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Abstract

This work studies the feasibility of level generation for First Person Shooter games using Ge-
nerative Adversarial Networks in the setting of Procedural Content Generation via Machine
Learning (PCGML). As the Procedural Content Generation becomes a widely used technique in
developing video-games, many researchers explored new paradigms for generating game content
based on generative models that learn from existing content. So far, few work has been done in
applying these novel techniques to games that allows a two-dimensional exploration of the levels
rather than a one-directional traversal that is typical of platform games. Our study proposes as
a starting point in applying Generative Neural Networks to the problem of generating this type
of two-dimensional levels, using DOOM as our sample game. In this work, we first expand the
existing Video Game Level Corpus proposing a dataset of 9000 DOOM levels collected from the
community and we design a system for extracting a set of features and representing the levels
as images and tiled representation. We then introduce some of the main issues in applying
existing techniques to this particular domain, selecting a set of measures that help in assessing
the perceived sample quality in our case. We train two different models which differ from the
presence of input features and we design a set of experiments to evaluate the impact of the input
features on the generated levels. In addition, we study the possibility of controlling the level
generation by acting on the network inputs. Our results show the advantages of adding the level
features as a network input from both the point of view of sample quality and learned feature
distribution, indicating our method as a viable option for being utilized as an automatic tool
for level generation which doesn’t require particular domain expertise.
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Estratto in lingua Italiana

Questo lavoro analizza la fattibilità della generazione di livelli per videogiochi ”Sparatutto”
utilizzando le Reti Antagoniste Generative (GAN), nel contesto della Generazione Procedurale
di contenuti attraverso l’apprendimento automatico (PCGML). Con la crescente applicazio-
ne di tecniche di Generazione Procedurale nell’industra videoludica, molti ricercatori stanno
esplorando nuovi paradigmi per generare nuovi contenuti utilizzando modelli che apprendono
da contenuto pre-esistente. Fino ad ora, poco è stato realizzato in merito all’applicazione di
questo nuovo paradigma a giochi che permettono un’esplorazione bi-dimensionale dei livelli, in
contrapposizione al classico attraversamento monodirezionale tipico dei giochi ”Platform”. Il no-
stro studio si pone come punto di partenza per l’applicazione delle Reti Antagoniste Generative
al problema della generazione di questo tipo di livelli bi-dimensionali, in particolare utilizzando
il gioco DOOM come riferimento. Come primo passo, proponiamo un dataset di 9000 livelli di
DOOM collezionati dalla comunità di videogiocatori in aggiunta a quelli già forniti dal Video
Game Level Corpus, progettando un sistema per estrarre automaticamente un insieme di ca-
ratteristiche descrittive dei livelli e convertire gli stessi in immagini. Proseguiamo selezionando
un insieme di misure che agevolano la valutazione oggettiva della qualità dei livelli generati,
evidenziando le principali difficoltà nell’applicare le tecniche esistenti al nostro dominio appli-
cativo. Ottimiziamo quindi due reti diverse, che differiscono per la presenza in ingresso delle
caratteristiche dei livelli e definiamo un insieme di esperimenti per valutare l’impatto che gli
input aggiuntivi hanno sulla generazione dei livelli. Inoltre, analizziamo la possibilità di control-
lare la generazione dei livelli agendo sugli input aggiunti alla rete. I risultati ottenuti mostrano
i vantaggi dell’aggiunta delle caratteristiche dei livelli come input alla rete, sia da un punto di
vista della qualità dei campioni generati che dalle distribuzioni apprese, indicando che il nostro
metodo può essere utilizzato come una opzione valida per generare livelli senza la necessità di
particolare esperienza nel dominio applicativo.
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Chapter 1

Introduction

Content creation in video-games is one of the most time consuming and difficult tasks in the
process of developing a good quality product and producing interesting content often requires
design experts. Content of a video-game belongs to two categories: Functional content is related
to the game mechanics, in contrast to Non-Functional content, which usually serves a cosmetic
purpose or has marginal effect on the game from a point of view of the player actions. In this
work we only consider the problem of level design, which belongs to the first category.
Level design is an essential part in the development of many video-game genres such as Platform
Games and First Person Shooters; in many cases a good level design contributed to the enormous
success of many video-games.
Besides the costs of level design, other problems arose in the early history of video games: often
the memory resources were scarce and the content couldn’t be stored in memory. Procedural
content generation came up as a solution to solve this issue by generating levels and other
content by means of an algorithm rather then an human designer.

Many early games used Procedural Content Generation for overcoming the memory limita-
tions on the machines that were used to play [56]. Notable examples in the early history are
Elite[9], a space simulation in which procedural generation is used to create the game universe
and Rogue[12], a dungeon-crawling game in which dungeon rooms and the hallways are gener-
ated by means of an algorithm.
With the increase of computing capabilities over time, the problem of storage became less se-
vere. Nonetheless, PCG remained as a feature in many video-games, often playing a central
role in the design of many games. For example in Diablo[7] every map and item is procedurally
generated and many other games utilize software for automatizing some processes that would
be extremely expensive if done manually, like populating an area with vegetation [64].
Recently, PCG have been often applied to increase re-playability : if a game is played many
time, the game experience could be always different. An example is given by Minecraft [49], in
which an initial part of the world is procedurally generated at the start of the game and it is
expanded basing on the world seed as the player explores new areas. Other titles that make
use of procedurally generated content as a fundamental design tool are Dwarf Fortress[2], Elite:
Dangerous[13] and No Man’s Sky [24], only to cite some of them.

Thanks to the increasing interest that machine learning topics gained in recent times, it
is possible to apply new methodologies to the problem of content generation. In particular,
Summerville et al. propose a new practice called PCGML (Procedural Content Generation via
Machine Learning) [58] as the generation of game content by machine learning models that
have been trained on existing content. This type of approach differs from ”classical” procedural
content generation because it does not imply a search in the content space, but the model
directly generates the content. Summerville et al. propose in their article a survey on the work
that has been already done in the field and present many possible applications of PCGML.

17
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18 Chapter 1. Introduction

1.1 Scope

In this work we study the applicability of Generative Adversarial Networks to the problem of
generating new maps for the First Person Shooter game DOOM in the context of Procedural
Content Generation via Machine Learning. We propose an alternative model to the classical
procedural content generation, inheriting the advantages introduced by PCGML. This allows
creation of new levels without the need of having an human expert to embed their knowledge
during the process, but exploiting patterns in training data instead. Our work takes place in
the domain of first person shooter maps for which few work has been done yet using this type
of models, since they differ from the commonly used platform maps which exhibit a sequential
structure and a linear traversal. To assess the usability of this model in a real generation
environment we study the advantages of adding input parameters in the form of level features,
which allows to customize the generated levels. For studying the capabilities of the network
models we produced we design three experiments that shows how the presence of input features
affects level generation.

1.2 Related Work

1.2.1 PCGML in Video-Games

Summerville et al. show that a good amount of work has been done with different use cases,
methods and data representation [58]. However, the domain in which the majority of work re-
lated to level design is done is the one of platform games. For example, Dahlskog, Togelius, and
Nelson [11] uses n-grams to generate new levels for Super Mario[47], Jain et al. use autoencoders,
while Snodgrass and Ontañón experiment an approach based on Markov Chains [57]. An excep-
tion to this type of domain that is still related to level generation is the work of Summerville and
Mateas in [59] where the authors present a method for generating levels of Legend of Zelda[48]
using Bayes Nets for the high level topological structure and Principal Component Analysis
for generating the rooms. Our work proposes instead a method for generating the whole level
topology using a single model, with the possibility of easily adding more features or eventually
applying the same structure to another dataset.
In their work, Lee et al. [41] use neural networks for predicting resources location in StarCraft
II [19] maps. Although the data domain is similar to the one used in our work, the problem only
focused on resource placement rather then map topology generation and requires the image of
an already existing level as input. Moreover, we make use of Generative Adversarial Networks,
which is a particular setting in which a generator is able to produce new samples using a vector
of noise as input.
In the settings of Generative Adversarial Networks, Beckham and Pal propose a method for
generating realistic height level maps for video-games [5], which is more applicable to realistic
landscapes rather than fictional indoor environments such those of First Person Shooters. This
kind of model have also been applied to non-functional content generation in the work of Horsley
and Perez-Liebana, in which GANs are used to generate 2d sprites [31].

1.2.2 Video Game Level Corpus

One of the problems with this type of generative models, as explained in [58] is that they
require a large amount of data to be optimized. Unfortunately, the domain of video-games
levels does not benefit of large datasets to work with, and generally levels from different video
games does not share common data structures. Summerville et al. created the Video Game
Level Corpus (VGLC), a collection of game levels represented in multiple formats. Using this
format as starting point, we collected about 9000 user-generated Doom levels of different size
and designed an extended representation that better fit our needs, while still keeping the dataset
compatible with the original VGLC representation. Although VGLC provides the parser they
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1.3. Thesis Structure 19

used for data generation, we wrote a new parser which better integrates with our system and
feature representation, and can also be used as a stand-alone parser for future researches.

1.2.3 Generative Adversarial Networks

Generative Adversarial Networks are a recent generative model based on Artificial Neural Net-
works. This type of model allows to learn the data distribution of a dataset and generate
synthetic data that exhibit similar characteristics to the real data. Among all the domains in
which GANs have been already applied, that of images is one of the most prominent. For ex-
ample, generation tasks are commonly applied to the handwritten digits (MNIST [40]) dataset,
human faces (CelebA [43]) and bedrooms (LSUN [70]) as in [53], but a large amount of creative
work is done with many other datasets such as birds, flower [71], and other type of images. An-
other task which involves pictures is image-to-image translation: Isola et al. investigates GANs
as a general solution to this problem in several settings [34] such as image colourisation, seg-
mented image to realistic scene conversion or the generation of realistic objects starting from
hand-drawn input from the user (Figure 1.1). The GAN approach has been also used in many
other domains such as frame prediction in videos [45] and sound generation [69], being a research
area in rapid expansion.

Figure 1.1: Examples from the work of Isola et al. on image-to-image translation problem [34].

1.3 Thesis Structure

Chapter 2 describes the theory which is needed to understand how we designed our system
and motivates the choice of DOOM as the game we used in this work. Chapter 3 describes in
detail the data we used in our work and how we converted it in order to make it functional
for our system. Chapter 4 first describes the system from an high level perspective defining
the possible use cases and processes, then detail the neural network model we designed for
our system and describes some additional metrics we designed to monitor the training process.
Chapter 5 shows what choices are to make for designing an experiment using our system, then
defines three experiments which let us study the trained models. Chapter 6 reports and discuss
the most relevant results obtained during the training process and by running the experiments.
Chapter 7 shows our general considerations about our work, while highlighting the open problems
and proposing further work on this topic.
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20 Chapter 1. Introduction

1.4 Summary

In this chapter we introduced the problem of Level Design in video-game industry and the so-
lutions that have been historically applied for approaching the problem. Then we referenced a
new area of research in which this work take place and defined its scope. We also described the
main differences between our research domain and the domains of the main contributions in each
research area we considered, highlighting the differences between our work and other contribu-
tions. In the next chapter we give a more in-depth description of the Generative Adversarial
Network models and considerations about the choice of the game.
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Chapter 2

Theory and Motivation

This chapter introduces the theoretical aspects our work is based upon, while giving the reader
some overview of the tools and techniques we applied in our system. Section 2.1 provides the
theoretical background necessary to better understand the setting in which our work take place.
Section 2.2 describes and motivates the choice of the game we used in our work.

2.1 Theoretical Background

As the main model for generating levels we selected the Generative Adversarial Networks, or
GAN. This model showed good results in many applications and it’s increasingly more adopted
and studied in the research community. Due to this, a large variety of different architectures and
variants are being designed in order to improve the original model. In this section we present
an introduction to GANs and the main variants we considered for selecting the final model.

2.1.1 GAN

Generative Adversarial Network, proposed by Goodfellow et al. [26] in 2014, are a model
that gained gained increasingly more interest in the latest years. The main idea of this kind of
generative model is to use two neural networks which are posed in an adversarial setting that
models a two-player Minimax Game [18, p. 276]. In particular, a generative network G is trained
to capture the data distribution while a discriminator network D estimates the probability that
each sample comes from the real data distribution rather than the one generated by G. Equation
2.1 shows the loss functions for D and G in the original GAN architecture[26]:

L
(i)
D ←

1

m

m∑
i=1

[
logD

(
x(i)
)

+ log
(

1−D
(
G
(
z(i)
)))]

L
(i)
G ←

1

m

m∑
i=1

log
(

1−D
(
G
(
z(i)
))) (2.1)

where z(i) is a batch of random noise samples and x(i) is a batch of true data samples.
The two networks are trained alternately by Backpropagation, in this way the generator network
can learn to improve the generated sample quality by using the discriminator output as a sort
of feedback.

21
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22 Chapter 2. Theory and Motivation

2.1.2 Deep Convolutional GAN (DCGAN)

Typically, training a Generative Neural Network is a difficult task. This is, among other rea-
sons, due to the need of balancing the generator and the discriminator during the minimax
optimization. In order to overcome these difficulties, Radford, Metz, and Chintala proposed the
DCGAN model [53] which offers some improvements over the standard GAN architecture. The
main modifications introduced are the use of convolutional layers instead of fully connected and
max-pooling, the use of batch normalization [33] and ReLu activation functions [50]. DCGAN
architecture became one of the baselines to build projects involving GANs and to compare new
architectures. In our work we used the DCGAN layer structure showed in figure 2.1 as a starting
point for our experiments, which differs from ours for the presence of the conditioning input,
the stride and the input size. These details on our architecture will be explained in chapters 4
and 5.

Figure 2.1: DCGAN generator layers from the work of Radford, Metz, and Chintala on the
LSUN dataset [53, p.4].

2.1.3 Wasserstein GAN

Despite of the improvements, GANs are still affected by some problems: training stability is
dependent on network structure, the training loss rarely converges and does not reflects the ac-
tual sample quality. The Wasserstein GAN architecture, introduced by Arjovsky, Chintala, and
Bottou [3], aims to mitigate these problems: The authors build a new loss function, basing on the
fact that training a GAN can be interpreted as minimizing the Jensen-Shannon divergence[42].
They also prove how using Wasserstein (or Earth-Mover) [3, § 3] distance is a more sensible
choice since it provides smooth transitions as opposed to discontinuities in JS-Divergence when
the supports of the two probability distributions begin to overlap.
The resulting loss function is an approximation for the Wasserstein distance:

L
(i)
Critic ←E(D(XGen))− E(D(XTrue))

L
(i)
Gen ←−D(XGen)

(2.2)

This approximation is derived from an alternative formulation of the Wasserstein distance,
which requires to calculate a supremum over K-Lipschitz functions. To force the network to
only model K-Lipschitz functions the weights of the critic network are clamped below a fixed
value (weight clipping) and no output activation functions are applied to the Discriminator, for
this reason called Critic.
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2.1.4 Wasserstein GAN with Gradient Penalty

Gulrajani et al. remark in [28] that the WGAN architecture suffers from some optimization
problems related to the weight clipping. Their experiment shows that gradient often vanishes
or explodes if the weight clipping is not tuned carefully, and that this technique also biases the
network toward too simple functions. To overcome these problems, they propose an alternative
way to enforce the Lipschitz constraint by keeping the gradient at unitary size. This involves
adding a penalty term to the critic loss to enforce the constraint only along straight lines
between the real and the generated data distribution, which proves to produce good results and
performances. Equation 2.3 shows the calculation of the gradient penalty which is added to the
WGAN Critic Loss.

X̂ ← εXTrue + (1− ε)XGen

Gp ← (‖∇X̂D(X̂)‖2 − 1)2
(2.3)

Results obtained from Gulrajani et al. on the LSUN dataset are shown in Figure 2.2.

Figure 2.2: Examples from the work of Gulrajani et al. on the LSUN dataset using WGAN-GP.
[28, p.8]
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24 Chapter 2. Theory and Motivation

2.1.5 Conditional GAN

In our work we apply to WGAN-GP a modification of the GAN model introduced by Mirza and
Osindero [46] , which allows to condition the data generation to class labels. The motivation we
chose this model is to design a way to control with some extent the generation process, instead of
generating purely random samples; this could also allow the network to learn useful information
encoded in the feature vector and exploit them to generate better results. The logical structure
of the adopted generative model is summarized in section 4.1.

Additional Architectures

Due to the novelty of this model, many researches have been conducted to improve the quality
of GANs, leading to a constantly growing variety of proposed new architectures. They can be
classified as modifications to the structure of the neural network or even to the theoretical setting
of the model itself, by means of changes to the loss function or the training algorithm. Other,
less formal but still effective adjustment to the proposed models are the so called ”tricks” in
machine learning discussion communities, which adoption is often suggested in order to improve
the difficult training of the network. The final architecture adopted is described in section 4.4.1.

2.2 Game of choice: DOOM

2.2.1 Description

DOOM is a video-game produced Id Software in 1993, and can be considered one of the games
that defined the First Person Shooter genre. Gameplay consisted in traversing a series of levels
populated by several enemies, and the player had the possibility to collect weapons, ammunition
and power-ups in order to reach the exit of the level. Often, in order to reach the exit point,
the player had to explore the level in order to find some keys required to open the doors that
blocked the path. DOOM levels are divided in episodes of 32 levels each. The first episode
was released as shareware and Id Software greatly encouraged the diffusion of the game. This
contributed to the celebrity of the game in a time in which internet was still not accessible to
everyone.

