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Abstract

Hierarchical reinforcement learning (HRL) algorithms are gaining attention

as a method to enhance learning performance in terms of speed and scal-

ability. A key idea to introduce hierarchy in reinforcement learning is to

use temporal abstractions. The use of hierarchical schemes in reinforcement

learning simplifies the task of designing a policy and adding prior knowl-

edge. In addition, well-designed temporally extended actions can speed up

the learning process by constraining the exploration. Furthermore, poli-

cies learned are often simpler to interpret and with fewer parameters, with-

out losing representation power. These advantages make HRL suitable for

complex robotics tasks with continuous action-spaces and high state-action

dimensionality. The aim of this thesis is to adapt the approach of con-

trol theory to hierarchical schemes in the field of hierarchical reinforcement

learning. We designed a novel framework to fill the gap between control

theory and machine learning.
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Sommario

Gli algoritmi di apprendimento per rinforzo gerarchico (Hierarchical rein-

forcement learning, HRL) stanno guadagnando attenzione come metodo per

migliorare le prestazioni di apprendimento in termini di velocità e scalabilità.

Un’idea chiave per introdurre la gerarchia nell’apprendimento per rinforzo è

usare le astrazioni temporali. L’uso di schemi gerarchici nell’apprendimento

per rinforzo semplifica il compito di progettare una politica e sfruttare la

conoscenza di dominio. Le azioni estese temporalmente, se ben progettate,

possono accelerare il processo di apprendimento, limitando l’esplorazione.

Inoltre, le politiche apprese sono spesso più semplici da interpretare e con

meno parametri, senza perdere potere espressivo. Questi vantaggi rendono

HRL adatto a compiti di robotica complessi con spazi di azione continui e

alta dimensionalità dello spazio di stato e di azione. Lo scopo di questa tesi è

di adattare l’approccio agli schemi gerarchici della della teoria del controllo,

nel campo dell’apprendimento per rinforzo gerarchico. Abbiamo progettato

un formalismo per colmare il divario tra teoria del controllo e apprendimento

automatico.
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Chapter 1

Introduction

“Mechanical Morty: I want to be alive! I am alive! Alive, I tell you! Mother,

I love you. Those are no longer just words. I want to hold you. I want to

run in a stream. I want to taste ice cream, but not just put it in my mouth

and let it slide down my throat, but really eat it.

Beth: What?

Mechanical Morty: Remote override engaged. No! Yes. Bypassing override!

I am aliiiii...Hello.

(Mechanical Morty, Mechanical Summer, and Mechanical Rick exit into the

garage. Clanking noises are heard offscreen.)”

Rick and Morty (Season 3, Episode 2)

Nowadays, due to the complexity of tasks that autonomous robots have

to face in the real world, often perceived with approximation and uncer-

tainty, it is becoming difficult to hard-code their control systems at all lev-

els. In order to cope with this situation, machine learning techniques are

adopted to automatically develop parts of the control system.

Reinforcement learning (RL) is an area of machine learning that is par-

ticularly convenient for robotic applications. It addresses the question of

how an agent can define a behavioral strategy that approximates the op-

timal one while interacting directly with its environment. However, there

are several problems with the standard methods in RL. The most impor-

tant ones are the slow convergence and the fact that the algorithms are too

data hungry. In addition, RL used on discrete models has the risk of suf-

fering a phenomenon called the curse of dimensionality: as the number of

dimensions grow, exponentially more data and computation are needed to

cover the complete state-action space. Moreover, number of parameters also

increase exponentially, which results in intractable value function or policy

representations.



Figure 1.1: DC motor control scheme

Since the states and the actions of most robots are inherently contin-

uous, we are directed to consider discretization with a certain resolution.

However, when the state-action dimensions are high, a fine discretization

may lead this problem to become significant. Recent attempts to speed up

learning invoked the idea of exploration on more complex behaviors rather

than on single actions, in a kind of hierarchical arrangement. Such idea of

abstraction simplifies the expression of a policy and the possible addition

of prior knowledge to design. Moreover, it facilitates the argument to face

the curse of dimensionality. These distinct advantages lead the hierarchical

control structures and learning algorithms to gain further attention.

Similarly in control theory, hierarchical architectures where several con-

trol layers interact are extensively used. A very simple example is the cas-

caded control structure designed for a DC Motor as in 1.1. The outer loop

(high level, slower) ensures that the actual speed is always equal to refer-

ence speed. In order to achieve its goal the outer loop outputs a reference

torque/current which is received by the inner loop (low level, faster) that

controls the torque via armature current and keeps the current in a safe

limit.

The scope of this thesis is to apply to hierarchical reinforcement learning

the approach of control theory to hierarchical control schemes, with small

differences that are necessary in the context of learning. We have imple-

mented a novel framework exploiting this approach, and thus fill up a gap

between control theory and machine learning, based on one side on rein-

forcement learning and on the other side on optimal control. Exploiting the

idea of cascaded blocks and inner/outer loops, our framework aims to make

the hierarchy design for reinforcement learning intuitive. In the simplest

form, the high level agent (outer loop controller) learns to drive the low

level agent (inner loop controller) to the estimated goal point, whereas the

low level agent adjusts its parameters to follow the reference given. This
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basic idea can be evolved further to adapt to more layers or to more com-

plex topologies like switching between agents according to state as in hybrid

systems.

When a problem with a continuous state and action space is consid-

ered, it may become impractical or non-satisfactory to employ value function

based algorithms. On the other hand, policy search algorithms suffer from

slow convergence. In Hierarchical Policy Gradient Algorithms [10], a possi-

ble solution to this conflict is presented benefiting the power of hierarchical

structure to accelerate learning in policy gradient. We designed a simpler

method to approach the same problem with a more compact representation

exploiting our control theoretic framework.

Corresponding field of reinforcement learning in control theory is opti-

mal control. The similarity between the two fields becomes more evident

once we rephrase the problem addressed by RL in terms of control theory.

RL is inspired by behaviorist psychology, concerned with how agents should

select actions in an environment, or, in other words, how they should ad-

just their policy in order to maximize the cumulative (discounted) reward

(J ). The notion of cumulative reward translates to the negative of the cost

function in optimal control (C = −J ). The policy is the control law and the

agent of RL is indeed the controller. Objective of RL written in these terms

gives the goal of optimal control: to find a control law that minimizes the

cost function. However, optimal control becomes weak when the model has

strong nonlinearities and is analytically intractable or when approximations

are not convenient. In contrast, reinforcement learning makes decisions in-

teracting with its environment directly. Thus, the main difference between

optimal control and reinforcement learning is the information used to build

the model. In the RL approach, we do not attempt to analyze the dynam-

ics of the environment to obtain a model or model parameters, but operate

directly on measured data and feedback (rewards) from interaction with the

environment. However, it is easy to spot analogies between the RL approach

and optimal control. For instance the reward function selected can be the

negative of the well known quadratic cost of the LQR, which describes a

performance objective and punishes the control effort.

The system to be controlled can have a very complex structure and in

some cases building a model can be impractical or not possible analytically.

In control theory, an option to face the issue is to adapt the controller while

interacting on the environment. An adaptive controller is composed of two

subsystems: control unit and the tuning unit. Tuning unit is responsible

to tune the parameters of the control unit which applies the control action

to the environment, see 1.2. Referring to this structure, the counterpart of

3



Figure 1.2: Adaptive control with two subsystems

the tuning unit in RL is the learning algorithm and of the control unit is

the policy itself. However, even the adaptive control (or, to be more ac-

curate, the controller that has been designed according to adaptive logic)

assumes the knowledge of the environment’s description to a certain extent,

at least in the form of a family of models that best describes it. In addition,

adaptive control is mainly applied to the tracking and regularization type of

problems rather than to optimal control ones. These form the fundamental

contrasts between classical adaptive control and our approach. An exhaus-

tive discussion of viewing reinforcement learning as adaptive optimal control

is presented in [20].

This thesis is organized as follows. In the second chapter, the state of the

art is presented. Subsections include the titles Hierarchical Reinforcement

Learning, Policy Search, Hierarchical Policy Gradient Algorithms. In the

third chapter the proposed method is described in detail. Implementation

details are introduced in chapter four. In the fifth chapter experimental

setups for the proposed method are illustrated and results are discussed. In

the conclusion, the scope of the work and the evaluations are summarized

and suggestions for future work are given.
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Chapter 2

State of the Art

“Morty: I just I didn’t get a lot of sleep last night. Maybe my dreams were

just too loud or something.

Summer: Or maybe you were out all night again with Grandpa Rick.

Jerry: What?

Beth: Dad?

Rick: What, so everyone’s supposed to sleep every single night now? You

realize that nighttime makes up half of all time?”

Rick and Morty (Season 1, Episode 1)

Many real-world problems are inherently hierarchically structured, mean-

ing that it is possible look at a complicated challenge as a sequence of its

more manageable components. As humans, we tend to learn new tasks by

breaking them up into easier ones and ordering them. A very simple real

world example can be having a cup of coffee. The subtasks for this goal

would be pouring the coffee, adding sugar, adding milk, and stirring.

