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Abstract

The aim of this thesis work is to investigate ultrafast molecular dynamics

making use of sub-10-femtosecond (1 fs = 10−15 s) laser pulses in the extreme

ultraviolet regime (XUV or EUV). Indeed, many interesting molecular dynamics

happen in few-femtosecond temporal scales and, in order to investigate them, it is

necessary to generate and characterize shorter laser pulses. The main process that

allows us to obtain such pulses is called high-order harmonic generation (HHG).

In the HHG process a high intense short infrared (IR) pulse is focused on a gas

target to produce the odd orders harmonics, that are multiples of the fundamental

frequency of the IR. A comb of frequencies is therefore obtained, but in order to

do selective pump-probe, only one harmonic must be taken. To select just one

particular wavelength we used a time-delay compensated monochromator that is

composed by two off-plane mount gratings placed in a subtractive configuration,

so that temporal and spectral broadening introduced by the first monochromator

are canceled by the second one. After harmonic selection, characterizing the

pulse becomes of crucial importance to know the temporal resolution that we

can exploit in our experiments. For the pulse characterization we applied the

FROG-CRAB technique, starting from the experimental spectrogram obtained

from the photoelectrons generated by the interaction of XUV pulse with a noble

gas, changing the delay with the IR pulse. For the reconstruction it has been used

an iterative algorithm called extended Ptychographic Iterative Engine (ePIE)

properly adapted. Thanks to this approach we have been able to reconstruct

xii



XUV pulses with 5 ± 0.5 fs of temporal duration that, at this moment, are

the shortest ever measured. With such pulses we can study ultrafast molecules

dynamics, including relaxation dynamics of the excited states of ethylene. We

chose to analyze ethylene because it is, along with the isoelectronic neutral vinyl,

the simplest organic π radical system, and at current moment it is not fully

understood.
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Sommario

Questo lavoro di tesi si pone come obiettivo l’investigare dinamiche molecolari

ultraveloci per mezzo di impulsi laser di durata inferiore ai 10 femtosecondi

(1 fs = 10−15 s) nel regime degli estremi ultravioletti (EUV o anche XUV).

Infatti, parecchie dinamiche molecolari avvengono su scale temporali di pochi

femtosecondi, e affinché sia possbile studiarle in modo adeguato, risulta necessario

generare e caratterizzare impulsi laser con durate temporali inferiori. Il principale

processo che sfruttiamo per ottenere questo tipo di impulsi è la generazione di

armoniche di ordine elevato, in inglese high-order harmonic generation (HHG). Il

fenomeno di HHG avviene focalizzando un impulso infrarosso (IR) su una celletta

contenente del gas, così da produrre le armoniche date da multipli dispari della

frequenza fondamentale dell’IR. Si ottiene così un pettine di frequenze, ma per

poter effettuare una misura di pump-probe selettivo, è necessario prenderne solo

una. Per selezionare una singola armonica abbiamo utilizzato un monocromatore

compensato in tempo, composto da due gratings posti in una configurazione

sottrattiva, cosicché l’allargamento temporale e spettrale introdotti dal primo

grating vengano annullati dal secondo. Dopo aver selezionato una singola armon-

ica, la caratterizzazione delle proprietà temporali dell’impulso diventa di cruciale

importanza perché ci consente di conoscere con quale risoluzione temporale possi-

amo condurre i nostri esperimenti. Per la caratterizzazione dell’impulso abbiamo

applicato la tecnica FROG-CRAB, partendo dallo spettrogramma sperimentale

ottenuto dai fotoelettroni generati dall’interazione tra l’impulso XUV e un gas

xiv



nobile, al variare del ritardo con l’impulso IR. Per la ricostruzione è stato appli-

cato un algoritmo iterativo chiamato in inglese extended Ptychographic Iterative

Engine (ePIE) adattato alle nostre necessità. Grazie a questo approccio siamo

riusciti ad ricostruire impulsi della durata temporale di 5± 0.5 fs, che sono al

momento attuale i più corti mai misurati. Con questi impulsi siamo in grado

di investigare dinamiche molecolari ultraveloci, tra cui quelle di rilassamento

negli stati eccitati dell’etilene. Abbiamo scelto di studiare l’etilene in quanto,

assieme al vinile, è il più semplice sistema organico con radicale π e finora le sue

dinamiche non sono state ancora capite del tutto.
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Introduction

A large number of dynamical processes in atoms and molecules evolves on

timescales ranging from the femtosecond (1 fs = 10−15 s) to the attosecond

(1 as = 10−18 s) domain. For this reason, their investigation requires the use

of ultrashort light pulses. Ultrashort pulses with a sub-femtosecond duration,

guarantee to observe in real-time the temporal evolution of many molecular

dynamics by using proper experimental techniques. The most used approach to

study ultrafast phenomena is called pump-probe: the first pulse (pump) excites

the system under investigation, activating a particular phenomenon, than the

second pulse (probe), properly synchronized with the first one, samples the

evolution of the process. This measurement is repeated changing the delay

between the two pulses, until the complete temporal evolution of the process is

measured.

The temporal duration of a pulse is limited by its optical cycle. For example,

considering a pulse in the infrared (IR) region with a wavelength λ of 800 nm,

the optical cycle is T = λ/c ' 2.67 fs (where c is the speed of light in vacuum),

so for such pulse it is impossible to reach a shorter temporal duration. To further

reduce this value, ultraviolet (UV) and extreme ultraviolet (EUV or XUV) pulses

must be used. In this way, even attoseconds can be generated. XUV pulses can

be produced by using the process of High-order Harmonic Generation (HHG) in

gases, which is a strongly non-linear process, allowing one to generate several

harmonics of the fundamental frequency. HHG occurs when a strong IR beam

xvi



(IIR ≈ 1014 W/cm2) is focused on a gas target (usually a noble gas is used),

so odd harmonics are produced from the input fundamental frequency. In a

temporal domain picture, this process corresponds to the generation of a train of

sub-femtosecond pulses.

In order to obtain a good spectral resolution, preserving a femtosecond temporal

resolution, it is required to select a single harmonic: this selection process is

achieved by using a Time-Delay Compensated Monochromator (TDCM) [4],

that is composed by two off-plane mount gratings (two toroidal mirror and a

blazed grating) in a subtractive configuration so that the temporal and spectral

dispersion introduced by the first grating can be compensated for by the second

one. The two gratings are separated by a slit that allows one to select only

one specific harmonic. This monochromator has the advantages of preserving

the temporal duration of the harmonic pulses. Thanks to this approach, single

harmonics characterized by temporal duration of few-femtosecond have been

obtained and used for pump-probe in gas phase.

Once the single harmonic has been selected, the characterization of the pulse

is fundamental to understand the temporal resolution that has been achieved

after the monochromator stage. Many techniques have been developed in the

last decade to characterize the temporal properties of XUV ultrashort pulses

for example the FROG-CRAB (Frequency-Resolved Optical Gating for Complete

Reconstruction of Attosecond Bursts) technique [12]. The XUV pulse is focused

on a gas target so that photoelectrons are generated, then the IR beam, properly

synchronized with the XUV, modifies the energy of these electrons. This process,

repeated for different delays, allows the construction of an energy spectrogram,

from which it is possible to reconstruct the original XUV pulse. While this

technique has been extensively tested and investigated for isolated attoseconds

pulses, its extension to few-femtoseconds XUV is not trivial and has still to

be proven, as a consequence of a reduction of information redundancy in the
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FROG-CRAB spectrogram. In our case we were able to adapt a reconstruction

algorithm that allowed us to measure XUV pulses with a duration down to 5 fs.

These ultrashort pulses were used to investigate ultrafast molecular dynamics.

In particular, we concentrated on the detection of relaxation dynamics occurring

in ethylene cation (C2H
+
4 ) that represents the simplest π radical. Even though

this kind of dynamics have been object of interest for the last 30 years, nowadays

they are still not completely understood [13]. The objective is the determination

of the molecular paths followed by the molecule after excitation.

In detail, this thesis work is organized as follows:

• The first chapter is composed by two parts: the first one contains a theo-

retical description of the HHG process with the discussion of a semiclassical

model called Three-Step Model (TSM), and of a quantum model introduced

by Lewenstein et al. in 1994. Phase matching condition to achieve the

maximum of generation from HHG are briefly treated. Then, in the second

part I present the main elements that compose the time-delay compensated

monochromator, and for each of them a short theoretical discussion.

• The second chapter presents all those elements that are necessary to fully

characterize an XUV pulse. In particular, I present a theoretical discussion

about the FROG-CRAB technique, the setup build with all its components,

an overview on the reconstructing algorithm adopted and an analysis of

the obtained results.

• The third chapter reports on the application of the ultrashort XUV

pulses at the output of the monochromator. In detail, I will present a

short theoretical description about ethylene dynamics that motivated our

research, an overview on the components used to do the measurements

and a discussion on the pump-probe measurement achieved considering

different intensities of the probe (IR) pulses.
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• The fourth chapter gives the conclusions of the work done and presents

an overview on possible future applications and improvements for the

present setup.
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Chapter 1

XUV Pulse Generation and

Monochromator theory

1.1 Introduction

In the first part of this chapter I will describe how extreme-ultraviolet light

pulses (EUV or XUV) can be generated starting from an infrared (IR) strong field,

presenting two different models, one semiclassical, the other based on quantum

mechanics, then the phase matching conditions to get the maximum of generation

intensity. In the second part I will present how the high-order harmonics are split

and optimized thanks to a time-delay compensated monochromator, describing

how it works.

1.2 High-order Harmonic Generation

It is possible to generate ultrashort XUV pulses exploiting a strongly nonlinear

process called High-order Harmonic Generation (HHG). HHG is obtained from

an intense laser pulse (I ≈ 1014 W/cm2) interacting with molecules or atoms, in

particular noble gases are often used. Such interaction causes the emission of

coherent light radiation at frequencies that are odd multiples of the IR pulse
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frequency and with the same repetition rate. The choice of the molecules or

atoms determine the order of the harmonics that will be generated and also

their cut-off: intensity is indeed a crucial factor that defines both where the

generation starts and where it stops due to saturation. This process allows us to

obtain ultrashort XUV coherent pulses from an IR laser. HHG has been rather

efficiently described first with a semiclassical approach called Tree Step Model,

and then a quantum description has been fulfilled in 1994 by Lewenstein et. al

[14].

1.2.1 Three Step Model

Even though HHG is a phenomenon that finds an exhaustive description only

due to a pure quantum perturbation theory, many features can be intuitively

and even quantitatively explained in terms of electron rescattering trajectories.

In order to apply this semiclassical model it is important to consider the two

following approximation:

• Single Active Electron (SAE) approximation: laser’s electric field interacts

just with one electron at a time.

• Strong Field Approximation (SFA): in continuum, the effect of the atomic

potential on the electron motion can be neglected, as it would be in a free

particle regime.

This semiclassical approach is composed by the following steps:

1. Tunneling ionization: an electron is lifted to the continuum at the nuclear

position with no kinetic energy through tunneling ionization; this process

is achieved because of the input strong laser electric field, that bends the

Coulomb atomic potential felt by the electron.

2. Propagation: the electron motion is governed classically by an oscillating

electric field.
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3. Recombination: half an optical cycle after the ionization moment, the

electron feels a variation of verse of the field so, there is a non null probability

that it could recombine with its nucleus with an acceleration that determines

the emission of a photon. The emitted photon has a frequency that is

proportional to the sum of the kinetic energy of the electron and the

ionization potential Ip:

~ω = Ekin + Ip (1.1)

In this model ionization and recombination are defined by quantum mechanics

while propagation is completely classically treated.

Figure 1.1: Visual representation of the Three Step Model for high-order harmonic generation:
in the first row it is described the temporal evolution of the electric field, while
in the second row there are the corresponding steps of the model, the first is
quantum tunneling, then the electron is accelerated from an electric field, the
last is the electron’s recombination with the parent ion (adapted from [1]).