2.2.2 Motivation

The domain we chose for this work is that of First Person Shooter levels, which usually
require the player a more explorative approach as opposed to platform games that are typically
traversed in a single direction. This different type of exploration usually requires an higher
dimensional representation of the levels, which makes working with fps levels difficult due to
multiple overlapping height levels. One of the peculiarities of this game engine is that the
levels actually develop on a 2-D plane, with the height added separately. In other words, rooms
cannot overlap on the height dimension, and often game designers used their skills to produce
the illusion of the opposite. This makes DOOM a good game for researching on first person
shooters levels while keeping a simple 2d representation.

Another important feature of the Doom Game Engine is that it provided native ”mods”
support. This fact encouraged many people to develop and exchange their levels for DOOM,
and soon this produced a large database which is still expanding nowadays. Thanks to a large
active community it is possible to easily find many resources and specifications to work with
DOOM levels and understanding how the game engine works.
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2.3 Summary

In this chapter we described some of the main Generative Adversarial Network architectures
that are currently available in literature, starting from the standard GAN to the most used
improvements. Then, we briefly described the motivations we selected DOOM as the game to
work with. In the next chapter we give a more detailed explanation of how the Doom Engine
works and levels are described, while in chapter 4 we give a logical description of how we
implemented the GAN architecture in our system.
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Chapter 3

Dataset and Data Representation

This chapter describes the structure of the database we built to train and evaluate our model,
as well an overview of the processes required to generate the dataset itself. Section 3.1 gives a
reference to the data sources, then section 3.2 shows how data is natively encoded for the game
engine in order to introduce what are the difficulties in converting to and from the native format
in an automatic way. Section 3.3 details how we encode data in the target format, how levels are
converted and what features are extracted in order to provide an input for the neural network.
Section 3.4 gives an overview of how the data is organized in the datasets we make available.

3.1 Data Sources

The data used to train and validate the model comes from the Idgames Archive founded in
1994 by Barry Bloom [4] and mirrored on various FTP sources. The mirror we used for collecting
levels is Doomworld.com [15], which is one of the oldest and currently most active community
about the DOOM video-game series [14].

Idgames archive includes levels for multiple games such as DOOM, DOOM 2 or their various
modifications. They are divided in hierarchical categories, which classify levels by game, game
mode (multi-player ”deathmatch” or single-player), and alphabetically. Amongst the categories
we selected only those levels that belong to ”DOOM” and ”DOOM 2”, excluding sub-categories
named ”deathmatch” and ”Ports”. This choice has been made in order to avoid mixing different
types of levels, since a level designed for a Single Player Mode could be structurally different
from a level which is designed for multi-player games. Moreover, the ”Ports” category has
been excluded because it contains levels that are intended to work with modifications of the
game engine code, and it would have led to problems in managing every particular exceptional
behaviour.

Levels in Idgames archive are stored in zip archives, including a ”READ ME” text file con-
taining author notes and the WAD file that contains up to 32 levels. Each zip archive can
be downloaded from the respective download page, which presents a variable quantity of in-
formation such as: author, a short description, screen shots, user reviews, number of views
and downloads, etc. The dataset we present in this work always keeps track of these informa-
tion about each level for correct attribution. It also offers a ”snapshot” of average user review
score and the number of views and downloads, when available. It is worth noting that since
Doomworld website recently switched to a different download system [14], meta-data concerning
downloads and view counts may not always be accurate, but they are still proposed as a starting
point for further research.

27
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3.2 Source Data Format: WAD Files

The Doom Game Engine [36] makes use of package files called ”WADs” to store every game
resource such as Levels, Textures, Sounds, etc. WAD files have been designed in order to
make the game more extendible and customizable, and opened the way for a considerably large
amount of user-generated content. This section is not meant to be a complete description of
how WADs files are structured, but only an overview of which aspects we considered for writing
the software that generates the dataset from the WAD files. Every information about WADs
files has been taken from the The Unofficial Doom Specs [20] and we refer to that document a
deeper explanation on every aspect of the file format.

3.2.1 Overview

Type of WADs

There are two types of WADs: the ”IWAD”, or ”Internal WAD”, and the ”PWAD” or ”Patch
WAD”. The original game files, called ”DOOM.WAD” and ”DOOM2.WAD”, are of the ”IWAD”
type, as they contain every asset that is needed for the game to run. The WADs containing
custom content or modifications to existing content are of the ”PWAD” type. The content which
is defined in a PWAD is added or replaced to the original IWAD when the WAD is loaded. For
example, if a PWAD defines the level ”MAP01”, which is already defined in ”DOOM2.WAD”,
the PWAD level is loaded instead of the original one, while maintaining all the other content
unaltered. Since in our work we deal only with PWADs, we will generally refer to them simply
as WADs.

Lumps

Every data inside a WAD is stored as a record called Lump, which has a name up to 8 characters
and a structure and size that is different depending on the lump type. Generally there are no
restrictions on lump order with the exception of some of them, including those needed for
defining a Level.

WAD Structure

Every WAD file is divided in three sections: A header, a set of Lumps and a trailing Directory.
The header holds the information about the WAD type, the number of Lumps and the location
of the Directory, which is positioned after the last Lump. The directory contains one 12-bytes
entry for each Lumps that specifies the Lumps location, size and name. Table 3.1 reports a
simplified description of a WAD file.

Coordinate Units

The Doom game engine describes coordinates using integer values between -32768 and +32767,
and it is proportional to one pixel of a texture. This unit is called ”Map Unit” or ”Doom Unit”
in this work. Although there’s not an unique real world interpretation of one Map Unit, we used
an approximation for which each relevant map tile or image pixel is 32x32 MU large; this choice
is motivated by the fact that the smallest radius of a functional object in DOOM is 16 MU.
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3.2.2 Doom Level Format

Level data in a WAD file follows a precise structure. In particular each level is composed of
an ordered sequence of lumps that describes its structure:

(NAME) : Name of the level slot in DOOM or DOOM2 format.

THINGS List of every game object (”Thing”) that is placeable inside the level.

LINEDEFS List of every line that connects two vertices.

SIDEDEFS A list of structures describing the sides of every Linedef.

VERTEXES Unordered list of vertices.

SEGS A list of linedef segments that forms sub-sectors.

SSECTORS A list of sub-sectors, which are convex shapes forming sectors.

NODES A binary tree sorting sub-sectors for speeding up the rendering process.

SECTORS A list of Sectors. A Sector is a closed area that has the same floor and ceiling
height and textures.

REJECT Optional lump that specifies which sectors are visible from the other. Used to
optimize the AI routines.

BLOCKMAP Pre-computed collision detection map.

It is important to notice that although all the lumps above (with the exception of REJECT)
are mandatory to build a playable level, some of them can be automatically generated from the
remaining ones using external tools. In particular, an editor software or designer has to provide
at least the lumps (name), THINGS, LINEDEFS, SIDEDEFS, VERTEXES and SECTORS. The
lumps SEGS, SSECTORS, NODES, REJECT and BLOCKMAP serve the purpose of speeding-
up the rendering process by avoiding runtime computation. In particular the Doom Engine uses
a Binary Space Partitioning Algorithm [22] for pre-computing the Hidden Surface Determination
(or occlusion culling), and it is usually done by an external tool. In this work we used the tool
”BSP v5.2 ” [10] in the last stage of the pipeline, in order to produce playable DOOM levels from
the network output. In the following paragraphs only the lump types that are not generated by
the external tool are described.

(Name): The first lump of a level is its slot name. We indicate this lump between parenthesis
because, differently from the other lumps, this one has no data associated. The Name field in
the Directory is the slot name itself and the size is therefore zero. The level name descriptor
has to match either ExMy (”Episode x, Map y”) or MAPzz for DOOM or DOOM2 respectively,
where x ranges from 1 to 4, y from 1 to 9 and zz from 1 to 32.

Things: A doom ”Thing” is every object included in a level that is not a wall, pavement, or
a door. A ”Things” lump is a list of entries each one containing five integers specifying the
position (x,y) in MU, the angle the thing is facing, the Thing type index, and a set of flags
indicating in which difficulty level the thing is present and whether the thing is deaf, if it is an
enemy.
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Linedefs: A Linedef is any line that connects two vertices. Since DOOM maps are actually
bi-dimensional, a single line is needed to define each wall or step. Linedefs do not necessarily
have to match with visible entities, as each Linedef can also represent invisible boundaries or
triggers, which can be thought as tripwires or switches that make something happen to a sector.
If the Linedef acts as a trigger than it references another sector and has a type which defines
what would happen to it when the Linedef is activated. For example, a door is implemented
as a sector that raises up to the ceiling when a certain Linedef is triggered, but this behaviour
is specified in the switch and not in the door as one might think. All the options are defined
by a set of flags that specifies what kind of objects the Linedef blocks, if it’s two sided or not,
the trigger activation condition and so on. Finally, each Linedef has to specify what ”vertical
plane” (or Sidedef) lies on its right and left side. Only the ”left sidedef” field can be left empty,
due to the way the sectors are represented.

Sidedefs: A Sidedef is a structure that contains the texture data for each linedef. It cor-
responds to the side of each wall and it’s referenced by the linedefs. Other than the options
for texture visualization, it also specifies the sector number that this plane is facing, implicitly
defining the sector boundaries.

Vertexes: 1 This is the simplest type of Lump, consisting in an unordered list of map coordi-
nates in MU. Each entry has an x and y position expressed in a 16-bit signed integer. Linedefs
references the starting and ending vertex by reporting their index in this list.

Sectors: A sector is defined as any area that have constant floor and ceiling heights and
textures. This definition highlights the fact that the doom engine is in fact a 2d engine, since
it’s not possible to define a sector above or below another one. A sector does not necessarily
have to be closed nor a single connected polygon, but non-closed sectors can cause some issues
during gameplay. The only constraint to define sectors comes from the fact that linedefs must
have a right sidedef, but the left one is optional; the sectors are normally described as (a set of)
positively oriented curves [17], with the exception of linedefs that are shared with another sector
that may be reversed. The fields of a sector lump includes the floor and ceiling height, the name
of the floor and ceiling texture, the light level, the ”type” to controls some lighting effects and
damaging floor, and the tag number that is referenced by the linedef triggers. Figure 3.1 shows
an example of a level with 3 sectors.

3.2.3 Conversion issues

Since 1994 many DOOM players started producing a large amount of levels and increasingly
sophisticated editors came to light. This led to a notable variety in conventions, optimizations
and use of bad practices that we tried to deal with in developing the Python module for reading
and writing wad files. Some of these practices includes unnecessary lumps, random-data instead
of null padding for names, and other inconsistencies or arbitrary conventions. However, we paid
particular attention during the writing phase in order to precisely follow the specifications and
avoid generating low quality WAD files as much as we could. Some other difficulties came with
the necessity to render wad files as images and vice-versa. The first one is that neither Linedefs
nor vertices came in an any ordered format, along with the fact that sector vertices are not
explicitly defined, but only referenced through the linedef/sidedef chain. This means that for
finding a sector shape one has to find all sidedefs with the desired sector number, then find all
the linedefs referencing those sidedefs and lastly retrieving the vertices, leading to an increase
of complexity. Another problem was the fact that although sectors must be positively oriented
curves, it is not mandatory to use the left sidedefs for adjacent sectors, leading to duplicated
linedefs in the opposite direction. Even some optimizations such as sidedef compression may
be possible, that is referencing the same sidedef wherever the same wall texture is used, adding

1Although the correct spelling should be ”vertices”, we keep the original version of the field name.
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Figure 3.1: A simple level showing three sectors A, B and C and the linedefs
defining them, following the positive oriented curve constraint. Sector C can
be viewed as a small platform inside the sector B. Solid arrows represent walls,
while dashed lines represent invisible linedefs or changes in height between
two sectors (steps). In this level, every solid arrow is a linedef that specifies
only a right sidedef, with the exception of the one separating sectors A and
B that has both a right and a left one.
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complexity to the conversion script. Moreover, the concept of sector and the concept of room
are not equivalent: even though a sector is defined as an area of constant height, this does not
enforce to define a sector only where height changes, so the semantic of a sector actually depends
on the designer and the editor used.
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Section Length (bytes) Section Name Field Size Field Name Description

4 Identification
ASCII string
”PWAD” or
”IWAD”

12 Header 4 Number of Lumps
The number of
Lumps included
in the WAD

4 Table Offset
Integer pointer
to the Dictio-
nary

Variable Lumps - Lump Data
Lumps stored
as a stream of
Bytes

4 Lump Position
Integer holding
a point to the
lump’s data

16 * Number of Lumps Directory 4 Lump Size
Size of the lump
in bytes

8 Lump Name

Lump name in
ASCII, up to
8 bytes long.
Shorter names
are null-padded

Table 3.1: WAD File structure
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3.3 Target Data Format: Feature Maps and Vectors

This section provides a description of the data format as it is stored in the level dataset.

3.3.1 Level Description and Motivation

Levels are read as a structured object by a module we wrote for the purpose of providing
developers and designers a programmatic way to access, analyse and edit DOOM WAD files,
instead of using visual authoring software. This allows to automatise some tasks that would be
very long to accomplish with standard editors or tools and also offers developers the possibility
to write custom editor and scripts.
In order to provide the most complete set of information possible every level is converted to a
set of images, called Feature Maps in this work, a tiled representation in textual format that
is an extension of the one used in VGLC [60], a graph representation and a set of textual and
scalar features that contains both the WAD meta-data and the level features and metrics cal-
culated either on the WAD representation (sectors, subsectors, linedefs, etc), the Feature Map
representation or the graph representation of the level. A detailed list and explanation of each
feature is provided in section 3.3.5.
The choice of these representations have been made primarily for the need of having a data for-
mat that the generator model can easily work on. In particular, convolutional neural networks
are designed to work well with bi-dimensional or tri-dimensional data such as (multi-channel)
images, for this reason the image representation arose naturally. The text representation is
provided mainly for consistency with the data format given in [60], even if our representation
uses two characters per tile instead of one. Finally, scalar and graph representation have been
collected for the need of quantifying and summarising some properties and having a more ab-
stract representation of a level, which can be very helpful in the case this data had to be used
in other works.

3.3.2 Feature Maps

Feature Maps are a set of images each of them describing a different aspect of the level. In
particular we used for each Feature Map a grayscale 8-bit image in which each pixel can assume
values between 0 an 255. This allowed to obtain a good degree of precision while still maintaining
a reasonable dataset size.
Because of the motivations explained in section 3.2.1, each pixel in a Feature Map corresponds
to a square of 32x32 MU. In the following paragraph we will describe in detail each of them
along with the data encoding.

FloorMap: The FloorMap is the most basic form of level representation, since it only repre-
sents which part of the space are occupied by the level and which are empty. This kind of map
is often used in robotic mapping.
This map also describes approximatively the level area that is possible to traverse, since in
DOOM walls have no thickness.
”Floor” pixels have value 255 (white) and ”Empty” pixels have value 0 (black).

WallMap: The WallMap represent the impassable walls of the level. They are represented
as a one-pixel-wide line and are obtained by directly drawing each Linedef with the impassable
flag set on a black image.
Pixel values are 0 for Empty area or floors and 255 for the walls.

HeightMap: The HeightMap is another common map used for visualizing the height of a
certain surface. Since height level in DOOM levels are completely arbitrary and virtually un-
bounded, we normalize each level between its lowest and highest height, assigning the pixel value
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0 for empty parts of the level and the remaining are calculated from the formula ch = bh∗ 255

|H|
c,

where H is the ordered set of possible height values for the level and h ∈ {1, 2, ..., |H|} is the
index of the height value in H for which we want to calculate the encoded colour.
For example if a level takes the height values H = {0, 10, 15, 20} they will be encoded respectively
as ch = {63, 127, 191, 255} and 0 for the empty areas. Although this map loses the information
about the differences between a height level and another, it has the advantage to represent
”higher” and ”lower” parts of the level without polarizing the entire map due to extreme levels:
while the majority of the levels has a few changes that can be approximated as uniform (such as
levels with stairs connecting a few rooms), other had some extreme changes in height but only
for a small portion of the map (like a very high elevator leading to a small secret room) that led
to scaling problems.

ThingsMap: The ThingsMap represent only data that is contained in the THINGS lump.
It features a series of pixels placed at the thing coordinate, with a value that corresponds to
a particular ”thing”. Pixel colours have been grouped by functional purposes so for example
weapons occupies values that are close each other. This is for tolerating some output noise
during generation without completely changing the functional aspect of an object as would have
happened if we kept the original things encoding. Tables 3.2, 3.3 and 3.4 lists the complete
encoding for the maps. Descriptions are taken from [63].

TriggerMap: The TriggerMap is used for representing linedef triggers and the sectors which
activates. Due to the vast amount of cases the doom engine can handle, only a few types of
triggers have been considered. The mapping works by assigning an integer i ≤ 32 to every trigger
object, and subdividing triggers types in 5 groups: local doors (the ones that are activable only
if the players directly interact with them), remote doors, lifts, switches and teleports. Local
doors can be normal or require a key of a certain colour in order to open, but they are not
indexed by the trigger index since they don’t require to be linked to other linedefs in order to
be opened. Table 3.5 describes the encoding for each possible item i.

