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Abstract

The diffusion of electronic board is constantly increasing due to the wide spreading of
mechatronics products. End of life management of such type of products is not cur-
rently approached in terms of process efficiency and environmental effects in a global
perspective. This is due both to the rapid technological evolution and to the absence
of integrated, automated and flexible systems able to treat mechatronics components
under sustainable conditions. This topic is critical from an environmental point of view
and represents a big opportunity for the manufacturing industry. To respond to this
lack, a de-manufacturing pilot plant has been developed by CNR ITIA, the Institute
of Industrial Technologies and Automation of the National Council for Research, in
Milan. The plant is designed for testing, repairing and disrupting electronic boards,
and is currently composed by a multi-path transport line and four machines with dif-
ferent functions: testing, repairing, discharging and loading/unloading. In this context,
a primarily role is played by the conveyor system, that has been designed not only to
be a simple assemblage of sensors/actuators able to move the pallets following prede-
fined trajectories. Indeed, it is able to guarantee an efficient path of the boards in the
network allowing to avoid bottlenecks, starvation and maximizing throughputs. This
is due to the implementation of a multi-level control strategy in which, at the higher
level, an MPC controller manages the movement of the pallets in order to optimize the
performances while, at the lower level, PLCs acquire the sensor signals and drive the
actuators. The MPC algorithm has been implemented in a C++ control platform that
uses Matlab to handle the optimization problems, while the logic control belonging to
PLCs has been implemented in ISaGRAF.

The aim of this project is to increment the performance on the transport line of the pilot
plant, making it more suitable for a possible use in the industrial field.

In the first part of the dissertation, the problem of the delays introduced by the com-
plexity of the software is considered. A massive adjustment of the C++ structure has
been implemented and Matlab has been completely removed from the control environ-
ment. This has allowed to parallelize the calculations of the optimal solutions and the
activities of the low-level control system, with a remarkable gain in terms of time.

Then, the efforts have been concentrated in reducing the computational cost of the
optimization problems, through the introduction of some heuristic rules and the modi-
fication of the dynamic model. Some features not strictly related to the improvements
of the performances of the plant have been introduced in order to enhance the operator
experience.
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Abstract

In the last part of the Thesis, a fault detection and recovery algorithm has been de-
signed and implemented. Indeed, given the current system, a fault in sensors or ac-
tuators blocked the whole de-manufacturing process even if it was not a critical error.
Thanks to the nature of MPC control (which allows to exclude the action of the dam-
aged component by simply adding constraints in the optimization problem) and to the
architecture of the control system, a residual based approach able to be completely ro-
bust to the sensors faults has been developed.

Through the implementation of advanced control techniques, such as MPC with con-
trol horizon, combined with the application of heuristic rules developed thanks to an
in-depth analysis of the structure of the line, clear improvements have been obtained
through the lowering of the computing power required. This resulted in a significant
reduction in the average time needed to calculate the solution, which in some cases
reached more than 96% compared to the basic version of the controller. Moreover,
thanks to the parallelism introduced between the problem-solving activity and move-
ments realization, even the total production time has been sensitively reduced and in
the majority of cases the optimization problem is completely hidden. This means that
the first issue faced in Thesis has been completely solved, and the bottleneck of the pro-
duction time is now due to the implementation of the movements of the pallets, which
is fixed.
The further limitation to work on is finding a more effective configuration for the Cplex
environment to solve the bug of saturation of the workstation in which the main process
of the solver runs.

Concerning the detection and the handling of the faults occurring on the plant, the
case of single failures has been studied. A knowledge-based model for residual matrix
building and an opportune method to active fault recovery have been implemented with
outstanding results. The system is now able to react to failures with only two steps of
delay, respecting the constraint of not wasting time in reading the state of the transport
line by the sensors.

A possible follow-up on this Thesis could therefore be the attempt to reduce the steps
necessary for the controller to detect a fault. Furthermore, fault recovery is limited by
the configuration chosen for the transport modules. Studying another arrangement that
keeps the distance between the machines unchanged, but adds connections to the graph
could be proven to be fundamental.
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Sommario

Ł′ampia diffusione di prodotti meccatronici ha comportato, e sta comportando, un au-
mento nella diffusione di schede elettroniche. La gestione di fine vita di questo tipo di
prodotti non è attualmente affrontata in termini di efficienza dei processi. Ciò è dovuto
sia alla rapida evoluzione tecnologica sia alł′assenza di sistemi integrati, automatizzati e
flessibili in grado di trattare i materiali speciali che compongono le schede elettroniche
in condizioni sostenibili. Questo argomento risulta critico da un punto di vista ambien-
tale e rappresenta una grande opportunità per ł′industria manifatturiera. Per rispondere
a questa mancanza, un impianto pilota di de-produzione è stato sviluppato dal CNR-
ITIA, ł′Istituto di Tecnologie Industriali e Automazione del Consiglio Nazionale per la
Ricerca, a Milano. Ł′impianto è progettato per testare, riparare e distruggere questo
tipo di prodotti ed è attualmente composto da una linea di trasporto modulare e da
quattro macchine con funzioni diverse: testing, riparazione, distruzione e caricamen-
to/scaricamento dalla linea. In questo contesto un ruolo principale è svolto dal sistema
di trasporto, che è stato progettato in modo tale da garantire che le schede siano smis-
tate tra le macchine in maniera efficiente, evitando colli di bottiglia e massimizzando
il rendimento. Ciò è possibile grazie alł′implementazione di una strategia di controllo
multi-livello in cui, a livello superiore, un controller MPC gestisce il movimento dei
pallet per ottimizzare le prestazioni mentre, a livello inferiore, i PLC acquisiscono i
segnali dei sensori e guidano gli attuatori.
Ł′algoritmo MPC è stato implementato in una piattaforma di controllo C++ che uti-
lizza Matlab per gestire i problemi di ottimizzazione, mentre il controllo logico dei PLC
è stato implementato in ISaGRAF.
Lo scopo di questa Tesi, è quello di incrementare le prestazioni delł′impianto pilota
lavorando sul sistema di controllo della linea di trasporto. Andando a migliorare la
produttività e la affidabilità della linea in ottica di un possibile futuro utilizzo in ambito
industriale.
Nella prima parte della Tesi, viene considerato il problema dei ritardi introdotti dalla
complessità della struttura del software di controllo. La piattaforma di controllo C++
è stata completamente ripensata e Matlab è stato rimosso dalł′ambiente di controllo.
Ciò ha permesso di ridurre i tempi andando ad eseguire in parallelo la gestione della
soluzione del problema di ottimizzazione legato alł′algoritmo MPC e le attività del sis-
tema di controllo di basso livello.
Quindi, gli sforzi si sono concentrati sulla riduzione del costo computazionale dei prob-
lemi di ottimizzazione, attraverso ł′introduzione di alcune regole euristiche e la modi-
fica del modello dinamico. Alcune funzionalità, non strettamente correlate ai miglio-
ramenti delle prestazioni delł′impianto sono state introdotte per migliorare ł′esperienza
delł′operatore.
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Sommario

Nelł′ultima parte della tesi è stato progettato e implementato un algoritmo di rileva-
mento e recupero dei guasti. Infatti, dato il sistema attuale, un guasto nei sensori o
attuatori bloccherebbe ł′intero processo di de-produzione anche se non si trattasse di
un errore così grave da compromettere le funzionalità dello stesso. Grazie alla natura
del controllo MPC (che consente di escludere ł′azione del componente danneggiato
semplicemente aggiungendo vincoli nel problema di ottimizzazione) e alł′architettura
del sistema di controllo, si è sviluppato un approccio basato sullo studio on−line dei
residui.

Attraverso ł′implementazione di tecniche di controllo avanzate, come MPC con oriz-
zonte di controllo, combinate con ł′applicazione di regole euristiche sviluppate grazie
ad una analisi approfondita della struttura della linea, sono stati ottenuti chiari miglio-
ramenti dal punto di vista delł′abbassamento della potenza di calcolo richiesta. Ciò
ha comportato una significativa riduzione del tempo medio necessario per calcolare la
soluzione, che in alcuni casi ha raggiunto miglioramenti quantificabili in più del 96
percento rispetto alla versione base del controllore.

Si può affermare che il problema legato alł′abbattimento dei tempi affrontato in questa
Tesi è stato completamente risolto e che il collo di bottiglia del tempo di produzione
è ora da imputarsi alł′implementazione degli spostamenti dei pallet sulla linea. Per
quanto riguarda questo tema, quindi, ł′unico aspetto su cui poter lavorare è trovare una
configurazione più efficace per ł′ambiente Cplex ed eliminare così il bug relativo alla
saturazione della memoria RAM.
In relazione al tema del rilevamento e della gestione dei guasti che si verificano sulł′impianto,
è stato studiato il caso di guasto singolo. Un modello basato sulla conoscenza del sis-
tema per la costruzione della sua matrici dei residui e un metodo per il recupero attivo
dei guasti sono stati implementati con ottimi risultati. Il sistema è ora in grado di rea-
gire ai guasti con solo due passaggi di ritardo, rispettando il vincolo di non perdere
tempo nel leggere lo stato della linea di trasporto dai sensori.
Un possibile follow-up su questa tesi potrebbe quindi essere il tentativo di ridurre i pas-
saggi necessari affinchè il controllore rilevi un guasto. Inoltre, il ripristino degli errori
è limitato dalla configurazione scelta per i moduli di trasporto. Studiare un altra config-
urazione che mantenga inalterata la distanza tra le macchine, ma aggiunga connessioni
al grafico, potrebbe dimostrarsi fondamentale per avere una strategia di correzione del
guasto efficace.
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Chapter 1

Introduction

The aim of this project is to increment the performance and the reliability of a de-
manufacturing plant for electronic boards, by improving the performance of the control
system of its transport line. The work developed concerns two main topics: the reduc-
tion of the time needed to compute the optimal trajectories for maximizing the number
of elements processed, and the introduction of a mechanism of faults detection and re-
covery that allows guaranteeing the plant activity even in the presence of malfunction-
ing. All the solutions elaborated have been tested and implemented on a pilot project
on the CNR-ITIA (Institute of Industrial Technologies and Automation of the National
Council) plant, designed to represent a pilot project oriented to provide a second life
to the electronic components, otherwise addressed to disruption. The handling of the
end of life of such type of products is going to be one of the most relevant problems
of our century [8, 16]. This issue is crucial both for the sustainable development of the
mechatronic sector and for the possibility for European countries to become indepen-
dent o countries rich of raw materials.
For a better understanding of the work reported in the Thesis it is therefore essential to
briefly describe the operating principles of the de-manufacturing plant and to give an
overview of the control software environment.

In the Thesis the structure and the control system of the pilot plant is described in a
synthetic way, to provide the reader with the tools to understand the topics covered.
For a more in-depth discussion, several papers are available; the interested reader is
referred to [3, 4].

1.1 General Description of the Pilot Plant

The plant is designed for analysing, repairing and disrupting electronic boards, and
is currently composed by a multi-path carriage line and four machines with different
functions: testing, fixing, discharging and loading/unloading. Its structure is shown in
figure 1.1, in which the main elements are highlighted.
Regarding the control system, each machine is represented as a three-state automa
(empty, manufacturing and end manufacturing with pallet still loaded). Therefore, from
the controller point of view, there is no difference between the three working cells. In
this way, the re-usability and longevity of the developed system are guaranteed, as the
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1.1. General Description of the Pilot Plant

transport line is freed from the specific plant machinery.
For the sake of completeness, however, a brief description of the tasks and operations
of each machine is presented.

Figure 1.1: The de-manufacturing plant structure.

• Collaborative Robot Cell (M1). The electronic boards can be loaded or unloaded
from the transport line. Concerning the loading phase, each board is extracted
from the case of the wasted mechatronic products and inserted into a pallet, which
is then loaded on the transport line. In the unloading phase, the reusable boards
are removed from the pallets and stored.

• Testing Machine (M2). It examines the board received from the transport line to
identify the presence of failures and, at the end of the operation, communicates to
the controller a code corresponding to the failure detected.

• Reworking Machine (M3). The board previously analysed is repaired with a spe-
cific program for each type of malfunction.

• Discharge Machine (M4). The board impossible to fix is unloaded from the pallet
and destroyed.

The main element of interest in this project is the pallet transport line. As in the major-
ity of the manufacturing sites, the transport line has the essential role of allowing the
exchanging of elements between the machines of the plant without the need of human
intervention. The system has been designed to guarantee a high re-usability since it has

2



Chapter 1. Introduction

a modular structure, thanks to which it is easy to implement any change to the topology
of the plant or substitute broken elements. The modularity is guaranteed by the fact
that it consists of fifteen modules (T1, ..,T15 in figure 1.1) designed in to have the same
physical structure, on which the same components can be mounted. The basic idea is
therefore to have elements that are easily interchangeable, keeping the possibility of
customizing them according to specific needs. Given this, the transport line is easily
adaptable to the changes required in a modern production line. In the specific case, the
fifteen modules allow to appropriately configure to adapt the line to the conformation
of the CNR laboratory. It is interesting to note that even within the same laboratory,
the structure of the transport line has been modified several times depending on the
changes introduced over time.
So, each module has a specific configuration depending on its position in the plant, but
it is possible to present a general scheme useful to understand the working principles.
Generally speaking, each element of the line is endowed with a conveyor belt, on which
the pallets are placed and with a system of motors and sensors able to command the belt
and then move the pallets along the possible directions imposed by the physical struc-
ture of the line. Furthermore, any module is ideally divided into up to three different
areas called buffer zones (in the following they will be named BZs), where the pallets
could rest their movements.
Each module is marked with a number, so that it is possible to localize a pallet in the
network, using this number and the buffer zone occupied as parameters (γ(i, j) will
denote the jth position of the ith transport module). As an example [2], in figure 1.2, a
transport module with three BZs is reported, together with the possible movements of
the pallet. From the figure is easy to notice that from a BZ a pallet can be moved in
different directions (forward, backward, lateral) depending on the specific combination
of actuators and sensors installed on the module. So, different paths are possible and
the problem of managing the routing on the transport line is not trivial.

Figure 1.2: Schematic of the transport module
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1.2. The control system

1.2 The control system

The controller of the plant has been developed according to the hierarchical, multi-level
structure [22], shown in figure 1.3.
At the higher level, an MPC controller manages the movement of the pallets to optimize
the plant performances based on the current status of the plant, i.e. the number and the
position of pallets on the conveyor and the state of the machines.
At the lower level, a set of Programmable Logic Controllers (PLCs) solve the task of
handling the sensors and the actuators. In fact, for every module a PLC acquires the
data transmitted by the sensors and consequently turns on/off the actuators to move the
pallets.
The division of the problem in two different sub-problems has allowed to completely
separate the solution of the routing problem from the one regarding the implementation
of the pallets movements.

Figure 1.3: De-manufacturing pilot plant control architecture

Currently, this control architecture is distributed on three computers: a workstation and
two supporting PCs. The workstation runs the the controller, that implements the high-
level logics entrusted to a set of software with different tasks coordinated by a C ++
platform. On the same machine is handled also the low-level logic. They are imple-
mented on ISaGRAF [11]. It is essential because, among other things, it compensates
for the lack of physical PLCs by creating a virtual copy on the support computers con-
nected to the system network. So, ISaGRAF sends the commands to the supports PC
that elaborate them substituting the PLCs and managing the actuators and the sensors.
The software architecture is schematised in figure 1.5.
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Chapter 1. Introduction

Low level control system

The low-level control has been designed to handle the pallets movements through the
different buffer zones according to the requests coming from the high-level control. It
is composed of a set of logic sequences that specify how a PLC has to manage the ac-
tuators and the sensors of the module, which has to deal with. Thanks to the structure
of the transport line, it is possible to classify a set of thirty-six control sequences (iden-
tified by arrows and labeled Sn, in figure 1.2) capable of achieving all possible pallet
moves on the conveyor. Then, it has not been necessary to develop distinct control soft-
ware for each PLC, but just to download the control sequences required to perform the
pallet movement for each transport module, with a notable gain in terms of re-usability,
maintenance and efficiency of the software.

