemente da
algoritmi di analisi delle componenti indipendenti (ICA) nel dominio
della frequenza, tutti gli algoritmi ICA soffrono della ambiguità delle
permutazioni delle soluzioni che nel caso di ICA nel dominio della
frequenza si presenta ad ogni banda di frequenze.

Per risolvere questo problema, è stata proposta l’analisi dei vet-
tori indipendenti (IVA) che utilizza un modello di dipendenza mul-
tivariata per catturare dipendenze inter-frequenziali. In questa tesi ci
concentriamo su un’estensione di IVA, chiamata IVA supervisionata
(SIVA), nella quale il modello multidimensionale delle sorgenti viene
esteso aggiungendo i cosiddetti componenti piloti che sono statistica-
mente dipendenti dalle sorgenti audio desiderate. I segnali dei piloti
attuano come conoscenza a priori e forzano il gradiente naturale a
convergere in uno spazio di soluzioni limitate: grazie a ciò, siamo
in grado di eseguire l’estrazione di sorgente, cioè estrarre una parti-
colare sorgente desiderata. Investighiamo SIVA e l’influenza dei pi-
loti sulla convergenza dell’algoritmo, iniziando da semplici modelli
oracolo e, verificato il miglioramento rispetto all’IVA basico, imple-
mentiamo una versione che chiamiamo analisi informata dei vettori
indipendenti (IIVA), in cui un localizzatore basato su rete neurale
convolutiva viene utilizzato per rilevare la direzione d’arrivo delle
sorgenti, tracciandone l’attività in modo che il pilota corrispondente
possa essere aggiunto al basico IVA. Il nostro modello è semplice e
flessibile: siamo in grado di migliorare l’estrazione di un segnale vo-
cale la cui direzione di arrivo è approssimativamente nota.

Nel nostro lavoro, simuliamo scenari realistici per verificare le presta-
zioni del metodo proposto: i risultati sperimentali mostrano che la
convergenza è stabile rispetto a quella dell’algoritmo basico e le per-
formance oggettive sono in linea con quelle di un altro algoritmo



presente in letteratura. Mostriamo anche che le componenti frequen-
ziali vengono separate ed incluse nella soluzione con alta fedeltà. In-
oltre l’algoritmo è in grado di convergere rapidamente, permettendo
un’implementazione in tempo reale e può quindi essere utilizzato per
diverse applicazioni nel mondo reale.
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I N T R O D U C T I O N

Speech signals in real-world are subject to what in the literature is
referred to as distortion. A distortion is a modification (usually un-
wanted) of the waveform of a signal (in our case an audio signal) due
to the interaction of the propagating wave with real-world elements:
reflections on walls and objects creates reverberation, other sound
sources create interferences and environmental sounds (e.g. wind,
traffic due to cars) generate noise. Due to the enlisted distortions,
microphone signals need to be cleaned before transmission, storage
or reproduction.
The term Speech Enhancement is used to indicate the set of tech-
niques and algorithms used to improve the intelligibility and the per-
ception of speech signals by making use of signal processing tools.
For example, in a phone call it is necessary to enhance the voice of
the desired speaker source over other interfering sources and over
the noises around him prior the transmission to the listener at the
other end. In a video-conference scenario, the cancellation of echo-
feedback due to the loudspeakers emitting the voice captured at the
other side of the communication system, the elimination of the rever-
beration of the target source due to the walls and in general a target
speech enhancement are crucial steps for a correct communication.
These methods need to be efficient and robust. If we think about an
astronaut which needs to communicate with the base when exploring
an unknown space or to formula-1 drivers which may need to report
a failure or a problem they are facing to their team, then it is easy
to understand how important and critical is the research and the im-
provement of speech enhancement techniques.
With the advent of artificial-intelligent systems which aim to help
users by taking as input commands given through their voice, speech
enhancement is a required pre-processing step for automatic speech
recognition. There are two common approaches to face this problem:
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one is the use of microphone array processing techniques (Beamform-
ing or Spatial Filtering) and the other is the use of Blind Source Separa-
tion techniques.

Beamforming techniques, such as [37], [39], exploit the combination
of elements in an antenna array in such a way that signals at particu-
lar angles are enhanced by constructive interference while others are
canceled by destructive interference. Beamformers can be classified in
two main groups: conventional (or fixed) and adaptive. Conventional
beamformers use a fixed set of weightings and time-delays to com-
bine the signals from the sensors in the array, primarily using only in-
formation about the location of the sensors in space and the DOA of
the desired source(s). In contrast, adaptive beamforming techniques
generally exploit some properties, generally Second Order Statistics,
of the signals received by the array, typically to improve rejection of
unwanted signals from other DOAs.

Blind Source Separation is the separation of a set of source signals
from a set of mixed signals (to which we refer as mixture); the term
blind is used because the sources are determined without the use
of any (or very little) prior knowledge of the data structure and the
mixing process, through the application of (typically) an internal mea-
sure. In this thesis we focus on blind audio source separation, i.e. the
separation of acoustic source signals. This problem is in general un-
derdetermined (there are more sources than sensors) but useful solu-
tions can be derived under a variety of conditions: for example, some
BSS methods seek to narrow the set of possible solutions minimizing
the risk of excluding the desired solution. Famous and widely pur-
sued approaches are given by Principal Component Analysis [26] and
Independent Component Analysis [20] where one seeks source sig-
nals characterized by minimal correlation or maximal independence
in a probabilistic or information-theoretic sense. A second approach
is given by Non-negative Matrix Factorization (NMF) [31] in which
structural constraints are imposed on the source signals: a common
theme in this approach is to impose some kind of low-complexity
constraint on the signal, such as sparsity, in some basis for the signal
space. This approach can be particularly effective if one requires not
the whole signal, but merely its most salient features.

In this thesis we focus on BSS techniques, in particular on the In-
dependent Vector Analysis proposed by Kim et al. [30] in which it is as-
sumed, similarly to ICA (IVA can be seen as a generalization of ICA),
that the "subcomponents" in a mixture are non-Gaussian signals and
that they are statistically independent from each other. The model
proposed in IVA makes possible to avoid the indeterminacy of per-
mutation inherent to the ICA algorithms which should be corrected
to obtain a proper separation of the signal in the time domain. In the
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IVA formulation, the permutation problem of the ICA solutions over
different frequency bins, also known as the local permutation prob-
lem, given by the Frequency Domain ICA (FDICA) [38] is completely
avoided by modeling the sources probability distribution functions as
multivariate super-Gaussian distribution [30] and the algorithm.

IVA has captured the attention of many researchers for the above
mentioned characteristic and has been investigated and extended to
optimize its convergence properties. Some of the most interesting ex-
tensions of the algorithm propose to declare a cost function using
an auxiliary-function technique [40] which is free from step-size pa-
rameter tuning, or to add geometrical constrains to the standard IVA
algorithm [27] so that the desired speech signal is always delivered
at the output of the corresponding separation filter. We focus our
work on the investigation of an interesting extension, called Super-
vised IVA [34], which extend the multidimensional source model of
IVA by adding the so called pilot components which are statistically
dependent on the target and/or the noise sources. These pilot com-
ponent signals act as a prior knowledge which enforces the natural
gradient to converge in a limited solution space, without imposing
any explicit constraint to the demixing system. Since the pilots need
to be one for each of the sources to be separated, we are able to per-
form Source Extraction - the difference between Source Extraction
and Source Separation is explained in the next section - by focusing
on the pilot component of the desired source. In chapter 4 we pro-
posed different models for the pilot components and the activation
procedure of these pilots. To validate the SIVA [34], we decided at
first to develop an oracle version of the algorithm in which the acti-
vation of the pilot is decided by evaluating the energy content of the
desired clean source signal at a certain time-frame. We investigated
some simple oracle models for the pilot components by adding infor-
mation coming from the noiseless desired signal. Once assessed the
boost that the pilots provide to the standard IVA, we implemented
a version, which we named Informed Independent Vector Analysis,
in which a Convolutional Neural Network (CNN) Localizer [17] was
used to detect the Direction-of-Arrival (DOA) of the sources at a cer-
tain time frame n so that if the DOA of the source is detected then the
source is considered as active and the correspondent pilot component
would influence the basic IVA. Our model is simple and flexible: we
are able to improve the extraction of a speech signal which direction-
of-arrival is approximately known and the only needed parameter is
the Region-of-interest of the desired source in terms of angular posi-
tion with respect to the set of sensors used.
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(a) Blind Source Separation

(b) Blind Source Extraction

Figure 1.1: (a) shows a schema representing a typical BSS structure while
(b) represents a typical BSE structure. In both diagrams pink is
used to mark the sources to be estimated: the main difference
between BSS and BSE is the number of outputs at the end of the
processing chain.

1.1 source separation vs source extraction

Blind source separation (BSS) is a major area of research in signal
processing with a vast literature regarding various areas, including
wireless communication, biomedical engineering, image processing
and also acoustic signal processing which is the area in which we
focus on.

In BSS, given a set of combinations of a certain number of source
signals (mixture), the objective is that of separating and reconstruct-
ing the source signals which compose the mixture. The separated
signals are approximations of the original source signals. The term
blind comes from the fact that the source separation process is ac-
complished without the use of any (or very little) prior knowledge
about the source signals and/or the mixing process. One particular
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application of BSS in audio is to extract a desired audio source from
mixtures involving noise, background or unwanted sources.

Compared to BSS, the objective of blind source extraction (BSE)
is that of extracting only one of the sources, to which we refer to
as desired source, among the sources originating the mixture. The
main difference between BSS and BSE is in the number of outputs
of the processing chains: in the case of BSS the number of outputs is
equal to the number of sources which compose the observed mixture
signals while in BSE the output is usually one or anyway less than
the number of source signals composing the mixture. In Fig. 1.1 we
show the difference between a BSS structure (Top) and a BSE structure
(Bottom) in which the desired source is only one of the source signals.

Since in BSE the aim is that of recovering only a single source from
the observation set, this leads to reduced computational complexity
and more flexibility compared to BSS. This is useful in many practi-
cal applications in which we desire to extract only one precise source
such as in mobile and, in particular, in hands-free communication
systems where the background noises may in fact be stronger, even
much stronger sometimes, than the desired signal and furthermore
composed by several signals to which we are not interested a.k.a. un-
wanted sources, e. g. motor noise, other passenger voices, environ-
mental sounds, etc.

1.2 outline

In Chapter 2 we provide an overview of the main theoretical back-
ground on which our work is based. First we describe the Blind
Source Separation problem, starting from the mixture models used
for the formal problem formulation, then we briefly describe the sta-
tistical properties on which most of the BSS algorithm use to perform
the separation. In this chapter, we also shortly describe the Indepen-
dent Component Analysis (ICA), which is a special case of BSS, which
provides the basis for the development of the IVA, and we discuss the
main limitations of the algorithms based on ICA which motivates the
extension to the IVA.

In Chapter 3 we introduce the concept of Independent Vector Anal-
ysis with a formal mathematical description and explanation. In this
chapter we describe the difference and novelty of IVA with respect to
ICA, describing the advantages of using a multi-variate distribution
to model the source priors. We also explain the gradient optimization
used to minimize the multi-variate cost function and we describe the
issues of the standard IVA. Furthermore, we describe some interest-
ing extensions [40], [27], [34], of the IVA which aim to solve some of



6 introduction

the open issues in IVA and provide the basis and motivation for the
method proposed in this thesis.

In Chapter 4 we describe the proposed approach, starting from the
early stages of the development, by using some prior information
about the sources to be estimated, to arrive to the version proposed
in this thesis. In this chapter we also describe the multi-channel CNN
localizer and how we used it in our work, and at the end of the
chapter we propose some models for the pilots components.

In Chapter 5 we describe the settings of the experiments and the
performance criteria that we use. We start the experiments by com-
paring the early oracle versions of the proposed methods with the
CNN-based version. Once established the effectiveness of the CNN-
based version, we investigate the influence of the parameters on the
performances of the proposed method and we finally compare the
algorithm with the CIVA [27].

In Chapter 6 we draw our conclusions based on the results obtained,
and we discuss some possible future developments and applications.
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B A C K G R O U N D

2.1 blind source separation

Consider a situation in which there are a certain number of signals
emitted by physical elements or sources. These sources might be
different areas of the brain generating electric signals, devices emit-
ting radio-waves or people speaking in a room producing acoustic
(speech) signals. Assume the latter case, i.e. the acoustic case, and as-
sume there are a certain number of sensors or receivers: the sensors
are placed in different spatial locations so that each sensor observes
a mixture of the original source signals with some different weights
due to the different propagation path of the acoustic waves travel-
ing from the sources to the receivers. Given a set of mixed signals
received by the sensors, to which we refer to as mixture, we would
like to retrieve and separate each of the sources which generates the
mixture signals. This problem is known as Blind Source Separation:
the term blind comes from the fact that the sources are determined
without the use of any (or very little) prior knowledge of the source
signals and the mixing process.

The BSS problem, in real world applications, is generally under-
determined, i. e. there are more sources than sensors, but useful solu-
tions can be derived under a variety of conditions: methods for BSS
generally seek to narrow the set of possible solutions by minimizing
the risk of excluding the desired ones. The problem of source sep-
aration in the auditory domain has received a lot of attention and
numerous approaches have been developed.

