# **POLITECNICO DI MILANO**

### SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING

Energy Engineering Master of Science



# Thermal and Electric Modelling of a village-scale Multi-Energy System for the Sustainable Energization of Toconao

Supervisor: Co-Supervisors: Prof. Emanuela COLOMBO Ing. Francesco LOMBARDI Ing. Sergio BALDERRAMA

> Thesis Authors: Stefano PISTOLESE ID: 842256 Nicolò STEVANATO ID: 853943

Academic Year 2016 - 2017

Y si al final lo que hay que vivir lo que hay que soñar hay que vivirlo

# Acknowledgment

First of all, we would like to express our gratitude to Prof. Emanuela Colombo for having believed in us since the first moment, without her inspiration and commitment none of this work would have been possible.

A special thank goes to Francesco, for the constant help and motivation that has provided us through the development of this work.

Thanks to Prof. David Saldivia and Prof. Rodrigo Barraza for their help in the initial stages of the work and the support during the field period.

Gracias a Tati, Frido y los chicos de la Casa Azul, por haber hecho de nuestra estadía en Chile la fuerza motriz de todos nuestros esfuerzos que llevaron al final a la creación de esta tesis.

Our gratitude goes to the community of Toconao, for having welcomed us, for the valuable cooperation and support during the field work.

Gracias al Canario, donde todo nació.

And finally, thanks to our families and their constant support and motivation that allowed us to always pursue our dreams.

Nicolò e Stefano

Thanks to my family for supporting me for all these years, for believing in me and for having the opportunity to live this experience by supporting me and never obstructing me.

Thanks to Chiara for her love.

Thanks to close friends and people who have been able to guide me and accompany me on this journey.

Thanks to my partner Nicolò, for sharing this experience together, for believing in us always, for becoming a great friend more than a colleague.

Stefano Pistolese

Special thanks to Andrea, Damiano and Zeno, for having fought, cried and laughed with me for all these years, giving me the strength to never give up.

Thanks to my colleague and friend Stefano, who has been the best partner for this work, to him goes all my gratitude for having shared this wonderful experience with me.

To the memory of my mother, my constant source of inspiration.

Nicolò Stevanato

## **Executive Summary**

#### Introduction

Goal 7 of the Sustainable Development Goals adopted in September 2015 by the United Nations consists in achieving universal access to energy by 2030. The availability of energy is a necessary pre-requisite to enable development, and it should be regarded as a tool for people to improve their living condition. Energy access has to be considered not only as access to electricity but also access to thermal usages on energy. As stated by the IEA, heat consumption accounts for over 50% of the total final energy consumption worldwide but has not been given enough attention to the matter of switching from the fossil fuel technologies to the renewables ones for the thermal energy production. In accordance with that, the concept of energy access should be translated into the theme of energization. In fact, energization can be considered as the supply and planning of complete energy solutions to meet electrical and thermal demand, focusing on the improvement of rural communities living conditions.

Chile is one of the most developed countries of the South America continent. In terms of energy, the Total Primary Energy Supply (TPES) in 2015 amounts to 32.70 Mtoe, where the 70% of sources is given by crude oil and fossil fuels. The north of the country is occupied by the Atacama Desert with an extension of 105000 km<sup>2</sup>, where the values of the solar irradiation reach almost 8500 MJ/m2 per year. This potential is currently scarcely exploited, in fact, the solar energy makes up only for the 0.3% of the TPES of the country. In the northern regions of Chile, there is a strong presence of communities that are extremely isolated, and most of them must produce energy for themselves, being disconnected from the national grid. Besides isolation from electricity, the long distance of the northern regions implies several constraints also to provide sources to satisfy the thermal demand. The main fuel for the domestic thermal usage is the LPG. Its distribution is performed regularly by trucks that deliver bottles of liquefied gas once per week. Due to the long distance to cover in the large extension of the desert territories the transportation results very expensive and consequently the price of the natural gas is higher than the national average.

The study area of this work consists in the rural village of Tocoano, in the Antofagasta region, inside the territory of Atacama Desert, near the border with Argentina and Bolivia, and represents a clear example of rural village of the Desert area.

From an electrical point of view, the village buys electricity from the near village of San Pedro de Atacama, where an Electrical Power Plant is installed and owned by the CESPA cooperative producing energy for the village of San Pedro and dispatching it to the village of Toconao. A diesel backup generator is present in Toconao due to the frequent blackouts caused by sand storms and the instability of the line.

In order to perform a sustainable energization in the study area, the present work has been organized following the guidelines defined by the Comprehensive Energy Solution Planning (CESP) methodology – developed by the UNESCO Chair in Energy for Sustainable Development at Politecnico di Milano – which consists in a practical sequence of steps to be followed from the conception of the idea until its completion.

The general objective of this study is to improve the reliability and sustainability of the energy supply of the study area based on the use of indigenous energy resources through the development of an energy optimization solution. To achieve the general objective, four specific objectives are formulated, namely:

- I. To assess the current energy situation of the study area.
- II. To assess the energy resources locally available with focus on solar, hydro and wind.
- III. To develop an integrated thermal-electric energy system optimisation model, based on an open-source code.
- IV. To propose, based on the developed model, rational scenarios for a more sustainable energy system for the area.

In order to assess the current energy situation of the study area, direct measurements are performed on field, consisting in administration of specifically redacted questionnaires to better understand energy needs and energy usage habits of the population, assessment of locally available energy resources potentials and load profiles of the village, to better size the proposed energy solution, finally a *Multi Energy System* model is proposed as an integration to *MicroGridPy* to meet thermal and electrical needs.

## Methodology

Assessment of current energy situation.

As part of current energy situation assessment, the approach of Johnson is used to define a framework for the energy balance assessment of a rural area. In this framework, energy sources, energy drivers and final uses are defined. For each energy driver the primary sources of energy are identified, and the total primary energy supplied is estimated. Energy services demanded at each energy driver are then identified and for each of them are analysed the census data on the conversion technologies adopted to transform the total primary energy supplied into the total final energy consumed. The three drivers identified on the field by direct observation are:

- Domestic, including all the households.
- Artisans, including all the income generating activities like shops, restaurants and guesthouses.
- Public services, including the medical office, the police station and the school, along with other services and public street lighting.

The primary energy sources identified in the study area are: Electricity from the grid, LPG used to fire gas boilers and cooking purposes, Diesel to run a backup electric generator, solar energy collected by 150 solar thermal collectors present in the area and firewood, still used by a part of the population for traditional cooking purposes.

*Grid.* The total amount of electrical energy coming from the grid is calculated form the electrical bills of the village, as sum of the energy consumption measured from every single electric meter of the village rested the energy produced by the backup diesel generator. The energy from the grid, since no energy conversion happens inside the boundaries of the study area, is net of losses.

*Diesel Generator*. Inside the village a 400 kVA Diesel backup generator is present to make up for the electrical interruptions from the grid. The efficiency of the Diesel generator evaluated to have an estimation of the losses, is computed combining the experimental data collected on field and data form literature review.

*LPG*. The energy deriving from LPG in the village is calculated by means of the responses to the questionnaires and pieces of technical information about the gas gathered from the producer. On the one hand, from the questionnaires is possible to estimate the total amount of gas bottles, and with that, kilograms of gas consumed yearly in the village by each energy driver. On the other hand, from the literature the corresponding LHV is obtained. Finally,

the efficiency of the final use is collected by direct observation in the case of gas boilers, and from literature in case of gas cookers.

*Solar Collector*. Inside the village 150 solar collectors are present. From the study carried out by the engineer that followed the project, the working parameters are extracted, such as efficiency, litres of water heated per collector, and working temperatures. In this way the primary energy entering the boundary of the study area and the total secondary energy produced daily from the collectors can be estimated.

*Firewood* is a source of thermal power for cooking that is not largely used but still present in the village. The amount of wood, in kilograms, used yearly from the population is extrapolated from the answers to the questionnaires, where a specific question is present for the purpose. In order to compute the thermal efficiency of a standard stove used in the village a Water Boiling Test (WBT) is carried out according to the protocol and following as much as possible the procedure.

#### Load Curves Modelling

To compute the Load Profiles of the different energy drivers a stochastic approach is adopted, by means of the LoadProGen software. LoadProGen, developed by Politecnico di Milano, allows to create a series of profiles of different categories of users inside a study area; for each of these classes it is possible to define which appliances are used, the nominal power of these, and their time of use and windows of usage. Through a random function all the nominal powers of the appliances of one class are summed up filling the time windows with the time of usage, creating a Load Profile of one class, that is then summed with the profiles of the other classes, creating the total Load Curve of the study area. In order to generate the electrical load profile of the village, two main sources of information are pulled together and used to generate an input for the LoadProGen software: the questionnaires administered to the population, where the kind of appliances and their pattern of use are investigated for each class, and the monthly and annual electrical consumption of each user.

The software has been rigorously designed to compute electrical Load Curves only. Nonetheless, in this work, it has been adapted by the authors in order to model also thermal loads. To adapt the working logic of LoadProGen to a thermal load, some precautions are taken. First of all, a thermal load curve of the entire study area is not computed, but several different profiles are calculated, given the impossibility of centralization of thermal energy production with solar collectors. In order to generate the thermal load profile of the village, the information gathered through the questionnaires are processed to compose an input file to fit the LoadProGen software and allow it to compute a Thermal Load Profile for the village. These pieces of information are then compared with the ASHRAE Handbook in order to confirm and better model the thermal demand profile. For this reason, the structures with a similar thermal behaviour are represented in a single class, considering only one "typical user", the total demand of the class is obtained multiplying the obtained values by the number of users.

#### Assessment of Local Energy Sources

Locally available energy sources potentials have been estimated by means of direct measurements during on field period.

*Solar Potential* is assessed measuring Global Horizontal Irradiation (GHI) in the area with a pyranometer and the collected data are compared and merged with the data obtained from a national study performed in the adjacent village of San Pedro de Atacama collecting meteorological data for three years.

*Wind Potential* is assessed through direct measurements during field work of wind velocity and direction, and the obtained result compared and merged with the data obtained from the online simulation tool *Explorador Eólico*, developed by the Universidad de Chile and considered to be the most suitable simulation tool for the purpose.

*Hydropower Potential* of the two rivers flowing in the area is assessed measuring two fundamental parameters, *Gross Head* and *Flow Rate*. Gross head is estimated by means of Google Earth online tool and the Flow rates through the application of the *Floating Object Method*, that allows to estimate the mean flow velocity of water streams with a non-invasive methodology, and through the mean bulk velocity and the directly measured cross section area the flow rate is calculated.

#### Thermal and Electrical Modelling Methodology

The methodology builds on an open source model of isolated hybrid micro grids, that models the behaviour of real components to perform a consistent sizing, ensuring the reliability of the energy supply and considering different scenarios for isolated rural villages. Based on such model, a new thermal model is implemented and aggregated to the original one in order to include thermal needs and favouring the transition towards renewable energy technologies for the heat production. Hence, the model proposes the following objectives:

- I. combine the thermal and electrical energy access problem
- II. satisfy the thermal load through the available local sources
- III. find the optimal solution minimizing the net present cost (NPC) function as an objective function

The expanded model results thus in an integrated village-scale Multi-Energy System (MES) optimisation tool to generate a set of rational decision options for the implementation of a more sustainable and resilient energy system for the case study. Considering that the solar resource is by far the most abundant renewable resource in the area, the MES model is configured in order to synthetize, respectively, diesel generators, PV panels and batteries for the provision of electricity; and gas boilers, solar thermal collectors and hot water tanks for the provision of domestic hot water. Furthermore, an internal electric resistance element is included in the model of hot water tanks, thus allowing the electricity from the micro-grid to supply also thermal energy to charge the thermal storage. In the following figure the energy flow of the model configuration is presented.



On the one hand, the electrical optimization looks at the entire village, adopting a *centralized* logic approach to satisfy the load. The model receives the electrical load of the village and the photovoltaic energy as inputs and returns the sizing and the electric dispatch of the system based on the net present cost function optimization.

On the other hand, the thermal model is thought to take into account topographic constraints and to ensure that the solar collectors and thermal storage systems are optimised separately for each class. In fact, the thermal part has based on a *decentralized* logic approach that provide the optimal sizing configuration and thermal energy dispatch for each specific class with different thermal load.

The synergy between the two systems is represented by the electrical resistance. In fact, when it is used to supply thermal energy, it is seen by the electrical part as an additional demand. As each class is provided with its own resistance, in the electrical energy balance it will results as the sum of each electrical resistance per class. In this way a global optimization can be performed satisfying both thermal and electrical needs and optimizing the overall net present cost function.

### Results

#### Assessment and Load Results

A good representation of the local energy assessment of the village is given by the energy flow diagram of the study area. Five energy sources, three main energy drivers and five energy services demanded are identified. Results regarding the current energy consumption are aggregated in the overall energy balance of the study area for a sample year and reported in the Sankey diagram in accordance with IEA criteria for energy balance representation.



As is possible to observe the thermal demand of the village represents more than the half of the secondary energy use, with a share of 57%. Inside this thermal demand 66% of the energy

is used for water heating purposes. This situation justifies the focus of this work on thermal solar thermal collector technologies. Is also possible to observe how the study area is strongly dependent of external sources of energy, since electricity form the grid, LPG and diesel are energy that have to be bought from outside the limits of the village, and strongly condition the usage of energy. The percentage of TPES deriving from sources outside the study are is 91% and increases to 95% when talking about secondary energy.

With respect to the load curves, the electrical demand is generated through the LoadProGen software and is performed with a time step of 15 minutes showing two intense loads: one during the midday and one during the evening hours. A seasonal variation is also introduced by the authors varying the functioning time of the light bulbs of the three energy drivers based on duration of night time, considering that the questionnaires were administered in June, during the winter season. A typical day is represented in the graph below, where it is possible to observe how the load varies in each season.



As mentioned above, the thermal demands are created adapting the working logic of LoadProGen to thermal load. Differently form the electrical demand where the load curve is unique for the entire village, the thermal needs have to be decentralized and in particular the domestic hot water consumption is divided in four classes: domestic, commercial, public and school. In the graphs below the thermal demands of a typical user of each class are reported.



The local renewable energy source assessment is focused principally on the solar potential, hydropower potential and wind potential.

The *solar irradiation* represents the most abundant source in the study area with a total annual irradiation of 9280 MJ/m<sup>2</sup>. After the solar irradiation, photovoltaic power output from a commercial panel available in the local area is performed. The photovoltaic panel selected is the model Yingli YL300P-35b Polycrystalline module with a nominal capacity of 300 W per module. The data of the solar irradiation are elaborated through the *Modelica* language. To evaluate the *wind potential*, the wind speed is measured in the study area and the results are integrated with the reference data of the Explorador Eolico.

The *hydropower potential* is represented by two rivers: Rio Aguas Blancas with a flow rate of  $0.013 \text{ m}^3$ /s and an estimated available power of 7.5 kW and Rio Toconao with a flow rate of  $0.068 \text{ m}^3$ /s and an estimated available power of 12.7 kW.

#### Multi Energy System Results

The *MicroGridPy* and the *Multi Energy System (MES)* model are performed through a robust Linear Programming optimization and it based on the local energy assessment and the local available energy resources. Three different scenarios, namely a standard case scenario, a scenario with increased fossil fuel prices and an *only-renewable* scenario, are run and compared with the baseline scenario (i.e. diesel and gas as the only primary energy sources) in terms of LCOE and system sizing. Below are reported the graph concerning the standard

optimization that represents a possible configuration based on realistic parameters referred to the study area. Firstly, the electrical energy dispatch given by the MicroGridPy is presented where it is possible to observe that during noon the loads is provided by the photovoltaic power while during the evening hours the demand is exactly supplied by the diesel gen set and the battery flow out.



On the other hand, looking at the electrical despatch performed by *Multi Energy System*, the power provided by the diesel genset and the battery flow out overcome the load. This gap, in fact, correspond to the power required by the electrical resistance to satisfy the thermal demand when required.



| Standard Optimization     |       |                  |         |                |        |        |      |      |  |
|---------------------------|-------|------------------|---------|----------------|--------|--------|------|------|--|
| Economical                |       | Electric         |         | Thermal        |        |        |      |      |  |
|                           |       |                  |         |                | Com    | Dom    | Pub  | Sch  |  |
| NPC [M\$]                 | 8,18  | N° PV            | 331     | N° SC          | 15     | 17     | 1    | 1    |  |
| LCOE [\$/MWh]             | 0,264 | Battery Cap[kWh] | 1092,84 | Tank Cap [kWh] | 161,62 | 214,97 | 1,01 | 8,41 |  |
| LCOE/LCOE <sub>base</sub> | 77%   | Gen P Nom [kW]   | 174,68  | Res [W]        | 15085  | 20732  | 111  | 452  |  |
| Diesel Cost [\$/I]        | 0,9   |                  |         | Boiler [kW]    | 24,24  | 318,55 | 1,03 | 2,14 |  |
| LPG Cost [\$/kg]          | 2,6   |                  |         |                |        |        |      |      |  |

The sizing of the electrical and thermal system is reported in the following tables where the net present cost of the entire projects is reported as well as the Levelized Cost of Energy.

To this regard, the results show that the cost-optimised MES can effectively reduce the LCOE as well as the NPC as compared to the baseline scenario. To have a global idea of the effects of the optimization on the study area, a Sankey Diagram based on the *Multi Energy System* optimization is presented:



After the implementation of the proposed energy system, the main benefits would be the decrease of reliance on fossil fuels and external sources of energy. In fact, the share of primary energy coming from outside the borders of the study area would become 73% and if referring to secondary energy 54%, compared to the 91% and 95% of actual situation showed above. In conclusion, the results show that the cost-optimised MES can effectively

reduce the LCOE as well as the NPC as compared to the baseline scenario. What is more, the LCOE for the combined provision of electricity and heat is only slightly increased as compared to that of a scenario in which only the electricity supply is optimised (i.e. microgrid only), even though the initial investment cost required is naturally higher due to the need to purchase a whole new set of technologies (viz. solar thermal collectors and hot water tanks). To this regard, the analysis shows how, in compensation for a higher investment cost as compared to the micro-grid alone, the integrated MES scenario offers a higher penetration of renewable sources in the primary energy mix and a lower dependency on external imports (i.e. an increased resilience of the village). The fully-renewable MES scenario implies a significantly larger LCOE and NPC than the baseline scenario, mostly since peak electric and thermal demands occur in times where solar radiation is absent, leading to a significant oversizing of the storage systems and of the energy conversion technologies as well. Other renewable technologies with a more controllable dispatch might be included in the energy system synthesis to investigate more fully-renewable MES scenarios.

### Conclusions

This work represented a first step towards the development of a multi-energy system modelling framework and aims to draw attention to this matter. Moreover, energy policy research ostensibly lags behind other fields in promoting more open and reproducible science, hence, the open-source modelling is a key factor of the proposed work.

To this regard, the inclusion of thermal energy in the model imposes a change in the time step formulation, hence, the need to increase the time resolution of the model with sufficient resolution. The problems faced in the modelling of the thermal load profile of the study area with a software (LoadProGen) strictly meant to model electrical loads underline the need for the development of a proper tool, to be juxtaposed to already existing electrical models, in order to compute a whole picture of the energy consumption in rural contexts.

The optimization of the model is performed through a *Linear Programming(LP)* formulation. This choice is dictated by the excessive computational time that an *Integer* or *Mixed Integer Linear Programming* (MILP) would impose to the model. The *LP* is cause of some small computational errors but do not compromise the overall reliability of the results. Further development in the software structure could take into consideration those formulations. Finally, another interesting possible future development direction of the proposed model could include other renewable energy sources besides solar energy and take into account other thermal needs such as cooking and space heating to reach a wider covering of the energy potentials and energy needs of study areas.

# **Table of Contents**

| Acknowledgment                                                                                                                 | IV                     |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Executive Summary                                                                                                              | VI                     |
| Table of Contents                                                                                                              | XIX                    |
| Abstract                                                                                                                       | XXI                    |
| Sommario                                                                                                                       | XXII                   |
| Introduction                                                                                                                   | 23                     |
| 1. Sustainable access to energy in off-grid areas                                                                              | 25                     |
| 1.1 From electrification to energization                                                                                       | 25                     |
| 1.2 The Chilean context and the village of Toconao                                                                             | 27                     |
| 1.3 Comprehensive Energy Solution Planning (CESP)                                                                              | 31                     |
| 2. Methodology for assessment and load modelling                                                                               | 33                     |
| 2.1.1 Energy Drivers                                                                                                           | <b> 33</b><br>34<br>37 |
| 2.2.1 Electric Load Curves<br>2.2.2 Thermal Load Curves                                                                        | <b> 41</b><br>42<br>43 |
| <ul> <li>2.3 Assessment of Local Energy Sources.</li> <li>2.3.1 Solar Potential.</li> <li>2.3.2 Wind Power Potential</li></ul> | 45<br>45<br>47<br>49   |
| 3. Thermal and Electrical Modelling Methodology                                                                                | 54                     |
| <b>3.1 Model Characteristics</b><br>3.1.1 Electrical System<br>3.1.2 Solar Water Heating System                                | <b>55</b><br>55<br>58  |
| <b>3.2 Connection of the two systems</b><br>3.2.1 Energy Balances<br>3.2.2 Economical Analysis                                 | <b>63</b><br>64<br>65  |
| 4. Assessment and Loads Results                                                                                                | 69                     |
| <ul> <li>4.1 Current energy situation</li></ul>                                                                                | 69<br>70<br>77         |
| 4.2 Local Energy Sources Assessment Results<br>4.2.1 Solar<br>4.2.2 Wind<br>4.2.3 Hydro                                        |                        |
| 4.3 Load Curves                                                                                                                |                        |

| 4.3.1 Electric Load Curves<br>4.3.2 Thermal Load Curves |  |
|---------------------------------------------------------|--|
| 5. Multi Energy System model results                    |  |
| 5.1 Baseline Scenario                                   |  |
| 5.2 Scenario: Standard optimization                     |  |
| 5.3 Scenario: High Fossil Fuel Price                    |  |
| 5.4 Scenario: Only Renewable                            |  |
| Conclusions                                             |  |
| Appendix A                                              |  |
| Appendix B.1                                            |  |
| Appendix B.2                                            |  |
| Appendix C                                              |  |
| Appendix D                                              |  |
| Appendix E                                              |  |
| Appendix F.1                                            |  |
| Appendix F.2                                            |  |
| Appendix F.3                                            |  |
| Appendix F.4                                            |  |
| List of Figures                                         |  |
| List of Charts                                          |  |
| List of Tables                                          |  |
| Abbreviation Index                                      |  |
| Nomenclature                                            |  |
| Bibliography                                            |  |

### Abstract

The goal of this work is to face the matter of insufficient attention that is being given to thermal energy consumption and production when treating sustainability in the energy field, in the purpose of achieving the  $7^{\circ}$  SDG and the necessity for open-source modelling in contrast to commercial software that lead the scene of energy modelling market.