The first step of the model is described assuming the input pulse highly

intense, so that it is possible to evaluate the ionization probability thanks to

ADK theory (from the physicists Ammosov, Delone e Krăınov) [15]. The electron

propagation can be studied just considering the contribution of the electric field

because the magnetic field is so weak that it can be neglected. Let’s assume an

electric field E(t) linearly polarized along z axis:
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E(t) = E0 cos(ω0t) (1.2)

where E0 is the field amplitude and ω0 is its frequency. The fact that

the polarization is linear is of fundamental importance, because it has been

demonstrate that this is the kind of polarization that maximize HHG, while

circular is the case that makes null generation. Considering t = ti the instant

when the electron is ejected (ionization time), the equation of motion for the

electron position z(t) is given solving Newton equation written in atomic units:

dż(t)
dt

= E0 cos(ω0t) (1.3)

Choosing for simplicity the boundary conditions:

z(ti) = 0 (1.4)

ż(ti) = 0 (1.5)

one would get, for any t > ti:

z(t) = −E0

ω2
0

[(cos(ω0t)− cos(ω0ti)) + (ω0t− ω0ti) sin(ω0ti)] (1.6)

ż(t) = E0

ω0
[sin(ω0t)− sin(ω0ti)] (1.7)

It is convenient to introduce the phase θ ≡ ω0t. Then the equation (1.6) can

be written as:

z(θ) = −E0

ω2
0

[cos(θ)− cos(θi) + (θ − θi) sin(θi)] (1.8)

In this notation the kinetic energy of the electron becomes:
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Ek(θ) = 1
2 ż(θ)2 = 2Up(sin(θ)− sin(θi))2 (1.9)

where Up = E2
0

4ω2
0
is the ponderomotive energy, that is the cycle-averaged quiver

energy of a free electron in an electromagnetic field.

The recombination time (phase) tr (θr) can be evaluated solving the motion

equation in the case z(tr) = 0 (z(θr) = 0). So it is obtained:

cos(θr)− cos(θi) + (θr − θi) sin(θi) = 0 (1.10)

The path that is done by the electron from θi to θr is call trajectory. It can

be proved that the electron can recombine only if 0◦ < θi < 90◦ otherwise if

90◦ < θi < 180◦ it flies away and never recombines to the nucleus.

Looking for the maximum value for Ekin(θ) from equation (1.9), it is obtained

the value of 3.17Up when θi = 18◦ and θr = 252◦, so it is defined the cut-off

frequency accordingly to equation (1.1):

ωcutoff = 3.17Up + Ip
~

(1.11)

For fixed kinetic energies smaller or equal than 3.17 Up it is possible to find

the trajectory solution of the coupled equations (1.9) and (1.10). As shown in

figure (1.2), from the coupled equations are found two different trajectories:

• long trajectory: in the case of 0◦ < θi < 18◦ and 252◦ < θr < 360◦

• short trajectory: in the case of 18◦ < θi < 90◦ and 90◦ < θr < 252◦
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Figure 1.2: Electron kinetic energy normalized on ponderomotive energy, just before recom-
bination, versus ionization phase θi (phase that describes the blue curve, from
0◦ to 90◦) and recombination phase θr (phase that describes the red curve, fro
m 90◦ to 360◦). At the top of the figure it is also shown the electric field phase
(temporal evolution t = θ/ω0) (adapted from [2]).

Given a solution of the trajectory of the electron (θi,θr) from the above

coupled equations, also the pair (θi + mπ, θr+ mπ) is a solution, where m is an

integer value, so the solution z(θ) can be rewritten as:

zm(θ) = (−1)mzm=0(θ −mπ) (1.12)

where:

zm=0(θ) = E0

ω2
0

[cos(θ)− cos(θi) + (θ − θi) sin(θi)] (1.13)

The equation (1.13) means that each half optical cycle harmonics are emitted

with an alternating phase, such that the electric field can be expressed as:

Eh(t) = ...+Fh
(
t+ 2π

ω0

)
−Fh

(
t+ π

ω0

)
+Fh(t)−Fh

(
t− π

ω0

)
+Fh

(
t− 2π

ω0

)
+...

(1.14)

Applying the Fourier transform to the above equation one would find the
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frequencies of the emitted harmonics, with non null terms only for odd multiples

of the fundamental ω0. This explain why only the odd harmonics can be emitted.

Because HHG is e phenomenon that is generated from the interaction of the

electric field with many atoms, its efficiency is strictly correlated to phase

matching conditions [16]: it is of fundamental importance in the choice of a

particular trajectory that minimize the pulse duration of the XUV [17], but this

concept will be better analyzed in following parts.

Figure 1.3: Example of HHG: harmonics field composed by orders 9-11-13-15-17 and funda-
mental frequency (adapted from [2]).

1.2.2 Lewenstein Model

The above description of HHG phenomenon was composed by a classical

part (electron propagation) and two quantum mechanics section (Tunneling and

Recombination), but it neglects some important phenomena like the quantum

diffusion of the wave packets, the elastic scattering from the parent ion and

the quantum interference between wave packet generated in different temporal

instants. The aim of Lewenstein et al.[14] was to go over the classical description
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limitations and obtain a quantum dissertation for High-order Harmonic Genera-

tion. The interaction of an atom with a laser pulse, which field E(t) is linearly

polarized along z direction, is described by the time dependent Schrödinger

equation (TDSE) in length gauge:

i
∂Ψ(r, t)
∂t

=
[
−1

2∇
2 + V (r) + zE(t)

]
Ψ(r, t) (1.15)

where V (r) is the atomic potential. Initially the state is in the ground state

denoted as |0〉 which has, in general, spherical symmetry. In the assumption

of weak ionization, so that Up should be large but still below the saturation

level Usat, all atoms ionize during interaction time. In this condition tunneling

becomes valid. In order to achieve analytical results, first of all it has been

necessary to introduce the following approximations:

(a) Single Active Electron (SAE) approximation: The contribution of all the

excited bound states can be neglected except the ground state |0〉.

(b) Small Perturbation approximation: The depletion of the ground state can

be neglected, Up < Usat.

(c) Strong Field Approximation (SFA): In continuum, the effect of the atomic

potential V (r) on the electron motion can be neglected, as it would in a

free particle regime.

Assumption (b) can be used only in case of intensities smaller than saturation

intensity, otherwise the depletion of ground state must be considered. Assump-

tions (a) and (c) holds when there are no intermediates resonances and if Keldysh

parameter γ =
√
Ip/2Up is smaller than one: this condition implies that when

an electron appears in continuum it is under the influence of a strong field and

when it comes back to its nucleus it has a large kinetic energy such that atomic
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potential force can be neglected. In this case the generated harmonic will have

higher energies, due to high energetic electrons, of the order E2M+1 > Ip.

There are different ways to solve equation 1.15, and one of them consists in

considering one part of the interaction Hamiltonian as just a perturbation [18].

After (a) and (c) assumptions, the time-dependent wavefunction can be written

as:

|Ψ(t)〉 = |Ψ(t)〉bound + |Ψ(t)〉free (1.16)

Where the bound component is:

|Ψ(t)〉bound = eiIpta(t) |0〉 (1.17)

with a(t) ' 1 is the ground state amplitude, while the free component can

be written as:

|Ψ(t)〉free = eiIpta(t)
∫
d3v b(v, t) |v〉 (1.18)

with b(v, t) that represent the amplitudes of the corresponding continuum

state. This term can be calculated from the Schrödinger equation and results to

be:

b(v, t) = i
∫ t

0
dt′a(t′)E(t′) · d[v−A(t) + A(t′)]× e−iS(v,t,t′) (1.19)

where:

• d(v) = 〈v| r |0〉 denotes the atomic dipole matrix element for bound-free

transition, and dz is the component parallel to polarization direction.

• a(t) can be considered 1 in order to neglect ground state depletion.

• A(t) = −
∫
dtE(t) = [0, 0,−E0 sin(w0t)] is the vector potential of the laser

field.
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• S(v,A, t, t′) =
∫ t
t′ dt

′′[(v−A(t)+A(t′)2)/2+Ip] is the quasi-classical action.

So the time-dependent wavefunction can be written in a compact form

considering equations (1.16), (1.17), (1.18):

|Ψ(t)〉 = eiIpt(a(t) |0〉+
∫
d3v b(v, t) |v〉) (1.20)

Now given the equation (1.20) it is possible to calculate the z component of

the time-dependent dipole moment:

z(t) = 〈Ψ(t)| z |Ψ(t)〉 =
∫
d3v dz∗(v)b(v, t) + c.c. (1.21)

Writing the above formula has been neglected the Continuum-Continuum

contribution [19] and has been considered just the transitions to the ground

state.

It is now useful to introduce the canonical momentum as:

p = v + A(t) (1.22)

Applying this definition to equation (1.21) the dipole moment becomes:

z(t) = i
∫ t

0
dt′
∫
d3pE(t′) · d(p−A(t′)) · d∗(p−A(t))e−iS(p,t,t′) + c.c. (1.23)

This equation can be physically interpreted [20] in relation to the semiclassical

Three Step Model:

• E(t′) · d(p−A(t′)) is the probability amplitude for an electron to make

transition to the continuum at time t′ with canonical momentum p; this

term is related to ionization at t′.

• e−iS(p,t,t′) represent the phase factor assumed by the electronic wavefunction

until the time t. The effects of the atomic potential are assumed to be
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small between t′ and t so that S(p, t, t′) can be considered as the classical

description of the motion of a free electron in a laser field with a constant

momentum p.

• d∗(p−A(t)) is the amplitude of recombination time of the electron with

its nucleus.

It is interesting to notice that equation (1.23) allows also other two physical

interpretation: In the first, the electron appears in continuum at time t with the

kinetic momentum p−A(t), then is propagated back until t′ when it recombines

to the ground state |0〉 with amplitude E(t′) · d(p−A(t′)). In the other way to

look the above equation, it is possible to consider it as a Landau-Dyhne formula

for transitions probabilities applied to the evaluation of the observable z [20].

In relation to the equation (1.23), the quasi-classical action changes very fast

in respect to all the other terms, so it can be considered that, for t− t′ of the

order of one period of the laser field, the main contribute to the integral over p

is given by the stationary points of the quasi-classical action:

∇pS(p, t, t′) = 0 (1.24)

On the other hand, ∇pS(p, t, t′) = 0 can be expressed as the difference of

position in space between the electrons evaluated in t and t′:

∇pS(p, t, t′) = r(t)− r(t′) (1.25)

This means that the stationary points of the classical action correspond to

those momenta for which the electron born in t′ and returns to the same position

at t. In other words, the dominant contribution to harmonic generation is given

by those electrons which tunnel away from the nucleus, but then re-encounter

it while oscillating in the laser field. So, the integral over p of equation (1.23)
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might be solved thanks to the saddle-point method:

z(t) = i
∫ +∞

0
dτ

(
π

ε+ iτ/2

)3/2

d∗(pst(t, τ)−A(t))·

d(pst(t, τ)−A(t)) · E(t− τ)e−iSst(t,τ) + c.c

(1.26)

where τ is called return time and is defined as the temporal duration of the

electron path t−t′, the term
(

π
ε+iτ/2

)3/2
has a positive infinitesimal ε, that is from

the regularized Gaussian integration (it is introduced in order to eliminate the

singularity for τ = 0), takes into account of the quantum diffusion (in particular

the spread of the electronic wave packet deposited to the continuum) and reduces

the contribution of those trajectories with a long return time (τ much larger

than a laser optical cycle). The cross-section of recombination is reduced when

the value of return times becomes large.

It is now possible to determine the harmonic generation rate, considering modulus

square of the Fourier Transform of the dipole moment:

W (ω) ∝ ω3 |z(ω)|2 (1.27)

where:

z(ω) =
∫ +∞

−∞
dt z(t)e−iωt (1.28)

in particular this last equation is a three dimensional integral, that can be solved

again thanks to saddle-point method, but considering the Legendre transform on

the quasi-classical action:

Θ(pst, t, τ) := ωt− S(pst, t, τ) (1.29)
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Using this function, one could write the new saddle-point equations:

∂Θ
∂t

∣∣∣∣∣
tst

= ω − [pst −A(tst)]2
2 − Ip = 0 (1.30)

∂Θ
∂t′

∣∣∣∣∣
tst

= [pst −A(tst)]2
2 + Ip = 0 (1.31)

This two equations express the energy conservation at the ionization and

recombination time. Due to the fact that the ionization potential can’t be null,

the solutions (pst, tst, τst) to equations (1.30), (1.31) are complex values, so also

the associated trajectories are complex.

Figure 1.4: Real and imaginary component of the trajectories vs. the harmonic. In this figure
it has been introduced θ = ω0t. The dashed line is representing the three-step
model classical solution (adapted from [2]).

The Fourier transform of the dipole moment z(ω) can be approximated with

a coherent superposition of these quantum path:
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z(ω) =
∑
st

|z(ω)| eiΦst(ω)

=
∑
st

i2π√
det(S ′′)

(
π

ε+ iτst/2

)3/2

d∗(pst −A(tst))·

E(tst − t) · d(pst −A(tst − τst))e−i[S(pst,tst,τst)+ωtst]

(1.32)

where Φst(ω) is the phase of the complex dipole moment and det(S ′′) is the

determinant of the 2×2 matrix containing the second order derivatives of the

function Θ(pst, t, τ ) with respect to t and t′ in correspondence to the saddle-point

solutions.