RoomMap: The RoomMap represent an enumeration of the rooms obtained with an algo-
rithm that is very similar to the morphological approach used in “Room segmentation: Survey,
implementation, and analysis”[8]: An euclidean distance transform [62] is first applied to the
FloorMap obtaining a map that we call D̈istance Mapör D̈istMap̈, then the local maxima are
found [55] such that each maximum has a minimum distance of 3 from the closest one, resulting
in the room center coordinates that are used as markers for a Watershed algorithm [51] using
the negative distance map as basin. This results in a room segmentation that is good enough
for descriptive purposes while maintaining good performances.

3.3.3 Graph Representation

Another way to represent the level is by using a graph. In particular, this graph is a region
adjacency graph [66] built upon the RoomMap, where the nodes represent the rooms and the
edges are the boundaries they have in common. This graph is built primarily for computing some
features about the level and for exploiting its convenient representation of the rooms during the
WAD Writing phase: this graph can be annotated with the coordinates of walls belonging to
each room, and this information can be used to build a level room-by-room, with the assumption
that a room could approximate a sector.

3.3.4 Text Representation

A text representation is also available, following the work of Summerville et al. in [60]. In par-
ticular the representation has been extended from one character per tile/pixel to two characters.
This way it has been possible to add the information about the sector tag and the damaging
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floor. This representation is not currently used by our work but provided for consistence with
previous works. Table 3.6 reports all the character used for this encoding.

3.3.5 Scalar Features

Each level is annotated with 176 numerical and textual features which are divided in four
categories:

1. IDGames Archive Metadata Contain information collected from the database when
levels have been downloaded. This information contains the author, the descriptions, download
urls, level title, etc. Since a WAD file can contain up to 32 levels, this information is replicated
for each level found in the WAD file.
Listed in table 3.7

2. WAD-extracted features: This features are low-level features collected directly when
processing the WAD file and include the number of lines, things, sectors, vertices, the maximum
and minimum coordinates, the level size in MU etc.
Listed in table 3.8

3. PNG-extracted features These features are computed starting from the FloorMap
using an Image processing library for calculating morphological properties. Each feature is
calculated both directly over the whole level and as simple statistics computed over its ”floors”
taken singularly. A ”Floor” is intended as a part of level which is not connected to the rest of
the level, thus is reachable only by means of a teleporter.
Listed in tables 3.9, 3.10

4. Graph Features Features computed on the room graph, inspired by the work of Luperto
and Amigoni in [44]. They are used to provide a higher level representation of the level and an
indicative distribution of the different room types.
Listed in table 3.11
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Value Functional Category Thing Description

0 Empty
1 other Boss Brain
2 other Deathmatch start
3 other Player 1 start
4 other Player 2 start
5 other Player 3 start
6 other Player 4 start
7 other Spawn shooter
8 other Spawn spot
9 other Teleport landing
10 keys Blue keycard
11 keys Blue skull key
12 keys Red keycard
13 keys Red skull key
14 keys Yellow keycard
15 keys Yellow skull key
16 decorations Bloody mess
17 decorations Bloody mess
18 decorations Candle
19 decorations Dead cacodemon
20 decorations Dead demon
21 decorations Dead former human
22 decorations Dead former sergeant
23 decorations Dead imp
24 decorations Dead lost soul (invisible)
25 decorations Dead player
26 decorations Hanging leg
27 decorations Hanging pair of legs
28 decorations Hanging victim, arms out
29 decorations Hanging victim, one-legged
30 decorations Hanging victim, twitching
31 decorations Pool of blood
32 decorations Pool of blood
33 decorations Pool of blood and flesh
34 decorations Pool of brains

Table 3.2: ThingsMap Encoding (1 of 3)
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Value Functional Category Thing Description

35 obstacles Barrel
36 obstacles Burning barrel
37 obstacles Burnt tree
38 obstacles Candelabra
39 obstacles Evil eye
40 obstacles Five skulls ”shish kebab”
41 obstacles Floating skull
42 obstacles Floor lamp
43 obstacles Hanging leg
44 obstacles Hanging pair of legs
45 obstacles Hanging torso, brain removed
46 obstacles Hanging torso, looking down
47 obstacles Hanging torso, looking up
48 obstacles Hanging torso, open skull
49 obstacles Hanging victim, arms out
50 obstacles Hanging victim, guts and brain removed
51 obstacles Hanging victim, guts removed
52 obstacles Hanging victim, one-legged
53 obstacles Hanging victim, twitching
54 obstacles Impaled human
55 obstacles Large brown tree
56 obstacles Pile of skulls and candles
57 obstacles Short blue firestick
58 obstacles Short green firestick
59 obstacles Short green pillar
60 obstacles Short green pillar with beating heart
61 obstacles Short red firestick
62 obstacles Short red pillar
63 obstacles Short red pillar with skull
64 obstacles Short techno floor lamp
65 obstacles Skull on a pole
66 obstacles Stalagmite
67 obstacles Tall blue firestick
68 obstacles Tall green firestick
69 obstacles Tall green pillar
70 obstacles Tall red firestick
71 obstacles Tall red pillar
72 obstacles Tall techno floor lamp
73 obstacles Tall techno pillar
74 obstacles Twitching impaled human

Table 3.3: ThingsMap Encoding (2 of 3)



i
i

“Thesis” — 2018/4/4 — 13:48 — page 39 — #39 i
i

i
i

i
i

3.3. Target Data Format: Feature Maps and Vectors 39

Value Functional Category Thing Description

75 monsters Arachnotron
76 monsters Arch-Vile
77 monsters Baron of Hell
78 monsters Cacodemon
79 monsters Chaingunner
80 monsters Commander Keen
81 monsters Cyberdemon
82 monsters Demon
83 monsters Former Human Trooper
84 monsters Former Human Sergeant
85 monsters Hell Knight
86 monsters Imp
87 monsters Lost Soul
88 monsters Mancubus
89 monsters Pain Elemental
90 monsters Revenant
91 monsters Spectre
92 monsters Spider Mastermind
93 monsters Wolfenstein SS
94 ammunitions Ammo clip
95 ammunitions Box of ammo
96 ammunitions Box of rockets
97 ammunitions Box of shells
98 ammunitions Cell charge
99 ammunitions Cell charge pack
100 ammunitions Rocket
101 ammunitions Shotgun shells
102 weapons BFG 9000
103 weapons Chaingun
104 weapons Chainsaw
105 weapons Plasma rifle
106 weapons Rocket launcher
107 weapons Shotgun
108 weapons Super shotgun
109 powerups Backpack
110 powerups Blue armor
111 powerups Green armor
112 powerups Medikit
113 powerups Radiation suit
114 powerups Stimpack
115 artifacts Berserk
116 artifacts Computer map
117 artifacts Health potion
118 artifacts Invisibility
119 artifacts Invulnerability
120 artifacts Light amplification visor
121 artifacts Megasphere
122 artifacts Soul sphere
123 artifacts Spiritual armor

Table 3.4: ThingsMap Encoding (3 of 3)
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Value Functional Category Thing Description

0 None Empty
10 local doors Blue key local door
12 local doors Red key local door
14 local doors Yellow key local door
16 local doors Local door

32+i remote doors Remote door with tag i
64+i lifts Lift with tag i
128+i switch Linedef that activates the i tag
192+i teleports teleport to sector i
255 exit Level Exit

Table 3.5: TriggerMap Encoding: Each item i is connected to one or more objects. For example:
switch (128+1) will open the door (32+1), raise the lift (64+1), etc.

1st character Description 2nd Character Description

”-” [”empty”,”out of bounds”] ”-” [ascii(45)] Empty, no tag
”X” [”solid”,”wall”] ”.” [ascii(46)] Tag 1
”.” [”floor”,”walkable”] ”/” [ascii(47)] Tag 2
”,” [”floor”,”walkable”,”stairs”] ”0” [ascii(48)] Tag 3
”E” [”enemy”,”walkable”] ... ...
”W” [”weapon”,”walkable”] ”m” [ascii(109)] Tag 64
”A” [”ammo”,”walkable”] ”˜” [ascii(126)] Damaging floor
”H” [”health”,”armor”,”walkable”]
”B” [”explosive barrel”,”walkable”]
”K” [”key”,”walkable”]
”<” [”start”,”walkable”]
”T” [”teleport”,”walkable”,”destination”]
”:” [”decorative”,”walkable”]
”L” [”door”,”locked”]
”t” [”teleport”,”source”,activatable”]
”+” [”door”,”walkable”,”activatable”]
”>” [”exit”,”activatable”]

Table 3.6: Extended Textual Representation Encoding: A second character has been added to
the one used by “The VGLC: The Video Game Level Corpus”: Each tile is expressed by two
characters ”XY” where X is the type of object and Y is the tag of the tile. Every tile that has a
tag number, activates (or is activated by) the object(s) with the same tag number. So, e.g. ”t/”
is a teleport that leads to ”T/” and ”X.” is a switch that activates the door ”+.” and possibly
a floor ”..”
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Feature Name Description Type

author Level Author string
description Natural language level information string
credits Natural language level information string
base Natural language level information string
editor used Natural language level information string
bugs Natural language level information string
build time Natural language level information string
rating value doomworld.com level rating value float
rating count doomworld.com vote count int
page visits doomworld.com page visits int
downloads doomworld.com download count int
creation date Natural language level information string
file url Download page url string
game Doom or DoomII string
category doomworld.com category (eg. a-z) string
title Full level name string
name level .zip filename string
path relative path to wad file string

Table 3.7: Features: IDArchive Metadata
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Feature Name Description Type

number of lines absolute number of lines in the level int

number of things absolute number of objects in the level int

number of sectors
absolute number of sectors (zones with same
height) in the level

int

number of subsectors
absolute number of subsector (convex subshapes
of sectors) in the level

int

number of vertices absolute number of vertices in the level int

x max maximum x coordinate int

y max maximum y coordinate int

x min minimum x coordinate int

y min minimum y coordinate int

height level original height in DoomUnits int

width level original width in DoomUnits int

floor height [max|min|avg] [max|min|avg] height for the floor float

ceiling height [max|min|avg] [max|min|avg] height for the ceiling float

room height [max|min|avg]
[max|min|avg] difference between ceiling and
floor height

float

sector area [max|min|avg]
[max|min|avg] area of sectors in squadred doom
map units

float

lines per sector[max|min|avg] [max|min|avg] count of sector sides float

aspect ratio
Ratio between the longest and the shortest di-
mension, since a rotation of 90 of the level does
not alter playability

float

walkable area
Number of pixels the player can walk on
(nonempty size - walls)

int

walkable percentage Percentage of the level that is walkable float

number of <things type >

Total number of <things type>in the level.
<things type>: { artifacts, powerups, weapons,
ammunitions, keys,monsters , obstacles, decora-
tions }

int

<things type> per walkable area
Number of <things type>divided the walkable
area in DMU.

float

start location [x|y] px
[x|y] coordinate (in pixels, dataset format) of
the start location.

int

slot Name of the map slot. e.g ”E1M1” or ”MAP01” string

Table 3.8: WAD-extracted features
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Feature Name Description Type

floors
Number of non-connected sec-
tors (only reachable by a tele-
port) of the level

int

level area
Number of pixels composing the
level

int

floors area [mean|min|max|std]
[mean|min|max|std] number of
pixels composing each floor

float

level bbox area
Number of pixels of bounding
box sorrounding the level

int

level convex area
Number of pixels of convex hull
for the whole level

int

floors convex area [mean|min|max|std]
[mean|min|max|std] Number of
pixels of convex hull for each
floor

float |int

level eccentricity
Eccentricity of the ellipse that
has the same second-moments
as the level.

float

floors eccentricity [mean|min|max|std]
Eccentricity of the ellipse that
has the same second-moments
as each floor

float

level equivalent diameter
The diameter of a circle with
the same area as the level

float

floors equivalent diameter [mean|min|max|std]
[mean|min|max|std] equivalent
diameter calculated over the
floors of the level

float

level euler number

Euler characteristic of the level.
Computed as number of objects
(= 1) subtracted by number of
holes (8-connectivity).

int

floors euler number [mean|min|max|std]
[mean|min|max|std] euler num-
ber over the floors of this level

float

Table 3.9: PNG-extracted features (1 of 2)
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Feature Name Description Type

level extent
Ratio of pixels in the level to pix-
els in the total bounding box. Non-
empty size of the level.

float

floors extent [mean|min|max|std]
[mean|min|max|std] extent over the
floors of the level

float

level filled area
Number of pixels of the level, ob-
tained by filling the holes

int

floors filled [mean|min|max|std] mean
[mean|min|max|std] filled area over
the floors of the level

float

level major axis length
The length of the major axis of the
ellipse that has the same normalized
second central moments as the level.

float

floors major axis length [mean|min|max|std]
[mean|min|max|std] major axis
length over the floors of the level

float

level minor axis length
The length of the minor axis of the
ellipse that has the same normalized
second central moments as the level

float

floors minor axis length [mean|min|max|std]
[mean|min|max|std] minor axis
length over the floors of the level

float

level orientation

Angle between the X-axis and the
major axis of the ellipse that has
the same second-moments as the
level. Ranging from -pi/2 to pi/2 in
counter-clockwise direction.

float

floors orientation [mean|min|max|std]
[mean|min|max|std] orientation over
the floors of the level

float

level perimeter

Perimeter the level which approxi-
mates the contour as a line through
the centers of border pixels using a
4-connectivity.

float

floors perimeter [mean|min|max|std]
[mean|min|max|std] perimeter over
the floors of the level

float

level solidity
Ratio of pixels in the level to pixels
of the convex hull image.

float

floors solidity [mean|min|max|std]
[mean|min|max|std] solidity over the
floors of the level

float

level hu moment [0 ... 6]
Hu moments (translation, scale and
rotation invariant).

float

level centroid x Centroid coordinate x float

level centroid y Centroid coordinate y float

Table 3.10: PNG-extracted features (2 of 2)
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Feature Name Description Type

art-points
Number of articulation points in the room adja-
cency graph. An articulation point is a node which
removal would result in a bipartite graph

int

assortativity-mean
Mean assortativity. Assortativity is the tendency
of one node to be connected with similar nodes.

float

betw-cen-[min |max |mean |var]
Node centrality statistic calculated with the be-
tweenness method

float

betw-cen-[skew |kurt ]
Node centrality statistic calculated with the be-
tweenness method

float

betw-cen-[Q1 |Q2 |Q3]
Node centrality statistic calculated with the be-
tweenness method

float

closn-cen-[min |max |mean |var]
Node centrality statistic calculated with the Close-
ness method

float

closn-cen-[skew |kurt]
Node centrality statistic calculated with the Close-
ness method

float

closn-cen-[Q1 |Q2 |Q3]
Node centrality statistic calculated with the Close-
ness method

float

distmap-[min |max |mean ]
Maximum value in the distance map, i.e. the size
of the largest room. Background is ignored from
computation.

float

distmap-[var |skew |kurt]
Mean value for the distance map, i.e. the mean
room size. Background is ignored from computa-
tion.

float

distmap-[Q1 |Q2 |Q3]
Skewness of the distnace distribuiton Background
is ignored from computation.

float

Table 3.11: Graph features
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3.4 Dataset Organization

This section describes how the dataset is stored and how it can be used for future works.
Since the dataset has been created primarily for instructing a neural network to generate new
levels, the choices in data formats and data representation have been made to increase re-
usability and flexibility in data manipulation. In particular the full dataset is stored first as a
set of files indexed by a JSON dictionary, but for various reason that will be explained more in
depth in chapter 5.1.1 in our work we only used a subset of levels stored as a separated archive.

3.4.1 Full Dataset and Filtered Dataset

In order to keep as much information as possible from the collected levels, we structured the
representation of the DOOMDataset as follow:

• A Full Dataset containing all the levels we collected from the Idgames Archive.

• A set of Filtered Datasets containing a subset of levels that satisfy certain constraints
and which are ready to use with TensorFlow [1].

Full Dataset

The full dataset is kept as much portable as possible, in the sense that it shouldn’t need particular
technologies to be accessed except the capability of parsing JSON files and NetworkX [29] for
analysing the graph structure.
It is composed of about 9172 levels organized as a directory structure, while the maps are of
different sizes given by the rescaling of the levels in MU to tile/pixel format.
The folder is structured as follow:

• dataset.json Contains all the scalar and textual information explained in section 3.3.5
and the relative paths to the files in sub-directories. Acts as a level database.

• Original: Contains all the WAD files as extracted by the archives downloaded from the
IDGames Archive.

• Processed: Contains the Feature Maps, the graph representation, the text representation
and the relative set of features.
Data in this folder is named as:

zipname WADNAME SLOT.json Is a json file containing all the features (3.3.5) for the
level.

zipname WADNAME SLOT.networkx Is a gpickle compressed file containing the Net-
workX graph for the level.

zipname WADNAME SLOT.txt Is the Text Representation (3.3.4) of the level

zipname WADNAME SLOT mapname.txt Is the set of Feature Maps in PNG 8-bit
greyscale format.

Where zipname, wadname, mapname indicate the name of the zip archive the WAD was stored
in, the wad file itself and the Feature Map respectively, while SLOT indicates the level slot name
in DOOM format (see section 3.2.2, ”NAME” lump). The choice of keeping features both in
the JSON database and in separated files comes from the need of recomputing the features in
an easy way (for example for adding features) and for providing the possibility to manually pick
or inspect level properties without the need of accessing a long json file. This, however, comes
at the cost of some data redundancy.