The concept of Sustainable Energization, adopting the Comprehensive Energy Solution Planning (CESP) methodology, is applied within this work on a rural village in the North of Chile.

Energy solution planning is based on matching energy demand with local available Renewable Energy Sources, both assessed with field measurement and analysis. An opensource software is developed to meet with the needs faced in the identification of a strategy to improve energy efficiency and energy supply of the study area, taking into account not only the electrical needs but also the thermal need of energy. An already existing opensource software based on Python language that models the optimization of micro grids in rural environments is taken as basis to develop a similar tool, that takes into account not only electrical needs but sanitary water heating demand as well. The electrical energy balances of the original software are kept unchanged and valid in the new proposed model, while the new thermal balances, carefully explained throughout the work, are joined to consider a wider, not only electric, energy system in the optimization. The optimization is based on the minimization of the Net Present Cost function of the project and uses a Linear Programming logic.

In conclusion to the work, different scenarios are taken into account and energy optimization solutions for the study area are proposed to fulfil the needs in an off-grid configuration. The limitations of the actual modelling tools, encountered during the development of the work, are explained and commented alongside with proposals for possible further developments in the field.

Keywords: Modelling, Energy Access, Energization, Sustainability, Open Source, Renewable Energy, Multi Energy System

# Sommario

L'obiettivo di questo lavoro è affrontare la questione dell'insufficiente attenzione che viene data al consumo e la produzione di energia termica e nel trattare la sostenibilità nel campo energetico, allo scopo di raggiungere il 7 ° SDG, e la necessità di una modellazione open source in contrasto ai software commerciali che guidano la scena del mercato dei modelli energetici.

Il concetto di *Sustainable Energization*, adottando la metodologia CESP (Comprehensive Energy Planning), è applicato all'interno di questo lavoro in un villaggio rurale nel nord del Cile.

La pianificazione delle soluzioni energetiche si basa sulla corrispondenza tra la domanda di energia e le fonti di energia rinnovabile disponibili localmente, entrambe valutate con misurazioni e analisi sul campo. Un software open source è stato sviluppato per soddisfare le esigenze nell'individuazione di una strategia per migliorare l'efficienza energetica e l'approvvigionamento energetico dell'area di studio, tenendo conto non solo dei bisogni elettrici, ma anche del fabbisogno di energia termica. Un software open source già esistente basato su linguaggio Python che modella l'ottimizzazione delle micro reti negli ambienti rurali è preso come base per sviluppare uno strumento simile, che tenga conto non solo dei bisogni elettrici, ma anche della domanda di riscaldamento dell'acqua sanitaria. I bilanci di energia elettrica del software originale sono mantenuti invariati e validi nel nuovo modello proposto, mentre i nuovi bilanci termici, accuratamente spiegati durante il lavoro, sono uniti per considerare un sistema energetico più ampio, non solo elettrico, nell'ottimizzazione. L'ottimizzazione si basa sulla minimizzazione della funzione obbiettivo Net Present Cost del progetto e utilizza una logica di programmazione e computazione lineare. In conclusione al lavoro, vengono presi in considerazione diversi scenari e vengono proposte soluzioni di ottimizzazione energetica per l'area di studio per soddisfare le esigenze in una configurazione off-grid.

I limiti degli strumenti di modellazione reali, incontrati durante lo sviluppo del lavoro, sono spiegati e commentati insieme a proposte di possibili ulteriori sviluppi nel campo.

Parole Chiave: Modellazione, accesso all'energia, energizzazione, sostenibilità, open source, energia rinnovabile, sistema multi-energia

## Introduction

This thesis work follows the CESP methodology, developed by UNESCO Chair at Politecnico di Milano – Department of Energy, to perform a sustainable energization on the case study of the rural village of Toconao, situated in the Atacama Desert, in the North of Chile. Performed following four main objectives, namely: (I) to assess the current energy situation of the study area; (II) to assess the renewable energy resources locally available; (III) to develop an integrated thermal-electric energy system optimisation model, based on an open-source code; (IV) to propose, based on the developed model, rational scenarios for a more sustainable energy system for the area.

Moreover, inside the frame of the development of an energy solution optimization model the attention is drawn to the matter that current off-grid energy systems optimisation models often tend to focus on the provision of electricity only, neglecting other energy needs. This is due to the increasing modelling efforts required by thermal energy systems in terms of: (i) higher temporal detail of load curves (e.g. for cooking, space heating and water heating activities); (ii) higher spatial detail and necessity to include topographic constraints for most energy conversion technologies, in the absence of centralised heat distribution networks. To this end, we expand the existing open-source MicroGridPy modelling framework – initially conceived for the optimisation of purely electric micro-grids –, by integrating it with a complementary thermal energy system (MES) optimisation tool, which we apply to generate a set of rational decision options for the implementation of a more sustainable and resilient energy system for the case study.

*Chapter 1* is dedicated to an overview of the issue to access to energy in Developing Countries and the necessity to draw attention to a wider point of view of energy access, switching form electrification to energization. Finally, the Chilean energy context is presented and the study area introduced.

*Chapter 2* focuses on the methodology adapted for field data collection on actual energy situation, through specifically redacted questionnaires administered to the population to assess energy situation, and direct measurements of locally available renewable energy

resources. Methodology for electrical and thermal load curves generation through the employment of a specific tool is also presented.

*Chapter 3* illustrates the methodology adapted for the development of the Multi-Energy System optimization tool, merging the already existing MicroGridPy model, that considers diesel generators, PV panels and batteries for the provision of electricity; to new balances that represent gas boilers, solar thermal collectors and hot water tanks for the provision of domestic hot water. Furthermore, an internal electric resistance element is included in the model of hot water tanks, thus allowing the electricity from the micro-grid to supply also thermal energy to charge the thermal storage.

*Chapter 4* consists in the presentation of the results obtained during the field assessment, in terms of current energy balance of the study area, synthetized by means of a Sankey Diagram, the potential of locally available energy sources, namely solar, wind and hydro power, and the results of the electrical and thermal demand modelling, resulting into daily load profiles of the village.

*Chapter 5* is finally dedicated to the presentation of different energy solution scenarios run with the model, the analysis of the system configuration and energy dispatch of the results of the simulations and the energy balances of the village that would consequence the implementation of the proposed solutions by means of Sankey Diagrams. Finally, the Levelized Cost of Energy is used as parameter to compare each scenario with the present situation.

### 1. Sustainable access to energy in off-grid areas

#### 1.1 From electrification to energization

It is widely recognized that energy is a key factor for the development, growth and progress of a country, region or population as motive power of all the activities of a community [1]. And it is thus of global concern that energy access should be provided for all those who lack it in the world: currently, an estimated in 1.1 billion people lack access to electricity, while 2.8 billion people lack access to clean cooking facilities [2]. A particular attention is placed onto off-grid areas of developing countries, which represent a large share of those numbers. In September 2000 all United Nations member states and many international organizations agreed on and adopted a 15-year development agenda including eight anti-poverty targets, known as the Millennium Development Goals (MDGs) [3]. Nonetheless, despite the progresses made, the MDGs were not sufficient to reach significant targets in terms of access to energy [4], leading to the adoption, in September 2015, of a new agenda consisting of 17 new targets: the Sustainable Development Goals (SDGs). The SDGs are broader and more ambitious than MDGs [5] and require that all three dimensions - economic, social and environmental – of sustainable development are taken into account. Only in SDGs a proper statement on energy has been inserted, as the seventh goal establishes to "Ensure access to affordable, reliable, sustainable and modern energy for all" [6] in order to achieve a universal access to energy by 2030. To this end, it is of critical importance to identify innovative solution for off-grid areas, for which grid extension is often not a feasible option both in technical and economic terms [7].

However, in many cases the focus of programs aiming at improving access to energy in offgrid areas is merely related to electricity access, even though a large share of final energy uses is typically associated with tasks that are satisfied by other energy carriers, such as heat that is used for cooking, space heating and water heating. Those energy uses are traditionally satisfied by means of non-renewable fuels and are more difficult to decarbonise, due to a combination of technical and non-technical barriers [8]. This reflects a general trend at the global level: indeed, as stated in a recent IEA communication [9], heat consumption accounts for over 50% of total global final consumption, but yet it has not been given enough attention in terms of decarbonisation potential as nowadays fossil fuels provide more than three quarters of heat production globally.



Chart 1: Total global energy consumption for heat, 2015. Source: IEA

The relevance of non-electric energy uses is possibly even higher for off-grid areas of developing countries, where energy-intensive tasks such as cooking and water heating typically dominate the total final consumption, as compared to the relatively smaller amounts of energy required by powering small electric appliances.

In this framework, the issue of access to energy is better captured by the concept of *energization*, which includes: matching of energy needs and energy resources, improving of the energy supply, promoting cleaner and more efficient fuels, covering household needs, providing public services, promoting economic development, emphasizing cultural and social aspects and local empowerment as well as promoting renewable energy systems [10]. To this regard, and with a special reference to small-scale off-grid systems, the widely adopted concept of "Micro-grid" – referring to decentralised energy systems for the provision of electricity – should be enlarged to that of "Multi Energy System" (MES), formalised by Mancarella et al. [8], and comprising all final energy uses and carriers.

### 1.2 The Chilean context and the village of Toconao

As already stated, the IEA's projections show current efforts towards ensuring access to energy for all are struggling to keep pace with population growth and failing to address multiple energy needs in a comprehensive way.

Nonetheless, access to electricity in Central and South America has seen a remarkable increase in the last period switching from 56 million people - 13% of the population - without access in 2000 to 17 million - 3% of the population – in 2016 [2].



Figure 1: Geographical location of Chile, country of the study area. Source: mapsland.com

Chile is located on the pacific coast of the South American continent, and is one of the most developed countries of the region, with a human development index (a composite indicator used to rank countries based on life expectancy, education and income pro capita) of 0.847 [11].

The mix of sources for Total Primary Energy Supply in Chile is shown in Chart 2.





Total primary energy supply in 2015 amounts to 32.69 Mtoe, the largest share of source is Crude Oil and fossil fuels represent 70% of the energy matrix of the country. The north of the country is occupied by the Atacama Desert, a desert with an extension of 105000 km<sup>2</sup>, that has been pointed out as one of the places on earth where the highest surface solar irradiance may occur [12], reaching values of 8500 MJ/m<sup>2</sup> per year in some regions [13].

The national electrical grid of Chile is composed of mainly two systems that are not connected one to the other, the SIC (Sistema Interconectado Central) that serves the central part of the country, generating 76,4% of the electricity, and the SING (Sistema Interconectado del Norte Grande) that serves the north of the country and generates 22,8% of the electricity [14].

Chile has a population of around 17 million people [15], and half of it live in the capital, Santiago de Chile, this leads to a strong presence of rural areas in the north of the country, where the 8,4% of the national population occupy the 35% of national territories, namely the Region XV, Region I, Region II and Region III. The percentage of rural population of these regions is around 5%, this implies that the communities that live outside of the cities in the North are extremely isolated, and often have to produce energy for themselves, being disconnected from the national grid.

The villages that are disconnected from the national grid have to rely on small private companies that produce electricity with diesel generators and sell the energy at higher prices than the national average [16], being outside the regulation of the government. In addition, often the price of gas bottles, the only way to distribute natural gas in isolated areas, is higher because of the long journey that is necessary to deliver the product with trucks.

The study area of this work is represented by the rural village of Toconao, in the north of the country, in the Antofagasta region, in the territory of the Atacama Desert, near the border with Argentina and Bolivia, representing a clear example of rural village in the Desert area.



Figure 2: Geographical location of the study area. Source: Google maps.

The village has a population of around 800 inhabitants, 332 households, a Public School that served communities not only of the village but also from villages in the thereabouts, with a number of 180 enrolled students, 32 commercial structures, mainly restaurants and small grocery stores and 9 public structures among which a medical office, a police station and other public offices and services. The village has also a public light service.

The entire list of the structures of the village with relative monthly electrical consumptions of year 2016 is presented in Appendix C.

The village buys electricity from the near village of San Pedro de Atacama, where the CESPA cooperative owns an Electric Power Plant consisting of 2 gas fired generation units of 650 kW each and 3 diesel fired generation units of 300 kW producing energy for the village of San Pedro and dispatching it to the village of Toconao through a 23 kV line of about 32 km [16]. The company sells the energy at prices that are more than the double of the national average [16], as shown (with prices in Chilean Pesos) in Table 1.

| kWh       | CLP/kWh |
|-----------|---------|
| 0 - 50    | 170     |
| 51 - 100  | 180     |
| 101 - 200 | 190     |
| 201 +     | 225     |

Table 1: Electricity prices in Toconao. Source: Authors.

Because of the sand storms and instability of the line, the electric supply suffers of frequent blackouts due to the damage of the line between the two villages and can take days to be restored. For this reason, the village is equipped with a 320 kW diesel backup generator. The distribution of natural gas in the village is regular, with trucks that deliver bottles once a week, but the price is consistently higher than the national average, because of the isolated position of the study area. 150 thermal solar collectors are already present in the village thanks to a rural development project implemented from the national government with funds from the ALMA observatory, settled in the area and committed to social projects to help the sustainable growth of indigenous communities [17].

The overall energy situation of the village is thus characterised by several limitations, due the heavy reliance on non-renewable, expensive and unreliable primary energy sources. Nonetheless, there is a great potential to further exploit the renewable and abundant solar resource by means of innovative and optimized energy solutions.

# **1.3 Comprehensive Energy Solution Planning (CESP)**

In order to propose potential improved energy solutions, the present work has been organized following the guidelines defined by the Comprehensive Energy Solution Planning (CESP) methodology – developed by the UNESCO Chair in Energy for Sustainable Development at Politecnico di Milano – which consists in a practical sequence of steps to be followed from the conception of the idea until its completion.



Figure 3: CESP flow diagram. Source: UNESCO Chair Politecnico di Milano.

The general objective of this study is to improve the reliability and sustainability of the energy supply of the study area based on the use of indigenous energy resources through the development of an energy optimization solution.

In order to achieve the general objective, four specific objectives are formulated, namely:

- I. To assess the current energy situation of the study area.
- II. To assess the energy resources locally available with focus on solar, hydro and wind.
- III. To develop an integrated thermal-electric energy system optimisation model, based on an open-source code.

IV. To propose, based on the developed model, rational scenarios for a more sustainable energy system for the area.

The need for a new and open-source model emerges due to the lack, in the framework of off-grid energy systems modelling, of software that: on the one hand, allow to take into account not only the electrification aspect but the whole MES concept; on the other hand, allow for transparency, adaptability to users' needs and knowledge transfer. Such a model would represent a first step towards a multi-energy system modelling approach as well as an alternative to commercial closed-source software available for everyone.

The energisation scenarios proposed in this thesis work are aimed towards an increase of reliability of electrical supply, disconnecting the study area from the village of San Pedro – cause of the frequent shortages – and increasing the quality of the service. Considering that the population is aware of the great solar potential of the area they live in, they are incline to a "green" switch of the energetic matrix of the village, moving towards the seventh goal of the SDGs with a strong example for the other rural communities of the area that could adopt the same strategy and give a push to the decarbonisation of the energy production in the country.

# 2. Methodology for assessment and load modelling

The field work consisted of both preparatory desk work and data collection in the village of Toconao. Preparatory desk work included preliminary literature review, collection of information about the study area, drafting of the reference energy system and of questionnaires for the population, identification of possible energy drivers and selection and testing of needed instruments. The preparatory work started approximately two months before the on-field work in Toconao. The field work included tests, direct observations, direct measurements, surveys and interviews based on questionnaires to obtain primary data. The field work lasted for ten days and was carried out with the full cooperation of the local community.

The chapter below is subdivided into three paragraphs: assessment of current energy situation, energy resource assessment and electrical and thermal load curves calculation. For each paragraph, the specific adopted methodology to drive the analysis and the activities to reach the results are explained, by reviewing the literature and gathering examples to adapt and apply to the desert rural context of Toconao.

### 2.1 Assessment of current energy situation

In this thesis the approach of Johnson [18] is used to define a framework for the energy balance assessment of a rural area. In this framework, energy sources, energy drivers and final uses are allocated as the diagram below.



Figure 4: General scheme of an energy system. Source: Authors.

For each energy driver the primary sources of energy are identified and the total primary energy supplied is estimated. Energy services demanded at each energy driver are then identified and for each of them are analysed the census data on the conversion technologies adopted to transform the total primary energy supplied into the total final energy consumed.

### 2.1.1 Energy Drivers

According to Johnson et al [18] the energy consumption for a rural community can be organized in the following energy drivers: *domestic, artisan or productive activities, public services* and *transport*.

Three of these four categories were identified on the field by direct observation:

- Domestic, including all the households.
- Artisans, including all the income generating activities like shops, restaurants and guesthouses.
- Public services, including the medical office, the police station and the school, along with other services and public street lighting.

A complete list of all the components of the drivers is obtained in form of an excel spreadsheet (Appendix C) as courtesy of the electric committee of the village, that manages all the bills of the village to be paid to the company that provides the electrical energy.

#### Domestic Energy Driver

For the domestic energy driver, the households of the study area are identified through direct observation. The data regarding energy consumption of this energy driver are collected by means of a questionnaire administered to a static sample of households. The questionnaire was administered in the form of peer-to-peer interviews during the field period: this strategy allowed mutual understanding and gave the possibility to clarify the questions and ensure cooperation of the interviewee. The questionnaire fully reported in Appendix A consists of eight parts meant to assess energy sources, uses and supply.

The first part, General Information, aimed to gather few personal information regarding profession and family status of the interviewee. The second part, *Electricity Use and Supply*, is meant to investigate the means and security of electricity supply and questions related to the single electric devices (type, peak power, and hours of use) are asked to collect data such as equipment characteristics, operation and usage patterns, as suggested by A. C. Menezes et al. [19]. The third part, *Cooking*, is intended to understand which fuels are used to cook meals in the households and the level of security in their use. The forth part, Space Heating, aims to investigate the fuels used for space heating, and the quality of thermal comfort inside the house according to The World Bank's Tiers [20]. The fifth part, Sanitary Water Heating, is meant to investigate the means of heating sanitary water in the households. Part six, Fuel Supply, asks in which way and at which cost the fuels are collected from the families, mainly LPG and firewood. Part seven, Other Energy Sources, investigates if other fuels from LPG and firewood are used and in which way. Part eight, Domestic Residuals Production, is meant to assess the amount of biogas that can be potentially produced by animal dung and agricultural waste. The model is based on other sample questionnaires used for energy assessment in rural areas [21].

#### Commercial Energy Driver

For the commercial energy driver, the same pattern as the domestic driver is adopted, the same questionnaire was administrated to the owners of a selected statistical sample of commercial activities of the study area, in order to assess the energy consumption habits of the category.

#### Public Energy Driver

For the public energy driver, the same questionnaire was administrated in the same way of the other two drivers. In addition to that, in order to better estimate the Electrical Load Curve of the school, the major unit of the village, a real time energy consumption assessment was completed. The school is just a part of the Public Energy Driver, for this reason the data is used just as a mean of verification. A programmable camera was placed (as shown in figure 5) to take pictures of the electricity counter every minute for 24 hours.



Figure 5: Camera installed to monitor energy consumption of the local Public School. Source: Authors.
For the public street lighting, only the data from the electric committee and sunrise and sunset times throughout the year are used to compute the electric load curve.

### 2.1.2 Primary Energy Sources

Parallel to the questionnaires an assessment of the current primary energy sources is conducted by means of direct observation and data analysis.

#### Grid:

The total amount of electrical energy coming from the grid is calculated form the electrical bills of the village, as sum of the energy consumption measured from every single electric meter of the village rested the energy produced by the backup diesel generator.

$$E_{grid} = \sum E_{user,i} - E_{genset} \tag{1}$$

The energy from the grid, since no energy conversion happens inside the boundaries of the study area, is considered to be net of losses.

#### Diesel Generator:

Inside the village a 400 kVA Diesel backup generator is present to make up for the electrical interruptions from the grid. To estimate the electrical efficiency of the generator the following methodology is adopted. From the literature [22] the LHV (Lower Heating Value) [MJ/kg] and the energy density [MJ/l] for the diesel are extracted. On the generator is present a LCD Display that shows information about the working conditions, in particular the instant consumption [l/h] and the total energy produced [kWh]. Combining these pieces of information is possible to compute the efficiency. In detail, the working of the generator is monitored for three hours in peak load period, and the energy produced calculated differentially as:

$$E_{i \to i+1} [kWh] = E_{i+1} - E_i$$
(2)

The fuel consumed in the same period is computed through the mean of the instant fuel consumptions measured:

$$\dot{C}_{diesel}\left[\frac{l}{h}\right] = \frac{\left(\sum \dot{C}_{diesel,i}\right)}{n_i} \tag{3}$$

Where  $n_i$  is the number of observations.

And the total diesel consumed in the three hours observed calculated with the inverse formula:

$$C_{diesel}[l] = \dot{C}_{diesel} * 3 [hours] \tag{4}$$

And the electrical efficiency as the ratio between total energy produced and diesel chemical energy consumed:

$$\eta_{GenSet} = \frac{E_{i \to i+1}}{C_{diesel} * Energy \ Density}$$
(5)

The energy produced in one year by the Diesel Generator is computed through the knowledge of the time elapsed [years] since the installation of the Diesel Generator and the total energy [kWh] produced since.

$$E_{one\_year}[kWh] = \frac{E_{tot}}{y_{tot}}$$
(6)

In this way is also possible to estimate the percentage of energy that the electric meters measured but is not injected by the grid, since the meter does not differentiate whether the electricity comes from the grid or form the generator and keeps measuring unaffected.

$$E_{grid} + E_{genset} = E_{measured} \tag{7}$$

#### LPG:

The energy deriving from LPG in the village is calculated by means of the responses to the questionnaires and pieces of technical information about the gas gathered from the producer [23].

From the questionnaires is possible to estimate the total amount of gas bottles, and with that, kilograms of gas, consumed yearly in the village by each energy driver.

From the literature the corresponding LHV is obtained [24].