S ′′ =

 ∂2Θ
∂t2

∂2Θ
∂t∂t′

∂2Θ
∂t′∂t

∂2Θ
∂t′2

 (1.33)

∂2Θ
∂t∂t′

= (p + A(t))(p + A(t′))
t− t′

(1.34)

∂2Θ
∂t2

= −2(ω − Ip)
t− t′

− E(t) · (p + A(t)) (1.35)

∂2Θ
∂t′2

= 2Ip
t− t′

+ E(t′) · (p + A(t′)) (1.36)

Saddle-point solution (pst, tst, τst) that differ by the temporal duration of the

electron path in continuum, can be derived considering each photon energy.

If one would consider only those trajectories which are characterized by the

Re(τ) < T0, where T0 is the period of the input laser field, he would be able to

recognize two different kind of trajectories:

• long trajectory: the return time is around one optical cycle of the electric

field of the laser.

• short trajectory: the return time is shorter than the half of the optical cycle

of the electric field of the laser.
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In this condition (Re(τ) < T0), the equation (1.32) can be approximated as the

coherent superposition of just the 2 kind of trajectories described above, so only

long and short quantum path:

z(ω) ≈
∑
short

|zs(ω)| eiΦs(ω) +
∑
long

|zs(ω)| eiΦs(ω) (1.37)

In this approximation it is interesting to see that the phase of the dipole

moment induced on an atom by a driving laser pulse depends on the laser

intensity and that the harmonic phase follows this intrinsic atomic phase [21] [16].

Because long and short trajectories have different ionizing and recombination

time (so different quantum paths), different electrons are subjected to different

electric fields, and so also their harmonic phases behave will be different. If the

contribution of the two quantum path are added together in order to generate

high order emission, different harmonics would randomly get distributed harmonic

phase values. Lewenstein model predicts a cutoff energy:

Ecutoff = 3.17Up + gIp (1.38)

where g ≈ 1.3, making this prediction slightly higher than the one given by

the three-step model. This is related to the fact that there is a finite distance

between the nucleus and tunnel exit; the electron which has returned to the

position of is further accelerated till it reaches the nuclear position.

1.2.3 Phase Matching

The maximum of efficiency in high-order harmonic generation is achieved

when phase matching conditions are respected [22]. Let’s consider the q-th

harmonic, so its wavevector is kq: the optimal condition to generate harmonics

is obtained in direction kq if the harmonic fields generated in two different point
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in the space, r1 and r2, make constructive interference:

arg[Pq(r1)eikq(r2−r1)] = arg[Pq(r2)] (1.39)

where the arg function is a function that operates on complex values and returns

the angle between the positive real axis and the complex vector and Pq stands

for the q-th Fourier component of the atomic polarization in the medium. It is

proportional to the atomic density and to the corresponding Fourier component

of the atomic dipole moment. If r1 and r2 are close enough, the result of equation

(1.39) is:

kq = ∇arg(Pq) (1.40)

In a perturbative regime, the modulus of the wave vector of the polarization

of the q-th harmonic is just q times the incident-plane wave: kq = qk0, where

k0 = ω/c.

Considering x the propagation axis (x = 0 represent the position of the focus)

and r the distance from this axis (cylindrical coordinates), two other phase factor

are involved:

• Intrinsic atomic phase term that depends on the intensity of the driving

field:

Φat(r, x) = qωtst − S(pst, tst, t′st) (1.41)

where the semiclassical action S can be roughly approximated by S '

−τstUp for those electrons with quantum path temporal duration τst.

• Phase induced by the focusing of the fundamental beam (Gouy phase);

approximating the beam with a Gaussian shape, the phase becomes:

Φfoc(r, x) = arg

[
1

b+ 2ix exp
(
− k0r

2

b+ 2ix

)]
(1.42)
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where b is the confocal parameter.

The total wavevector k1 of the fundamental Gaussian beam is space depen-

dent:

k1(r, x) = k0ex +∇Φfoc(r, x) (1.43)

The effective wavevector K is dependent on the atomic phase term:

K(r, x) = ∇Φat(r, x) (1.44)

Therefore, the phase matching condition can be written as:

kq = qk1 + K (1.45)

It can be proved that this condition can be achieved in two different cases:

1. Generation on axis (r = 0) and after the focal point (x > 0): in this

condition a collinear phase matching is achieved, so harmonics are efficiently

generated along the propagation direction of the laser, also, the emitted

harmonics get a Gaussian structure from the input field.

2. Generation off axis (r > 0) and before the focal point(x < 0): in this

condition a non-collinear phase matching is achieved, so the harmonics

are not generated along propagation direction, and they have an annular

structure.

These considerations show the importance of the propagation effects on the

features of the emitted harmonic field. Since the atomic phase term depends on

the time duration of the quantum path, the phase matching condition allow to

favor or cancel one kind of trajectory or the other; in other words, it is possible

to generate harmonics with just one particular kind of trajectory (long or short)

changing geometrical focusing configurations. For example, in the case of a
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Gaussian fundamental beam and an atomic medium placed after the focal point

(case 1) all long trajectories contribution can be eliminated. In this case the

resulting pulses are affected by an intrinsic positive chirp [23], given by the fact

that low energy photons are emitted before those with higher energies.

1.3 Time-delay compensated monochromator

The process of high-order harmonic generation described in the previous

section is of fundamental importance in all those experiments that require the

study of ultrafast phenomena (every phenomenon which has temporal duration

of the order of femtosecond or shorter). When harmonics are generated with the

first kind of phase matching, they are all collinear, so the issue of selecting just

few (or in case only one) of them is crucial in order to reduce the bandwidth

such that it is possible to make selective probe. This selection implies, due to

time-energy indetermination principles, a loss in temporal resolution, indeed

attosecond pulses cannot be obtained anymore. In any case it is an acceptable

price to pay if the dynamics that one wants to study are in the femtosecond

region, as it is in our case. For this reason it becomes necessary to develop a

monochromator that is able to select one harmonic. An important condition

that must hold is that this process of selection must not influence the spatial

and temporal characteristics of the pulse. This is a crucial element in order to

obtain both high temporal resolution and high peak power [4].

1.3.1 Bandwidth requirement

The design of this kind of monochromator must include the analysis of

the XUV pulse transformation in both the spectrum and the spectral phase.

Therefore, the monochromator can be modeled as a filter with a complex frequency

response K(ω). In the case of a Gaussian pulse with no modulation the product
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of the spectral width at half-maximum times the temporal duration at half-

maximum has a lower limit given by:

∆ω1/2∆τ1/2 = 4 ln 2 = 2.77 (1.46)

In order to maintain unchanged the temporal duration of the pulse as in equation

(1.46), two conditions must be respected:

1. The bandpass transmitted by the monochromator ∆ωm has to be greater

than the full width at half maximum of the input pulse ∆ω1/2

2. The complex transfer function K(ω) must be approximatively constant in

proximity of the harmonics frequencies.

While the first condition is simply verified because the harmonics peaks are well

split, so it easily possible to set the monochromator in order to select one (or

more) harmonic without introducing any modification in Fourier spectrum, the

second condition is more difficult to achieve. Anyway, it can be demonstrated

that it holds always if the monochromator is build using only reflecting optic

elements, because variation of reflectivity of the coatings are really small so that

can be considered as negligible: in this condition K(ω) is almost constant. Many

techniques have been implemented in order to realize this kind of monochromator,

but the most common is certainly based on dielectric multilayer mirrors in normal

incidence: the success of this solution is related to its efficiency and to the fact

that it does not modify the pulse duration more than a fraction of femtosecond.

This approach is however limited by the lacking of tunability in the frequency

domain (if one would like to study a different spectral region, he has to change

the complete monochromator) and also by the fact that there not exists dielectric

mirror for all the spectral region, so studying different harmonics with this setup

is almost impossible. For these reasons it is useful to introduce a more flexible

solution, based on the use of diffraction gratings.
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1.3.2 Grating monochromator

The limits related to a dielectric multilayer monochromator have been dis-

cussed in the above sector, where has been highlighted a lack of tunability. This

limit can be overcame thanks an ordinary diffraction gratings. A grating is an

optical component that alters the optical path for the different wavelength that

compose the pulse, so the result is a separation of all the frequencies.

Figure 1.5: Diffraction grating that, given in input a with light, splits the pulse in all its
harmonics (adapted from [3]).

The issue of this process is that the diffraction introduced by a grating gives

a time broadening of the ultrafast pulse, indeed the total difference in the optical

paths of the rays diffracted by N grooves illuminated by radiation at wavelength

λ is Nmλ where m is the order of diffraction. This effect can’t be neglected in

case of an input pulse of some femtosecond, so another approach is necessary:

in order to avoid this issue, it can be used another gratings in a subtractive

configuration and to compensate the dispersion. First of all, let’s analyze each

component of the grating monochromator, then how do they work in a double
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grating configuration.

Blazed gratings

The blazed grating is one of the most common optical elements that are used

in experiment where the selection of a singular frequency is a crucial factor. It

is a particular kind of diffraction grating optimized to achieve the maximum

efficiency in a given diffraction order, for this reason the maximum optical

intensity is concentrated in one particular order, while the others are less efficient,

for example, zeroth order act just a mirror and no frequency selection occur. It is

composed by a constant line spacing determining the magnitude of the wavelength

splitting. The grating line is characterized by a triangular sawtooth-shaped cross

section that describes a step structure. The angle generated between a groove’s

longer side and the plane of the grating is called blaze angle.

Figure 1.6: Scheme of a blazed grating.

The angles that guarantee the peaks of intensity are given by the following

formula:

d(sinα + sin β) = mλ (1.47)

where:
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• d is the constant distance between the two successive grooves.

• α is the angle at which the incident radiation arrives with respect to the

normal of the grating.

• β is the angle respect to the normal of the diffracted radiation.

• m is the order of the peak and its values are both positive and negative

integer numbers.

• λ is the wavelength of the incident radiation.

Toroidal mirror

Toroidal mirrors are optical elements characterized by different curvature

radii along the two dimensions. The shape is an elliptic paraboloid with different

in order to allow different focal distances depending on the angle of incidence

of the radiation. This mirrors are covered by a metallic surface and are used

with grazing incidence. The main advantage of using this kind of mirror is that

they allows to achieve higher efficiency also in the XUV spectral region, where

conventional coating have lower reflectivity.

1.3.3 Off-Plane Mount

The off-plane mount, also known as conical diffraction mount, is a one grating

configuration monochromator and differs from the other kind of configuration

because the incident and diffracted wave-vectors are almost parallel to the grooves

[24].
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Figure 1.7: Schematic representation of the Off-Plane mount configuration (adapted from
[4]).

In this scheme two parameters are necessary in order to describe the direction

of the incoming rays:

• The angle γ between the direction of the incoming rays and the direction

of the gratings and it describes the half-angle of the cone into which the

light is diffracted.

• The azimuth α of the incoming rays is defined to be null if they lie in the

plane perpendicular to the grating surface and parallel to the rulings.

Given this two parameters it is possible to define the azimuth of zeroth order

as −α, the azimuth of a generic diffracted order β and so the grating equation:

sin γ(sinα + sin β) = mλσ (1.48)

where m is the order of the gratings, λ is the wavelength of the incoming radiation

and σ is the groove density. As seen in the above section this configuration is

composed by a blazing gratings, such that the harmonics could be split in vertical
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direction. The selection of just one harmonic takes place thanks a horizontal slit

after the grating that is able to rotate around the tangential axis respect the

surface. The maximum of efficiency is obtained when the light leaves the grating

performing a specular reflection on the groove surface; this assumption can be

expressed by the equation:

α + β = 2δ (1.49)

where δ is the blaze angle and is an intrinsic property of the grating. In particular,

the highest efficiency is obtained when α = β = δ, in other words, when the

groove of the grating is seen by the incident radiation as a portion of a plane

mirror. In this particular condition the equation (1.48) can be re-written as:

2 sin γ sin δ = mλσ (1.50)

Since this condition has been achieved thanks the grating’s rotation of a particular

angle, the blaze optimization is given just for only one harmonic, while the other

harmonics will be subject to a lack of efficiency. As discussed previously, a

configuration with only one grating introduces a difference in the total optical

path, so it is necessary to consider a two gratings scheme.

1.3.4 Time-delay compensated monochromator in the off-

plane mount

This kind of monochromator is able to overcome the issues given by the

use of a single monochromator, so makes possible the time-delay compensation.

It work’s principle is very simple: two off-plane mount are used in subtractive

configuration, such that the delay introduced by the first is annihilated by the

second. Therefore, such a monochromator requires six optical elements as shown

in figure (1.8)
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Figure 1.8: Setup scheme of the time-delay compensated monochromator with all its optical
components (adapted from [4]).

Indeed, it is possible to divide the monochromator in two identical section,

each composed by two toroidal mirrors and one grating, divided by an intermedi-

ate slit that allows to select the harmonic that is requested for the measurement.