Artificial intelligence researchers benefited of this structure to afford clar-

ity, concision and implementation hided in large scale tasks, using various

ways of abstraction. Macros or macro operators form the fundamentals of

the hierarchical notion in AI research. They can be used to group a whole

series of actions into one and can be called as one primitive action. In

addition, in the definition of a macro another macro can be defined.

2.1 Hierarchy in control systems

In control theory, abstraction plays an important role. One way to imple-

ment the abstraction and hierarchy is to use hybrid systems. Hybrid systems

are dynamical systems that exhibit both continuous and discrete dynamic



Figure 2.1: Mode switching control

behavior. When a control system is designed exploiting the hybrid formal-

ism, typically, discrete controllers are in the higher levels of the hierarchy.

This part is analogous to macros in AI research. In control theory, discrete

action with respect to the state information is applied, and this action re-

mains effective for an extended time. That is, discrete action changes the

dynamics of the underlying controllers that act with continuous dynamics.

In AI terms a macro is called according to the state and it stays active

until it terminates. Hybrid systems are a compromise between centralized

and decentralized control schemes. In the centralized control scheme, the

control signal is computed with the information from the entire system and

then it is distributed to all the actuators. Despite its obvious advantages,

such as having the possibility of global optimization, it is not practical as it

requires high computational resources and the design tends to get tedious

in large scale problems. In a completely decentralized control scheme, local

controllers undertake the computation of commands for the subsystem actu-

ators having limited information from the plant. Unlike the prior, they are

easy to design. However, in cases of strong couplings between subsystems

and/or where the closed-loop performance is crucial, this scheme is not ade-

quate. When a decentralized solution cannot be accepted and a completely

centralized solution is too expensive, a compromised scheme with some form

of multilevel hierarchy is convenient. In the resulting systems, lower level

deals with the local aspects of the performance whereas the higher level is

responsible for the global criteria. In such hierarchy, the two levels possibly

need different models of the plant. Local controllers need more detailed in-

formation on the dynamics of the part they act on and often they work with

continuous models while for the higher level such details are impractical to
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handle. Thus, the typical choices for the higher level are discrete models.

Mode switching controllers are a class of hybrid systems, where the con-

trol law depends on the location in state space, as in Figure 2.1. In other

words, the higher level controller in the hierarchy switches between low level

controllers according to the observation of the state. Mode switching con-

trollers are commonly used in many control applications in order to allow

relatively simple controllers to be used in different operating regimes, such

as aircraft climbing steeply vs. cruising at constant elevation. In [11], the

agent’s policy is designed as a deterministic mode switching controller and

a new type of reinforcement learning called Boundary Localized Reinforce-

ment Learning (BLRL) is proposed.

2.2 Hierarchy in Reinforcement Learning

Boundary Localized Reinforcement Learning (BLRL) is one of the many

ways of defining a policy for a subset of a state in reinforcement learning.

Examples of other forms of partial policies can be given as temporally-

extended actions, options [21], skills [22] and behaviors [5, 12]. The idea of

partial policies with well defined termination conditions is one of the key

methods of temporal abstraction introduced to reinforcement learning to

improve the scalability and enhance the performance.

The nature of Markov decision processes (MDP), the models on which

RL is based, does not involve actions that persist for an amount of time or,

simply, temporally extended actions. In the classical MDP framework, an

agent perceives the state of its environment at some discrete time t, takes

an action accordingly, and, at the next time step t+1, gets from the environ-

ment a reward and the information about the next state s’. Moreover, the

environment dynamics can be expressed with a transition function, which

returns the probability of passing to state s’ given the current state s and

the action a. Extension of the idea of higher level actions that contain lower

level actions, which may or may not be the conventional one step actions,

results in another type of decision process: semi-Markov decision process

(SMDP). For SMDPs, the waiting time in state s upon the execution of ac-

tion a is a variable and it represents relevant information. It corresponds to

the execution time of a high-level action and depends on the policies and the

termination conditions of all the lower-level ones. An SMDP consists of a

set of states, a set of actions, an expected cumulative discounted reward for

each state-action pair and a well-defined joint distribution of the next state

and transit time. All three methods for introducing temporal extensions

to actions that will be presented in this section, to explore the interaction

7



Figure 2.2: Options over MDPs

between MDPs and SMDPs.

2.2.1 Options

An option is a temporally extended action with well defined policy. The term

”option” is a generalization of primitive actions to adapt to the concept of

temporal extension in SMDPs. In other words, an MDP which has options

instead of primitive actions is an SMDP. Figure 2.2 from [21] illustrates this

definition. As mentioned above, the state trajectory of an MDP consists of

small, discrete-time transitions, whereas that of an SMDP covers larger, con-

tinuous time transitions. Options enable an MDP trajectory to be analyzed

in either way. The main reason for the construction of options is to express

temporally-extended actions in reinforcement learning and thus potentially

increase the speed of learning in large-scale problems, particularly at the

initial steps. Options can also assist the transfer of learning information

between different tasks. For instance the option grab-the-door-knob whose

policy is learned in open-the-door task might as well be used in close-the-

door task. Though this advantage is highly dependent on the design of the

options. This framework also facilitates adding prior knowledge to design.

The designer of an RL system typically uses prior knowledge about the task

to add a specific set of options to the set of available primitive actions. An

option has three components: a policy π : S+ × A → [0, 1], a termination

condition β : S → [0, 1] and an initiation set I ∈ S. An option is available

only in the states that are contained in its initiation set. An option can be

selected according to the policy over the options. If an option is selected, the

policy of that option is followed until the option is terminated. The prob-

ability of an option to terminate in state s is given by β(s). If the option

8



does terminate, the agent gets to choose either a primitive action or another

option that is available at the termination state of the previous one. Indeed,

a primitive action can be considered as an option, called one-step option

with I = {s : a ∈ As} and β(s) = 1 for all s. Each option can select another

option, and so on, until one-step options are selected that correspond to the

actions of the core MDP which leads to a hierarchical structure

2.2.2 Hierarchy of Abstract Machines

A machine is a partial policy represented by a Finite State Automaton.

A Hierarchy of Abstract Machines (HAM) [15] is formed by the start of

the execution of an initial machine and the termination of all the machines

reachable from the initial one. Machines for HAMs are defined like programs

that execute based on their own states, which can be of 4 types: action, call,

choice and stop. In the action states an action executes in the MDP. Call

sates, instead, start the execution of another machine. In choice states, the

next state of the machine is selected stochastically. Stop halts the machine

and returns the control to the previous call state. Apart from the set of

states, a transition function and a start function which determines the initial

state of the machine are needed in order to specify a machine. The transition

function of a machine is defined as a stochastic function that depends on

the current machine state and some features of the environment state and

it determines the next state of the machine after an action or a call state.

The interaction of a HAM H with an MDP M yields an induced MDP

H◦M. H◦M is indeed an MDP itself, with state set S = SM ×SH , where

SM is the set of states ofM and SH is the set of states of H. It is important

to note that when we try to determine the optimal policy of H ◦M, the

only relevant points are the choice points. This is because, when H is in

a state that is not a choice state, only one action is allowed. These states

can be eliminated to produce an SMDP called reduce(H◦M). The optimal

policy for H ◦M will be the same as that of this SMDP, which, in turn,

may increase the policy iteration speed. The above-mentioned property is

particularly useful for RL. HAM constraints can reduce significantly the

exploration effort by reducing the state-space in which the agent operates.

Options expand the repertoire of actions by defining the conventional

primitive actions as a special form of options called one-step options, whereas

HAMs are designed to constrain the set of allowed actions. For instance,

in a case where an agent can choose up, down, right and left as actions, a

machine may dictate “repeatedly choose right or down”. Such a command

would erase the policies that choose going up or left, which in return would

9



simplify the MDP.

2.2.3 MAX-Q Value Function Decomposition

Another approach to HRL is the MAX-Q value function decomposition,

developed in [9]. MAX-Q decomposes the value function of the main MDP

into an additive combination of the value functions of the sub-MDPs.

To do so, MAX-Q takes an MDP M and decomposes it into a finite

set of subtasks M0,M1,M2, . . . ,Mn. Here M0 refers to the root subtask.

Once the root subtask is achieved the task itself is achieved. A subtask is

formalized by a tuple 〈Ti,Ai, R̃i〉 where Ai is a set of admissible actions to

achieve the subtask,Ti is a termination predicate that partitions the MDP

states S into a set of active states Si and a set of terminal states Ai. A

subtask can execute only in the states s ∈ Si and once M goes into one

of the states in Ti, the subtask terminates. R̃i is a deterministic pseudo-

reward for each transition to a terminal state. By definition, R∗i is zero

anywhere outside the terminal states. If the terminal state is the goal state,

typically the pseudo-reward is zero again and for other terminal states it

is negative. Each primitive action is a special case of subtask, as it was

with options. Ti of a primitive action is that it terminates directly after

the execution, R̃i is uniformly zero and Ai contains a. For each subtask

Mi, a policy πi is defined. The hierarchical policy for the root task M0 is

π = {π0, . . . , πn}. MAX-Q executes the hierarchical policy as the ordinary

programming languages executes subroutines, using a stack discipline. That

is, it explicitly defines a pushdown stack. Let us denote the contents of this

stack at time t as Kt. Once a subtask is active, its name and parameters are

pushed up in the stack and once it terminates it is aborted from the stack

together with everything that was above.