Famous and widely pursued approaches are given by Principal
Component Analysis (PCA) [26] and Independent Component Anal-
ysis (ICA) [20] where one seeks source signals characterized by min-
imal correlation or maximal independence in a probabilistic or infor-
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Figure 2.1: A representation of the cocktail party problem: L people in a
room speak at the same time and, given the M observations of
the superposition of their voices, the objective is that of separat-
ing the sources and hear them individually.

mation theoretic sense. Another approach is given by Non-negative
Matrix Factorization (NMF) [31] in which structural constraints are
imposed on the source signals: generally the approach is to impose
some constraint on the signal, such as sparsity, so that the complexity
of the solution space is reduced. NMF can be described as a group
of algorithms a matrix V is factorized into (usually) two matrices W
and H, with the property that all three matrices have no negative
elements: this non-negativity makes the resulting matrices easier to
inspect.

In this thesis we focus on ICA, in particular to a generalization
named Independent Vector Analysis [30] which is discussed in the fol-
lowing sections.

cocktail party

To give a clear example of a task to be solved in the BSS scenario,
consider the famous Cocktail party problem defined by Cherry [18].
Imagine being at a cocktail party where a number of people is talking
simultaneously inside a room and you try to follow one conversation:
for the human brain it is an easy task to recognize the various sources
and to focus on a specific one, filtering the unwanted sources, but this
is a really challenging problem in digital signal processing.

To better describe the scenario in terms of digital signal process-
ing, we need to better define the environment. Let us assume that
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there are L sources and M microphones recording the surrounding
scenario: each microphone catches a superposition of the L sources
as shown in fig Fig. 2.1. The problem is to try to separate the sources
and properly hear them individually: the idea is either to identify the
mixing matrix which describes how the different conversations got
mixed at each different microphone given just a set of observations
(mixture of signals) in order to reconstruct the source signals or to
directly estimate the de-mixing matrix which gives us the separated
sources as output. Unless some assumptions are made, this is an ill-
posed problem.

The most common assumption made to solve the problem is to con-
sider that the source signals are statistically independent, i. e. know-
ing the value of one of the sources does not give any information
about another. The methods which rely on this assumption are re-
ferred to as Independent Component Analysis (ICA): these are statistical
techniques which aim to decompose a complex data set into indepen-
dent sub sets. It can be shown that under some reasonable conditions,
if the ICA assumption holds, then the source signals can be recovered
up to permutation and scaling. The cocktail party problem has been
deeply investigated since 80’s and it is still a hot topic in the research
community.

2.1.1 Mixture models

Given the set of sources signals at the discrete time t, a mixture of the
L source signals given by s(t) = [s1(t), s2(t), · · · , sL(t)]T are captured
by an array of M microphones. The captured signals are referred to as
observations and they are indicated with x(t) = [x1(t), x2(t), · · · , xM(t)]T .

In a reverberant environment, source signals are filtered. The sen-
sors used to capture the signal add a noisy component v(t) to the
observed signals. The ith observation signal xi(t) at time t is given by

xi(t) =

L∑
j=1

T−1∑
τ=0

hij(τ)sj(t− τ) + vi(t), (2.1)

where hij(t) is a time-domain transfer function from the jth source
to the ith receiver, which has a length of T samples, sj(t) is the jth
source signal at time t, and L is the number of sources. The coefficients
hij(τ) are usually a function of time because they might be subject
to variations over time; however, for simplicity, the mixing model is
frequently assumed to be stationary. Theoretically the filters may have
infinite length and they could be implemented using Infinite Impulse
Response (IIR) filters, but in practice they can be modeled with Finite
Impulse Response (FIR) filters, simply considering T <∞.
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Figure 2.2: The typical structure of a determined Blind Source Separation
problem (L=M).

Equation (2.1) can be written in a more compact form using the
matrix notation:

xi(t) =

T−1∑
τ=0

Hτsj(t− τ) + vi(t). (2.2)

where Hτ represents the M×L matrix containing the FIR polynomial
coefficients at time τ. For simplicity of notation, in the following we
consider the observation signals as stationary (and this is acceptable
for short-time intervals) and noise-free: Nevertheless, it is important
to notice that, in any real world applications, noise is always present
due to the electronic components of the sensors.

instantaneous source separation

Assuming an instantaneous mix of the signals, e.g. the signals which
are captured by the sensors arrive at the same time without being fil-
tered, then it is possible to write (2.2) as

x(t) = Hs(t), (2.3)

where H represents the M× L matrix containing the mixing coeffi-
cients. The objective is to find an estimate of the matrix H, which is
considered a stable and stationary system, so that we can compute its
inverse (or pseudo-inverse in the case of under-determined or over-
determined systems) G, also known as the demixing matrix, to obtain,
at the output y(t) = [y1(t), · · · , yN(t)]T of our processing chain, an
estimation of the sources. In Fig. 2.2 is illustrated a typical structure
of a determined system. The output signal y(t) is the reconstructed
source signal ŝ(t), so that

y(t) = ŝ(t) = Gx(t) = GHs(t). (2.4)
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Assuming that a matrix G exists such that GH = I, in the case in
which we perfectly succeeded on the estimation of the mixing matrix,
we would have that the sources are perfectly reconstructed, i. e. ŝ(t) =
y(t) = s(t).

This is an ideal result which is not feasible due to different causes,
the main ones are the following:

• the noise introduced by the sensors and other environmental
sounds;

• the delays due to the finite speed propagation of the sound in
the air (the instantaneous model is not valid in most of real
world applications);

• the reverberation due to the reflections of the sound waves;

• the length of the FIR filters used to model the mixing channel
which can have more than 2000 taps, leading to reduced effi-
ciency;

• the fact that we may try to estimate more sources than the num-
ber of sensors we are using, leading to an under-determined
system.

Thus, we can only try to achieve an approximated solution, so that
ŝ(t) = y(t) ≈ s(t).

The instantaneous mixture has been investigated intensively and
various algorithms, e. g. the natural gradient based algorithm [5], the
decorrelation-based BSS [19] among others, have been developed to
deal with it.

convolutive source separation

In many real-world applications the sources are said to be convo-
lutively mixed and this is also the case in acoustics. In such systems,
the mixtures are weighted and delayed, and each source contributes
to the sum with multiple delays corresponding to the multiple paths
by which an acoustic signal propagates to a microphone.

The convolutive mixing process defined in (2.1) can be simplified
by transforming the mixture signals into the frequency domain. In
fact, in the frequency domain, the convolution becomes a simple mul-
tiplication for each frequency, so that we can rewrite the convolutive
mixing process as

X(ωk) = H(ωk)S(ωk), (2.5)

where at each frequency sampleωk = 2πk
NT , H(ωk) is a complexMxN

matrix, X(ωk) is a complex Mx1 vector while S(ωk) is a complex
Nx1 vector. To map the signal into the frequency domain the Discrete
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Fourier Transform (DFT) is usually used, using very efficient algo-
rithms to implement it as the Fast Fourier Transform (FFT); the signal
is typically windowed, i. e. the DFT is computed using a time interval
of length T resulting in

X(ωk, t) =
T−1∑
τ=0

w(τ)x(t+ τ)e−iωkτ/T , (2.6)

in which the window function w(τ) is chosen to minimize the overlap
between different frequency bands.

2.1.2 Statistical properties

BSS algorithms are based on assumptions on the sources and the mix-
ing system: in general, the sources are assumed to be independent or
at least uncorrelated, while the mixing system is frequently assumed
to be linear and time invariant. In convolutive separation another as-
sumption that is common is that the receivers captureM independent
linearly mixed versions of the sources: this means that the origins of
the sources are located in different positions; this is known as spatial
diversity assumption.

The independence assumption can be simply stated for two ran-
dom vectors x and y: if knowing x doesn’t give any information on y
then we can say that they are mutually independent. More precisely,
we can use the Probability Density Function (PDF) of the random
variables to define the statistical independence concept: x and y are
statistically independent if and only if their joint probability density
can be decomposed into the product of their individual marginal den-
sities, i. e.

px,y(x, y) = px(x)py(y), (2.7)

where px(x) and py(y) are the PDFs of x and y respectively.
The BSS methods which exploit the statistical properties of the

sources can be divided in two groups depending on the separation
criteria used, which can either be Second-Order-Statistics (SOS) as in
[9, 14] or Higher-Order-Statistics (HOS) [15, 21].

moments

A probability distribution can be characterized by its moments: these
are statistical parameters used to measure distributions and they are
mathematically equivalent to moments in physics, if the probability
density function is interpreted as a mass density function.
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Given the probability density function (pdf ) px(x), the r-th order
raw moment is given by its expected value about zero

mx,r = E[X
r] =

∫
xrpx(x)dx. (2.8)

The moment of order zero is always 1 while the first order moment
m1 represents the mean value µx of the distribution

mx,1 = µx = E[X] =

∫
x px(x)dx. (2.9)

Higher-order moments can be more easily interpreted if they are re-
ferred to the mean value, so we need to introduce the central moments
of a distribution, which are the expected values of the distribution
about their mean; the r-th order central moment is defined as

µx,r = E[(X− µx)
r] =

∫
(x− µx)

rpx(x)dx. (2.10)

Moments can be used to determine the characteristic of a set of data,
namely to describe their generating stochastic process. Within the
many BSS algorithms, extensive use of SOS (variance) [9, 14] and HOS
(in particular the 4-th order moment known as the Kurtosis) [15, 21] has
been made since they are both useful to determine whether a distribu-
tion is a Gaussian or not. The fact that we are interested in evaluating
the Gaussianity of a distribution is justified by the assumptions made
on the source signals which is better explained in section 2.2.

second-order statistics

The second-order central moment of a random variable X is the
variance of that random variable:

µx,2 = Var(X) = σ2x = E
[
(X− µx)

2
]
, (2.11)

where σx is the standard deviation of the random variable x. Given
two random processes X and Y we can extend the concept of variance
to the concept of covariance.

The covariance between two random variables is given as

cov(X, Y) = E
[
(X− µx)

2(Y − µy)
2
]

(2.12)

For two vectors x̄ and ȳ, each composed of m random samples com-
ing from two distributions, we can define the covariance matrix

Σxy = cov(x̄, ȳ), (2.13)

and it gives a measure of how two random variables will change
together. By looking at the covariance matrix of we can understand
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whether there is correlation between two (or more) variables. Some
BSS techniques are based on SOS by requiring uncorrelated sources
but it is important to notice that if two variables are uncorrelated it
does not necessarily mean that they are independent: independence
implies uncorrelatedness while the vice-versa is not true. This means
that, by their-selves, SOS are not sufficient for separation [23]. The
advantage of SOS is that they are less sensitive to outliers and noise
hence less data is required for their estimation.

higher-order statistics

High-order moments have been successfully used for assessing in-
dependence in the data: one of the ways of expressing independence
is that all the cross-moments between the sources are zero; however,
these parameters are not easy to understand and there is a lot of con-
fusion on their meaning and interpretation. As already mentioned,
the kurtosis is particularly useful and lot of different definitions can
be found on Internet and on textbooks, most of them claiming that
kurtosis represents the "peakedness" of a distribution.

Dr. Westfall published in [42] several arguments (and proofs) ad-
dressing why kurtosis cannot be interpreted as a measure of peaked-
ness: even if there is correlation between peakedness and kurtosis,
this relationship is not a direct one. Dr. Wheeler defines kurtosis in
[43] as a parameter that is a measure of the combined weight of the
tails relative to the rest of the distribution. Kurtosis is about the tails
of the distribution (and not the peakedness or flatness): it is correctly
interpreted as a measure of the tail-heaviness of the distribution.

The kurtosis is the fourth standardized moment, defined as

µ4
σ4

= Kurt[X] = E

[(
X− µx
σ

)4]
, (2.14)

and it is usually measured in relationship with the kurtosis of the
normal distribution, following Pearson measure of kurtosis, so that it
becomes

E

[(
X− µx
σ

)4]
− 3 , (2.15)

where the constant number 3 is the kurtosis of normal distributions.
Following Pearson’s convention, when the kurtosis is close to zero
then a normal distribution is often assumed: these are called mesokur-
tic distributions. If the kurtosis is less than zero, then the distribution
has light tails and is called a platykurtic distribution. If the kurto-
sis is greater than zero, then the distribution has heavier tails and is
called a leptokurtic distribution. We can see in Fig. 2.3 a comparison
between a leptokurtic, a mesokurtic and a platykurtic distribution.
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Figure 2.3: Comparison of the shape of a leptokurtic distribution (dashed
black line), mesokurtic distribution (solid red line) and a
platykurtic distribution (dotted blue line).

2.2 independent component analysis

A special case of BSS which has been extensively investigated and
successfully used is the so called "independent component analysis"
(ICA): this is a computational method which aims to separate a mul-
tivariate signal into several independent subcomponents which are
non-Gaussian. The main assumption of this set of techniques is that
the subcomponents are non-Gaussian signals and that they are statis-
tically independent from each other [25]. A common example is given
by sounds: a sound, in general, can be represented as a signal which
is the composition of the superposition of several source signals. The
question then is whether it is possible to separate these contributing
sources from the observed total signal.