The first section gives a spectrally dispersed image of the HHs (high-order har-

monics) on the intermediate plane, closing the slit just one harmonic propagates

toward the second section, where it happens both the temporal and spatial

compensation, giving a spectrally selected stigmatic image on its focal plane.

The first toroidal mirror is used as collimator and the second as condenser. All

the four mirrors are at the same grazing angle and unity magnification in order

to minimize aberrations effects, in particular the all the distances are the same:

• Input arm: is the distance between the HHs source and the vertex of the

first toroidal mirror, and is equal to the distance between the slit position

and the vertex of the third toroidal mirror.

• Output arm: is the distance between the vertex of the fourth toroidal

mirror and the output focal point and it is equal to the distance between

the vertex of the second mirror and the slit.

For all the mirrors the tangential and sagittal radii are the same and can be
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expressed respectively as R and ρ from this two equations:

R = 2pM
sin θ (1.51)

ρ = 2pM sin θ (1.52)

where θ represent the grazing angle of the toroidal mirrors and pM represent the

input arm of the collimator (or likewise the output arms of the condensers). The

harmonic selection is given by the rotation of the gratings around an axis that is

tangent to their vertex and parallel to the grooves. As said in the above section,

it is possible to obtain the maximum of efficiency just at one input wavelength,

and according to equation (1.50) it can be written as:

λB = 2 sin γ sin δ
mσ

(1.53)

while at different wavelength respect λB the efficiency decreases due to the

gratings that is working in off-blaze conditions. At the slit plane the spectral

dispersion can be written as:

∆l
∆λ = mσpM

cos β ≈ mσpM (1.54)

In order to select the n-th harmonics (obviously n is odd), and to assure that

the (n+ 2)-th and (n− 2)-th are filtered out the slit aperture must satisfy:

∆SHn = mσpM
∆λH(n−2)−H(n+2)

2 (1.55)

where ∆λH(n−2)−H(n+2) describes the distances in wavelength between the har-

monics (n+ 2)-th and (n− 2)-th, and can be expressed as:

∆λH(n−2)−H(n+2) = λ0

( 1
n− 2 −

1
n+ 2

)
≈ λ0

4
n2 (1.56)
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where λ0 is the wavelength that is used to generate HHs. Applying this approxi-

mation to equation (1.55) the slit aperture is given by:

∆SHn = mσpMλ0
2
n2 (1.57)

The last condition that must hold in order to guarantee temporal compensation

is that all the rays at different wavelengths, that compose the spectrum of the

pulse after HHG, must be focused on the same point and with equal optical

path. Assuming the FWHM of the spectral width of the n-th harmonics Fourier-

transform limited, from equation (1.46) it can be obtained the width of the

wavelength:

∆λ1/2,Hn = 1
n2

λ2
0

∆τ1/2

2.77
2πc (1.58)

The rays must be focused on the same point because of the negative dispersion

introduced by the second stage, so that the spectral dispersion at the output of

the monochromator results zero. In this conditions it possible to achieve the goals

fixed at the beginning of the dissertation, allowing to select just one harmonic

without introducing any external perturbation that could change the property of

XUV radiation.
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Chapter 2

XUV Pulse Characterization

2.1 Introduction

High-order harmonic generation (HHG) is at the basis of many works which

aim is to investigate those phenomena that occur on extremely short temporal

periods. In the first chapter I treated how such harmonics can be generated

and how it is possible to select just one of them in order to study the behavior

of one physical system when it is subject to a given frequency. So temporal

characterization becomes of main importance in order to analyze measurement

results and to develop some models. For this reasons in this chapter I will

discuss how this characterization process is done and which are the most common

techniques. In particular this chapter is organized as follows: section 2.2 contains

the theory behind pulse characterization, in detail Frequency-Resolved Optical

Gating for Complete Reconstruction of Attosecond Bursts (FROG-CRAB) method

will be discussed here, section 2.3 contains the practical implementation of

FROG-CRAB with the description of the setup used for measurement, section

2.4 contains a brief description of the algorithm used for the pulse reconstruction

and section 2.5 contains the experimental results obtained with the configuration

described.
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2.2 Theory of characterization

A possible way to characterize an XUV pulse is given by the analysis of the

so-called sidebands (SB). When a monochromatic XUV pulse is focused on a gas

(commonly noble gases are used), because of its high energy, it ionizes the atoms

and generates free electrons called photoelectrons [25]. Those photoelectrons

maintain the same temporal structure of the radiation that generates them, so

the velocity at which they leave from the nucleus is proportional to the energy

of the XUV pulse: the result is a line in the photoelectrons energy spectrum 2.1

because noble gases allows just one transition.

Figure 2.1: Scheme of sideband generation process

If the XUV pulse is spatially and temporally overlapped to an IR pulse the

kinetic energy that is seen by the generated photoelectrons is different respect

a non-overlapping case. In detail, if the temporal duration of the optical cycle
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of IR is longer than the XUV pulse, the final momentum of the photoelectrons

will follow the vector potential of the IR field. On the contrary, if the IR

optical cycle is shorter than the XUV pulse sidebands are generated [26]. This

phenomenon becomes visible considering a varying delay between the two pulses

and acquiring the energy spectrum delay per delay. The result of this approach

is the construction of a spectrogram: S(ω, τ).

2.2.1 FROG-CRAB Technique

One of the most used techniques that allows to fully reconstruct an ultrashort

XUV pulse is: Frequency-Resolved Optical Gating for Complete Reconstruction

of Attosecond Bursts (FROG-CRAB) [12]. This approach is inspired by the

Frequency-Resolved Optical Gating (FROG) [27] that consists of decomposing

the pulse to be characterized in temporal slices making use of a temporal gate

function G(t) and then measuring the spectrum of each slice. This process is at

the basis of the construction of a two-dimensional set of data called Spectrogram

(also known as FROG trace), defined a:

S(ω, τ) =
∣∣∣∣∫ +∞

−∞
dtG(t)E(t− τ)eiωt

∣∣∣∣2 (2.1)

where E(t) is the field of the pulse that has to be characterized and τ is a variable

delay between the gate and the pulse. The gate function can be either a given

function related to the pulse (also the pulse itself is a suitable choice), or an

unknown function (blind FROG). The FROG method operates in an iterative

way: a spectrogram S̃ is computed starting from an initial guess [E(t), G(t)].

S̃(ω, τ) =
∫ +∞

−∞
dtE(t)G(t)eiωt = |S̃(ω, τ)|eiφ̃(ω,τ) (2.2)

Given this simulated spectrogram, it is possible to pass to the second step, where

the phase is conserved and the modulus |S̃(ω, τ)| is replaced with the one given
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by the measured spectrogram. So, the new simulated spectrogram becomes:

S̃(ω, τ) −→ S̃ ′(ω, τ) =
√
I(ω, τ)eiφ̃(ω,τ) (2.3)

where I(ω, τ) is the spectrogram experimentally measured. The third step consists

in creating an error function defined as the difference between the experimental

spectrogram and the one obtained by equation 2.3 so that thanks to a proper

algorithm it is possible to determines a new pair of fields [E ′(t), G′(t)] used for

the subsequent iteration. This process is repeated n times, until the algorithm

converge when the error function is below a certain toleration value, and the

final pair [E(n)(t),G(n)(t)] is obtained.

FROG-CRAB is based on photoionization of atoms or molecules thanks to the

XUV pulse that has to be characterized; in addition of the XUV also an IR pulse,

with variable delay τ with respect the first, is focused on the atoms, so that is

possible to define a function that acts as the temporal gating for the FROG.

FROG-CRAB was born with the goal of fully characterize attosecond pulses,

so that kind of pulses has been extensively tested and investigated, anyway

the applicability of this approach to few-femtosecond pulses has still to be

proven, in particular, the narrower bandwidth associated with a single harmonic

and the associated loss of sub-cycle resolution, reduces the level of information

redundancy in a FROG-CRAB trace, so that it is necessary to develop a new

approach to reconstruct also femtosecond pulses [5]. Assuming that holds the

Strong Field Approximation (SFA), it is possible to write the spectrogram given

by photoelectrons with kinetic momentum v at a generic delay instant τ , S(v, τ):

S(v, τ) =
∣∣∣∣∫ +∞

−∞
dtdp(t) · Ex(t− τ)e−iΦ(t)ei(W+Ip)t

∣∣∣∣2 (2.4)

where

φ(t) =
∫ +∞

t
dt′ [v ·AIR(t′) + A2

IR(t′)/2] (2.5)
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is a temporal modulation phase term.

• dp(t) is a dipole transition matrix element from the ground state to the

continuum state |p〉.

• p(t) = v + AIR(t) is the instantaneous momentum of the free electron in

the laser field.

• Ex(t) is the electric field of the XUV pulse, polarized along the x axis, so

that Ex(t) = ∂Ax(t)/∂t, where Ax(t) is the field vector potential.

• W = 1
2v

2 is the final kinetic energy.

• Ip is the ionization potential of an atom.

From equations (2.4) and (2.5) it is easy to notice that the input IR laser

field introduces a temporal phase modulation φ(t) on the electron wave packet

dp ·Ex generated in the continuum by the XUV pulse. The interaction can be

considered as a pure phase gate G(t), so that the IR field is acting as an ultrafast

phase modulator. In a more qualitative way, the electron trajectories, from the

ionization instant to the spectrometer, can be considered as dependent on the

electron time of ionization within the IR laser field optical cycle [28]: if the XUV

pulse is longer than the optical cycle of IR pulse, then the final effect is a periodic

phase modulation on the electron wave packet that causes the generation of

additional peaks called sidebands (SBs) spaced by ~ωIR respect the harmonic

peak in the energy spectrogram of the photoelectrons. These sidebands are

produced by the absorption of a harmonic photon and the additional absorption

or emission of an IR photon as described in figure (2.1).
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2.2.2 Simulations

Sidebands

In figure (2.2) is shown an image of the sidebands generated from the harmonic

25 that ionize an atom of Argon. The IR intensity used is IIR = 1011 W/cm2

for (a), while in (b) IIR = 1012 W/cm2. The temporal duration of the XUV and

IR pulses are respectively τXUV = 5 fs, τIR = 10 fs assuming both pulses to be

transform limited.

Figure 2.2: Spectrograms generated by HH25. In (a) the IR intensity was IIR = 1011 W/cm2,
while in (b) IIR = 1012 W/cm2. This intensity difference becomes clear looking
to the number of SBs generated, where in (a) IR is sufficient to generate just 2
sidebands, in (b) thanks to higher intensity 5 SBs are visible. The parameters
used are: Argon as ionization gas, XUV and IR are assumed to be both transform
limited, τXUV = 5 fs, τIR = 10 fs (adapted from [5])

It is clear how the central line of the spectrogram, that describes the harmonic

yield, is subject to a depletion when the XUV and IR pulses are spatially and

temporally overlapped, in other words, when their delay τ is null. The sidebands

generation is also proportional to the intensity of the IR pulse: the more it

is intense the more it will interact with the photoelectrons generating more

sidebands as shown in figure (2.2).

Chirped pulses

Another important information given by the sidebands analysis is the linear

chirp (quadratic phase) of the pulse. The chirp is a phenomenon that describes
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how frequencies, that compose a pulse, arrives at different time instants.

Figure 2.3: Frequency chirp after the pulse is passed through two different kind of mediums.
In particular the first medium has positive D2 (called second order dispersion,
D2 = L·GVD, where L is the length of the medium and GVD is the Group
Velocity Dispersion), so the higher frequency will come later then lowers. In the
second medium, with negative D2, it occurs the opposite respect the first case
(adapted from [6]).

As shown in figure (2.3) in dependency of the medium that is traveled by the

pulse, it is possible to describe two different behaviors that represent the chirp:

1. Positive chirp: Group Velocity Dispersion (GVD) is positive, so it means

that the red component of the pulse has higher velocity respect the blue

component, as a consequence lower energy is arriving before the higher

one.

2. Negative chirp: GVD is negative, so the blue component of the pulse has

higher velocity respect the red one: higher energies are arriving first, while

lower energies later.

In the case of the spectrogram analysis, the chirp of the pulses is observed

thanks to the tilt of the sidebands, where in particular it is possible to distinguish

if the chirp is given by the IR pulse, by the XUV pulse or by both of them.

• The chirp on the harmonics pulse produces tilted SBs both with the same

angle.
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• The chirp on the IR pulse produces tilted SBs with opposite angles.

• The chirp on both XUV and IR pulses generates a sideband almost flat,

and the other even more tilted: this effect is given by the superposition of

the effects of the single XUV chirp and IR chirp.