N29
ϒ14,3

N28
ϒ14,2

N27
ϒ13,3

N26
ϒ13,2

N25
ϒ12,3

N24
ϒ12,2

N30
ϒ15,1

N31
ϒ15,3

N1
ϒ1,1

N2
ϒ1,3

N3
ϒ2,1

N4
ϒ2,3

N5
ϒ3,2

N6
ϒ3,3

N7
ϒ4,1

N8
ϒ5,2

N9
ϒ5,3

N16
ϒ8,3

N19
ϒ9,3

N11
ϒ6,3

N10
ϒ6,1

N13
ϒ7,3

N12
ϒ7,1

N15
ϒ8,2

N14
ϒ8,1

N18
ϒ9,2

N17
ϒ9,1

N21
ϒ10,3

N20
ϒ10,2

N23
ϒ11,3

N22
ϒ11,2

Testing
(M2)

Discharge board
(M4)

Reworking
(M3)

Load/unload
board (M1)

U1,2U2,3U3,4U4,5

U32,1 U1,32

U1,27 U27,1

U27,28

U3,25 U25,3

U5,6

U6,7

U7,8

U7,16

U16,7

U8,9

U9,10U10,12

U10,11

N32

N34

N33

N35

U28,29

U29,30

U31,1 U30,31

U25,26 U26,27U24,25U21,24

U23,24

U11,14

U14,15

U15,16

U12,34U34,12

U12,13

U13,17

U17,18

U14,17

U17,14

U16,33
U19,34

U33,19

U18,19

U19,16

U19,22

U22,23

U16,20

U20,21

U23,35
U35,23

U21,23

Figure 1.4: Graph representation of transport line.

Hence , for each movement between two buffer zones or two transport modules, there
are one or more fixed prearranged control sequences to invoke. The coordinator does
not need to know the commands to the actuators necessary to move the pallet from
a position to another, but it only needs to know the two buffer zones involved in the
movements. Consequently, to reduce the number of variables necessary to describe the
moves, it is possible to define specific variables uniquely associated with the pallet mo-
tion between two particular buffer zones. Then, these variables could be considered the
control actions computed by the HLCS, which have to be sent to the LLCS and to be

5



1.2. The control system

implemented to manage the plant.
The transport line can thus be described and represented by a direct graph, as in fig-
ure 1.4. The nodes represent both the BZs and the machines where the pallets can lay,
while the arcs are associated with the HLCS commands used to move the pallet from
a node to an adjacent one. The modelling of the plant in the form of a graph allows
the development of advanced control techniques for the management of the routing on
the transport line. In fact , several mathematical formalisms can be used to derive an
accurate model that is entirely abstract with respect to the actual plant, but very reliable
in the controller design.

Regarding the implementation, each control sequence is coded in the SFC programming
language following the guidelines imposed by the IEC 61131-3 standard.

High level control system

The high-level control decides which control actions must be activated at any moment.
Several control algorithms could be used to determine the evolution of the system. In
particular, the controller considered in this Thesis can choose whether to use an ad-
vanced technique such as MPC, or a sequence of predefined control actions in a cyclic
manner. To accomplish both techniques, different programs are needed. Indeed, the
tasks to be fulfilled are different: it is necessary to store the information on the predic-
tion model, solve optimization problems, manage the communication with the system,
translate the commands sent from the top level to control commands compatible with
PLCs, etc. In this context, a primary role is played by the DCPIP platform, which runs
the control algorithm of the plant to be controlled. It is a C++ software that constitutes
the kernel of the control system managing the communication between the principal
software packages of the environment: ISaGRAF and MATLAB, used respectively as
interfaces with the PLCs (and then with the plant) and for storing the prediction model
and carrying out the operations necessary to calculate the control actions.

To understand how the high-level logic works it is essential to understand that the upper
layer of the controller is based on a simple information-exchange mechanism. The
various software, running on the same machine, are able to exchange information by
writing and reading text files. The information transferred are vectors of integers thanks
to which it is possible to define the system status at any time. For example, it is possible
to describe the position taken by the pallets on the transport line through a vector of
numbers from zero to five; zero indicates that a certain buffer zone is empty, and the
numbers from one to five indicate the associated destination of each pallet on the line.
Similarly, the control actions can be described by a vector of zeros and ones, where
one indicates that the control action must be activated. To summarize, the operations
performed are the following: in an initialization phase, the DCPIP platform starts the
system by initializing the data structures necessary for communication with the other
programs, while Matlab builds the model to be used to implement the MPC algorithm
using HYSDEL; after this step, the DCPIP passes the state of the system to Matlab
cyclically. Matlab solves the optimization problem associated with the control problem
by using a toolbox provided by Cplex; when the solution is ready, it is stored into a
text file, which is read by the DCPIP and passed to ISaGRAF, which in turn translates
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Chapter 1. Introduction

it into a language that is understandable to the PLCs and starts the logic of the low
level control. When the movement of the pallets ends, ISaGRAF communicates to the
DCPIP the new state of the system which in turn passes it to Matlab and so on.

Figure 1.5: Software architecture

1.3 Low Level Control Implementation

To fully understand the operation of the plant we need to deepen the functioning of
ISaGRAF. It is an environment that allows simulating and programming the PLCs of
the plant and implements the line supervisor which handles the operations of the plant
and the communication of the control system with the machines. Moreover, it works as
an observer of the plant processes since, at each step, it stores the information about the
state of the transport line and, through its mathematical model, he is able to calculate
his future status starting from the control actions to be implemented.

It is very important to understand how communication with the low level is managed
and how the project has been organized since a massive modification of this platform
have been done during the thesis.
The workflow can be summarized as follows: an ISaGRAF program runs on the work-
station carrying out the activity of plant supervisor while, on another computer, a differ-
ent program simulates the operation of the PLCs. When the DCPIP writes the control
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actions to the dedicated text file, it notifies that the data are available to the supervisor
that reads the file and translates the control actions into control sequences. In the end,
these sequences are activated and the secondary process manages the inputs/outputs of
the corresponding module of the transport line. Once the operation associated with the
sequences has been completed, this process returns an "all ok" signal to the supervisor;
this estimates the system status starting from the previously read control actions and
passes it to the DCPIP writing it on text. It is important to underline two main aspects:

• If the supervisor does not receive a feedback from the virtual PLCs, the whole
control system is stuck. It means that even a non critical fault could block the
operations of the plant.

• Both the DCPIP and ISaGRAF, and therefore the high-level control, are not aware
of the data communicated by the sensors. The system status is calculated starting
from the control actions through the knowledge of the mathematical model of the
plant by the line supervisor. The choice of not reading the state of the plant from
the sensor at each step is due to the fact that for this plant this operation is very
time consuming.

The software structure is divided into three parts, which correspond to the three distinct
programs generated during compilation. Two parts are related to the modules, and for
each module the SFC sequences that implement the low level control are defined. The
third part defines the logic of the line supervisor and the management of the machines,
its elements are reported in figure 1.6.

Figure 1.6: Module Line Supervisor

Each module of the software has local variables that are accessible from the other mod-
ules only through a one-way binding process, whereby one module variable is assigned
the value of another in another module. This technique is used to allow PLCs to com-
municate to the line supervisor that they have finished their work. To enable virtual
PLCs to communicate with the actuators and sensors, it is possible to configure the
input and output ports connected to the network by associating the values of some vari-
ables.

8



Chapter 1. Introduction

1.4 Contents of the Thesis

During the thesis work, various issues related to both the design and the implementation
phases have been addressed. Working on a pilot plant has allowed addressing problems
of different nature and to experiment in a safe mode new features and ideas, even the
ones not strictly related to the thesis topics. For example, the momentary failure of the
robot cell has required to develop a new temporary way to unload/load the pallets from
the plant.
So, many aspects of the de-manufacturing pilot plant have been taken into account; the
main ones are briefly described below.

The first aspect analyzed regards the simplification of the software architecture. In
particular, the Matlab environment has been removed to implement the MPC control
algorithm entirely in C++ with a direct call to CPLEX. This operation required an ap-
propriate manipulation of the matrices of the linear MLD model of the transport line,
in particular, the unrolling over time of the dynamic, output and constraints matrices.
Moreover, the operator interface has been changed to improve the human work use.

Then, the attention has been focused on studying the topology of the plant to indi-
viduate heuristic rules for reducing the complexity of the optimization problem derived
from the MPC algorithm. Some set of buffer zones, called tunnels (in which there is
only one possible path to follow from the pallets) have been selected and, for each of
them, a mechanism able to exclude these areas from the computations has been devel-
oped. The pallets that enter in a tunnel are automatically pushed, without the need of
computing the best path. Moreover, the cost function of the MPC problem has been
modified to have an ’accumulation zone’, close to the robot cell, where the empty pal-
lets are pushed on.

Finally, taking advantage of the hierarchical control structure, a residual-based ap-
proach for the faults detection has been developed. Once a fault is identified, if it is
not critical, the system automatically acts on the LLCS stopping the critical control
sequence and adds constraints to the MPC controller to make the HLCS able to avoid
the broken path and in this way to be able to restore the working activity. Otherwise,
the whole plant is stopped, and the fault is signaled to the operator. Thanks to this
approach, the controller has now become robust with respect to sensor and actuator
faults.
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1.5 Thesis structure

The thesis is organized as follows.
Chapter 2 describes the new software architecture and develops the optimization prob-
lem requested from the MPC technique starting from the MLD model of the system.
Chapter 3 considers the problem of the reduction of the computational time requested
by the above optimization problem and describes the others changes to the control sys-
tem to improve the user experience use.
Chapter 4 addresses the challenge of the design of fault tolerant controller in the case
of sensors and actuators fault.
In Chapter 5, a possible solution on how the plant must respond after a fault occurs is
presented.
Chapter 6 presents the conclusions of the work and some hints for future works.

1.6 List of publications

The research activity developed during the Thesis development has lead to the follow-
ing publication:

International conferences proceedings

Cataldo A., Lanzarone E., Morescalchi M., Scattolini R. Complexity reduction of Model
Predictive Control for a de-manufacturing plant. In Proc. of the 16th IFAC Symposium
on Information Control Problems in Manufacturing. Bergamo, Italy, 11-13 June 2018.
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Chapter 2

MPC Controller: algorithm formulation
and software implementation

In this chapter, the MPC algorithm developed for controlling the pilot plant is formu-
lated and a brief description of its implementation into the Dynamic Control Platform
for Industrial Plants (DCPIP) is given. At the end, it is shown the configuration chosen
for the platform delegated to solve the MILP problem.

Starting from the graphical representation of the plant (see figure 1.4) it has been pos-
sible to obtain a dynamic model of the transport line, which successively has been
translated into a Mixed Logical Dynamic (MLD) formulation by linearising the non-
linear terms and the logic propositions. The fundamental idea behind this technique is
that the logical expressions can be rewritten into algebraic inequalities. The operating
principles have been stated as simple predicates that have been combined using con-
nectives and modifiers such as and (∧), or (∨), not (¬), implies (→) or if and only if
(↔). Thus, by exploiting the properties of boolean algebra, these conditions have been
combined and translated into algebraic constraints. There are several techniques to do
that and, depending on the one used, the model presents a different number of auxiliary
variables and constraints. At the end, one can obtain a representation in which both
continuous and discrete dynamics coexist and interact with each other. The ideas of
MPC can be applied to this kind of systems, and it is called Hybrid MPC, but in this
case, the mathematical problem associated is more computationally demanding than in
the case of processes with only real variables. Once the expressions to derive the model
of the transport line have been obtained, the objective function of our problem has been
defined, and then it has been possible to start the implementation of the algorithm in
C ++ code. The implementation process consists in developing the functions that, at
each generic instant k, allow to automatically calculate the matrices used for solving
the optimization problem and manage the interaction with the calculation software.

The modeling phase is not the subject of this thesis, so just an example of how the
different elements of the system have been modeled will be provided to the reader. For
more details, the complete model is available in [2]
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It is important to underline that, at the beginning of this Thesis, the implementation of
the MPC algorithm was delegated to the Matlab environment. Thanks to the help of
the Yalmip and HYSDEL tools the matrices of the system were transformed into the
constraints of the optimization problem; then the issue was solved by invoking Cplex, a
very powerful optimization solver. Changing the control structure, eliminating Matlab
and making sure that its role is incorporated into the DCPIP, has been essential in order
to work on the improvements presented in the next chapters and has made it possible
to eliminate the need to buy a rather expensive license with a view to a future industrial
application.

2.1 Dynamic Model

In this section, the dynamical model of the system is derived as in [4].

Model of the Nodes

Each pallet is associated with an integer that denotes the destination, also called target,
of the loaded electronic board. It is possible to define Γi(k) as the value correspondent
to the pallet target present in node (remember the nodes are the mathematical represen-
tation of buffer zones and machines) Ni, i = 1, ...,35; it can takes the following values:

• Γi(k) = 0 if node Ni is not occupied by a pallet at instant k.

• Γi(k) = m, m = 1,2,3,4 if the node Ni contains a pallet in which is loaded a board
to be sent, respectively, to the machines M1,M2,M3,M4.

• Γi(k) = 5 if node Ni is occupied by a pallet that is empty at instant k (typically
when pallets exit from the discharge station they assume the value Γ = 5 until
they are called by the robot cell to load a new board).

As concerns the not structurally null commands, the following variables are defined:

• ui, j(k) =

{
0 i f the command is not active at k

1 otherwise

• Ii,in is defined as the set of indices j associated with u j,i, which allow to move a
pallet to the node Ni from an adjacent node N j.

• Ii,out is defined as the set of indices j associated with u j,i, which allow to move a
pallet from the node Ni to an adjacent node N j.

To complete the model of the nodes correctly, it is advisable to define some constraints:

1. For each node Ni and at any time instant k, only one control input can be allowed

∑
j∈Ii,in

ui, j ≤ 1 i = 1, ..,35

2. For each node Ni and at any time instant k, only one control output can be allowed

∑
j∈Ii,out

ui, j ≤ 1 i = 1, ..,35
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3. If a node is empty, no commands of output can be given

Γi(k) = 0→ ∑
j∈Ii,out

ui, j = 0 i = 1, ..,35

Model of the Buffer Zones

All the following equations are defined for i = 1, ..,31.
The dynamic equation that describes the pallet movement for the generic BZ and its
target propagation is

Γi(k+1) = Γi(k) + ∑
j∈Ii,in

Γ j(k)ui, j(k) − ∑
j∈Ii,out

Γ j(k)ui, j(k)

A node Ni can contain at most one pallet, so, if it full, it is possible to activate an input
control action (ui,k ∈ Ii,in) only if at the same time an output control action (ui,k ∈ Ii,out)
is set to one so as to free Ni. It can be expressed as a constraint by imposing:

Γi(k) ≥ 0 ∧ ∑
j∈Ii,out

ui, j(k) = 0 → ∑
j∈Ii,in

ui, j(k) = 0

It is useful to define γi(Γi(k)) referred to a pallet occupying Ni as the minimal distance
to its target. γi(Γi(k)) is equal to zero if Ni is empty or is occupied by an empty pallet.
In all the other cases, it is equal to the length of the minimal path from node i to the
target machine.
Another aspect to consider is the fact that the permanence of the pallet on the transport
line should be penalized to force its movement toward the target machine and avoid
deadlocks. To this end, a counter ηi for each buffer zone is defined and, at each time
instant, its value is increased by one so as to it represent the number of instants in which
the corresponding pallet has been on conveyor. When it reaches a machine, the counter
is reset. For modelling a counter, the following variables are needed:

• δi(k) that is a boolean variable that indicates if at least one control action regarding
Ni has been activated (in this case it is equal to one) or not (equal to zero).