Conventional ICA algorithms are usable when the number of sources
and the number of observations are the same: if L sources are present,
at least M = L observations (e.g. microphones) are needed to recover
the original signals. Cases of overdetermined (L < M) and under-
determined (L > M) ICA algorithms have also been attempted and
investigated exploiting some assumptions, for example sparseness in
data.

The ICA separation of mixed signals delivers very good results
whenever the assumptions are satisfied; we can enlist two important
assumptions and three effects of mixing source signals.

• The two assumptions are:

1. the source signals are independent of each other;

2. the values in each source signal have non-Gaussian distribu-
tions.

• The three effects of mixing source signals:
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1. Dependence: even if per assumption 1 the source signals are
independent, their signal mixtures are not and this is due
to the fact that the mixtures share the same source signals.

2. Normality: according to the Central Limit Theorem, the sum
of independent random variables (with finite variance) tends
towards a Gaussian distribution. In other words, the sum
of two or more independent random variables usually has
a distribution which is closer to a Gaussian than any of the
two originating distributions.

3. Complexity: The temporal complexity of a mixture signal is
greater than that of its originating source signals.

These principles form the basic formulation of ICA. Thus, if the ex-
tracted signals are independent or have non-Gaussian distributions
or have low complexity then they must be source signals.

The independent components are found by maximizing the sta-
tistical independence of the estimated components: it is possible to
choose one of many ways to measure the independence and this
choice influences the development and the form of the ICA algorithm.
The two most common used definitions of independence for ICA are:

• minimization of mutual information (MMI);

• maximization of non-Gaussianity.

The MMI family uses measures like the Kullback-Leibler Divergence
and maximum entropy while the maximization of non-Gaussianity
family, motivated by the central limit theorem, makes use of kurtosis
and negentropy.

Typical algorithms use some preprocessing steps to simplify and re-
duce the complexity of the problem such as trend removal (to create
a zero mean signal), whitening (with the eigenvalue decomposition),
and dimensionality reduction. Whitening ensures that all dimensions
are treated equally before the algorithm is applied. Well-known algo-
rithms for ICA include Infomax [8], FastICA [24], and JADE [16].

The ICA formulation is generally addressed in the time-domain or
in the frequency-domain; in the following paragraphs we briefly re-
sume the differences within these two approaches. In general, both in
the time and frequency versions, ICA cannot identify the actual num-
ber of source signals, nor the proper scaling (including sign) neither
the proper permutations of the source signals. These problems need
to be carefully addressed in order to have a proper reconstruction of
the source signals.
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2.2.1 Ambiguities of ICA

In the ICA model in (2.3), it is easy to see that the following ambigui-
ties (also known as indeterminacies) hold:

1. Permutation ambiguity: We cannot determine the order of the in-
dependent components. Even if we permute the rows of G, it
is still an ICA solution. We can characterize the permutation
ambiguity using a permutation matrix P so that

G = PH-1. (2.16)

This means that the solutions found are totally negligent with
respect to the order of the sources since we only seek for inde-
pendence across the generating data sets.

2. Scaling ambiguity: given a non-singular diagonal matrix D, if
G = H-1 is a valid separator, i. e. each of the source signals ap-
pears at an output terminal of the separator, then it still remains
a valid separator no matter the linear transformation given by
D so that

G = DH-1 (2.17)

is also a valid separator. This means that we cannot determine
if the solution has a correct scaling, i. e. even if we succeed in
separating the sources, they might be multiplied by different
unknown scalars. This problem has found several solutions, a
famous one given by Matsuoka in [33] that is shortly described
in the next section.

BSS is considered to be successful if the output y(n) is at most a
permuted and filtered version of the signal sources s(n), in which
case G is a product of a permutation matrix P and a diagonal matrix
D:

G = PDH-1. (2.18)

For ease of understanding, we can see a representation of the effect
of the permutation ambiguity in Fig. 2.4(a) and the scaling ambiguity
in Fig. 2.4(b): the separation is successful but the order of the sepa-
rated sources is different from the order of the original sources (per-
mutation ambiguity) and each of the separated sources is multiplied
by a different scalar which is not known a priori (scaling ambiguity).

A two group classification of ICA algorithms can be based on the
domain in which they work; Time-Domain ICA (TDICA) in which the
inverse system of the mixing filter is performed in the time domain
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(a) Permutation Ambiguity

(b) Scaling Ambiguity

Figure 2.4: The sources are properly separated but each source is multiplied
by a random scalar which is unknown a priori.

and the Frequency-Domain ICA (FDICA) in which the operation of
inversion is done in the frequency domain. A brief overview is given
in the following sections.

2.2.1.1 Time Domain ICA

The first ICA algorithms as InfoMax [7], have been developed in the
time-domain for instantaneous mixtures. The problems arising in this
formulation are that in most of the real-world applications, the obser-
vation signals are noisy and filtered because of the interaction with
the surrounding environment.

In TDICA the inverse filter system is performed using the full-band
observed signals and this can be an advantage since with the full-
band speech signals the independence assumption of sources usually
holds. Nevertheless, TDICA has some severe computational problems
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due to the high complexity of the iterative rules for the FIR-filter esti-
mation and to the degradation of the convergence when dealing with
reverberant environments. TDICA algorithms are efficient only in the
case of mixtures with a short-tap FIR filter, i. e. less than 100 taps but,
because of the above mentioned problems, they fail to separate source
signals under real acoustic environments.

2.2.1.2 Frequency Domain ICA

Some limitations of the ICA can be overcome by the use of the FDICA:
Fourier transform techniques are useful in dealing with convolutive
mixtures since convolutions in the time domain become products be-
tween Fourier transforms in the frequency domain. Applying Fourier
transform to the data does not change the mixing matrix since this op-
eration is a linear one. It is possible to use standard ICA algorithms
in the Fourier domain, taking the STFT [2, 3, 1] of the data, instead
of the global transform. This means that the Fourier transform is ap-
plied separately to each data window and the ICA algorithms can
run on each frequency bin, giving the separation per each frequency
band. This allow the complexity of the filter and the convergence
speed to be much reduced but a major problem arises: the mixing
matrix is now a function of the angular frequency while in the stan-
dard ICA/BSS problem it is constant. In fact, the problem with the
FDICA approach is that of the indeterminacy of permutation and
scale: since we run the ICA for every discrete frequency bin [k], the
indeterminacies are usually different in each frequency interval so we
now have that

G[k] = P[k]D[k]H-1[k]. (2.19)

This problem is now magnified compared to the one we had in the
TDICA since to reconstruct a source signal in the time domain, we
need all its frequency components in the correct order. If we would
sum the separated components given by the application of the ICA to
each frequency bin to reconstruct the sources, we would not know to
which source the separated component belongs to, so that the result
would be an unknown signal which would be composed of frequency
components coming from different signal sources as represented in
Fig. 2.5.

Thus, several approaches for choosing which source signals in dif-
ferent frequency intervals belong together have been proposed and
this methods have been categorized in [10] in two main categories:
methods based on consistency of filter coefficients, and methods based
on consistency of the spectrum of the recovered signals.
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Figure 2.5: The sources are properly separated but each source is multiplied
by a random scalar which is unknown a priori.

scaling problem solution :
the minimal distortion principle

In section 2.2 we described the scaling ambiguities of ICA. We can
note that (2.18) in practice states that in BSS all the valid separators
are usually considered essentially equivalent. The Minimal Distortion
Principle [33] by Matsuoka states the following separator has a spe-
cial meaning:

G? , diag H ·H-1 = DH-1, (2.20)

where D = diag H. We call this separator the optimal (valid) separa-
tor. It should be noted that this definition of the optimal separator
has no indeterminacy; it is uniquely determined independently of in
the indeterminacy in the definition of the source signals because the
following holds for any diagonal matrix E:

diag HE · (HE-1) = diag H ·H-1 (2.21)

The optimal separator G? can be characterized by either of the fol-
lowing two propositions.

Proposition 1: The optimal separator G? is the valid separator that
minimizes |GH − H|

2.

Proposition 2: The optimal separator G? is the valid separator that
minimizes E

[
|y(t) − x(t)|2

]
.

These two propositions state the minimal distortion principle in two
manners. Namely, the optimal separator is determined such that the
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overall transfer function GH be as close to H as possible, or equiva-
lently the separator’s output y(t) be as close to x(t) as possible. The
optimal separator can also be characterized as a direct constraint on
matrix G .

Proposition 3: The optimal separator G? is the valid separator that
satisfies diag G-1 = I.

The optimal separator has some properties that are favorable in
actual implementation of BSS.

1. The output of the separator then becomes

y(t) = diag(H)H-1Hs(t) = diag(H)s(t). (2.22)

This implies that output yi(t) is aiisi(t) , which is the i-th
source that would be observed at the i-th sensor when there
were no other source signals. This property will be convenient
for interpretation of the signals separated and later processing.

2. The optimal separator does not depend on the properties of the
sources; it depends on the mixing process H only. So, even for
such non-stationary signals as voices, the optimal separator is
invariant with time as long as the mixing process is fixed.

3. In actual implementation, the separator needs to be realized
with an FIR filter. It is desirable that the degree of the filter is
as low as possible. Based on the minimal distortion principle,
the separator is chosen such that the output of the separator
becomes as close to the output of the sensor as possible. So,
it can be expected that the separator will be realized with a
relatively low degree.
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I N D E P E N D E N T
V E C T O R A N A LY S I S

Independent vector analysis (IVA) has been proposed by Kim, Eltoft,
and Lee in [29] as an extension of ICA to solve the frequency permu-
tations (also referred to as local permutations). IVA has captured the
attention of many researchers for the above mentioned characteristic
and has been investigated and extended to optimize its convergence.
In the following sections we describe the standard IVA [29] and we
shortly describe some of the most interesting extensions of the algo-
rithm [40, 27, 34].

3.1 standard iva

Applying the ICA algorithm to instantaneous mixtures in each fre-
quency bin would lead to a reduction of the computational complex-
ity and a faster convergence but then the problem would be the per-
mutation of the ICA solutions over different frequency bins: this is
due to the indeterminacy of permutation inherent in the ICA algo-
rithm which should be corrected to obtain a proper separation of
the signal in the time domain. Kim et al. [30] reformulated the cost
function in ICA and proposed a dependency model which captures
inter-frequency dependencies in data: these dependencies are related
to an improved model for the source signal prior. While the source
priors are defined as independent priors at each frequency bin in con-
ventional algorithms, higher order dependencies are used across fre-
quency. Thus, it is possible to define each source prior as a multivari-
ate super-Gaussian distribution1. IVA is able to preserve higher-order

1 the multivariate super-Gaussian distribution is an extension of the independent
Laplacian distribution
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dependencies and structures of frequencies so that the local permuta-
tion problem is completely avoided, and the separation performances
are comparably high even in severely ill-posed conditions.
The method proposed in [30] consists of a mixing and separating pro-
cedure in a convolutive environment, the definition of a cost function,
and an algorithm for learning the parameters of the separating filters.

3.1.1 Frequency Domain IVA

Using the model defined in section 2.1.1, we know that in a convo-
lutive environment, source signals are time delayed and convolved.
Consider the ith observation signal xi(t) at time t

xi(t) =

L∑
j=1

T−1∑
τ=0

hij(τ)sj(t− τ), (3.1)

where hij(t) is a time-domain transfer function from the jth source to
the ith observation, which has T length in time, sj(t) is the jth source
signal at time t, and L is the number of sources. Applying the STFT,
the time-domain signal xi(t) is converted to the frequency-domain
signal xi[n, k]

xi[n, k] =

K−1∑
t=0

w(t)xi(nJ+ t)e
−jωkt, (3.2)

where n is the frame index, ωk = 2π(k− 1)/K is the k-th frequency
sample where k = 1, · · · , K; J is the shift size and w(t) is a window
function. If the window length K is sufficiently longer than the length
of the mixing filter hij(t), the convolution in the time domain is ap-
proximately converted to multiplication in the frequency domain

xi[n, k] ≈
L∑
j=1

hij[k] sj[n, k]. (3.3)

If the separating filter matrices exist, i. e. the inverses or pseudo-
inverses of the mixing matrices at each frequency exist (L <= M),
then the separated ith source signal is given as

yi[n, k] =

M∑
j=1

gij[k] xj[n, k] ≈ si[n, k], (3.4)

where gij[k] is the separating filter at the k-th frequency bin and M is
the number of observed signals. The problem is that of determining
the separating filter and to solve it is necessary to define a proper
objective function for multivariate random variables.
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3.1.2 IVA cost function

To separate multivariate sources from multivariate observations, in
[30] was defined a cost function for multivariate random variables:
the Kullback–Leibler divergence between two functions is used as the
measure of independence. One function is an exact joint probability
density function p(ŝ1, · · · , ŝL), and the other is a nonlinear function
which is the product of approximated probability density functions of
individual source vectors

∏L
i=1 q(ŝi). This can be seen as an extension

of mutual information between multivariate random variables:

C = KL

(
p(ŝ1, · · · , ŝL) ‖

L∏
i=1

q(ŝi)

)

=

∫
p(ŝ1, · · · , ŝL) log

p(ŝ1, · · · , ŝL)∏L
i=1 q(ŝi)

dŝ1, · · · , dŝL

=

∫
p(x1, · · · , xM) log p(x1, · · · , xM)dx1, · · · , dxM+

−

K∑
k=1

log |det G[k]|−

L∑
i=1

∫
p(ŝi) log q(ŝi)dŝi

= const −
K∑
k=1

log |det G[k]|−

L∑
i=1

E [log q(ŝi)] ,

(3.5)

where G[k] is the separating matrix at the k-th frequency bin, the
term const =

∫
p(x1, · · · , xM) log p(x1, · · · , xM)dx1, · · · , dxM = H(x)

is the entropy (used in information theory) of the given observations,
which is a constant because the observed signals will not change in
the optimization procedure; the function H(·) represents the entropy
while E[·] represents the expectation. The third step in (3.5) is derived
using H(Gx) = log(det|G| )+H(Gx) which holds for a linear invertible
transformation G, and the determinant of the block diagonal matrix
G is det(G) =

∏K
k=1 det(G[k]).