Filtered Dataset

Due to technological limitations given by the machines used for training and other reasons
explained in chapter 5.1.1, data is filtered according to some criteria in order to make them
uniform in term of Feature Map size and removing some level exposing extreme values of the
features. Filtered dataset is stored as a set of files described as follor:
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• DATASETNAME-train.TFRecord Dataset used for training the network using the
TFRecord data format, which is a binary data format proposed by TensorFlow for improving
data ingestion performances.

• DATASETNAME-validation.TFRecord Dataset used for model validation stored in
TFRecord data format.

• DATASETNAME.meta Metadata and statistics about the dataset contained in train
and validation datasets, in JSON format. Since the TFRecord format currently does not natively
hold any information about the data contained in its records, it is useful to save data such as
the item count, data structure and statistics about the dataset in a separate file, for easing the
process of data normalization and other kind of operations.

In our GitHub Repository [25] it is possible to find the files relative to two different data
subset:

• 128-many-floors Dataset of images up to 128x128 pixels (smaller levels are centered and
padded) which have any number of floors, consisting of 1933 levels in training set and 829 in
validation set.

• 128-one-floor Dataset of images up to 128x128 pixels (smaller levels are centered and
padded) which have just one floor, consisting of 1104 levels in training set and 474 in validation
set.

The code repository [25] hosts a Python module that provides all the necessary methods
to inspect and analyse and rebuild both the full dataset and the filtered dataset. Further
information is provided in the code documentation as it goes beyond the scope of this chapter.

3.4.2 Level Size Statistics

In this section we analyse how the level dimensions in MU are distributed in the Full Dataset.
Table 3.12 reports the percentile distributions for both the level height and the level width in
Map units and Pixels. This distribution highlights how the choice of scaling 32 Doom units
to a single pixel in order to avoid loosing functional information about the levels also leads
to reasonable image sizes, since more than 80 percent of the levels are representable in with
an image of 256 pixels in both height and width. Joint distribution of width and height is
represented in figure 3.2

Percentile Width in DU Width in pixels Height in DU Height in pixels
10th 2305 72 2065 64
20th 3017 94 2657 83
30th 3633 113 3137 98
40th 4161 130 3606 112
50th 4737 148 4101 128
60th 5393 168 4657 145
70th 6177 193 5313 166
80th 7212 225 6209 194
90th 9040 282 7809 244
100th 31233 976 32743 1023

Table 3.12: Percentiles of level width and height distributions in both Map Units and Pixels
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Figure 3.2: Joint distribution for the features ”width” (on the x axis) and
”height” (on the y axis) expressed in MU for the level contained in the full
dataset. It is possible to notice how the size of the majority of the levels are
below 7000 Map Units

3.5 Summary

In this chapter we proposed a setting for describing the structure and the features of DOOM
levels, analysing the WAD file format and exploiting its properties to extract useful data. In-
spired by the work of Summerville et al. in “The VGLC: The Video Game Level Corpus” we
produced a dataset of more than 9000 DOOM levels for extending previous work and providing
a ready-to-use database for future works on video-game levels. In doing so, we developed a new
system for converting WAD files into a data format that is compatible with our needs, while also
trying to preserve the textual format provided by the previous work for backward compatibility.
In the next chapter we describe our system from an high level perspective, showing how the
dataset is used to generate new levels.
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Chapter 4

System Design and Overview

The purpose of this chapter is to give an overview of how the system modules interact from
the point of view of use cases and data flow analysis. Latest sections of the chapters focuses
on the neural network architecture we adopt in our system. Section 4.1 describes the logical
structure of the generative model we use, focusing on the input and outputs and providing the
notation we use in the remaining part of this work. Section 4.2 illustrates all the main use cases
for the system, highlighting how the different inputs are used to produce the expected results.
Section 4.3 resumes the system design focusing on processes and data transformation rather
then a component view of the system. Section 4.4 details the neural network architecture we
used in our system, present a set of metrics we use during the training process and defines the
training process itself. Section 4.5 describes the modules we designed to convert DOOM levels
to and from images and extract all the necessary features.

4.1 Generative Model Structure

The initial system design was built upon the architecture of Generative Adversarial Networks
[26] from Goodfellow et al. Given the problem of generating video-games levels, the need to
control to some extent the generation process naturally arose. For this reason, we adopted a
conditional version [46] of the GAN Model, proposed by Mirza and Osindero, applied to the
WGAN-GP architecture already discussed in section 2.1.4.

We present in figure 4.1 the logical design which defines the inputs and the outputs of the
generative model we are using. This structure refers to the Conditional Generative Neural
Network we introduced in chapter 2.1.1. In particular, figure 4.1 shows the general interactions
of the high-level components of a GAN, namely the Generator and the Discriminator (or Critic)
networks
The input of this subsystem are defined as follows:

• X: Batch of images having m channels, corresponding to the Feature Maps.

• Y : Batch of vectors having one component for each scalar feature considered.

• Z: Batch of random noise vector, typically sampled from a Uniform or Gaussian distribu-
tion.

The discriminator network takes as input a vector of images X and a vector of features Y,
while the generator network G takes as input a the vector Y and a vector of random noise Z,
which is used to sample different points of the data distribution. We use the subscript ”True”
or ”Gen” to distinguish from the Feature Maps coming from the input dataset and those that
are generated by the generator G.
For what concerns the network outputs of our architecture, we have that:

• XGen = G(Z|Y ): Samples generated from the generator network

49
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50 Chapter 4. System Design and Overview

Figure 4.1: System Overview: Generative Model Structure. A Conditional GAN is composed
of a generator model and a discriminative model. The discriminative model takes as input
either the Images coming from the dataset or the ones generated by the generative model. Both
networks are conditioned by the Y feature vector, while the generator also takes an input a noise
vector Z to sample from the data distribution it is approximating.

• Logits(XGen) = D(XGen|Y ): Discriminator output when real samples are input to the
discriminator.

• Logits(XTrue) = D(XTrue|Y ): Discriminator output with generated samples are provided
to the discriminator.

Logits are actually the output of the last layer of the discriminator network before the last
activation function, and they are related to the discriminator assessment of each sample. Loss
functions for either the generator and the discriminator are written upon those values and
alternately optimized to train the entire network. For simplifying the notation, we will implicitly
refer to the output logits simply as D in the case of the Discriminator/Critic, while we refer to
the output of the last activation function in the case of the Generator. All the remaining details
are given when we’ll describe the chosen GAN Architecture and the training process in section
4.4.1.



i
i

“Thesis” — 2018/4/4 — 13:48 — page 51 — #51 i
i

i
i

i
i

4.2. Use Cases 51

4.2 Use Cases

This section will describe the main use cases of our system, which are necessary for replicating
our results. The emphasis is put on how inputs and outputs are used in each case, while the
internal structure of the generative model is not represented in order to simplify the notation.
Every figure in this section also describes the function of the dataset metadata introduced in
section 3.4.1 while describing the filtered dataset. In particular the neural network inputs and
outputs are limited in a certain range, typically between 0 and 1 or -1 and 1. For this reason,
dataset statistics are needed to properly rescale input and output data. Blocks which are written
in bold type indicate those inputs and outputs that are of interest for the corresponding use
case.

4.2.1 Use Case: Model Optimization (Training)

This use case describes the optimization of the model, which is commonly referred as the
training phase. This is the phase in which data from the dataset is fed into the model and the loss
functions are minimized in order to find the network weights that allow the generation of samples
of good quality. In the ideal case the generated samples should come from a distribution which
is undistinguishable from the true data distribution. In reality, this is limited by the balance of
the discriminator ability in selecting features that allow it to distinguish true data from artificial
one, and the generator ability in misleading the discriminator in its task by generating samples
that are similar to the real ones. Figure4.2 shows that in this use case both the Scalar Features
Y and the Feature Maps X from the dataset are used to train the network. At each epoch
the generator network is fed with a noise vector Z along with the conditioning vector Y . This
procedure produces a training loss that is provided to an optimizer that acts on the network
weights.

Figure 4.2: Use Case: Model Optimization.

4.2.2 Use Case: Sample Evaluation

This use case is useful to assess the ability of the model to generate new samples on previously
unseen feature vectors and monitoring the training process. This is accomplished by running
two different procedures in which only the validation set, composed of samples that are left out
from the training phase, is used:

1. A validation loss is calculated by feeding the discriminator with images XTrue,V al coming
from the validation set and their corresponding feature vector YV al. This approach is often
used classical (i.e. discriminative) neural networks, where it is a good method for detecting
over-fitting and assessing network generalization capabilities. In our setting, however, this may
not always be a meaningful metric with every proposed underlying architecture. This is usually
due to the fact that with many GAN architectures the loss does not correlate well with the
quality sample. However, in section 4.4.1 we select one of the architectures which propose to
reduce the severity of this problem, among others.
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2. A set of quality metrics (4.4.2) are computed directly on the true samples XTrue,V al and
the samplesXGen,V al = G(Z|YV al) generated by conditioning the network with the same features
of XTrue,V al. This is based on the assumption that if the network actually learns a correlation
between the Y vector of features and a certain set of features proper to the corresponding X
samples, then the true sample and the generated one might show a certain level of similarity
according to the given features. Since this may be a strong assumption, especially in the setting
where we are not able to measure what features are actually mapped to each component Yi
due to the high dimensionality of the problem, a set metrics is chosen and presented in section
(4.4.2). Selected metrics should be general enough to express, when averaged on batches of
samples, a concept of ”sample quality” without directly referring to the features encoded in the
Y vector.

Figure 4.3 shows how the scalar features from the validation set are used to generate new
samples, that are compared to the corresponding true images.

Figure 4.3: Use Case: Validation and Sample Evaluation.

4.2.3 Use Case: Sampling or Generation

This use case is the one that produces new levels and it is run after a model has been trained.
In particular, our system supports several methods for sampling the network in order to generate
new levels.
The main problem of sampling this network, as highlighted in the work of White[68], is choosing
a feature vector that has lies in an area that has enough prior probability. We here present four
possible methods for sampling our network, while more details about possible improvements are
given in section 7.2.1. These methods differ, other from the sampling method, on the input
that is requested from the user. The noise vector Z can be either random generated for each
sampling or kept the same for testing how the Y vector impacts on the network generation.

• Dataset Sampling: This sampling method does not require any input from the user,
since the conditioning vectors Y are sampled from the dataset.

• ”Factors” Sampling: This method allows the user to specify a set of scalars yfeat =
[y1, ..., yf ], yi ∈ [0, 1] where f is the number of features. The extrema correspond to particular
values of the related feature, based on the dataset metadata. For example they can match
E[Yi] ± Std(Yi) such that each Yi is sampled from a region of the feature space in which it is
more likely to have significant probability. This, however, may be not enough because even if
the feature components Yi exists in the dataset distribution when taken singularly, this may
not hold for their joint distribution. Moreover, the presence of the Z vector greatly increase



i
i

“Thesis” — 2018/4/4 — 13:48 — page 53 — #53 i
i

i
i

i
i

4.2. Use Cases 53

the dimensionality of the problem. That said, this method can still be useful to easily specify
small perturbation in one or more features to inspect the network response, but arbitrary feature
sampling remains difficult.

• Direct Sampling: This kind of sampling requires the user to directly provide a Y vector
as it would come from the dataset. It can be used as a starting point to develop more complex
sampling methods.

• ”Content” Sampling: This kind of sampling is the one that is more interesting from
the perspective of an end user. If we consider a design tool that could use this network, we
would need to provide the user an interface that is the most natural as possible. Rather than
inspecting and ”guessing” numerical values, a level designer may be interested in sketching a
level and possibly obtaining a set of samples whose features reflect the ones of the provided
sketch. We thus propose a sampling method that extracts the feature vector directly from a
user generated image, in the same way it is extracted from the Feature Maps coming from the
Dataset.

Figure 4.4 shows the main differences of the proposed methods in terms of logical transformations
and required inputs.

Figure 4.4: Use Case: Sampling or Generation.
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4.3 Data Flow

Figure 4.5: System Overview: Data Flow Diagram. Disc-shaped blocks represent data archives,
circles represent processes and transformations, while the labels on arrows represents intermedi-
ate data. Dashed lines represents objects which presence depends on the use case of reference.

Figure 4.5 represents the conjunction of the use cases explained in section 4.2, from a data
flow perspective. The figure is organized as a set of transformations developing from left to
right. In particular, blocks on the left represent the inputs to the process and blocks on the
right boundary are the produced artefacts. It is possible to identify three main data paths: The
first produces the model parameters and it is identified with the use case ”Model Optimization”,
or ”Training” (4.2.1).
The second one corresponds to the Sample Evaluation use case (4.2.2) in which levels are gen-
erated with a feature vector and then compared with the true ones corresponding to the same
feature vector in the dataset. The generated metrics values are stored in a report and showed
during the training phase. The third path, which produces WAD Files, corresponds to the
Sampling Use Case (4.2.3). In this case the data path elements depend on the sampling method
used, for this reason they are indicated with dashed lines.
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4.4 Neural Network Architecture and Training Algorithm

Two main issues with GAN models are that the loss function is not always correlated with
the generated sample quality, and the sample quality evaluation is still an open field of research.
Although we tried some different GANs implementations and techniques for both problems, we
focused on the stability problem when selecting the final network architecture, while relying on
a set of metrics detailed in section 4.4.2 to qualitatively assess the samples.

4.4.1 Network Architecture

Chosen Architecture

Among the various GANs implementations that are proposed in the literature, we selected
the Wasserstein GAN with Gradient Penalty [28] (WGAN-GP) described in section 2.1.4 as it
showed better training stability with the DCGAN layer configuration and at least comparable
sample quality as opposed to the other models. We considered both the unconditional and
conditional versions, by parametrizing the system upon the selected input features. The only
difference we introduced to the proposed model is the adoption of the sigmoid activation function
on the generator output layer in place of tanh. This choice is motivated by the fact that tanh
have been originally selected for obtaining a better colour coverage in generated rgb images,
while we are interested in discrete values that often correspond to the lowest and highest output
values. This showed to help the network learning faster the representation of FloorMaps and
WallMaps, while not affecting the other maps.

Loss Formulation

We implement the Critic and Generator losses as in the “Improved Training of Wasserstein
GANs” official implementation [27], which combines formulas 2.2 and 2.3. Referencing to the
notation introduced in 4.1 the losses are defined as follow:

L
(i)
Critic ←E(D(XGen))− E(D(XTrue))︸ ︷︷ ︸

WGAN Loss

+ λGp︸︷︷︸
Gradient Penalty

L
(i)
Gen ←−D(XGen)

(4.1)

where XTrue and XGen are batches of levels sampled respectively from the dataset and the
generator network, λ = 10 and ε ∼ U [0, 1] (for the gradient penalty). We recall that in this
case, D corresponds to the logits of the Critic, since the output is considered before the last
activation function.

We can now give an intuitive interpretation of the loss we used: The critic network is trained,
by minimizing 4.1, to assign an unbounded ”score” to real and generated samples. This is one
of the reasons that motivate the change in name from ”discriminator” to ”critic” 1, since the
network outputs are in this case not probabilities but unbound values.

Training Algorithm and Hyper-Parameters

For implementing the training algorithm we followed the algorithm suggested by [28, alg. 1.
p. 4], which uses Adam[39] as the optimizer for both the networks and optimizes ncritic = 5
times the critic network for each generator update.
In addition to this implementation, we imposed an input rotation of 90 for each sample at each
epoch, such that every 4 iterations the network had in input all the possible orientation of a
level. This allows us to exploit the rotation invariance in the representation of a level, since its

1 Discussion on Wasserstein GAN paper with the authors of WGAN and GAN papers, among the others:
https://www.reddit.com/r/MachineLearning/comments/5qxoaz/r_170107875_wasserstein_gan/

https://www.reddit.com/r/MachineLearning/comments/5qxoaz/r_170107875_wasserstein_gan/
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playability is not affected by its orientation in the space it is represented. Table 4.1 shows in
detail the periodicity of each computation operation relative to each critic step, with reference
to our TensorFlow implementation at [25]. Due to implementation constraints, we calculate
the Metrics out of the TensorBoard computation graph, so they appear as inputs since they
have to be visualized with the other values. Reference Sample refers to the computation of a
sample that is generated by the same Y and Z vectors, sampled at the beginning of the training
phase. This helps in understanding how the network weights optimization visually impacts on
the generation of the same batch.
The other hyperparameters we used in the training phase are α = 0.0002, β1 = 0, β2, λ = 10.

Run Name Inputs Outputs Periodicity
Evaluated
opera-
tors

Critic
Input
(XTrue)

Scalar
Features
(Y )

Generator
noise (Z)

Train G - YTrain U [0, 1] LGen 5
Goptim,
summaryD

Train D XTrain YTrain U [0, 1] LCritic 1
Goptim,
summaryD

Validation XV al YV al U [0, 1]
LGen,V al,
LCritic,V al,
XGen

100
Goptim,
summaryD

Metrics Metrics(XV al, XGen) - 100
Goptim,
summaryD

Reference Sample − YRef ZRef XRef 100
Goptim,
summaryD

Network Checkpoint − − − checkpoint 100 save()

Table 4.1: Training Algorithm Operations

Artefacts Reduction

One of the problems that often affects GAN is the presence of artefacts or regular patterns
in the generated samples. This problem can be less noticeable when the network is generating
images of real objects such in the majority of other works, but it’s an important issue in our
setting in which a change in a pixel can have an important impact on the resulting level and its
associated metrics. This problem is well explained in [52] and it’s due to how the transposed
convolution is applied in case the kernel size is not divisible by the stride. In this case the
convolution leads to an uneven overlap of outputs in the high-resolution image, thus generating
the artefacts. Among the proposed solutions to overcome this issue we chose to simply use
a kernel size of 4 and a stride of 2, which showed to reduce the problem in our case without
impacting on the throughput or adding new types of layers.