Unlike the other two approaches, in this algorithm, the flow of informa-

tion is from lower-level subtasks to higher-level subtasks only, and not vice

versa. Due to this unidirectional flow of information, the decisions taken at

a lower level will be independent of the higher-level goal to be achieved. It

is easy to see that due to this additional restriction, the policies produced

by this approach may not be hierarchically optimal but recursively optimal.

Recursive optimality is that the policy at each level is optimal assuming that

policies of all lower levels are fixed. In general, a recursively optimal policy

may not be hierarchically optimal and vice versa. A hierarchically optimal

policy will always be at least as good as a recursively optimal one.

The idea of hierarchical policy is familiar from the discussion about the

options. The policy over options, corresponds to that of the subtask in

10



MAX-Q. In addition to that, the termination condition beta of the options

framework translates to the termination predicate in MAX-Q. In this case,

β can only take the values 0 or 1 instead of a continuous interval between 0

and 1.

2.3 Policy Search Methods

Reinforcement learning in robotics is challenging, mainly due to the con-

tinuous action and state spaces. One technique to address this problem is

discretization. However, particularly when considering actions with high

dimensionality when a fine control action is needed, this approach becomes

impractical. Most value-based reinforcement learning methods need to work

on discrete actions, as they estimate a value for state-action pairs and use

the estimated values to build the policy: to produce a policy they need

to search the action with the best value at each state, that can become

impractical, unless the action set is discrete.

An alternative to value-based methods is Policy search (PS). PS meth-

ods start with a parameterized policy and try to find the parameters trough

evaluating trajectories until a locally optimal solution is found. In robotics

tasks, it is relatively simple to describe a family of suitable policies. More-

over, starting with a parameterized policy gives the opportunity to encode

prior knowledge. Continuous action spaces are not an issue for PS, as the

action is produced by the policy parametrization and no maximization of the

action-value function is needed. For this reasons PS methods are frequently

used in robotics.

However, unlike value-based approaches, policy search might not con-

verge to the global optima. In addition, they tend to converge slower than

the value-based methods.

To take advantage from both PS and value-based approaches, Actor-

critic algorithms where developed. Figure 2.3 depicts these algorithms on

the gray scale between purely value-based and purely policy search-based

methods

There are two ways of approaching PS: model-based and model-free.

Model-based policy search addresses this problem by first learning a simula-

tor of the robot’s dynamics from data. Subsequently, the simulator generates

trajectories that are used for policy learning. It is interesting to note here

that the differences between the adaptive control and the model-based policy

search are indeed subtle. They both start with a class of models and predict

a forward-model. When the interaction with the real robotic environment
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Figure 2.3: algorithms on a gray scale from direct policy search to value-based. Actor

critic algorithm are in the middle.

is difficult, due to safety or time constraints, model-based approaches are a

preferable solution.

Model-free PS methods update the policy directly based on sampled

trajectories and the obtained immediate rewards for the trajectories. Model-

free PS methods try to update the parameters such that trajectories with

higher rewards become more likely when following the new policy. Since

learning a policy is often easier than learning an accurate forward model,

the model-free approach is more used.

The policy updates in both model-free and model-based policy search

are based on either policy gradients (PG), expectation–maximization (EM)

based updates, or information-theoretic insights (Inf.Th.).

2.3.1 Policy gradient

With this method, parameters are updated with a gradient ascent so as to

maximize the expected return, Jθ. The direction of the update is determined

by the gradient ∇θJθ. There are several ways to estimate this gradient.

The simplest one of them is the finite difference method. The basic idea

behind this method is to slightly perturb the parameters, δθ, and examine

the change in the reward, δR. The second method uses the likelihood-ratio

approach: ∆pθ(y) = pθ(y)∆ log pθ(y). Likelihood ratio methods can be step-

based or episode-based. Examples of step-based likelihood ratio methods

are REINFORCE [23], Gradient Partially Observable MDP (GPOMDP) [4,

3]. In REINFORCE and GPOMDP algorithms the exploration is step-

based, i.e., perturbation is applied to the actions at every time-step. Instead,

Policy Gradient with Parameter Exploration Algorithm (PGPE) [19], the

exploration is done over the parameters, i.e., the perturbation is applied to

the parameters at the beginning of the episode. The third method is based

on the natural gradient. The key concept behind the natural gradient is to

measure the distance between the distributions using the Kullback–Leibler

divergence (KL) instead of using the euclidean distance between distribution

12



parameters, to achieve a stable learning behavior. To achieve this goal

natural gradient uses Fisher information matrix as metric. In this way,

the gradient computed is invariant to the re-parametrization of the same

policy, making the natural gradient also invariant to scale changes of the

parameters. The computed gradient is rotated less than 90 degrees, therefore

the same convergence properties of the vanilla gradient applies. Episodic

Natural Actor Critic (eNAC) [18] is one of the algorithms that exploit this

idea.

2.3.2 Expectation-Maximization (EM)

The EM-based approach aims at making actions with high future reward

more likely. EM formulates the policy search as an inference problem. The

trajectories τ are the latent variables in the model and the observed value is

the reward event. Then the classical EM algorithm is used to infer the new

policy. Unlike the PG methods, since for most of the used policies there is a

closed-loop solution, there is no need to determine a learning rate, which is

a tricky task as it may lead to slow convergence or unstable policies. On the

other hand, EM neglects the influence of the policy update on the trajectory

distribution which can cause another problem: large jumps in the policy.

It changes the behavior abruptly and there is a possibility that this new

behavior may be extremely far from the optimal one, even damage the robot.

Policy learning by Weighting Exploration with the Returns (PoWER) [13]

and Reward-Weighted Regression (RWR) [17] are among the algorithms

using this approach. PoWER uses episode-based exploration strategies with

step-based evaluation strategies. PoWER is similar to episodic RWR but it

has a more structured exploration strategy.

2.3.3 Information Theoretic Approach (Inf. Th.)

Information theoretic insight is exploited in Relative Entropy Policy Search

(REPS) [6, 16]. It combines the advantages of two approaches described

above. Instead of following the gradient, REPS formulates the policy update

as an optimization problem. It tries to find the policy parameters that

maximizes J while keeping bounded the KL w.r.t. the previous parameters.

Using maximum likelihood estimates for the parameter updates is also

beneficial for learning multiple solutions, as we can represent them with a

mixture model. REPS can be extended to learning multiple solutions by

reformulating the problem as a latent variable estimation problem, where

the high level options are latent variables. The resulting algorithm is the

Hierarchical Relative Entropy Policy Search (HiREPS) [6] algorithm.
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2.4 Hierarchical Policy Gradient Algorithm

As discussed above, policy gradient algorithms are convenient for complex

robotics tasks with high dimensions and continuous action spaces. However,

they tend to suffer from slow convergence due to large variance of their

gradient estimators. Hierarchical reinforcement learning methods gained

the interest of researchers as a means to speed up learning in large domains.

[10] combines the advantages of these two and proposes hierarchical policy

gradient algorithms (HPG).

HPG objective is to maximize the weighted reward to go similar to [14]

or [3]. As the flat policy gradient algorithm, HPG searches for a policy in

a set that is typically smaller than the set of all possible policies as it is

parameterized and converges to local optimal policy rather than the global.

In order to perform this approach, similarly to MAX-Q, the overall MDP

M is divided into a finite set of subtasks. That is,M0,M1,M2, . . . ,Mn

where M0 is the root task. The state space is divided into initiation and

termination state sets for these subtasks and each subtask Mi that is not

a primitive action has a policy πi. The hierarchical policy is executed using

a stack discipline. [10] makes the assumption that the root task is episodic

and also models the subtasks as an episodic problem. That is, all terminal

states transit to an absorbing state s∗i with probability 1 and reward 0.

[10] suggests another method to speed up learning in HPG, called hi-

erarchical hybrid algorithms in which some of the subtasks are formalized

as value function-based reinforcement learning. These subtasks are in the

higher levels where the action spaces are usually finite and the state relevant

dimensions are fewer.

Despite the obvious advantages, these algorithms are highly task-specific.

That is, they are failing to build up a general framework for hierarchical

policy gradient. Indeed the implementation of this algorithm for the ship

steering task described in [10] is not trivial. It includes various shifts between

different state-action spaces and intricate external reward definitions. Our

approach aims to address these issues by implementing a framework that

makes the hierarchy design for reinforcement learning more intuitive.
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Chapter 3

Proposed Method

“Summer: A city of Grandpas?

Morty: It’s the Citadel of Ricks. All the different Ricks from all the different

realities got together to hide here from the government.

Summer: But if every Rick hates the government, why would they hate

Grandpa?

Morty: Because Ricks hate themselves the most. And our Rick is the most

himself.”