It is important to note that the random variables in the above equa-
tions are multivariate: each source is multivariate and it is minimized
when the dependency between the source vectors is removed but the
dependency between the components of each vector does not need to
be removed. Therefore, the cost function preserves the inherent fre-
quency dependency within each source, but it removes dependency
between the sources. An example of a 2× 2 demixing model is shown
in Fig. 3.1. In this example, each horizontal layer is an ICA demixing
model in for each frequency bin, and the demixing procedure is car-
ried out in layers independently. Since ICA in different layers may
output the separated results in different order, the permutation am-
biguity will occur, which is indicated by the different color of y[k]
Fig. 3.1. The permutation ambiguity must be carefully addressed be-
fore the inverse STFT is performed, or else the separation procedure



26 independent vector analysis

(a) ICA spearation procedure

(b) IVA separation procedure

Figure 3.1: Comparison between the ICA demixing procedure (a) and the
IVA demixing procedure (b). The figure shows that the the ICA
procedure suffers from the permutation problem (green and red
colors) while IVA procedure is computed by considering the
input as a vector (vertical yellow bars), preserving the order of
the sources during the process.
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would fail. In addition to separate sources in each frequency bin,
IVA utilizes inter-frequency bin information to solve the permutation
problem in the separation procedure. The IVA model is very similar
with the ICA model, as shown in Fig. 3.1. Their difference is that
signals are considered as vectors in IVA, i.e. xi = [ xi[1] · · · , xi[K] ]T ,
yi = [yi[1], · · · , yi[K] ]T (vertical bars in Fig. 3.1(b)), and they will be
optimized as multivariate variables, instead of independent scalars
like in ICA.

3.1.3 Learning algorithm

gradient method

The derivation of the learning algorithm is done by using a gradi-
ent descent method to minimize the cost function; differentiating the
cost function with respect to the coefficients of the separating matri-
ces, it is possible to obtain the gradients for the coefficients as follows:

∆gij[k] = −
∂C

∂gij[k]
= g

-H[k]
ij − E

[
ϕ[k] (ŝi[1], · · · , ŝi[K]) x?j [k]

]
(3.6)

where gH is used to indicate the conjugate transpose (Hermitian)
of g while x? indicates the conjugate of x and (G-1[k])H = g-H

ij [k].
By multiplying scaling matrices G†[k]G[k] to the gradient matrices
∆G[k] ≡ ∆gij[k], we can obtain the Natural Gradient, which is well
known as a fast convergence method [6], so

∆gij[k] =

L∑
l=1

(Iil − E [ϕ[k] (ŝi[1], · · · , ŝi[K]) ŝ?l [k] ] )glj[k], (3.7)

where Iil is 1 only when i = l, otherwise 0, and the nonlinear function
ϕ[k](·) is given as

ϕ[k](ŝi[1], · · · , ŝi[k]) = −
∂ logq(ŝi[1], · · · , ŝi[k])

∂ŝi[k]
. (3.8)

The term (3.8) is referred to as multivariate score function, and it corre-
sponds to the score function in the conventional ICA.

To compute the batch version of the algorithm, the expected value
in (3.7) is calculated by summing the product of the value of the
random variable and its associated probability, taken over all of the
values of the random variable. The batch update rule to update the
coefficients of separating matrices is given as

gnew
ij [k] = g

old
ij [k] + η∆gij[k] (3.9)

where η is the learning rate. The online update rule can be obtained
by omitting the expectation in (3.7) and updating at every time sam-
ple.
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multivariate score function

The only difference between the IVA approach and the conventional
ICA is the form of the score function. In fact, if the multivariate score
function ϕ[k](ŝi[1], · · · , ŝi[k] is defined as a single-variate score func-
tion, then the algorithm would reduce to the same in the conventional
ICA: the fact that the score function is a multivariate function is the
most important point in IVA.

According to many ICA literatures, a score function is closely re-
lated to a source prior. For example, when the sources have super-
Gaussian distribution, Laplacian distribution is widely used as a source
prior. In IVA, a multivariate score function is also closely related to a
source prior since the cost function (3.5) includes q(ŝi), which is an
approximated probability density function of a source vector, that is,
q(si) ≈ p(si) . Thus, as shown in (3.8), a multivariate score function
can be obtained by differentiating the log prior with respect to each
element of a source vector.

In most BSS approaches, the source prior for a super-Gaussian sig-
nal is defined by a Laplacian distribution: suppose that the source
prior of a vector is independent Laplacian distribution in each fre-
quency bin. This can be written as:

p(si) =
K∏
k=1

p(si[k]) = α

K∏
k=1

exp
(
−

|si[k] − µi[k]|

σi[k]

)
, (3.10)

where α is a normalization term, and µi[k] and 2σi[k]2 are a mean
and a variance of the ith source signal at the kth frequency bin, re-
spectively. Assuming zero mean and unit variance, the score function
is given by

ϕ[k](ŝi[1] · · · ŝi[k]) =
∂
∑K
k=1 |ŝi[k]|

∂ŝi[k]
=
ŝi[k]

|ŝi[k]|

= exp (j · arg(ŝi[k])) ,
(3.11)

but (3.11) is not a multivariate function, because the function depends
on only a single variable ŝi[k].

Instead of using an independent prior, we have to define a new
prior, which is highly dependent on the other elements of a source
vector; in IVA the source prior is defined as a dependent multivariate
super-Gaussian distribution

p(si) = α exp(−
√
(si − µi)HΣ-1

i (si − µi)), (3.12)

where µi and Σi are a mean vector and a covariance matrix of the ith
source signal, respectively.
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Figure 3.2: Comparison between (a) an independent Laplacian distribution
and (b) a dependent multivariate super-Gaussian distribution.
The figure shows the dependency between only two arbitrary
elements of a multidimensional variable s = [s[1] · · · s[K]]T . s1
can be considered as either real or imaginary part of s[1] , and
also s2 can be considered as either real or imaginary part of s(2).
The black line indicates p(s1|s2 = 1). In (a), the probability of s1
always has Laplacian distribution regardless of s2. In (b), how-
ever, the probability of s1 given s2 = 1 does not have Laplacian
distribution even though the probability of s1 given s2 = 0 has
Laplacian distribution. [30]

In Fig. 3.2 is shown the difference between the assumption of inde-
pendent Laplacian distribution and a dependent multivariate super-
Gaussian distribution. In Fig. 3.2(b), the joint distribution of x1 and
x2 does not display any directionality which means x1 and x2 are un-
correlated. However, the marginal distribution of x1 is different from
the joint distribution of x1 and x2, that is x1 and x1 are highly depen-
dent. In contrast to the distribution shown in Fig. 3.2(a), Fig. 3.2(b)
has a radial shape, which is similar to Gaussian distribution, but has
higher peak and heavier tail. Thinking in a different way, one can
notice that the distribution shown in Fig. 3.2(b) can be obtained by a
scale mixture of Gaussians with a fixed mean and a variable variance,
as we describe next.

Suppose that there is a K-dimensional random variable, which is
defined by

si =
√
v · zi + µi, (3.13)

where v is a scalar random variable, zi is a K-dimensional random
variable, and µi is a k-dimensional deterministic variable. Here, the
random variable, zi, has Gaussian distribution with zero mean and
Σi covariance matrix, so that

p(zi) = αz exp
(
−

zHi Σ
-1
i zi
2

)
, (3.14)

where αz is a normalization term.
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Suppose that v has a kind of Gamma distribution

p(v) = αvv
(K−1)
2 exp(−

v

2
), (3.15)

where αv is a normalization term. Then, the given random variable
si has Gaussian distribution. Its mean and covariance are µi and Σi,
respectively. In this model, the used distribution can be obtained by
integrating the joint distribution of si and v over v

p(si, v) =
∫∞
0

p(si, v|v)p(v)dv

= α̂

∫∞
0

√
v exp

(
−
1

2

(
(si − µi)HΣ-1(si − µi)

v
+ v

))
dv

= α exp
(
−
√
(si − µi)HΣ-1(si − µi)

)
.

(3.16)

Therefore, each component of si is not only correlated to others caused
by Σi, but also has variance dependency generated by v. Even though
the covariance matrix Σi is assumed to be identity, that is, each com-
ponent of si is uncorrelated, the components are dependent on each
other. Most natural signals have inherent dependencies between fre-
quency bins such as the variance dependency above modeled. In
other words, when one frequency component has a larger variance,
the other frequency components have larger variances as well. From
a theoretical point of view, each frequency bin is uncorrelated to the
others, because the Fourier bases are orthogonal bases; this is not
completely true when dealing with finite observations and with STFT
approximations. Supposing to be in the ideal case of infinite observa-
tions and using the Fourier Transform, it is possible to set the covari-
ance term Σi as a diagonal matrix. Since Fourier outputs have zero
means, it is possible to write (3.12) as follows:

p(si) = α exp

−

√√√√∑
k

∣∣∣∣ si[k]σi[k]

∣∣∣∣2
 (3.17)

where σi[k] is the standard deviation of the ith source at the kth fre-
quency bin, which determines the scale of each element of a source
vector. In the algorithm, σi[k] is set to 1, because of the adjustment of
the scale based on the Minimal distortion principle [33] after learning
the separating filters. Consequently, the multivariate score function
used is given as

ϕ[k](ŝi[1] · · · ŝi[k]) =
∂

√∑K
k=1 |ŝi[k]|

2

∂ŝi[k]
=

ŝi[k]√∑K
k=1 |ŝi[k]|

2

(3.18)

Kim, Eltoft, and Lee algorithm described in in [29] uses a fixed form
of a multivariate score function (3.8), but this does not mean that the
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used form is appropriate for separating source signals. Since the form
of a multivariate score function is related to dependency of sources,
the proper form of a multivariate score function might vary with
different types of dependency.

online learning algorithm

Kim proposed an online version of the IVA algorithm in [28]: the co-
efficients of the separation-filter matrices are updated at every frame.
Thus, (3.3) should be slightly modified as follows:

yi[n, k] =

M∑
j=1

gij[n, k] xj[n, k] (3.19)

where n denotes the frame index. Therefore, the filter coefficients are
updated as:

gij[n, k] = gij[n− 1, k] + η∆gij[n, k] (3.20)

where ∆gij[n, k] denotes the gradient of the current frame, which
is the most critical part of the algorithm and it is discussed in the
following subsections.

The Natural Gradient in (3.7) needs to be modified as well: there,
the ensemble of the estimated outputs are needed to calculate the
expectation E

[
ϕ[k] (ŝi[1], · · · , ŝi[k]) ŝ?l [k]

]
that we refer to as the scored

correlation and assign it to Ril[k].
For the batch learning, it is simply obtained by taking a sample mean
of them as follows:

Ril[k] =
1

N

N−1∑
n=0

ϕ[k] (yi[n, 1], · · · , yi[n,K]) y?
l [n, k] (3.21)

However, estimating the online version of the scored correlation Ril[k]

becomes more complicated.

This achieved by two assumptions:

1. The first assumption is that the scored correlation Ril[k] de-
pends on only the previous frames. Instead of considering all
the time frames, it is possible to use only some previous frames
from current time and then calculate the exact scored correla-
tion Ril[k] for those limited number of frames. However, in this
case, there is the necessity to calculate the previous outputs us-
ing updated filter coefficients. This makes the algorithm ineffi-
cient.