4.4.2 Sample Evaluation metrics

The problem of evaluating the quality of the samples generated from a neural network remains
an open area of research [54]. The architectures that we considered are primarily trained on
datasets consisting of images representing real objects, such as faces or bedrooms. For dealing
with this problem, Salimans et al. propose both a process in which human annotators are asked
to assess the perceived quality of the samples [54, p. 4] and the usage of the Inception Model [61]
Score for assessing the perceived quality of the samples. Although many authors had success in
assessing sample quality using the Inception Score, this method showed to perform poorly on
our dataset. The most probable reason is that our dataset is very different from the ImageNet
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dataset upon which is trained the Inception Network.
Since tuning the Inception network to work with our dataset or applying other proposed solu-
tions based on similarly complex models wouldn’t have been possible given our computational
constraints, we decided to design some heuristics that could correlate with sample quality at
least with our dataset. These sample evaluation metrics give an additional way for assessing the
generated sample quality which is independent from the level features, and can be computed
during the training process with a minimal slowdown of the training process. The final models
are then studied considering the level features by confronting the true and generated feature
distributions (Section 5.1.3).

Instead of asking a neural network to evaluate the generated samples, our process compares
true and generated samples that correspond to the same conditioning vector. Since in principle,
given a vector of scalar features Y , the network could generate samples which are topologically
and visually very different, any metric that used quantities that are strictly related to the level
topology rather than a perceived concept of ”quality” couldn’t lead to reasonable results in this
phase. In designing these metrics we inspired to the paper “2D SLAM Quality Evaluation Meth-
ods”: In their work, Filatov et al. propose their solution to the problem of evaluating the maps
generated by a SLAM algorithm running on a mobile agent. Their approach consist in defining
three metrics that capture different aspects of the analysed maps, which shows some similarities
with the Feature Maps we use, and considering the entire set of metrics as an approximation of
the human perceived quality of a map.
Following a similar approach, we defined the following metrics for estimating the perceived qual-
ity of a sample generated by our network. These metrics are not meant to be a general solution
to the problem of evaluating samples of a GAN nor to improve the work of slam˙metrics, but
only to be used as a qualitative tool for assessing the samples in our particular case.

Entropy Mean Absolute Error

This metric is defined as the Mean Absolute error between the entropy of two images in their
colour space. In particular, since as described in chapter 3.4 we are representing maps as grey-
scale images whose colour ranges between 0 and 255, we calculate the pixel distribution over
each possible colour value c of an image x, Pc(x), then we calculate the entropy as:

S(x) = −
255∑
c=0

Pc(x) ∗ logPc(x) (4.2)

then, the metric over a batch of true images Xtrue and a batch of generated images Xgen,
both consisting of N samples, is calculated as:

Entropymae(Xtrue, Xgen) =
1

N

N−1∑
i=0

|S(Xgen(i))− S(Xtrue(i))| (4.3)

This metric is related to how different the entropy of a generated image is from the corre-
sponding real image, which can also be interpreted as the difference in the quantity of information
expressed by the two samples. In general, large values of this metric indicates that the generated
sample is close to random noise or the topology of the two levels are greatly different, while small
values indicates that the entropies of the two images are on a comparable level.

Mean Structural Similarity Index

This metric is defined as the Structural Similarity (SSIM) Index [67] between two images. This
measure is the result of a framework that consider several aspects of an image, such as the lumi-
nance, the contrast and the structure, rather than basing only on a single statistic. Moreover,
the structural similarity technique is applied locally over the image, for reflecting the fact that



i
i

“Thesis” — 2018/4/4 — 13:48 — page 58 — #58 i
i

i
i

i
i

58 Chapter 4. System Design and Overview

pixels are more correlated to close pixels than distant ones.
For calculating this metric we use the implementation provided by the Scikit-Image Python
library, which we leave the formulation to the paper [67, p. 604], and compute the mean of
the SSIM index over the images belonging to the true and generated batches. Regarding the
interpretation of the metrics, higher values indicate the fact that true and generated samples
are often structurally similar: in other words, the network produces samples in which the local
structure of the pixels are comparable.

Mean Encoding Error

We define as ”Encoding Error” a measure of how far the pixels colour of a generated image
are from their closest meaningful value. Specifically, as we introduced the encoding values for
each feature map in chapter 3.4 the reader might have noticed that not all values correspond
to an actual representation. For example, the FloorMap encodes the pavement as 255 and the
empty space as 0, leaving values from 1 to 254 without a real meaning. Since as highlighted in
section 4.2 the network only reads and outputs floating point numbers between 0 and 1, this is
not actually a problem of choosing an encoding space for the images, rather it is intrinsic to the
network definition. Due to the generation process involving noise and non-integer parameters,
the network will often output pixel colours that are in-between the possible values the input
images can take, even though this behaviour decreases as the training proceeds.
The definition of this function, for a generic pixel colour value x which assumes meaningful
values every i colour values, corresponds to a periodic triangular function having base i which
assumes the maximum value of 1 wherever x is halfway a meaningful value and another. More
formally:

EncI(x) ≡
∑
k∈Z

Λ(
2(x− kI)− I

I
) (4.4)

where Λ(x) is the unit-base triangular function such that Λ(0) = 1.
The metric is then calculated as

MEE(Xgen) =
1

N

N−1∑
i=0

1

|P |
∑
p∈P

EncI(p) (4.5)

where p ∈ P is the colour of each pixel of the image, |P | is the total number of pixels in an
image and N is the batch size of X. In particular, I is 255 for the FloorMap and WallMap while
is 1 for the other maps.
Since, by construction, MEE(Xtrue) = 0 up to conversion errors or artefacts, this metric is
only calculated for the generated samples and it is correlated with the ability of the network to
represent precisely the data encoding.

Mean Corner Error

This error is based on the idea introduced with the corner count metric introduced by [21].
We define our implementation of the Corner Error of two images as:

Cerr(nx, ny) =

√
(nx − ny)2

nxny
(4.6)

where nx and ny are respectively the corner count of two binary images, extracted using the
Harris corner detector [30]. This formula may seem arbitrary, but it demonstrated to scale well
on our dataset, since the corner count is actually limited by the size of our samples. The final
metric is computed, as the other cases, averaging the corner error over the images in the batch:

MCE(Xtrue, Xgen) =
1

N

N−1∑
i=0

Cerr(ntrue,i, ngen,i) (4.7)
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Again, for simplicity, we indicated as ntrue,i and ngen,i the corner count given by
ni = count(peak(Harris(Xi))), with obvious meaning of the function names. This metric
is proportional to the average distance that the true and generated samples have, giving a
quantitative measure of relative map complexity. It is worth nothing that it’s not always the
case, since generation artefacts may dramatically increase this value, producing a great number
of corners. For this reason, this quantity reflects both the relative average complexity between
batches of images and the presence of noise or artefacts in the generated samples.

4.5 WAD Editor and Feature Extractor

In the previous sections of this chapter we described the generative module of the system. The
module that remains to be described is the one that copes with the two endpoints of the system,
in particular with the conversion from WAD to Feature Maps (or features) and vice-versa.

4.5.1 Reading and Writing

As explained in section 3.4, data is hosted in an on-line archive. Due to the massive amount of
levels a script for automatic download and file extraction has been written. This file also produces
a preliminary JSON database, which is further expanded when WAD files are analysed.

The WAD parser that is provided by “The VGLC: The Video Game Level Corpus” didn’t
allow to extract all the features we needed for our data, while other Python modules that
offered WAD file access didn’t have enough documentation and support or missed features like
the ability to create new files. For this reasons we proceeded to write a more complete editor,
which offer the user a structured organization of the data that is contained in a WAD file using
a more readable format. In particular each WAD file is read as a structured Python dictionary
containing all the data we listed in chapter 3.4. The module has been realized so that a developer
could ideally build a new map using only a few lines of code or even a PNG Image.

4.5.2 Feature Extraction

The feature extraction process is built upon our WAD Editor. In particular each WAD is first
read as a structured Python dictionary, than it is processed to extract the set of features we
provide with the dataset.

The process of generating the Feature Maps is quite straightforward: For each Sector the
floor height is drawn as a filled polygon on an image and the sector tags annotated. Then, each
linedef is drawn as a straight line, producing the WallMap, thus linedef triggers are matched
with the relative sector tags for generating the TriggerMap. FloorMaps are derived by simply
flattening the heightmap colour. During the process that generates the Feature Maps, the scalar
features are computed on the feature maps themselves or directly from the sector and linedef
data, depending on the feature. In this phase, the graph and the textual representation are also
produced.

The WAD Editor is also able to produce WAD files from the feature map PNG representation
of a level. In principle, it is possible to generate a level by using a bitmap image editor. A more
interesting use would be using this editor to write the levels generated from the network back
to a WAD file, and explore them directly in game. This is possible, at the cost of a slight loss of
information due to the pixel representation of the level. In particular, line detection algorithms
such as the Hough transform Line detection algorithm [16] or its probabilistic version [23] did
not work well as expected in detecting walls from the levels generated by the network. Another
approach we tried was using an edge detection algorithm for drawing sectors as contours, but this
revealed to be too complex due to the way sectors are specified in WAD files (3.2). We used an
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alternative approach, exploiting the information provided by the Room Adjacency Graph built
upon the RoomMap: For each edge in the graph, which correspond to the boundary between
a room and another, a set of walls is defined and their coordinates are annotated within the
graph. Approximating each sector as an entire room the process of drawing the entire map
room-by-room became more straightforward. The work of inserting height changes in parts that
are smaller than a room can be done by further segmenting the heightmap when considering
each room and it is left as a future work.

4.6 Summary

In this chapter we presented a framework that can be used to train generative models, in partic-
ular Generative Neural Networks, to produce new levels from a previously collected dataset. For
describing our framework we showed the possible use cases, how they are accomplished by its
modules and how the data is transformed from an high level perspective. In order to cope with
the difficulties in sampling the network, we also provided possible methods for conditioning the
network during the generation phase. We then detailed the neural network architecture we use
in our system and the steps accomplished by the training function. For assessing the perceived
quality of the samples during the training phase without relying on subjective evaluations, we
proposed a set of metrics that can be monitored as the network is optimized. At the end of the
chapter we introduced our endpoint modules for converting WAD levels into a set of Feature
Maps and vice-versa and for extracting the features. In the next chapter we describe our we set
up the experiments and show details on the trained networks.
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Chapter 5

Experiment Design

This chapter describes the experiments we conducted using the system described in chapter 4.
Section 5.1 shows the preliminary steps for preparing the system to our experiments, such as the
selection of the input levels and the features. Section 5.1.4 shows the trained model structure
we used in our experiments and 5.2 detail the three experiments we set up in order to study the
trained networks.

5.1 Experiment setup

This section explains what choices we made before training the models in order to conduct the
experiments. In particular we had to select which data to use given our technological constraints,
the network input features and how to evaluate our models.

5.1.1 Input Levels Selection

For preparing our experiments we filtered the DoomDataset by taking only the samples up
to 128x128 in size and which had exactly one ”floor”. This led to a dataset of 1088 samples,
which are then augmented by rotation during the training process. This is motivated from the
fact that even if the level orientation does not affect playability, using levels with more floors
could lead the network to learn a correlation between floors (and how to arrange them inside the
map) which could potentially be misleading or be just enforced by the sample size or the way
the editor arranged them on the level coordinate space. Moreover, using only one-floor levels
helped in reducing artefacts that appeared as very small floors in resulting output.

5.1.2 Feature Selection

In selecting which numerical features Y to use as network input we followed some assumption
and criteria:

1. Reconstructability: In order to be able to analyse the resulting network, it is possible to
use only features that can be reconstructed from the network output images with reasonable
loss of information. For example, features what depends on the WAD representation of the level
such as the number of sectors are too much dependant both on the editor used to build the level,
and the algorithm we use to convert back images to WAD. On the contrary, features based on
the level morphology in the generated images are a better choice since they are evaluated using
the same algorithm.

2. Visibility: In order to be selected as an input, a feature has to have a visual impact on
the samples. While in principle neural networks can extract complex and possibly inscrutable
structure in the data, we found it reasonable to use only features that can have a visual feedback
on the Feature Maps.
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62 Chapter 5. Experiment Design

3. Robustness: Other than having a visual impact on the samples, a good feature must be
robust to noise in the feature maps, in other words it must not change greatly for colour variation
of a few pixels in the images.

We selected a subset of features that reasonably satisfied these properties by comparing the
feature values of visually different levels. An example of level set and the corresponding values
for the selected features is shown on figure 5.1.
A summary of the feature we used in our experiment is:

• level equivalent diameter : Diameter of the circle having the same area as the level.

• level major axis length: Length of the longest axis of the level, independent from the
rotation.

• level minor axis length: Length of the shortest axis of the level, independent from the
rotation.

• level solidity : Ratio between the area of the level and its convex hull. It is related on how
much the is convex.

• nodes (number of rooms): Count of the rooms in the room adjacency graph.

• distmap skewness: Skewness of the distribution of each pixel distance from the closest
wall. This metric is visually related to the balance between large and small areas.

• distmap kurtosis: Kurtosis of the distribution of each pixel distance from the closest wall.
This metric is visually related to the presence of both very large and very small areas, or area
size variety.

Figure 5.1: Example of feature values on a set of 5 different levels. The first row shows the
Room Map of the levels, in which each room is enumerated with a different grayscale colour.
The second row shows the feature values for the features level equivalent diameter, level major
axis length, level minor axis length, level solidity, nodes (number of rooms), distmap skewness
and distmap kurtosis.

5.1.3 Framework Evaluation

In order to evaluate the feasibility of our approach to the problem of level generation, we
designed a set of experiments for testing the impact of input features on the generative model.
All the experiments involve comparing the distribution of true data and the one generated from
the neural network, in particular only features that are informative according to our dataset
have been considered. In generating the models, we first trained a neural network without input
features so that the generator is only controlled by the noise vector Z. We then added a set of
features to our architecture and used it to train a network using the same random initialization.
Details on the network we produced are shown in table 5.1.
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5.1.4 Trained Architectures

In training the models we kept fixed the WGAN-GP architecture, learning hyperparameters,
the number of layers, the kernel size and the stride, while we varied the input features. During
the development of the system we tried several different architectures and networks, but we show
only the ones we conducted our experiments upon. For example, in our earlier experiments we
tried using a single multi-valued map, but the results were affected from too much noise and
artefacts. In the hope of obtaining better quality samples we also tried adding more layers
to the network: although it showed to learn faster at the beginning, the architecture became
unstable and the generator collapsed as soon it reached a quality comparable with the networks
we present here. Table 5.1 shows the final models we used in our experiments:

Run Name Iterations Features Maps
D Layers
(filters)

G Layers
(filters)

unconditional 36000 No features

floormap

heightmap

wallmap

thingsmap

4 (1024, 512,
256, 128)

4 (128, 256,
512, 1024)

conditional 36000

level
equivalent
diameter

level major
axis length

level minor
axis length

level solidity

nodes

distmap-skew

distmap-kurt

floormap

heightmap

wallmap

thingsmap

4 (1024, 512,
256, 128)

4 (128, 256,
512, 1024)

Table 5.1: Trained networks.
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5.2 Experiments description

For assessing the capabilities of the networks in relation to the problem of level generation we
designed three experiments, which are described in the following paragraphs. Since the second
experiment depends on the result of the first one, the results are showed together in chapter 6.

5.2.1 Experiment 1: Unconditional generation

In the first experiment we tested the ability of the ”unconditional” network to generate levels
that exhibit features similar to the original ones. For each level in the dataset we sampled one
level from the unconditional network using random noise as input, we extracted the features
from the generated level and we compared the distribution of the dataset with the distribution
of the generated features. For comparing the true and generated feature distributions we used
the Two-tailed Kolmogorov-Smirnov Statistical Test [37] that utilizes a statistic calculated as
the distance between the empirical distribution functions of the two samples. The problem we
solved with KS can be resumed as:

H0 :FG(x) = FT (x),∀x
H1 :FG(x) 6= FT (x), for some x

(5.1)

where FG(x) and FT (x) are the empirical distribution functions of the generated and true
features, respectively. The tests have been corrected using the Bonferroni correction using a
family-wise error rate (significance for the entire experiment) of 0.05; in correcting p-values we
also considered the tests of experiment 2. Results are shown alongside the results of experiment
2 in tables 6.1 and 6.2.

5.2.2 Experiment 2: Addition of input features

In the second experiment we tested if the addition of features to the network input can have
some effect on the generation of the samples. For doing this, we replicated the experiment one
using the conditional network, then we compared the results with those obtained from the un-
conditional network. For each level in the dataset we sampled one level, using the true feature
vector as input and the same noise vectors used in experiment one. We then proceeded as in
experiment one in testing the true and generated distributions of features.
For easily comparing the results of the unconditional and conditional networks we clustered the
features in four groups, each one corresponding to a possible case:

• F1: Features for which the null hypothesis is rejected in both the unconditional and
conditional networks.

• F2: Features for which the null hypothesis is rejected for the unconditional network (ex-
periment 1) but cannot be rejected for the conditional network.

• F3: Features for which the null hypothesis cannot be rejected for both the unconditional
and conditional network.