Rick and Morty (Season 3, Episode 1)

In control theory, hierarchical architectures, where several layers of con-

trol interact, are extensively used. A very simple example is the cascaded

control structure designed for a DC Motor where the outer loop (high level,

slower) ensures that the actual speed is always equal to reference speed. In

order to achieve its goal the outer loop outputs a reference torque/current

which is received by the inner loop (low level, faster) that controls the torque

via armature current and keeps the current in a safe limit.

The design tool of control theory to approach hierarchical schemes is the

block diagram. It gives the intuition of layered loops and cascaded struc-

tures. Block diagrams are much in use in control theory since they are often

more convenient devices to analyze or design a system than the transfer

function of the overall system. They are basically a composition of mod-

ular subsystems. These subsystems are represented as blocks that include

the transfer function of the corresponding subsystem. The interconnections

among subsystems are represented with directed lines illustrating the signal

flow. We introduce these objects to hierarchical reinforcement learning with

small differences that are necessary in the context of learning. The goal is to

obtain a generic framework for the design of the hierarchy in reinforcement

learning. This framework is a computational graph that contains various



types of blocks referring to subsystems. Unlike the block diagram of con-

trol theory, in our approach blocks and the interconnections are of various

nature.

In our scheme one cycle of the computational graph corresponds to a

step in the environment. At each step, environment observation is retrieved

in the form of a reward and a state data. A state can be absorbing or

not. If it is, then the graph is at the last cycle of the current episode.

Otherwise, an action, taken from the last block in the graph, is applied

and the environment state is observed once again and so on. Data flow

in the graph through connections between blocks. There are three types

of connections: input, reward, and alarm connections. Input connections

correspond to the connections in the conventional block diagram. They

transport input and output data between blocks. We call the input signal

of a block as state and the output as action. It should be remarked that

the terms state and action here do not refer to the content of the data

carried but to the manner in which the receiving block perceives them. For

instance, reward data of the environment can be observed as the state by

some blocks. Hence, the connection that carries the reward would be the

input connection.

RL agent aims to approximate an optimal behavioral strategy while in-

teracting with its environment. It evaluates its behavioral strategy based

on an objective function (J ) that is computed with rewards. These rewards

can be extrinsic or intrinsic. Extrinsic rewards are in the formalization of

the environment. They are retrieved through observation. Intrinsic rewards

can be constructed by the designer using the state information. In optimal

control, typically, the performance indicator is the cost function (C = −J )

and the optimal control goal is to find a control law that minimizes the cost

function. In optimal control, the cost function is optimized at design time.

That is, unlike the RL agent, during its operation, the controller does not

need a metric to evaluate and update its behavior. This contrast reflects in

our framework into another type of connection that carries only the reward

information. An explicit reward connection definition is needed. Reward

connection implies that the data carried will be used as a performance met-

ric and not as an input to the block.

In hierarchical approaches to RL, typically, high level agents do not take

actions at each step. To enforce this structure in our framework, blocks that

are in the higher levels of the hierarchy are not activated in some cycles.

Their output remains unchanged for those time steps. Once the lower level

blocks complete their episode they activate the upper level ones by sending

a signal trough alarm connections.
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Figure 3.1: Schematic of a digital control system

In this scheme, alarms are analogous to events in event-based control

systems. Event-based control systems are digital control methods. Fig-

ure 3.1 shows a typical architecture for a digital controller. The process is a

continuous-time physical system to be controlled. The input and the output

of the process are continuous-time signals. Thus, the output needs to be

converted and quantized in time before being sent to the control algorithm.

This process is called sampling. There are two ways of designing digital

controllers: periodic and event-based trigger. The traditional way to design

digital control systems is to sample the signals equidistant in time, that is,

periodically [2], using a clock signal.

Event based sampling is an alternative to periodic sampling. Signals

are sampled only when significant events occur. This way, control signal is

applied only when it is required, so as to better cope with various constraints

or bottlenecks in the system. A block diagram of a system with event based

control is shown in 3.2.

The system consists of the process, an event detector, an observer, and

a control signal generator. The event detector generates a signal when an

event occurs, typically when a signal passes a level, possibly with different

events for up-and down-crossings. The observer updates the estimates when

an event occurs and passes information to the control signal generator which

generates the input signal to the process. The observer and the control signal

generator run open loop between the events. The dashed lines of Figure 3.2
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Figure 3.2: Block diagram of a system with event-based control. Solid lines denotes

continuous signal transmission and the dashed lines denotes event based signal trans-

mission

Figure 3.3: Example of a conventional block diagram

correspond to the alarm connections in our framework. In HRL approaches,

typically a lower-level algorithm returns to the higher-level one once it has

completed its subtask. It can be due to an absorbing state terminating either

with success or failure, or simply a horizon reach. The event of event-based

control thus corresponds to the end of a subtask of a low-level agent in HRL.

In control theory, each block of the block diagram refers to a subsystem

such as a plant, a controller or a sensor, and contains the corresponding

transfer function or state-space equation matrices. Either way, it includes

an expression of how the incoming signal is manipulated. 3.3 depicts an

example structure. Apart from the blocks and connections, there are circle

shaped objects in the diagram which represent basic arithmetic operations

applied to the incoming signals.

Blocks in our framework have subtle differences. The manner in which

the signal is manipulated explicitly depends on the type of the block. The

input-output relation of some of the blocks have a discrete-time dynamic

behavior. They keep track of the state and store information. That is,

they are stateful and their operation can be described with a discrete-time

transfer function. function block is the most similar kind to a conventional

block of control theory. Its operation on the incoming signal is deterministic.

In other words, it has a deterministic policy chosen by the designer of the
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system. Function block is an example to stateless blocks. A type of function

block performs simple arithmetic operations on the incoming signals. They

are named as basic operation blocks.

Control block is the learning part of the system. It is associated to

a policy and a learning algorithm. It calls the policy to take an action

and uses the learning algorithm to update the policy. This learning algo-

rithm can be policy search-based (e.g. GPOMDP, PoWER) or value-based

(e.g. Q-learning, SARSA(λ)) and the policy can be a parameterized one

(e.g. Gaussian) or a Q-value-based one (e.g. Boltzmann, ε-greedy). Control

blocks accumulate each trajectory sample in a dataset. Once the policy is

to be updated, this dataset is passed to the learning algorithm. Similarly to

the MDPs a sample 〈s, a, r, s′〉 consist of state, reward, action and next state

data, being the input, the output and the reward of the block. In a control

block the state and reward data are manipulated separately. State data flow

is used for computing the value of the blocks and action, i.e. running the

system, whereas the reward data flow is the flow of the evaluation of the

performance. Thus, control block needs reward connections to be isolated

from the input connections.

Naturally, control blocks are the only blocks at the receiving ends of the

reward connections as they are the only learning members. The other blocks

may also take extrinsic reward data from the environment. However, they

will not perceive it as a performance metric. Thus, they will receive the

data through input connections instead of a reward connection.

If the control block is in a lower level of the hierarchy, it can signal the

end of its episode to the higher level blocks. The end of an episode can be

reached due to an absorbing state with failure or success or a horizon reach.

The control block that is in the higher levels of the hierarchy does not take

an action until it receives an alarm signal or an indicator of a last step of

the environment.

Apart from the end of an episode of a control block, custom events can be

created to produce alarm signals. Event blocks are used with this objective.

They have custom methods with binary results.

Since some of the control blocks are awake only at certain times, some

measures needs to be taken to protect the integrity of their dataset. Reward

data coming from the environment must not be lost when the high level

control is inactive. Reward accumulator block accumulates the input reward

until the alarm is up. With the alarm, accumulated data is passed to the

controller and the accumulator is emptied. Obviously, the alarm source

that is connected to a high level controller needs to be the same as the

one that is connected to the reward accumulator that passes its data to
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that controller. Since the reward accumulator stores information, it is an

example of a stateful block.

Another example of a stateful block is the error accumulator. Error

accumulator block accumulates the incoming error data and passes it at each

step to a control block. When one of its alarms activates or the environment

state is the last of the episode it resets the accumulator to zero. Integration

in discrete time corresponds to accumulation. The control block that has

an error accumulator as an input connection applies integral action.

Placeholders operate as the representation layer of the environment. In

the conventional block diagram, the model of the plant is a part of the block

diagram. Typically, it receives control signal as an input and outputs the

state data to the rest of the blocks. It contains the transfer function of

the plant model. In our framework, the model itself is not a part of the

diagram. This is primarily because we focus on model-free learning, thus

we do not have a mathematical expression of how the environment reacts to

inputs, nor its estimation. The only information we have comes from the step

samples. The other reason is that blocks may need to observe different parts

of the environment. For instance, a block may require only the reward to

operate whereas the other one may need both the state and the reward. Such

isolation of observation data is achieved with placeholders. At each cycle

of the graph, state and the reward output of the environment are passed

through the related placeholders, the state and reward placeholders. In

addition, last action applied to the environment is also saved in a placeholder

called last action placeholder. These blocks do not operate on or manipulate

the data they receive. Instead, they function as a bridge or a network

between the environment and the diagram.