The total energy is then computed as product of total mass of gas consumed times the LHV.

$$E_{LPG} = m_{LPG} * LHV_{LPG} \tag{8}$$

While the efficiency of the final use is collected by direct observation in the case of gas boilers, and from literature [2] in case of gas cookers.

#### Solar Collectors:

Inside the village 150 solar collectors are present, installed for the Joint Social Development Program of the Chilean Government and the ALMA observatory [17], on selected households.

From the study carried out by the engineer that followed the project the working parameters are extracted, such as efficiency, litres of water heated per collector, and working temperatures.

In this way the total secondary energy produced daily from the collectors can be estimated.

$$E_{SC}[kWh] = \dot{m}_{water} * cp_{water} * \Delta T$$
(9)

And through the efficiency of the system, the primary energy entering the boundary of the study area:

$$E_{solar}[kWh] = \frac{E_{SC}}{\eta_{SC}} \tag{10}$$

# Firewood:

Firewood is a source of thermal power for cooking that is not largely used but still present in the village. The amount of wood, in kilograms, used yearly from the population is extrapolated from the answers to the questionnaires, where a specific question is present for the purpose.

The wood most used for burning purposes is Carob (Ceratonia Siliqua L.) which LHV is found in literature [25]. In order to compute the thermal efficiency of a standard stove used in the village a Water Boiling Test (WBT) is carried out according to the protocol [26] and following as much as possible the procedure. The WBT is conducted for an improved firewood stove.



Figure 6: Advanced cook stove present in the study area. Source: Authors.



The WBT is conducted including all three consecutive phases shown in the figure below:

Figure 7: Phases of Water Boiling Test. Source: [26]

- 1) *Cold-Start high-power phase,* starting with stove at room temperature firewood is used to boil a known quantity (2,5 litres) of water in a standard pot.
- 2) *Hot-Start high-power phase,* the water is replaced with water at ambient-temperature on the still hot stove and it is brought to local boiling temperature equal to 90 °C, adding fuel to the fire.
- Simmer phase, without changing the water, a temperature between 3 and 6 °C below boiling temperature is kept for 45 minutes

Inputting the measured values, along with ambient parameters in the WBT excel spreadsheet the thermal efficiency of the stove is given as result.

# 2.2 Load Curves Modelling

In order to compute the Load Profiles of the different energy drivers a stochastic approach is adopted, by means of the LoadProGen software [27]. LoadProGen, developed by Politecnico di Milano, allows to create a series of profiles of different categories of users inside a study area; for each of these classes it is possible to define which appliances are used, the nominal power of these, and their time of use and windows of usage. Through a random function all the nominal powers of the appliances of one class are summed up filling

the time windows with the time of usage, creating a Load Profile of one class, that is then summed with the profiles of the other classes, creating the total Load Curve of the study area. The software has been rigorously designed to compute electrical Load Curves only. Nonetheless, in this work, it has been adapted by the authors in order to model also thermal loads.

# 2.2.1 Electric Load Curves

The software works through a random estimation of load profiles based on the following inputs:

- Number of user classes, containing all the users with a similar electric usage behaviour
- Number of users per class
- Kind and number of appliances per each class
- Nominal power of appliances
- Functioning time and minimum functioning cycle of each appliance
- Functioning windows of each appliance

In order to generate the electrical load profile of the village, two main sources of information are pulled together and used to generate an input for the LoadProGen software.

First of all, the questionnaires administered to the population, where the kind of appliances and their pattern of use are investigated for each class in section two. On the other hand, the monthly and annual electrical consumption of each user, helped classify the users into different classes, more specifics than the energy drivers, based on total annual consumption. The six identified classes are:

- High Households, the 130 households that consumed more than the average per year;
- Low Households, the 202 households that consumed less than the average per year;
- School, that is treated as a single class because of its strong differences in energy consumption from the other public services due to the high number of daily users;
- Public, the 6 public services that consumed electrical energy apart from the school in the village;
- Commercial, the 32 commercial activities, for which is possible to identify a common pattern in the electrical energy usage;

 Street Lighting, computed solely through the electrical bill, estimating the time of usage from dawn and sunset times and the nominal power dividing the monthly energy consumed by the functioning time.

A seasonal variation is introduced by the authors varying the functioning time of the light bulbs of the three energy drivers based on duration of night time, considering that the questionnaires were administered in June, during the winter season.

The LoadProGen software includes the feature of creating different load profiles scenarios for a single input, based on small variations of the random function that generates the load curve. The creation of a scenario for each day of the four seasons configurations would have represented a more realistic way to create a one-year electrical load profile of the entire village, necessary for the creation of the village Electrical Demand, as will be discussed in Chapter 3. But this option resulted impossible to realize due to computational limits of the LoadProGen software. As an alternative the same profile is repeated equal to itself for every day of the season, and the four seasons obtained, concatenated obtaining the load profile of the entire year.

# 2.2.2 Thermal Load Curves

In order to adapt the working logic of LoadProGen to a thermal load, some precautions are taken. First of all, a thermal load curve of the entire study area is not computed, but several different profiles are calculated, given the impossibility of centralization of thermal energy production with solar collectors. In order to generate the thermal load profile of the village, the information gathered through the questionnaires are processed to compose an input file to fit the LoadProGen software and allow it to compute a Thermal Load Profile for the village. These pieces of information are then compared with the ASHRAE Handbook [28] in order to confirm and better model the thermal demand profile. For this reason, the structures with a similar thermal behaviour are represented in a single class, considering only one "typical user", the total demand of the class is obtained multiplying the obtained values by the number of users. The classes created are:

- Households, all together in a class because of the similar pattern of hot water consumption that is identified from the questionnaires.
- Commercial, considering that all the restaurants have a similar pattern of water consumption based on the number of meals served per day as suggested in [28].

- School, based on the questionnaire administrated to the Dean, in order to have most precise answer as possible.
- Public, as the Police Station and the Medical Office, only other public services with a hot water consumption.

Since the LoadProGen software works with electrical appliances, a set of fictitious thermal appliances with the same logical structure of an electrical one has to be created. Given the peculiarity of the operation, every appliance is modelled in a different way depending on the class of usage.

From the questionnaires the daily consumption of energy for heating water is estimated, from the two sources, LPG and solar collectors; then the energy is divided following ASHRAE indications [28] as guidelines to confirm the field data, into different tasks, depending on the class; finally an average time is estimated for each task based on direct observations. The nominal power of each appliance created is thus calculated as the ratio between energy consumed by the task and its functioning time.

$$P_{nom} = \frac{E_{task}}{t_{task}} \tag{11}$$

#### Households:

For the households' class, three appliances are created, *Dish Washing* - two per day -, *Shower* – one per person per day - and *Face and Hand Washing* - one per person per day -.

#### Commercial:

As already stated for the commercial class a fictitious appliance called *Normal Use* is created, based on the number of meals served by the restaurant per day, and repeated during the duty hours as many times as the meals served. The nominal power is calculated with the total energy – time ratio and compared with the ASHRAE guidelines.

#### School:

The input for the school is created combining the logic used for the restaurants, because of the school canteen, and a *Face and Hand Washing* appliance is created to consider the normal use of the toilets from the students and the staff.

# Public:

For the public class, the same logic as for the households' class is applied, with the information from the questionnaires three appliances are created, *Shower, Hand Washing* and *Food Use*, and the nominal power calculated as the ratio between daily thermal energy consumed and the total functioning time of each fictitious appliance.

For every class defined, 365 different scenarios are simulated with the software and then concatenated in a single column in order to obtain a more realistic year of operation of the system.

In this case no seasonal variation has been considered due to the steady hot water consumption during the entire year assessed through direct observation.

# 2.3 Assessment of Local Energy Sources

Toconao is situated in the geographic zone of the Atacama Desert, where seasonal variability of the weather is almost inexistent, and is characterized by extremely dry climate.

In some areas no rainfall has ever been recorded, making it the driest desert on Earth, although rain does fall in San Pedro de Atacama when, in the summer months, the thermal air currents above the Bolivian side of the Andes form large rain clouds that then drift down back into Chile and deposit heavy, but short, rain showers over the area, often accompanied by loud thunder and lighting. This phenomenon is called the *Bolivian Winter*, resulting in snow fall at higher elevations [29]. This phenomenon affects the river flows but not the intensity and constancy of solar radiation.

The assessment of the energy resources locally available is divided by energy source focusing on renewables: solar, wind hydro energy and biomass.

# 2.3.1 Solar Potential

# Installation of the instruments and data collection:

The collection of data of solar global irradiation and humidity and temperature parameters is to be carried out directly on site with real-time measurements with a system of:

- SP Lite 2 Kipp and Zonen silicon pyranometer,
- TinyTag Plus Millivolt Imput Data Logger connected to the pyranometer,

- TinyTag Plus Temperature Data Logger,
- TinyTag Plus Relative Humidity Data Logger,

assembled by the authors and mounted on the roof of the Public School of Toconao. The station remains on location for a month collecting data.



Figure 8: Measuring station installed on site. Source: Authors.

Before leaving for Toconao the used pyranometer is calibrated with a CMP10 Kipp and Zonen Pyranometer, ISO 9060 Secondary Standard, based at the *Renewable Energy Laboratory* of Universidad Tecnica Federico Santa Maria, comparing the measures of the two instruments in different conditions and proving the reliability of the used tool.

# Data Elaboration:

The data directly acquired on site include: Solar Global Horizontal Irradiation (GHI), Ambient Temperature (T) and Ambient Relative Humidity ( $\phi$ ), all computed every 10 minutes.

The measurements taken on field started right after the installation on the 12<sup>th</sup> of June 2017 allowing to collect data till the 4<sup>th</sup> of July 2017 for a total of almost a month. However, this sample of data is not enough to determine the effective solar radiation regime in the study area since data for at least one year are required to consider seasonal fluctuation.

In the case of this research a longer measurement period was not feasible, therefore a comparison with a reliable database is required. The reference dataset is chosen to be the three-years measurement performed by the Chilean Government in cooperation with the German Technical Cooperation, in the town of San Pedro de Atacama, 37 km away from the study area, from May 2009 to May 2012 [30].

The dataset consists of direct measurements of GHI and Direct Normal Irradiation (DNI) every 10 minutes in the described operation period.

In order to compare the two datasets an average of the measurements for every time step same period, 12<sup>th</sup> June to 4<sup>th</sup> July, of the three years is computed, and then each one compared with the same values in the field collected dataset by means of ratio between them. The average ratio between the two datasets resulted to be 1,02, enough to consider the average values of the three years a suitable Typical Meteorological Year for the aims of the study.

The ambient temperatures of the same dataset are assumed to be valid for the case study considered the distance from the study area and the similarity of weather conditions and geographical characteristics.

In order to compute the Global Irradiation on a tilted surface the isotropic model is adopted [31]. In particular for a tilted surface with an inclination assumed to be equal to the latitude of the study area and facing North in the southern hemisphere, the equation is:

$$I_i = I_{bh} R_b + I_{dh} \left(\frac{1 + \cos\beta}{2}\right) + \rho_r (I_{bh} + I_{dh}) \left(\frac{1 - \cos\beta}{2}\right)$$
(12)

### 2.3.2 Wind Power Potential

#### Installation of the instruments and data collection:

The collection of data of wind speed and direction is carried out directly on site with realtime measurements with a Weather Station PCE-FWS 20, consisting of:

- Cup anemometer for measurement of wind speed
- Wind direction sensor for measurement of wind direction
- Rainfall sensor
- Ambient temperature sensor

- Relative humidity sensor
- Display unit to monitor data in real-time and store data.

The weather station is placed at a height of 6,7 meters outside the Public School on the flagpole.



Figure 9: Wind measuring station installed on site. Source: Authors.

The station remained installed on location for a month collecting data.

# Data Elaboration:

The data directly acquired on site included: wind speed (Sw) and wind direction, both computed every 5 minutes.

The measurements taken on field started right after the installation on the 12<sup>th</sup> of June 2017 and was supposed to collect data till the 4<sup>th</sup> of July 2017 for a total of almost a month. But

for malfunctioning of the instrument data from only few days was finally available. For this reason, this sample of data was completely useless to define the effective wind speed regime in the study area since data for at least one year are required to consider seasonal fluctuation, a reliable dataset is then necessary. The reference dataset is chosen to be the data available in the *Explorador Eólico*, a tool developed by the University of Chile that that delivers results from a numerical simulation of wind conditions and air density on the national territory, considered well-known, reliable and having data available for a long observation period for free [32].

The exact geographical coordinates can be inserted in the web page, and selecting an altitude a detailed report of wind data for a Typical Meteorological Year is produced. For the scope of the work, 5,5 meters data are considered as the most similar to the directly measured ones and most indicate for micro-wind turbine solutions.

The annual average wind speed obtained from the *Explorador Eolico* data is used to determine the available power per unit of swept area according to Betz's law [33] (Equation 13).

$$P_{wind}\left[\frac{W}{m^2}\right] = \frac{1}{2}c_{Betz} * \rho_{air} * v_{air}^3$$
(13)

# 2.3.3 Hydropower Potential

Through the survey of the environment two water streams are identified, one that flows through the village itself, Rio Toconao, and one 10 kilometres away from the village, Rio Aguas Blancas.

In order to compute the micro hydropower potential of the flows two main parameters have to be measured, flow rate and gross head since the gross power potential is basically given by the product of the two, as shown in Eq. 14.

$$P_{gross} = g * H * \rho_{water} * \dot{Q}$$
(14)

Where  $P_{gross}$  is the gross power, g the gravitational acceleration, H the head,  $\rho_{water}$  the water density and  $\dot{Q}$  the volumetric flow rate of the river. Thus, flow rate and head between catchment and location have to be measured. The gross potential is the energy contained in

a given quantity of water with a certain head. Instead, the net power  $P_{net}$  accounts for the losses along the conversion chain (penstock, turbine, generator, drive system) in the efficiency term  $\eta$ :

$$P_{net} = P_{gross} * \eta_{hydro} \tag{15}$$

The activities to assess water flow and head are explained in detail in the following parts:

#### Water Flow

The average volumetric flow rate of the water is the quantity of water flowing past one point in a given time. Flow rate measurements are realized using the *floating object* method as described in [34].

The materials used for the *floating object* method r a measuring tape, a stopwatch, an object of small size that can float and if lost will not pollute the environment (an orange) and a stick. A suitable part of the river, as straight as possible for a length of approximately 8 meters and uniform in depth and width is selected for the first river. While for the second, the water flows in a pipe for a length of about 7 meters, and the inlet and outlet are easily accessible, making it an extremely suitable situation for flow rate measurements.



Figure 10: Measurement of local river flows. Source: Authors

The floating object is let free to move in the river at the starting point and the time necessary to reach the ending point is registered. This operation is repeated ten times for each stream to estimate the average travel time ( $\Delta t$ ) [34].

The average velocity is obtained as ratio between the constant length, x, and the average time, according to Equation 16.

$$v_{water} \left[\frac{m}{s}\right] = \frac{x}{\Delta t} \tag{16}$$

In the case of the open stream of Rio Toconao the river is divided along the width (W) at specific intervals of 0,6 meters and the depths ( $D_i$ ) at each point are measured with the help of the stick and the measuring tape.

The cross-sectional area of the section considered is obtained applying the trapezoidal rule. In the case of the piped stream of Rio Aguas Blancas, the cross-section area of the flow is computed with the circular segment formula.

The average volumetric flow rate  $\dot{Q}$  is computed using Equation 17.

$$\dot{Q}\left[\frac{m^3}{s}\right] = A * v * c \tag{17}$$

Where  $A[m^2]$  is the mean cross-section area of the stream,  $v\left[\frac{m}{s}\right]$  is the average stream velocity and *c* a correction factor, which accounts for the type of stream bed [13].



Figure 11: Riverbed profiles and correction factors. Source: [21]

Due to the observed morphology the streambeds of both rivers are characterized as *Shallow Flow*, therefore a value equal to 0.45 is chosen for the correction factor in both cases. The measurements of the river flows are performed in winter, as to say the driest time of the year, due the *Bolivian Winter* phenomenon that happens in summer. For this reason, the computed flows are assumed to be the minimum value of the year.

### Gross Head

The hydraulic head between the rivers catchment and the village is assessed in the first case, and the head between the rivers catchment and the position of an old powerhouse, where a hydraulic turbine was once installed, is assessed in the case of the second river analysed. Due to the absence of more suitable instruments the measurements are performed via Google Earth, identifying the positions under investigation with the help of local people, and considering the data obtained accurate enough for the scope of this work.

# 3. Thermal and Electrical Modelling Methodology

The concept of energy access could be translated into the theme of *energization*. Energization can be considered as the supply and planning of the complete energy solution to meet electrical and thermal demand, focusing on the short-term improvement of rural communities [10]. The aim of this study is the development of an optimization tool that considers not only the electrical aspects but also the thermal ones.

Nowadays, several commercial software are able to solve energy balances for the rural electrification, however, in most of cases they are not able to perform the optimization of a thermal and electrical solution planning at the same time. Therefore, this analysis proposes a new open source model that is able to satisfy both the electrical and the thermal demand considering the local energy requirements and the locally available renewable resources.

The methodology builds on an open source model of isolated hybrid micro grids [35], that models the behaviour of real components to perform a consistent sizing, ensuring the reliability of the energy supply and considering different scenarios for isolated rural villages. Based on such model, a new thermal model is implemented and aggregated to the original one, in order to:

- 1. combine the thermal and electrical energy access problem
- 2. satisfy the thermal load through the available local sources
- 3. find the optimal solution minimizing the net present cost (NPC) function as an objective function

The code is implemented in the Python language [36] using the Pyomo Library [37]. The input files are the electrical and the thermal demand, the photovoltaic energy (PV Energy), the solar collector energy (SC Energy) and a data file where all parameters are defined. Then the optimization is performed by the IBM CPLEX [38] solver through the simplex algorithm that optimizes and minimizes the net present cost function. Finally, the program returns the electrical and thermal energy dispatch as well as the optimal configuration of both systems.



Figure 12: Black Box scheme of the proposed model. Source: Authors.

In Chapter 5 a case study is analysed, and all the results are presented with respect to the rural village of Toconao, Chile.

# **3.1 Model Characteristics**

# **3.1.1 Electrical System**

The model aims to satisfy the electrical energy requirement of an isolated village through the following configuration as shown in the figure:

- PV array connected to an inverter that generates electricity from the solar irradiation
- *Battery bank* that stores the excess energy
- Backup diesel generator.
- Load that represents the electrical demand of the local community.

A centralized PV generation system, a unique battery bank system for the entire village as well as a single unit of diesel gen-set are considered for the electrical configuration [39].



Figure 13: Considered micro-grid typology. Source: Authors

#### **PV Energy**

To calculate the energy coming from a photovoltaic panel, the local temperature, the solar radiation, and the techno-economic information collected in the study area are used in the analysis. The inclination of the module is assumed to be equal to the latitude of the study area. The simulation of the PV module is an exogenous parameter, which has been provided by the University of Liège based on a five parameters model [40] implemented in the *Modelica* language [41] and calibrated with real data from commercial PV array available on site. The energy yield of one PV module is evaluated considering an equivalent circuit.



Figure 14: Equivalent circuit of a PV.  $I_L$  is the light current,  $I_D$  is the current in the diode,  $I_{sh}$  is the current in the shunt resistance,  $R_s$  is the series resistance,  $R_{sh}$  is the shunt resistance, I is the current and V is the voltage. Source: [35].

In this methodology the perfect maximum power point tracking (MPPT) controller is considered, which maximized the generated power. The final parameters of the model are the short circuit current, the open circuit voltage, the current at the maximum power point, the voltage at the maximum power point, the slope of the I-V curve at the short circuit point and the nominal operation cell temperature. The values of these parameters for more than 10,000 different commercial PVs are available in the SAM PV library [42]. The production of the whole array  $E_{PV}(s, t)$  in the *i*<sup>th</sup> scenario and period *t*, is given by the following equation that takes into account the number of the PV installed ( $N_{PV}$ ) and the efficiency of the inverter  $\eta_{inv}$ .

$$E_{PV}(i,t) = \eta_{inv} * E_{PV,m}(i,t) * N_{PV} \quad \forall i, \forall t$$
(17)

#### Battery Bank

The battery bank is modelled trough an energy balance on the State of Charge  $(SOC_{bat})$  of the battery. The energy flow into and out of the battery are defined by  $E_{bat,ch}$  and  $E_{bat,dis}$  respectively. Finally, the charge and discharge efficiencies are given by as  $\eta_{ch}$  and  $\eta_{dis}$ .

$$SOC_{bat}(i,t) = SOC_{bat}(i,t-1) + E_{bat,ch}(i,t) * \eta_{ch} - E_{bat,dis}(i,t)/\eta_{dis} \quad \forall i,\forall t$$
(18)

To ensure the optimal operation and life time of the battery bank several constraint are considered as suggested by S. Balderrama et al in [35].

#### Diesel Generator

The diesel gen-set represent a backup system and it is activated when the energy provided by the PV array is not available and when the state of charge of the battery bank is lower than its minimum value or when it is convenient the use of the gen-set due to the lower price of the diesel. The behaviour of the diesel generator is modelled through the robust *Linear Programming* formulation that assume a constant efficiency with respect to the power output and reduce the computational time of the entire model. The slope of the cost curve for the generator system  $\alpha_{LP}$  is calculated by the following equation, where  $LHV_{di}$  is the low heating value of the diesel,  $P_{di}$  is the cost of the diesel and  $\eta_{Gen}$  is the generator efficiency [35].

$$\alpha_{LP} = \frac{P_{di}}{(LHV_{di} * \eta_{Gen})}$$
(19)

The total operation cost  $C_{diesel}$  of the diesel generator system in each period and scenario is evaluated as the expression ():

$$C_{diesel}(i,t) = E_{Gen}(i,t) * \alpha_{LP}$$
<sup>(20)</sup>

Finally, the constraint on the energy outputs that has not to exceed the generator nominal capacity has to be added:

$$E_{Gen}(i,t) \le C_{gen}\Delta t \tag{21}$$

Where the  $E_{Gen}$  is the energy coming from the diesel generator and the  $C_{gen}$  is the nominal capacity.

#### Electrical Load

The electrical demand is evaluated through the *Load Pro Gen* program [27]. To create the total electrical load, several class are considered in order to distinguish the appliances and the different manners to use them. The methodology to create the electrical load curve is better explained in the Chapter 2. It is importing to observe that the *LoadProGen* program returns an electrical load of the entire village, hence, the model designs the optimal configuration considering a *centralized* system for the electrical energy despatch.