• F4: Features for which the null hypothesis cannot be rejected for the unconditional net-
work (experiment 1) but is rejected for the conditional network.

Only for the features in the group F3, we also consider the distance (KS-stats) between the
true and generated feature distributions in order to discover which network better reflects the
feature distribution. This is reported as an asterisk (*) in the results tables 6.1 and 6.2, while
values of the statistic are shown in Appendix A.
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5.2.3 Experiment 3: Controlling the generation

In the third experiment we studied the impact of the input features on the generated levels from
a qualitative point of view. In particular, we selected a set of levels from the dataset according
to their feature values: for each input feature we selected the levels that match the 25th, 50th
and 75th percentiles of the feature distribution, obtaining a total of 3 ∗ |yi| = 21 levels. We
then sampled 1000 levels from the conditioned network for each selected input feature vector,
obtaining 1000 generated feature vectors for each input level. For each input feature, we plotted
the three selected input values and the corresponding generated feature distributions, showing
how the generated level distribution changes with respect to a change in the input feature.
Results of this experiment are shown in figure 6.17.

5.3 Summary

In this chapter we described the input selection for our trained models, resulting in 1088
levels up to 128 pixels and having one floor. We then described the general principles we used
to select the input features for the conditional network, selecting 7 representative features. We
then proceeded to define three experiments for testing the two network capabilities and the
effects of controlling the conditional network with the input features. In the next chapter we
show the results we obtained, while in the following one we discuss the results and present our
conclusions.
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Chapter 6

Results

This chapter shows the results obtained from the training phase of the two networks and from
the execution of the three experiments described in chapter 5. After that, the chapter provides
a detailed discussion of the proposed results. In particular, Section 6.1 shows the graphs of the
two networks losses and the sample evaluation metrics described in chapter 4. Section 6.2 shows
the test outcomes for the three experiments we conducted. Section 6.3 shows a set of levels
sampled from both networks. Section 6.4 provides our discussion on the results by considering
them in the same order they are presented.

6.1 Training and Sample Metrics

In this section we show the metrics that are calculated during the training phase of each
network, including the losses and the Sample Evaluation Metrics described in section 4.4.2.
Figures 6.1 and 6.2 show the training and validation loss for the unconditional and conditional
networks, respectively. For each feature map, Figures from 6.3 to 6.7 show the Entropy Mean
Absolute Error, Figure 6.8 shows the Structural Similarity, Figures from 6.9 to 6.12 show the
Encoding Error, Figure 6.13 and 6.14 show the Corner Error for the FloorMap and WallMap,
respectively.
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68 Chapter 6. Results

Figure 6.1: Unconditional Network Loss for the Critic: Training loss (red) and Vali-
dation Loss (blue) both converge toward zero.

Figure 6.2: Conditional Network Loss for the Critic: Training loss (Red) and Validation
Loss (Blue) both converge toward zero.
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Figure 6.3: Sample Evaluation Metrics: Mean Entropy difference over all the maps
(floormap, wallmap, thingsmap, heightmap). Unconditional (Red) and Conditional
(Blue) networks generate samples having similar mean entropy.
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Figure 6.4: Sample Evaluation Metrics:
Entropy MAE calculated on FloorMap.
Unconditional (Red) and Conditional
(Blue) networks generate samples having
similar Floormap entropy.

Figure 6.5: Sample Evaluation Metrics:
Entropy MAE calculated on HeightMap.
Conditional (Blue) network generate sam-
ples having slightly better HeightMap en-
tropy than the Unconditional network
(Red).

Figure 6.6: Sample Evaluation Metrics:
Entropy MAE calculated on WallMap. Un-
conditional (Red) and Conditional (Blue)
networks generate samples having similar
WallMap entropy.

Figure 6.7: Sample Evaluation Metrics:
Entropy MAE calculated on ThingsMap.
Unconditional (Red) and Conditional
(Blue) networks generate samples having
similar ThingsMap entropy.
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Figure 6.8: Sample Evaluation Metrics: Mean Structural Similarity over the samples. Condi-
tional (Blue) networks generate samples being more similar to true ones than the Unconditional
network (Red).
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Figure 6.9: Sample Evaluation Metrics:
Encoding Error calculated on FloorMap.
Both Unconditional (Red) and Conditional
(Blue) networks learns the colour scheme
for representing the floors.

Figure 6.10: Sample Evaluation Metrics:
Encoding Error calculated on HeightMap.
Conditional (Blue) network is slightly more
precise in representing the colour coding for
the floor height than the Unconditional net-
work (Red).

Figure 6.11: Sample Evaluation Metrics:
Encoding Error calculated on WallMap.
Both Unconditional (Red) and Conditional
(Blue) networks learns the colour scheme
for representing the walls.

Figure 6.12: Sample Evaluation Metrics:
Encoding Error calculated on ThingsMap.
Both Unconditional (Red) and Conditional
(Blue) networks learns the colour scheme
for representing the game objects.
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Figure 6.13: Sample Evaluation Metrics: Mean Corner Error over the FloorMap.
Conditional (Blue) networks generate samples having a floor corner count closer to
true levels than the Unconditional network (Red).

Figure 6.14: Sample Evaluation Metrics: Mean Corner Error over the WallMap. Con-
ditional (Blue) networks generate samples having a wall corner count closer to true
levels than the Unconditional network (Red).



i
i

“Thesis” — 2018/4/4 — 13:48 — page 74 — #74 i
i

i
i

i
i

74 Chapter 6. Results

6.2 Experiment Results

This section presents the test results for experiment 1 and 2, and the graphs produced by the
experiment 3.

6.2.1 Results of experiments 1 and 2

Results for experiments 1 and 2 are shown respectively in the first two columns of Table 6.1
and 6.2. The third column indicates the feature group according to the description made in
section 5.2.2. The set of features is divided in input and non-input features, with reference to
the conditional network.

Input Features

Table 6.1: KS-test results for input features, using a significance level of 0.05 and the Bonferroni
correction method. Results are indicated with R if the null hypothesis can be rejected or with N
otherwise. An asterisk indicates the network that performed better (has the minimum KS distance) if
the null hypothesis is rejected in every network

uncond cond Group
feature

level equivalent diameter N N F3
level major axis length R* R F1
level minor axis length N N F3
level solidity R R* F1
nodes R R* F1
distmap-skew R R* F1
distmap-kurt R N F2

Non-Input Features

Table 6.2: KS-test results for non-input features, using a significance level of 0.05 and the Bonferroni
correction method. Results are indicated with R if the null hypothesis can be rejected or with N
otherwise. An asterisk indicates the network that performed better (has the minimum KS distance) if
the null hypothesis is rejected in every network

uncond cond Group
feature

level area N N F3
level convex area N N F3
level eccentricity R* R F1
level euler number R R* F1
level extent R R* F1
level filled area N N F3
level orientation N N F3
level perimeter N N F3
level hu moment 0 N R F4
level hu moment 1 R* R F1
level hu moment 2 R R* F1
level hu moment 3 R N F2

Continued on next page
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Table 6.2: KS-test results for non-input features, using a significance level of 0.05 and the Bonferroni
correction method. Results are indicated with R if the null hypothesis can be rejected or with N
otherwise. An asterisk indicates the network that performed better (has the minimum KS distance) if
the null hypothesis is rejected in every network

uncond cond Group
feature

level hu moment 4 N R F4
level hu moment 5 N R F4
level hu moment 6 R N F2
level centroid x R* R F1
level centroid y R* R F1
number of artifacts R R* F1
number of powerups R N F2
number of weapons R R* F1
number of ammunitions R* R F1
number of keys R R* F1
number of monsters R* R F1
number of obstacles R R* F1
number of decorations R R* F1
walkable area N N F3
walkable percentage N N F3
start location x px R R* F1
start location y px R R* F1
artifacts per walkable area R R* F1
powerups per walkable area R N F2
weapons per walkable area R R* F1
ammunitions per walkable area R* R F1
keys per walkable area R R* F1
monsters per walkable area R R* F1
obstacles per walkable area R R* F1
decorations per walkable area R R* F1
avg-path-length R R* F1
diameter-mean R R* F1
art-points R* R F1
assortativity-mean R* R F1
betw-cen-min N N F3
betw-cen-max R R* F1
betw-cen-mean R* R F1
betw-cen-var R* R F1
betw-cen-skew R R* F1
betw-cen-kurt R R* F1
betw-cen-Q1 R* R F1
betw-cen-Q2 R* R F1
betw-cen-Q3 R* R F1
closn-cen-min R* R F1
closn-cen-max R R* F1
closn-cen-mean R* R F1
closn-cen-var R R* F1
closn-cen-skew R* R F1
closn-cen-kurt R* R F1
closn-cen-Q1 R* R F1

Continued on next page
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Table 6.2: KS-test results for non-input features, using a significance level of 0.05 and the Bonferroni
correction method. Results are indicated with R if the null hypothesis can be rejected or with N
otherwise. An asterisk indicates the network that performed better (has the minimum KS distance) if
the null hypothesis is rejected in every network

uncond cond Group
feature

closn-cen-Q2 R R* F1
closn-cen-Q3 R R* F1
distmap-max R* R F1
distmap-mean R* R F1
distmap-var R* R F1
distmap-Q1 R* R F1
distmap-Q2 R R* F1
distmap-Q3 R R* F1

6.2.2 Graphical results for Experiments 1 and 2

Figure 6.15 shows the cumulative distribution functions relative to the features considered in
table 6.1. Another view of the same data is proposed in figure 6.16 in which the probability
densities for the input features are shown.



i
i

“Thesis” — 2018/4/4 — 13:48 — page 77 — #77 i
i

i
i

i
i

6.2. Experiment Results 77

0 20 40 60 80 100 120 140
level_equivalent_diameter

uncond KS stat:0.03127874885004603
uncond KS p-value:0.6556492783947556

cond KS stat:0.04339796860572484
cond KS p-value:0.25396881237743213

0.0

0.2

0.4

0.6

0.8

1.0 True
uncond
cond

0.0 0.2 0.4 0.6 0.8 1.0
level_solidity

uncond KS stat:0.12143514259429622
uncond KS p-value:1.840135813518595e-07

cond KS stat:0.11357340720221609
cond KS p-value:1.4754677927589175e-06

0.0

0.2

0.4

0.6

0.8

1.0 True
uncond
cond

0 50 100 150 200
level_major_axis_length

uncond KS stat:0.10671573137074519
uncond KS p-value:7.36567058819042e-06

cond KS stat:0.11634349030470914
cond KS p-value:7.347760695263515e-07

0.0

0.2

0.4

0.6

0.8

1.0 True
uncond
cond

20 0 20 40 60 80 100 120 140
level_minor_axis_length

uncond KS stat:0.07635694572217111
uncond KS p-value:0.003304501346087443

cond KS stat:0.07848568790397048
cond KS p-value:0.0023582308576438967

0.0

0.2

0.4

0.6

0.8

1.0 True
uncond
cond

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
distmap-skew

uncond KS stat:0.15271389144434233
uncond KS p-value:1.490506084747054e-11

cond KS stat:0.10710987996306565
cond KS p-value:7.031235433569532e-06

0.0

0.2

0.4

0.6

0.8

1.0 True
uncond
cond

2 0 2 4 6 8 10 12
distmap-kurt

uncond KS stat:0.1379944802207912
uncond KS p-value:1.6407922794454857e-09

cond KS stat:0.0840258541089566
cond KS p-value:0.0008801717444682965

0.0

0.2

0.4

0.6

0.8

1.0 True
uncond
cond

0 50 100 150 200 250
nodes

uncond KS stat:0.18031278748850044
uncond KS p-value:6.13530016131231e-16

cond KS stat:0.159741458910434
cond KS p-value:1.4797217460970829e-12

0.0

0.2

0.4

0.6

0.8

1.0 True
uncond
cond

Figure 6.15: Experiments 1 and 2: Cumulative distribution functions for true data, uncondi-
tional network and conditional network for each input feature.
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Figure 6.16: Experiments 1 and 2: Estimated probability density functions for true data, un-
conditional network and conditional network for each input feature.
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6.2.3 Results of Experiment 3

Results of Experiment 3 are shown in figure 6.17. Each figure shows a different input feature.
The three vertical lines correspond to the values of the three quartiles that have been used to
generate the three distributions of 1000 levels each.
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Figure 6.17: Experiments 3: Generated distributions for each true feature value in the cases of
25th (red, circles), 50th (green, squares) and 75th (blue, diamonds) percentiles.
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6.3 Generated Samples

In this section we show a small set of samples that have been generated by the two networks
using the ”dataset” sampling approach introduced in section 4.2.3. Figures 6.18 and 6.19 show
samples from the unconditional network, one level per row. Figures 6.20 and 6.21 show samples
from the conditional network and the true levels that correspond to the input feature vector
used to sample the network.

6.3.1 Unconditional Network

Figure 6.18: Samples generated by the unconditional network (1 of 2). From left to right:
Floormap, Heightmap, Thingsmap, Wallmap
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Figure 6.19: Samples generated by the unconditional network (2 of 2). From left to right:
Floormap, Heightmap, Thingsmap, Wallmap

6.3.2 Conditional Network

Figure 6.20: Samples generated by the Conditional network (1 of 2). In the left column, the
heightmap and the wallmap of the true level that corresponds to the feature vector used to
generate the corresponding level. On the right column, the corresponding generated Floormap,
Heightmap, Thingsmap and Wallmap
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Figure 6.21: Samples generated by the Conditional network (2 of 2). In the left column, the
heightmap and the wallmap of the true level that corresponds to the feature vector used to
generate the corresponding level. On the right column, the corresponding generated Floormap,
Heightmap, Thingsmap and Wallmap
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6.4 Results Evaluation

We conduct the analysis of the results in the same order as they are presented in the previous
sections, eventually making reference to content which is included in the Appendix. The first
part of our discussion considers the metrics that have been monitored during the training phase,
explaining the results. After that, we consider the results of the experiments described in section
5.2.

6.4.1 Sample Evaluation Metrics

Training losses in figures 6.2 and 6.1 confirm the advantages of the WGAN model over earlier
proposals, it is indeed possible to appreciate a converging behaviour similar to that of classical
Neural Networks in both the conditional and unconditional case. This proved to be useful
for understanding when to stop the training phase, since a manual inspection of the samples
wouldn’t be informative of the actual network capabilities. The fact that the validation loss
follows the behaviour of the training loss also suggests a good generalization capability of the
critic in assigning level scores even for previously unseen samples.

Entropy Mean Absolute Errors in figure 6.3 converge toward a small value in the same way
the loss does, confirming that the WGAN loss is actually correlated to the sample quality in
our case. In particular this metric is related to the difference in information content, or noise,
between true and generated samples. While a small difference is still detectable, both networks
showed to reduce this difference as the training proceeded.

Mean Structural Similarity (Figure 6.8) shows that the conditional network generates samples
that are structurally more similar to true levels than the unconditional network does. This is
also true if we consider the networks in their early training stage. It’s worth nothing that the
structural similarity is a metric for evaluating the perceived sample quality, so it reaches unitary
values only if the two samples are the same. In our setting we compare different levels so we
cannot treat SSIM as an absolute value but only as an indicator of the ”relative quality” of the
samples generated by the two networks.

Encoding Error in figures 6.9 to 6.12 shows that the network is capable to easily learn and
reproduce the colour coding used in each separated map. This does not mean that the network
is able, for example, to only output either the value 0 or 255 when generating a floormap, but
this metric shows that the average error is small. For this reason, the only post-processing we
apply to generated samples in order to compute the generated features is to threshold the colour
value toward the closest meaningful value (eg. a 244 in a floormap is interpreted as a 255).

Corner Error in figures 6.13 and 6.14 shows that while the unconditional network generates
levels that don’t significantly improve their corner count with respect to the true ones, the
conditional network actually learns to generate more accurate levels. This value could hardly
reach low values as two levels having the same features (with reference to the ones we have
selected as inputs) could naturally differ in their topology, raising the value of this metric.
Another aspect that is worth nothing is the lower variance in the conditional case, possibly
reflecting a lower amount of noise or artefacts in generated levels.
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6.4.2 Experiments Discussion

The first columns of tables 6.1 and 6.2 show for what features it is not possible to reject
the hypothesis that the true distribution and the distribution generated by the unconditional
network are equal. If we analyse these features we can notice that many features that are ”well
learned” by the network in their output depend on the level area or the perimeter. In particular,
figure 6.15 and 6.16 show how the two networks are able to reproduce the level area distribution
(level equivalent diameter) and the length of the minor axis of the levels.

The second column of the tables shows the same concept for the conditional network. In
particular, table 6.1 shows substantial improvements on the input features: In this case, the
feature distmap-kurt (associated to the ”variety” in room dimensions), is now distributed enough
closely to the real distribution that the null hypothesis cannot be rejected any more. The input
features that have been learned by the unconditional network are also learned by the conditional
network. For the features solidity, nodes (number of rooms) and distmap skewness (balance
between big and small areas) the conditional network cannot reproduce a distribution that is
close enough to the real one to change the outcome of the test, however the statistic values in
table A indicate that the distributions of the conditional network are the closest to the real
one 1.