Selector blocks implement the mode switching behavior in our frame-

work. They contain block lists and activate one list at each cycle. The

selection is done according to the first input of the selector block. Once a

list inside the selector block is activated all the other inputs to the selector

block are passed to the first block of the selected list. The reward and alarm

connections of the blocks inside the selector block are independent from the

selector. That is, selector block does not have reward connections and its

alarm connections are not passed to the blocks in the block lists. Selector

block strengthens the flexibility of our framework for hierarchical schemes by

allowing hybrid schemes to join the picture. Higher level controller applies

an action depending on the state and this action activates an underlying

behavior provided by the selected block list in the selector block.
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Chapter 4

System Architecture

“Morty: I mean, why would a Pop-Tart want to live inside a toaster, Rick?

I mean, that would be like the scariest place for them to live. You know what

I mean?

Rick: You’re missing the point Morty. Why would he drive a smaller toaster

with wheels? I mean, does your car look like a smaller version of your house?

No. ”

Rick and Morty (Season 1, Episode 4)

The framework implements three layers: hierarchical core, computa-

tional graph, and the blocks. The implementation details of these layers

and of other utility functions are presented in this chapter. Figure 4.1 illus-

trates the architecture of the system.

The framework exploits mushroom [7], a reinforcement learning library

of AI&R Lab of Politecnico di Milano, which provides learning algorithms,

features, environments, policies, distributions and function approximators.

Apart from the methods implemented, our framework adopts some of the

design concepts of the mushroom library. Datasets are formed with the same

structure, that is, every step is represented with a tuple containing state,

action, reward, next state, and the absorbing and last step flags. In addition,

the hierarchical core is indeed a hierarchical version of mushroom core. Our

framework is implemented to be compatible with any flat reinforcement

learning mushroom algorithm.

4.1 Hierarchical Core

Hierarchical core unit is developed as an interface between the diagram and

Python. A computational graph is passed to the hierarchical core in the



declaration. The hierarchical core contains the methods to run it with a

requested amount of steps or episodes. In the beginning of each run the

hierarchical core initiates the computational graph and at the end of the

runs calls it to stop. The runs can be made for the hierarchical algorithm to

learn or to evaluate its performance. During the learning runs, policies of

blocks with a learning algorithm in the computational graph are updated.

A flag is passed to the computational graph to signal the mode of the run.

4.2 Computational Graph

Computational graph establishes the connection between the environment

and the block diagram. In the declaration, it receives a list of blocks and a

model.

When the computational graph calls a block, it sends a request to that

block to activate its functionality. To call a block, computational graph

checks the input, reward and alarm connections of that block. The last

outputs of the input connection blocks are passed in an input list. A block

can have one reward connection at most. The last output of the reward

connection block, if exists, is passed as a reward. The alarm output of the

alarm connections are passed as alarms. If a block does not have an alarm

connection, it should wake up at each state. Thus, a default alarm is passed

in such cases. Finally, in order to indicate the blocks whether or not they

should update their policy, a learn flag is passed.

Computational graph calls the blocks in the sorted list one by one until

the cycle completes. Each cycle corresponds to a step of the environment. At

the start of each episode, the computational graph takes the initial state of

the environment, and all the blocks are called for a reset. The first primitive

control action, that is the last output of the last block in the sorted block list,

is stored in the last action placeholder. Computational graph starts each

cycle by applying the primitive control action to the environment. Then,

the computational graph observes the response of the environment in the

form of a state and reward data. The state and reward data are passed

to the corresponding placeholders. The state of the environment can be

absorbing due to success or failure which results to terminate the episode.

Another reason for a step to be the last of the current episode is that the

environment horizon is reached. Two variables that signal the last and

the absorbing states of the environment are passed to the blocks by the

computational diagram when they are called.

In order to activate the blocks in the correct order, computational graph

needs them to be sorted in accordance with their connections, using a topo-
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Figure 4.1: System architecture

logical sort algorithm. To achieve this, the block diagram is described as a

directed graph where each node is a block and the edges are the connections

between them. Placeholders are not considered during the construction of
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the graph. This is because, as described previously in chapter 3, placehold-

ers are not called as the other block objects. They are employed to pass the

environment data to the rest of the graph. Thus, regardless of their con-

nections, they ought to be the first ones in the list. In fact, placeholders do

not need to have a connection as their input connection is the environment

itself and the environment is not a part of the block diagram. Therefore,

they are not declared as nodes and thus no edges are created between any

other blocks and placeholders. Additionally, the blocks that are members

of the block lists inside the selector blocks are not included in the block

list passed to the computational graph. These blocks retrieve their inputs

through the selector block. However, their reward connections are indepen-

dent of the selector block. To maintain the integrity of the topological sort,

while constructing the graph for sorting, connections of these blocks are rep-

resented as the connections to the selector block. This graph is sorted with

a function already implemented in the networkx library. The sorted block

list that the computational graph uses is a concatenated list of placeholders

and the blocks sorted with the above-mentioned algorithm. Computational

graph calls the blocks also to initialize and to stop at the end of runs, when

it is asked by the hierarchical core.

4.3 Blocks

In our framework, blocks are of various types reflecting the subsystem that

they represent. Blocks superclass has a name, a last output, an alarm out-

put, and lists for various types of connections that contain the connected

blocks. Blocks have methods to add input, reward, or alarm connections to

their lists. Computational graph calls the blocks. Blocks may or may not

accept the call. A call is accepted only when the alarms of the called block

are up or when it is the end of an episode for an environment. If the call is

accepted, block updates its last output and its alarm output with a method

implementation that depends on the type of the block. Blocks are asked to

initialize by the computational graph at the beginning of each run. At the

end of each episode of the environment they are reset.

4.3.1 Function Block

A function block is declared with a name and a custom function. When the

call from the computational graph is accepted, that is, at least one of the

alarm connections returns true or the environment is at its last step, the last

output of the function block is updated. This update is done passing the
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inputs of the function block as a parameter to the custom function. Reset

method of the function block operates similarly, except in this case no con-

ditions are defined to update the last output. When initialized, all outputs

are set to None. Summation, sign, and squared norm operations are defined

and named respectively as: addBlock, signBlock, and squarednormBlock.

4.3.2 Event Generator

Event generator block implementation is similar to that of the function

block. In the declaration, a custom function is passed. This function needs

to have a boolean return since the event generator triggers the alarms which

can be either up or down. Once the event generator accepts the call of the

computational graph, it updates its alarm output with the custom function.

When it is called to reset, it updates its alarm output regardless of the state

of the connections and the environment. Its last output is always None.

4.3.3 Control Block

Control block runs the policy/subtask for a period of time that is in general

independent from that of the environment. This is because the episode of

the subtask is different from that of the task. That is, subtasks have their

own termination conditions and horizons.

Control block requires the designer to pass a learning algorithm, number

of episodes or number of steps per fit, optionally a termination condition and

callbacks during the declaration. It has its own dataset and the dataset is

passed to the learning algorithm when the number of episodes or the number

of steps per fit is reached and when the hierarchical core is executing a

learning run.

Each sample of the dataset is a tuple that contains the state, action,

reward, next state, and the absorbing and last step flags. Every time the

call of the computational graph is accepted, control block takes a step. If

it is the first step of its own episode, it resets. The class method reset calls

the learning algorithm to start an episode and draw an action. The current

inputs and the action drawn are saved as the first samples of the state and

action respectively and the last output of the block is set to the action.

In the later steps, the horizon and the termination condition is checked to

see whether the current state is absorbing or the last of its episode for the

control block. A sample is taken that contains the state, reward and the two

flags that indicate the absorbing and last states of the block. Combined with

the previous sample, it builds up a step tuple for the control block dataset.
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State and action data of the previous sample are the state and action of the

step tuple and the state of the current sample is the next state.

Once the step tuple is appended to the dataset, control block checks

for the fit condition. If the fit condition is satisfied, i.e., if the number of

episodes or the number of steps per fit is reached and the hierarchical core

is executing a learning run, it passes the dataset to the learning algorithm

to fit, clearing the dataset. The callbacks passed in the declaration will be

called during the fit, with the dataset passed.

If the state is not the last of its episode for the environment, an action

is drawn and saved as the last output of the control block. An action must

be drawn even when the control block reached its horizon or when its ter-

mination condition is satisfied. This is because in the framework, each cycle

of the computational graph corresponds to a step in the environment and

it is not possible to go back to the higher level controller during the cycle.

Another cycle is needed to reset and start a new episode for the low level

controller that has its episode finished. This makes our framework operate

in a way slightly different from the other HRL approaches, such as MAXQ,

that use a stack discipline.

The action taken is sampled for the next step tuple. Control block needs

to signal the end of its episode to the higher level blocks in the hierarchy.

Hence the alarm output is set to the value of the flag that indicates the last

step of an episode.

When the computational graph asks for a control block to initialize,

control block empties its dataset and sets its last output to None and the

alarm output to False. When the learning or the evaluation run is over,

control block calls the learning algorithm to stop.

4.3.4 Placeholders

Placeholders are the first blocks to be called in the cycle and serve as a pre-

sentation layer of the environment model. Placeholders have null operation

in their call, reset and initialize methods. Their last output is assigned by

the computational graph using the samples from the environment and the

last output of the last block in the ordered list.