• θi(k) that is a boolean variable that indicates if Ni contains a pallet with Γ 6= 1 or 5.

Then, the dynamic equation of the counter for the i− th BZ is given by

ηi(k+1) = ηi(k)+δi(k) θi(k)+ ∑
j∈Ii,in

[η j(k)+1] θ j(k) ui, j(k)− ∑
j∈Ii,out

ηi(k) θi(k) ui, j(k)

Model of the Machines

The generic machine Mi is described by a finite state machine (FSM) with three boolean
states:

1. xi1 idle and empty machine

2. xi2 manufacturing

3. xi3 end manufacturing with pallet still loaded
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To model its dynamic behaviour, the following rules are set.

1. Switch from xi1 to xi2

xi1(k)∧ ∑
j∈Ii,in

ui, j(k) = 1→

{
xi1(k+1) = 0

xi2(k+1) = 1

In xi1 the counter is kept at zero. When the control action ui j (the action that
moves the pallet from the BZ j to the machine i), the FSM changes its state from
xi1 to xi2.

2. Switch from xi2 to xi3

xi2(k)∧ (ni(k)≥ ñi)→

{
xi2(k+1) = 0

xi3(k+1) = 1

The counter ni is increased at every step and when it reaches a certain threshold
ñi, the changes passes from xi2 to xi3.

3. Switch from xi3 to xi1

xi3(k)∧ ∑
j∈Ii,out

ui, j(k) = 1→

{
xi3(k+1) = 0

xi1(k+1) = 1

In xi3, ni is kept constant at ñi, and a new target Γ is assigned to the pallet. When
the output control action ui, j is activated, the pallet is moved to the adjacent BZ of
the transport line.

2.2 MPC Problem Formulation

The Model Predictive Control [17, 18] technique is a control method that is becoming
more and more popular with the increase of computing power. It consists in formulating
the control problem as a mathematical optimization issue, built on the dynamic model
of the system to be controlled, and, in particular, on the prediction of the evolution of
the system in a certain future horizon [5]. The derived optimization problem is then
solved on-line at each sampling instant, obtaining the sequence of optimal inputs to be
supplied to the system. In other words, at any time instant k, the controller, relying on
the available information, solves the optimization problem with respect to the future
control sequence [u(k), ..,u(k+N−1)] and applies only the first element u0(k). Then,
at time instant k+1, a new optimization problem is solved, based on the new informa-
tion acquired at instant k+1, along the prediction horizon [k+1,n+N] [23].
Its success is mainly due to the possibility to include different goals in the optimization
problem and the fact it explicitly include in the control problem formulation state and
input constraints.

Generally speaking, an MPC controller can be described by two elements: the pre-
diction model and the objective function (also called performance index).
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Prediction Model

The MLD system used in this Thesis is described as follows.
x(k+1) = Ax(k)+Buu(k)+Bauxw(k)+Ba f f

y(k) =Cx(k)+Duu(k)+Dauxw(k)+Da f f

Exx(k)+Euu(k)+Eauxw(k)≤ Ea f f

Where x(k) = [xT
r (k)x

T
b (k)] with xr(k) ∈ Rn and xb(k) ∈ {0,1}nb is the vector of the

state variables, u(k) = [uT
b (k)] with ub(k) ∈ {0,1}lb is the vector of the control actions,

w(k) = [wT
r (k)w

T
b (k)] with wr(k) ∈ Rr and wb(k) ∈ {0,1}rb is the vector of boolean

auxiliary variables.

• In the model of the transport line, the vector of the state variables consists of 82
elements useful to describe the distribution of the pallets on the plant. Of these, 35
are integer variables (Γi) that indicate the final destination of the pallet associated
to the i− th BZ, 35 are integer variables (ηi) that store the counter associated to
each pallet and 12 (xi1,xi2,xi3) are boolean variables that describe the behaviour
of the machines.

• The vector of the inputs (control actions) is composed by 51 boolean variables
(ui, j) which allow the pallet movement from a buffer zone to another one.

• The vector of auxiliary variables contains 399 variables, of these 302 are boolean
and 97 are integer. They are used to implement the cost function, to set the phys-
ical constraints due to the topology of the network and to add some features like
the off-limits area (it is not allowed to the pallet to move close to a machine when
it is working) to the plant.

Objective function

It is possible to state the expression of the linear performance index J as:

J =
N

∑
h=1

{
35

∑
i=1

γi(Γi(k+h))︸ ︷︷ ︸
(1)

+
35

∑
i=32

qxixi3(k+h)︸ ︷︷ ︸
(2)

+
31

∑
i=1

qηiηi(k+h)︸ ︷︷ ︸
(3)

+

+ ∑
(i, j)∈Iu

qui, jui, j(k+h−1)︸ ︷︷ ︸
(4)

+

+ ∑
(m,r,i, j)∈Ψ

λm,rσm(k+h−1)ui, j(k+h−1)︸ ︷︷ ︸
(5)

}

For the problem addressed in this Thesis, J must be minimized with respect to the future
control actions defined over the prediction horizon specified by the positive integer N.
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To fully understand the elements considered in the performance index, it is appropriate
to remind the meaning of some variables:

• γi, j j− th position of the i− th transport module

• Γi(k) target state of the pallet in node Ni

• ui, j control input which moves a pallet from Ni to N j

• xi,3 state of the machine Mi

• ηi counter associated to node Ni

and define some new one as:

• qxi,qηi weights in the performance index

• qui, j weight on the control action in the performance index

• λm weight on the off-limit zone in the performance index

• σm auxiliary binary variable for the off-limit zone performance index penalty

• Iu set of the pair (i, j) associated with all commands ui, j not structurally null

• Ψ(m,r, i, j) set of the buffer zones included in the off-limit area

So, in the objective function the following terms are weighted: the number of steps
necessary for a pallet to reach its target destination, whose contribution in the cost
function is highlighted in the term (1) in the cost function; the permanence of already
finished pallets into the machines, whose contribution in the cost function is highlighted
in the term (2); the counters associated with the staying of the pallets on the transport
line, whose contribution in the cost function is highlighted in the term (3); the control
actions, whose contribution in the cost function is highlighted in the term (4); the per-
manence of a pallet in the nodes adjacent to the machines, to allow the manufactured
pallets to exit the working cells and move towards their new target, whose contribution
in the cost function is highlighted in the term (5).

The choice of the values of the weights of the performance index is not trivial. Some
qualitative rules can be defined, but a proper tuning on the real plant must be performed
to obtain optimal performances. Even the choice of the prediction horizon is not trivial.
It must be selected big enough to avoid deadlocks due to contrasting paths on the pallets
but not too large to slow down the system due to the high resolution times. Moreover, N
should not exceed the minimum number of steps ñi required to the machine Mi to finish
its work (in this case N < 9), otherwise the controller would not activate the control
action to load the machines due to the high penalty on their state x3.

At the end, MPC results in an optimization problem with a set of linear constraints,
a linear objective function and with real and integer decision variables. These types of
optimization problems are known as Mixed Integer Linear Programming (MILP) [24]
problems. They are much more difficult problems to solve than the classical ones be-
cause, for each of the possible combinations of the discrete decision variables, a LP
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problem (with the remaining continuous decision variables) should be solved. Due to
the high complexity of this mathematical problem it has been necessary using an op-
timization tool [15]. This tool is not able to understand the problem directly from the
model of the system, so it has been necessary rewrite the problem in suitable form.

2.3 MILP Problem Derivation

The goal is to formulate explicitly the MILP problem starting from the dynamic model
of the system. This means that starting from the MLD matrices, appropriately manip-
ulated, we derive the matrices of the equations and inequalities representing the con-
straints over the prediction horizon (N) under which the MPC problem must be solved.
It is possible to define the vectors:

Where nx is the number of the state variables, nu the number of the control actions,
ny the number of the outputs and nw is the number of the auxiliary variables, e is the
number of the constraints.

Starting from the original system, by recursion we obtain:{
X(k+1) = ÃX(k)+ B̃uU(k)+ B̃auxW (k)+ B̃a f f

Y (k) = C̃X(k)+ D̃uU(k)+ D̃auxW (k)+ D̃a f f

Where:
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The same holds for the matrices of the constraints, that are rewritten as:

ẼxX̃(k)+ ẼuU(k)+ ẼauxW (k)≤ Ẽa f f

Where:

To be resolvable from Cplex, the system must be written in the form:

where:

• Aeq, beq are respectively a matrix and a column vector related to the equalities of
the MILP problem defined starting from the original model.

• Aineq, bineq are respectively a matrix and a column vector related to the inequalities
of the MILP problem defined starting from the original model.

• xcplex is the vector resulting from the solution of the optimization problem

• f is a column vector containing the weights of all the variables of the system.

• lb, ub are two vectors containing the lower and upper bounds of the variables taken
into account in the optimization problem

For what concerns f , lb, ub , they are all design parameters set in the modelling phase.
For this reason, there is not need to determine them. On the contrary, it is necessary to
define Aeq, beq, Aineq, bineq as functions of the vector xcplex.
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Let’s define the vector to be passed to Cplex as:

xcplex =
[

X(k) Y (k) W (k) Y (k)
]T

Regarding the matrix of the equalities Aeq, it must contain both the dynamic and the
output equations. Since the vector X(k) starts from x(k+1), it is needed to isolate the
initial state x(k) to be able to rewrite the system in the desired form explicating xcplex as :

Aeq xcplex = beq

So, it is rewritten as:{
Ãx(k)+ B̃a f f = X(k)− B̃uU(k)− B̃auxW (k)

C̃x(k)+ D̃a f f = Y (k)− D̃uU(k)− D̃auxW (k)

The expressions of Aeq and beq are:

Aeq =

[
I −B̃u −B̃aux 0
0 −D̃u −D̃aux I

]
beq =

[
Ãx(k)+ B̃a f f

C̃x(k)+ D̃a f f

]

About the inequality constraints, attention must be paid to the fact that every constraint
is determined for X̃(k) and not X(k), like in the previous case. It means that these
constraints are defined at time k also for the state, whereas the vector of the state is
defined starting from k + 1. So, the first element of the X̃(k) must be eliminated to
rewrite the system as:

Aineq xcplex ≤ bineq

To do that sub-matrices of zero elements are added to the Aineq to delete the multi-
plication between the matrix and x(k). In this way, there is a subset of nc constraints
concerning the initial state and it is possible to write the expressions of Aineq and bineq.
The only "price to pay" for this operation is that by using ˜X(k to define the state, an
element is lost. It has elements defined in the range from (k) to (k+N− 1) while the
original state vector is defined from (k+1) to (k+N).
The expressions of Aineq and bineq are:

Aineq =

[[
0e,(nx∗N)

[
Eu
]

0e,(nu∗(N))

[
Eaux

]
0e,(nw∗(N)) 0e,(ny∗N)

][[
Exc

] [
Euc

] [
Eauxc

]
0e∗(NRH−1),p∗(NRH)

] ]

beq =

[
Ea f f −Exx(k)

Ẽa f f

]
The expressions obtained are used to calculate the matrices to be passed to the optimizer
at each sampling step starting from the matrices of the original MLD system acquired
by HYSDEL.
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2.4 Controller Implementation

Once the expressions to derive the matrices of the MILP problem are computed, it is
possible to invoke the solver directly from the DCPIP platform eliminating the contri-
bution of Matlab. To make the platform able to implement the MPC algorithm, some
libraries has been added to the working environment:

1. The C ++ language does not support by default a data structure to store matrices
of the size of those that describe the model of the plant. For this reason has
been necessary to take advantage of Armadillo [21], an Open Source C++ Linear
Algebra Library for Fast Prototyping and Computationally Intensive Experiments,
that not only allows to easily perform computations on very large matrices but it
also has a syntax very similar to the one of Matlab, which makes it very easy and
intuitive to use.

2. In order to implement the advanced techniques of operational research needed to
solve a MILP problem characterized by a large number of variables to consider in
a small amount of time, it has been necessary to use IBM Cplex Optimizer [10]
v12.61, that is a high-performance mathematical programming solver for linear
programming, mixed integer programming and quadratic programming. The in-
teraction with this software is handled using the C++ API provided by the software
house.

In order to understand how it has been modified, it is important to know some basic
concepts related to the object-oriented programming. The basic idea behind this kind
of programming languages is the concept of the class. A C ++ class represents an ab-
stract data type that can contain elements closely related to each other and share the
same attributes and the same functions. In particular the characteristics of the class are
called attributes, while its functions are called methods.
When one speaks about an object is relating to an instance of a class. Therefore, an ob-
ject has the same properties of the class to which it belongs and can recall its functions.
It is important to underline that the data structures associated to an object are kept in
memory during the whole life of the same, unlike the local variables of the functions
that are destroyed when the effect of the function is terminated. Moreover, when an ob-
ject is created, the function that creates it can be customized to initialize its parameters
as desired.
A very important feature of the object-oriented programming is the inheritance, i.e. the
possibility for an object son to acquire the characteristics (attributes and member func-
tions) of another object father.

The DCPIP platform consists of various classes, and it is structured as shown in fig-
ure 2.1. Its main class is the Task Manager, which initializes the other ones and handles
all the operations. An explanation of the role of each class of the platform is presented
below:

• Machine: It defines the data structure associated to the plant to be controlled. So,
it defines parameters like the number of BZs or the number of control possible
actions.

20



Chapter 2. MPC Controller

Figure 2.1: DCPIP class structure.

• Line Supervisor: it contains the variables and methods used to create the object
machine data structure used to get information about the machine data and to read
and write from/to the plant.

• Task Manager: it contains the main control cycle which scans the input acquisi-
tion, the control algorithms execution and the output updating.

• Controller: the module Controller is a class which implements different control
methods. Since each machine is characterized by specific control functionalities
then they will be implemented as specific classes. By means of the inheritance
some common methods will be used from all the derived classes.

• Interface vs ext: it implements the communication among the Machine controllers,
the Line Supervisor controller and the plant PLC. This class has got methods to
execute the read/write input/output data, according to the different communication
methods needed.

The DCPIP platform is a tool that allows to implement different types of control tech-
niques, once they have been added as new classes of the project. So, the changes made
to the platform mainly concern the addiction of a new class to it, son of the Controller
one. The deman control class has been created, inheriting the attributes and the meth-
ods of its father. It contains the logic and data structures of the MPC algorithm.
For sake of clarity, its most important functions and attributes are briefly described:

Attributes:
• Aeq, Aineq. Matrices containing the inequalities (Aeq) and the disequations

(Aineq) of the sytem to be passed to the math optimizer. They, as all the un-
rolled matrices (and the weight matrix MP) , are computed during the initializa-
tion phase and stored as a private member of the class. In this way we avoid to
compute at every step the matrices (always the same) and it is possible to modify
the constraints and the weights (and so the model of the plant) on-line.
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• NRH. It defines the prediction horizon over which the MPC algorithm must be
performed. It can be chosen in the initialization phase by means of a very simple
GUI (graphic user interface).

Methods:

• MPC_dynamic_matrices, MPC_constr_matrices, MPC_output_matrices. These
are the functions that compute the unrolled matrices starting from the MLD sys-
tem.

• CopyMat. The cplex API does not recognize matrices as data structure, so it is
fundamental to translate the data to pass to the optimizer in a suitable format.

• SolveMQP. It handles the communication with the Cplex software through its
C++ API.

A UML representation of the Deman Control class is given in figure 2.3.

Behaviour of Deman Control

The DCPIP working life can be summarized into three phases:

• Initialization phase, in which it reads the type of the control strategy to be per-
formed, then starts dynamically to build the correspondent data structures.