Figure 2.4: Effect of the IR and XUV spectral chirp on the HH spectrogram: in (a) it is
represented the spectrogram of HH25 for transform limit (TL) pulse, (b) and (c)
show the chirp of IR (DIR

2 = 40 fs2) and XUV (DXUV
2 = −20 fs2) respectively,

and in (d) both the pulses are chirped. The dashed blue and orange lines represent
the evolution of the SB center as function of the pump-probe delay. The XUV
pulse has a temporal duration of 5 fs, and the IR of 10 fs with an intensity
IIR = 1011 W/cm2. The gas used for ionization was Argon. (adapted from [5])

2.3 Experimental Setup

Generation and characterization of XUV pulses is a process that requires a

complex setup, that can be schematically divided in 4 steps:

1. Pulse compression

2. High-order Harmonic Generation

3. Harmonic selection
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4. Harmonic characterization

Figure 2.5: Scheme of the 4 steps necessary to the measurement process

In order to provide a complete description of the entire setup, for each step

written above, I will evidence the elements that we have used to assemble it,

underlining the main characteristics, and where it is necessary also the theoretical

parts.

2.3.1 Pulse compression

This is the first step, and consists of all those elements that allow to generate

an ultrashort high-intense pulse that will be used to obtain high-order harmonic

generation.

Laser Source

The laser source used is a commercial Astrella produced by Coherent. Its

active medium is a crystal of Ti:Sapphire water cooled and it is designed to

provide up to 7 mJ pulses energy at a repetition rate of 1 kHz, a wavelength

of 800 nm and pulses temporal duration shorter than 35 fs. A peculiarity of

this laser source is its stability (< 0.5% rms) that allows to get high-quality

measures, without the presence of any significant variation in pulse intensity.
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Stabilization

So an IR ultrashort pulse (around 35 fs) is given in output from the laser

source.

Figure 2.6: Scheme of the setup before the hollow-core fiber

At this moment the pulse has a power of 7 W that is too much for our intent,

so, as it is possible to see in figure (2.6), a 70-30 beam splitter (BS) is used to

reduce the intensity of the pulse: the 30% reflected is taken, while the other 70%

that passes trough the BS is not used and is blocked. The part of beam that is

reflected, than goes to a periscope that lowers it from the laser output height

(16.3 cm) to the optical elements height (8.8 cm). Then another beam splitter

(50-50 BS) is used to reduce again the intensity of the pulse, in order to achieve

around 1 W . Now the correct pulse intensity is achieved, so the beam must be

focus to the fiber entrance (the fiber will be discussed in the next paragraph).

For focusing we decided to use spherical mirror instead of convergent/divergent

lens, because when the pulse passes trough the lens causes third order non-linear

phenomenon as self-phase modulation that produce a bandwidth broadband

that, in this part of the setup, is better to avoid. So, the first spherical mirror

is divergent with a curvature radius of +4000 mm, while the second is placed
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after 60 cm and is convergent with a curvature radius of −2500 mm. The ABCD

matrix of the system is determined so that the focal distance is around 2.35 m.

After the focusing part, the beam goes to a 45◦ dielectric mirror that is mounted

on a piezoelectric motor used to stabilize the direction of the pulse. Then the

beam goes to another 45◦ dielectric mirror with high reflectivity (around 99.9%)

that direct the pulse to the hollow fiber. The loss of the dielectric mirror (less

than 0.01%) is used for the stabilization block that is so composed:

Figure 2.7: Stabilization scheme before the hollow-core fiber.

The stabilization block consists of a half wave plate, followed by a polarizer, a

four quadrants sensor and a PID (Proportional-Integrative-Derivative) controller

inserted in a retroactive system. The loss of the pulse is centered, thanks to

folding silver mirrors, in the middle of the four-quadrant sensor. In order to avoid

sensor’s saturation, we have to attenuate the pulse and it is necessary to use

first a half wave plate then a polarizer, as shown in figure (2.7). The attenuated

signal is seen on the sensor that determines the horizontal and vertical position

of the beam.
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Figure 2.8: Scheme of the four-quadrant sensor: the beam impinges on the sensors, and
each of them collects a certain intensity value, then, comparing each quadrant’s
detected intensity, it is possible to know the x and y coordinates of the beam
respect the center

The measured x and y indicate the position of the beam; these values are

sent to a PID controller that compensates for any beam displacement acting

on the dielectric mirror that is mounted on the piezoelectric as shown in figure

(2.7). PID controller is an important element used in automatics control that

allows to eliminate deviations with respect to a given value when it operates in a

closed-loop regime. Its action is on 3 different levels:

• Proportional action: the output compensation signal is obtained by the

product of the error signal e(t) obtained by the subtraction between the

input signal and the output of the process times a proportional constant

Kp defined by the PID parameters, so it gives a proportional contribute to

the total action:

uP (t) = KP e(t) (2.6)

• Integrative action: the output compensation signal is obtained by the

integral of the error, multiplied by an integration constant KI ; in this case

the controller "has memory" of the past events, so the action corresponds
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to a mean process of the error and it compensates for slow variations:

uI(t) = KI

∫
dt e(t) (2.7)

• Derivative action: the output compensation signal is obtained by the the

derivate of the error, multiplied by a derivation constant KD; in this case

the idea is to compensate for fast variations, so that if the error grows the

controller acts immediately to reduce the impact:

uD(t) = KD
de(t)
dt

(2.8)

The sum of equations (2.6),(2.7),(2.8) gives the complete action of the PID:

uTOT (t) = KP e(t) +KI

∫
dt e(t) +KD

de(t)
dt

(2.9)

Figure 2.9: Block scheme of a PID controller

The signal obtained by equation (2.9) is sent to a piezoelectric that conse-

quently moves the dielectric mirror that compensates for any beam displacement

related to any optical elements described before and those that are internal to the

laser source. This process of stabilization is of fundamental importance because

the fiber entrance is in correspondence of the laser focal point, so it is really
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energetic and if the beam would be free to randomly drift (even few µm) it could

damage the fiber itself, then the output mode would change significantly, so the

complete measure would be ruined.

Hollow-core fiber

The hollow-core fiber is a fundamental element of this setup, and it allows to

obtain a pulse with spectral broadening. In our case the fiber is composed by a

small tube of glass, it is long ≈ 1 m and it has an internal diameter of ≈ 300 µm.

This diameter is an upper bound for the diameter of the beam, indeed, in order

to achieve the maximum of coupling factor it should be the 3/2 of the FWHM

of the beam itself.

Figure 2.10: In the blue image it is shown the spectrum of the IR pulse before the hollow core
fiber, while on the red is shown the spectral broaden related to the Self-Phase
Modulation (SPM).

As said above, the goal of using the fiber is to obtain a pulse with larger

spectrum, and this happens when the core is filled with a noble gas, in our
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case neon has been used. The interaction between the laser pulse and the gas

produces a third-order non-linear effects called Self-Phase Modulation (SPM).

This phenomenon is related to a variation of the reflective index of the gas that

acts as a Kerr medium. This implies that the reflective index is a function of the

intensity of the field, so the pulse receives an auto-induced modulation of the

phase that will broaden the spectrum of the pulse itself. The SPM generates new

frequencies, so that it allows to obtain a shorter transform-limited pulse (the larger

is the spectrum the shorter is the temporal duration of the transform-limited

pulse). A homogeneous broadening is achieved using a single mode guiding

structure, but the commonly used optical fibers have small energies tolerances

(just in the order of nJ). In our case, we needed higher input energies (around

1 mJ). For this reason the choice of a hollow-core fiber has been necessary,

even though, in this case, the propagation is no more owed just to total internal

reflection but the fundamental mode is selected depending on losses: the one

with lower losses is the mode taken. The quantity of losses inside the fiber is

related to the gas pressure. A series of repeated experiments has demonstrated

that, for our purpose, the optimal gas pressure to use is around 0.8 bar, because

in this condition:

• The output pulse has a power of 820 mW , and considering that the input

power was 1 W , we are able to achieve an efficiency η = Poutput/Pinput =

82 %, that is extremely a good result.

• An analysis of the spectrum evinces that the transform-limited pulse

duration is under 10 fs, that is a good value both for starting generating

HHs and to get the shortest possible pulses after the monochromator.

As the pulse exits from the fiber, it has a large spectrum and is quite long

(around 35 fs), so it must be compressed to achieve the pulse duration necessary

to generate HHs. There exists many techniques that allow to obtain so short

42



pulses, but one of most efficient is the use of chirped mirrors. Their working

principle is quite easy to understand: the beam, that is composed by many

wavelengths (here the pulse has a broad spectrum), impinges on the chirped

mirror, made by the superposition of many layers that with proper reflective

indexes generates constructive/destructive interference in the field’s components,

introducing a negative GVD. This process is schematically represented in figure

(2.11).

Figure 2.11: Schematic representation of a chirped mirror (adapted from [7]).

In our setup we used the chirped mirrors in order to introduce negative D2

and achieve a pulse duration of around 10 fs. The setup is shown in figure (2.12).

After the pulse compression, the beam is split thanks a 80-20 BS: one part is

centered to the entrance of the chamber for HHG, while the other is sent to a

variable delay line and is used as probe for the characterization measurement.

At the end of the pulse compression stage we obtain an ultrashort high-intense

peak pulse that is able to generate harmonics in an efficient way.
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Figure 2.12: Scheme of our chirped mirrors setup. After the fiber the pulse is focused thanks
a convergent mirror of radius R = −3000 mm, then seven chirped mirrors
introduce a negative dispersion that allow the pulse compression. After this
stage the temporal duration of the IR beam is around 10 fs. After this stage
the pulse is ready to be used to generate HHs.

2.3.2 High-order Harmonics Generation

In Chapter 1 it has been described how high-order harmonics generation

happens under two theoretical points of view, one semiclassical, the other quantum

mechanic based. In this section I will describe just how we obtained such

harmonics with the setup used. First of all the pulse enters inside the chamber

used for generation passing through a flange at Brewster’s angle in order to avoid

reflections losses, then is sent to a convergent spherical mirror with a curvature

radius of −750 mm in order to focus the beam on the cell for HHG. The cell is a

block of metal drilled with a hole long 1 cm and with a diameter of 0.3 cm where

the gas is inserted. The two sides of the hole are both covered with aluminum

tape. When the field arrives on the cell, it drills a circular hole in the aluminum

tape, interacts with the gas and generates HHs. The gas used depends on the

harmonics we want to obtain, indeed as seen in Chapter 1 the cut-off frequency
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depends on the ionization potential of the gas: in a simple approximation Argon

is used to generates harmonics highly energetic (it is possible to reach the 31-th

order), while for lower energetic harmonics (9-th order) we used Xenon. The

chamber kept in high vacuum regime, both during generation (≈ 10−3 mbar)

and non generation (≈ 10−7 mbar).

Figure 2.13: Scheme of the generation chamber used in our setup

2.3.3 Harmonic selection

As discussed in Chapter 1 the selection of just few harmonics is of crucial

importance in order to realize different kind of experiments. We used a time-delay

compensated monochromator with the following characteristics:

• All the toroidal mirror have the same length of 50 mm and height of

10 mm.

• The sagittal radius is of 31.50 mm for all the toroidal mirrors.

• The first toroidal mirror and the last have a tangential radius of 18 mm,
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while the second and the fourth have the tangential radius of 14 mm.

• The incident angle of the beam is always equal to 87.4◦, while the acceptance

angle is equal to 6.2 mrad.

• The input arm of the first toroidal mirror and the output arm of the fourth

are long 364 mm, while the output arm of the second and the input arm

of the third are long 340 mm

• The plane gratings are characterized by a groove density σ = 400 grooves/mm.

They have a length of 30 mm and a height of 5 mm.

• The blaze angle is equal to 3◦.

So the pulse enters in the chamber where is contained the time-delay com-

pensated monochromator. As initial condition we consider that the gratings are

all placed at zero order, and the selection slit is completely open in order to let

the pulse pass through with all its spectral components. Then, it requires an

optimization process before selecting the desired harmonic, indeed the counts we

get at XUV detection, must be sufficiently high: so, first of all the position of

the cell inside the generation chamber is adjusted, then the pressure of the gas,

the intensity of IR beam that is used to generate HHs, and also the compression

of the initial pulse acting on the hollow-core fiber. After this process, the wanted

harmonic can be selected: with a Matlab program we can control the motors that

rotate the gratings, so that the first diffraction order of the selected harmonic is

focused at the center of the slit. Closing the slit we let just one harmonic passing

to the second stage. Now also the gratings of this second stage can be rotated,

so that the harmonic results optimized with the maximum output power. If a

harmonic change is necessary, first of all, one should set the zero order in the

second stage, fully open the slit, then changes the position of the gratings of

the first monochromator, such that the new desired harmonic can be optimized.
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If necessary, another optimization process (change the gas pressure inside the

generation chamber) could increase the output power, and enhance the quality

of the signal. At the end of the first monochromator there is an Al-filter, used to

stop the IR beam when the order of the monochromator is both set at zero for

the first and second stage, so no particular harmonic is optimized.