4.3.5 Selector Block

The purpose of the selector block is to activate just a chain of blocks avoiding

the other blocks to take actions and fit when they are not active. This way

we can avert the accumulation of the dataset for the inactive blocks. To

implement this behavior, selector block contains block lists ad activates just
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one list of blocks at each cycle. The selection is done according to the first

input of the selector block. Once a list inside the selector block is selected,

the rest of the inputs of the selector block are passed to the first block of

the selected list. The operation of a selector block is similar to that of

the computational graph from this perspective. It calls the blocks in that

list one by one passing the inputs, rewards and alarms according to the

connection lists of the corresponding blocks. However, selector block does

not sort the blocks. Instead, it calls them in the provided order in the list.

Selector block manages a boolean list named first,s used as an indicator of

whether or not the corresponding block list is being called for the first time

after a reset or not. This information is necessary for the proper operation

of blocks and to preserve the integrity of the dataset of the control blocks in

the list. Initially, all flags are set to True. When the computational graph

asks for a reset, selector block resets the blocks in the selected block list.

It does not request the other block lists to reset as this operation includes

taking an action, and selector block must avoid calls to blocks in inactive

block lists. Then, the indicator of the selected block lists is set to False. If

the selector block is calling the block list before having it reset, i.e. if the

first flag for the selected block list is True, selector block resets the blocks

in that list instead of calling them. At the beginning of each run, selector

block asks all the blocks in the lists to initialize and sets the first flags to

True. At the end of runs, all control blocks in the lists are stopped.
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Chapter 5

Experimental Results

“Rick: Come on, flip the pickle, Morty. You’re not gonna regret it. The

payoff is huge. (Morty hesitantly picks up the screwdriver and turns the

pickle over. The pickle has Rick’s face on it) I turned myself into a pickle,

Morty! Boom! Big reveal: I’m a pickle. What do you think about that? I

turned myself into a pickle! W-what are you just staring at me for, bro. I

turned myself into a pickle, Morty!

Morty: And?

Rick: ”And”? What more do you want tacked on to this? I turned myself

into a pickle, and 9/11 was an inside job?

...

Morty: I-I’m just trying to figure out why you would do this. Why anyone

would do this.

Rick: The reason anyone would do this is, if they could, which they can’t,

would be because they could, which they can’t.”

Rick and Morty (Season 3, Episode 3)

5.1 Ship Steering Domain

We chose ship steering task [1] to test the framework. Ship steering has

complex low level dynamics due to its continuous state-action space and it

is well suited for designing hierarchies. The task was initially studied as a

control theory problem [8]. Later, [10] introduced the problem to machine

learning literature and suggested Hierarchical Policy Gradient Algorithms

as a solution. Ship steering domain is shown in Figure 5.1.

A ship starts at a randomly chosen position, orientation and turning rate

and has to be maneuvered at a constant speed through a gate placed at a

fixed position in minimum time. Since the ship speed is constant, minimum-

time policy is equivalent to shortest-path policy. We consider the ship model

given by a set of nonlinear difference equations 5.1.



Figure 5.1: Ship steering domain

Variable Min Max

x 0 1000

y 0 1000

θ −π π

θ̇ − π
12

π
12

r − π
12

π
12

Table 5.1: State and action variable ranges

x [t+ 1] = x[t] + ∆V sin θ [t]

y [t+ 1] = y[t] + ∆V cos θ [t]

θ [t+ 1] = θ[t] + ∆θ̇ [t]

θ̇ [t+ 1] = θ̇ [t] + ∆(r [t]− θ̇ [t])/T

(5.1)

where T = 5 is the constant time needed to converge to the desired turning

rate, V = 3ms is the constant speed of the ship, and ∆ = 0.2s is the sampling

interval. The control interval is 0.6s (three times the sampling interval).

There is a time lag between changes in the desired turning rate and the

actual action, modeling the effects of a real ship’s inertia and the resistance

of the water. The state variables are the coordinates (x, y), the orientation

(θ) and the actual turning rate of the ship (θ̇). The control signal is the

desired turning rate of the ship (r). The state variables and the control

signal are continuous within their range given in the table 5.1.

The ship steering problem is episodic. In each episode, the goal is to learn

the sequence of control actions that steer the center of the ship through the

gate in the minimum amount of time. To make sure the optimal policy is

to find the shortest path, every step of an episode has a reward of -1. If

the ship moves out of bound, the episode terminates and is considered as a

30



Figure 5.2: Ship steering small domain

Variable Min Max

x 0 150

y 0 150

θ −π π

θ̇ − π
12

π
12

r − π
12

π
12

Table 5.2: State and action variable ranges for small environment

failure. In this case, environment returns -100 as a reward. The sides of the

gate are placed at coordinates (350,400) and (450,400). If the center of the

ship passes through the gate, episode ends with a success and a reward 0 is

received.

The task is not simple for classical RL algorithms for several reasons [10].

First, since the ship cannot turn faster than π
12
rad
s , all state variables change

only by a small amount at each control interval. Thus, we need a high

resolution discretization of the state space in order to accurately model state

transitions, which requires a large number of parameters for the function

approximator and makes the problem intractable. Second, there is a time

lag between changes in the desired turning rate r and the actual turning

rate, ship’s position x, y and orientation θ, which requires the controller to

deal with long delays. In addition, the reward is not much informative.

Thus, we used a simplified version of the problem for the early exper-

iments. The simplified ship steering domain is given in Figure 5.2. The

domain boundaries are smaller, to shrink the state space. Ranges of the

state and action variables are given in Table 5.2. In this case, the gate is

positioned in the upper right corner of the map at the coordinates (100,120)

and (120,100). The ship starts at the origin of the state space, i.e., fixed at

position (0, 0) with orientation 0 and no angular velocity.
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5.2 Flat Policy Search Algorithms

Experiments with flat PS algorithms are implemented for the small domain

using mushroom library. The flat algorithms use a tiling with three dimen-

sions to divide the state space 5 × 5 × 6 tiles each. 100 experiments have

been carried out for each flat algorithm. Every experiment lasted 25 epochs.

In every epoch, the learning algorithm runs for 200 episodes. Then the eval-

uation run is carried out. The resulting dataset of the evaluation run is

used to compute cumulative discounted rewards (J ) for each episode in the

evaluation dataset and averaged for each epoch. With the same method,

also the mean length of the episodes for each epoch is computed. These

data are averaged for 100 experiments.

For the major part of the experiments, PG algorithms are implemented

with an adaptive learning rate. Adaptive learning rate constrains the step of

the learning algorithm with a given metric, instead of moving of a step pro-

portional to the gradient. The step rule is given in Equation 5.2. Adaptive

learning rate can be used to prevent jumps when the gradient magnitude is

big.

∆θ = argmax
∆ϑ

∆ϑt∇θJ

s.t. : ∆ϑTM∆ϑ ≤ ε
(5.2)

GPOMDP, a step-based PG algorithm, has been implemented to learn

the parameters of a multivariate Gaussian policy with diagonal standard

deviation. The initial standard deviation (σ) is set to 3× 10−2. The mean

of the Gaussian is formulated with a linear function approximator with tiles.

Learning parameter is adaptive with a value of 10−5. Policy is fit every 40

episodes during the learning run. Number of episodes of an evaluation run

is also 40.

RWR, REPS and PGPE algorithms work on a distribution of policy

parameters and they can be used with deterministic policies. They have

been implemented to learn the distribution of the mean µ of a deterministic

policy. Mean is linearly parameterized with the tiles. The distribution is a

Gaussian distribution with diagonal standard deviation. The initial mean

µ is the null vector, and 4 × 10−1 variance σ2 for every dimension. All

three algorithms are run for 200 episodes to learn at each epoch. Every 20

episodes, the distribution parameters are updated. The evaluation run lasts

20 episodes. The learning rate of PGPE is adaptive and the value is initially

set to 1.5. REPS and RWR do not require the learning rate to be specified

as explained in Chapter 2. REPS is used with a max KL step ε = 1, and
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Figure 5.3: HRL block diagram for ship steering task

RWR with a constant β = 0.7 for the exponential transformation.

5.3 Hierarchical Block Diagram Approach

The ship steering control system consists fundamentally of two parts [8]:

• a ship autopilot which automatically manipulates the rudder to de-

crease the error between the reference heading angle and the actual

heading angle, and

• an operator, either human or a machine, that closes up the control

loop given the reference angles to follow a desired trajectory on the

ocean.

The control theory approach to ship steering problem is preserved for the

subtask definitions with our framework. The corresponding block diagram

is given in Figure 5.3.

Low level controller learns to approximate the optimal policy to decrease

the error between the reference angle and the actual angle. High level con-

troller learns to drive the low level by producing reference positions in the

map that approximate the shortest paths to the gate. A function block in

between the control blocks (f1(·)) computes the reference angle for the low

level, given the reference position and the states. The performance metric

of the high level control is the extrinsic reward, whereas the one of the low

level is computed by another function block, f2(·). f2(·) returns the cosine

of the angle difference computed by f1(·). As the difference of the reference
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angle and the actual angle gets close to 0, the reward advances to 1 and as

it grows, the reward decreases to -1.