• Activity phase, in which it cyclically reads the inputs, processes the control algo-
rithm and writes the outputs. The entire cycle is handled by the Task Manager,
while the control strategy is performed by the specific controller chosen in the
initialization phase.

• End phase, in which the data structures are destroyed.

Figure 2.2: Deman Control tasks scheme.

In the specific case of this Thesis, the task manager invokes the main function of the
Deman Control class (DCc) to solve the control problem. An object of the DCc is
created by the Task Manager at the beginning of the program life, then its main function
is called every step. Its operating principles (figure 2.2) can be described in this way:
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• In the initialization phase, the matrices of the MLD model are acquired and used
to compute Aeq and Aineq. This operation is included in the builder of the class
because treating these matrices entails a considerable loss of time due to their
large dimensions.

• After that, at each cycle, the data structures are updated and the methods to com-
pute the control actions are invoked. First of all, using the most recent state of the
plant acquired, beq and bineq are computed. Differently from the other two, these
change every time because they are strictly related to the distribution of the pallets
over the network. However, it is important to underline how their dimensions are
notably smaller than the ones in the previous case, and also the time required for
the computations is smaller. In a second moment, Aeq, beq, Aineq and bineq are
translated into a format compatible with the Cplex environment that does not rec-
ognize a matrix as data structure. Through the API, these are transmitted to the
solver and the solution is saved into a vector. At the end, the outputs are passed to
ISaGRAF to be executed.

2.5 Cplex configuration

Cplex uses a branch and cut algorithm for the solution of MIP problems. IT consists of
the application of a branch and bound search combined with the cutting planes method
to tighten the linear programming relaxations. Setting up the work environment to ob-
tain good performances has taken a long time because of the combinatorial nature of
resolution method. In fact, Cplex has many parameters that allow users to customize
the way in which the branch and bound algorithm operates and the user cannot realisti-
cally try all the possible combinations of settings. For this reason, IBM LOG provides
an automatic tool that allows configuring the solver quickly for the specific system to
deal with. It allows us to obtain a list of parameters to be changed to improve the per-
formances of the solver starting from a model of the system to be optimized in ’.lp’
format, a proprietary one of Cplex. It must contain an example of our MILP problem
indicating, for example, if it is a minimization or maximization problem, the number
and the type of our variable or the constraints to be considered. However, the use of
this tool did not prove to be useful and therefore some parameters had to be modified
by trial, as indicated on the IBM website.
The customization of the parameters has been necessary not only to reduce the calcu-
lation time, much higher than the one obtained with the Matlab toolkit, of the solution
but, above all, because the initial configuration of the solver sometimes provides unac-
ceptable solutions for the control problem. It means that wrong actions could be passed
to the system, that it is not acceptable in our context. For this reason, the boundaries
relaxation has been forbidden, whereas to improve the computational performances the
following parameters have been changed:

• ILOCPLEX::PARAM::MIP::STRATEGY::HEURISTICFREQ, which defines how of-
ten to apply the periodic heuristic.

• ILOCPLEX::PARAM::MIP::STRATEGY::VARIABLESELECT, which establishes the
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2.5. Cplex configuration

Figure 2.3: UML scheme

rule for selecting the branching variable at the node which has been chosen for
branching

• ILOCPLEX::PARAM::MIP::LIMITS::CUTPASSES, which sets the upper limit on
the number of cutting plane iterations done solving the root node.

• ILOCPLEX::PARAM::PREPROCESSING::BOUNDSTRENGTH, which decides whether
to apply bound strengthening in mixed integer programs. Bound consolidation
tightens the bounds on variables, perhaps to the point where the variable can be
fixed and thus removed from the analysis.

A problem has been detected concerning the saturation of the RAM that has not been
solved. After each call to Cplex, the volatile memory is not cleaned up by the data
of the previous call. So, after a certain number of optimizations, the work-station is
slowed down until it gets stuck. Furthermore, part of the memory must be reserved for
other programs currently running on the same machine.

24



Chapter 2. MPC Controller

The solution chosen to solve the problem was not found to be effective. In fact, it was
decided to limit the number of threads and the percentage of memory available to the
optimizer, but after prolonged usage of the plant, there were problems of slowing down
on the workstation and consequently on the plant.

The current configuration leads to improvements in the optimizer performance com-
pare to those obtained with Matlab. However, it is not optimized yet. Indeed, this
mathematical problem would require more in-depth skills on advanced operational re-
search topics and more time to be dealt with appropriately.
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Chapter 3

Improvements of the Control
Algorithm

This chapter presents the work done to improve the performance of the control system
regarding the reduction of the time needed to calculate the control actions and the in-
crease of the productivity of the controlled plant.

In order to understand the advantages of the various techniques developed, a simula-
tion script has been defined in Matlab. It emulates the behaviour of the plant without
communicating with the lower level. More precisely, the MLD model and the control
algorithm have been implemented in such a way that after an initial phase in which the
matrices of the system are built, the optimization problem is solved, cyclically, exploit-
ing at each step the prediction of the state obtained at the previous cycle (the initial
state at the initial time instant is given). In this way, it is possible to simulate the evolu-
tion of the plant without resorting to simulators. All the simulations have been verified
on the real plant with a much shorter simulation interval. However, note that the ma-
chining operation times used for each machine Mi, that is parametrized in the MLD
model in terms of number of events k, are different from the real one that are basically
unpredictable, so the result of the simulations aiming to measure the number of pallets
worked are not comparable with the one performed on the real plant.
The behaviour of the machines is simulated so that the new target assigned to each
worked pallet is chosen randomly between the ones reachable from that machine (for
example, from M1 there is only one destination possible, while from M2 three targets
are available depending on the outcome of the test executed the pallet). Direct con-
sequence of this is the fact that the evolutions of the system for each simulation are
different each other. For this reason, the only possible way to perform a comparison
is to reason in terms of average times of execution considering a long interval of opti-
mization.

For each implemented improvement, two experiments have been carried out1. In the
first one, different tests, under different starting conditions and considering 100 simu-
lation steps, have been performed in order to compute the corresponding average of the

1Simulations run on a computer with Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10 GHz, 16.0 GB of installed RAM, system
type 64-bit operating system, x64-based processor, Windows 8.1 Pro., MATLAB R17a, CPLEX R12.6 (settings: Parallelmode =
0, Threads = 0).
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computational times. Both the number of pallets loaded on the transport line, at time
instant k = 0, and the prediction horizon have been varied to understand the behaviour
of the different control strategies starting from different initial states. In the second
experiment, considering the initial condition of five pallets and NRH equal to 6, the
number of machined pallet within 1000 simulations steps has been estimated.
To allow the comparison of the results obtained with the different solutions, in all the
tests performed the initial state (at the instant k = 0) is the following:

pallet 1 in N28 with Target 4;
pallet 2 in N29 with Target 2;
pallet 3 in N30 with Target 3;
pallet 4 in N31 with Target 5;
pallet 5 in N16 with Target 2;
pallet 6 in N19 with Target 3;
pallet 7 in N23 with Target 5.

Since in some tests it had been necessary to consider a starting condition in which a
smaller number of pallets were on the transport line, they have been taken into account
as needed in numerical order. So, depending on the number np of pallets they were
placed in position described above for the pallet from 1 to np.

Figure 3.1: Machined pallets for time unit (Basic Controller).

The same experiments has been performed on the basic MPC controller developed in
the Chapter 2. The results are reported in Table 3.1 and in figure 3.1. These results are
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Table 3.1: Average computational time [s] per optimization step with standard MPC

Num. Pallets NRH = 5 NRH = 6 NRH = 7
3 0.32 0.87 2.62
4 0.47 1.22 3.41
5 0.59 1.29 6.70
6 1.34 6.30 56.35
7 4.17 >100.00 >100.00

taken as reference and used as terms of comparison to understand the actual usefulness
of the improvements introduced. In fact, the goal of the first test is to understand if
there is a significant saving of time due to the improvements developed during the
Thesis work, while the second one aims to understand if the modifications lead to a
significant change in the number of pallets machined.

3.1 Hiding Optimization Process

The original controller has been designed to reserve different time slots for calculating
the optimal solution and executing the commands reserved for the PLCs. It means that,
at each time step, the optimal solution is derived, the control actions to be executed are
passed to the PLCs and, at the end of the last one of these sequences, the high control
reads the new state of the plant and calculates the next move. This approach introduces
a useless delay from the moment that these actions being carried out by two distinct
players. So, it was decided to rewrite the controller structure in such a way to carry out
the calculations and the movements in parallel.
The idea behind the first feature introduced is based on the fact that the DCPIP can
compute the solutions while the LLC is working, with an evident saving of time and
without significant drawbacks. To do this, the properties of the MPC are exploited. In
fact, one of the advantages of Model Predictive Control is that it provides information
on the entire control horizon chosen. The solution taken from the solver is the vector:

xcplex = [ X(k) U(K) Y (K) W (K) ]T

X(k) = [ x(k+1) x(k+2) x(k+2) .. x(k+N−1) ]

Thus, at each iteration k, when Cplex is called to determine the control actions, the
predicted state x(k+1) is also received. It is possible to use the predicted state to start a
further optimization while the system is in motion, instead of waiting and read it from
the LLCS.
At the generic instant k, the new sequence of operations is:

1. The controller computes the optimal control input uo(k) and predicts the future
state of the plant xp(k+1).

2. The lower layer of the control structure starts running to implement this input and
to move the pallets, while, at the same time, a new optimization process can run
based on xp(k+1) to compute the new optimal control input uo(k+1) in advance.

3. As the pallet movements due to uo(k) are completed, the predicted state xp(k+1)
is compared to xi(k+1) given by the LLCS.

29



3.1. Hiding Optimization Process

4. If they are equal, the computed optimal control uo(k+1) is applied.
Otherwise, the optimization problem is restarted by setting xi(k+ 1) as the new
initial state.

There are two main effects of this implementation: there is a substantial saving of
times, and the pallets move on the network more fluidly. Indeed, thanks to the Cplex
configuration described in the previous chapter, very often the resolution of the optimal
problem requires less time than that needed for the plant to move the pallets. Therefore
as soon as one control action ends, another one starts.
As an example of the advantages given by this feature, consider the case in which six
pallets are moved over the transport line and the prediction horizon N = 6. The average
time requested to solve the optimization problem is very similar to the one needed for
performing the movements of the pallets. In figure 3.2, the difference between the
new and the old implementations is shown and, in particular, the times characterizing
the communication protocol are compared. Whit the red lines it is represented the
time needed to compute the control actions, whit the blue lines the time in which the
actuators implement them and with the green ones the time required by the network to
propagate the information from PCs to the plant and vice-versa.
To implement this feature, it has been necessary to work on the main function of the
Deman Control class. A vector has been obtained to store the state of the plant between
two consecutive iterations it has been defined as a private member of the class and the
structure of its main function has been modified in order to work as required by means
of the pseudo-code:

Main control cycle
If low level control is still {
state= readState();
if (alreadyComputed equal to false) OR (state different from stateSav){
[solution,stateSav]=computeSolution(state); }
passToLLC(solution);
alreadyComputed = FALSE;
} Else {
solution= computeSolution(stateSav);
alreadyComputed = TRUE; }
End control cycle

The code reported is very simplified, but it is useful to understand the idea behind the
changes implemented. Since only the helpful information is extracted from the solution
returned from Cplex, the method delegated to compute the control actions is modified
to store the vector of the state corresponding to x(k+1) (stateSav). It is passed to the
same function while the LLC is acting instead of waiting and reading it from the plant.
With this mechanism, especially with a limited number of pallets and/or a small predic-
tive horizon, the state read by the plant is very rarely used for the optimization process
because the time necessary to do the calculations hardly exceeds the time to move the
pallets. It could become a problem in the case in which an external input acts on the
plant modifying its state. Speaking of external information is not different to speak of
signals from the machines of the plant with which they describe the progress of their
activity. The exogenous factors are unpredictable because they do not depend on the
MPC algorithm (it is not possible to know the time requested to a machine to perform
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Figure 3.2: Communication protocol comparison

its operation since it depends from the specific board and fault detected on it). For this
reason, they could be ignored for a very long time by the controller, with significant per-
formance degradation. Indeed, when a machine ends up working, it sends a message
to the line supervisor that consequently changes the state of the machine in its vector
of the state, that is the one passed to the high-control level to compute the next control
actions. So, if the controller never uses the state of the plant passed from the LLCS, and
more specifically the machines state, it always continues to see the machine, that has
finished to work, in the state x2, i.e. in the working phase. The machined pallet is never
loaded on the transport line and the production has a drastic decay of the performances.
Then, it is essential for the controller to compare its prediction of the state with the one
acquired by the LLCS and, if they are different, to drop the control actions computed
with the wrong state and call Cplex to obtain the new vector to be passed to the PLCs.
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3.1. Hiding Optimization Process

Table 3.2: (A) Total single step time [s] before-after the hiding implementation; (B) Percentage of the
time saved

Num. Pallets NRH = 5 NRH = 6 NRH = 7
3 5.32 - 5.00 5.87 - 5.00 7.62 - 5.00
4 5.47 - 5.00 6.22 - 5.00 8.41 - 5.00
5 5.59 - 5.00 6.29 - 5.00 11.70 - 6.70
6 6.34 - 5.00 11.3 - 6.30 61.35 - 56.35
7 9.17 - 5.00 >100.00 >100.00

(A)

Num. Pallets NRH = 5 NRH = 6 NRH = 7
3 6.00 14.80 21.30
4 8.60 19.60 40.50
5 10.50 20.50 42.70
6 21.10 44.20 8.14
7 45.40 < 0.01 < 0.01

(B)

To understand the effects of performing the two operations in parallel, it is possible to
define the time requested to complete a step (total single step time) of the plant activity,
before implementing it, as:

Ttsst = Tm +Tc +2 ·Tp

Where:

• Tp, it the time required to exchange information between the HLC and the LLC.
Since it depends on the network structure, and it is not the object of this Thesis,
it will be neglected in the following analysis. However, it is relatively small with
respect to the others.

• Tc, it is the average time required by the calculator to complete control actions

• Tm, it is the average time required by the LLC to complete a control action. It
has been experimentally measured on the real plant and it is about five seconds.
Obviously, this time does not change depending on the type of control, or on the
chosen prediction horizon, since it depends on the settings of the motors (and they
cannot be modified).

At the same time we can express the total single step time after the parallelization:

Tst =

{
Tm i f Tc ≤ Tm

Tc i f Tc > Tm

So, it is possible to define the saving of time as the difference between these two mea-
sures:

St = ( Tm + Tc ) − max { Tm , Tc}

St% = St
Ttsst
·100

Taking as reference the times obtained from the simulation of the basic MPC, a quali-
tative estimation of the time saved has been done. The data are reported in Table 3.2.
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Generally speaking, it is possible to state that with this technique significant results
(>10%) can be obtained in terms of time saved when the resolution times of the opti-
mization problem belong to the interval [ 0.6 , 55 ] seconds. Otherwise, the advantages
is minimum (case with seven pallets and NRH bigger than five, or six pallets and NRH
equal to 6). Note that for a prediction horizon N smaller than 6, the optimization pro-
cess is completely hidden and when a control action ends another one starts.
Assuming to re-run the second experiment with the same MPC algorithm, the total pro-
cessing time of the plant operations would change from 105 minutes to 83, that is the
minimum time required by the low-level system to implement the pallets movements.

3.2 Tunnel Implementation

There are some paths in the plant, called tunnels, in which there is no routing decision
to be taken because the pallets have only one way to follow. The controller, at the be-
ginning of this Thesis, was not able to individuate these situations, so it wasted time
at every step to find the control actions to perform even in the case in which there was
only feasible possible solution. This could be a severe problem as the number of pallets
on the transport line increases, limiting the scalability of our control solution consider-
ably. For this reason, a mechanism to force the movements of the pallets when they are
in these areas without wasting computational power has been developed.