2.3.4 Harmonic characterization

This is the step where measurement is taken. It is the most sensible part

of the setup, in the sense that even small perturbation could generates error

in the alignment between the pulses, or changes in the temporal superposition.

This part of the setup is composed by many elements that allows to successfully

complete the measurements process.

IR delay line and overlap

As said above, before the IR pulse enters in the chamber to generates HHs,

it is split such that one part of the IR pulse is centered in the generation

chamber, while the other is reflected back in order to be used as probe during the

characterization process. This reflected IR pulse is sent to a delay line. This delay

line is composed by high precision carriage over which is placed a piezoelectric

driven slit that moves two silver mirrors arranged in a proper way (so that the

beam goes away parallel to the incoming direction) shown in figure (2.14). The

piezoelectric is driven by a LabVIEW program that communicates how it must

move in order to complete a full scan of the delays.
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Figure 2.14: Scheme of the delay line: the piezoelectric is mounted over the carriage, and it
moves the mirrors placed above, driven by the LabVIEW program

After the delay line the pulse is sent to a periscope that raises the beam to the

height of the entrance to the chamber that contains the second grating. Indeed,

in this chamber it takes place the recombination of the two pulses, IR and XUV

(the selected harmonic). The beam enters in this chamber passing through a

flange at Brewster’s angle in order to reduces and avoid reflection losses. In

order to get the overlap between XUV and IR pulse a collinear setup has been

realized. The two beams are made collinear thanks to a drilled mirror: after the

monochromator stage the selected harmonics has a small spot size (because it

converging and the XUV divergence is small) that can pass through the hole of

the drilled mirror, while the dimension of the IR field is much larger and can be

reflected by the mirror. We took advantages of this fact, so, to obtain collinear

overlapping we realized the setup shown in figure (2.15)
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Figure 2.15: Scheme of the collinear overlapping setup. The XUV pulse is focused by the
monochromator, so its spot size is smaller than the IR’s. The XUV passes
through the drilled mirror, while the IR is reflected. From now on the two
beams proceed together: if the movable mirror is inserted they go on a beam
profiler, else they enter in the time of flight (TOF) spectrometer.

In this configuration just a portion of the IR pulse is used to obtain the

characterization, but anyway this collinear configuration is quite simple to be

realized and correctly align, and in order to obtain the sidebands, a perfect

spatial and temporal overlapping between IR and XUV pulses is essential. To be

sure of the goodness of these superpositions, we used a collinear configuration

that gives acceptable results in term of intensity and temporal duration. To

verify the overlapping, we introduced a mirror after the drilled mirror of figure

(2.15), so that the pulse instead of going to the TOF spectrometer, is sent to an

external beam profiler. Of course in order to see the superposition, the time-delay

compensated monochromator must be set at zero order, such that the IR pulse

from the XUV path could interact with the IR from the delay line; then we

will assume that changing the order will not affect the beam position. Spatial

overlapping is achieved fixing on the beam profiler the peak position (x and y)

of the IR pulse coming from the XUV line, keeping closed the IR from the delay
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line. Then we close the XUV line and open the delay line, so we are able to

center this pulse at the same peak position of the other. Temporal overlapping is

more complex to achieve: first of all, perfect spatial superposition must be found,

then one have to slowly manually move the carriage of figure (2.14), changing

the optical path (so the delay) until an interference pattern appears. At this

point, we can remove the mirror and start the acquisition process.

Time Of Flight Spectrometer

A Time-Of-Flight (TOF) spectrometer is a tool that is able to determine the

energy of electrons (or ions), measuring the time that passes from the ionization

to the detection. It is made by a cylindrical metal body, where at an extremity is

placed a needle that injects the gas inside the TOF: in proximity of this needle,

photoelectrons are generated thanks the interaction between the XUV pulse and

the gas. As discussed previously this photoelectrons hold the characteristics of

the XUV field, so they can be used to determine the pulse duration. The gases

used to characterize the pulse are often noble gases because we need to have just

one transition in order to avoid additional structures in the spectrum.

Generated photoelectrons are then accelerated by the IR pulse and focused

by an electrostatic lens on a diffusion area, in our case, in order to detect even

single electrons, we used a Micro-Channel Plate (MCP) detector. After the

MCP, a detector counts how many electrons arrive at a certain time. In order

to have a correct time detection, the TOF needs to be synchronized with an

external trigger, that in our case is a photodiode placed behind one mirror after

the hollow core fiber, that sends an electrical signal each time that the pulse

is detected. The TOF is connected to a Time to Digital Converter (TDC), so

that it is possible to measure the time requested by the electrons to cross the

diffusion area. Electrons’ energy is correlated with this temporal value, indeed

electrons with different energies arrive at different time instants. In particular it
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holds the relation:

Ekin = 1
2mev

2 = 1
2
meL

2

t2f
(2.10)

Where L is the length traveled by the electrons inside the TOF, starting from

the interaction area between the pulse and the gas, to the detection area, me is

the electron mass and tf is the time of flight, given by the formula:

tf =
√
me

2V e L (2.11)

Where V is the difference of potential inside the TOF. Knowing V it is

possible to retrieve the time of flight and consequently the energy.

For our measurements, the TOF was set in electrons mode, and data acquisition

was managed by a custom-made LabVIEW VI, that determines: the integration

time, the movement of the piezoelectric (figure 2.14) equivalent to a delay step,

the total scan duration and many other parameters. This VI is also able to show

the spectrogram obtained (2.16).

Figure 2.16: LabVIEW program used, properly adopted for our scope. There are shown the
required parameters that determine the scan duration, the scan saving settings
and the spectrogram defined by the photogenerated electrons detected and the
relative delay.
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Harmonic detection

After the TOF spectrometer, the harmonic that generates photoelectrons

can be detected in order to do spectral analysis. For this reason we used a

spectrometer composed by:

• Toroidal mirror, similar to the one used inside the time-compensated

monochromator, that collimates the incoming field to the grating.

• Plane grating, with variable line spacing (VLS), that separates spatially

the different spectral components of the beam.

After the monochromator the beam is sent to a Multi-Channel Plate (MCP),

where the signal is amplified. The output electrons are accelerated and hit a

phosphor screen, such that they can be detected with a CCD camera, revealing

the harmonic spatial position. The spectrometer must be properly align with

the harmonic pulse that is wanted to be analyzed, for this reason the camera is

placed on a movable transition stage. The CCD acquisition data is managed by

a LabVIEW VI, that is custom-made for our purposes. The result of harmonics

detection is so shown in figure (2.17). To detect these three harmonics we set

the monochromator at zero order so that gratings act as mirrors and spatial

dispersion does not occur and slit is completely open.
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Figure 2.17: Representation of the generated harmonics. In particular, here are shown from
left to right H13, H11 and H9.

The main parameter to control are the voltages applied to the MCP and to

the phosphor screen; their values are not fixed, but they must be adjusted in

order to avoid the saturation of the CCD.

2.4 Ptychographic reconstruction

The experimentally measured spectrogram S(v, τ) (equation 2.4), is a real

positive quantity, so by consequence the informations on the phase are completely

lost. Different algorithms have been proposed with the intent to reconstruct the

phase associated with Single-Attosecond Pulse (SAP) spectrograms [29], [30],

[31]. Among all the prospected algorithms the extended Ptychographic Iterative

Engine (ePIE) has shown better degree of convergence and robustness [32], [33],

indeed in this kind of algorithm the delay and energy axis are not linked by a

Fourier transform, so this relaxes the need for data interpolation. In addition,

the code is sensitive not only to the relative time step, but also to the absolute

value of the delay, so it can even operate with non equidistant sampling. Since

ePIE cycles on each individual time delay step, a complete scan corresponds to
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several algorithm iterations making it less subject to white noise and quicker

in convergence. Also other algorithms as the Principal Component Generalized

Projection Algorithm (PCGPA) and the Least Squared Generalized Projection

Algorithm (LSGPA), that are efficient for attosecond pulses, have been tested,

but for few-femtosecond they provided non adequate results as shown in figure

(2.18): here there are shown the simulated and reconstructed spectrograms of

HH25 selected from a 7.5 fs comb. In particular the first column shows the

simulations, while the second the reconstructions obtained respectively with the

PCGPA and the LSGPA.

Figure 2.18: Examples of FROG-CRAB reconstruction with PCGPA and LSGPA. The first
column shows the simulated data, the second and the third respectively PCGPA
and LSGPA methods used to reconstruct the data. For each column, from the
top to the bottom are represent: the spectrogram, the temporal behavior of
IR and XUV (HH25), the spectral amplitude (solid) and the phase (dashed).
For the simulation the following characteristics have been used:τXUV = 7.5 fs,
τIR = 15 fs, DXUV

2 = −20 fs2, DIR
2 = −60 fs2 and IIR = 1011 W/cm2

(adapted from [5]).

As it possible to see these two methods fail in the attempt to reconstruct

the correct IR, and both underestimate the time duration of the pulse. Also
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the application of the ePIE algorithm can be quite critical, in particular when

noisy experimental data are collected, or when small delay windows plus a bad

energy resolution has been adopted. In order to improve the convergence, without

increasing the to much the sampling time, we modified the ePIE code. At each

iteration we added:

• A mobile average (smoothing) of the reconstructed XUV time phase: this

is necessary to reduce the numerical high-frequency noise.

• An amplitude filter, as a super Gaussian: it is used to set at zero the XUV

field at the boundaries of the time window where numerical reflections can

occur.

Without this two considerations the algorithm would still converge, but the

obtained solutions could be completely unphysical.

Then we tested the convergence of the ePIE approach applying it to a

simulated spectrogram calculated by equation (2.4), assuming as input harmonic

the 25-th, and ionized atoms of Argon. In particular, in figure (2.19) the first

two columns show the simulated and reconstructed spectrograms, the third

displays the XUV spectral phase and amplitude and last column shows the

input and reconstructed IR pulse. We considered four different cases for the

application of our algorithm: In the first row, we applied the ePIE algorithm to

a transform-limited (TL) pulse, in the second row to a chirped XUV pulse with

a DXUV
2 = −20 fs2, in the third row to both XUV and IR chirped pulses with

DXUV
2 = −20 fs2 and DIR

2 = −60 fs2; this three simulation were done with

an IR intensity of 1011 W/cm2, while the fourth, that is represented in row 4,

has been taken with an IR intensity of 1012 W/cm2, and this fact can be seen

by the higher number of sidebands on the spectrogram. The time durations of

the pulses are τIR = 15 fs and τXUV = 7.5 fs, and are the same for all the

simulations. The sample temporal step used was of 2 fs, and reconstruction
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runs over 2000 iterations.

Figure 2.19: Example of ePIE algorithm: the first two columns show the simulated and
reconstructed spectrograms, while the third and the fourth display the simulated
and reconstructed XUV and IR pulses. In the first row it has been considered a
TL pulse, in the second a chirped XUV with DXUV

2 = −20 fs2, in the third
both IR and XUV are chirped with DXUV

2 = −20 fs2 and DIR
2 = −60 fs2, in

the last row the two pulses are still chirped as in row 3, but the IR intensity
has been increased from 1011 W/cm2 to 1012 W/cm2. The time durations
τIR = 15 fs and τXUV = 7.5 fs are the same for all the simulations. The
sample temporal step used was of 2 fs, and reconstruction runs over 2000
iterations. (adapted from [5])

2.5 Measurement Results

The setup that has been described in section 2.3 is then used to obtain the

XUV photon spectrometer, then the ePIE algorithm described in section 2.4 has

been applied. The temporal response of the monochromator has been determined

considering two effects:

1. Compensation of the pulse-front tilt due to diffraction: when all the rays

with the same wavelength emitted in different directions by the HHs source

travel the same optical path. The optimal compensation is achieved for a
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double-grating configuration, in other cases aberrations could give some

distortion of the pulse-front.

2. Group Delay Dispersion (GDD) introduced by the time-delay compensated

monochromator, that can be considered a XUV pulse shaper that introduces

a controllable group delay dispersion, indeed the optical path decreases

linearly with the wavelength and it forces the GDD to be constant and pos-

itive. In our case, with the given parameter of the time-delay compensator

monochromator, we obtained GDDHH19 = 20 fs2 and GDDHH27 = 7 fs2

High-order Harmonic 27 and High-order Harmonic 19 reconstructions are

shown in figure (2.20).