# 3.1.2 Solar Water Heating System

The thermal energy access for domestic usage regards principally activities as cooking, space heating and water heating [28]. The scope of this work is to analyse exclusively the water heating system that represent a relevant percentage of the thermal energy usage in the study area as stated in Chapter 4.

A solar system represents one of the most popular application for the domestic water heating. The peculiarity of these systems is the fact that relatively simple systems are involved, and they are generally viable. The solar water heating system is a combination of a solar collector array, an energy transfer system and a storage tank. The solar collectors absorb the solar irradiation and converts it to heat. This heat is transferred to a fluid that passes through the collectors. Then, the hot fluid is stored in a storage tank [40].

The model proposes a direct and active system, in which the potable water is heated directly in the collector, stored in the tank and then sent to the domestic use (direct system). The water is moved through the system by a pump, hence, the system has a forced circulation (active system). The power absorbed by the pump can be assumed to be negligible. In the tank an electrical resistance is installed to ensure thermal energy when the energy coming from the sun is not enough. In addition, a natural gas boiler is used as a back-up system to satisfy the demand when it is necessary. Finally, the solar water heating system (Figure 15) is composed of:

- Solar Collectors connected directly to the water storage tank
- *Water Storage Tank* that receive the hot water from the collectors and send the flow the domestic use.
- *Electrical Resistance* that maintain the temperature of the hot water above a certain value.
- Natural Gas Boiler used as a back system.
- *Thermal Load* that correspond to the thermal energy demand.



Figure 15: Considered thermal system typology. Source: Authors.

In the electrical part, the design of the system looks at the village as a whole with a global electric energy demand as inputs and a global power station as output. Otherwise, in the

thermal part the issue of topographic constrains (i.e. the need to consider buildings separately) arises. As a matter of fact, a centralized system could be extremely expensive and not appropriately to satisfy the hot water demand of an entire village. For these reasons, the model considers the design of the solar water heating system separately for several classes in the same scenarios. Each class represents a typical usage of sanitary hot water such as the domestic use, the public use or the commercial ones. Therefore, the model designs a solar water heating system for each class and for several scenarios. In other words, each class is seen as a whole system with a solar collector array, a water storage tank with own electrical resistance and a natural gas boiler as backup system.

#### Solar Collectors

The thermal energy provided by the solar collectors is given by the solar irradiation that heats the potable water through the solar collector and ends in the storage tank. The solar collector energy output  $E_{SC}$  is computed as the product of the solar irradiation on the inclined surface evaluated through the isotropic model as explained in Chapter 2 and the nominal efficiency of the selected solar collector times the area. The solar collector selected for the study is the model that is already installed in the local area namely First Solares Co., Ltd. FP-GV2.15.00.

The total thermal energy provided by the solar collectors  $E_{SC_{tot}}$  for each class *c* and for each scenario *i* has been evaluated as the solar collector energy  $E_{SC}$  multiplied by the number of solar collector in that class  $N_{SC}$ :

$$E_{SC_{tot}}(i, c, t) = E_{SC}(i, c, t) * N_{SC} \quad \forall i, \forall c, \forall t$$
(22)

In this way, the model returns the optimized number of solar collectors for each class in each scenario. The energy coming from a solar collector unit  $E_{SC}$  is given as an input data.

### Electrical Resistance

To maintain the minimum level of thermal energy in the storage tank and to satisfy the thermal demand when it is required, an electrical resistance is considered to be installed in the storage water tank (as it is the case for the pilot tanks installed in the village). The use of the electrical resistance to heat the water in the tank and to satisfy the demand is a result of

the objective function of the net present cost. The solver decides when it is convenient provide thermal energy by the electrical resistance or by the natural gas boiler taking into account the energy constraints and the cost of the electrical energy. The resistance is assumed to have a unitary efficiency and its thermal energy  $E_{Resistance}$  has not to exceed it nominal capacity  $C_{Resistance}$  as expressed in the Equation 23:

$$E_{Resistance}(i, c, t) \le C_{Resistance}(c) * \Delta t \quad \forall i, \forall c, \forall t$$
(23)

The thermal energy coming from the electrical resistance is calculated for each period t, each class c and each scenario i as well as the nominal capacity is designed for each class due to the different thermal demand that they have. Once the design is optimized, the energy required by the electrical resistances of each class has to be summed and included in the electrical energy balance. In fact, the energy required by the resistances has seen by the electrical part as an additional load. Therefore, the total energy resistance is evaluated for each period and each scenario as in the following expression:

$$E_{TOT_{Resistance}}(i,t) = \sum_{c=1}^{n} E_{Resistance}(i,c,t) \quad \forall i, \forall c, \forall t$$
(24)

Where *n* is the number of classes in each scenario.

#### Water Storage Tank

The energy balance on the water tank represent the energy balance of the thermal storage system. In fact, for each time-step t, for each class c and in each scenario i, the thermal energy stored in the water tank  $E_{SOC_{Tank}}(i, c, t)$  is evaluated as a balance on the tank as the energy stored in the period before  $E_{SOC_{Tank}}(i, c, t - 1)$ , the incoming energy flow from the solar collectors  $E_{SC_{tot}}$  and the electrical resistance  $E_{Resistance}$  assuming its efficiency  $\eta_{Resistance}$  equal to one, and the outcoming energy flow  $E_{Tank_{out}}$  sent to the thermal load. The losses are considered through the efficiency of the tank  $\eta_{tank}$  through the definition given by [40]. Hence, the thermal energy balance is defined by the equation () and it is expressed in Wh.

$$E_{SOC_{Tank}}(i, c, t) =$$

$$= E_{SOC_{Tank}}(i, c, t - 1) * \eta_{tank} + E_{SC_{tot}}(i, c, t) + E_{Resistance}(i, c, t) * \eta_{Resistance} - E_{Tank_{out}}(i, c, t) \forall i, \forall c, \forall t$$
(25)

Finally, several constraints have to be defined to complete the storage water tank model:

• The energy stored in the tank has not to exceed the maximum capacity *C*<sub>soctank</sub> of the water tank for each class *c*:

$$E_{SOC_{Tank}}(i, c, t) \le C_{SoC_{tank}}(c) \quad \forall i, \forall c, \forall t$$
(26)

• The energy stored in the tank has to be maintained above a minimum value defined, hence, deep of discharge *D*<sub>soc</sub> corresponding to a percentage of the nominal tank capacity:

$$E_{SOC_{tank}}(i, c, t) \ge C_{soc_{tank}}(c) * D_{soc} \quad \forall i, \forall c, \forall t$$
(27)

• The energy tank flow out coming from the water tank  $E_{out}(i, c, t)$  must be lower than the tank maximum power discharge  $P_{out_{Max}}$  multiplied by the delta time  $\Delta t$ :

$$E_{Tank_{out}}(i,c,t) \le P_{out_{Max}} * \Delta t \quad \forall i, \forall c, \forall t$$
(28)

#### Natural Gas Boiler

The natural gas boiler is a back-up system connected directly to the load. The thermal energy coming from the boiler is provided when results convenient compared to the electrical resistance. The boiler thermal energy  $E_{Boiler}$  has to be remain under its nominal value  $C_{Boiler}$ . For this reason, a nominal boiler capacity is defined as  $C_{Boiler}(c)$  and the following constraint have to be respected:

$$E_{Boiler}(i, c, t) \le C_{Boiler}(c) * \Delta t \quad \forall i, \forall c, \forall t$$
<sup>(29)</sup>

As for the other equipment, the thermal energy provided by the natural gas boiler is defined for each periods, classes and scenarios, while the size that correspond to the nominal capacity is designed for each class. Additionally, the Natural Gas consume  $NG_{consume}$  is given by the boiler energy  $E_{boiler}$  divided the efficiency  $\eta_{boiler}$  and the Low Heating Value *LHV*:

$$NG_{consume} = \frac{E_{boiler}}{\eta_{boiler} * LHV}$$
(30)

#### Thermal Load

The thermal demand regards exclusively the sanitary hot water consumption of different classes of users. Differently from the electrical load, the hot water demand has to be considered for each class separately; in this way the model designs an optimal thermal configuration for each class, while all the electrical requirement will be summed and integrated in the electrical energy balance. Therefore, for the thermal part a *decentralized* logic is adopted. As deeply explained in the Chapter 2, for the thermal load the same tool of the electrical part, *Load Pro Gen*, has been used to characterize the demand of each class separately.

# 3.2 Connection of the two systems

The layout of the entire system configuration is presented in Figure 16, where it is possible to observe that the electrical resistance is connected to the electrical part. In fact, the electrical energy required by the resistance to satisfy the thermal demand is provided by the electric energy part.



Figure 16: Considered energy system configuration. Source: Authors.

# 3.2.1 Energy Balances

#### Thermal Balance

The thermal energy balance aims to satisfy the hot water consumption of each class independently. In fact, the optimization is performed for a single class c, in each scenario i, and for each period. As explained in the section 2.2.2, the profile of thermal demand is evaluated on a user's sample, for this reason the thermal demand of each class has to be multiplied by the number of users in that class as in the Expression 31:

$$E_{TOT_{Thermal Demand}}(i, c, t) = E_{Thermal Demand}(i, c, t) * N_{Users}(c) \quad \forall i, \forall c, \forall t$$
(31)

Once the total thermal demand is defined, the thermal balance can be expressed as in the Equation 32, where on one side there is the total thermal load that has to be satisfied for each class, and on the other side there is the summation of the boiler energy  $E_{boiler}$ , the energy tank flow out and the curtailment energy.

$$E_{TOT_{Thermal Demand}}(i, c, t) = E_{boiler}(i, c, t) + E_{Tank_{out}}(i, c, t) - E_{Curt}(i, c, t) \quad \forall i, \forall c, \forall t \quad (32)$$

The energy tank flow out  $E_{Tank_{out}}$  represents the thermal energy that comes from the water storage tank, where the energy is accumulated thanks to the solar collector energy and the resistance energy and flows directly to the load. The energy curtailment  $E_{Curt}$  is the energy coming from the solar collectors that cannot be used to satisfy the thermal demand. Therefore, the model returns as output the design of thermal configuration for each class including the number solar collectors installed, the size of the water storage tank and the use of electrical resistance.

#### Electrical Balances

The electrical energy balance regards the energy dispatch to satisfy the electrical load considering the energy required by the thermal part. The balance sees on the left side the electrical load  $E_{El_{Demand}}$  and on the right side the energy flows that satisfy as the total PV energy  $E_{PV}$ , the energy coming from the diesel generator  $E_{Gen}$  and the energy flow out of the battery  $E_{bat,dis}$ . In addition, the energy curtailment  $E_{Curt}$ , the energy that will be

accumulated in the storage battery bank  $E_{bat,ch}$  and the total resistance energy  $E_{Tot_{Res}}$  required provide thermal energy, are considered as negative terms. Hence, the balance is expressed in Equation 33:

$$E_{El_{Demand}}(i,t) = E_{PV}(i,t) + E_{Gen}(i,t) - E_{bat,ch}(i,t) + E_{bat,dis}(i,t) - E_{Curt}(i,t) - (33)$$
$$E_{Tot_{Res}}(i,t) \quad \forall i, \forall t$$

The electrical energy dispatch will be a result of the net present cost optimization for the entire village. In fact, as mentioned above, the load is related to the entire village while the thermal demand is divided in different class.

### **3.2.2 Economical Analysis**

#### **Objective Function**

The economic analysis is performed starting from the *MicroGridPy* model and considering the investment and operation costs of each new technologies to satisfy the thermal demand. The technologies that compose the water heating system are: solar collectors, water storage tank, the electric resistance and the natural gas boiler.

The scope of the model is minimizing the weighted sum of the net present cost (NPC) relative to each scenario and for each class of the thermal part through the objective function. The weighting factors are the probabilities of occurrence (Po) and each scenario is given an equal weight, where S is the number of scenario.

$$ObjectiveFunction = \sum_{i=1}^{S} Po(i) * NPC(i)$$
(34)

$$\sum_{s=1}^{S} Po(i) = 1$$
(35)

The NPC of each scenario is given by the following expression, where, YCC is the yearly constant cost of the project, n is the year of the project, *Inv* is the total investment cost, *e* is the discount rate factor and  $Cost_{rep}$  is the cost of replacing the batteries.

$$NPC(i) = Inv + \sum_{n=1}^{N} \frac{YCC(i)}{(1+e)^n} + Cost_{rep} \quad \forall i$$
(36)

 $Cost_{rep}$  is the reposition cost of the battery and it is calculated using following equation, where, y is the year when the battery bank is replaced and  $Uni_{bat}$  is the unitary cost of the battery.

$$Cost_{rep} = \frac{Cap_{bat} * Uni_{bat}}{(1+e)^{y}}$$
(37)

To create the financial cost and the investment cost functions for the thermal technologies, it is necessary to take into account the design of each class defined that are considered in the optimization. For this reason, the cost of function of the water heating solar system components will be evaluated as:

• Solar Collector Financial Cost  $C_{SC_{finan}}$  is the sum of the solar collector investment cost  $U_{SC}$  multiplied by the nominal capacity  $C_{SC}$ , that correspond to the maximum value that could be out from a solar collector, and number for units  $N_{SC}(c)$  of each class c:

$$C_{SC_{finan}} = \sum_{c=1}^{n} N_{SC}(c) * U_{SC} * C_{SC}$$
(38)

• *Tank Financial Cost*  $C_{Tank_{finan}}$  that define the summation of the tank investment cost multiplied  $U_{Tank}$  by the tank nominal capacity  $C_{soc_{tank}}(c)$  referred to the maximum storable thermal energy in the water tank for each class c:

$$C_{Tank_{finan}} = \sum_{c=1}^{n} U_{Tank} * C_{soc_{tank}}(c)$$
(39)

• *Boiler Financial Cost*  $C_{Boiler_{finan}}$  is the sum of the boiler investment cost multiplied by the nominal capacity of the boiler  $C_{Boiler}(c)$  for each class *c*:

$$C_{Boiler_{finan}} = \sum_{c=1}^{n} U_{Boiler} * C_{Boiler}(c)$$
(40)

• *Electrical Resistance Financial Cost*  $C_{Res_{finan}}$  is the sum of the electrical resistance investment cost  $U_{Res}$  multiplied by the nominal capacity  $C_{Resistance}$  of the resistance for each class *c*:

$$C_{Res_{finan}} = \sum_{c=1}^{n} U_{Res} * C_{Resistance}(c)$$
(41)

Therefore, *Inv* is evaluated considering all costs of the different technologies where, the unitary cost of the PV, genset and the battery bank are given by  $U_{PV}$ ,  $U_{gen}$  and  $Uni_{bat}$  the respectively. The thermal technologies are defined through their financial costs. The percentage of *Inv* that is financed by a bank (or any another entity), is given by *fun* and  $C_{PV}$  is the nominal capacity of one PV module. During the LP optimization  $N_{Gen}$  is set equal to 1.

$$Inv = \left(N_{PV} * U_{PV} * C_{PV} + Cap_{bat} * Uni_{bat} + C_{gen} * N_{gen} * U_{gen} + C_{SC_{finan}} + C_{Tank_{finan}} + C_{Boiler_{finan}} + C_{Res_{finan}}\right) * (1 - fun)$$

$$(42)$$

*YCC* is calculated in the Expression 43, where,  $Cost_{om}$  is the cost of operation and maintenance of the system,  $Cost_{finan}$  (USD) is the constant payment for the loan to pay for the *Inv*.

$$YCC(i) = Cost_{om} + Cost_{finan} + \sum_{t=1}^{T} Cost_{Gen Set}(i, t) + \sum_{t=1}^{T} Cost_{gas}(i, t) \quad \forall s$$
(43)

The  $Cost_{om}$  is given, where OyM (%) is a percentage of Inv.

$$Cost_{om} = \left(N_{PV} * U_{PV} * C_{PV} + Cap_{bat} * Uni_{bat} + C_{gen} * N_{gen} * U_{gen} + C_{SC_{finan}} + C_{Tank_{finan}} + C_{Boiler_{finan}} + C_{Res_{finan}}\right) * OyM$$

$$(44)$$

The equation below is used to calculate  $Cost_{finan}$ , where *i* is the number of years in which the loan has to be paid back and the interest rate is r.

$$Cost_{finan} = \frac{Inv \times fun \times r}{1 - (1 + r)^{-i}}$$
(45)

The levelized cost of energy (LCOE) of the project is evaluated with the help of with  $D_a$  as the annual demand of energy [43].

$$LCOE = \sum_{i=1}^{S} \frac{NPC(i) * Po(i)}{\sum_{n=1}^{N} \frac{D_a(i)}{(1+e)^n}}$$
(46)

Finally, this equation is used to calculate  $D_a$ , where the demand of electrical energy in each period t of the system is represented by  $D_p$ , while the thermal demand is represented by  $D_{thermal}$  for each periods, class and scenario.

$$D_{a}(i) = \sum_{t=1}^{T} D_{p}(i,t) + \sum_{t=1}^{T} D_{thermal}(i,c,t) \,\forall i \,\forall c$$
(47)

$$D_{thermal}(i) = \sum_{t=1}^{T} D_{thermal}(i, c, t) \,\forall i \,\forall c$$
(48)

# 4. Assessment and Loads Results

In this chapter the results of the energy balance, load curves and local resource assessment are presented. Firstly, the analysis is focused on aspects of current electricity and fuel consumption in domestic, commercial and public drivers, to achieve the first specific objective of this work. The results are summarized in an energy flow diagram including all energy drivers, energy sources and final uses. Secondly, the computed Load Curves for every energy driver are presented in a graphical form. Lastly, results of the main characteristics of RES potential are reported to evaluate the sources available in the study area.

# 4.1 Current energy situation

# 4.1.1 Energy Drivers

The study area is represented by the entire village of Toconao, where domestic, commercial and public energy drivers are identified through the analysis of the village's electric bills. The domestic driver is composed of 332 households, each one with its own electric meter. The commercial driver is composed by the activities that produced an income in the village,

basically restaurants, artisan laboratories and guesthouses. In the commercial driver are considered two telephone company antennas as well, that consume energy and have an electric meter regularly registered at the local electrical committee. In total 32 structures are considered.

The public driver is composed by the public school, the police station, the medical office, the community reunion office and some other public services like two football fields with night lights.

In total 13 elements are considered, including street lights as one user.

The reference energy system investigated in the study area is presented in Figure 17., in which are reported energy sources, energy drivers and energy services demanded corresponding to the community energy needs: lighting, power of appliances, cooking, space and water heating.



Figure 17: Reference energy system of the study area. Source: Authors.

# 4.1.2 Current Energy Balance

The energy sources identified in the study area are:

- Electricity from the grid, produced by the private contractor CESPA, external the study area
- Diesel, fuel used to power the backup generator inside the village
- LPG, fuel used to power the boilers and fire gas cookers
- Firewood, used to cook in some households and restaurants
- Solar, in form of 150 solar collectors installed on selected households

All the sources are treated as "Primary Energy Sources".

Energy supply from the Grid amounts to 49.68 toe/year, from Diesel amounts to 12.96 toe/year, form LPG amounts to 87.35 toe/year, form Firewood amounts to 9.78 toe/year and from Solar to 7.00 toe/year.

The total primary energy supply (TPES) amounts to 166.78 toe/year, 65.74% in the domestic driver, 26.56 % in the commercial driver and 7.70 % in the public driver. The total final energy consumption (TFC) amounts to 118.40 toe/year to satisfy the energy need within the

study area namely lighting, running of appliances, cooking, water and space heating. The difference between TPES and TFC express the electrical and thermal energy losses, 48.37 toe/year in total, corresponding to about 30%. Results from the energy consumption assessment of each energy driver are presented in the following paragraphs.

### Domestic

The 332 households make up the domestic energy driver.

Diesel is used to run the backup generator that substitutes the electricity from the grid, to which every house is connected, and the consume measured by an electric meter.

LPG, bought in bottles of 5 or 15 kg, is used to cook and fire boilers to heat sanitary water. Firewood is still used in some households to cook or bake bread in the traditional way, and 150 households are equipped with solar collectors to heat water, that reduces significantly the consume of gas in the house.



In Chart 3 are presented the shares in energy consumption by source.

Chart 3: Energy mix present in the domestic driver.

More than the half of energy supply is from LPG with 62.23 toe/year, followed by the electric energy from the grid with an amount of 24.61 toe/year, firewood accounts for 9 % of the share with 9.38 toe/year and finally solar energy with 7.00 toe/year and diesel that amounts to 6.42 toe/year.





Chart 4: Share of final energy consumption in the domestic driver

The major share of final energy consumption goes for water heating, equal to 48% and corresponding to 36.50 toe/year. For running appliances goes 27% of the final energy supplied, corresponding to 20.67 toe/year, 16% goes to cooking, with 12.10 toe/year, 4.17 toe/year are spent for lighting and 2.42 toe/year for space heating.

Demand for water heating is satisfied with LPG and solar collectors, cooking with LPG and firewood, while the electricity needed for lights and running the appliances is satisfied from the grid and with diesel to run the backup generator.

Is possible to see how space heating represents such a reduced share of energy use, because despite the low temperatures that are reached in the desert at night, is still a technology considered only for few, the majority of the population do not possess any kind of space heating device.

# Commercial

The commercial energy driver uses the same energy sources as the domestic one, with the exception for solar energy since solar collectors are installed only on households. The contribution of each category is shown in Chart 5.

72


Chart 5: Energy mix present in the commercial driver.

The 54% of primary energy consumption in the commercial driver is attributed to LPG, corresponding to 23.74 toe/year. Primary energy from the grid accounts for 36% of the share, for an amount of 15.98 toe/year. Finally, 4.17 toe of diesel and 0.39 toe of firewood make up the rest of the share.

Energy services demanded in the commercial driver have no difference from the services of the domestic driver, there is however a difference in the share of their use, cooking and water heating are significantly lower, and electricity for using appliances represents almost half of the usage of energy. This is due to the fact that only the restaurants make large use of sanitary water and cook, and they represent only a part of the commercial facilities.

The shops and artisan workshops make use of almost only electricity.



Chart 6: Share of final energy consumption in the commercial driver

The energy required for running appliances represent the 44% of the total final energy, with an amount of 13.94 toe/year. The energy for water heating represents 25% of total share (8.07 toe/year), energy for cooking is 22% (7.13 toe/year) and for lighting 7% (2.36 toe/year). Only 2% is spent for space heating (0.59 toe/year).

### Public

In the public energy driver, the primary energy sources reduce to three since no firewood is used neither. The contribution of each source is presented in Chart 7.