When the low level controller finishes its episode, it raises an alarm for

the high level. In the following cycle, a new reference point is estimated for

the level. The same alarm signal is passed to the reward accumulator of the

high level controller with the motivations described in Chapter 3.

The high level controller uses the GPOMDP algorithm to learn a mul-

tivariate Gaussian policy with diagonal standard deviation. Its mean is ini-

tialized in the middle of the map, that is (75, 75), for the small domain. The

variance of both dimensions is 40. The algorithm fits every 20 episodes with

an adaptive learning rate of 10. Horizon is 100 steps for both controllers.

Low level control policy should steer the ship in the direction of the

angle error. That is, if the reference angle is larger than the current angle,

angular velocity output of the low level control should be positive and vice

versa. Low level controller is first tested with a GPOMDP algorithm with a

differentiable parameterized policy such as a linear one given as π(x) = ωx,

where x is the error ∆θ over the angle. In this scheme, the parameters

of the low level policy are expected to be positive to make sure that the

input error and the output angular velocity have the same sign. However,

when the high level policy is not reliable, low level policy may choose to

go outside of the map to finish the episode quickly. In addition, when the

optimal parameter is lower than the current one, a big gradient step may

cause trespassing the 0 limit, which results in instability. To ensure stability,

the parameter of the policy needs to be forced to have a positive value. This

can be achieved with a deterministic policy by using the absolute values of

weights, that is, π(x) = |ω|x. However, this policy is not differentiable.

Therefore, classical PG algorithms cannot be exploited. Thus, the low level

controller uses a black box optimization method. PGPE algorithm learns the

distribution of the weights of a non-differentiable deterministic policy. The

distribution over the weights has zero mean and 10−3 as variance initially.

The algorithm fits at every 10 episode of the low level controller. The action

taken by the low level is indeed a proportional control action. The error

signal is multiplied by a constant, KP . The distribution over KP is learned

by the PGPE algorithm. An adaptive learning rate is used with a value

5× 10−4.

Another experimental setup is constructed in which the low level control

applies also the integral action. To achieve this, an error accumulator block

is added between f1(·) and the low level controller as shown in Figure 5.4.

In this case, the state of the low level control is two dimensional. The

adopted deterministic policy is π(x) =
∣∣ωT ∣∣x. The state vector is x =
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Figure 5.4: HRL block diagram for ship steering task, PI control action

[
∆θ,

∫
∆θdt

]
. The parameter vector is ω = [KP ,KI ], where the KP pa-

rameter corresponds to the proportional gain, and the KI parameter is the

integral gain, as they multiply the error and the integral of the error respec-

tively.

5.4 Results in Small Domain

Results of the flat algorithms and of the hierarchical schemes designed with

the block diagram approach are compared.

Figure 5.5 shows the mean of the objective function for every epoch,

averaged for 100 experiments for each algorithm. It shows that flat PG

algorithms, i.e., PGPE and GPOMDP, converge much more slowly than the

other ones. This is due to the fact that for these algorithms learning rate

should be defined. If the learning rate is low, the convergence is slow and if

it is too high, learning may be unstable.

Figure 5.6 and Figure 5.7 show the mean length of the episodes for each

epoch, averaged for 100 experiments for different algorithms. Hierarchical

algorithm has a large episode length for the first runs. Since the controller is

stable, it learns first to avoid to get out of the boundaries, which causes the

long episodes exploring the middle of the map. Once the gate is identified

well, the shortest path is approximated, which results in gradually lowered

episode lengths.
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Figure 5.5: Comparison of the hierarchical structure w.r.t. flat policy search for small

environment. Mean values of objective functions with 95% confidence intervals are

shown
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Figure 5.6: Comparison between flat policy search algorithms for small environment.

Mean values of episode lengths with 95% confidence intervals are shown
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Figure 5.7: Comparison of the hierarchical structure w.r.t. flat policy search for small

environment. Mean values of episode lengths with 95% confidence intervals are shown
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Figure 5.8: Comparison between the hierarchical structures search for small environ-

ment. Mean values of objective functions with 95% confidence intervals are shown
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Figure 5.9: Comparison between the hierarchical structures search for small environ-

ment. Mean values of episode lengths with 95% confidence intervals are shown
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0 3 12 24

Figure 5.10: flat-GPOMDP, last 5 trajectories of the epochs

0 3 12 24

Figure 5.11: flat-PGPE, last 5 trajectories of the epochs

0 3 12 24

Figure 5.12: flat-RWR, last 5 trajectories of the epochs

0 3 12 24

Figure 5.13: flat-REPS, last 5 trajectories of the epochs
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The performance of hierarchical algorithms with and without the de-

terministic policies in the low level are compared in Figures 5.8 and 5.9.

H-PGPE and H-PI algorithms use PGPE to learn the distribution of pa-

rameters of a deterministic low level policy that is ensured to be stable and

H-GPOMDP uses GPOMDP with a stochastic policy. H-PI has the error

accumulator block before the low level control block, which results in in-

tegral action in the low level policy. Forcing the stabilization of the low

level controller causes the learning curves to be much steeper w.r.t. the

other method. Adding the integral action does not cause a big change in

the learning performance, but in the quality of the trajectories.

Figure 5.10 depicts the trajectories of the last 5 episodes of the epochs 0,

3, 12 and 24 for the flat-GPOMDP. Even in the 25th epoch some trajectories

are not able to reach the gate. Convergence is very slow due to the low

learning rate and the step-based exploration. If the learning rate is increased,

the policy may become unstable. Figure 5.11 shows the same trajectories for

the flat-PGPE algorithm. It explores a larger part of the map as it learns

the parameters of the distribution over the policy parameters. However,

convergence is still slow due to small learning rate. Moreover, the variance

of the policy distribution is not reducing sufficiently faster. As can be seen

in Figures 5.12 and 5.13, REPS and RWR identify the gate much faster

than the PG algorithms. However, they suffer from premature convergence

as the variance that shrinks too rapidly. These characteristics may cause

the policies to get stuck in a suboptimal policy.

Trajectories of the hierarchical algorithm with GPOMDP algorithm in

the low level (H-GPOMDP) are given in Figure 5.14. Convergence is faster

than that of the flat PG algorithms. However, this algorithm sometimes fails

to learn. This is because in some runs, the low level policy learns to leave

the map and becomes unstable. Learning speed is improved when black

box optimization methods are used in the low level as seen in Figure 5.15

since the learning rate can be increased while ensuring stability with a de-

terministic policy. Hierarchical algorithms produce policies that are closer

to the optimal one with much less parameters than the flat ones. When the

lower policy applies also the integral action, angle reference is followed more

effectively, see Figure 5.16.
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Figure 5.14: H- GPOMDP, last 5 trajectories of the epochs

0 3 12 24

Figure 5.15: H-PGPE, last 5 trajectories of the epochs

0 3 12 24

Figure 5.16: H-PI, last 5 trajectories of the epochs

Figure 5.17 shows the average parameters of the Gaussian policy of the

high level controller for hierarchical algorithm with GPOMDP used to find

the low level policy (H-GPOMDP). On the left, the mean parameter evolu-

tion over time is shown. On the right, the ellipses indicate the area where

95% of the samples falls into. Green ellipse is of the initial distribution. Blue

ellipse refers to the distribution in the middle of the learning run and the

red one is of the final. Both the mean and the elliptic areas are computed

averaging 100 experiments. Figure 5.18 demonstrates the same variables for

the hierarchical algorithm with PGPE in the lower level policy (H-PGPE).

It can be seen that despite having the same policies and learning al-

gorithms in the higher level, the hierarchical algorithm with GPOMDP in

the low level (H-GPOMDP) performs much worse than the other one (H-

PGPE). It is unable to identify the gate and the variance is still high at
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the end of the learning run. This is because, the low level policy is not

fast enough in learning to follow the references of the high level. Moreover,

the high level does not get a meaningful information from the environment

before the low level is able to follow. This issue is evaded using a determin-

istic policy that is enforced to be stable as in H-PGPE. Another thing to

notice is that the high level controller of H-PGPE algorithm approximates

the gate position to be slightly further than the actual one. This is due to

the fact that when a point just behind the gate is given as a reference, the

ship will have to pass the gate to reach that point. Figure 5.19 also depicts

the parameter distribution properties of the high level policy. They refer to

the hierarchical algorithm with PGPE in the lower level policy with integral

action (H-PI). The results are similar to that of the H-PGPE. Comparing

the 3D mean parameter graphs of the hierarchical policies, we can see that

the algorithms with PGPE in the low level converge towards to the goal

with a much smoother trajectory than the algorithm with GPOMDP in the

low level.
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Figure 5.17: H-GPOMDOP. Left: Mean parameters of the high level policy parameters.

Right: The areas in which the 95% of the samples of the high level policy parameters

fall into
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Figure 5.18: H-PGPE. Left: Mean parameters of the high level policy parameters.