If we analyse the results in table 6.2 and graphs in Appendix B we can confirm in many case
the behaviour stated in the previous paragraph: features which are better represented by both
networks (group F3) are related with the levels area. Features expressing locations of particular
points of the maps such as the topological centroid or even explicitly represented as the player
starting point, are unsurprisingly not well represented by the networks. The features regarding
the number of items in the level, which would be useful from a design point of view, are still
not well represented probably due to the still too high presence of checker board artefacts in
the Thingsmap. However, the conditional proved again to be the best of the two networks
in describing this set of features, learning particularly well with the distribution of ”power-
ups”. The last set of listed features is, as expected, not well learned by the networks since it
is composed by features which are graph-metrics or other too complex features, for which this
kind of model is not suitable.

Graphs of figure 6.17 show how the unconditional network response varies by changing each
input features to the values that correspond to the three quartiles of the true distribution.
Even if in no cases the input feature can deterministically control the output feature of the
value, for the majority of features it is possible to alter the output distribution by acting on
the input value. This fact is represented by the ordering of the curves, in many case reflecting
the ordering of requested values. In particular we can notice how all the features except the
solidity and distmap-kurt react well to values changes. The particular shape of some curves
such in distmap-kurt and major axis may suggest that the location of the output features does
not linearly follow the translation of the requested feature or it could work as intended only in
some areas of feature space. The particular undesired behaviour of the 75th percentile of level
solidity can be due to the network failing to learn the representation of such high solidity values,
or the presence of many artefacts in the corresponding generated levels leading to a incorrect
calculation of the feature. It is worth noting that due to the sampling issues we considered in the
previous chapters, this experiment has been conducted by selecting different feature vectors that
exhibited the desired value on a particular feature. The possible drawback of this experiment is
that the visualized distributions could depend on other factors other than the single requested
feature value, however we observed better or similar results in earlier networks we trained with
different settings, suggesting that the issue we just highlighted could have marginal impact on
our results.

1This fact is also indicated with an asterisk in table 6.1
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6.4.3 Visual Acknowledgement

The results we discussed in the earlier sections indicate that the conditional network has some
advantages over the unconditional version, which can be briefly resumed as a better overall
sample quality (Sample Evaluation Metrics), a better learning of input and other topological
features (experiments 1 and 2) and the possibility to control the level generation up to some
extent (Experiment 3). In a last consideration about these results we want to highlight that
our experiments focused on proving the ability of the networks to reproduce the true feature
distributions of the original dataset. This means that if the null hypothesis for one feature
cannot be rejected then we can assume that its distribution may be ”close enough” to the
true one to generate levels which are similar to the existing ones. The contrary, however, does
not necessarily prevents the model to be effectively used as a tool for generating levels, but
only indicates that the generated levels somehow differs from the true ones. This fact can be
appreciated by a visual comparison of the true and generated samples we proposed in section 6.3:
in many cases it is possible to notice that the global shape and size of the generated samples
vaguely resembles that of the true levels, indicating that the network actually considers some
of the requested features up to a certain point. On the same figure it is possible to notice some
struggle of the network in representing smaller features such level borders, probably due to
generation noise. This can alter the calculated features and lead to inaccurate distributions, for
this reason we recommend to apply some morphological processing or noise reduction techniques
before converting the generated images to playable WAD files in order to reduce the generation
noise.

6.5 Summary

In this chapter we presented our results by first showing the quality difference in samples
generated by the two networks, according to the evaluation metrics defined in section 4.4.2
and then showing experimental results for testing the relation between the true and generated
features and the impact of the input features in the conditional network. For providing a visual
comparison of the generated levels, we also showed a set of generated samples for each network.
In the last section we discussed in detail our results by first analysing the sample evaluation
using evaluation metrics, then by considering the results of the experiments that analyse the
networks behaviour with respect to the input features. In the next chapter, we provide more
general considerations about our work and highlight the open problems and the possible future
works.



i
i

“Thesis” — 2018/4/4 — 13:48 — page 87 — #87 i
i

i
i

i
i

Chapter 7

Conclusions and Future Work

In this chapter we make general conclusions about our work, while providing a set of open
problems and the works that still have to be made. Section 7.1 reports our final conclusions,
while section 7.2 highlights the possible future develops for enhancing our results.

7.1 Conclusions

In chapter 6 we showed how the addition of features to the network inputs increases the
quality of generated samples and leads to better learning of many features, while also providing
a method to influence the network output during the sampling process. One of the most common
concerns when working with GANs is that the network could overfit the training set, learning to
reproduce samples from the dataset. While we cannot prove it formally, we refer to the results
of Huang et al. in [32, Appendix C], which claim that overfit is difficult to occur in the type of
model we used, even for a small number of training samples, de facto demonstrating that the
behaviour of GANs is different from that of classical deep neural networks used for classification.

Although the model we designed is far for being perfect in solving the level generation problem
for 2d non-linear environments such DOOM maps, we think it’s still a good starting point for
future improvements and could represent a viable alternative to classical Procedural Generation.
In particular, most levels generated from the networks have proved to be interesting to explore
and play due to the presence of particular features typical of doom maps, such as narrow
tunnels and large rooms. This suggests that one of the advantages of our method with respect
to Procedural Generation is that in our case there is no need of an expert designer to embed
their knowledge in the generation process; still, this method allows the designer to focus on the
selection of more high-level features as those we selected as network inputs. This generative
method, which is commonly used to produce visually appealing images, proved to be applicable
to a topological setting like ours, even if not without issues: While in creating a picture of a face,
a small variation in colour intensity is quite unnoticeable and can be tolerated, in our domain
even a pixel-sized difference in a level map could alter drastically the level topology itself, for
example creating a new access between two areas. This issue is emphasized by the output noise
which is quite common in samples generated by a GAN.

87
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7.2 Future Work

In this section we first present the open problems we encountered in our setting, then we
propose some specific works that can be made to improve our system.

7.2.1 Open Problems

Data Availability

The amount of data available is a problem that affects in general every deep learning setting.
As discussed in earlier chapters, the context of video-games is one of the fields in which data
is less available and uniform. In our work we used a dataset of 1088 levels which have been
augmented by rotation due to memory size constraints, but we envision that a larger amount
of levels could make the network more accurate in generating levels. We propose a possible
improvement for our system in section 7.2.2.

Samples Evaluation

As we explained in section 4.4.2, the problem of evaluating the samples generated by a GAN
is still a recent field of research and a general prevailing model still have to be proposed. More-
over, the particular domain of our work makes even more difficult to apply the commonly used
methods to assess sample quality. In section 4.4.2 we proposed a qualitative method for assess-
ing the generated sample quality during the training process that works with our data. While
the method we applied succeeds in indicating that the network is actually learning the level
structures, the metrics we proposed have the drawback that they need to be calculated on each
map differently in order to benefit of their informational power, while considered altogether for
assessing the general sample quality.

Loss of accuracy

The system we designed assumes that one pixel is equivalent to 32 Doom Map Units since it’s
the diameter of the smallest object in DOOM. While this ensures that objects cannot overlap
on the image representation, it introduces an unavoidable loss of accuracy in object positioning.
Moreover, using a single pixel for representing objects such as in ”Thing Maps” makes the task
of distinguish generated object from noise and artefacts more difficult. While we weren’t able
to detect checker board artefacts in the structural maps such as the floormap, wallmap and
heightmaps, the generated ThingsMaps often show an object placement that is too regular,
resembling the issue discussed in section 4.4.1. We envision that an increase of the dataset
resolution, for example setting one pixel size to 16 MU instead of 32, would help in reducing
this problem. This comes at the cost of choosing between an high resolution in representing the
maps and an higher resolution in network input/output, which also allows to use more levels
from the full dataset.

Improving Network Sampling

Due to the high dimensionality of the feature space, sampling the conditional network using
arbitrary feature values often resulted in low quality samples, for this reason we sample the
network around points in the feature space for which the network have been trained. However,
in real applications it could be better to have the designer specify his own desired input features,
such the area, the balance between large halls and corridors, etc. We envision that this issue
could be reduced using more training data and possibly using soft labels as proposed by [54],
at the cost of a possible increase of noise in the output. An alternative design could be the
implementation of the ”Content Sampling” introduced in section 4.2.3.
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7.2.2 Possible Applications and future develops

Augmenting input data

In our work we only used levels having a single ”floor”, or connected figure, in order to prevent
the network for learning unnecessary patterns like the position or rotation of the various floors
that compose the level when they actually are irrelevant from a gameplay point of view. One
method for increasing the number of training samples is re-generating the dataset considering
each floor as a separated level and calculating the features on a floor basis. An additional
method for using a larger part of the data we collected is to simply increase the input/output
sample size, although this require more computational capabilities.

Improving samples to WAD conversion

In our work we focused on the generation process, while we also provided a simple method
for playing the generated levels in DOOM. However, this method is still not perfect: only
preliminary work have been done on applying the height differences in levels, and no visual
improvements such as automatic texture selection have been implemented yet. Moreover, work
have still to be done for decorating the level with doors, elevators and switches.

Sample interpolation and Style Transfer

An interesting practice for generating diverse samples and assessing the generalization capa-
bilities of the network is the interpolation of samples in the feature space [68]. We provided a
method for sampling interpolated batches of levels by providing a start and end point in feature
space, while keeping the noise vector fixed. If we consider adding levels from other games to the
dataset by converting them to the same domain we used, this technique can be easily used for
interpolating levels from different games and study what different features they exhibit.

Tweaking the model

For increasing the model capabilities a lot of work can still be done. One first attempt could
be tweaking the network hyperparameters in order to find a setting that allows the network
to learn a better representation. Our attempts didn’t find any improvements over the default
settings, although we cannot prove we are using optimal values.

Different architectures

Due to the constant research in generative models, there is an always increasing number of
different new models to try and experiment in order to improve the generation of samples. In
our work we limited our search only to the mostly used pure-GAN models which could easily
run on our machines, but a large number of models can still be applied. For example, one
method showing good results on faces generation that mixes GANs and Autoencoders is the
BEGAN model proposed by Berthelot, Schumm, and Metz in [6]. Another approach could be
using high-resolution models such as in “Progressive Growing of GANs for Improved Quality,
Stability, and Variation” [38], showing interesting improvements in visual quality by growing
the generator and the discriminator progressively.

Possible Applications

The most obvious application of our work would be the case of off-line video-game level gener-
ation. In particular our work finds application whenever it is needed to obtain 3d maps which
doesn’t overlap on the height axis. Since this is the only particular requirement for levels to
work with our framework, it is possible to extend this system to other environments and domains
by just changing the feature extraction modules. In other words, the system is independent of
the technology of the particular game we used for training, and it could be virtually used in
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any type of 3d game or simulation in which the user can move in two dimensions, eventually
with changes of floor height. Possible applications in another fields could be the generation
of environments for training or testing the behaviour of AI agents, and the use of the trained
discriminator network for classification tasks by adding a last layer and fine tuning the resulting
network. However, due to the set-up requirements currently needed for running the project, a
most probable application that we envision of our work is as a starting point for the develop-
ment of more complex systems or more advanced studies on Procedural Content Generation via
Machine Learning applied to this type of environments.
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Appendix: Test Statistics Values
and Corrected p-values

Table A.1: KS statistic values for the tests. The value is correlated with the distance of the cumulative
distributions of the true and generated data

uncond-s cond-s
feature

level area 0.031279 0.043398
level convex area 0.047838 0.052632
level eccentricity 0.144434 0.223453
level equivalent diameter 0.031279 0.043398
level euler number 0.226311 0.180055
level extent 0.127875 0.104340
level filled area 0.035879 0.042475
level major axis length 0.106716 0.116343
level minor axis length 0.076357 0.078486
level orientation 0.058878 0.068329
level perimeter 0.080957 0.060942
level solidity 0.121435 0.113573
level hu moment 0 0.077277 0.098800
level hu moment 1 0.125115 0.190212
level hu moment 2 0.121435 0.104340
level hu moment 3 0.106716 0.076639
level hu moment 4 0.070837 0.121884
level hu moment 5 0.079117 0.094183
level hu moment 6 0.091076 0.059095
level centroid x 0.726771 0.777470
level centroid y 0.812328 0.815328
number of artifacts 0.467341 0.369344
number of powerups 0.128795 0.083102
number of weapons 0.383625 0.241921
number of ammunitions 0.359706 0.422899
number of keys 0.963201 0.943675
number of monsters 0.514259 0.574331
number of obstacles 0.519779 0.438596
number of decorations 0.823367 0.784857

Continued on next page
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Table A.1: KS statistic values for the tests. The value is correlated with the distance of the cumulative
distributions of the true and generated data

uncond-s cond-s
feature

walkable area 0.034959 0.046168
walkable percentage 0.051518 0.081256
start location x px 0.232751 0.166205
start location y px 0.529899 0.382271
artifacts per walkable area 0.553818 0.390582
powerups per walkable area 0.181233 0.088643
weapons per walkable area 0.397424 0.242844
ammunitions per walkable area 0.399264 0.444137
keys per walkable area 0.959522 0.938135
monsters per walkable area 0.597056 0.591874
obstacles per walkable area 0.665133 0.518006
decorations per walkable area 0.897884 0.845799
nodes 0.180313 0.159741
avg-path-length 0.174793 0.156048
diameter-mean 0.155474 0.141274
art-points 0.115915 0.139428
assortativity-mean 0.427032 0.456802
betw-cen-min 0.006440 0.006464
betw-cen-max 0.376265 0.347184
betw-cen-mean 0.371665 0.384118
betw-cen-var 0.362069 0.375894
betw-cen-skew 0.250230 0.238227
betw-cen-kurt 0.215271 0.207756
betw-cen-Q1 0.218951 0.258541
betw-cen-Q2 0.279669 0.287165
betw-cen-Q3 0.301748 0.318560
closn-cen-min 0.624655 0.655586
closn-cen-max 0.173873 0.133887
closn-cen-mean 0.207912 0.213296
closn-cen-var 0.314402 0.278856
closn-cen-skew 0.632935 0.644506
closn-cen-kurt 0.378105 0.406279
closn-cen-Q1 0.201472 0.208680
closn-cen-Q2 0.176633 0.169898
closn-cen-Q3 0.171113 0.163435
distmap-max 0.214351 0.238227
distmap-mean 0.159154 0.202216
distmap-var 0.192272 0.214220
distmap-skew 0.152714 0.107110
distmap-kurt 0.137994 0.084026
distmap-Q1 0.201472 0.208680
distmap-Q2 0.176633 0.169898
distmap-Q3 0.171113 0.163435
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Table A.2: Corrected p-values using Bonferroni method

uncond cond
feature

level area 1.000000e+00 1.000000e+00
level convex area 1.000000e+00 1.000000e+00
level eccentricity 3.203350e-08 5.274459e-22
level equivalent diameter 1.000000e+00 1.000000e+00
level euler number 1.051357e-22 1.114460e-13
level extent 4.541127e-06 1.922426e-03
level filled area 1.000000e+00 1.000000e+00
level major axis length 1.060657e-03 1.058078e-04
level minor axis length 4.758482e-01 3.395852e-01
level orientation 1.000000e+00 1.000000e+00
level perimeter 2.148826e-01 1.000000e+00
level solidity 2.649796e-05 2.124674e-04
level hu moment 0 4.074087e-01 6.589815e-03
level hu moment 1 9.779487e-06 1.816326e-15
level hu moment 2 2.649796e-05 1.922426e-03
level hu moment 3 1.060657e-03 4.646614e-01
level hu moment 4 1.000000e+00 2.495058e-05
level hu moment 5 2.969827e-01 1.747566e-02
level hu moment 6 3.173520e-02 1.000000e+00
level centroid x 2.720185e-250 1.263132e-285
level centroid y 4.022221e-313 2.723494e-314
number of artifacts 1.768827e-102 4.055502e-63
number of powerups 3.503463e-06 1.500697e-01
number of weapons 1.735132e-68 4.330549e-26
number of ammunitions 5.282114e-60 2.739392e-83
number of keys 0.000000e+00 0.000000e+00
number of monsters 1.874772e-124 4.438253e-155
number of obstacles 3.544692e-127 1.020608e-89
number of decorations 1.422909e-321 4.121210e-291
walkable area 1.000000e+00 1.000000e+00
walkable percentage 1.000000e+00 2.092123e-01
start location x px 4.085103e-24 2.123218e-11
start location y px 3.028440e-132 9.750062e-68
artifacts per walkable area 1.297132e-144 8.624320e-71
powerups per walkable area 6.130510e-14 5.296084e-02
weapons per walkable area 1.249309e-73 2.653075e-26
ammunitions per walkable area 2.496041e-74 4.829900e-92
keys per walkable area 0.000000e+00 0.000000e+00
monsters per walkable area 2.341589e-168 8.331551e-165
obstacles per walkable area 2.346143e-209 7.877455e-126
decorations per walkable area 0.000000e+00 0.000000e+00
nodes 8.834832e-14 2.130799e-10
avg-path-length 7.611113e-13 7.638737e-10
diameter-mean 8.430551e-10 9.359119e-08
art-points 1.117706e-04 1.650707e-07
assortativity-mean 5.053350e-80 1.523040e-90
betw-cen-min 1.000000e+00 1.000000e+00

Continued on next page
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Table A.2: Corrected p-values using Bonferroni method

uncond cond
feature

betw-cen-max 8.086915e-66 1.434635e-55
betw-cen-mean 3.542549e-64 2.070974e-68
betw-cen-var 4.891902e-55 5.050308e-59
betw-cen-skew 3.829013e-28 3.017244e-25
betw-cen-kurt 2.227206e-20 8.710051e-19
betw-cen-Q1 3.848983e-21 4.810963e-30
betw-cen-Q2 1.379923e-35 1.804461e-37
betw-cen-Q3 1.034416e-41 1.644635e-46
closn-cen-min 1.911063e-184 1.371244e-202
closn-cen-max 1.082671e-12 8.660043e-07
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Appendix: Graphical results for
non-input features