Chart 7: Energy mix present in the public driver.

The great majority of the energy sources is represented by the electric energy from the grid, 71% and 9.09 toe/year. Diesel represents 18% of the share with 2.37 toe and the remaining 11% is taken by the 1.38 toe of LPG.

As its possible to see in Chart 8, thermal uses are almost negligible in this driver, since only the school make use of cooking services, and only the police station has a space heating system, the rest of the energy is used to run appliances in offices and for public lights, that justifies the great share of lighting final use.



Chart 8: Share of final energy consumption in the public driver

The half of the energy is used for running appliances, with an amount of 5.20 toe/year, the energy for lighting services is 42% (4.41 toe/year). Cooking 5% (0.52 toe/year), water heating 2% (0.23 toe/year) and space heating 1% (0.07 toe/year).

#### Energy Flow diagram of the study area

In the reference energy system five energy sources, three main energy drivers and five energy services demanded are identified. Results regarding the current energy consumption are aggregated in the overall energy balance of the study area for a sample year and reported in the Sankey diagram present in figure 18 in accordance with IEA criteria for energy balance representation [44], the Sankey diagram, created using the software e!Sankey®, includes the energy flows of the study area represented in the figure with arrows and expressed in toe.



Figure 18: Sankey Diagram of the actual situation in the study area.

As is possible to observe the thermal demand of the village represents more than the half of the secondary energy use, with a share of 57%. Inside this thermal demand 66% of the energy is used for water heating purposes. This situation justifies the focus of this work on thermal solar thermal collector technologies.

Is also possible to observe how the study area is strongly dependent of external sources of energy, since electricity form the grid, LPG and diesel are energy that have to be bought from outside the limits of the village, and strongly condition the usage of energy. The percentage of TPES deriving from sources outside the study are is 91% and increases to 95% when talking about secondary energy.

### 4.1.3 Shortages and Diesel Consumption

Being the power supply rather unreliable in developing area, the rural villages of Atacama Desert are included this context. The quality of the power supply is assessed through specific questions in the questionnaires and direct observations on the power line.

In the questionnaires the number and duration of power shortages per month is assessed, and the voltage fluctuations investigating the number of damaged appliances due to electricity supply problems.

The number of shortages in the winter season is around two per month, and the duration could vary from few hours to an entire day depending on the cause of the shortage. Usually the cause is a voluntary interruption of the energy supply from the distributor due to an extreme peak load in the village of San Pedro de Atacama, main customer of the CESPA cooperative, that decides to cut off the power line to Toconao in order to fulfil the demand of the main village. These shortages are communicated in advance to the community's responsible for electricity in the study area and the diesel generator is powered right after the interruption of the line in order to avoid discomfort to the population.

If the shortage is due to a failure in the line, such as the fall of an electric trellis, situation that occurs more frequently in the summer season, during the storms typical of the climatic region, the shortages are of longer period, and can last up to a week depending on the intervention time.

This changes in power source from grid to generator cause voltage fluctuations that lead to frequent damage of electrical appliances. From the questionnaires resulted that almost every user experienced damage of two or more domestic or office appliances since the electrification of the village.



Figure 19: Geographical relatve positions of San Pedro the Atacama and Toconao. Source: Authors' adaptation from Google Maps

In order to assess the working parameters of the diesel generator, a Westac model KPP400, direct observations on the monitoring display of the generator were performed and measurements were carried out during a monitored working period of three hours.

From the monitoring display the total functioning hours and total energy produced since the day of start-up were obtained. The generator was installed in 2010 and at the investigation moment 7 years of activity were supposed. The parameters observed are:

- 3501 hours,
- 955 starts,
- 232203.5 kWh produced.

Supposing a similar behaviour for each year, the following parameters can be estimated:

- Hours of activity per year: 500 h,
- Start-ups per year: 136,
- Energy produced per year: 33172 kWh.

To calculate the efficiency of the generator with the methodology illustrated in Chapter 2, a trial and monitored working period of three hours was performed and the efficiency estimated to be 22%.

In order to put into operation the diesel generator, the supply from the main grid was interrupted, and a manual switch had to be activated in order to change the source of energy to the village.

During this test an unexpected problem emerged, when the energy was supplied from the grid the entire village was served by electricity, but when the generator was in action a part of the study area, highlighted in red in Image 20, was left without electricity without anybody being aware of the situation before that moment.



Figure 20: Area of the village excluded form generator's energy supply. Source: Authors' adaptation from Google Earth.

In order to understand the possible cause of the problem various hypothesis were taken in consideration, and after an investigation was found out that two weeks before the arrival in the study area a renovation work of the power line had been implemented, and the switch to change from grid to generator was moved to the wrong position, and a part of the village

was not included inside the area under the control of the switch. No shortages had occurred before that moment and for that reason the problem had not been found out until that moment. A redesign of the line is necessary in order to re-include the excluded area.

## 4.2 Local Energy Sources Assessment Results

In this section, the potential of the studied renewable energy sources is quantified through the application of the different methods and procedures presented in chapter 2.

### 4.2.1 Solar

The average insolation measured in the study area for the data collection period is presented in chart 9.



Chart 9: Daily measured average irradiation in the study area.

The monthly average solar irradiation obtained from the data of the three years from the weather station in San Pedro de Atacama [30] is presented in chart 10.



Chart 10: Monthly average irradiation in the study area.

The peak value of GHI registered is 1439  $W/m^2$ , and the total annual Irradiation in the study area is 9280 MJ/m<sup>2</sup>.

After the solar irradiation, photovoltaic power output from a commercial panel available in the local area is performed. The photovoltaic panel selected is the model Yingli Energy YL300P-35b Polycrystalline module. The data of the solar irradiation are elaborated through the *Modelica* language [41]. In chart 11, the PV power output of the day 19<sup>th</sup> of April is represented.



Chart 11: PV unitary power output. W vs 15min.

According to Equation 12 presented in Chapter 2, the solar collector power output is represented of the same day 19<sup>th</sup> of April.



Chart 12: Solar Collector unitary power output. W vs 15min.

These data are part of the input file fed to the model in order to perform the optimization.

### 4.2.2 Wind

The average wind speed measured in the study area for the data acquisition period is presented in Chart 13.



Chart 13: Measured average wind speed in the study area.

The average wind speed is in the range between 1 and 1.7 m/s and it is higher in the afternoon, between 4 PM and 9 PM.

Chart 14 presents the wind rose obtained from the weather station in the observation period.



Chart 14: Wind rose of the measured wind velocities in the study area.

As shown in chart 14 the wind blows mainly between East and Northeast direction and the dominant direction is Northeast with a number of observations over 650.

As already stated in chapter 2.3.2 the collected data are not considered reliable enough to perform a study on wind potential in the area. For this reason, the Explorador Eolico [32] is used as reference tool to estimate wind potential.

From the tool is possible to extract statistical data on wind characteristics at 5.5 meters in the study area. Basic statistics on wind speed are presented in table 2.

|           | Daily Average [m/s] | Daily Min [m/s] | Daily Max [m/s] | Variability [m/s] |
|-----------|---------------------|-----------------|-----------------|-------------------|
| January   | 3,3                 | 0,7             | 6,3             | 0,2               |
| February  | 3,2                 | 0,6             | 6,2             | 0,4               |
| March     | 3,3                 | 0,6             | 6,0             | 0,3               |
| April     | 3,9                 | 1,0             | 7,3             | 0,4               |
| May       | 4,0                 | 0,6             | 7,5             | 1,3               |
| June      | 3,7                 | 0,6             | 6,5             | 0,6               |
| July      | 4,3                 | 1,1             | 8,4             | 1,0               |
| August    | 4,1                 | 0.6             | 7,5             | 0,7               |
| September |                     |                 | ,4              | 0,8               |
| October   |                     |                 | ,9              | 0,6               |
| November  |                     |                 | ,6              | 0,3               |
| Dicember  |                     |                 | ,3              | 0,3               |
| Year      |                     |                 | ,1              | 0,8               |

Table 2: Monthly average wind speeds in the study area. Source: [32].

Where the daily average is The daily minimum is the a and similarly the daily ma average.

the indicated period. lated day in the period, leviation of the daily

In the same report graphical analysis is available, in particular in Chart 15 the annual cycle and daily cycle of wind speed are presented.



Chart 15: Yearly and daily wind speed cycles in the study area. Source: [32].

Where the average cycles of velocity on yearly and daily basis are presented based on every simulated data in the considered period.

Through the equation presented in chapter 2.3.2 the annual average potential is estimated. Adopting a Betz coefficient of 0.596, a density of  $0.92 \text{ kg/m}^3$  as from report of Explorador Eolico, and an average speed of 3.8 m/s the power production per swept area was equal to 15.04 W/m<sup>2</sup>, thus assuming a capacity factor of 0.7 [45] the annual energy production is estimated to be 33.2 MJ/m<sup>2</sup>.

### 4.2.3 Hydro

Hydropower potential is evaluated based on measurements to estimate flow rate and gross head that are performed in the two rivers flowing nearby the study area.

The river flows obtained with the floating object method, the total gross heads, estimated using Google Earth and the estimated power output are reported in table 3.

Table 3: Estimated flow rates, gross heads and available powers of the two rivers.

| Flow Rate [m <sup>3</sup> /s] |       | Gross Head [m] | Available Power |
|-------------------------------|-------|----------------|-----------------|
|                               |       |                | [kW]            |
| Rio Toconao                   | 0.068 | 19             | 12.7            |
| Rio Aguas Blancas             | 0.013 | 59             | 7.5             |

Considering the low available flow rate of Rio Aguas Blancas the theoretic output is considered not sufficient in order to proceed any further with the investigation and the focused switched on Rio Toconao.

Considering a capacity factor equal to 55% according to [46] and an overall efficiency of the hydropower system equal to 50% the annual energy potential amounts to 110 GJ.

## 4.3 Load Curves

The load curves are computed with the LoadProGen software as stated in chapter 2.2, the data used to create the curves are extracted from the answers to the questionnaires and from direct observations on the field.

### 4.3.1 Electric Load Curves

The results for the entire village load profile are now presented in chart 16. and the tables with the input values are presented in Appendix B.1.

In chart 16, the Load Curves estimated for the four seasons are presented. The load profile for a year of the study area is obtained assembling the four profiles, in chronological order from the 1<sup>st</sup> of January to the 31<sup>st</sup> of December, one time per each day of the season.



Chart 16: Electric load profile of the study area in the four seasons - W vs 15min.

The load curve has been computed estimating every 15 minutes the load of the entire study area. Two peak loads are present, one around 12:00 and one approximately from 19:00 to 22:30 both with a value of around 350 kW. A seasonal variation is appreciable in the night phase of use, winter curve reaches peak value for first, due to the earlier time of sunset. While the summer reaches the value later for the same reason.

### 4.3.2 Thermal Load Curves

The obtained load curves are reported in the following charts. A little consume of thermal energy is observable in the domestic class load profile, as it accounts for only one user, the

four showers, four small sink usages and two dish washings make up the thermal needs of the structure.

A more consistent demand is present in this class, as the kitchens of the restaurants make large use of hot water during meal times.

The school, which has a class of its own presents a singular behaviour, due to the presence of the kitchens, that cook for the whole number of students, and the regular use of toilets from students and staff throughout school hours.

Public class presents, equally to domestic class, lower consumes due to the fact that a lower number of users compared to the school is present and the only kitchen use of sanitary water is made by the police station.



Chart 17: Thermal load profiles of the four classes for respective typical user - W vs 15min.

# 5. Multi Energy System model results

The previous chapters provide a comprehensive overview of what is the worldwide approach to the issue of access of energy, highlighting the necessity to pay more attention on the thermal matter that has to be aggregated to the electrical ones; then following the CESP logic and identifying the key features that are needed for a best approach, the adopted methodology is deeply explained and a *Multi Energy System* model is implemented in order to introduce a tool capable to perform a better optimization that satisfies both thermal and the electrical demand for rural communities.

This present chapter will address the latter issue and will propose an energy solution planning for the study area of the rural village of Toconao. The *MicroGridPy* and the *Multi Energy System* model are performed through a robust Linear Programming optimization and it based on the local energy assessment and the local available energy resources.

First, the actual situation is identified, and the Levelized Cost of Energy is evaluated. Secondly, both simulations in *MicroGridPy* and *Multi Energy System* are carried out considering three different scenarios:

- Normal fuel prices
- Fossil fuels prices increased by 50%
- Only renewable technologies

To precisely compare the several scenarios, the energy dispatch results are supported by the sizing and the economic analysis of the different configurations. Hence, the following results are reported to better understand the differences among the scenarios: electrical energy dispatch, number and size of each technology installed, the fossil fuels prices, the Net Present Cost of the project and the Levelized Cost of Energy (LCOE). Moreover, the Sankey diagram of each scenario is created to complete the model results and put in evidence the energy flows of the vary configurations. For the thermal part, the results are given considering each class as separate configurations. The presented results are referred to a single day, the 19<sup>th</sup> of April, of a typical meteorological year with a time step of 15 min as discussed in the Chapter 2. In addition, all the technical and economical characteristics of the several equipment are showed in the Appendix (F).

As mentioned above, the most abundant resource available in the local area is the solar irradiation, consequently the inputs in both simulations are given by the energy outputs for

each time step of 15 min of the selected Photovoltaic panel and Solar Collector. Finally, the thermal and the electrical demand are considered to simulate the energy load of the entire village as explained in the Chapter 2 and 4.

### 5.1 Baseline Scenario

To better understand the comparisons among the several scenarios, it is necessary to evaluate the Net Present Cost and the Levelized Cost of Energy (LCOE) of the actual situation in the study area, as baseline scenario. As discussed in the previous chapters, what emerges from the local energy assessment is that the electrical demand is principally satisfied buying electricity from the local company CESPA at a higher price, as shown in the Table 1, that in some case reaches values of 220 CLP/kWh compared to the national value of 107,5 CLP/kWh that in USD dollars are 0.36 USD/kWh and 0.17 USD/kWh respectively. The same tariff is also applied when the electricity is produced by the diesel generator in case of shortages or the unavailability of the line. Based on these considerations, the LCOE of the actual situation is evaluated, and it is results equal to 0.34 \$/kWh with Net Present Cost of 7,61 million dollars. On the other side, looking at the Sankey Diagram of the actual situation in Figure 18 in Section 4.1.2, the thermal energy requirement is mainly satisfied by LPG source. As previously discussed, due to the high cost of transportation the price of the LPG is quite high, hence, combining the price of the electricity and of the LPG, the Levelized Cost of Energy for the baseline scenario is 0.345 \$/kWh. In the table 4 all the results are reported.

| Table 4: Economical Parameters of baseline scenar | io |  |
|---------------------------------------------------|----|--|
|---------------------------------------------------|----|--|

|           | MicroGridP              | у     | Multi Energy System |               |  |
|-----------|-------------------------|-------|---------------------|---------------|--|
|           | NPC [M\$] LCOE [\$/kWh] |       | NPC [M\$]           | LCOE [\$/kWh] |  |
| Base Case | 7,61                    | 0,340 | 10,69               | 0,345         |  |

In the next paragraphs, the three scenarios are presented and compared to the baseline scenario, taking into consideration both a *MicroGridPy* and a *Multi Energy System* optimization.

### 5.2 Scenario: Standard optimization

#### MicroGridPy

The standard optimization scenario performed by the *MicroGridPy* model represents a possible configuration based on realistic parameters referred to the study area. The simulation returns the electrical energy dispatch of a year having as inputs the PV energy and the Electrical Demand of the entire village in a time step of 15 min, hence, 35040 timesteps in one year. In Chart 18, is represented an example case showing the energy dispatch of the 19<sup>th</sup> of April. The main vertical axis represents the power expressed in W, while the secondary axis represents the stored energy expressed in Wh. On the other side, the horizontal axis represents the time-steps of one day expressed in 96 time-steps, that are the number of quarters of an hour present in a day. As it is possible to see from the graph, the electrical load is relatively high in the middle of the day and in the evening reaches a peak value of 85600 W around 11:00 pm. During the day, the demand is almost entirely satisfied by the PV energy represented by the blue line; when the load reaches the peak value, the energy stored in the battery bank is used to cover the maximum value. The PV energy in excess is stored in the battery bank; in fact, the grey dotted line represents the State of Charge (SOC) of the battery bank that has almost the same shape of the PV Energy but shifted on the right side because of its use in night hours. Moving on the right side of the graph, the electrical demand during evening hours is fulfilled by the cumulated energy and the power generated by diesel generator. The steady behaviour of the orange line means that the genset does not exceed its nominal capacity and the rest of the demand is satisfied by battery power flow out as a result of the optimization of the Net Present Cost. Therefore, the sum of the battery power flow out and the generator power outputs cover exactly the entire electrical demand shown by the dark blue line. The number of the installed photovoltaic panels is 324 modules and the Net Present Cost has a value of 5.57 million dollars. More attention can be given to the LCOE, equal to 0.249 \$/kWh that compared to the baseline scenario of 0.340 \$/kWh is quite lower meaning that this configuration can represent a feasible and possible scenario. This result can be justified mainly by the smaller dimension of the diesel generator resulting in a lower investment cost.

| Standard                  |       |                   |          |  |  |  |
|---------------------------|-------|-------------------|----------|--|--|--|
| Economical Electric       |       |                   |          |  |  |  |
| NPC [M\$]                 | 5,57  | N° PV             | 324      |  |  |  |
| LCOE [\$/MWh]             | 0,249 | Battery Cap [kWh] | 1025,925 |  |  |  |
| LCOE/LCOE <sub>base</sub> | 73%   | Gen P Nom [kW]    | 180,206  |  |  |  |
| Diesel Cost [\$/I]        | 0,9   |                   |          |  |  |  |

Table 5: Sizing of Standard Scenario – MicroGridPy simulation



Chart 18: Electrical energy dispatch as result of MicroGridPy simulation – Standard Scenario.

#### Multi Energy System

In *Multi Energy System* the two most energy-demanding final uses in the village are represented by domestic hot water (DHW) and electric appliances for residential and institutional user types. The two demands are though logically connected through the presence of the resistances in the water storage tanks, which energy consume is added to the electric load and has to be satisfied in the same way. The peculiarity of the *Multi Energy System* model lies on the two different approaches that the electrical and the thermal optimizations have: on the one hand the electrical load represents the entire demand of the village and a centralized configuration is thought to be installed; on the other hand a decentralized approach is applied dividing the entire thermal demand in classes and considering each class as a system that has to be optimized. In fact, for the thermal part, the model provides and sizes the nominal capacities of the installed technologies and the number of the solar collector units for each class. The synergy between the electrical and thermal

part is very much clear comparing the respectively energy dispatches. Focusing on the right side of the Chart 19, is observable a disjunction between the summation of the battery flow out and the power provided by the genset (represented by the blue line) with the electrical demand (represented by red line); this gap represents exactly the extra power necessary to feed the resistances installed in each class. In Table 6 the sizes of each class are shown.



Chart 19: Electrical energy dispatch as result of Multi Energy System simulation – Standard Scenario.

The thermal energy dispatches of the commercial, domestic, public and school classes are presented in the graphs Chart 20, Chart 21, Chart 22 and Chart 23, where the electrical resistance is highlighted by the blue line. The thermal demand during daylight is almost completely satisfied by solar collectors, and part of their energy is stored in the hot water tank, ready to be used to satisfy the load after sunset, combined with the energy supplied from the electrical resistance and from the boiler. The boiler presents a similar behaviour to the diesel generator, having a nominal capacity optimized by the software in a NPC optimization optic.

The commercial class includes 32 users and has a more stable hot water demand at noon and at evening time where meal activities are more frequent. During the day, the thermal demand is satisfied almost entirely by the solar collector's energy. On the other side, at evening hours the demand is partially fulfilled by the accumulated energy in the water storage tank until its energy is exhausted; after that, the thermal energy is provided by the electrical resistance heating the water in the storage tank that will be sent to the service. The peaks of the demand are finally satisfied by the boiler energy represented by the green line.



Chart 20: Commercial Thermal energy dispatch as result of Multi Energy System simulation – Standard Scenario.

The hot water demand of the domestic class is made up of the sum of 332 users that are assumed to have similar usages in the same small-time windows. For this reason, the shape of the demand curve presents different high peaks during the day. As a result of the NPC minimization, the optimal configuration provides for the installation of a boiler with a higher nominal capacity of 318,54 kW compared to commercial case with a boiler nominal capacity of 24,24 kW, despite the number of solar collector remains almost the same. Therefore, for this kind of the demand shape it is more convenient to install a LPG boiler than many solar collectors. The electrical resistance is activated to satisfy the peaks of the demand and to maintain the thermal energy in hot water storage tank above its minimum value.



Chart 21: Domestic Thermal energy dispatch as result of Multi Energy System simulation – Standard Scenario.

The public class includes 6 number of users such as the police station medical centre, radio station and municipal offices. The police station is the one with the highest hot water consumption because the policemen live in the station, this makes the shape of the thermal demand similar to the domestic ones. For this reason, the same qualitative considerations on the domestic case can be made for the public class. The boiler nominal capacity and resistance nominal capacity are lower than the previous case, due to the lower magnitude of the demand. In fact, the maximum peak of the public demand is almost 810 W compared with domestic value of 210 000 W.



Chart 22: Public Thermal energy dispatch as result of Multi Energy System simulation – Standard Scenario.

Due to the high number of students and consequently the relatively high hot water consumption, the school is considered as a single class. The building is normally opened from the 8:00 am to the 7:00 pm and the hot water consumption is mainly due to the activities regarding the school canteen. Hence, the best thermal configuration is to use the solar collector outputs to fulfil the thermal demand during the day. As shown in the appendix F, the nominal capacity of the selected solar collector is a fixed parameter and it is equal to 1825 W; comparing this with the maximum value of the thermal load (almost 1600 W), the better configuration provides a unique solar collector that has to be installed to satisfy the demand. In addition, a boiler of 2,13 kW is installed as back-up system and a resistance of 452 W is selected in order to maintain the minimum thermal energy in the water storage tank.



Chart 23: School Thermal energy dispatch as result of Multi Energy System simulation – Standard Scenario.

Combining the electrical and thermal optimization, the LCOE of the entire system is equal to 0.264 \$/kWh that compared to baseline scenario results to be 23% lower. The Net Present Cost is equal to 8.18 million of dollars, 2 million lower than the baseline scenario due to the installation of smaller boilers and diesel generator substituted by renewable energy technologies and a lower consume of fossil fuels throughout the project life time.