First of all, the plant topology has been studied to find the buffer zones suitable to
form the tunnels. The analysis has been carried out systematically, and once the rules
indicated below were defined, the graph (see figure 1.4) has been analysed applying
those to each node. The rules are:

• If a BZ has only one control action as input and only one as output, it can be added
to the tunnel.

• If a BZ has more than one control actions as input, it can not be added to the
tunnel.

• If a BZ has more than one control actions as output, it can not be added unless it
is the last BZ of the tunnel.

• A tunnel cannot be composed by only one BZ.

These four simple rules allow to define a logical structure, relying on which it is pos-
sible to set heuristic rules to move the pallets without wasting time in the optimization
process. In general, a tunnel is composed by BZ that have only one control action to
move-in and one to move-out. However, a particular rule applies to the last element:
indeed, it could have more than one outputs because the controller does not hide the
pallet present in that position. This is because it is supposed that the BZ adjacent to the
last element has more than one input and so it is necessary to make a reasoned choice
to avoid crushing between pallets.

An example of acceptable and non acceptable BZ to be inserted in a tunnel is shown in
figure 3.3.
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Figure 3.3: Example of admissible buffer zones.

Following these rules, four groups have been individuated for our configuration: a set
of four nodes composed by 28-29-30-31 in the graph representation of figure 1.4, two
formed by three nodes (4-5-6 and 8-9-10) and a smaller one composed by only the
nodes 20-21.
This mechanism has been implemented in such a way as to modify the information
exchanged between the optimizer and the control platform, acting on the state vector
and on the vector xcplex given back as the solution of Cplex. It recalls the "man-in-the-
middle attack", typical problem of the computer security where the attacker secretly
alters the communication between two parties who believe they are directly commu-
nicating with each other. In this case, the "attacker" is a specific function, Compu-
teXnTarget, of the DemanControl class and the two parties are Cplex and the function
dedicated to handling the communication with it, called SolveMQP. In this way, it was
possible to introduce this change without modifying the basic operation of the DCPIP
platform.
Specifically, ComputeXnTarget removes the elements corresponding to the pallets in
the tunnels from the vector of the state before passing it to the optimizer. After that a
solution is given back, it adjusts the vector of the inputs (ui j) by adding the control ac-
tions necessary to move them since they have been not considered from the coordinator
in its computations.
Particular attention must be given to the fact that in this phase, not just the elements
indicating the target associated to each BZ (Γi) is hidden, but their counters (ηi) too.
The management of the counter (ηi) associated with each pallet to avoid starvation is
not trivial for mainly two reasons. Firstly, since it is not possible to read them from the
plant, they must be stored at each step and merged to the subset of the state readable at
following one. Secondarily, there are several rules to follow to update correctly them,
since it is needed translating from constraints of the MLD model to C++ code.

To better describe how this function works, its structure is simplified, divided into the
three parts (preliminary operations on the state, a posteriori operations on the state and
control actions) and reported as pseudo-code:

34



Chapter 3. Improvements of the Control Algorithm

Pseudo-code of preliminary state modification

For each tunnel:
for (int i= 0; i < tunnelLength; i++) {
supportVectorState(i) = vectorOfState(numberOfNode+i);
supportVectorCounter(i) = vectorOfCounter(numberOfNode+i);
if (i < tunnelLength - 1) {
vectorOfState(numberOfNode+i) = 0;
vectorOfCounter(numberOfNode+i) = 0; }
}

The information characterizing the network is saved in two vectors, one for Γi and one
for ηi, for each tunnel before the removal in order to be able to correctly update the
vectors later. These n = 2 · ntunnels vectors are volatile data structures that are created
and immediately destroyed at each call to the solver, with enormous benefits from the
computational point of view with respect to solutions in which permanent data structure
are used. As it could be easily seen from the pseudo-code, the last element of the vector
is not overwritten. It is copied to the support vector to implement the internal logic of
the tunnel, but at the same time, it is not hidden to the coordinator.
Once the preliminary operations are done, the modified state is passed to the function
Solve MQP, devoted to communicate with the solver, that gives back the vector of the
predicted state, the vector of the predicted counters, and the one contains the control
actions. These vectors need to be modified.

Pseudo-code of a posteriori operations on control actions

if (controlAction that moves pallet in last position has been chosen by solver) {
supportVectorState(tunnelLenght-1) = 0; }
for (int i= tunnelLenght; i > 0; i- -) { (all the elements are examined in pairs)
if ((supportVectorState(i) equal to 0) AND (supportVectorState(i-1) different from 0)){
controlAction(startIndex+i) = 1; }
}

In this way, the missing control actions are added to the corresponding vector. The
support vector is inspected with a top-down approach. Starting from the last element
hidden, a check on the following is done and if the position is free, the control action
that moves the pallets from the position i− 1 to the position i is set to 1. Note that,
the position are not updated after this control, because due to the configuration of the
system the following rule must be followed:
Two pallets lying on two adjacent BZs in a tunnel cannot be moved at the same time
step.
This rule had to be introduced because in some points the mechanical structure of the
module limits the way of operating. The constraints implementing it are obviously in-
cluded in the MLD model, and concern the specific modules in which it is not possible
to move two pallets at the same time, whereas in the tunnels it is implemented as a
general law. Although this slightly reduces performance, it helps to define tunnels as
a mechanism that can be easily applicable to a wide range of routing problem based
on mathematical graph representation without loss of generality. Once the vector of
the control actions has been adjusted, using it, it is possible to modify the vector of the
counters.
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Pseudo-code of a posteriori operations on counters

if (controlAction to move the pallet from the i-1 position to i one is set to 1) {
supportVectorState(i)= supportVectorState(i-1);
supportVectorState(i-1)= 0;
updateCounter(supportVectorCounter, VectorCounter, ’move’, supportVectorState(i));
} else {
updateCounter(supportVectorCounter, VectorCounter, ’still’, supportVectorState(i-1));
}

Once the control actions have been determined, it is possible to establish the position
of the pallets at the next step. Considering the ones able to move the pallet between the
BZs composing the tunnels, a check to understand what control actions are activated is
done. If the control action Ui−1,i is activated, the support vector of the state is updated,
copying the element in i− 1 to the i position, and the element in the position i− 1 is
set to zero. As far as the counters are concerned, the elements of the support counters
vector are updated even if the corresponding pallets remains still. Considering the node
i, at each iteration, ηi must be increased by one if Γi is bigger than one. So, once the
new position of the pallets at the step k+1 has been determined, it is possible update the
counter vector by analysing the target corresponding to each BZs.
Moreover, at this point, another check on the first element of the tunnel is needed. In
fact, it is possible that the optimizer pushes a pallet into the tunnel even if the entrance
of this is actually occupied by a hidden pallet. In this case, since a wrong control action
has been activated, it must be cancelled. Setting it equal to zero is not enough, as the
prediction of the state (and used to calculate the next step) has been calculated taking
into account an action that will not actually be done. For this the state vector and the
corresponding counter must be updated too.

At the end of the operations, the vector xcplex is re-built merging the support vectors and
the modified control actions vector together. It is then passed to SolveMQP which ex-
tracts the necessary information as before without being aware of the tunneling process.

To test the effectiveness of this technique, the same experiments performed for the
basic algorithm has been done. Regarding the first experiment, the data concerning the
computation times are shown in Table 3.3. In this case, there is a reduction in terms of
computation time taking as reference the basic controller, which is more evident as the
number of pallets on the system and the prediction horizon increase. From the result
of the second test, figure 3.4, it is possible to assume as expected the performances in
terms of pallets machined for unit of time are more or less the same with respect to the
basic controller case (shown in figure 3.1).
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Table 3.3: Average computational time [s] per optimization step adopting tunnels (A); Percentage of the
time saved with respect to the basic controller (B)

Num. Pallets NRH = 5 NRH = 6 NRH = 7
3 0.23 0.29 0.61
4 0.36 0.98 1.77
5 0.38 0.77 1.87
6 0.49 3.44 8.04
7 1.65 4.98 18.49

(A)

Num. Pallets NRH = 5 NRH = 6 NRH = 7
3 28.2 66.6 76.7
4 23.4 19.6 48.1
5 35.5 40.3 72.1
6 63.4 45.3 85.7
7 60.5 >96 >96

(B)

Figure 3.4: Machined pallets for time unit (Tunnel).
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3.3 Control Horizon

The definition of tunnels proved to be very effective in terms of reducing the required
computing power and therefore of computational time reduction. On the other hand,
it is a technique applicable to control problems based on mathematical models such as
oriented graphs. For this reason, it has been tried to reduce the time of computation ex-
ploiting a technique applicable to any MPC controller: the control horizon. Note that,
actually, the two techniques are compatible since the control horizon is a modification
of the model predictive control algorithm, while the tunnels method is an improvement
to the high-level control system that does not regard the type of control strategy imple-
mented.

Typically, a large value of N is often chosen to include in the prediction horizon all the
main process dynamics. The problem is that the more the prediction horizon increases
the more the number of optimization variables is large and the computational load of
the optimization problem to be solved on-line is heavy. For this reason, in order to
lighten up the work of the solver, it is possible to define a new interval 0 < Nu < N,
called control horizon, in which additional constraints are considered [23]. The vari-
ables computed in the minimization of the cost function are the commands ui, j(k+ l)
over the control horizon, while some Heuristic Rules are used from k + Nu onwards.
In this way the number of optimization variable to be computed at each k is reduced
without shortening the prediction horizon N. Choosing Nu < N leads to a suboptimal
solution with respect to the stated optimization problem, but it allows to apply the pro-
posed technique in problems otherwise intractable due to their inherent computational
complexity.
In our system, the HR have been developed by forcing each pallet that comes out of
any machine to follow a prescribed path not interlaced with the others and depending
on the final target machine of the pallet itself [4]. From the practical point of view, with
this technique new constraints are added to the MILP problem derived by the MPC
algorithm by concatenating Aeq and Aineq of the basic controller with Aeq and Aineq
derived from another MLD model. In this model, that is the same of the other except
for some additional constraints, some precautions are taken into account to reduce the
complexity of the optimization problem, for example some control actions, that create
alternative routes with respect to the shortest one, are imposed to 0.
To implement this control technique, it is possible to use the same function for the basic
controller both for the first interval (from 0 to Nu) and the second interval (from Nu + 1
to N) of the horizon and then concatenate the resulting matrices. The same functions
for handling the communication with Cplex and the LLC can be used.

Even in this case, the algorithm has been tested with the two experiments. For both of
them, the considered horizon are: Nu = 2 and N = 6.
The data collected are shown in table 3.4. Even in this case, it has been possible to
notice a significant reduction of the computational time at the price of an acceptable
deterioration of the performances (as it can be seen from figure 3.5) due to the fact that
in the control horizon interval, it is not possible to use all of the available degrees of
freedom, due to the presence of feasible paths that are not considered in the HRs.
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Table 3.4: Average computational time [s] per optimization step with MPC with control horizon (A);
Percentage of the time saved with respect to the basic controller (B).

Num. Pallets NRH = 5 NRH = 6 NRH = 7
3 0.28 0.63 1.45
4 0.39 0.91 2.12
5 0.43 1.12 4.46
6 1.12 3.66 19.13
7 2.54 >100.00 >100.00

(A)

Num. Pallets NRH = 5 NRH = 6 NRH = 7
3 13.18 27.92 44.69
4 17.26 25.69 33.78
5 26.80 13.08 33.42
6 16.03 41.08 66.05
7 38.98 <0.01 <0.01

(B)

Figure 3.5: Machined pallets for time unit (Control Horizon).
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3.4 Attraction Zone

When a pallet come out of the destruction cell it is labelled as empty and its target
value is changed from four (destruction cell) to five (no target) since when the pallet
exits from the station is empty and no target is assigned to it, waiting for the robot cell
to call it back. At the beginning of this Thesis, the MPC model was made in such a way
that these empty pallets were not moved by the coordinator, if not in case they were
an obstacle for the path of the others. When the robot cell needed a pallet to charge
an electronic board on the network, it sent a request to the line supervisor (ISaGRAF
environment) that selected one of the empty ones on the transport line and, by changing
its target, moved it to this area.
This choice considerably reduces the effectiveness of the system. It was very likely that
the pallets remained in an area of the transport line far away from the robot cell until
they are called. This obviously introduced a significant drop in performance due to the
downtime of that cell waiting for pallet. Indeed, if a pallet starts as soon as possible to
approach the load station, the time that passes between the recall of the pallet and its
actual arrival is reduced to a minimum.

The fact that a pallet remains stationary if empty is due to the setting of some weight
indices. In particular, the responsible are the parameters about the minimum cost (dis-
tance from the target) associated to each buffer zone. Let’s take as example the param-
eters defined for the BZ number one of the first module (γ1,1) in the HYSDEL model:

REAL C_bz1_Tp0 = 0; /* Target free */
REAL C_bz1_Tp31 = 1;
REAL C_bz1_Tp32 = 11;
REAL C_bz1_Tp33 = 8;
REAL C_bz1_Tp34 = 11;

The first parameter (that is called qΓi,5 in the MLD model) is the one defining the weight
associated to a pallet with target one (Γi = 5) in that buffer zone. It is set to zero and
then the correspondent variable is no more taken into account in the cost function. The
same is for the other BZs. The idea is then to modify this parameter for each node
of the network in such a way that the empty pallets are directed in the direction of an
area around the robot cell. To do this, it is important to be careful not to modify the
behaviour of the system. In fact, the optimizer must always give priority to full pallets
moving around the network.
So, since the minimum weight set for the other parameters of the controller is equal to
1 and the still pallets must be moved only in the case of their movements not influence
other choices, the parameters for the empty pallet of each BZ can be set equal a number
between 0 and 1. In this way, this kind of action has the lowest priority for the controller.

The area selected as the most suited to host the empty pallets, is the one composed by
the nodes 28-29-30-31 (see figure 3.6). It has been chosen because it is a redundant path
of the transport line and it is very close to the robot cell. The fact that it is redundant
is fundamental. In this way, the pallets with higher priority can reach the load station
by means of the control action U27,1 without wasting time waiting the the empty pallets
are moved to allow their passage. So, the node farthest from the robot cell has been
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Figure 3.6: Attraction Zone Routing.

individuated. For the farthest one, it is meant the one from which a pallet needs more
optimization steps to reach the machine M1. It has been found in N8 (figure 1.4). The
parameter qΓi,5 ( representing the weight of the pallets with target 5 in the cost function)
associated with N8 is set to 0.78. Then starting from that node, the other nodes of the
transport line are weighed in such a way that the farther a node is, the higher the value
of the parameter is. At every step the value of the parameter decrease of 0.05, with
exception of the area in which the pallet should remain. The parameters of this area are
not modified. In figure 3.6, for each node the corresponding value is reported and the
possible flows followed by empty pallets depending on the starting node are underlined.
The nodes in the area selected define one of the tunnels described previously. The com-
bination of this two techniques has a synergistic effect. The pallets not only are brought
closer to the load station but at the same time they are hidden to the optimization pro-
cess. This area can be also called accumulation zone, because it is needed to store the
empty pallets, avoiding the controller to waste computational power.