2. The second assumption is given by the fact that a simple stochas-
tic gradient is adopted by omitting the expectation in (3.21).
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The online version of the scored correlation at a current frame can
be calculated as:

Ril[n, k] = ϕ[k] ( yi[n, 1], · · · , yi[k, n] ) y?
l [k, n] (3.22)

Thus, the online Natural Gradient learning rule is given as

∆gij[k] =

L∑
l=1

(Iil −Ril[n, k] )glj[n, k] (3.23)

This works well to extract the source signals when it is applied
to batch learning. In the case of online learning, a stability problem
may occur. Looking at (3.23) it is possible to observe that the gradient
converges to zero when the scored correlation Ril[n, k] approaches
the identity matrix Iil: this means that if the source signals change
their local average magnitudes, the gradient may fluctuate accord-
ing to that. In many applications, such as speech signals processing
and evoked potentials, when a source signal becomes suddenly very
small, the corresponding coefficients of separation filters tend to be
large in the learning process to compensate for this changes and to
emit the output signal larger. In particular, when one source signal
becomes silent, the separation filters diverge. Therefore, we a non-
holonomic constraint [4] is adopted to avoid this phenomenon. In
consequence, the following gradient is obtained with the constraint
by replacing the identity matrix Iil with Λil[n, k]:

∆gij[k] =

L∑
l=1

(Λil[n, k] −Ril[n, k])glj[n, k]

=

0, if i = l∑L

l=1 (-Ril[n, k])glj[n, k], if i 6= l

(3.24)

where Λil[n, k] is equal to Ril[n, k] when i =l and is zero when i is not
equal to l. Thus, L multiplications can be omitted at every frequency
bin, which is more efficient when compared with (3.23).

In order to improve the convergence properties and obtain a robust-
ness to input level, one may consider a second-order gradient. In the
case of batch algorithm, we could obtain a faster algorithm by adopt-
ing the Newton method as shown in [32]. However, this approach has
some constraints such that if the inputs are supposed to be spatially
whitened, then the separation matrix is orthogonal. Thus, applying
it to a real-time online algorithm would not be efficient. Instead, we
would follow the gradient derived in the previous sections and adjust
only the learning rate with a normalization factor as

gij[n, k] = gij[n− 1, k] + η
√
ξ-1[n, k]∆gij[n, k] (3.25)
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where ε-1[n, k] denotes the normalization factor. Here, we would nor-
malize the gradient with respect to the input level and apply the same
factors to all corresponding sources. Therefore, the normalization fac-
tor is given as

ξ[n, k] = βξ[n− 1, k] +
(1−β)

L

L∑
i=0

|xi[n, k]|
2 (3.26)

where β is a smoothing factor.
Equivalently with the batch algorithm of IVA, the proposed online
algorithm also avoids the permutation problem. However, the scales
of the outputs may be different from the original ones. In particular,
the different scale in each frequency bin causes frequency distortion
when the signal is reconstructed. To avoid this problem it is possible
to adjust the learned separation-filter matrix. The method using the
MDP, that we shortly described in the last paragraph of Section 2.1, is
a well known solution [33]. Accordingly, we adjust the output signal
by multiplying the scale factor diag (G-1[k]).

The final process is the reconstruction of the time-domain version
of the estimated signal by performing an inverse Fourier transform
and overlap-add method as follows:

yi(t) =

N−1∑
n=0

K∑
k=0

yi[n, k]e
jωk(t−nk). (3.27)

3.1.3.1 IVA issues

While IVA is theoretically "permutation free" across the frequencies, it
does not solve the ambiguity order of the full-band output signals (i. e.
the "global permutation") which is a complicated problem in time-
varying conditions as the output order might change over time. In
addition, in IVA it is assumed that the mixture is a linear combination
of a known number of sources but in real-world the source activity is
likely to vary over time and this could lead the algorithm to diverge.

3.2 iva extensions

In the following sections, we report some interesting extensions of
the standard IVA. One of the reviewed techniques uses a different
approach to minimize the cost function in IVA by using an auxiliary
function approach [40], while the other extensions [27, 34] try to solve
some of the IVA issues such as the global permutation problem and
they try to improve its convergence properties.
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3.2.1 Auxiliary Function approach IVA

Taniguchi et al. proposed in [40] a stable online IVA algorithm for
super-Gaussian convolutive mixtures based on a fast and stable batch
IVA algorithm using an auxiliary-function technique [35].
AuxIVA requires no environment-sensitive parameters such as the
step-size parameter used in natural gradient IVA and the convergence
speed is much faster than the conventional gradient optimization. The
formulation follows from the standard IVA cost function (3.5); assum-
ing that the number of microphones M is equal to the number of
sources L, then (3.5) becomes

J(G) = const −
K∑
k=1

log |det G[k]|−

L∑
i=1

E[logq(ŝi)], (3.28)

where the term C(ŝi) = -E[log q(ŝi)] is referred to as contrast func-
tion. Since IVA assumes a multivariate super-Gaussian distribution
as source prior, combining (3.28) and the source prior model defined
in (3.17), we can define an auxiliary variable ri[n] as

ri[n] =

√√√√ K∑
k=1

|ŝi[k]|2 =

√√√√ K∑
k=1

|gH[k]x[n, k]|2. (3.29)

Since the minimization of the standard IVA cost function (3.5) is a
nonlinear optimization problem, in general no closed-form solution
is available. To find a solution, an iterative application of the gradient-
based update rule is needed but this is operation brings a trade-off
between convergence speed and stability which is dependent on the
value of the step-size parameter. In AuxIVA, instead of directly de-
creasing the cost function in (3.28), the demixing matrix is estimated
by calculating the auxiliary variable (3.29) and decreasing the follow-
ing auxiliary function with respect to the demixing matrix G:

Q(G, r) =
1

2

L∑
i=1

K∑
k=1

gHi [k]V[k]gi[k]−
K∑
k=1

log |det G[k]|+ const , (3.30)

where r represents the set of auxiliary variables ri[n] for i = 1, · · · , L.
The auxiliary variables ri[n] are included in the statistics, with weighted
covariances V[k] as follows:

V[k] =

K∑
k=1

[
C
′
(ri[n])

ri[n]
x[n, k] xH[k, n]

]
, (3.31)

where V[k] can be considered as a covariance weighted by the scalar
C
′
(ri[n])
ri[n]

: this cost function is guaranteed to decrease monotonically.
An online version has been proposed in [40] by approximation of

the auxiliary variable in the auxiliary function by autoregressive esti-
mation of its related statistics. This is a natural extension of the offline
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AuxIVA and algorithm can be efficiently implemented. However, the
theoretical correctness of the approximation, i.e. whether the online
version converges as well as the offline AuxIVA does, has not been
proven at this moment.

3.2.2 Geometrically Constrained IVA

Khan, Taseska, and Habets proposed in [27] a geometrically con-
strained IVA (CIVA) algorithm that works in the frequency domain
to extract the desired source whose DOA is known.

Taking the first microphone of the array of sensors as reference, the
relative transfer function (RTF) is given by

z1[k] = [1, ej
ω
c [d2−d1]Tq1 , · · · , ej

ω
c [dM−d1]Tq1 ]T , (3.32)

where dm is the location of the m-th microphone, q1 represents a unit-
norm vector pointing in the direction of the desired source, c is the
speed of sound and ω = 2πf = 2πkFs(2K)

-1 where f is the frequency
in Hertz with Fs being the sampling frequency.

The Euclidean angle between between the separation filter g1 and
the far-field steering vector z1 is defined as

cos ζ[k] =
Re
{

gH1 [k]z1[k]
}

‖g1[k]‖ ‖z1[k]‖
(3.33)

A broadband penalty function which restricts the Euclidean angle
between g1[k] and z1[k], steering the filter of interest g1 in the direc-
tion of the desired source is then given by

Jp(g1) =
K∑
k=1

[cos ζ[k] − 1]2 . (3.34)

Thus, the standard cost function of IVA (3.5) is augmented with the
penalty term (3.34), resulting in the constrained IVA cost function

Jciva(G) = Jiva(G) + λ Jp(g1), (3.35)

where λ(λ > 0) is a penalty term. Taking the gradient of (3.35) with
respect to the elements of the demixing matrix G[k], we obtain:

∇Gciva[k] = ∇Giva[k] + λ∇Gp[k], (3.36)

where Giva[k] is the gradient of Jiva and Gp[k] is the gradient of the
penalty term (3.34). The penalty term is a function only of g1[k] so
that the gradient with respect to the filters coefficients is given by

∇Gp =

 ∇gH1 [k]

0M−1×M

 , (3.37)
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where ∇g1[k] is the gradient of the penalty function (3.34) with re-
spect to g∗1[k] and it is derived based on [13]. It is useful to define
C = 1/

(
‖g1[k]‖ · ‖z1[k]‖2

)
so that the gradient of the penalty term is

given by

∇g1[k] = C ·
[
(cosζ[k] − 1)

(
z1[k] −

g1[k]
‖g1[k]‖2

Re
{

gH1 [k]z1[k]
})]

.

(3.38)

The CIVA ensures that the desired speech signal is always deliv-
ered at the output of the corresponding separation filter with small
distortion and without the knowledge of the number of interferers. In
contrast, the unconstrained IVA algorithm introduces higher distor-
tion of the desired speech signal in non-determined and reverberant
scenarios.

3.2.3 Supervised IVA

Nesta and Koldovskj proposed in [34] to extend the multidimensional
source model of IVA by adding pilot components statistically depen-
dent on the target and noise sources.

The injected pilot signals act as a prior knowledge enforcing the
natural gradient to converge in a limited solution space, without im-
posing any explicit constraint to the demixing system. The extension
follows from (3.18) in the standard IVA learning algorithm described
in section 3.1.3. In (3.18) the denominator on the right-hand side corre-
sponds to a factor that binds all the frequency bins together: without
this factor, the decorrelation of the outputs will be achieved in each
bins separately but the full wide-band source would be affected by
the permutation problem. By following this observation, in [34] the
adaptation to enforce another level of dependence, namely, between
the separated components and pilot signals which are designed to
capture high level spectral or spatial differences between the target
and the interfering sources.

Nesta and Koldovskj propose to extend the multivariate model in
(3.17), by injecting an additional "Pilot" component Pi into the source
vector si so that the exended source vector s̃i can be written as

s̃i = [si[1], · · · , si[K], γPi] , (3.39)

Thus, the multivariate source prior becomes

p( s̃i) = α exp

(
−

√∑K

k=1
|si[k]|

2 + γ2 |Pi|
2

)
, (3.40)

where γ is a hyper-parameter controlling the influence of the "Pilots".
By indicating with ỹi = [yi[1], · · · , yi[K], γPi] the extended output
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vector and by noting that Pi is independent on G[k], the ML update
is derived by using (3.40) and (3.5).
The new score function is obtained as:

ϕ[k](ỹi) = ϕ[k](yi[1], · · · , yi[K], γPi)

=
ŝi[k]√∑K

k=1 |ŝi[k]|
2 + γ2 |Pi|

2
,

(3.41)

in which it is possible, by controlling γ, to trade the importance of
the mutual frequency self-dependence versus the dependence on the
pilot component Pi. In the extreme cases, if γ is set to a small value,
then the standard IVA is realized and the order of recovered sources
would depend only on the initialization of G[k]. On the other hand, if
γ, is chosen to be a large value, the alignment of the frequency compo-
nents is forced to follow the one of the pilot signal Pi. The component
Pi needs to be designed in order to be statistically dependent on the
i-th source; a possible pilot signal can be defined as

Pi = pi[n]

√∑K

k=1
|xi[n, k]|2, (3.42)

where pi[n] is the posterior probability to observe the ith source at
the STFT frame n. The posteriors can be estimated by learning the
distributions of discriminative spectral or spatial features computed
from the input mixture x[k]. It has to be noted that (3.42) is only a spe-
cial case which has been chosen by Nesta and Koldovskj to show a
connection between the weighted ICA and S-IVA [34] but other pilots
can be defined, with the constraint that they need to be dependent
on the source components. The vector of the features are indicated as
v[n] = [v1[n] · · · vF[n]] and the source classes are defined as "i = 1" for
the "desired" target source, "i > 1" for the "noise" sources. The param-
eters of a supervised classifier are learned beforehand from training
data in order to produce the posteriors pi(n) associated to each class.
Any sort of hard or soft classifier can be used, such as Gaussian Mix-
ture Models, SVM or discriminatively trained Deep Neural Network
[41].
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I N F O R M E D I VA

To validate the Supervised IVA proposed by Nesta and Koldovskj,
we decided at first to develop an "oracle" version of the algorithm in
which the activation of the pilot(s) described in (3.42) is(are) decided
by evaluating the energy content of the desired source(s) at a certain
time frame n.

After the validation of the oracle algorithm, we implemented a ver-
sion in which a Convolutional Neural Network (CNN) [17] was used
to detect the DOAs of the sources at a certain time frame n so that
if the DOA of the source is detected then the source is considered
active, the posterior probability is set to a value greater than zero and
consequently the correspondent pilot component influences the basic
IVA. At the end of the chapter we also propose some possibilities to
model the pilot components and their activations.

4.1 siva based on oracle detection

In this realization of the SIVA, the pilot components have been imple-
mented tracking the activation of the desired source by evaluating the
clean (a.k.a. noiseless) speech source signal received at the reference
microphone: the oracle term is used since we assumed to know the
noiseless source signal received at the microphone, which is not the
case in real-world applications in which we would only capture the
mixture signal because of the the mutual interaction of the different
sources and the interaction of the sound waves with the surrounding
environment [11].