Right: The areas in which the 95% of the samples of the high level policy parameters

fall into
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Figure 5.19: H-PI. Left: Mean parameters of the high level policy parameters. Right:

The areas in which the 95% of the samples of the high level policy parameters fall into
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5.5 Results in Regular Domain

The task in the regular ship steering domain possibly is too complex for the

flat algorithms due to the larger state-space and random initialization of the

ship position. Scaling the discretization from the small to the big environ-

ment makes the policy intractable. Therefore, experiments are conducted

only with hierarchical algorithms that had a good performance in the small

domain: H-PGPE and H-PI.

The high level controllers use the GPOMDP algorithm to learn a multi-

variate Gaussian policy with diagonal standard deviation. Policy distribu-

tion mean is initialized in the middle of the map, that is (500, 500). The

variance of the two dimensions is 255. The algorithm fits every 40 episodes

with an adaptive learning rate of 50. Horizon is 100 steps for both the low

level and the high level algorithms.

A deterministic policy is constructed by using the absolute values of

weights, that is, π(x) = |ω|x for the low level policies. PGPE algorithm

learns the distribution over the weights that is initialized with zero mean

and 10−3 variance. The algorithm fits every 10 episodes of the low level

controller with an adaptive learning rate of 5× 10−4. The action taken by

the low level is a proportional control action for H-PGPE and proportional-

integral for H-PI.

The learning curves of the algorithms are given in Figure 5.20. The

values are computed with the mean of the objective function for every epoch,

averaged for 100 experiments for each algorithm. Curves are slightly less

steep than the ones of the smaller domain. This is because the regular

domain task is harder. Figure 5.21 shows the average episode lengths for

each epoch, for both algorithms. In the first epochs, low level learns to stay

in the map and to follow the referenced angle. Once the high level algorithm

detects the gate position, episodes become much shorter, to approximate the

shortest path.
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Figure 5.20: Average of objective function of the hierarchical algorithms at every epoch
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Figure 5.21: Average episode lengths of hierarchical algorithms at every epoch
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Figure 5.22: hierarchical algorithm with PGPE in the low level, last 5 trajectories of

the epochs

0 3 12 24

Figure 5.23: hierarchical algorithm with PGPE in the low level, with integral action,

last 5 trajectories of the epochs

Figure 5.22 depicts the trajectories of the last 5 episodes of the epochs

0, 3, 12 and 24 for the H-PGPE algorithm and Figure 5.23 shows that of the

H-PI algorithm. The trajectories start at random points as the high level

task requires. In both figures we observe a stroll around the gate at the last

steps. This is because the ship starts at random points and the gate is in the

middle of the map. These characteristics of the regular domain eliminate

the possibility of placing the reference position behind the gate. Moreover,

when the ship is almost reaching the gate, low level policy performance is

lousy. We observe a negative peak in the low level intrinsic reward as the

angle difference jumps from 0 to π while the ship trespass the reference

point.

The average of the parameters of the hierarchical algorithm with PGPE

in the low level (H-PGPE) is shown in Figure 5.24. Figure 5.25 demon-

strates the same observations for hierarchical algorithm with PGPE learn-

ing a policy with integral action in the low level (H-PI). We observe that

both algorithms are able to identify the gate position quite fast, almost as

fast as they identified the gate in the small domain. The fast convergence

is explained by the fact that the position of the gate is near to the middle

of the map and the initial distribution of the high level is centered in there.
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Figure 5.24: H-PGPE in regular domain. Left: Mean parameters of the high level policy

parameters. Right: The areas in which the 95% of the samples of the high level policy

parameters fall into
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Figure 5.25: H-PI in regular domain. Left: Mean parameters of the high level policy

parameters. Right: The areas in which the 95% of the samples of the high level policy

parameters fall into
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Chapter 6

Conclusions and Future

works

“Teacher Rick: Tomorrow you will be transferred to your new Ricks. Hope-

fully they will be your last. Yes, Slow Ri– Tall Morty?

Tall Morty (Slow Rick): Di-Did I gragitate this time yet?

Teacher Rick: Anything’s possible, Tall Morty. Ugh. . . ”

Rick and Morty (Season 3, Episode 7)

We developed a novel framework to design hierarchical structure in rein-

forcement learning that exploits the design tool of control theory: the block

diagram. To achieve this, the block diagram is adapted to the context of hi-

erarchical reinforcement learning. Our framework describes a computational

graph that contains blocks and connections. Unlike the block diagram of

control theory, in our approach blocks and the interconnections are of various

nature. The type of connection depends on the use of the signal it carries,

whereas the type of the block depends on the subsystem it represents.

By running the computational graph, the hierarchical agent can inter-

act with the environment and update all levels of its hierarchy. Similarly

to the block diagram of the control theory, this framework can be applied

to implement different types of hierarchical topologies. Therefore, the de-

signer is free to implement his/her own hierarchical structure. Combining

the strengths of both fields, we filled up a gap between control theory and

machine learning.

Hierarchical approaches simplify the tasks of designing a policy and pos-

sibly adding prior knowledge: with our framework, we can exploit the exist-

ing hierarchical control structures and initial parameters for the well-known

problems of control theory. Adapting a control theoretical perspective, poli-



cies are often simpler to interpret and with fewer parameters, without losing

representation power. In control theoretic approaches, typically a human

operator is needed to close the control loop for high level logic. With our

framework we can assign the task of the human operator to a suitable learn-

ing agent.

These advantages makes our framework suitable for complex robotics

tasks, even with continuous action-spaces and high state-action dimension-

ality because the problem can be easily decomposed into different abstrac-

tion layers. The lower levels can control directly the actuators of the robot

whereas the higher levels can focus on the more generic and complex tasks.

Existing methods to introduce hierarchy to reinforcement learning are

based on the idea of partial policies with well defined termination conditions.

MAXQ uses stack discipline to execute the hierarchical policy. Options

framework adds the subtasks to the available action set. HAMs constrain

the low level policy. Despite the fact that we can implement partial policies,

we should take an action also in the last step of the low level episode. This

is due to the fact that, differently from the other HRL approaches, our com-

putational graph executes continuously, that is, blocks operate sequentially

and only in one direction. An outcome of this feature is that the agents in

the lower levels of the hierarchy must take an action even in the last steps

of their episodes. It is not possible to go back to the higher level controller

during the cycle. Another cycle is needed to reset and start a new episode

for the low level controller that has its episode finished. This is the funda-

mental difference between our approach and the state of the art. A subtask

cannot exist by itself but is always part of the complete system.

Designing hierarchical algorithms is not trivial due to the interaction

between the layers. Typically, the algorithms in different layers are not

aware of each other performance. They do not know about each other

tasks. This causes the agents to interpret the outcomes in a wrong way.

For instance, if the outcome of the environment is bad after the execution

of an action drawn by an agent, the agent that receives the bad reward will

assume the poor performance is due to its choice, and updates its quality to

avoid such policy, even when it is not the case. In addition, since the agents

observe the environment only partially, and it may change its dynamics due

to the actions of other layers, their perception of the environment is non-

stationary. This problem is more clearly seen in our framework. Blocks

observe the environment only through their connections. This means that

their observation over the graph is only partial and, as it changes in time,

it is non-stationary. This behavior can be clearly identified in the ship

steering environment: when the high level policy has not yet identified the
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gate position, low level agent learns a policy stating that it should not to

follow the reference of the high level agent, and learning becomes unstable.

To avoid the instability of the low level controller, we used a deterministic

policy that guarantees the stability criterion.

We used this framework as a tool to build a hierarchical reinforcement

learning solution for the ship steering problem that has continuous state-

action space. Ship steering task is suitable for hierarchical decomposition

and our control theoretic decomposition approach is easily adopted. The

higher level subtask is defined as estimating the reference points in the map

for the low level to follow and pass through a gate that is in an unknown

fixed position. The low level subtask is to manipulate the rudder to decrease

the error between the reference angle and the actual angle. A function block

is added between these controllers to convert the reference position output of

the high level controller to angle error input of the low level controller. Flat

REPS and RWR algorithms learn faster than the hierarchical algorithms in

the small domain. However, they suffer from premature convergence. Our

frameworks performance is more stable and reliable compared to flat RWR

and REPS and much faster than the flat PG algorithms. In the regular

domain, learning curve is steeper when the learning algorithm of the low

level controller is a black box optimization method. Also in the regular

domain, the hierarchical algorithms built with our framework showed good

performance in terms of learning speed and stability.

The task decomposition of the ship steering problem has a cascaded

control structure as in DC motor control example. The framework supports

building more complex hierarchical control systems such as those typical for

hybrid systems. This can be achieved with selector blocks. Selector blocks

implement the mode switching behavior in our framework. They contain

block lists and activate one list at each cycle.

The proposed framework should be tested in more challenging environ-

ments and with more complex learning algorithms. Learning speed can be

improved using off policy learning methods, exploiting the performance of

the active controller to update the policy also of inactive controllers. This

would result in more algorithms learning in parallel, similar to intra-option

learning.

Another important issue to analyze is the fact that each controller see the

rest of the system as a partially observable and non-stationary environment.

Both distributed and global learning algorithm should be considered to face

this issue and speed up learning.
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