Comparing the same parameters with the *MicroGridPy* optimization, the LCOE for the combined provision of electricity and heat is only slightly increased as compared to that of a scenario in which only the electricity supply is optimised, even though the initial investment cost required is naturally higher due to the need to purchase a whole new set of technologies. In addition, the number of photovoltaic panels installed in this configuration is higher than the *MicroGridPy* scenario as well as the battery nominal capacity, suggesting that the additional electrical load required by the resistance is preferentially satisfied by renewable technologies.

To this regard, the results show that the cost-optimised MES can effectively reduce the LCOE as well as the NPC as compared to the baseline scenario (i.e. diesel and gas as the only primary energy sources).

| Standard                  |       |                   |          |                       |         |
|---------------------------|-------|-------------------|----------|-----------------------|---------|
| Economical                |       | Electric          |          | Thermal               |         |
| NPC [M\$]                 | 8,18  | N° PV             | 331      | N° SC Com             | 15      |
| LCOE [\$/MWh]             | 0,264 | Battery Cap [kWh] | 1092,843 | Tank Cap Com [kWh]    | 161,626 |
| LCOE/LCOE <sub>base</sub> | 77%   | Gen P Nom [kW]    | 174,68   | Res P Nom Com[W]      | 15085   |
| Diesel Cost [\$/I]        | 0,9   |                   |          | Boiler P Nom Com [kW] | 24,244  |
| LPG Cost [\$/kg]          | 2,6   |                   |          | N° SC Dom             | 17      |
|                           |       |                   |          | Tank Cap Dom [kWh]    | 214,97  |
|                           |       |                   |          | Res P Nom Dom [W]     | 20732   |
|                           |       |                   |          | Boiler P Nom Dom [kW] | 318,554 |
|                           |       |                   |          | N° SC Pub             | 1       |
|                           |       |                   |          | Tank Cap Pub [kWh]    | 1,01    |
|                           |       |                   |          | Res P Nom Pub [W]     | 111     |
|                           |       |                   |          | Boiler P Nom Pub [kW] | 1,03    |
|                           |       |                   |          | N° SC Sch             | 1       |
|                           |       |                   |          | Tank Cap Sch [kWh]    | 8,407   |
|                           |       |                   |          | Res P Nom Sch [W]     | 452     |
|                           |       |                   |          | Boiler P Nom Sch [kW] | 2,137   |

Table 6: Sizing of Standard Scenario – Multi Energy System simulation

To have a global idea of the effects of the optimization on the study area, a Sankey Diagram based on the *Multi Energy System* optimization is presented. After the implementation of the proposed energy system, the main benefits would be the decrease of reliance on fossil fuels and external sources of energy. In fact, the share of primary energy coming from outside the borders of the study area would become 73% and if referring to secondary energy 54%, compared to the 91% and 95% of actual situation showed in Chapter 4.1.2. Moreover, is possible to observe the thermal losses of the domestic driver are higher than in the actual situation (see Figure 18), this is due to the higher amount of diesel primary energy entering the driver, now that the system is disconnected form the electrical grid, remembering that grid is assumed net of losses. In conclusion, the integrated MES scenario offers a higher penetration of renewable sources in the primary energy mix and a lower dependency on external imports.



Figure 21: Sankey Diagram of the study area in first simulated scenario.

# 5.3 Scenario: High Fossil Fuel Price

### *MicroGridPy*

In the high fossil fuels price scenario, the price of the diesel is increased by the 50% compared to the standard scenario to understand possible effects on the optimal configuration. The electrical demand remains the same while the electrical energy dispatch has changed. The number of the photovoltaic panels increase from 342 modules in the previous scenario, to 549 panels as well as the battery bank increases its nominal capacity of almost three times. In this way, more energy can be cumulated during the daylight hours and releases it during the evening hours or when it is necessary. However, looking at the green line in Chart 24, it is possible to observe that the diesel generator is used to cover the peaks of the demand especially during the evening hours with a nominal capacity of genset installed of 42,418 kW. Moving on economical analysis, the Levelized Cost of Electricity results 0.272 \$/kWh that comparing to 0.249 \$/kWh of the previous scenario, results to be

grater due to high photovoltaic units installed and thus a greater battery bank nominal capacity; however, the results show that the Levelized Cost of Electricity and Net Present Cost of this scenario are more convenient than the baseline scenario, as a matter of fact that in the context of off-grid areas, where electric and thermal energy needs are typically satisfied, at best, by means of diesel generators, which are based on non-renewable fuels and are typically associated with an unreliable and expensive supply-chain, a transition to renewable energies can be a feasible and convenient scenario.

| High Fossils Fuel             |      |                   |          |  |  |  |
|-------------------------------|------|-------------------|----------|--|--|--|
| Economical Electric           |      |                   |          |  |  |  |
| NPC [M\$]                     | 6,08 | N° PV             | 549      |  |  |  |
| LCOE [\$/kWh] 0,272           |      | Battery Cap [kWh] | 2908,715 |  |  |  |
| LCOE/LCOE <sub>base</sub> 80% |      | Gen P Nom [kW]    | 42,418   |  |  |  |
| Diesel Cost [\$/I]            | 1,35 |                   |          |  |  |  |

Table 7: Sizing of High Fuel Prices Scenario – MicroGridPy simulation



Chart 24: Electrical energy dispatch as result of MicroGridPy simulation – High Fuel Prices Scenario.

#### Multi Energy System

In this scenario the fossil fuels prices are 50% higher, implying that renewable energy sources are economically preferred in the fulfilment of both demand. While the electrical demand remains unchanged, differences are observable in the behaviour of electrical

resistance requirements. In fact, being the LPG more expensive to use for the system, the thermal load of night time hours is preferentially satisfied by the resistance and an over dimensioning of the tank thermal storage system.

To this regard, is notable how the number of installed PV is 20% higher than the only electric simulation as well as the battery bank nominal capacity results increased by 30% to feed the electrical resistances of each class.



Chart 25: Electrical energy dispatch as result of Multi Energy System simulation – High Fuel Prices Scenario.

In the thermal energy dispatch, the same phenomenon of energy storage technology oversizing is observable. In fact, the nominal capacity of the installed storage tank in the commercial class results increased of 16%. The number of solar collectors is increased of 20% and the electrical resistance nominal capacity of 30%.



Chart 26: Commercial Thermal energy dispatch as result of Multi Energy System simulation – High Fuel Prices Scenario.

Looking at the domestic class thermal energy dispatch, is observable at first glance how the boiler technology is significantly less used. In fact, the nominal capacity of the installed boiler is decreased of 25% and it is used just to reach peak values of the demand. The number of the solar collectors is increased of 320% showing a significant penetration of the renewable technologies in this configuration compared to the previous scenario.



Chart 27: Domestic Thermal energy dispatch as result of Multi Energy System simulation – High Fuel Prices Scenario.

In this case, being the demand more spread along the day a strong use of the resistance is preferred to installing new solar collectors and a high share of peak values of the demand is still satisfied by the boiler. In fact, a unique solar collector is still installed while the nominal capacities of the tank and the resistance are almost tripled.



Chart 28: Public Thermal energy dispatch as result of Multi Energy System simulation – High Fuel Prices Scenario.

Similar considerations regarding the Public class can be made for the School. In particular, being the hot water consumption of the school during daylight hours, the use of the resistance is strongly encouraged because of the abundant photovoltaic energy available.



Chart 29: School Thermal energy dispatch as result of Multi Energy System simulation – High Fuel Prices Scenario.

With respect to the economic considerations, the LCOE of this scenario results higher due to the major number of expensive renewable technologies installed (i.e. PV, Solar Collectors, battery bank, storage tank) compared to the standard scenario but remains still lower than the baseline scenario with of 0.301 \$/kWh.

| High Fossil Fuels         |       |                   |          |                       |         |  |
|---------------------------|-------|-------------------|----------|-----------------------|---------|--|
| Economical                |       | Electric          |          | Thermal               |         |  |
| NPC [M\$]                 | 9,34  | N° PV             | 659      | N° SC Com             | 18      |  |
| LCOE [\$/MWh]             | 0,301 | Battery Cap [kWh] | 3730,577 | Tank Cap Com [kWh]    | 188,564 |  |
| LCOE/LCOE <sub>base</sub> | 87%   | Gen P Nom [kW]    | 32,615   | Res P Nom Com[W]      | 20742   |  |
| Diesel Cost [\$/I]        | 1,35  |                   |          | Boiler P Nom Com [kW] | 21,55   |  |
| LPG Cost [\$/kg]          | 3,9   |                   |          | N° SC Dom             | 72      |  |
|                           |       |                   |          | Tank Cap Dom [kWh]    | 1010,94 |  |
|                           |       |                   |          | Res P Nom Dom [W]     | 100694  |  |
|                           |       |                   |          | Boiler P Nom Dom [kW] | 238,957 |  |
|                           |       |                   |          | N° SC Pub             | 1       |  |
|                           |       |                   |          | Tank Cap Pub [kWh]    | 2,828   |  |
|                           |       |                   |          | Res P Nom Pub [W]     | 310     |  |
|                           |       |                   |          | Boiler P Nom Pub [kW] | 0,848   |  |
|                           |       |                   |          | N° SC Sch             | 1       |  |
|                           |       |                   |          | Tank Cap Sch [kWh]    | 8,664   |  |
|                           |       |                   |          | Res P Nom Sch [W]     | 358     |  |
|                           |       |                   |          | Boiler P Nom Sch [kW] | 2,112   |  |

Table 8: Sizing of High Fuel Prices Scenario – Multi Energy System simulation

In this case, the optimization increases consistently the PV installed power and increases less evidently the energy supply from solar collectors. In this case the primary energy supply from outside the study area decreases to 32%.

Is also possible to observe how the thermal losses of the entire energy system decrease of 65%, due to the strong decrease of diesel and LPG primary energy entering the drivers, main causes of the thermal losses of the system. In conclusion, although an increment of the fossil fuels price of 50% and a higher penetration of the renewable technologies compared to previous scenario, the system does not exclude entirely the use of the fossil fuels sources. However, the transition to a more renewable energy configuration results still convenient compared to the baseline scenario with a lower LCOE of 0.301 \$/kWh.



Figure 22: Sankey Diagram of the study area in second simulated scenario.

# 5.4 Scenario: Only Renewable

### *MicroGridPy*

In this scenario it is imposed to the model to satisfy the totally of the electrical demand with renewable energy sources. This imply the absence of a diesel generator in the energy matrix and a strong oversizing of number of installed PV and battery capacity. The results show an amount of PV installed increased by the 150% and a battery bank capacity of 230%. The two anomalous peaks of the battery flow out are justified by computational errors of the *Linear Programming* optimization. Due to this oversizing of expensive renewable technologies the NPC results the highest of the three scenarios as well as the Levelized Cost of Electricity representing still a more economic solution compared to the baseline scenario as shown in Table 9.

| Only Renewable                |      |                   |          |  |  |  |
|-------------------------------|------|-------------------|----------|--|--|--|
| Economical Electric           |      |                   |          |  |  |  |
| NPC [M\$]                     | 7,04 | N° PV 81          |          |  |  |  |
| LCOE [\$/MWh] 0,314           |      | Battery Cap [kWh] | 3351,648 |  |  |  |
| LCOE/LCOE <sub>base</sub> 92% |      | Gen P Nom [kW]    | 0        |  |  |  |
| Diesel Cost [\$/I]            |      |                   |          |  |  |  |

Table 9: Sizing of Only Renewable Scenario – MicroGridPy simulation



Chart 30: Electrical energy dispatch as result of MicroGridPy simulation – Only Renewable Scenario.

### Multi Energy System

A fully-renewable MES scenario is also run in order to evaluate how the village could be set completely free of external imports. In the electrical dispatch, the great over dimensioning of installed PV units is observable as well as the nominal capacity of the battery bank. Another interesting behaviour is the battery flow out employed to fulfil resistance needs represented by the yellow peaks above the red line (i.e. electrical load) in Chart 31.



Chart 31: Electrical energy dispatch as result of Multi Energy System simulation – Only Renewable Scenario.

The thermal demand is satisfied completely by renewable energies, meaning that the sizing of the entire configuration is changed increasing both the number of solar collectors and the tank capacity of 200%. Intense use of the resistance is also appreciable and the continuous alternation of switching on and of is imputable to the *Linear Programming* because it does not see a difference between a constant use and a subsequent switching on and off.



Chart 32: Commercial Thermal energy dispatch as result of Multi Energy System simulation – Only Renewable Scenario.

The domestic, public and school thermal dispatches of the only renewable scenario are presented in the following charts. Exactly the same considerations are valid as in the commercial case for all the other classes.



Chart 33: Domestic Thermal energy dispatch as result of Multi Energy System simulation – Only Renewable Scenario.



Chart 34: Domestic Thermal energy dispatch as result of Multi Energy System simulation – Only Renewable Scenario.


Chart 35: School Thermal energy dispatch as result of Multi Energy System simulation – Only Renewable Scenario.

In conclusion, this scenario implies a significantly larger LCOE and NPC than the baseline scenario, mostly due to the fact that peak electric and thermal demands occur in times where solar radiation is absent, leading to a significant oversizing of the storage systems and of the energy conversion technologies as well.

| Only Renewable            |       |                   |          |                       |          |
|---------------------------|-------|-------------------|----------|-----------------------|----------|
| Economical                |       | Electric          |          | Thermal               |          |
| NPC [M\$]                 | 14,77 | N° PV             | 1177     | N° SC Com             | 44       |
| LCOE [\$/MWh]             | 0,476 | Battery Cap [kWh] | 5936,265 | Tank Cap Com [kWh]    | 484,88   |
| LCOE/LCOE <sub>base</sub> | 138%  | Gen P Nom [kW]    | 0        | Res P Nom Com[W]      | 29092    |
| Diesel Cost [\$/I]        | -     |                   |          | Boiler P Nom Com [kW] | 0        |
| LPG Cost [\$/kg]          | -     |                   |          | N° SC Dom             | 261      |
|                           |       |                   |          | Tank Cap Dom [kWh]    | 4080,612 |
|                           |       |                   |          | Res P Nom Dom [W]     | 149536   |
|                           |       |                   |          | Boiler P Nom Dom [kW] | 0        |
|                           |       |                   |          | N° SC Pub             | 1        |
|                           |       |                   |          | Tank Cap Pub [kWh]    | 13,576   |
|                           |       |                   |          | Res P Nom Pub [W]     | 701      |
|                           |       |                   |          | Boiler P Nom Pub [kW] | 0        |
|                           |       |                   |          | N° SC Sch             | 3        |
|                           |       |                   |          | Tank Cap Sch [kWh]    | 35,741   |
|                           |       |                   |          | Res P Nom Sch [W]     | 562      |
|                           |       |                   |          | Boiler P Nom Sch [kW] | 0        |

Table 10: Sizing of Only Renewable Scenario – Multi Energy System simulation



Figure 23: Sankey Diagram of the study area in third simulated scenario.

In this case the primary energy supply from outside the village decreases to 20% and the losses decrease of 76%. This is explicable with the absence of diesel entering the system and no use of LPG for water heating purposes. The LPG still present as primary energy is the gas used for cooking purposes, which are not interested by our analysis.

Finally, in Table 11 al the computed NPC and LCOE for the baseline and for all the three scenarios are presented for a better comparison of the above-mentioned parameters.

Table 11: NPC and LCOE of all considered scenarios.

|            | MicroGridP | у             | MultiEnergySystem |               |  |
|------------|------------|---------------|-------------------|---------------|--|
|            | NPC [M\$]  | LCOE [\$/MWh] | NPC [M\$]         | LCOE [\$/MWh] |  |
| Base Case  | 7,61       | 0,340         | 10,69             | 0,345         |  |
| Normal     | 5,57       | 0,249         | 8,18              | 0,264         |  |
| Fuels +50% | 6,08       | 0,272         | 9,34              | 0,301         |  |
| OnlyRen    | 7,04       | 0,314         | 14,77             | 0,476         |  |

## Conclusions

From the development of this work several considerations can be made.

First of all, the need to take into account the thermal energy consumption and production when generating scenarios to support energy policy has been clearly confirmed within the discussion of the case study. This work represented a first step towards the development of a multi-energy system modelling framework and aims to draw attention to this matter. Moreover, energy policy research ostensibly lags behind other fields in promoting more open and reproducible science [47], hence, the open-source modelling is a key factor of the proposed work.

To this regard, the inclusion of thermal energy in the model imposes a change in the time step formulation. In fact, while for electrical demands the "one hour" time step suits satisfactorily the purposes, switching to thermal loads (which are way more time-specific and have an average duration that is significantly shorter than electrical loads) a "one hour" resolution would not take them into account with sufficient precision. Hence the need to increase the time resolution of the model. Initially a "one minute" formulation was hypothesized but due to computational problems and excessive processing times the "15 minutes" formulation has been adopted with good results.

The optimization of the model is performed through a *Linear Programming* formulation. This choice is dictated by the excessive computational time that an *Integer* or *Mixed Integer Linear Programming* (MILP) would impose to the model. The *Linear Programming* is cause of some small computational errors but do not compromise the overall reliability of the results. Further development in the software structure could take into consideration those formulations.

The problems faced in the modelling of the thermal load profile of the study area with a software (LoadProGen) strictly meant to model electrical loads underline the need for the development of a proper tool, to be juxtaposed to already existing electrical models, in order to compute a whole picture of the energy consumption in rural contexts. In fact the computation of the electrical profiles from the LoadProGen software is based on a set of

typical data that can be surveyed and/or assumed in rural areas; the algorithm relies on a stochastic bottom-up approach with correlations between the different load profile parameters (i.e. load factor, coincidence factor and number of consumers) in order to build up the coincidence behaviour of the electrical appliances [27]. As explained in chapter 2 the software has been properly adapted to compute also the thermal load, in the absence of alternatives in the literature, but a need for a specifically designed tool has emerged clearly.

Finally, another interesting possible future development direction of the proposed model could include other renewable energy sources besides solar energy and take into account other thermal needs such as cooking and space heating to reach a wider covering of the energy potentials and energy needs of study areas.

# Appendix A

Questionnaire administered to the population. Source: Authors.





## Cuestionario Acceso Energético del Pueblo Atacameño de Toconao

| 1. | Inform | ación | General |
|----|--------|-------|---------|
|    |        |       |         |

Dirección:....

Fecha: ...../..... /......

Sexo:  $\Box$  M  $\Box$  F

Edad: ....

- 1.1. Posición en la familia:
  - Cabeza de Familia
  - Miembro de la familia
  - o Otro

(especificar.....)

1.2. Edad de los miembros del hogar

|   | Miembro familia | Sexo | Edad | Ocupación |
|---|-----------------|------|------|-----------|
| 1 |                 |      |      |           |
| 2 |                 |      |      |           |
| 3 |                 |      |      |           |
| 4 |                 |      |      |           |
| 5 |                 |      |      |           |
| 6 |                 |      |      |           |

## 2. Uso y Suministro de Electricidad

- 2.1. ¿Está su casa conectada a la red eléctrica local (CESPA)?  $\Box$  SI  $\Box$  NO
- 2.2. ¿Tiene un medidor de corriente instalado en su casa?  $\square$  SI  $\square$  No
- 2.3. ¿Cuál es la potencia de su medidor?.....kW
- 2.4. ¿Cuáles son los dispositivos que utilizan electricidad en la casa?

| Artículos            | Número | Uso diario promedio |
|----------------------|--------|---------------------|
| TV                   |        |                     |
| Radio                |        |                     |
| Cargador de teléfono |        |                     |
| Luces interior       |        |                     |
| Luces exteriores     |        |                     |
| Refrigerador         |        |                     |
| Notebook             |        |                     |
| Plancha eléctrica    |        |                     |
| Hervidor             |        |                     |
| Otros (especificar)  |        |                     |

- 2.5. ¿Cuál es el consumo promedio por mes? ..... kWh
- 2.6. ¿Cuál es la factura promedia del hogar?..... CLP
- 2.7. ¿Cuantas horas de servicio eléctrico tienes al día? ...... y después del atardecer? ......
- 2.8. ¿Podrías estimar cuantos cortes de luz ocurren por mes?

|                    | N° de cortes por mes |
|--------------------|----------------------|
| Menos 10 minutos   |                      |
| 10minutos – 1 hora |                      |
| 1 hora – 2 horas   |                      |
| Mas 2 horas        |                      |

2.9. ¿Alguna vez ha tenido algún dispositivo dañado o roto debido a las fluctuaciones de voltaje de la red eléctrica?

······

2.10. ¿Como paga su factura?

2.11. ¿Alguna vez ha tenido accidentes con electricidad en su hogar?

2.12. ¿Tienes algún comentario sobre el suministro de electricidad?

······

#### 3. Cocina

3.1. Leña para cocinar

3.1.1. ¿Cuáles son los sistemas de cocción a leña utilizados?

- Fuego con piedras
- Estufa de leña
- Estufa avanzada
- Otros (Especificar.....)

3.1.2. ¿Dónde se coloca la cocina a leña en su casa?

- Dentro de la casa
- Fuera de la casa
- Cocina común con otros hogares

3.1.3. ¿Sobre una base semanal, cuántas comidas cocinas usando leña?

3.1.4. ¿Cuánto tiempo se necesita para que el equipo esté listo para cocinar?

3.1.5. ¿Alguna vez ha tenido accidentes con leña en su hogar?

#### 3.2. Gas para cocinar

- 3.2.1. ¿Sobre una base semanal, cuántas comidas cocinas usando gas?
- 3.2.2. ¿Alguna vez ha tenido accidentes con gas en su hogar?