Figure 2.20: Example of application of ePIE algorithm to experimental results. Two har-
monics have been analyzed, the 27-th in the first row and the 19-th in the
second row. In the first column are shown the experimental spectrograms, in
the second the reconstructed, in the third are displayed the experimental and
the reconstructed harmonic amplitude (respectively green and black dot) and
phase(red and blue dot), in the fourth it is shown the pulse reconstruction in
time (adapted from [5]).

After only 2000 iterations of the algorithm we obtained very good results, in

agreement with the experimental spectrograms. Another proof of the goodness

of the algorithm’s convergence is given by the comparison between the spectrum

measured with XUV spectrogram and the one reconstructed with the algorithm

57



(fig. 2.20(c), fig. 2.20(g)). The reconstructed IR pulses (not shown) have a

temporal duration of 12 fs for the experiment with HH19 while for the one with

HH27 the IR time duration is of 15 fs; this results are in perfect accord with the

measurements done with an external FROG, that gives 13 fs for both the cases.

About the XUV pulse duration we obtained around 7 fs, in case the time-delay

compensated monochromator is properly align. Repeating these experiments with

different random guesses, we obtain for the XUV pulse a duration of 9± 0.5 fs

in case of HH19 and of 5± 0.5 fs for HH27 as it is possible to notice in figure

(2.20(d)-(h)). These results are, at this moment, the shortest XUV femtosecond

pulses ever measured at the output of a TDCM.
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Chapter 3

Ultrafast molecular dynamics

3.1 Introduction

From quantum mechanics, it is known that a lot of dynamics that occur in

atoms and molecules have temporal duration in the order of few-femtosecond,

and in order to be able to investigate them ultrashort pulses are necessary. Such

pulses have been generated and characterized with the setup and techniques

described in the former chapters, so actually, we are able to start studying

different kind of dynamics. In this chapter, first I will describe the characteristics

of the molecules we are investigating, then the process of data acquisition will

be presented, and, at least, the measurement results that we achieved.

3.2 Relaxation dynamics of ethylene cation

Relaxation dynamics are triggered by a few-femtosecond optical excitation

pulse and define the photochemistry of many molecular systems [34], [35]. Follow-

ing these ultrafast dynamics in real time is a challenging task both for theoretical

and experimental physics, indeed, most of them are nowadays still unexplored

despite their importance. In this scenario our attention was gained by a prototype

organic molecule like ethylene, where the exact relaxation dynamics of its cation
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C2H
+
4 (the simplest π radical system) are not completely understood. Our setup

is particular recommended for the investigation of such molecule, indeed ethylene

relaxation cation can be interviewed in a pump-probe experiment. In this kind

of experiment, an IR pulse induces molecular fragmentation:

C2H
+
4 −→ C2H

+
2 +H2 2.62 eV (3.1)

C2H
+
4 −→ C2H

+
3 +H 2.70 eV (3.2)

where the energies in eV represent the thresholds for H and H2 elimination from

the ground state [36].

A specific analysis of the temporal evolution of ions yields allow us to determine

the path followed by the molecule after the excitation, and obtain interesting

informations about the internal degree of freedom and conical intersections (CIs)

that manage the ultrafast population transfer between cationic states, indeed

transitions through CIs are responsible for the photochemistry of biomolecules

[37] [38] [34] and for photostability and ultraviolet (UV) resistance of DNA [39].

At the moment, two kind of CIs have been identified to be responsible for the

ultrafast relaxations dynamics, one is related to planar geometry the other is

related to twisted geometry [13]. In particular, the CI associated to the planar

geometry are linked with a bridged structure that should facilitate H migration

preceding the loss of H2, while the CI associated to the twisted geometry are

supposed to lead the excitation of torsional vibrations [10].

In our measurement we used the 9th, the 11th and the 13th harmonics to selectively

populate the first four excited states of C2H
+
4 : X̃, Ã, B̃ and C̃ as shown in figure

(3.1).
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Figure 3.1: (a) XUV spectrum of the HHs used in the experiment together with the first five
states of molecular cation [8]. (b) Initial state population calculated with the
partial cross-section taken from [9] and harmonic spectra in (a).

In particular, it is possible to notice that H9 enables a very efficient excitation

of the X̃ state, H11 of Ã state, while H13 mainly excite B̃ and C̃ states. We

estimated the time duration of each harmonic from a cross-correlation photoelec-

tron experiment. We found that the time duration of the harmonic radiation

ranges from 12 fs with H9 to 7 fs with H13.

The internal relaxation process that follows photoexcitation can eventually lead

to dissociation.

The ionization of ethylene launches molecular dynamics on different cationic

states that can be represented by wave packets evolving on the Potential Energy

Surfaces (PES) toward the stable cation ground state or toward dissociative

channels as shown in figure (3.2).
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Figure 3.2: Potential Energy Surfaces (PES) for ethylene cation. In particular X̃ represent
the ground state, while Ã, B̃ and C̃ represent the first three exited states (adapted
from [10]).

After the initial XUV ionization and excitation, the electronic charge will

redistribute and initiate the molecular motion through which the molecules

relaxes as shown in figure (3.3.a). If an IR pulse arrives while the relaxation is

occurring, it could introduce an additional fragmentation with a loss of one or

two hydrogen atoms (3.3.b).
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Figure 3.3: (a) Schematic representation of the internal relaxation from an excited cation
state to its ground state after XUV excitation. (b) After a certain delay (properly
defined) the IR pulse can stop the relaxation process by giving the molecule
sufficient energy to lose one of two H atoms (adapted from [11]).

Interrupting the relaxation process is important in order to understand the

molecular properties of ethylene, in particular the temporal characteristics of the

dynamics: after C2H4 has been excited, it begins to relax to the ground state,

but if we interrupt this relaxation process with an IR pulse, fragmentation will

happen and there will be a reduction of C2H
+
4 and an increase of the ions C2H

+
2

and C2H
+
3 .

The energy of XUV photons is also related to the fragmentation process, indeed

different harmonics produce different ions as shown in figure (3.4). Selecting

one specific harmonic allows to generate specific ions, and this property will be

considered in our experiments with different harmonics

63



Figure 3.4: Harmonic spectrum in an energetic scale. From left to right there are shown
H9 (≈ 14 eV ), H11 (≈ 17 eV ) and H13 (≈ 20 eV ), and in dotted line the
fragmentation threshold energy.

3.3 Measurement process

The acquisition process is based on the use of a time-of-flight (TOF) spec-

trometer. First of all, ethylene is injected inside the TOF with a needle. The gas

pressure reached is around 6 · 10−6 mbar after a period of stabilization of around

one hour. Then the TOF is set in electrons mode, so that a scan (where XUV

generates photoelectrons and changing the delay between the harmonic and the

IR pulses we can see the sidebands) is taken in order to find two significant data:

the delay value at which temporal superposition between the XUV and IR pulses

is maximum, and the sideband time duration. Then an ion measurement is done:

the XUV pulse at a specific harmonic interacts with the ethylene molecules and

induces ionization, so, applying a voltage difference, ions are collected. They

fly along a drift tube that accelerates them, and they are focused thanks an

64



electrostatic lens. They are detected thanks a Multi-Channel Plate (MCP) that

generates a properly amplified signal in correspondence of the ion detected. The

time of flight of each ion is directly proportional to the mass of the ion itself:

t(m) =
√

m

2V q L (3.3)

where L is the length of the drift tube, V is the potential difference felt by ions

and q is the ions charge. So, the equation (3.3) shows that knowing the time of

flight of each ions it is possible to retrieve the masses of all the ions detected.

Figure 3.5: Schematic representation of a time of flight spectrometer (TOF). TOF can work
both in electron and ion mode, in particular in the image ion mode is activated:
the sample is injected inside the spectrometer thanks to a needle, then the laser
pulse ionize the gas so that ions can be extracted, so that they are free to move
along the drift tube and they can be detected by a MCP.

The signal in output from the ion detector is sampled by the data acquisition

(DAQ) of an oscilloscope that for each delay mediates on 4000 acquisitions.

Anyway, the signal from the MCP is not sufficient to determine the mass of

the ions, because the acquisition must be triggered by en external signal. The

trigger that we used is obtained by a photodiode placed in the proximity of one

of the chirped mirrors after the hollow core fiber, such that a loss of the signal

indicates that the pulse is passed. When the oscilloscope receives the trigger

pulse it starts sampling the incoming ions. A complete scan is done changing

the delay between the XUV pulse and IR, sampling delay per delay, so that, a
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spectrogram is obtained. On the x axis is present the delay between the XUV

and IR pulses, while on y axis there is the mass of those ions detected. In order

to evaluate the ion yield, a measure is taken with the IR pulse, and the other

without the IR; this measurement is taken with the aid of an electrical shutter

driven by the LabVIEW VI that manages the entire scan. In such a way we are

able to determine the how much the measurement is effected by the IR. This

process is repeated four times for each scan in order to have enough statistics

and improve the quality of the measurement considering a mediation.

After the acquisition process, we analyzed the obtained data. In order to

correctly interpret the results, first of all, a mass calibration is required, so that

it is possible to identify all the ions detected by the sensor; then, for a given

ion of atomic mass X a.m.u. we construct the total yield signal integrating the

output current from the TOF, considering an integration window centered on

the X a.m.u. value and large 0.25 a.m.u. for each side, so that it goes from

X − 0.25 a.m.u. to X + 0.25 a.m.u. . This signal is a representation of how the

presence of the particular ion is modified by the delay variation between the

XUV and IR pulses. The ion yield is then achieved by the subtraction of the

measure taken with IR pulse and the one without the IR:

Y = YON − YOFF (3.4)

This signal is then fitted with a curve given by two main terms, one growing

that represents the ions decay, the other that describes a formation:

• Decay

g(t) = 1
σ
√

2π
e−

(µ−t)2

2σ2 (3.5)

f(t) = αe−αtH(t) (3.6)

EMG(t) = g(t) ∗ f(t) = α

2 e
α
2 (2µ+ασ2−2t)erfc

(
µ+ ασ2 − t√

2σ

)
(3.7)
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• Formation

g(t) = 1
σ
√

2π
e−

(µ−t)2

2σ2 (3.8)

f ′(t) = α(1− e−αt)H(t) (3.9)

EMG′(t) = g(t) ∗ f ′(t)

= α

2

[
erfc

(
µ− t√

2σ

)
− e

α
2 (2µ+ασ2−2t)erfc

(
µ+ ασ2 − t√

2σ

)]

(3.10)

where g(t) is the response of the system, represented by a Gaussian function

centered on the mean value µ with a standard deviation σ, f(t) is an exponential

term with α describing a proper amplitude multiplied by the Heaviside function,

and, EMG is the Exponential Modified Gaussian that is the convolution of the

exponential term times the Gaussian.

Figure 3.6: Graphics of the equations describing the decay and formations terms.

In the next section will be presented the obtained results.
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3.4 Experimental results

In figure 3.1(c) are shown the main fragments produced by photoexcitation

with the XUV pulses. As a consequence of selective excitation, the fragment

yields pertaining to different harmonics qualitatively differ from each other. In

order to study the ultrafast relaxation dynamics of C2H
+
4 , in our measurements,

XUV has been used as pump, then IR has been used as probe.

The temporal evolution of the ion yield has been detected as function of the

relative delay between the two pulses. It is important to consider that the

interaction of the molecular ion with the IR pulses can determine significant

modifications to the relaxation process, deviating the molecule from its natural

relaxation path, so that a change in the fragmentation process is obtained.

Consequently, the transient features in the relative delay-dependent ion yields

contain a fingerprint of the ultrafast molecular dynamics.

In our this experiments the IR was set at an intensity of 16 mW .

3.4.1 Harmonic 9

As shown in figure (3.1), harmonic 9 initially populates prevalently the X̃

state and in a minor way also the Ã state. As one can already guess from the

fragmentation threshold energy (figure 3.4), the main dynamics are observed for

the ions C2H
+
2 , C2H

+
3 and C2H

+
4 . In the following I report the ions yields which

present a clear IR-induced dynamic:
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Figure 3.7: Ion mass spectrum from harmonic 9.The arrows mark C2H
+
2 , C2H

+
3 , C2H

+
4 .

Cation C2H
+
2

Figure 3.8: C2H
+
2 yield as function of the delay between the two pulses, in the case of H9.

Experimental data and a proper fitting are shown with a value t0 that represents
the point at which the dynamics begins.

For this ion yield, represented in figure (3.8) we considered a fitting composed

by one decay term and one formation term, described by equations (3.7) and

(3.10). We considered both the terms because, assuming just a decay the fitted

curve had a cross-correlation much longer than the one measured with the

electrons, but considering also a formation term, the cross-correlation values

were quite similar. In this case the decay time constant is τdecay = 11.6 fs while
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the formation time constant is τformation = 25.5 fs. The dynamics is supposed

to begin at t0 = 0 fs and the measured cross-correlation is 19.5 fs that is really

close to the one measured with electrons 18.9± 2.3 fs.