Since we investigate different models for the pilots, for ease of nota-
tion, we refer to the second term of the pilots, which is the weighting
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introduced by the pilot, as bi[n] so that the pilots can be expressed as

Pi = pi[n]bi[n]. (4.1)

4.1.1 Noiseless pilot component

In this version of the oracle-SIVA, the pilot components have been im-
plemented using the noiseless signal of the desired source(s) received
at the reference microphone, which is indicated by x̄i,1 where i indi-
cates that the desired source is the i-th source and the index 1 is used
to indicate that we are taking the reference microphone, so that bi[n]
can be written as

bi[n] =

√∑K

k=1
|x̄i,1[n, k]|2. (4.2)

The evaluation of the activation of the pilots Pi is done by the use of
a threshold ξSIVA which is compared to bi[n], so that we can write the
posterior pi[n] as

pi[n] =

1 if
∑K
k=1 |x̄i,1[n, k]|

2 > ξSIVA,

0 otherwise,

(4.3)

thus the pilot Pi of the i-th source becomes active when bi[n] is
greater than ξSIVA and the algorithm would follow the additional in-
formation provided by Pi.

4.1.2 Noisy pilot component

In this version of the oracle-SIVA, the decision for the posteriors is
the same as in the noiseless case, i. e. the decision is done using the
noiseless signal of the desired source(s) received at the reference mi-
crophone, while the pilot information bi[n] is given by the contribu-
tion of all the frequency components given by the mixtures received
by the microphones, so that we can write

bi[n] =

√∑K

k=1
|x1[n, k]|2, (4.4)

where the index 1 indicates that we take only the the information
given by the reference microphone while the posteriors pi[n] are
given by (4.3).

4.2 siva based on cnn activity detection

Using a Uniform Linear Array of microphones and assuming that
the DOA of the desired source is known, we used a DOA estimator
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Figure 4.1: The multi-speaker DOA estimation problem is formulated as
an I class multi-label classification problem. The i-th class cor-
responds to i-th DOA θi: each class corresponds to a possible
DOA among the set of possible DOA.

based on CNN [17] to establish whether the source is active or it is not
so that we can use this information to decide the posteriors pi[n]. We
assume to approximately know θi the DOA of the desired i-th source,
with a Region of Interest (ROI) ∆θi which is θi - 5 6 ∆θi 6 θi + 5.

The assumption of the knowledge of ∆θi is justified by the fact
that our aim is to do source extraction: infact, this allow us to find
a solution even in the case in which there are more sources than mi-
crophones. Note that the knowledge of ∆θi is not necessary since
the CNN-DOA estimator in [17] computes the probabilities to find a
source in an angular region which goes from [0, π] so that the algo-
rithm is feasible for BSE and also for BSS (in the cases determined
and over-determined cases).

4.2.1 Multi-Speaker Localization CNN for Activity Detection

To decide the posteriors pi[n] of the Informed IVA (IIVA) algorithm,
we decided to use a Multi-Speaker Localizer which makes use of a
Convolutional Neural Network [17] proposed by Chakrabarty and
Habets. The reason for which we opted to utilize this CNN-based
localizer is that given an angular ROI ∆θi it allows us to determine
whether the source in ∆θi is active or if it is not: this can be useful
for many applications in which the aim is that of performing source
extraction knowing the angular region from where a speech signal is
expected to be emitted, i. e. in video/audio calls using laptops, confer-
ences halls where the speaker is in front of the microphone, hand-free
communications systems, etc.

The localizer proposed by Chakrabarty and Habets is a CNN based
supervised learning method for DOA estimation which aims to esti-
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Figure 4.2: CNN architecture [17].

mate multiple DOAs per time frame given the STFT representation
of the observed signals. The CNN has been trained using only syn-
thesized white noise signals and by the use of a simple input repre-
sentation it learns useful features during its training.

To realize the CNN-based localizer, considering an independent
source DOA model, the multi-speaker DOA estimation problem has
been translated to an I class multi-label classification problem as shown
in Fig. 4.1: the range of possible DOAs is discretized into I discrete
values to obtain a set of possible DOA values Θ = [θ1 · · · θI] so that
each one of the classes corresponds to a possible DOA value among
the set Θ.

Given the input at each time frame the objective is to compute the
probability for each of the I classes using I binary classifiers. The input
of the CNN is given by features coming from the STFT representation
of the microphone signal: these observed signals can be written in
their phasor representation as

Ym[n, k] = Am[n, k]ejφm[n,k], (4.5)

where Am[n, k] represents the magnitude component and φm[n, k]

denotes the phase component of the STFT coefficient of the received
signal at the m-th microphone for the n-th time frame and k-th fre-
quency bin. The input feature for the n-th time frame is formed by
arranging φm[n, k] for each time-frequency bin [n, k] and each micro-
phone m into a matrix of size M × K, which Chakrabarty and Habets
called the phase-map. The main assumption on which the method
relies is that of the speakers not being simultaneously active per time-
frequency unit: this condition is also known as W-disjoint orthogonal-
ity and it has been shown to hold approximately for speech signals
in [36].

With the phase map as input, the task of the CNN is to generate the
posterior probabilities for each of the DOA classes: indicating with
Φ[n] the phase-map at the n-th time frame, then the posterior proba-
bility provided by the CNN at the output is indicated as p(θi|Φ[n]),
where θi is the DOA corresponding to the i-th class.
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In Fig. 4.2, is shown the CNN architecture employed. In the con-
volution layers (Conv layers in Fig. 4.2), small filters (also known as
local filters) of size 2 × 1 are applied to learn the local correlations
between the phase components of neighboring microphones at local
frequency regions. The learned local structures are then eventually
combined by the fully connected layers (FC layers in Fig. 4.2) for the
final classification task.

Finally, since what we are doing in our work is to use the CNN as
an activity detector, it is sufficient to evaluate if the desired source is
revealed or if it is not at a certain time frame n and this can be done
since we assumed to know the ROI of the desired source ∆θi. Thus
we are able to decide whether the pilot of the i-th source is active
or not by assigning a value to the posterior pi after comparing the
posterior probability p(∆θi|Φ[n]) of the DOA to come from ∆θi with
a threshold level ξSIVA which lies in the interval [0, 1]. In the following
section we propose two models to assign the posterior probabilities
pi[n] of the pilots Pi and two models for the second term bi[n] of the
pilots.

4.2.2 Pilots modeling

If we call pDOA[n] the posterior probability of the i-th source to be
active at the n-th time frame in the set of DOAs Φ[n], then we can
simply evaluate to set the posteriors pi of the SIVA by comparing it
to the threshold ξSIVA.

We propose two models to assign the posteriors pi[n] and 2 mod-
els for the term bi[n] of (4.1) that will be described in the following
section.

4.2.2.1 Posterior probability modeling

We propose two models for the pilots: a soft version and a hard version.
In the following paragraphs we give a formal description of the two
models.

soft pilot activation

In this version we assign the value of the posterior pDOA[n] of the ROI
∆θi given by the CNN to the posteriors pi[n] of the pilot components.
When the probability pDOA[n] is greater than a given threshold ξSIVA

then the posterior pi[n] of the i-th desired source is set to the same
value pDOA[n] given by the CNN while if the probability of the i-th
desired source is lower than ξSIVA than the posterior pi[n] is set to zero;
the probability of the undesired sources is distributed equally given
that the remaining probability is equal to 1− pi[n]. If we suppose to
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be interested in extracting only one source and we indicate with p1[n]
the posterior probability associated to the desired source which DOA
is ∆θ1, it is possible to write the model for the soft version as

p1[n] =

pDOA[n], if pDOA[n] > ξSIVA,

0, otherwise,

pi 6= 1[n] =
1− p1[n]

1− L
.

(4.6)

Notice that in (4.6), when the probability pDOA[n] is lower than the
threshold ξSIVA than the posterior p1[n] is set to zero and the other
sources are set so that pi 6=i[n] = 1

1−L where L is the number of
sources.

hard pilot activation

In this version we set the posterior p1[n] of the desired source to 1

when the probability pDOA[n] of the source to be in the ROI ∆θi is
above the threshold ξSIVA and to zero all the the unwanted sources so
that it is possible to write

p1[n] =

1, if pDOA[n] > ξSIVA,

0, otherwise,

pi 6= 1[n] =
1− p1[n]

1− L
.

(4.7)

As in the soft version, when the probability pDOA[n] is lower than
the threshold ξSIVA than the posterior p1[n] is set to zero and the
other sources are set so that pi 6=i[n] = 1

1−L where L is the number
of sources.

4.2.2.2 Pilot weighting modeling

We propose two models for the term bi[n] in (4.4): the All-mics ver-
sion and the Single-mic version with their formal description in the
following paragraphs.

single-microphone

This is is the first of the two proposed models for the term bi[n]. In
the Single-mic version we model the additive term introduced by the
pilots with the use of the information captured only by the reference
microphone, that we indicate as x1, so that we can write bi[n] = bi[n]
where bi[n] is given by

bi[n] =

√∑K

k=1
|x1[n, k]|2. (4.8)
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In (4.8) the term bi[n] is modeled as the sum of all the frequency
content of the observation captured at the reference microphone x1
at the n-th time-frame.

all-microphones

In the second version we model the term bi[n] by using the observa-
tion given by all the microphones so that bi[n] = b̃i[n], where b̃i[n]
is defined as

b̃i[n] =

√
1

M

∑M

j=1

∑K

k=1
|xj[n, k]|2, (4.9)

In (4.9) the information is provided by the weighted average over all
the observation set and all the frequency components. In chapter 5 a
comparison to evaluate which is the better model is conduced.

4.2.2.3 Gradient update normalization

To improve the convergence properties of the algorithm, we decided
to modify the gradient update rule in (3.20) with a normalization
term as in [27] so that the normalized update rule becomes

gij[n+ 1, k] = gij[n+ 1, k] + η
∆gij[n, k]∣∣∣∣∆gij[n, k∣∣∣∣F . (4.10)
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E X P E R I M E N T S

In this chapter we describe the experiments which have been con-
ducted to test the properties of the SIVA, starting from a brief de-
scription of the preliminary steps which involve the 2 oracle versions
described in the previous chapter which are compared to the pro-
posed method in order to verify if the algorithm works in more realis-
tic scenarios. Successively we describe the experiments that we had to
understand the behavior of the proposed method depending on the
influence of the parameters which characterize it and which are the
best tuning of these parameters. We investigate the amount of time
necessary to accomplish the separation depending on the learning
rate and number of iterations, to assess the online separation proper-
ties of the proposed method. Furthermore, we compare the proposed
algorithm with the CIVA [27] from the state-of-the-art of the IVA al-
gorithms for online source extraction.

5.1 setting and performance criteria

To evaluate the proposed algorithm, several experiments were con-
ducted using a simulated room which dimensions are 7.5× 5.5× 3
with a T60 = 150ms on a 20s speech segment with 2 different config-
urations for the source positions:

1) In configuration 1, as depicted in Fig. 5.1(a), we have a speech
signal of an English woman and another speech signal of an En-
glish man. The signal coming from the woman is positioned at
35° with respect to the reference microphone of the ULA while
the man is positioned at 75°.

2) In configuration 2, as depicted in Fig. 5.1(b), the speech signal
of the English woman is positioned at 130° with respect to the
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reference microphone of the ULA while the speech signal of the
English man is positioned at 65° .

The number of sources used for the investigations is equal to 2, so
that the tuning of all the parameters has been investigated for this
particulat case which is an over-determined case (more microphones
than sources).

The sensors used are simulated microphones, more precisely we
simulated a Uniform Linear Array (ULA) [12] composed by 4 omni-
directional microphones, where the inter-microphone distance dmic
is 0.08m and the ULA hase been positioned at the center of the room
as shown in Fig. 5.1.

The quality of the desired speech signal at the output of the pro-
posed algorithm was evaluated using simulated audio data: to ob-
tain the microphone signals, we convolved clean speech signals sam-
pled at 16 kHz with simulated room impulse responses. The room
impulse responses (RIRs) were generated using [22]. The implemen-
tation has been done in the time-frequency domain using the STFT.
The STFT frame size is of 512 samples with 50% overlap. In all the ex-
periments, a diffuse noise with 30dB signal-to-noise ratio (SNR) and
a sensor noise with 40dB SNR was added to the microphone signals.
The signal-to-interference (SIR) ratio and speech distortion index (SD)
where used as defined in [28]. The performance was measured by the
improvement of signal-to-interference ratio (SIR), which is the dif-
ference between input and output SIR, defined as SIRimprovement =

SIRout − SIRin in [28] where

SIRin = 10 log

 ∑
n,k |x̄i[n, k]|

2∑
n,k,i

∣∣∣∑j6=i x̄j[n, k]∣∣∣2
 ,

SIRout = 10 log

 ∑
n,k,i |ȳi[n, k]|

2∑
n,k,j

∣∣∣∑j6=i ȳj[n, k]∣∣∣2
 .