#### 4. Calentamiento de Espacios

4.1. ¿Con qué frecuencia utiliza estos combustibles para calefacción?

|              | Gas | Leña |
|--------------|-----|------|
| Diariamente  |     |      |
| Semanalmente |     |      |
| Mensualmente |     |      |
| Anualmente   |     |      |

4.2. Calidad de la calefacción:

|                                                         | Gas | Leña |
|---------------------------------------------------------|-----|------|
| ¿Cuantas habitaciones de la casa son calentadas?        |     |      |
| ¿Por cuanto tiempo tienes la calefacción que necesitas? |     |      |
| ¿Por cuanto tiempo tienes una temperatura agradable?    |     |      |
| ¿En el último año tuvo accidentes en su uso?            |     |      |

## 5. Calentamiento de Agua Sanitaria

5.1. ¿Con qué frecuencia calienta el agua sanitaria de esta manera?

|              | Gas | Leña | Colector Solar |
|--------------|-----|------|----------------|
| Diariamente  |     |      |                |
| Semanalmente |     |      |                |
| Mensualmente |     |      |                |
| Anualmente   |     |      |                |

## 6. Provisión de Combustibles

- 6.1. ¿De dónde saca la leña?
  - o Dentro del Pueblo, gratis
  - o Dentro del Pueblo comprándola, fuera del pueblo de manera gratuita
  - Fuera del Pueblo comprándola
  - Otros (Especificar).....
- 6.2. ¿Cómo se transporta la leña a su hogar?

|      |                                                                                 | A mano<br>Con moto<br>Con auto<br>Con camioneta<br>Con camión<br>Otros (Especificar) |  |  |  |
|------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
| 6.3. | ¿Cuánto                                                                         | tiempo se necesita para adquirir y preparar la leña?                                 |  |  |  |
| 6.4. | 6.4. ¿Cuánta compras? (Use el medio de transporte arriba como unidad de medida) |                                                                                      |  |  |  |
| 6.5. | 5.5. ¿Cuánto pagas por la leña?CLP                                              |                                                                                      |  |  |  |
| 6.6. | ¿Qué tij                                                                        | po de botella de gas tiene (Tamaño y Marca)?                                         |  |  |  |

6.7. ¿Con qué frecuencia lo vuelve a llenar en promedio? Cada.....

6.8. ¿Cuánto pagas? .....CLP

## 7. Otras Fuentes De Energía

7.1. ¿Utiliza otras fuentes de energía?

|                        | Si/No | Propósito<br>principal | En qué<br>cantidad | Cuál es el costo |
|------------------------|-------|------------------------|--------------------|------------------|
| Carbón                 |       |                        |                    |                  |
| Kerosene               |       |                        |                    |                  |
| Velas                  |       |                        |                    |                  |
| Otros<br>(especificar) |       |                        |                    |                  |

#### 8. Producción de residuos domésticos

- 8.1. ¿Tiene una granja?  $\Box$  Si  $\Box$  No
- 8.2. ¿Qué tipo de cultivos tiene?

|                        | Si/No | ¿Cuál es aproximadamente la extensión? |
|------------------------|-------|----------------------------------------|
| Choclo                 |       |                                        |
| Porotos                |       |                                        |
| Cereales               |       |                                        |
| Papas                  |       |                                        |
| Pasto                  |       |                                        |
| Vegetales              |       |                                        |
| Otros árboles frutales |       |                                        |
|                        |       |                                        |

8.3. ¿Consume los productos de su granja?

- Sí, consumimos todos los productos
- Sólo se consume parte, se vende el resto
- o Todo se vende

#### 8.4. ¿Qué animales tiene usted (si los hay)?

|                | N° | ¿Cómo los alimentas? (Elegir entre: alimentación animal, hierba / arbusto, residuos orgánicos, mezcla de piensos y cereales) |
|----------------|----|------------------------------------------------------------------------------------------------------------------------------|
| Cerdos         |    |                                                                                                                              |
| Cabras         |    |                                                                                                                              |
| Vacas          |    |                                                                                                                              |
| Conejos        |    |                                                                                                                              |
| Llamas         |    |                                                                                                                              |
| Aves de corral |    |                                                                                                                              |

# Gracias por su tiempo y colaboración!

# Appendix B.1

LoadProGen inputs for electric load profile generation:

| Parameters for the generation |    |
|-------------------------------|----|
|                               |    |
| Number of load profiles       | 1  |
| Number of time step           | 96 |
| Number of user classes        | 6  |
| Maximum number of appliance   | 9  |
| Maximum number of windows     | 2  |

## Autumn Configuration

| Specific user<br>class (j ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Low_Households              | 202                            | TV                                 | 150                                       | 2                                   | 2                    | 16                  | 10                      | 10                      | 36                        | 52                      | 72                        | 92                      |
|                             |                                | Radio                              | 7                                         | 1                                   | 2                    | 16                  | 10                      | 10                      | 32                        | 48                      | 72                        | 92                      |
|                             |                                | Phone                              | 5                                         | 2                                   | 2                    | 25                  | 10                      | 10                      | 1                         | 28                      | 80                        | 96                      |
|                             |                                | Fridge                             | 250                                       | 1                                   | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                             |                                | Laptop                             | 100                                       | 1                                   | 4                    | 8                   | 0                       | 0                       | 64                        | 96                      | 0                         | 0                       |
|                             |                                | Electric Iron                      | 1000                                      | 1                                   | 1                    | 1                   | 0                       | 0                       | 40                        | 48                      | 0                         | 0                       |
|                             |                                | Indoor Light                       | 60                                        | 1                                   | 2                    | 15                  | 10                      | 10                      | 75                        | 96                      | 0                         | 0                       |
|                             |                                | Outdoor Light                      | 60                                        | 1                                   | 2                    | 4                   | 10                      | 10                      | 1                         | 28                      | 80                        | 96                      |

| Specific user<br>class (j ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| High_Households             | 130                            | TV                                 | 150                                       | 3                                   | 2                    | 42                  | 10                      | 10                      | 36                        | 52                      | 64                        | 92                      |
|                             |                                | Radio                              | 7                                         | 1                                   | 2                    | 15                  | 10                      | 10                      | 32                        | 48                      | 72                        | 92                      |
|                             |                                | Phone                              | 5                                         | 4                                   | 2                    | 36                  | 10                      | 10                      | 1                         | 28                      | 80                        | 96                      |
|                             |                                | Fridge                             | 250                                       | 1                                   | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                             |                                | Laptop                             | 100                                       | 1                                   | 4                    | 6                   | 10                      | 10                      | 64                        | 96                      | 0                         | 0                       |
|                             |                                | Electric Iron                      | 1000                                      | 1                                   | 1                    | 3                   | 10                      | 10                      | 40                        | 48                      | 0                         | 0                       |
|                             |                                | Washin Machin                      | 500                                       | 1                                   | 2                    | 4                   | 0                       | 0                       | 36                        | 48                      | 0                         | 0                       |
|                             |                                | Indoor Light                       | 60                                        | 7                                   | 2                    | 20                  | 10                      | 10                      | 75                        | 96                      | 0                         | 0                       |
|                             |                                | Outdoor Light                      | 60                                        | 1                                   | 2                    | 19                  | 10                      | 10                      | 1                         | 28                      | 80                        | 96                      |

| Specific user<br>class ( <i>j</i> ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-------------------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Commercial                          | 32                             | TV                                 | 150                                       | 4                                   | 2                    | 31                  | 10                      | 10                      | 36                        | 92                      | 0                         | 0                       |
|                                     |                                | Radio                              | 7                                         | 1                                   | 2                    | 21                  | 10                      | 10                      | 36                        | 92                      | 0                         | 0                       |
|                                     |                                | Phone                              | 5                                         | 2                                   | 2                    | 27                  | 10                      | 10                      | 1                         | 96                      | 0                         | 0                       |
|                                     |                                | Fridge                             | 250                                       | 4                                   | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                                     |                                | Laptop                             | 100                                       | 1                                   | 4                    | 12                  | 20                      | 20                      | 32                        | 92                      | 0                         | 0                       |
|                                     |                                | Indoor Light                       | 60                                        | 13                                  | 2                    | 18                  | 10                      | 10                      | 72                        | 96                      | 0                         | 0                       |
|                                     |                                | Outdoor Light                      | 60                                        | 2                                   | 2                    | 10                  | 10                      | 10                      | 1                         | 24                      | 80                        | 96                      |

| Specific user<br>class <i>(j)</i> | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Public Class                      | 6                              | TV                                 | 150                                       | 4                                   | 2                    | 32                  | 10                      | 10                      | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Radio                              | 7                                         | 1                                   | 2                    | 36                  | 10                      | 10                      | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Phone                              | 5                                         | 7                                   | 2                    | 12                  | 10                      | 10                      | 32                        | 48                      | 0                         | 0                       |
|                                   |                                | Fridge                             | 250                                       | 1                                   | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                                   |                                | Laptop                             | 100                                       | 2                                   | 4                    | 72                  | 20                      | 20                      | 1                         | 96                      | 0                         | 0                       |
|                                   |                                | Indoor Lights                      | 60                                        | 11                                  | 2                    | 28                  | 10                      | 10                      | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Outdoor Lights                     | 60                                        | 2                                   | 2                    | 16                  | 10                      | 10                      | 1                         | 28                      | 92                        | 96                      |

| Specific user<br>class ( <i>j</i> ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-------------------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| School                              | 1                              | TV                                 | 150                                       | 10                                  | 2                    | 8                   | 10                      | 10                      | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Radio                              | 7                                         | 25                                  | 2                    | 24                  | 10                      | 10                      | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Phone                              | 5                                         | 40                                  | 2                    | 16                  | 10                      | 10                      | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Fridge                             | 250                                       | 10                                  | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                                     |                                | Laptop                             | 100                                       | 25                                  | 4                    | 32                  | 20                      | 20                      | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Indoor Lights                      | 60                                        | 60                                  | 2                    | 32                  | 10                      | 10                      | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Outdoor Lights                     | 60                                        | 10                                  | 2                    | 24                  | 10                      | 10                      | 32                        | 80                      | 0                         | 0                       |

| Specific user<br>class (j ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Public_Light                | 1                              | Street Light                       | 15004                                     | 1                                   | 16                   | 49                  | 10                      | 10                      | 1                         | 30                      | 74                        | 96                      |
|                             |                                | Stadium_1                          | 12                                        | 1                                   | 4                    | 8                   | 10                      | 10                      | 72                        | 96                      | 0                         | 0                       |
|                             |                                | Stadium_2                          | 794                                       | 1                                   | 4                    | 8                   | 10                      | 10                      | 72                        | 96                      | 0                         | 0                       |

## Winter Configuration

| Specific user<br>class (j ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Low_Households              | 202                            | TV                                 | 150                                       | 2                                   | 2                    | 16                  | 10                      | 10                      | 36                        | 52                      | 72                        | 92                      |
|                             |                                | Radio                              | 7                                         | 1                                   | 2                    | 16                  | 10                      | 0                       | 32                        | 48                      | 72                        | 92                      |
|                             |                                | Phone                              | 5                                         | 2                                   | 2                    | 25                  | 10                      | 0                       | 1                         | 28                      | 80                        | 96                      |
|                             |                                | Fridge                             | 250                                       | 1                                   | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                             |                                | Laptop                             | 100                                       | 1                                   | 4                    | 8                   | 0                       | 0                       | 64                        | 96                      | 0                         | 0                       |
|                             |                                | Electric Iron                      | 1000                                      | 1                                   | 1                    | 1                   | 0                       | 0                       | 40                        | 48                      | 0                         | 0                       |
|                             |                                | Water Boiler                       | 1000                                      | 1                                   | 1                    | 1                   | 20                      | 0                       | 28                        | 36                      | 64                        | 72                      |
|                             |                                | Indoor Light                       | 60                                        | 5                                   | 2                    | 18                  | 10                      | 0                       | 72                        | 96                      | 0                         | 0                       |
|                             |                                | Outdoor Light                      | 60                                        | 1                                   | 2                    | 3                   | 10                      | 0                       | 1                         | 28                      | 80                        | 96                      |

| Specific user<br>class (j ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| High_Households             | 130                            | TV                                 | 150                                       | 3                                   | 2                    | 42                  | 10                      | 0                       | 36                        | 52                      | 64                        | 92                      |
|                             |                                | Radio                              | 7                                         | 1                                   | 2                    | 15                  | 10                      | 0                       | 32                        | 48                      | 72                        | 92                      |
|                             |                                | Phone                              | 5                                         | 4                                   | 2                    | 36                  | 10                      | 0                       | 1                         | 28                      | 80                        | 96                      |
|                             |                                | Fridge                             | 250                                       | 1                                   | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                             |                                | Laptop                             | 100                                       | 1                                   | 4                    | 6                   | 20                      | 0                       | 64                        | 96                      | 0                         | 0                       |
|                             |                                | Electric Iron                      | 1000                                      | 1                                   | 1                    | 3                   | 10                      | 0                       | 40                        | 48                      | 0                         | 0                       |
|                             |                                | Water Boiler                       | 1000                                      | 1                                   | 1                    | 1                   | 20                      | 0                       | 28                        | 36                      | 64                        | 72                      |
|                             |                                | Washin Machir                      | 500                                       | 1                                   | 2                    | 4                   | 0                       | 0                       | 36                        | 48                      | 0                         | 0                       |
|                             |                                | Indoor Light                       | 60                                        | 7                                   | 2                    | 23                  | 10                      | 0                       | 72                        | 96                      | 0                         | 0                       |
|                             |                                | Outdoor Light                      | 60                                        | 1                                   | 2                    | 19                  | 10                      | 0                       | 1                         | 28                      | 80                        | 96                      |

| Specific user<br>class (j) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Commercial                 | 32                             | TV                                 | 150                                       | 4                                   | 2                    | 31                  | 10                      | 0                       | 36                        | 92                      | 0                         | 0                       |
|                            |                                | Radio                              | 7                                         | 1                                   | 2                    | 21                  | 10                      | 0                       | 36                        | 92                      | 0                         | 0                       |
|                            |                                | Phone                              | 5                                         | 2                                   | 2                    | 27                  | 10                      | 0                       | 1                         | 96                      | 0                         | 0                       |
|                            |                                | Fridge                             | 250                                       | 4                                   | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                            |                                | Laptop                             | 100                                       | 1                                   | 4                    | 11                  | 20                      | 0                       | 32                        | 92                      | 0                         | 0                       |
|                            |                                | Water Boiler                       | 1000                                      | 1                                   | 1                    | 5                   | 20                      | 0                       | 48                        | 92                      | 0                         | 0                       |
|                            |                                | Indoor Light                       | 60                                        | 13                                  | 2                    | 18                  | 10                      | 0                       | 72                        | 96                      | 0                         | 0                       |
|                            |                                | Outdoor Light                      | 60                                        | 2                                   | 2                    | 10                  | 10                      | 0                       | 1                         | 24                      | 80                        | 96                      |

| Specific user<br>class(j) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|---------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Public Class              | 6                              | TV                                 | 150                                       | 4                                   | 2                    | 32                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                           |                                | Radio                              | 7                                         | 1                                   | 2                    | 36                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                           |                                | Phone                              | 5                                         | 7                                   | 2                    | 12                  | 10                      | 0                       | 32                        | 48                      | 0                         | 0                       |
|                           |                                | Fridge                             | 250                                       | 1                                   | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                           |                                | Laptop                             | 100                                       | 2                                   | 4                    | 72                  | 20                      | 0                       | 1                         | 96                      | 0                         | 0                       |
|                           |                                | Water Boiler                       | 1000                                      | 2                                   | 1                    | 6                   | 20                      | 0                       | 36                        | 44                      | 0                         | 0                       |
|                           |                                | Printer                            | 25                                        | 1                                   | 1                    | 20                  | 0                       | 0                       | 32                        | 72                      | 0                         | 0                       |
|                           |                                | Indoor Lights                      | 60                                        | 11                                  | 2                    | 28                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                           |                                | Outdoor Lights                     | 60                                        | 2                                   | 2                    | 16                  | 10                      | 0                       | 1                         | 28                      | 92                        | 96                      |

| Specific user<br>class <i>(j)</i> | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| School                            | 1                              | TV                                 | 150                                       | 10                                  | 2                    | 8                   | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Radio                              | 7                                         | 25                                  | 2                    | 24                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Phone                              | 5                                         | 40                                  | 2                    | 16                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Fridge                             | 250                                       | 10                                  | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                                   |                                | Laptop                             | 100                                       | 25                                  | 4                    | 32                  | 20                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Water Boiler                       | 1000                                      | 10                                  | 1                    | 8                   | 20                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Printer                            | 25                                        | 10                                  | 1                    | 1                   | 0                       | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Indoor Lights                      | 60                                        | 60                                  | 2                    | 32                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Outdoor Lights                     | 60                                        | 10                                  | 2                    | 24                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |

| Specific user<br>class <i>(j)</i> | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Public_Light                      | 1                              | Street Light                       | 15715                                     | 1                                   | 4                    | 13                  | 10                      | 10                      | 1                         | 7                       | 18                        | 96                      |
|                                   |                                | Stadium_1                          | 12                                        | 1                                   | 1                    | 2                   | 10                      | 0                       | 72                        | 96                      | 0                         | 0                       |
|                                   |                                | Stadium_2                          | 794                                       | 1                                   | 1                    | 2                   | 10                      | 0                       | 72                        | 96                      | 0                         | 0                       |

## Spring Configuration

| Specific user<br>class <i>(j)</i> | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Low_Households                    | 202                            | TV                                 | 150                                       | 2                                   | 2                    | 16                  | 10                      | 10                      | 36                        | 52                      | 72                        | 92                      |
|                                   |                                | Radio                              | 7                                         | 1                                   | 2                    | 16                  | 10                      | 0                       | 32                        | 48                      | 72                        | 92                      |
|                                   |                                | Phone                              | 5                                         | 2                                   | 2                    | 25                  | 10                      | 0                       | 0                         | 28                      | 80                        | 96                      |
|                                   |                                | Fridge                             | 250                                       | 1                                   | 1                    | 48                  | 0                       | 0                       | 0                         | 96                      | 0                         | 0                       |
|                                   |                                | Laptop                             | 100                                       | 1                                   | 4                    | 8                   | 0                       | 0                       | 64                        | 96                      | 0                         | 0                       |
|                                   |                                | Electric Iron                      | 1000                                      | 1                                   | 1                    | 1                   | 0                       | 0                       | 40                        | 48                      | 0                         | 0                       |
|                                   |                                | Water Boiler                       | 1000                                      | 1                                   | 1                    | 1                   | 20                      | 0                       | 28                        | 36                      | 64                        | 72                      |
|                                   |                                | Indoor Light                       | 60                                        | 5                                   | 2                    | 15                  | 10                      | 0                       | 75                        | 96                      | 0                         | 0                       |
|                                   |                                | Outdoor Light                      | 60                                        | 1                                   | 2                    | 3                   | 10                      | 0                       | 0                         | 28                      | 80                        | 96                      |

| Specific user<br>class (j ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| High_Households             | 130                            | TV                                 | 150                                       | 3                                   | 2                    | 42                  | 10                      | 0                       | 36                        | 52                      | 64                        | 92                      |
|                             |                                | Radio                              | 7                                         | 1                                   | 2                    | 15                  | 10                      | 0                       | 32                        | 48                      | 72                        | 92                      |
|                             |                                | Phone                              | 5                                         | 4                                   | 2                    | 36                  | 10                      | 0                       | 0                         | 28                      | 80                        | 96                      |
|                             |                                | Fridge                             | 250                                       | 1                                   | 1                    | 48                  | 0                       | 0                       | 0                         | 96                      | 0                         | 0                       |
|                             |                                | Laptop                             | 100                                       | 1                                   | 4                    | 6                   | 20                      | 0                       | 64                        | 96                      | 0                         | 0                       |
|                             |                                | Electric Iron                      | 1000                                      | 1                                   | 1                    | 3                   | 10                      | 0                       | 40                        | 48                      | 0                         | 0                       |
|                             |                                | Water Boiler                       | 1000                                      | 1                                   | 1                    | 1                   | 20                      | 0                       | 28                        | 36                      | 64                        | 72                      |
|                             |                                | Washin Machir                      | 500                                       | 1                                   | 2                    | 4                   | 0                       | 0                       | 36                        | 48                      | 0                         | 0                       |
|                             |                                | Indoor Light                       | 60                                        | 7                                   | 2                    | 20                  | 10                      | 0                       | 75                        | 96                      | 0                         | 0                       |
|                             |                                | Outdoor Light                      | 60                                        | 1                                   | 2                    | 19                  | 10                      | 0                       | 0                         | 28                      | 80                        | 96                      |

| Specific user<br>class (j) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Commercial                 | 32                             | TV                                 | 150                                       | 4                                   | 2                    | 31                  | 10                      | 0                       | 36                        | 92                      | 0                         | 0                       |
|                            |                                | Radio                              | 7                                         | 1                                   | 2                    | 21                  | 10                      | 0                       | 36                        | 92                      | 0                         | 0                       |
|                            |                                | Phone                              | 5                                         | 2                                   | 2                    | 27                  | 10                      | 0                       | 0                         | 96                      | 0                         | 0                       |
|                            |                                | Fridge                             | 250                                       | 4                                   | 1                    | 48                  | 0                       | 0                       | 0                         | 96                      | 0                         | 0                       |
|                            |                                | Laptop                             | 100                                       | 1                                   | 4                    | 11                  | 20                      | 0                       | 32                        | 92                      | 0                         | 0                       |
|                            |                                | Water Boiler                       | 1000                                      | 1                                   | 1                    | 5                   | 20                      | 0                       | 48                        | 92                      | 0                         | 0                       |
|                            |                                | Indoor Light                       | 60                                        | 13                                  | 2                    | 18                  | 10                      | 0                       | 72                        | 96                      | 0                         | 0                       |
|                            |                                | Outdoor Light                      | 60                                        | 2                                   | 2                    | 10                  | 10                      | 0                       | 0                         | 24                      | 80                        | 96                      |

| Specific user<br>class ( <i>j</i> ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-------------------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Public Class                        | 6                              | TV                                 | 150                                       | 4                                   | 2                    | 32                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Radio                              | 7                                         | 1                                   | 2                    | 36                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Phone                              | 5                                         | 7                                   | 2                    | 12                  | 10                      | 0                       | 32                        | 48                      | 0                         | 0                       |
|                                     |                                | Fridge                             | 250                                       | 1                                   | 1                    | 48                  | 0                       | 0                       | 0                         | 96                      | 0                         | 0                       |
|                                     |                                | Laptop                             | 100                                       | 2                                   | 4                    | 72                  | 20                      | 0                       | 0                         | 96                      | 0                         | 0                       |
|                                     |                                | Water Boiler                       | 1000                                      | 2                                   | 1                    | 6                   | 20                      | 0                       | 36                        | 44                      | 0                         | 0                       |
|                                     |                                | Printer                            | 25                                        | 1                                   | 1                    | 20                  | 0                       | 0                       | 32                        | 72                      | 0                         | 0                       |
|                                     |                                | Indoor Lights                      | 60                                        | 11                                  | 2                    | 28                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Outdoor Lights                     | 60                                        | 2                                   | 2                    | 16                  | 10                      | 0                       | 0                         | 28                      | 92                        | 96                      |

| Specific user<br>class <i>(j)</i> | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| School                            | 1                              | TV                                 | 150                                       | 10                                  | 2                    | 8                   | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Radio                              | 7                                         | 25                                  | 2                    | 24                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Phone                              | 5                                         | 40                                  | 2                    | 16                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Fridge                             | 250                                       | 10                                  | 1                    | 48                  | 0                       | 0                       | 0                         | 96                      | 0                         | 0                       |
|                                   |                                | Laptop                             | 100                                       | 25                                  | 4                    | 32                  | 20                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Water Boiler                       | 1000                                      | 10                                  | 1                    | 8                   | 20                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Printer                            | 25                                        | 10                                  | 1                    | 1                   | 0                       | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Indoor Lights                      | 60                                        | 60                                  | 2                    | 32                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Outdoor Lights                     | 60                                        | 10                                  | 2                    | 24                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |

| Specific user<br>class <i>(j)</i> | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Public_Light                      | 1                              | Street Light                       | 15458                                     | 1                                   | 16                   | 48                  | 10                      | 10                      | 0                         | 30                      | 78                        | 96                      |
|                                   |                                | Stadium_1                          | 12                                        | 1                                   | 4                    | 8                   | 10                      | 0                       | 72                        | 96                      | 0                         | 0                       |
|                                   |                                | Stadium_2                          | 794                                       | 1                                   | 4                    | 8                   | 10                      | 0                       | 72                        | 96                      | 0                         | 0                       |