Cation C2H
+
3

Figure 3.9: C2H
+
3 yield as function of the delay between the two pulses, in the case of H9.

Experimental data and a proper fitting are shown with a value t0 that represents
the point at which the dynamics begins.

In this case, displayed in figure (3.9), we just used a decay term for the fit

equation, indeed, no formation seems to occur. In particular, the decay time

constant is τdecay = 80.3 fs that indicates a longer dynamics respect the one in

figure (3.8). The dynamics is supposed to begin at t0 = 3.4 fs and the measured

cross-correlation is 20.1 fs while the one given from electrons measurement is

18.9± 2.3 fs.
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cation C2H
+
4

Figure 3.10: C2H
+
4 yield as function of the delay between the two pulses, in the case of

H9. Experimental data and a proper fitting are shown with a value t0 that
represents the point at which the dynamics begins.

Also in this case, represented in figure (3.10), a decay component is sufficient

for the fitting curve. In particular the decay time constant is τdecay = 20.6 fs and

the begin of the dynamics is supposed to be at t0 = −2.3 fs; in order to explain

this negative value it is necessary to consider the errorbar given by the curve

fit, indeed t0 is just the center of a confidence interval at 95%: [−2.3± 6.2 fs].

Considering the measured cross-correlation to be 19.9 fs while the one given

from electrons measurement is 18.9± 2.3 fs.

3.4.2 Harmonic 11

Harmonics 11 is able to excite essentially state Ã. Referring to figure (3.4)

this harmonic causes mainly fragmentation of C2H
+
2 , C2H

+
3 and C2H

+
4 , but

when the XUV and IR pulses are temporal overlapped the IR gives sufficient

additional energy to the molecule to produce CH+
2 and H+ upon fragmentation.

For this reason these latter ions show a clear and strong pump dependence.
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Figure 3.11: Ion mass spectrum from harmonic 11. In particular there are C2H
+
2 , C2H

+
3 ,

C2H
+
4 . This spectrum has been considered at the beginning of the scan, so

others ions are not still visible. H2O
+ comes from the background

Cation C2H
+
2

Figure 3.12: C2H
+
2 yield as function of the delay between the two pulses, in the case of

H11. Experimental data and a proper fitting are shown with a value t0 that
represents the point at which the dynamics begins.

For this ion, displayed in figure (3.12), we noticed that applying just a decay

term for the fitting curve we obtained a cross-correlation value very different

respect the one measured with the electrons scan that is 19.9 ± 3.3 fs. For

this reason we adopted both a decay and a formation term, obtaining a cross-

correlation of 20.1 fs. The decay time constant is τdecay = 31.2 fs, while the
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formation time constant is τformation = 7.6 fs. The begin of the dynamics is

supposed to be at t0 = 3.4 fs.

Cation C2H
+
3

Figure 3.13: C2H
+
3 yield as function of the delay between the two pulses, in the case of

H11. Experimental data and a proper fitting are shown with a value t0 that
represents the point at which the dynamics begins.

Also in this case, figure (3.13), we used a decay term plus a formation term.

The temporal constant for decay is τdecay = 0.8 fs, and for the formation is

τformation = 0.8 fs. This could means that the dynamics is really fast. The

dynamics starts at t0 = 2.7 fs and the temporal duration of the measured cross-

correlation is 20.2 fs while the one given by the electrons scan is 19.9± 3.3 fs.
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Cation C2H
+
4

Figure 3.14: C2H
+
4 yield as function of the delay between the two pulses, in the case of

H11. Experimental data and a proper fitting are shown with a value t0 that
represents the point at which the dynamics begins.

In figure (3.14) no formation seems to be present, so for this fitting curve we

just use a decay term, with a temporal constant τdecay = 16.1 fs. The dynamics

starts at t0 = 11.7 fs and the temporal duration of the measured cross-correlation

is 20.2 fs that is really close to the one given by the electrons scan 19.9± 3.3 fs.
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Cation CH2

Figure 3.15: CH+
2 yield as function of the delay between the two pulses, in the case of H11.

Experimental data and a proper fitting are shown with a value t0 that represents
the point at which the dynamics begins.

This ion, which yield is shown in figure (3.15), is not present until the IR

pulse is not overlapped with the XUV. The reason of this phenomenon is that

H11 alone is not sufficiently energetic to induce the fragmentation of CH2 as

shown in figure (3.4), but with the IR pulse, the energy gap is filled and this ion

can be generated. For the fitting we used both the components. The temporal

constant of the decay term is τdecay = 5.9 fs and the formation time constant is

τformation = 25.7 fs. The dynamics starts at t0 = 1 fs and the temporal duration

of the cross-correlation is 19.2 fs quite close to the one measured from electrons

scan 19.9± 3.3 fs.
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Cation H+

Figure 3.16: H+ yield as function of the delay between the two pulses, in the case of H11.
Experimental data and a proper fitting are shown with a value t0 that represents
the point at which the dynamics begins.

As in the case of CH2, this ion is not generated until the superposition of

XUV and IR pulses is reached. For the fitting curve we considered the sum

of the decay equation plus the formation equation with the temporal constant

τdecay = 16.3 fs and τformation = 23 fs. The dynamics starts at t0 = 3.6 fs and

the temporal duration of the cross-correlation is 16.8 fs while the one given by

the electron scan is 19.9± 3.3 fs.

3.4.3 Harmonic 13

Harmonic 13 is the most energetic harmonic that we used in our experiments.

It is able to excite mainly the states B̃ and C̃ as shown in figure (3.1). Due its

higher energy it is able to fragment C2H
+
4 and generate many ions: H+, CH+

2 ,

C2H
+
2 , C2H

+
3 and C2H

+
4 as displaced in figure (3.17), but not all of them present

dynamics.
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Figure 3.17: Ion mass spectrum from harmonic 13. In particular there are, from left to right,
H+, CH+

2 , C2H
+
2 , C2H

+
3 , C2H

+
4 . OH+ and H2O

+ come from the background.

Cation C2H
+
2

Figure 3.18: C2H
+
2 yield as function of the delay between the two pulses, in the case of

H13. Experimental data and a proper fitting are shown with a value t0 that
represents the point at which the dynamics begins.

In figure (3.18) it is possible to observe that his ion present a decay and a

formation term. Indeed, with just one decay the cross-correlation measured was

too different from the one given by the electrons scan, consequently we decided

to insert also a formation term. In particular, the cross-correlation with both

the terms is 19.4 fs and the temporal duration of the one given by the electrons
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scan is 17.5 ± 3.8 fs. The time constant of the decay is τdecay = 8 fs, while

the formation time constant is τformation = 21.8 fs. The dynamics begins at

t0 = 1.9 fs.

Cation C2H
+
3

Figure 3.19: C2H
+
3 yield as function of the delay between the two pulses, in the case of

H13. Experimental data and a proper fitting are shown with a value t0 that
represents the point at which the dynamics begins.

As shown in figure (3.19), the fitting curve for C2H
+
3 yield is composed by

a decay term and a formation term. The time constant of the decay term is

τdecay = 4.7 fs while the formation time constant is τformation = 3.1 fs. The

dynamics begins at t0 = 10.6 fs and the temporal duration of the cross-correlation

is 18.6 fs quite similar to 17.5± 3.8 fs obtained from the electron scan.
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Cation C2H
+
4

Figure 3.20: C2H
+
4 yield as function of the delay between the two pulses, in the case of

H13. Experimental data and a proper fitting are shown with a value t0 that
represents the point at which the dynamic begins.

In this case, as shown in figure (3.20), we noticed an uncommon behavior,

indeed the experimental data decrease continuously, for this reason we introduced

a negative formation term in addition to the decay used in case of H9 and H13.

The time constant of the decay term is τdecay = 13.1 fs and the time constant of

the formation term is τformation = 120.9 fs. The dynamics begins at t0 = 6.2 fs

and the temporal duration of the measured cross-correlation is 19.4 fs while the

one obtained from the electron scan is 17.5± 3.8 fs.
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Cation C2H
+

Figure 3.21: C2H
+ yield as function of the delay between the two pulses, in the case of

H13. Experimental data and a proper fitting are shown with a value t0 that
represents the point at which the dynamics begins.

In this case, as shown in figure (3.21), we assumed a fitting curve composed

by a decay term, characterized by a τdecay = 228.9 fs that express a very slow

dynamics. In particular, the temporal duration of the cross-correlation is 15.9 fs

while the one given by the electrons scan is 17.5± 3.8 fs.
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Cation CH+
2

Figure 3.22: CH+
2 yield as function of the delay between the two pulses, in the case of H13.

Experimental data and a proper fitting are shown with a value t0 that represents
the point at which the dynamics begins.

For this ion, we assumed just one decay term with a temporal constant

τdecay = 67.7 fs. The dynamics begins at a t0 = 15.4 fs and the temporal

duration of the cross-correlation is 19.4 fs while the one given from the electrons

scan is 17.5± 3.8 fs.
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Cation H+

Figure 3.23: H+ yield as function of the delay between the two pulses, in the case of H13.
Experimental data and a proper fitting are shown with a value t0 that represents
the point at which the dynamics begins.

As shown in figure (3.23), H+ ion presents a dynamics that can be fitted

with a curve composed by one decay term and one formation term, with a

τdecay = 15.5 fs and τformation = 5.1 fs. The temporal duration of the cross-

correlation is 19.2 fs while the one given by the electron scan is 17.5± 3.8 fs.

In conclusion, from this measurement it is possible to observe that when the

XUV and IR pulses are overlapped the yield signal of C2H
+
4 decreases while the

signal from C2H
+
2 and C2H

+
3 increase. We expect that the initial point of the

dynamics decreases with harmonic order [13] [10], but from our measurement we

are not able to confirm this model:

Table 3.1: Recap of the starting time of the dynamics for the ions C2H
+
2 , C2H

+
3 and C2H

+
4

H9 H11 H13

C2H
+
2 0 fs 3.4 fs 1.9 fs

C2H
+
3 3.4 fs 2.7 fs 10.6 fs

C2H
+
4 −2.3 fs 11.7 fs 6.2 fs
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Chapter 4

Conclusion and further

development

In this thesis work we focused our attention on two main arguments. First,

we developed an experimental setup that allows us to generate and characterize

few-femtosecond extreme ultraviolet (XUV) pulses, then in the second part we

used them to investigate ultrafast relaxation dynamics in ethylene.

After high-order harmonic generation, all the frequencies are emitted together in

a pulse of a temporal duration of hundreds of attoseconds. The selection of just

one harmonic is a tricky operation, that can imply the loss of the pulse temporal

properties, for this reason we use a Time-Delay Compensated Monochromator

(TDCM). With this approach we loose the attosecond resolution, but we gain the

harmonic tunability, indeed we are able to choose odd harmonics in the range of

orders: 9 ÷ 31, with few-femtosecond temporal duration. The strength of our

setup is then related to the possibility to choose a specific harmonic, maintaining

a good temporal resolution. Having both temporal and spectral resolution is a

unique property that allows us to do selective pump-probe experiments.

The challenge given by the characterization was related to the development of

an algorithm to use for the reconstruction, indeed those that for attosecond
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pulses give suitable results as the Principal Component Generalized Projection

Algorithm (PCGPA) and the Least Squared Generalized Projection Algorithm

(LSGPA), in the case of few-femtosecond they have shown to be completely

inadequate, while the extended Ptychographic Iterative Engine (ePIE), properly

adapted, gives good results: with this approach we reconstructed XUV pulses

with the temporal duration of 5± 0.5 fs that, at the current moment, are the

shortest ever measured.

Thanks to such pulses we were able to investigate ethylene relaxation dynamics

by pump-probe experiments. The next step will be the development of suitable

theoretical models, from which we expect to achieve detailed information about

molecular dynamics.

The experimental setup can be greatly improved by implementing a new method

for data acquisition with a faster DAQ, so that, thanks to a chopper at proper

frequency, it will be possible to sample a measure with the IR on and the

other with IR off, one immediately after the other, making the measurement

more accurate. With this approach the measure would be quite faster and

consequently less subject to any possible external instability. Another interesting

way to improve the analysis of the data is to study how the IR intensity affects the

results. Making measurement at different IR intensities and looking for variations

of the ion yields between each intensity would allow to identify how much the IR

is effecting the measurement. Harmonic tunability represent another remarkable

characteristic of the experimental setup,indeed, since different fragmentation

levels are near harmonic energies it is possible to investigate how ion yields

change if we set the selected harmonic just below one fragmentation level or just

above. The good spectral resolution of the XUV setup developed during this

thesis work, in combination with few-femtosecond temporal resolution will be

used to investigate ultrafast relaxation process not only in gas phase but also on

solid samples.
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