The simulation script developed to understand how actually the improvements to the
control system have been valuable can not be used to verify the effectiveness of this
change. In fact, in this case, both the tests provide meaningless data. The first test
gives us information about the average time of computation, and this feature does not
lead to any improvement in terms of computational time. Even the second experiment
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is useless principally for one main reason: in the simulation, when a pallet exits from
the machine M4, it receives as target directly the robot cell, while in the real plant they
receive first "no target". This is because simulating the behaviour of the load/unload
station is very difficult, unless to implement random function to call the pallet every
time its work has been finished. However, assigning directly the target of the robot
implies that the pallets moves in the direction of the accumulation zone as soon as they
are empty. Even if this modifications have been done to implement a cycle in the plant
activity, the effect is that the previous experiments would have a sort of attraction zones.
So, it is practically impossible to quantify the effect on this changing in the simulation.
On the other hand, on the real plant the effect is evident.

3.5 Other improvements

During the Thesis work it was necessary to work on modifications to the plant not
strictly related to the improvement of the performance of the control system. For ex-
ample, a simple command line interface has been created to allow the control developer
(or the operator, considering the case of industrial application) to highly customize the
control system work session. In this way, in the initialization phase it is possible to
make some choices: in particular to decide if to use the MPC control, and then set the
NRH desired for the session of work, or a simple controller that implements a prede-
fined sequence of operations. Moreover, all the features described in this chapter can be
deactivated if needed. This simple modification allows to have a control system highly
customizable and then to speed up the test and development phase on the real plant.

3.5.1 Homing Function

At the beginning of this Thesis work, the pallets needed to be placed in certain starting
positions determined during the design of the low level control system. The state at the
time instant k = 0 was set as parameter of the internal model of the line supervisor. For
this reason, different versions of the program executive, one for each different initial
configuration, were developed. This because the line supervisor of the LLC was not
provided of a function to read the sensors of the plant. The idea is then to implement
a mechanism to scan the network in the initialization phase to obtain the initial state
of the plant without being constrained to put the pallets in predefined position before
starting the plant activity. This allows to try different starting configuration without
modifying the control software and, in terms of industrial use, it saves considerable
time every time the system is started up. Also this modification is oriented to speed up
the test phase on the real plant.
The sensors of the plant, as described in the Chapter 1, are handled by different pro-
grams with respect to the line supervisor that coordinates the whole control cycle (read-
ing/writing, updating the internal model, activating PLCs). So, It has no direct access
to information from the sensors. To solve this problem, bridge variables have been
created, one for each sensor of the transport line. They can provide information on the
state of the sensor to which they have been associated. Thanks to the internal functions
of the system, the PLCs control program constantly updates these variables in such a
way that their value is consistent with the sensor status. Obviously, this communication
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is unidirectional and therefore the bridge variable cannot be changed by the supervisor.
The same procedure was done to allow the supervisor to directly control the actuators.
Obviously, in this case, the connection (or binding) was done in the opposite direction.
The binding of the actuators is fundamental because some proximity sensors need to
be brought into a certain configuration before being able to check the presence of the
pallet. It was therefore possible to create an SFC function that, appropriately called in
the initialization phase, takes care to collect information on the status of the system and
to update the internal line supervisor model in such a way that the position of the pallets
passed to the high control when the system is switched on is consistent with reality.
Once the position of the pallets is defined, a target must be associated to each one. The
assumption that at the beginning of the operation they are all empty is made and for all
the target free (Γi = 1) is defined.
The state of the buffer zones composing the state of the plant in the line supervisor
model can be set in the following way:

IF ( Sx_P_Ps_LS1 = TRUE ) THEN
BZ1_3_board_ f ailure := 100;
BZ1_3_board_name := 0;
BZ1_3_pallet_route := Route_ f ree;
ENDIF;

Where Sx_P_Ps_LS1 is the variable defined in the line supervisor module to which is
associated the value read by the proximity sensor of the module one.
Each BZ is defined with three parameters:

• Board failure. It is an integer variables that keeps track of the outcome of the tests
performed by M2. 100 is the default value and it means ’no failure’.

• Board name. It an integer that identifies the specific electric board on the transport
line. It is assigned automatically when a board is loaded on a pallet. 0 means ’no
board loaded on the pallet’.

• Pallet route. It corresponds to Γi for the high-level control. Route_free means ’no
target to be reached’.

Note that there are not defined variables comparable to the counter ηi.
A new SFC tree is added to the line supervisor module. It firstly actives all the sensors
of the plant and then, for each buffer zone, it configures the initial state of the plant.

So, thanks to the attraction zone just described, when the plant starts its activity all the
pallets are defined and they are pushed towards the accumulation zone.
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3.5.2 Operator interface for loading/unloading

To allow to the operator of the load/unload station to substitute the robot in case of need,
an interface for loading/unloading the pallets from the network has been designed and
implemented. For this reason, a workstation made by a console, composed by three
buttons and one notification led, and by a tool that helps the operator to open without
problems the pallet picked up from the transport line has been implemented. By means
of this, it has been then possible to substitute, when it is necessary, the robot in the
load/unload task. The panel was created using some modular components, whereas
the tool has been designed by the mechanical department of ITIA. The whole station
appears as in figure 3.7. Once appropriately wired to the network, the input signal of
each of the three buttons has been configured in the ISaGRAF project as well as the
LED output signal.

Figure 3.7: Manual Load/Unload Station

For what concerns the logic of the software, the general structure of the project has not
been modified, and new SFC trees have been added to the file adhibited to handle the
robot operations. This means that for the control logic point of view nothing changes,
the automata describing the behaviour of the machines is still valid.
To make free the operator to decide which station use to load/unload the pallets, a new
variable (Real_Robot_using) has been created. It must be set in the initialization
phase.

From the practical point of view, one button is required to the operator to signal to
the plant that he is ready to receive a pallet (for the low level control it means that the
target of the nearest free pallet is changed from 5 to 1). The corresponding signal in
the low level control system is B_Req_Pallet. The other buttons and the led are
required to handle the load/unload operations when the control actions U1,32 (the one
used from the controller to communicate to unload the pallet) and U32,1 (the one used
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from the controller to allow the operator/robot to load the pallet) are activated (see fig-
ure 1.6). More in details, the new protocol for this handling the interaction between the
operator and the plant is:

Control action U1,32 activated.
The corresponding control sequence is activated, the notification led is turned on to
signal at the operator that it is possible unload the pallet.
Operator picks up the pallet.
Once the pallet is taken away from the line and then the control sequence finishes, the
led is turned off and the state of the "machine operator" passes from 1 to 2.
Operator works.
The plant is stuck, waiting that the end of the load/unload phase.
Operator ends.
If the operator doesn’t have board to put on the pallet, he pushes the button correspond-
ing to the LLC signal B_P_Free communicating to the plant that an empty pallet is
going to be given back. Otherwise, he pushes the button corresponding to the LLC sig-
nal B_P_Full indicating a full pallet. Independently from the choice, the state of the
operator passes from 2 to 3 (and then the controller understands that the control action
U32,1 could be called). It is important to note that in case of empty pallet the target will
be 5, whereas if it is full the target will be 2 (the testing machine).
Control action U32,1 activated.
The corresponding sequence is activated, the notification led is turned on to signal at
the operator that the plant is ready to receive the pallet.
Pallet is received from the plant.
Once the pallet is detected, the state of the operator passes from 3 to 1, the led is turned
off and the sequence finishes.
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3.6 Experiment on real plant

To validate the data obtained in the simulation, the MPC controller has been tested on
the real plant.
Not being able to replicate previous experiments because of the high number of itera-
tions required (one thousand, for the second one) or for the impossibility to pre-set the
target of each pallet at the instant k = 0 (because of the homing function all the targets
are placed equal to one in the initialization phase), it was decided to shorten the interval
of iterations to 50 and use only three or four pallets.
The validation work was done only on the average computation time, since with such a
short horizon it would not make sense to analyse the number of pallets processed.

The starting position for each test was the following:

pallet 1 in N30;
pallet 2 in N29;
pallet 3 in N4;
pallet 4 in N9;

With a specific API of the cplex libraries, the time at each iterations has been stored in
a list and at the end of the program they have been saved on a text file. Then, the data
about the computational time have been elaborated. They are shown in the table 3.5

Table 3.5: Average time [s] with basic MPC controller (A); Average time with Tunnels (B); Average
time with Control Horizon MPC (C)

Num. Pallets NRH = 4 NRH = 5 NRH = 6
3 0.17 0.29 0.92
4 0.24 0.49 1.18

(A)

Num. Pallets NRH = 4 NRH = 5 NRH = 6
3 0.09 0.29 0.52
4 0.15 0.43 0.80

(B)

Num. Pallets NRH = 4 NRH = 5 NRH = 6
3 0.13 0.26 0.76
4 0.22 0.45 0.91

(C)

Comparing the results obtained with those obtained in simulation it is possible to say
that the model for the simulations is reliable and the results shown previously have
actually been achieved also in reality.
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Chapter 4

Fault Tolerant Control

Nowadays, performing well is no longer the only requirement for an industrial plant.
Failure robustness has now become essential in industrial applications. In fact, the pro-
liferation of sensors and the increase in the computational capacity of the calculators
allows the real-time analysis of the components to identify, and in some cases predict,
the faults. Therefore it is essential to develop detection and recovery systems to allow
operation even under unexpected conditions. To be precise, a fault is defined as an un-
permitted devation of at least one characteristic property or variable of the sytem [12].
Generally speaking, the faults occurring in the industrial world belong to two cate-
gories: additive process faults, that are unknown inputs acting on the plant modifying
its output (plant leaks, for example), and multiplicative process faults, that are changes
of some parameters of the system (the deterioration of the plant equipment, for exam-
ple) [9]. However, in this thesis, only the ones belonging to one of this subset of the
two groups have been taken into account:

• Sensor faults. These are differences between the measured and actual values of
individual plant variables.

• Actuator faults. These are discrepancies between the input command of an actua-
tor and the actual input.

To guarantee that the process operations satisfy the level of efficiency requested even
when a failure occurs, any anomaly needs to be promptly detected and, if possible, the
system should be reconfigured in order to remove its effects. These tasks are associ-
ated with process monitoring. The goal of this technique is to ensure the success of the
planned operations by identifying the anomalies of the behaviour. As a result, down-
time is minimized, safety of plant operations is improved and manufacturing costs are
reduced.
According to the definitions given by Raich and Cinar [20] the process monitoring can
be divided in four steps (their logic sequence is presented in figure 4.1):

• fault detection, that consists in understanding whether a fault has occurred;

• fault identification, that consists in understanding which component is responsible
of the malfunctioning;

• fault diagnosis, that consist in understanding the cause of the observed discrepancy
in the status;
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• process recovery, that consists in removing the effect of the fault. These steps are
not always all necessary and some could be delegated to an operator.

Figure 4.1: Process monitoring scheme.

The idea behind the fault detection is to convert on-line data acquired from the plant
into a few meaningful measures, which represent the state of health of the system, and
to understand when a fault occurs. The fault detection algorithms can be based on three
different approaches:

• Data driven, in which a large scale of data produced by sensors are analysed to
identify anomalies;

• Analytical, in which a mathematical model of the system is used to estimate the
correct expected state;

• Knowledge based approach, based on a qualitative model of the system.

The data-driven methods are more indicated for large scale system and their efficiency
is strictly related to the quality and the number of the sensors and the meaningfulness
of the data acquired. For this reason, this kind of approach is not suited for the goal of
the thesis.

In the next few paragraphs an analytical and a knowledge based approach are presented.
For each one, the pros and cons are underlined regarding their application on the CNR
pilot plant. Both techniques have been developed starting from the following assump-
tions:

• For each control sequence, it is not possible to have simultaneous actuator and
sensor faults.

• It is supposed that there is not error in the model parameters.

• It is assumed that when the system is switched on all its components are in perfect
conditions.

• For each control sequence, only one fault can occur.
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4.1 Fault Detection: Analytical Approach

The analytical approach applies to relatively small (few inputs, outputs and states) sys-
tems where satisfactory models and enough sensor are available. It is based on the
concept of analytical redundancy. In contrast to physical redundancy, when measure-
ments from different sensors used to measure the same quantity are compared to each
other, in this case, sensor measurements are compared to computed values of the re-
spective variable. The resulting differences, called residuals, are representative of the
presence of faults in the system. In other words, they are the results of consistency
checks between the plant observations and a mathematical model (as summarized in
figure 4.2). It is then possible to say that, generally, an approach of this type arrive at a
diagnostic decision based on the residuals [19].

Figure 4.2: Fault detection composition.

There are different ways to generate the residual, the one designed for our plant is the
observer-based method, in which the output of the system is derived from the measure-
ments with the aid of observers. The vector of residuals is defined as the difference
between the measured and the estimated output.
The difficulties of this type of approach are mainly two: the ability to construct a reli-
able observer of the system and to set a threshold of the error used to judge whether the
residual is zero or non zero. However, both problems for our system seem to be easy to
solve.
To guarantee the correct operation of the system, it is important that at each step the
pallets are actually in the buffer zones corresponding to non-zero elements in the sta-
tus vector returned by lines supervisor to the DCPIP. Concerning the first issue, by
analysing the structure of the hierarchical control system developed during the thesis,
it is possible to conclude that the line supervisor of the low level control already acts
the role of observer of the system status and then is not necessary to implement a new
one. Concerning the threshold, since all the elements of interest are boolean variable
associated to the presence of a pallet in a certain buffer zone, the problem is trivial.
Let’s define xm

i (k) the vector of the state given by the observer, xs
i (k) the one given by

the sensors of the plant and NBZ as the total number of buffer zones:

xm
i (k) =

{
0 i f the i− th BZ is not occupied

1≤ x≤ 5 otherwise, x ∈ N
i = 1, ..,NBZ

xs
i (k) =

{
0 i f the i− th BZ is not occupied

1 otherwise,
i = 1, ..,NBZ

Since at this stage there is not interest in the target of each pallet and the objective is to
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have two measures that give the vector of residual by means of a simple subtraction, the
elements of xm

i j are normalized with respect of their target ti and a new vector is defined:

x̃m
i (k) =

xm
i (k)
ti

, x̃m
i (k) =

{
0 i f the i− th BZ is not occupied

1 otherwise,
i = 1, ..,NBZ

So, it easy define the vector of residual ri(k) as:

ri(k) = |x̃m
i (k)− xs

i (k)|=

{
1 i f there is a discrepance between model and reality

0 otherwise,

In this way we have obtained NBZ residuals, each one corresponding to a buffer zones,
with which is possible to build the matrix of signatures. It is a matrix that has on the
rows the residual and on the columns the faults that could occur. If a fault k impacts
on a residuals p, the correspondent element ep j is equal to 1. With fi it is indicated
the fault occurs to the set of operation concerning the movement of the pallet into the
buffer zone i.

Table 4.1: Residual matrix analytical method

f1 f2 f3 f4 .. fn

r1 1 0 0 0 .. 0
r2 0 1 0 0 .. 0
r3 0 0 1 0 .. 0
r4 0 0 0 1 .. 0
.. .. .. .. .. .. ..

rNBZ 0 0 0 0 .. 1

Note that the matrix is in canonical form, so the identification and the isolation of the
fault is possible. A possible scheme of control for this kind of approach is presented in
figure 4.3, where U(k) is the vector of control actions computed by the MPC, x_p(k+1)
is the predicted state useful to calculate the control actions at k+ 1, s_ j is the set of
control sequences needed to implement the control actions, x(k+1) is the real state of
the transport line at instant k+ 1 and R(K) is the matrix of residual necessary to the
controller to understand if there has been any faults on the system.

Figure 4.3: Residual-approach operations sequence.

With this method it is therefore possible to understand in a simple way which sequence
of control actions has not been terminated due to a fault. What is not possible, however,
is to understand directly which element associated with that sequence is broken.
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Although apparently this is a particularly suitable approach to the fault detection of
our system thanks to the fact of not having to design an observer from scratch and the
simple management of residual, it was not possible to implement it. Reading the sta-
tus of the transport line at each step would slow down the execution of the control
sequences too much and therefore cause a drastic reduction of performance. For this
reason, it was necessary to find a detection system that did not require the reading of
the various sensors.