We omit results for features that are not informative in our specific context such as features
calculated on floor basis, since the dataset we used only consisted on one-floor levels and they
would match the corresponding level based features.
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Figure B.1: Experiments 1 and 2: Cumulative distribution functions for true data, unconditional
network and conditional network for each non-input feature.
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Figure B.2: Experiments 1 and 2: Cumulative distribution functions for true data, unconditional
network and conditional network for each non-input feature.
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Figure B.3: Experiments 1 and 2: Cumulative distribution functions for true data, unconditional
network and conditional network for each non-input feature.
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Figure B.4: Experiments 1 and 2: Cumulative distribution functions for true data, unconditional
network and conditional network for each non-input feature.
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Figure B.5: Experiments 1 and 2: Cumulative distribution functions for true data, unconditional
network and conditional network for each non-input feature.



i
i

“Thesis” — 2018/4/4 — 13:48 — page 101 — #101 i
i

i
i

i
i

101

0.00 0.01 0.02 0.03 0.04 0.05 0.06
powerups_per_walkable_area

uncond KS stat:0.1812327506899724
uncond KS p-value:4.2572984228171015e-16

cond KS stat:0.08864265927977832
cond KS p-value:0.00036778359917199343

0.0

0.2

0.4

0.6

0.8

1.0

True
uncond
cond

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
weapons_per_walkable_area

uncond KS stat:0.3974241030358786
uncond KS p-value:8.675757639799807e-76

cond KS stat:0.24284395198522624
cond KS p-value:1.8424130111908856e-28

0.0

0.2

0.4

0.6

0.8

1.0

True
uncond
cond

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
ammunitions_per_walkable_area

uncond KS stat:0.3992640294388225
uncond KS p-value:1.7333614745469763e-76

cond KS stat:0.4441366574330563
cond KS p-value:3.3540973191622375e-94

0.0

0.2

0.4

0.6

0.8

1.0

True
uncond
cond

0.00 0.02 0.04 0.06 0.08 0.10 0.12
keys_per_walkable_area

uncond KS stat:0.9595216191352346
uncond KS p-value:0.0

cond KS stat:0.9381348107109879
cond KS p-value:0.0

0.0

0.2

0.4

0.6

0.8

1.0

True
uncond
cond

0.0 0.1 0.2 0.3 0.4 0.5
monsters_per_walkable_area

uncond KS stat:0.5970561177552898
uncond KS p-value:1.6261032567385037e-170

cond KS stat:0.5918744228993537
cond KS p-value:5.785799146620123e-167

0.0

0.2

0.4

0.6

0.8

1.0

True
uncond
cond

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
obstacles_per_walkable_area

uncond KS stat:0.6651333946642135
uncond KS p-value:1.6292662840476365e-211

cond KS stat:0.518005540166205
cond KS p-value:5.47045463587403e-128

0.0

0.2

0.4

0.6

0.8

1.0

True
uncond
cond

Figure B.6: Experiments 1 and 2: Cumulative distribution functions for true data, unconditional
network and conditional network for each non-input feature.
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Figure B.7: Experiments 1 and 2: Cumulative distribution functions for true data, unconditional
network and conditional network for each non-input feature.
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Figure B.8: Experiments 1 and 2: Cumulative distribution functions for true data, unconditional
network and conditional network for each non-input feature.



i
i

“Thesis” — 2018/4/4 — 13:48 — page 104 — #104 i
i

i
i

i
i

104 Appendix B. Appendix: Graphical results for non-input features

0.0 0.1 0.2 0.3 0.4 0.5
betw-cen-Q2

uncond KS stat:0.27966881324747006
uncond KS p-value:9.582801109578582e-38

cond KS stat:0.28716528162511545
cond KS p-value:1.2530975743962446e-39

0.0

0.2

0.4

0.6

0.8

1.0 True
uncond
cond

0.0 0.2 0.4 0.6 0.8
betw-cen-Q3

uncond KS stat:0.30174793008279677
uncond KS p-value:7.183447513224973e-44

cond KS stat:0.3185595567867036
cond KS p-value:1.1421075348185728e-48

0.0

0.2

0.4

0.6

0.8

1.0 True
uncond
cond

0.0 0.2 0.4 0.6 0.8 1.0
closn-cen-min

uncond KS stat:0.624655013799448
uncond KS p-value:1.3271273167186389e-186

cond KS stat:0.6555863342566943
cond KS p-value:9.5225250366865e-205

0.0

0.2

0.4

0.6

0.8

1.0 True
uncond
cond

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
closn-cen-max

uncond KS stat:0.1738730450781968
uncond KS p-value:7.518546256868729e-15

cond KS stat:0.133887349953832
cond KS p-value:6.013918870652082e-09

0.0

0.2

0.4

0.6

0.8

1.0 True
uncond
cond

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
closn-cen-mean

uncond KS stat:0.20791168353265865
uncond KS p-value:4.736524249087451e-21

cond KS stat:0.21329639889196672
cond KS p-value:4.706522738230875e-22

0.0

0.2

0.4

0.6

0.8

1.0 True
uncond
cond

0.00 0.02 0.04 0.06 0.08 0.10
closn-cen-var

uncond KS stat:0.3144016227180527
uncond KS p-value:3.1259048547482344e-43

cond KS stat:0.278855975485189
cond KS p-value:7.322197181988482e-34

0.0

0.2

0.4

0.6

0.8

1.0

True
uncond
cond

Figure B.9: Experiments 1 and 2: Cumulative distribution functions for true data, unconditional
network and conditional network for each non-input feature.
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Figure B.10: Experiments 1 and 2: Cumulative distribution functions for true data, uncondi-
tional network and conditional network for each non-input feature.
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Figure B.11: Experiments 1 and 2: Cumulative distribution functions for true data, uncondi-
tional network and conditional network for each non-input feature.
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Glossary

deathmatch Game mode in which two or more players compete against each other in achieving
the highest number of kills before a timeout or a player reaches a predetermined score..
109

DU Doom Units, see MU. 109

Feature Map Image describing a particular aspect of a level. 30, 33, 47, 51, 54, 56, 57, 109

floor Unconnected piece of level, reachable only by means of a teleporter. 109

FloorMap Image describing which parts of the map are occupied by a floor and which are
empty.. 30–32, 52, 55–57, 109

GAN Generative Adversarial Network. 21–24, 47, 49, 52, 54, 109

HeightMap Image describing the floor height of a level. 31, 109

Linedef Line that connects two vertices in the WAD file specification. 28, 30, 109

Lump Any section of data within a WAD file.. 26, 28, 109

MU Map Units, Coordinate unit used in Doom Rendering Engine.. 27, 28, 30, 32–34, 109, 111

RoomMap Image describing the room segmentation of the level. 31, 57, 109

Sector A Sector in a DOOM level is any closed area (with possibly invisible walls) that has a
constant floor and ceiling height and texture. plural. 27, 57, 109

Sidedef A ”vertical plane” in the WAD file specification.. 28, 109

Thing Any deployable asset of a DOOM level, such as Enemies, Power-Ups, Weapons, Deco-
rations, Spawners, Etc. plural. 27, 109

ThingsMap Image describing how the game objects are placed inside the level. 31, 109

TriggerMap Image describing doors, lifts and switches and their correlation. 31, 57, 109

WAD Default format of package files for the DOOM / DOOM II video-games. ”WAD” is an
acronym for ”Where’s all the Data?” [65]. 25–27, 30, 33, 109, 111

WallMap Image describing the impassable walls in a level. 30, 52, 56, 57, 109
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abs/1701.07875 (2017). arXiv: 1701.07875. url: http://arxiv.org/abs/1701.07875.

[4] Barry Bloom. Barry Bloom post on OFC.UNT.EDU News. url: https : / / groups .

google.com/d/msg/alt.games.doom/Wjp0gf-zBf8/YIYsTQyD9F4J.

[5] Christopher Beckham and Christopher Joseph Pal. “A step towards procedural terrain
generation with GANs”. In: CoRR abs/1707.03383 (2017). arXiv: 1707.03383. url: http:
//arxiv.org/abs/1707.03383.

[6] David Berthelot, Tom Schumm, and Luke Metz. “BEGAN: Boundary Equilibrium Gener-
ative Adversarial Networks”. In: CoRR abs/1703.10717 (2017). arXiv: 1703.10717. url:
http://arxiv.org/abs/1703.10717.

[7] Blizzard North Blizzard Entertainment. Diablo. 1996.

[8] R. Bormann et al. “Room segmentation: Survey, implementation, and analysis”. In: 2016
IEEE International Conference on Robotics and Automation (ICRA). 2016, pp. 1019–
1026. doi: 10.1109/ICRA.2016.7487234.

[9] David Braben and Ian Bell. Elite. 1984.

[10] Colin Phipps and Simon Howard and Colin Reed and Lee Killough. BSP v5.2. [BSP - The
Doom node builder software, accessed November 2017]. 1994 - 2006.

[11] Steve Dahlskog, Julian Togelius, and Mark J Nelson. “Linear levels through n-grams”. In:
Proceedings of the 18th International Academic MindTrek Conference: Media Business,
Management, Content & Services. ACM. 2014, pp. 200–206.

[12] A.I. Design. Rogue. 1980.

[13] Frontier Developments. Elite: Dangerous. 2014.

[14] Doomworld on DoomWiki. Doomworld - The Doom Wiki at DoomWiki.org. [Online; ac-
cessed 06/02/2018]. 2005. url: https://doomwiki.org/wiki/Doomworld.

[15] Doomworld.com Website. Doomworld. [Online; accessed 16/10/2017]. 1998. url: https:
//www.doomworld.com/.

[16] Richard O. Duda and Peter E. Hart. “Use of the Hough Transformation to Detect Lines
and Curves in Pictures”. In: Commun. ACM 15.1 (Jan. 1972), pp. 11–15. issn: 0001-0782.
doi: 10.1145/361237.361242. url: http://doi.acm.org/10.1145/361237.361242.

[17] Encyclopedia of Mathematics. Orientation. url: http://www.encyclopediaofmath.org/
index.php?title=Orientation&oldid=39859.

[18] Encyclopedia of Optimization. Kluwer, 2001. isbn: 9780792369325. url: https://books.
google.com.mx/books?id=gtoTkL7heS0C.

[19] Blizzard Entertainment. StarCraft II. 2010.

111

https://www.tensorflow.org/
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1701.07875
https://groups.google.com/d/msg/alt.games.doom/Wjp0gf-zBf8/YIYsTQyD9F4J
https://groups.google.com/d/msg/alt.games.doom/Wjp0gf-zBf8/YIYsTQyD9F4J
http://arxiv.org/abs/1707.03383
http://arxiv.org/abs/1707.03383
http://arxiv.org/abs/1707.03383
http://arxiv.org/abs/1703.10717
http://arxiv.org/abs/1703.10717
https://doi.org/10.1109/ICRA.2016.7487234
https://doomwiki.org/wiki/Doomworld
https://www.doomworld.com/
https://www.doomworld.com/
https://doi.org/10.1145/361237.361242
http://doi.acm.org/10.1145/361237.361242
http://www.encyclopediaofmath.org/index.php?title=Orientation&oldid=39859
http://www.encyclopediaofmath.org/index.php?title=Orientation&oldid=39859
https://books.google.com.mx/books?id=gtoTkL7heS0C
https://books.google.com.mx/books?id=gtoTkL7heS0C


i
i

“Thesis” — 2018/4/4 — 13:48 — page 112 — #112 i
i

i
i

i
i

112 Bibliography

[20] Matthew S Fell. The Unofficial Doom Specs. Online. 1994. url: http://www.gamers.
org/dhs/helpdocs/dmsp1666.html.

[21] Anton Filatov et al. “2D SLAM Quality Evaluation Methods”. In: (Aug. 2017).

[22] Fuchs, Henry and Kedem, Zvi M. and Naylor, Bruce F. “On Visible Surface Generation by
a Priori Tree Structures”. In: SIGGRAPH Comput. Graph. 14.3 (July 1980), pp. 124–133.
issn: 0097-8930. doi: 10.1145/965105.807481. url: http://doi.acm.org/10.1145/
965105.807481.

[23] C. Galamhos, J. Matas, and J. Kittler. “Progressive probabilistic Hough transform for
line detection”. In: Proceedings. 1999 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (Cat. No PR00149). Vol. 1. 1999, 560 Vol. 1. doi: 10.
1109/CVPR.1999.786993.

[24] Hello Games. No Man’s Sky. 2016.

[25] Edoardo Giacomello. DoomPCGML. https://github.com/edoardogiacomello/DoomPCGML.
2017-2018.

[26] Ian J. Goodfellow et al. “Generative Adversarial Networks”. In: CoRR abs/1406.2661
(2014). arXiv: 1406.2661. url: http://arxiv.org/abs/1406.2661.

[27] Ishaan Gulrajani. improved wgan training. https://github.com/igul222/improved_
wgan_training. 2017.

[28] Ishaan Gulrajani et al. “Improved Training of Wasserstein GANs”. In: CoRR abs/1704.00028
(2017). arXiv: 1704.00028. url: http://arxiv.org/abs/1704.00028.

[29] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring network structure,
dynamics, and function using NetworkX”. In: Proceedings of the 7th Python in Science
Conference (SciPy2008). Pasadena, CA USA, Aug. 2008, pp. 11–15.

[30] Chris Harris and Mike Stephens. “A combined corner and edge detector”. In: In Proc. of
Fourth Alvey Vision Conference. 1988, pp. 147–151.

[31] Lewis Horsley and Diego Perez-Liebana. “Building an automatic sprite generator with
deep convolutional generative adversarial networks”. In: Computational Intelligence and
Games (CIG), 2017 IEEE Conference on. IEEE. 2017, pp. 134–141.

[32] Gao Huang et al. An empirical study on evaluation metrics of generative adversarial net-
works. 2018. url: https://openreview.net/forum?id=Sy1f0e-R-.

[33] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167 (2015). arXiv:
1502.03167. url: http://arxiv.org/abs/1502.03167.

[34] Phillip Isola et al. “Image-to-Image Translation with Conditional Adversarial Networks”.
In: arxiv (2016).

[35] Rishabh Jain et al. “Autoencoders for level generation, repair, and recognition”. In: Pro-
ceedings of the ICCC Workshop on Computational Creativity and Games. 2016.

[36] John Carmack. Doom Engine Source code on GitHub.com. [Online; accessed 06/02/2018].
1997. url: https://github.com/id-Software/DOOM.

[37] Frank J. Massey Jr. “The Kolmogorov-Smirnov Test for Goodness of Fit”. In: Journal of
the American Statistical Association 46.253 (1951), pp. 68–78. doi: 10.1080/01621459.
1951.10500769. eprint: https://www.tandfonline.com/doi/pdf/10.1080/01621459.
1951.10500769. url: https://www.tandfonline.com/doi/abs/10.1080/01621459.
1951.10500769.

[38] Tero Karras et al. “Progressive Growing of GANs for Improved Quality, Stability, and
Variation”. In: CoRR abs/1710.10196 (2017). arXiv: 1710.10196. url: http://arxiv.
org/abs/1710.10196.

http://www.gamers.org/dhs/helpdocs/dmsp1666.html
http://www.gamers.org/dhs/helpdocs/dmsp1666.html
https://doi.org/10.1145/965105.807481
http://doi.acm.org/10.1145/965105.807481
http://doi.acm.org/10.1145/965105.807481
https://doi.org/10.1109/CVPR.1999.786993
https://doi.org/10.1109/CVPR.1999.786993
https://github.com/edoardogiacomello/DoomPCGML
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
https://github.com/igul222/improved_wgan_training
https://github.com/igul222/improved_wgan_training
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1704.00028
https://openreview.net/forum?id=Sy1f0e-R-
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://github.com/id-Software/DOOM
https://doi.org/10.1080/01621459.1951.10500769
https://doi.org/10.1080/01621459.1951.10500769
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1951.10500769
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1951.10500769
https://www.tandfonline.com/doi/abs/10.1080/01621459.1951.10500769
https://www.tandfonline.com/doi/abs/10.1080/01621459.1951.10500769
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196


i
i

“Thesis” — 2018/4/4 — 13:48 — page 113 — #113 i
i

i
i

i
i

Bibliography 113

[39] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
CoRR abs/1412.6980 (2014). arXiv: 1412.6980. url: http://arxiv.org/abs/1412.
6980.

[40] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Proceedings
of the IEEE 86.11 (1998), pp. 2278–2324. issn: 0018-9219. doi: 10.1109/5.726791.

[41] Scott Lee et al. “Predicting Resource Locations in Game Maps Using Deep Convolutional
Neural Networks”. In: The Twelfth Annual AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment. AAAI. 2016.

[42] J. Lin. “Divergence measures based on the Shannon entropy”. In: IEEE Transactions on
Information Theory 37.1 (1991), pp. 145–151. issn: 0018-9448. doi: 10.1109/18.61115.

[43] Ziwei Liu et al. “Deep Learning Face Attributes in the Wild”. In: Proceedings of Interna-
tional Conference on Computer Vision (ICCV). 2015.

[44] Matteo Luperto and Francesco Amigoni. “Predicting the Global Structure of Indoor En-
vironments: A Constructive Machine Learning Approach”. unpublished article at the mo-
ment of writing. 2018.
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