(5.1)

While the SD is given by

SD =
1

n

(∑
n,k |x̄i[n, k] − ȳi[n, k]|

2∑
n,k |x̄i[n, k]|

2

)
(5.2)

Unless stated otherwise, for each configuration we measured the per-
formances taking as the desired source individually each of the sources
and then we averaged the results to obtain the performances for a spe-
cific configuration.
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(a) Configuration 1

(b) Configuration 2

Figure 5.1: In (a) Configuration 1: source 1 is positioned at 75° with respect
to the center of the microphone array while source 2 at 35°.
In (b) Configuration 2: source 1 is positioned at 65° while source
2 is positioned at 135°.
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5.2 siva : pilot influence

The novelty introduced by Nesta and Koldovskj is that of the pilot
components. As already mentioned in section 3.2.3, the pilots need
to be statistically dependent on the sources: for this reason we de-
cided to try to investigate which pilot could be used. The pilots in
(3.42) are dependent on the posteriors pi[n] and a second term which
is the contribution of all the frequency components given by the ob-

servation set
√∑K

k=1 |xi[n, k]|
2. Both this terms can be designed ar-

bitrarily with the only constrain that the pilots should be statistically
dependent from the sources.

We investigated some possibilities for the design of the pilots, start-
ing from simple "oracle" cases (assuming some prior knowledge about
the source distributions) to more realistic cases and evaluating how
the algorithm is influenced by them. In the experiments in this sec-
tion, unless clearly stated, the learning rate η has been set to 8, the
threshold ξSIVA to evaluate the power of the desired active source sig-
nal was set to -40 dB and in both algorithms the parameter βSIVA was
set to 0.35 which is the value which provides best performances for
both oracle versions.

5.2.1 SIVA versions comparison

In this experiment we compared the two oracle versions of the SIVA
and the proposed CNN-based version: we report the best perfor-
mances achieved using the noiseless pilot, the noisy pilot versions
and the CNN-based SIVA defined in section 4.1.1, the section 4.1.2
and in section 4.2 respectively.

In table 5.1 we can see that the noisy oracle version, i. e. the version
in which the pilots are given from the observation signals, provides
slightly lower performances than the noiseless version and that, as
expected, the CNN-based version provides lower performances than
the oracle versions but good results are still achieved.

The experiments have been done for the two different configura-
tions as usual. These results show that the CNN-based SIVA can be
used in real world scenarios: the influence of the pilots allows to have
a great boost in the performances with respect to the standard IVA.

5.2.2 Conclusions

We analyzed the performances of various SIVA versions starting from
the Oracle-versions which are using informations about the source
signals (which are not normally available in real world applications)
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Algorithm βSIVA SIRimp SD

config1

SIVANoiseless 0.35 7.29 0.17

SIVANoisy 0.35 6.97 0.19

SIVACNN 0.6 6.75 0.17

IVA – 1.92 0.31

config2

SIVANoiseless 0.35 8.76 0.19

SIVANoisy 0.35 8.42 0.17

SIVACNN 0.5 8.15 0.17

IVA – 2.15 0.33

Table 5.1: Comparison in terms of SIR improvement and SD between the
noiseless-oracle, the noisy-oracle SIVA versions, the CNN-based
SIVA and the IVA.

to the CNN-based version which is possible to use in a real world
scenario. Our results shows that good performances are obtained in
realistic scenarios in which only the ROI is known and no other ad-
ditional information is available. It is important to note that the stan-
dard IVA most of the times diverged, thus not arriving to a proper
solution: for this reason, in the following experiments, the standard
IVA will not be considered for comparison. The algorithm needs
some prior tuning in order to work properly: this led us to investi-
gate, in the next section, how the various parameters influence the
CNN-based SIVA.

5.3 siva : parameters investigation

In this section we show the results of the experiments that we con-
ducted to evaluate the behavior of the CNN-based SIVA, which we
refer to as IIVA, using the different models proposed in section 4.2.2
and also in function of the various hyper-parameters which compose
it. Since the oracle versions use information gathered from the noise-
less source signals, their tuning is totally different from the tuning of
the IIVA: in the next we report and discuss only the IIVA tuning.

5.3.1 Soft vs Hard pilot activation

In this experiment we compare the performances given by two differ-
ent models for the posterior probability pi[n] in (3.41) which are com-
puted through the use of the CNN-DOA localizer [17] explained in
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Algorithm η Iterations βSIVA SIRimp SD

config1

SIVAsoft 8 3 0.6 6.64 0.17

SIVAhard 8 3 0.6 6.65 0.17

SIVAsoft 10 1 0.5 5.71 0.19

SIVAhard 10 1 0.5 5.73 0.19

config2

SIVAsoft 2 8 0.6 8.15 0.17

SIVAhard 2 8 0.6 8.19 0.17

SIVAsoft 10 1 0.5 7.90 0.17

SIVAhard 10 1 0.5 7.91 0.17

Table 5.2: Comparison of the performances in terms of SIR improvement
and SD given by the Soft and the Hard model of the posteriors
with the tuning of the parameters used to obtain the best perfor-
mances for configuration 1 (top) and configuration 2 (bottom)

section 4.2.1; the posteriors given by the CNN have been normalized
at each time frame so that

∑L
i=1 pi[n] = 1 for each time-frame. We

investigated the version proposed for the posteriors in section 4.2.2.1:
the soft pilot activation and the hard pilot activation. The setting of the
parameters are reported with the achieved results in table 5.2: as we
can see from the results obtained, the performances of the IIVA using
the different models for the activation of the posterior probabilities
are practically the same for both models.

Since the performances are practically the same for both versions,
we decided to use the hard activation version for all the successive
experiments: this decision has been taken because using the hard ver-
sion can better show the behaviors caused by other parameters or
weightings like the βSIVA and the γSIVA parameters that are investigated
in the following sections.

5.3.2 Single-microphone vs All-microphones

In this experiments we compared the noisy CNN-based SIVA with
two different models for bi[n] that we named Single-microphone and
All-microphones versions in section 4.2.2.2. The difference between the
two investigated versions relies in the number of observations used
for the additive normalization term introduced by the pilot as given
in (3.41). As usual, the performances have been investigated for the
both configurations: in table 5.3 we show the SIR and SD obtained for
each proposed version with the value of the parameters which gives
the best performance.
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Algorithm η Iterations βSIVA SIRimp SD

config1

IIVASingle-Mic 8 3 0.6 6.43 0.17

IIVAAll-mics 8 3 0.6 6.62 0.17

IIVASingle-Mic 10 1 0.5 5.53 0.19

IIVAAll-mics 10 1 0.5 5.71 0.19

config2

IIVASingle-Mic 2 8 0.6 8.10 0.17

IIVAAll-mics 2 8 0.6 8.18 0.17

IIVASingle-Mic 10 1 0.5 7.93 0.17

IIVAAll-mics 10 1 0.5 7.99 0.16

Table 5.3: Comparison of the performances in terms of SIR improvement
and SD given by the Single-mic and the All-mics models with the
tuning of the parameters used to obtain the best performances
for configuration 1 (top) and configuration 2 (bottom).

As we can see, the all-microphones version gives better perfor-
mances in terms of SIR improvement while the SD has similar values
for both models: in the following experiments we chose to use the
All-microphones version which takes into account all the available
information given by all the observation set.

5.3.3 Weighting parameter influence

In this experiment we evaluate the influence of γSIVA in (3.41) which
is a weighting hyper-parameter that allows us to vary the amount of
dependence on the pilot component Pi. If γSIVA is set to zero, then
the standard IVA is realized and thus the separation of the sources
would depend only on the initialization of the demixing matrix G
while if γSIVA is chosen to be a large value, the alignment of the fre-
quency components is forced to follow the one of the pilots. In Fig.
5.2(a) and Fig. 5.2(b) are respectively reported the SIR improvement
and the SD of the IIVA for a set of values of γSIVA ∈ [0, 1] for both
configurations and for 2 different learning rates, while in Fig. 5.3(a)
and Fig. 5.3(b) we have the same setting for a set of γSIVA ∈ [2, 20]. We
can see that γSIVA, so the weight of the pilots, does not influence much
the performances of the algorithm. Nevertheless, we can notice that
a large value for γSIVA results in slightly worst performances in terms
of SIR improvement apart in the case in which the learning rate is
set to 10 for configuration 1 (blue dashed line) in Fig. 5.3(a) in which
the performances get clearly worst for high values of γSIVA. We can
also observe in Fig. 5.3(a) that smaller values of γSIVA do not show any
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Figure 5.2: Performances in terms of SIR improvement (a) and SD (b) given
by varying the weighting parameter γSIVA for a set of values ∈
[0, 1] for configuration 1 (config1) and configuration 2 (config2).
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Figure 5.3: Performances in terms of SIR improvement (a) and SD (b) given
by varying the weighting parameter γSIVA for a set of values ∈
[2, 20] for configuration 1 (config1) and configuration 2 (config2).
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improvement nor different behavior in terms of SIR while the SD in
Fig. 5.3(b) shows similar results.

5.3.4 Smoothing parameter influence

In this experiment we investigated a modified version of the SIVA al-
gorithm, proposed by Nesta and Koldovskj in [34]. The investigated
version is an heuristic modification which is given by the introduc-
tion of the smoothing parameter βSIVA which influences the impact
of the standard IVA normalization given by the first and the second
members of the denominator in (3.41) instead of the parameter γSIVA

in section 5.3.3 which gives weight only to the second term of the
denominator. Using the parameter βSIVA, the modified extended score
function becomes

ϕ[k](ỹi) =
ŝi[k]√

(1−βSIVA)
∑K
k=1 |ŝi[k]|

2 +βSIVA |Pi|
2
, (5.3)

where βSIVA is a trade-off parameter which is set in the range between
0 and 1 in order to weight the influence of the pure IVA versus the
weight of the pilot. In the extreme cases, i. e. when βSIVA is equal to 0

or when it is equal to 1, we have that the score correlation in (3.18)
becomes

ϕ[k](ỹi) =


ŝi[k]√∑K
k=1 |ŝi[k]|

2
, if βSIVA = 0,

ŝi[k]√
|Pi|

2
, if βSIVA = 1,

(5.4)

so that when βSIVA is 0, then the standard IVA is realized while when
βSIVA is 1 the algorithm follows only the information provided by the
pilots.

As we can see from Fig. 5.4, the experiments have been conducted
for different learning rates and for both configurations. In Fig. 5.4(a)
and Fig. 5.4(b) are respectively the SIR improvement and the SD of
the IIVA for η = 2 and η = 10 for both usual configurations. It is
interesting to notice that the influence of the parameter βSIVA, and thus
of the pilot components, has more impact for configuration 1 with
respect to configuration 2 in which a good perfomance is obtained
also in the case of the basic IVA (which is the case of βSIVA = 0).
The additional information of the pilots, smoothed by the parameter
βSIVA, seems to be of great help whenever there is a mismatch in the
power of the signal which are captured by the ULA: in fact as we can
see in Fig. 5.1(a) in configuration 1, source 1 (at 35° with respect to
the ULA) is almost 3 times further than source 2 (at 75°) so the signal
coming from source 1 would be much more attenuated when received
by the ULA then in the case of configuration 2 in Fig. 5.1(b). The
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Figure 5.4: The upper window (a) shows the Signal-to-Interference Ra-
tio improvement with respect to the variations of the hyper-
parameter βSIVA while in the lower window (b) we can see corre-
spondent Signal Distortion measurements of the SIVA algorithm
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(a) Large η (b) Small η

Figure 5.5: Representation of the influence of the value of the learning rate
in a non-convex optimization problem. For a large learning rate
(a) we might diverge from the optimal solution while with a
small learning rate (b) the optimization process might get into a
local minima.

difference with the parameter γSIVA, that we investigated in section
5.3.3, is that βSIVA allows to smooth the importance of following the
pure IVA versus the importance of the pilots. For configuration 1,
as we can see in Fig. 5.4(a), the βSIVA parameter shows an important
improvement of the performances with respect to the performances
given by γSIVA reported in the previous section section 5.3.3. For this
reason, for the following experiments we took in account the version
using the βSIVA parameter.

5.3.5 Learning rate

As in every gradient-based update algorithm, the choice of the learn-
ing rate is crucial: for the gradient descent to work we must set η
(learning rate) to an appropriate value. The learning rate determines
how fast or slow we move towards the optimal weights but it also
influences the achievable performance: if η is very large we would
follow the gradient descent direction with a big step-size so that the
number of iterations needed to reach the minimum would be small,
causing the algorithm to rapidly converge, but on the other hand
there could be the risk to skip the optimal solution because the large
step-size would not allow the descent to reach the global minimum
and in some cases we might also diverge if the learning is really high
as shown in Fig. 5.5(a). In the case in which η is a really small value,
we may need many iterations to converge to the global minimum so
that the algorithm would be really slow to arrive to convergence and,
furthermore, there might also be the risk to get trapped in some lo-
cal minima as shown in Fig. 5.5(b). The choice of the learning rate is
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η Iterations SIRimp SD Time(s)

config1

0.5 35 7.37 0.17 424.67

1 22 7.31 0.17 282.43

2 12 7.28 0.17 239.42

5 4 7.24 0.18 58.92

8 3 7.07 0.18 35.92

10 1 6.84 0.17 24.78

15 1 6.57 0.19 24.78

20 1 5.94 0.19 24.78

30 1 5.67 0.20 24.78

config2

0.5 18 8.71 0.16 245.67

1 10 8.69 0.16 222.01

2 8 8.56 0.17 129.29

5 2 8.51 0.17 52.24

8 2 8.28 0.17 48.56

10 1 8.19 0.17 25.14

15 1 8.12 0.19 25.14

20 1 7.38 0.19 25.14

30 1 5.29 0.26 25.14

Table 5.4: Comparison of the performances given by varying the learning
rate η. On the right is reported the time spent to carry the whole
procedure which is dependent on the number of iterations re-
quired to reach the best convergence possible at that specific
learning rate.

crucial for all the algorithms which make use of it and IVA makes no
exception from this point of view.