4.2 Fault Detection: Knowledge-Based Approach

An alternative approach for process monitoring is to use knowledge-based method such
as causal analysis, based on casual modelling of fault-symptom relationships, or expert
systems, used to mimic the reasoning of human experts. [14].
The main idea behind this approach is to build a qualitative model of the process ex-
ploiting the knowledge of the system and then use it to derive the matrix of the signa-
tures. Therefore the only difference with respect to analytical redundancy methods is
due to the qualitative analysis used in the definition of the residuals. However, this way
of reasoning could introduce some qualitative ambiguities in the model building and
then a lack of resolution.
Taking advantage of the modular characteristics of the transport line, it is possible to
take into account a sample of three consecutive buffer zones for defining some qualita-
tive rules and then extend the reasoning to the whole plant. In this way, it is possible
to define rules for the detection and identification of faults by developing effect cause
relationships exploiting the knowledge about the operations necessary to move a pallet.

Let us consider a module with three buffer zones called A, B and C, two further boolean
variables wA,B and wB,C are associated to the control actions that move the pallet from A
to B and from B to C, respectively. They are set to one in case of some problems occur
during the control sequence associated to these control actions. The idea is therefore
to use these variables to construct the matrix of the residuals of the subsystem and to
extend it to the whole transport line. At the beginning, a pallet is in A. For simplicity, it
can be assumed, without loss of generality, that each control sequence involves an ac-
tuator (a motor) that takes care of the displacement and a proximity sensor positioned
at the end of the pallet path that indicates to the PLC to switch off the actuator. The
situation is sketched in figure 4.4, where in red is indicated the position of the pallet for
the line supervisor (and then for the high level control) and in green its actual position.

Figure 4.4: BZs analyzed for qualitative rules.

When the coordinator activates the action Ua,b and a fault occurs, there are two possible
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evolutions of the system:

• The fault affects the motor, and so the pallet does not arrive in B.

• The fault affects the sensor, and so the pallet arrives in B but it is not detected.

At the beginning of this Thesis, the low level waited for the SFC sequences imple-
mented in the PLCs to end. In the event of a fault, therefore, the system was blocked.
The idea is then to implement a timer for the PLC within which the operations must
be completed, otherwise the PLC is forced to finish and a boolean variable (wA,B and
wB,C, for the case taken into account) is set to true to keep track that something has
gone wrong. However, the communication between the line supervisor and PLCs is not
changed. This means that even if the control sequence is terminated due to the timer,
the PLC signals that it has finished the operations to the supervisor without the latter
being informed of the incident. In fact, the low control does not analyse the warning
variables but, on the contrary, limits itself to writing on a text file because the high
control could read them.
This design choice has been made to allow the development of an algorithm capable of
analysing the situation a posteriori and to prevent the block system every time a fault
occurs.

Keeping this change in mind, imagine the evolution in the system in the two cases
presented above.

Actuator fault

Figure 4.5: BZs analyzed after actuator fault.

In case of failure of the actuator, and therefore of the motor that moves the conveyor belt
on which the pallet is placed, the pallet remains in the buffer zone of departure (A). The
sequence associated with Ua,b ends due to the associated timer because the proximity
sensor is not activated by the arrival of the pallet. As a result, the PLC sets wA,B and
signals to the supervisor that the control action has been terminated. The supervisor
updates his model of the system as if the operation were terminated correctly. Then,
it passes the vector of the state to MPC algorithm. The evolution of the system is
presented in figure 4.5.
When the high-level control activates the control action Ub,c, the motor related of the
path from B to C is turned on. Since there are no pallets in B, the sequence must end
due to the timer. For this reason, even the variable wB,C is set to 1. Reasoning in this
way, it is possible to build the residual matrix using the warning variables as residuals:
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Table 4.2: Residual matrix for actuator faults

fa
r1 ( wA,B ) 1
r2 ( wB,C ) 1

Sensor fault

Contrary to what has been said for the case of the actuator, if a sensor breaks, there
is no discrepancy between reality and the model, as shown in figure 4.6. In fact, the
conveyor system has worked perfectly and the pallet has been brought from A to B.
The problem is that its arrival is not detected and the sequence must finished due to the
timer. As a result, the variable wA,B is set to 1.
When the high-level control activates the control action Ub,c, the motor related of the
path from B to C is turned on. Since it has been assumed to consider the single failure
case, the pallet arrives in C without problem. This means that the correspondent se-
quence finishes correctly and the variable wB,C is kept to 0. As before, it is possible to
build the residual matrix using the warning variables as residuals:

Table 4.3: Residual matrix for sensor faults

fs
r1 ( wA,B ) 1
r2 ( wB,C ) 0

With this type or reasoning, the control system become totally robust to the sensor
faults from the moment that they are simply ignored and by using the prediction gives
by the model/observer supplies to the error feedback taken from the plant. So, it is able
to compensate for the wrong information received from the system through the use of
data generated by the mathematical model. In a sense this is the idea behind the concept
of the virtual sensor application [7].
The matrix of residual, considering both the faults, is:

Table 4.4: Residual matrix

fs fa
r1 ( wA,B ) 1 1
r2 ( wB,C ) 0 1

Note that the case in which the engine remains always active is not interesting for the
analysis of this Thesis because the system is equipped with mechanical stops at the end
of each pallet path and therefore the entire transport system would work even without
the application of the fault detection algorithm. More interesting is the case in which a
sensor constantly detects a pallet in a buffer zone even if it is not present in reality. In
this case, since the control sequence that moves a pallet from A to B would terminate
instantaneously seeing the pallet already in B, this fault is treated as a failure of the
actuator (it entails the non-arrival of the pallet in the planned BZ).
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Figure 4.6: BZs analyzed after sensor fault.

4.2.1 Signed Directed Graph

In order to build the matrix of the signatures associated with this method, it is possi-
ble to formalize the previous considerations by means of the Signed Directed Graph
(SDG). It is a graph showing the way in which the process variables are related each
other and describes the behaviour of the system after some events. The SDG developed
for the subsystem of the three buffer zones considered in figures 4.4, 4.5 and 4.6 is
reported in figure 4.7. Nodes represent physical variables, while arcs the mutual influ-
ence. More specifically, the nodes of this graph represent the variable associated with
the presence of a pallet in the buffers zones.

Generally speaking, a node can assume three values: + when its measure is larger than
in the normal conditions, - whet its value is smaller and 0 when its measure can be
considered equal to the one in normal conditions. Each arch represents the correlation
between the nodes, called the cause node and the effect one, and it has a sign that can
take a value of + or - depending on the type of relationship between two nodes. If they
change in a similar way there is a +, otherwise -.

Figure 4.7: SDG for the subset on the transport line.

The goal of SDG is to locate the possible root nodes representing the system faults
based on the observed symptom. To achieve this, the measured node deviation are
propagated from the effect nodes to the cause nodes via consistent arcs until the root
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nodes are identified. An arc is consistent if the sign of the cause node times the sign of
the arc times the sign of the effect node is positive.
In figure 4.8 it is reported the case where the symptom is the lack of the pallet in the
buffer zones 2 and 3 after the execution of the control action and its presence in the
first one. Based on a consistent path check the fault is determined uniquely as "Motor
Stuck" from the moment that a + in the other unmarked nodes results in an inconsistent
arc. The same reasoning can be done for figure 4.9, where the symptom is the missed
detection of the pallet in BZ2 after the control action that moves the pallet from BZ1 to
BZ2. The identified fault is "Fault broken".
Once the SDG has been obtained and the fault-symptom pair has been determined, it
is possible to define the signature matrix. The nodes become our residuals and the
corresponding element in the matrix of residuals is set equal to 1 when the variation
of that variable is caused by the fault characterizing the column. In order to reduce
the dimension of the matrix, only two residual are taken into account: the first residual
corresponds to BZ1 while the second corresponds to BZ2. As easily seen from the final
matrix (table 4.6), two residuals are enough to detect and isolate the two faults.
The matrices of the signatures related to SDG in figures 4.8 and 4.9, are the following:

Table 4.5: (A) Residual matrix for actuator faults; (B) Residual matrix for sensor faults

fa
r1 1
r2 1

(A)

fs
r1 0
r2 1

(B)

For the two faults, the overall the matrix of residual is:

Table 4.6: Residual matrix for sub-set of three BZs

fa fs
r1 1 0
r2 1 1

The same type of reasoning can be extended to transport sequences involving more than
one sensor and one actuator. In this case the components are divided into two groups:
the group used to bring the pallet from one node to another and the group used to mon-
itor the buffer zones to detect the arrival of the pallet. In this case, the fault detection
algorithm will no longer locate the failed component, but the group of components in
which to look for the fault. By combining the various matrices associated with the
groups of three buffer zones, it is possible to obtain a single matrix that allows us to
identify a fault considering the whole system and at the same time to decide if it is
related to a sensor problem or if it concerns the actuators. This is fundamental because,
as already underlined, the control system developed in this Thesis reacts differently to
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the two types of faults: as explained in the following, it compensates through the pre-
diction of the state to the fault on the sensors, while it is reconfigured when an actuator
fault occurs so as to exclude from the control actions the failed ones.

Figure 4.8: SDG actuator fault.

Figure 4.9: SDG sensor fault.
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4.3 Fault Detection: Implementation

The implementation of this detection mechanism concerns both levels of the control
system. As for the low level, it has been necessary to modify all the control sequences
by adding the mechanism to exit from the cycle in case of fault. For the high level,
instead, it has been necessary to think to a way to translate the received data of the
PLCs into a data structure similar to the residual matrix.

Changes to LLC

As for the low level of control, all its sequences have been modified adding a timer to
make the action of the PLCs terminate in the event of fault. Moreover, if this action ends
up due to the timer, a new variable reports to the high control level that problems have
occurred to the corresponding control sequence. Let’s take as example the sequence
number one, reported in the figure 4.10.

S0

S1

S2

S3

Start_Seq_01 == 1

M_Tr_F = On

True

Internal_Timer_Seq_01 < Delay_bf_stop_Sc_No_Bt

Sx_P_Sc1 == 1

Internal_Timer_Seq_01 >= Delay_Time_bf_stop_Sc_No_Bt

M_Tr_F = On
Internal_Timer_Seq_01 = Internal_Timer_Seq_01 + Delta_t

M_Tr_F = Off
Internal_Timer_Seq_01 = 0

Seq 1: External Previous Module - Stacker Crane 1

Figure 4.10: Example of SFC sequence before FD implementation.

When the signal of starting the sequence arrives, the PLC turns the motor on so that
the conveyor belt is activated and the pallet begins to flow in the direction of the arrival
zone buffer. The motor is kept on until the proximity sensor detects the arrival of the
pallet, after which the motor is switched off and the PLC signals to the line supervisor
that the control sequence has been terminated. It means that in the event of a motor or
sensor failure, as there are no mechanisms for which the PLC can detect it, the control
sequence does not end and the whole system is blocked. The sequence has therefore
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been modified by adding a branch to the SFC tree as shown in figure 4.11.

Figure 4.11: Example of SFC sequence after FD implementation.

New boolean variables are then created as warning variables. Each variable is called
Seqns_FAULT , where ns indicates the number of the control sequence to which it be-
longs. At any moment k, it is necessary to run a function to acquire the values of these
variables and communicate them to the high level. This communication is carried out,
as in the case of transmission of the status, by writing the data just acquired as a vector,
to a specially created text file. To achieve this task, a SFC sub-program, called by the
line supervisor, is created. Its behaviour can be schematized as in figure 4.12.

Figure 4.12: Warning variables gathering.
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Changes to HLC

In the high level control, a new function faultsHandler has been added to the Deman
Control class. It has the task of reading the vector of the alarm variables and interpret-
ing them in order to let the controller understand whether a fault occurs. The operations
necessary to interpret the information read from txt file are mainly two. First of all it
is necessary to find the control actions corresponding to the sequences where problems
were found. After that, it is necessary to find an algorithm that allows to understand if
it is a fault of the sensor or of the actuator interpreting the matrix of the residual.
For what concerns the control actions determination, a control action can be composed
by one or more control sequence and it must be marked as problematic if at least one of
them is finished for effect of the exit timer (Table 4.8 lists the control actions supported
by the sequences that compose them).
For this reason, at every cycle the program builds the vector ca_ f ault of fifty-one el-
ements, in which each element is associated with a control action. The construction
of this vector is based on the data read from the text file containing the values of the
warning variables, since each of them corresponds to a specific control sequence. So,
by analysing these variables it is possible to understand which sequence is in fault, and
then which control action. If a warning variable is set to one, the corresponding ele-
ment of ca_ f ault is increased by 1 to indicate that a problem has been detected for that
certain control action. So,

ca_ f ault[i] =

{
0 (i f the i− th control action is not problematic)

bigger or equal to 1 (otherwise)

Once the translation from control sequence to control action has been done, each el-
ement of the new vector is analysed and the following rule is applied to determine if
a fault affects a sensor or an actuator (the vector previous_ca is a copy of the control
action applied to the system at the precedent cycle):

Figure 4.13: DCPIP class structure.

if ((ca_fault[i] > 0) AND (previous_ca[j] == 1))
if (ca_fault[j] > 0) {
cout << ACTUATOR FAULT << endl;
} else {
cout << SENSOR FAULT << endl;
}

To better explain this rule, let us consider a situation in which a node has one control
input action and one control output action, as in figure 4.13. It is worth noting that,
although the structure of the rule is the same for all the elements analysed, a thorough
analysis of the system is fundamental to understand what control actions are to be
considered or not in this analysis (from a practical point of view this means that choice
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of indices i, j is not trivial and should be weighted).
For each element of ca_ f ault different from zero, previous_ca is checked in order to
understand if at the previous step the control action corresponding to its output has been
called. In this case, even the the correspondent element of previous_ca is checked and
there are two cases:

• It is bigger than zero, so that the control action is in fault and there is a problem
on the actuator

• It is zero, so that the control action is not in fault. It means that there is a problem
on the sensor and the system can ignore it

The check on the control action is essential because, with respect to the situation pre-
sented above, it is not known when the controller call U j and the algorithm is made in
such a way to ignore the fault until it has identified its type.

With this method, there are two relevant advantages: it is possible to detect and isolate
a fault without introducing delays due to the operations necessary to read the sensors
and the control system become totally robust to the sensor fault. On the other hand,
the failures are detected with a cycle of delay and this could cause some problems. For
example, if there is a pallet too close to the ones stuck due to an actuator fault, and the
control system detect lately this fault, the pallets could crash and an electronic board
that could have taken another path is lost.

4.4 Fault recovery

Fault recovery is a critical part of process monitoring required to obtain a controller ca-
pable to operate even in the event of a fault in one of its components. In this phase, the
control system is reconfigured, when possible, to eliminate the effects of the detected
failures.

Since all the faults that can happen to the system are potentially critical so such as to
block the plant activity, there is the need to implement an active fault tolerant control
mechanism like the one shown in figure 4.14. Model Predictive Control is particularly
suitable for this type of solution because it allows quickly to add new constraints or
modify the objective function at each step, thus including the conditions imposed by
the breaking of a component in the control algorithm.
The fault detection system previously presented provides the high-level controller with
the information necessary to reconfigure the MPC algorithm or, in the event of an unre-
coverable fault, to stop the transport line and report to the operator where to take action
to restore normal activity. The task of the recovery function is then to understand when
and how the controller has to be reconfigured. In the following, the rules set to handle
the actuators and the sensors faults are presented.

It is important to underline that the strategy adopted in this case is not able to guarantee
a full fault tolerant control, i.e. the ability to operate without significant degradation of
performance in the event of any failure, solely due to the physical configuration of the
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Figure 4.14: Active fault tolerant control scheme.

system. The plant is considered to work properly when it is able to guarantee that the
work cycle is performed, so when it is certain that a pallet loaded in the load/unload
station is taken to the testing machine and, depending on the outcome of the test, to the
other two work cells. The particular configuration chosen for the arrangement of the
modules and the impossibility of using the motors to make the pallets turn back after
a fault greatly reduces the chances of finding alternative ways to bring the pallets from
one machine to another.
With some changes to the layout of the modules or to the structure of the modules,
it could be created a much more connected graph on which a fault recovery strategy
would be more effective.

Fault Recovery: Sensor Faults

As far as the faults on the sensors are concerned, the control system is totally robust as
long as there is only one sensor broken in the sequences involved in the movement of
the pallets. This limitation is derived from the fault detection algorithm used. In fact, in
the case of several sensors broken on two consecutive control actions, it would not be
possible to distinguish between faults of the actuators and of the sensors. In this case,
the residual matrix would have two identical columns, making it possible to perform
only the failure detection and not the identification.
Thus, the high-level has been designed to use as state its prediction obtained from the
line supervisor, that is used as observer to replace the real sensors in fault with a variable
obtained from the mathamatical model. This principle is the based of the virtual sensors
technique [7].
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4.5 Fault Recovery: Actuator Faults

The fault management on the actuators is much more complicated than the one of the
sensors. The recovery process can be divided in three subtasks:

• Understanding if the fault is a critical one, so that the system should be stopped.

• Adding the new constraints to the MPC optimization problem to avoid the con-
troller to invoke the control action associated to the failure.

• Changing the ISaGRAF model to obtain a correct prediction of the state.

Fault Entity Evaluation

Determining the severity of an actuator rupture in the case of the pilot plant means
understanding whether the system is able to continue the de-manufacturing activity af-
ter a reconfiguration of the controller. To do this, it is possible to use the advanced
mathematical techniques defined for the oriented graph analysis [1]. There are several
algorithms to determine if two nodes are connected or not. In particular, what interests
for the analysis carried out in the Thesis work is that some nodes, those corresponding
to the machines, are connected to each other by at least one path. In particular, to guar-
antee operation, the following routes must always be guaranteed (the nomenclature of
figure 1.4) are used):

Table 4.7: List of fundamental paths of the plant

S E Path description
N32 N33 The path that connects the robot cell with the testing machine
N33 N34 The path that connects the testing machine with the reworking one
N33 N35 The path that connects the testing machine with the discharge board
N33 N32 The path that connects the testing machine with the robot cell
N35 N32 The path that connects the discharge board with the robot cell
N34 N33 The path that connects the reworking station with the testing machine

Note that the path from N32 to N33 is not equal to the one that connects N33 to N32.
The same holds for all the nodes.

It is therefore essential to implement an algorithm to understand if these paths are fea-
sible every time a fault occurs and so to understand if a fault is critical or not. This can
be done in two ways: an off-line study of the graph is carried out and a lookup table is
created in which an outcome is associated to each possible sub-graph or on-line checks
are carried out dynamically.

Off-Line analysis of the effects of an actuator fault on the transport line, which regard-
ing the graph corresponds to the elimination of an arc, is very complicated. This is
because a considerable number of configurations should be analysed since our analysis
has to take into account even the possibility that more than one fault on different control
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actions occurs. There is the possibility, for example, to have a problem with the generic
control action Ua,b and after with Ub,c. As a consequence, two different configurations
must be studied: the graph without the arc correspondent to Ua,b and the one without
the arcs corresponding to Ua,b and Ub,c. Note that if the failures were in the reverse
order, a different configuration should be analysed. From a mathematical point of view,
without using heuristic rules that could significantly reduce the number of sub-graphs
(for sub-graphs it is meant one in which the node are the same, but the arcs are differ-
ent) to investigate, the possible configurations obtainable are 2nac and so, in this case,
are 251.
Even if for a large number of cases the solution is obviously trivial, off-line studies
of this type are very time consuming and the construction of a C++ (lookup) table in
which the sequence of faults are related to their entity is very complicated. Moreover,
an analysis of this type would not lend itself to larger plants as the number of graphs to
be investigated grows exponentially as the number of edges in the graph increases.

An on-line analysis in which the graph is implemented as a proper data structure in the
C++ platform and the arcs are eliminated dynamically has been taken into account. In
fact, it is possible to create a new data structure node on which the main algorithms
of the graph theory are easily applicable. On the web there are a lot of open source
libraries [6, 13] to be downloaded for describing and handling graphs for every pro-
gramming language. With the help of these libraries, it is possible to store the model
representation of the transport line as a private member of the Deman Control class. In
this way, this data structure is stored in memory for all the work sessions of the plant,
as the modifications that have been done on it. Consequently, when there is a failure
of an actuator, the controller could dynamically delete the corresponding arc and then
apply an operational research algorithm, such as Dijkstra, to understand if the paths
that connect the machines still exist.
At the beginning of the work, this approach has been taken into account, but an evident
delay was introduced since the algorithms are quite time-consuming (especially con-
sidering that every step lasts about five seconds). Moreover, the structure associated
with the graph increases in dimension as the dimension of the plant increases. So as for
the time requested to perform the algorithm chosen at every step.
Therefore, the solution described can so applied in cases where the computing power
is not a problem and is not suitable for large transport lines.

None of the two previous options is therefore satisfactory for the needs of the pilot
plant. For this reason, a new solution was sought. The algorithm is represented by a
hybrid method in which, through the off-line preliminary study of the graph, the com-
plexity of the problem to be solved on-line is reduced.
The analysis is moved from the directed graph derived from the MLD model to a very
simplified one in which only four nodes, the machines, and six arcs are present. It is
shown in figuree 4.15. The off-line investigation has a primary role in the definition
of the arcs. They do not more represent a control action to move a pallet between two
buffer zones, but they are a boolean expression derived from this analysis. If the ex-
pression equivalent to an arc is equal to true, it means the graph is no more connected
and the system must be stopped. On-line control is greatly simplified as it is reduced to
a simple calculation of a boolean expression.
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Figure 4.15: Simplified plant scheme.

The preliminary study was aimed at determining these expressions. For each couple
{S,E} of Table 4.7, the operations to be carried out are as follows:

1. Following a Best-First Search approach, a data structure (called in the following
Reachable Tree) similar to the tree one, in which are represented all the possible
paths from one node to another, has been created (particular attention must be paid
to the cyclical routes). It is a graph in which there is a root node, the starting one,
corresponding to the starting machine and the leafs are all representing the arrival
machine. The arcs between the nodes are the control action required to move the
pallets as in the complete graph.

2. The control actions are divided into two sets: those that determine the blockage
of the plant, called critical, CAc and the ones for whom an acceptable level of
productivity is maintained CAn. At the beginning, they are empty.

3. Then, the control actions are examined and classified in one of the two groups
based on the following rule: if after removing an arc the root node is not linked
to at least one leaf the corresponding control action, Ui is a critical one. CAc =
{Ui }. Otherwise, CAn = {Ui }

4. At the end of the investigation, the elements (and the their starting nodes) belong-
ing to CAc are removed from the Reachable Tree (RT).

5. Starting from the simplified reachable trees, the boolean expression to define an
arc of the simplified graph are derived. A boolean element is associated to each
control action, than using a bottom-up approach, the RT is examined. Two con-
secutive actions are related by the operator or (∨), while two actions starting from
the same node by the operator and (∧).

6. The expression just found is linked with the boolean associated to the elements of
CAc by the or (∨) relationship.
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To better explain how these rules apply, first take the RT corresponding to the number
5 arc of the simplified graph as an example. It is represented in figure 4.16 (A), for
simplicity it is presented a version already partially leafed. Eliminating individually
the control actions U21 and U22, the tree is no more connected, whereas doing the same
with the others at least one path from M3 to M2 is still present.

CAc = {U21 , U22 } , CAn = {U33 , U32 , U29 , U25 , U26 }

Then (B) is obtained by removing the arcs belonging to CAc.
After that by inspecting (C), the following expression is derived:

( BU26 ∨ BU25 ∨ BU29 ) ∧ ( BU32 ∨ BU33 )

Where BUi is the boolean associated to the i control action.
Finally, defining F5 connect with the arc number five, it is obtained:

F5 = BU21 ∨ BU22 ∨ ( BU26 ∨ BU25 ∨ BU29 ) ∧ ( BU32 ∨ BU33 )

F5 = T RUE → arc 5 to be eliminated → system must be stopped

Figure 4.16: RT corresponding to path 5.

To provide another example, an RT with a slightly more complex structure is presented
in figure 4.17. It represent the arc number two, and so the path from the testing machine
to the load/unload station. Even in this case, the tree has been partially leafed to obtain
a clear drawing. This example explains perfectly how even more complicated structures
can be expressed in a simple way. Noting that the final part of each branch is identical,
we can define the sub-tree p1 as:

p1 = BU4 ∧ ( BU46 ∨ B47 ∨ B48 ∨ B49 ∨ B50 )
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Then, it is substituted into the RT to simplify its structure and to compact the expression
of F2. Repeating the same procedure of before, now three control actions have been
individuated as critical from the moment that they are present in all the three branches
of the tree and their elimination brings to a not connected reachable tree. Note that,
even the events in p1 are repeated in all the possible evolution of the system but the
control actions belonging to it do not break the RT if individually in fault. On the other
hand, it could be possible to add to CAc the boolean associated to p1 but the physical
meaning of the critical control action set could be lost.
F5 is then:

F5 = p1∨ ((BU31∨BU27∨BU37∨ (BU38∧ (BU40∨BU51)∧ (BU34∨BU39∨BU40)

Thus, with the same procedure is possible to define all the Fi, i = 1, ..,6, and calling is
it possible to formalize the final check done by the high-level control system in order
to understand if the system must be stopped:

( F1 ∨ F2 ∨ F3 ∨ F4;∨ F5 ∨ F6 ) = T RUE → system must be stopped

So, basically, with a little effort in performing the off-line analysis, easily executable
even for larger graphs, logical expressions, to be checked on-line with practically null
computing cost, are derived.

Controller reconfiguration

MPC is very suited to implements fault recovery. In fact, by solving at any time instant
a new optimization problem, allows one to include in the problem constraints which
represent the occurrence of actuator faults.
When an actuator is in fault, the corresponding control variable is set to zero into the
model. So when a fault has been detected following the action Ui, the high-level con-
troller takes three countermeasures:

• The boolean variable associated to the faulted control action is setted to true, to
implement the logic described above.

• A new set of inequalities are added to the model dynamically. New rows are added
to Aineq and bineq, computed in the controller initialization phase and stored in the
memory, in such a way to include the constraints:

Ui(k)≤ 0

Ui(k+1)≤ 0

..

Ui(k+N)≤ 0

Where N is the prediction horizon chosen.
The goal is to exclude the problematic control action from the ones at the avail-
ability of the MPC algorithm.
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Figure 4.17: RT corresponding to path 2.

• A flag is raised to signal to ISaGRAF that a fault that has to be handled has been
detected.

To do that, the function faultsHandler implemented for the fault detection has been
integrated. Thus, instead of simply reporting to the operator that a fault just occurred,
for each element of ca_ f ault it implements these three points as follows:
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if ((ca_fault[i] > 0) AND (previous_ca[j] == 1))
if (ca_fault[j] > 0) {
cout << ACTUATOR FAULT << endl;
AineqFault= newMatrix;
AineqFault= constraintDefinition;
Aineq = concatenateMatrices(Aineq, AineqFault);
updateModel();
raiseFlagIsagraf[i] = 1;
} else {
cout << SENSOR FAULT << endl;
}

These three actions are enough to reconfigure controller.
It is important to underline that the reconfiguration of the model of the HLC, adding
the constraints, alone is not sufficient to make the recovery mechanism effective. It is
also necessary to correct the state of the system memorized by the high-level control so
that the control actions are consistent with the faulted system. As previously described,
before passing the control actions to LLC, the controller checks the status on which
they have been calculated and the status passed to it by the line supervisor, if they are
different the actions are dropped. Therefore even the model of the line supervisor must
be changed. For this reason, a new text file, in which the informations about which
control action has just faulted, has been created. The line supervisor reads it from this
file and changes the state of the transport line that has in memory to make it consistent
with the real situation.
In this way, the fault has been totally recovered.

Note that for implementing the tolerant control algorithms, two different file text have
been created: one written by the line supervisor which contains a sector of boolean indi-
cating what sequences have presented problems, while the other written by the DCPIP
which contains an indication about what actions have been disabled due to an actuator
fault.
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Table 4.8: List of control actions and control sequences that composing them

U1 S2M1
U2 S3M1 S1M2
U3 S26M1 S5M13
U4 S27M1 S7M13
U5 S28M1
U6 S36M1
U7 S2M2
U8 S3M2 S4M3
U9 S7M2 S5M12
U10 S5M2 S7M12
U11 S2M3
U12 S3M3 S1M4
U13 S24M4 S12M5
U14 S7M4 S27M8
U15 S26M8 S5M4
U16 S13M5
U17 S7M5 S25M6
U18 S6M6 S5M7
U19 S2M6
U20 S3M6 S9M8
U21 S2M7
U22 S3M7 S9M9
U23 S18M7
U24 S1M7
U25 S10M8
U26 S21M8
U27 S20M8 S12M10
U28 S16M8 S14M9
U29 S17M9 S15M8
U30 S6M8 S35M9
U31 S31M9 S28M8
U32 S10M9
U33 S22M9
U34 S23M9 S12M11
U35 S30M9
U36 S29M9
U37 S13M10
U38 S7M10 S33M3 S12M12
U39 S13M11
U40 S7M11 S34M10 S33M3 S12M12
U41 S8M11
U42 S32M11
U43 S13M12
U44 S11M12 S12M13
U45 S13M13
U46 S11M13 S12M14
U47 S13M14
U48 S7M14 S5M15
U49 S2M15
U50 S3M15 S19M1
U51 S37M10 S5M11
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Chapter 5

Conclusions

The Thesis has described the improvement of an MPC controller for the transport line
for de-manufacturing systems. In particular, two themes have been addressed: the re-
duction of the times needed to perform a control action and the implementation of a
system of fault detection and recovery.
Through the implementation of advanced control techniques, such as MPC with con-
trol horizon, combined with the application of heuristic rules developed thanks to an in
depth study of the structure of the line, clear improvements have been obtained from
the point of view of lowering the computing power required. This resulted in a signifi-
cant reduction in the average time needed to calculate the solution, which in some cases
reached more than 96% compared to the basic version of the controller from which the
work started. Moreover, thanks to the parallelism introduced between the problem-
solving activity and movements realization, even the total production time has been
sensibly reduced and for the most of the transition the optimization problem has been
completely hidden. It means that the first topic of this Thesis has been totally solved
and the bottleneck of the production time is now due to the needed to implement the
movements of the pallets, which requires a fixed time.
Concerning the detection and the handling of the faults occurring on the plant, the case
of single failure has been studied. A knowledge-based model for the definition of the
residual matrix building and an opportune method to active fault recovery have been
implemented with very good results. The system is now able to react to failures with
only two steps of delay, while satisfying the constraint of not wasting time in reading
the state of the transport line by the sensors.

All the improvements achieved have been tested on the pilot plant of the CNR-ITIA,
with very good results.

A possible continuation of this Thesis could therefore be the attempt to reduce the steps
necessary for the controller to detect a fault. Furthermore, fault recovery is quite limited
by the configuration chosen for the transport modules. Studying another plant config-
uration that keeps the distance between the machines unchanged but adds connections
to the graph could prove to be fundamental.
An important limitation to the control system is given by the solver. In fact a more ef-
fective configuration for the Cplex environment must be implemented to solve the bug
of saturation of the workstation in which the main process of the solver runs.
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