We investigated the learning rate to understand what is the rate
which allows a good convergence while keeping the number of iter-
ations low: this condition, in fact, is crucial to implement whichever
real-time application since it determines the speed of convergence of
the algorithm.

In table 5.4 we report the investigation on the learning rate η for a
set of values in the interval [0.5, 30]: for each learning rate, by using
the minimum number of iterations necessary to converge, we reached
the maximum SIR improvement possible for that specific learning
rate. The parameter βSIVA has been tuned to achieve the best possible
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performance. As we can see in table 5.4, choosing a small η allows us
to obtain a slightly better performance in terms of SIR but on the other
hand the amount of time required to accomplish the optimization is
highly increased.

For learning rates higher than 10, the best performances achievable
start to get much worse: for high learning rate values, if we increase
the number of iterations the performances get worst, similarly to the
case of large learning rate in Fig. 5.5(a), and if we increase to values
above 100 it is likely to obtain a divergent (so not valid) solution al-
ready at the first iteration. It is also worth to notice that for η = 10

only 1 iteration is required: while there is a slight decrease in the
performance in terms of SIR, the time required to compute the opti-
mization is much decreased, allowing a possible real-time implemen-
tation.

5.3.6 Conclusions

In this section we investigated the influence of the various parameters
on the performances of the proposed methods. We first verified that
the method works by using the oracle-versions in section 4.1, at the
beginning with ideal conditions, i. e. knowing the noiseless signal of
the desired source captured at the ULA, and later on we validated
the oracle version using the true observations for the pilots.

After the assessment of the oracle version, we used a CNN localizer
to verify if, in a known desired ROI, the source is active or not in a
certain time-frame and to compute the posterior probabilities needed
for the IIVA implementation.

We investigated various models for the pilot components of the al-
gorithm and we studied the parameters which influence the behavior
of the algorithm: we discovered that the parameter βSIVA helps to im-
prove the performance of the IIVA as shown in section 5.3.4, with a
high boost in terms of SIR in the cases in which there is a relevant
difference between the power of the interferences and the power of
the desired source to be extracted (due to different distance with re-
spect to the ULA). Furthermore, in section 5.3.5 we verified that the
choice of a proper learning rate is crucial in order to obtain good per-
formances while keeping low the required time for the optimization
and that the proposed algorithm is suitable for real-time implementa-
tions.
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Algorithm βSIVA SIRimp SD

config1

source 1 CIVA – 5.92 0.37

source 1 IIVA 0.6 6.99 0.17

source 2 CIVA – 4.57 0.38

source 2 IIVA 0.6 4.46 0.02

config2

source 1 CIVA – 7.91 0.32

source 1 IIVA 0.6 9.85 0.33

source 2 CIVA – 11.25 0.18

source 2 IIVA 0.6 8.23 0.17

Table 5.5: Comparison in terms of SIR improvement and SD between the
noisy-oracle and the CNN-based SIVA versions.

5.4 algorithms comparison

In this section we compare the performances of the CIVA [27] and
the proposed IIVA. The comparison has not been done with respect
to the standard IVA [28] for the following reasons:

(i) The standard IVA is not suitable for source extraction since the
order of the solution at the output suffers from the so called
global permutation problem described in section 2.2.1 so that
it is impossible to know which source has been extracted at a
certain output.

(ii) The standard IVA is unstable and frequently diverges, specially
for learning rates larger than 1.

In our experiments both the compared algorithms have been tuned
to obtain the best performances possible. In table 5.5, considering
the case of configuration 1 (config1) in Fig. 5.1(a) in which there is a
mismatch in the power emitted by the sources due to the different dis-
tances with respect to the ULA position and the difference of the DOA
is of 40°, in the case in which the desired source is source 1, the pro-
posed method performs better than the CIVA while when the desired
source is the second, the CIVA shows a similar performance in terms
of SIR improvement, while the SD of the IIVA is much lower than
the one of CIVA. In the case of configuration 2 (config2) in Fig. 5.1(b)
where the sources are emitting from similar distances and the DOA
difference is of 65°, for source 1, the IIVA shows +2 dB in terms of SIR
improvement compared to the one of CIVA, with similar SD, while
in the case of the extraction of source 2, the CIVA outperforms the
proposed method. Nevertheless, it is important to notice that, while



62 experiments

(a) Mixture

(b) Noiseless source

(c) CIVA

2 4 6 8 10 12 14 16 18 20
Time (secs)

0

2

4

6

8

F
re

qu
en

cy
 (

kH
z)

-120

-110

-100

-90

-80

-70

-60

-50

(d) IIVA

Figure 5.6: Spectrogram of source 1 extracted using IIVA (d) and using
CIVA (d) for configuration 2. We can see that in the case of
CIVA in (c) there is an unwanted attenuation around 1.8 KHz
which was not present in the noiseless signal in (b).
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the CIVA allows us to reach a better performance for the latter case,
analyzing the spectrogram of the outputs when the desired source is
source 1 in configuration 2 in 5.6(c) it is possible to see that in the case
of the output of the CIVA algorithm there is a region of the spectrum,
near 1.9 kHz, in which there is a clear attenuation visible as a straight
yellow line which is present through most of the time (indicated by
the x-axis on the spectrograms) in which the algorithm was working.
This behavior is probably due to the influence of the introduction of
the steering vector in (3.32) which is substituted to the first filter in
the demixing matrix G so that the update rule of that specific filter is
penalized by the penalty term in (3.34).

If we look at the spectrogram of the same configuration when the
desired source is source 2, we can notice that at second 7, in which
the source to be estimated should be silent as we can see from the
spectrogram of the noiseless desired source to be estimated in Fig.
5.7(b), in the case of CIVA Fig. 5.7(c) there is much more frequency
content with respect to that present in the case of the spectrogram
of the output of IIVA in Fig. 5.7(d): frequency content coming from
source 1 leaked through and this is probably due do the fact that
the initialization of the desired source is done by a steering vector
which is pointing to the direction of the desired source which in this
configuration is similar to the undesired one.
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(a) Mixture

(b) Noiseless source
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(c) CIVA

2 4 6 8 10 12 14 16 18 20
Time (secs)

0

2

4

6

8

F
re

qu
en

cy
 (

kH
z)

-120

-110

-100

-90

-80

-70

-60

-50

(d) IIVA

Figure 5.7: Spectrogram of source 2 extracted using IIVA (d) and using
CIVA (d) for configuration 2. We can see that in the case of
CIVA in (c) there is a considerable leakage of interference in cor-
respondence of second 8 in which the source should not have
much frequency content as we can see in (b).



6

C O N C L U S I O N S A N D
F U T U R E W O R K

In this thesis we investigated the Supervised Independent Vector Anal-
ysis and proposed a new approach, that we called Informed Indepen-
dent Vector Analysis, to exploit the algorithm for blind source extrac-
tion by the use of a CNN-based DOA estimator [17] which is used to
reveal the activity of a desired source in a certain Region-of-Interest.
The term informed comes from the fact that our algorithm uses some
prior information: we assume to approximately know the Direction of
Arrival, given as an angular Region-of-Interest, of the desired source
that we aim to extract.

The algorithm, similarly to the well-known Independent Compo-
nent Analysis [20] algorithms, relies only on statistical hypothesis
about the sources to be extracted from the mixture signal and the
main assumption, which is often verified in real-world, is that of the
independence of the sources to be extracted [10]. The local permu-
tation problems described in section 2.2.1 were solved thanks to the
fact that the source pdf is modeled as a dependent multivariate super-
Gaussian distribution which allows us to arrive to an expression of
the gradient update rule which captures inter-frequency dependen-
cies in the analyzed data [30].

The global permutation problem has been solved thanks to the pi-
lot components, which make use of statistical information about the
source signals driving the algorithm in a limited space solution, so
that the first output of the algorithm is the desired signal. The stat-
ical information about the signals have been provided by revealing
the activity of the desired source and adding a contribution coming
from the observation set: when a desired source is revealed as active,
the other sources are considered as inactive, and this condition usu-
ally hold for a time-frequency unit [36], so that the observations are
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likely to contain signals coming from the desired source, enforcing
the algorithm to converge to a proper solution.

At first, we developed an oracle version to verify that the additive
statistical information provided by the pilot components improved
the performances over the standard IVA. The first oracle version, de-
scribed in section 4.1.1, made use of the source signal which would
be received at the microphone if no interference was present, reveal-
ing the activity of the source by evaluating at each time-frame the
power of the signal and adding the clean source signal components
to the normalization term of the standard IVA so that the algorithm
is able to converge in a restricted solution space. Once we assessed
that the additive information effectively improved the algorithm con-
vergence and separation properties, we developed another oracle ver-
sion, which we named noisy-oracle version in section 4.1.2, that still
uses the power of the desired source to reveal the activity of the
source but the component added to the normalization term comes
from the noisy mixture signal captured by the microphone array.

After the validation of the oracle-algorithms we developed the CNN-
based version, which makes use of a multichannel CNN-based local-
izer [17] in order to track the activity of a desired source given the an-
gular region in which the source is located as explained in 4.2.1. For
computing the posterior probabilities, which are used to decide the
activation of the pilot components, we investigated two models, pro-
posed in section 4.2.2.1: a hard activation and a soft activation model;
furthermore, in section 4.2.2.2, we proposed two models for the addi-
tive information provided by the pilots: the single-microphone model,
which provides information coming only from the reference micro-
phone, and the all-microphones model, which provided information
using the whole observations set. To understand the difference in
terms of performance given by the different models, we conducted
some experiments in section 5.3.1 and section 5.3.1 obtaining similar
performances: based on the results of the experiments, we decided
to opt for the use of the hard (or binary) activation model with the
all-microphone model for the additive information. We investigated
in 5.3 the CNN-based version, that we call IIVA, with various experi-
ments regarding all the parameters which can be tuned and the effect
that the variation of these parameters provides to the performances
of the algorithm.

We discovered that the smoothing parameter βSIVA helps to improve
the performance of the IIVA as shown in section 5.3.4, with a high
boost in terms of SIR improvement in the cases in which there is a
relevant difference between the power of the interferences and the
power of the desired source to be extracted (due to different distance
with respect to the ULA). Furthermore, in section 5.3.5 we verified
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that the choice of a proper learning rate is crucial to obtain good
performances while keeping low the required time for the optimiza-
tion: we assessed that the proposed algorithm is suitable for real-time
implementations.

In section 5.4, we compared the performances of the geometrically
Constrained IVA (CIVA) [27], which is a known Blind Source Extrac-
tion IVA algorithm in the literature, and the IIVA: the performances
of both algorithms are similar and in most cases the IIVA performs
slightly better than the CIVA. However, from a perceptual point of
view, the IIVA also tends to capture with more fidelity all the fre-
quency components related to the desired source that we aim to ex-
tract while the CIVA tends to achieve good performances, and some-
times better than those of IIVA, but with some unwanted attenuations
at certain frequencies and with more leakages of signals components
from other sources coming from similar DOAs as clearly visible from
their time-frequency representation in section 5.4. Furthermore, the
IIVA seems to be robust to mismatches of the powers of the desired
sources: we showed in our experiments that when one of the sources
is far, so that its signal is attenuated with respect to the interfering
source in the mixture captured by the microphones, the algorithm is
still capable to achieve good performances and an overall good sepa-
ration.

The advantage of the IIVA with respect to the CIVA is that of not
modifying directly the demixing matrix: in the IIVA the performances
are increased by providing some additional information coming from
the pilots, which is added in the update rule of the standard IVA
gradient update, and this is a wanted property since in the CIVA, the
penalization term introduced for the utilization of the steering vector,
penalizes the algorithm also bringing some unwanted losses in the
frequency content of the estimated sources.

The proposed algorithm has shown promising results and this let
us envision future developments. It would be interesting to extend
the concept of the pilot and to build, for each source, different pi-
lots which could gather and add information of different type such
as visual information, e. g. using a face recognition system which de-
tects the movement of the lips to decide whether a source is active
or not, or to investigate the behavior of the algorithm in other kinds
of applications, for example it would be possible to model different
kind of noises, e. g. engine noise, wind noise, etc., as interferences
to be suppressed. Furthermore, during the experiments it has been
assessed that the normalization used to avoid the divergence of the
natural gradient update influences the performances of the algorithm
itself: it would be interesting to understand how different normaliza-
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tions influence the behavior and the convergence properties of the
algorithm.
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