## Summer Configuration

| Specific user<br>class (j ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Low_Households              | 202                            | TV                                 | 150                                       | 2                                   | 2                    | 16                  | 10                      | 10                      | 36                        | 52                      | 72                        | 92                      |
|                             |                                | Radio                              | 7                                         | 1                                   | 2                    | 16                  | 10                      | 0                       | 32                        | 48                      | 72                        | 92                      |
|                             |                                | Phone                              | 5                                         | 2                                   | 2                    | 15                  | 10                      | 0                       | 1                         | 28                      | 80                        | 96                      |
|                             |                                | Fridge                             | 250                                       | 1                                   | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                             |                                | Laptop                             | 100                                       | 1                                   | 4                    | 8                   | 0                       | 0                       | 64                        | 96                      | 0                         | 0                       |
|                             |                                | Electric Iron                      | 1000                                      | 1                                   | 1                    | 1                   | 0                       | 0                       | 40                        | 48                      | 0                         | 0                       |
|                             |                                | Indoor Light                       | 60                                        | 5                                   | 2                    | 12                  | 10                      | 0                       | 78                        | 96                      | 0                         | 0                       |
|                             |                                | Outdoor Light                      | 60                                        | 1                                   | 2                    | 3                   | 10                      | 0                       | 1                         | 28                      | 80                        | 96                      |

| Specific user<br>class (j ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| High_Households             | 130                            | TV                                 | 150                                       | 3                                   | 2                    | 42                  | 10                      | 0                       | 36                        | 52                      | 64                        | 92                      |
|                             |                                | Radio                              | 7                                         | 1                                   | 2                    | 15                  | 10                      | 0                       | 32                        | 48                      | 72                        | 92                      |
|                             |                                | Phone                              | 5                                         | 4                                   | 2                    | 36                  | 10                      | 0                       | 1                         | 28                      | 80                        | 96                      |
|                             |                                | Fridge                             | 250                                       | 1                                   | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                             |                                | Laptop                             | 100                                       | 1                                   | 4                    | 6                   | 20                      | 0                       | 64                        | 96                      | 0                         | 0                       |
|                             |                                | Electric Iron                      | 1000                                      | 1                                   | 1                    | 3                   | 10                      | 0                       | 40                        | 48                      | 0                         | 0                       |
|                             |                                | Washin Machin                      | 500                                       | 1                                   | 2                    | 4                   | 0                       | 0                       | 36                        | 48                      | 0                         | 0                       |
|                             |                                | Indoor Light                       | 60                                        | 7                                   | 2                    | 17                  | 10                      | 0                       | 78                        | 96                      | 0                         | 0                       |
|                             |                                | Outdoor Light                      | 60                                        | 1                                   | 2                    | 19                  | 10                      | 0                       | 1                         | 28                      | 80                        | 96                      |

| Specific user<br>class (j) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Commercial                 | 32                             | TV                                 | 150                                       | 4                                   | 2                    | 31                  | 10                      | 0                       | 36                        | 92                      | 0                         | 0                       |
|                            |                                | Radio                              | 7                                         | 1                                   | 2                    | 21                  | 10                      | 0                       | 36                        | 92                      | 0                         | 0                       |
|                            |                                | Phone                              | 5                                         | 2                                   | 2                    | 27                  | 10                      | 0                       | 1                         | 96                      | 0                         | 0                       |
|                            |                                | Fridge                             | 250                                       | 4                                   | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                            |                                | Laptop                             | 100                                       | 1                                   | 4                    | 11                  | 20                      | 0                       | 32                        | 92                      | 0                         | 0                       |
|                            |                                | Indoor Light                       | 60                                        | 13                                  | 2                    | 18                  | 10                      | 0                       | 72                        | 96                      | 0                         | 0                       |
|                            |                                | Outdoor Light                      | 60                                        | 2                                   | 2                    | 10                  | 10                      | 0                       | 1                         | 24                      | 80                        | 96                      |

| Specific user<br>class <i>(j)</i> | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Public Class                      | 6                              | TV                                 | 150                                       | 4                                   | 2                    | 32                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Radio                              | 7                                         | 1                                   | 2                    | 36                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Phone                              | 5                                         | 7                                   | 2                    | 12                  | 10                      | 0                       | 32                        | 48                      | 0                         | 0                       |
|                                   |                                | Fridge                             | 250                                       | 1                                   | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                                   |                                | Laptop                             | 100                                       | 2                                   | 4                    | 72                  | 20                      | 0                       | 1                         | 96                      | 0                         | 0                       |
|                                   |                                | Indoor Lights                      | 60                                        | 11                                  | 2                    | 28                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                   |                                | Outdoor Lights                     | 60                                        | 2                                   | 2                    | 16                  | 10                      | 0                       | 1                         | 28                      | 92                        | 96                      |

| Specific user<br>class ( <i>j</i> ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-------------------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| School                              | 1                              | TV                                 | 150                                       | 10                                  | 2                    | 8                   | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Radio                              | 7                                         | 25                                  | 2                    | 24                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Phone                              | 5                                         | 40                                  | 2                    | 16                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Fridge                             | 250                                       | 10                                  | 1                    | 48                  | 0                       | 0                       | 1                         | 96                      | 0                         | 0                       |
|                                     |                                | Laptop                             | 100                                       | 25                                  | 4                    | 32                  | 20                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Indoor Lights                      | 60                                        | 60                                  | 2                    | 32                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |
|                                     |                                | Outdoor Lights                     | 60                                        | 10                                  | 2                    | 24                  | 10                      | 0                       | 32                        | 80                      | 0                         | 0                       |

| Specific user<br>class (j ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Public_Light                | 1                              | Street Light                       | 16847                                     | 1                                   | 16                   | 42                  | 10                      | 10                      | 1                         | 30                      | 81                        | 96                      |
|                             |                                | Stadium_1                          | 12                                        | 1                                   | 4                    | 8                   | 10                      | 0                       | 72                        | 96                      | 0                         | 0                       |
|                             |                                | Stadium_2                          | 794                                       | 1                                   | 4                    | 8                   | 10                      | 0                       | 72                        | 96                      | 0                         | 0                       |

# Appendix B.2

LoadProGen inputs for thermal load profile generation:

| Parameters for the generation |    |
|-------------------------------|----|
|                               |    |
| Number of load profiles       | 1  |
| Number of time step           | 96 |
| Number of user classes        | 1  |
| Maximum number of appliance   | 1  |
| Maximum number of windows     | 2  |

## Commercial

| Specific user<br>class (j ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Commercial                  | 1                              | Normal Use                         | 336,7222                                  | 60                                  | 1                    | 3                   | 0                       | 20                      | 40                        | 60                      | 72                        | 92                      |

## Domestic

| Specific user<br>class (j ) | Number<br>of users<br>in class | Type of electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | <i>Rw</i> <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------|--------------------------------|---------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|--------------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Domestic                    | 1                              | Lunch Dish washing              | 1218                                      | 1                                   | 2                    | 2                   | 10                      | 10                             | 48                        | 56                      | 0                         | 0                       |
|                             |                                | Dinner Dish washing             | 1218                                      | 1                                   | 2                    | 2                   | 10                      | 10                             | 80                        | 88                      | 0                         | 0                       |
|                             |                                | Shower                          | 1310                                      | 4                                   | 1                    | 1                   | 10                      | 10                             | 28                        | 36                      | 76                        | 84                      |
|                             |                                | Face hand washing               | 259                                       | 4                                   | 1                    | 2                   | 10                      | 10                             | 48                        | 56                      | 76                        | 82                      |

## Public

| Specific user<br>class (j ) | Number<br>of users<br>in class | Type of<br>electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|-----------------------------|--------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| Public                      | 1                              | Shower                             | 188,5644                                  | 5                                   | 1                    | 1                   | 0                       | 20                      | 28                        | 36                      | 0                         | 0                       |
|                             |                                | Hand Washing                       | 67,34444                                  | 10                                  | 1                    | 1                   | 0                       | 20                      | 28                        | 80                      | 0                         | 0                       |
|                             |                                | Food Use                           | 538,7556                                  | 1                                   | 1                    | 2                   | 0                       | 20                      | 48                        | 60                      | 76                        | 84                      |

## School

| Specific user<br>class(j) | Number<br>of users<br>in class | Type of electrical<br>appliance | Nominal<br>appliance<br>power<br>rate [W] | Number of<br>appliances<br>in class | functioning<br>cycle | functioning<br>time | Rh <sub>ij</sub><br>[%] | Rw <sub>ij</sub><br>[%] | Starting<br>time Win<br>1 | Ending<br>time Win<br>1 | Starting<br>time Win<br>2 | Ending<br>time Win<br>2 |
|---------------------------|--------------------------------|---------------------------------|-------------------------------------------|-------------------------------------|----------------------|---------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| School                    | 1                              | Kitchen Use                     | 2747,653                                  | 4                                   | 1                    | 3                   | 10                      | 10                      | 40                        | 64                      | 0                         | 0                       |
|                           |                                | Face Hand Washing 1             | 102,5791                                  | 150                                 | 1                    | 1                   | 0                       | 0                       | 32                        | 56                      | 0                         | 0                       |
|                           |                                | Face Hand Washing 2             | 131,8874                                  | 50                                  | 1                    | 1                   | 0                       | 0                       | 62                        | 72                      | 0                         | 0                       |

# Appendix C

## Domestic

| Nº                                                       | CALLE                                                                        | NOMBRE | Nº MEDIDOR                                                           |                                           |                                           |                                          |                                         |                                   | CONSUMO                                 | Wh POR MES                                  |                                   |                                             |                                      |                                             |                                            |
|----------------------------------------------------------|------------------------------------------------------------------------------|--------|----------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------|---------------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------------------|
| <u> </u>                                                 |                                                                              | 1      |                                                                      | ENFRO                                     | FEBRERO                                   | MARZO                                    | ABRIL                                   | MAYO                              | JUNIO                                   | JULIO                                       | AGOSTO                            | SEPTIEMB                                    | OCTUBRE                              | NOVIEMBRE                                   | DICIEMBRE                                  |
| -                                                        | A.R.A.C.A.                                                                   | 1      | 0                                                                    | 14                                        | 11                                        | 25                                       | A                                       | 10                                | 14                                      | 10                                          |                                   | 10                                          | 15                                   | 17                                          | 11                                         |
| <u> </u>                                                 | ABAROA                                                                       |        | 3                                                                    | 10                                        | 11                                        | 200                                      | 4                                       | 10                                | 14                                      | 13                                          | 3                                 | 10                                          | 12                                   | 12                                          | 11                                         |
| 2                                                        | ABAROA                                                                       | ł      | 9/117793                                                             | 349                                       | 510                                       | 202                                      | 206                                     | 1//                               | 198                                     | 145                                         | 154                               | 111                                         | 1/6                                  | 128                                         | 249                                        |
| 3                                                        | ABAROA                                                                       | l      | 971177480                                                            | 444                                       | 333                                       | 328                                      | 149                                     | 115                               | 43                                      | 26                                          | 13                                | 26                                          | 20                                   | 61                                          | 277                                        |
| 4                                                        | ABAROA                                                                       |        | 2005                                                                 | 56                                        | 53                                        | 49                                       | 41                                      | 45                                | 34                                      | 30                                          | 26                                | 23                                          | 50                                   | 45                                          | 56                                         |
|                                                          | ARABOA                                                                       |        | 776                                                                  | 96                                        | 85                                        | 92                                       | 80                                      | 70                                | 81                                      | 54                                          | 71                                | 72                                          | 83                                   | 76                                          | 80                                         |
| L <sup>2</sup>                                           | ADAKUA                                                                       |        |                                                                      |                                           |                                           | 10                                       | 42                                      | , 3                               | 41                                      | <br>                                        | /1                                | / 4                                         | 0.0                                  | ,0                                          | 00                                         |
| 6                                                        | ANTOFAGASTA                                                                  | ł      | 9/117744                                                             | U                                         | 24                                        | 10                                       | 43                                      | 40                                | 41                                      | 68                                          | 51                                | 81                                          | 81                                   | 60                                          | 92                                         |
| 7                                                        | ANTOFAGASTA                                                                  |        | 96116206                                                             | 86                                        | 80                                        | 78                                       | 69                                      | 74                                | 61                                      | 46                                          | 55                                | 66                                          | 89                                   | 76                                          | 88                                         |
| 8                                                        | ANTOFAGASTA                                                                  |        | 96164163                                                             | 0                                         | 1                                         | 0                                        | 0                                       | 0                                 | 0                                       | 0                                           | 0                                 | 11                                          | 27                                   | 35                                          | 53                                         |
| 9                                                        | ANTOFAGASTA                                                                  |        | 97116204                                                             | 94                                        | 33                                        | 11                                       | 39                                      | 42                                | 48                                      | 55                                          | 21                                | 11                                          | 30                                   | 44                                          | 56                                         |
| 10                                                       |                                                                              |        | 07110204                                                             | 10                                        | 20                                        | 10                                       | 10                                      | 21                                | 10                                      | 20                                          | 20                                | 14                                          | 22                                   | 20                                          | 14                                         |
| 10                                                       | ANIUFAGASTA                                                                  |        | 9/11//50                                                             | 19                                        | 20                                        | 15                                       | 10                                      | 21                                | 15                                      | 20                                          | 20                                | 14                                          | 23                                   | 20                                          | 14                                         |
| 11                                                       | ANTOFAGASTA                                                                  |        | 96117785                                                             | 32                                        | 50                                        | 37                                       | 14                                      | 8                                 | 1                                       | 15                                          | 19                                | 14                                          | 18                                   | 6                                           | 15                                         |
| 12                                                       | ANTOFAGASTA                                                                  |        | 97117636                                                             | 36                                        | 111                                       | 48                                       | 48                                      | 33                                | 23                                      | 38                                          | 21                                | 22                                          | 48                                   | 31                                          | 31                                         |
| 13                                                       | 21 DE MAYO                                                                   |        | 96604087                                                             | 4                                         | 3                                         | 7                                        | 8                                       | 17                                | 10                                      | 38                                          | 1                                 | 6                                           | 8                                    | 10                                          | 5                                          |
| 14                                                       | 21 DE MIATO                                                                  |        | 100100                                                               | 21                                        | AE                                        | ,<br>AE                                  | 57                                      | 66                                | 71                                      | 60                                          | -                                 | 101                                         | 170                                  | 110                                         | 110                                        |
| 14                                                       | 21 DE MIATO                                                                  |        | 100100                                                               | 21                                        | 43                                        | 43                                       | 57                                      | 00                                | /1                                      | 09                                          | 80                                | 101                                         | 120                                  | 110                                         | 115                                        |
| 15                                                       | 21 DE MAYO                                                                   |        | 97117741                                                             | 1                                         | 3                                         | 3                                        | 1                                       | 3                                 | 2                                       | 3                                           | 1                                 | 0                                           | 2                                    | 3                                           | 2                                          |
| 16                                                       | AVDA NORTE                                                                   |        | 96164306                                                             | 123                                       | 101                                       | 81                                       | 48                                      | 42                                | 30                                      | 38                                          | 39                                | 60                                          | 81                                   | 60                                          | 83                                         |
| 17                                                       | AVDA NORTE                                                                   |        | 97129554                                                             | 69                                        | 52                                        | 29                                       | 29                                      | 26                                | 20                                      | 22                                          | 20                                | 23                                          | 29                                   | 31                                          | 32                                         |
| 19                                                       | AV/DA NORTE                                                                  |        | 96604028                                                             | 261                                       | 29/                                       | 118                                      | 113                                     | 116                               | 03                                      | 96                                          | 03                                | 100                                         | 97                                   | 70                                          | 105                                        |
| 10                                                       | AVDA NOR IE                                                                  |        | 30004028                                                             | 201                                       | 2.54                                      | 110                                      | 115                                     | 110                               |                                         | 25                                          | 55                                | 100                                         | 57                                   | 75                                          | 105                                        |
| 19                                                       | AVDA NORTE                                                                   |        | 96604083                                                             | 57                                        | 74                                        | 44                                       | 41                                      | 48                                | 29                                      | 30                                          | 20                                | 22                                          | 29                                   | 23                                          | 27                                         |
| 20                                                       | AVDA NORTE                                                                   |        | 96604029                                                             | 345                                       | 314                                       | 271                                      | 276                                     | 325                               | 323                                     | 359                                         | 315                               | 368                                         | 440                                  | 351                                         | 354                                        |
| 21                                                       | AVDA NORTE                                                                   |        | 245466                                                               | 200                                       | 237                                       | 194                                      | 113                                     | 54                                | 42                                      | 66                                          | 45                                | 93                                          | 140                                  | 86                                          | 108                                        |
| 22                                                       | AVDA NORTE                                                                   |        | 96164082                                                             | 40                                        | 28                                        | 56                                       | 61                                      | 41                                | 87                                      | 65                                          | 81                                | 60                                          | 123                                  | 174                                         | 76                                         |
|                                                          | AVEA HORTE                                                                   |        | 00104002                                                             | 100                                       | 125                                       | 100                                      | 117                                     | 105                               | 112                                     | 147                                         | 104                               | 125                                         | 104                                  | 140                                         | 170                                        |
| 23                                                       | AVDA NORTE                                                                   |        | 9/129589                                                             | 105                                       | 135                                       | 109                                      | 117                                     | 105                               | 112                                     | 147                                         | 104                               | 125                                         | 164                                  | 145                                         | 1/9                                        |
| 24                                                       | AVDA NORTE                                                                   |        | 96603558                                                             | 10                                        | 15                                        | 10                                       | 12                                      | 16                                | 16                                      | 19                                          | 1                                 | 0                                           | 1                                    | 0                                           | 0                                          |
| 25                                                       | QUIMAL                                                                       |        | 1224960                                                              | 89                                        | 175                                       | 0                                        | 68                                      | 67                                | 86                                      | 40                                          | 0                                 | 57                                          | 81                                   |                                             |                                            |
| 26                                                       | QUIMAI                                                                       |        | 244264                                                               | 365                                       | 342                                       | 302                                      | 306                                     | 253                               | 374                                     | 461                                         | 295                               | 295                                         | 290                                  | 217                                         | 254                                        |
| 27                                                       | IOUIOUE                                                                      | 1      | 242514                                                               | 26                                        | 18                                        | 41                                       | 43                                      | 51                                | 81                                      | 1/1                                         | 104                               | 134                                         | 102                                  | 80                                          | 70                                         |
| 21                                                       | IQUIQUE                                                                      |        | 243314                                                               | 20                                        | 10                                        | 41                                       | 43                                      | 20                                | 01                                      | 141                                         | 104                               | 134                                         | 102                                  | 69                                          | /9                                         |
| 28                                                       | IQUIQUE                                                                      |        | 96603378                                                             | 38                                        | 53                                        | 51                                       | 39                                      | 38                                | 36                                      | 35                                          | 36                                | 42                                          | 4/                                   | 4/                                          | 48                                         |
| 29                                                       | IQUIQUE                                                                      | I      | 1207849                                                              | 2                                         | 2                                         | 1                                        | 1                                       | 6                                 | 4                                       | 8                                           | 7                                 | 9                                           | 3                                    | 1                                           | 1                                          |
| 30                                                       | IQUIQUE                                                                      |        | 96164156                                                             | 669                                       | 535                                       | 479                                      | 454                                     | 435                               | 354                                     | 460                                         | 359                               | 406                                         | 531                                  | 380                                         | 457                                        |
| 21                                                       | IOUIOUE                                                                      | 1      | 96604025                                                             | 140                                       | 114                                       | 108                                      | 118                                     | 90                                | 101                                     | 104                                         | 108                               | 110                                         | 133                                  | 110                                         | 117                                        |
| 51                                                       | IQUIQUE                                                                      |        | 20004025                                                             | 140                                       | 114                                       | 109                                      | 110                                     | 50                                | 101                                     | 104                                         | 108                               | 110                                         | 133                                  | 110                                         | 11/                                        |
| 32                                                       | IQUIQUE                                                                      |        | 127865                                                               | 292                                       | 257                                       | 253                                      | 254                                     | 214                               | 184                                     | 2/2                                         | 229                               | 21/                                         | 266                                  | 253                                         | 263                                        |
| 33                                                       | IQUIQUE                                                                      | I      | 7704972                                                              | 30                                        | 101                                       | 18                                       | 119                                     | 97                                | 80                                      | 78                                          | 29                                | 68                                          | 102                                  | 37                                          | 85                                         |
| 34                                                       | IQUIQUE                                                                      |        | 120008591                                                            | 239                                       | 199                                       | 160                                      | 120                                     | 95                                | 58                                      | 99                                          | 85                                | 49                                          | 71                                   | 69                                          | 94                                         |
| 35                                                       | IOLIIOLIE                                                                    |        | 96164158                                                             | 22                                        | 12                                        | 15                                       | 21                                      | 27                                | 27                                      | 27                                          | 24                                | 24                                          | 23                                   | 19                                          | 20                                         |
|                                                          | Idoidor                                                                      |        | 00104100                                                             | 104                                       | 124                                       | 10                                       | 120                                     | 270                               | 100                                     | 140                                         | 120                               | 120                                         | 104                                  | 107                                         | 140                                        |
| 36                                                       | INTERNACIONAL                                                                |        | 96164320                                                             | 194                                       | 154                                       | 96                                       | 130                                     | 279                               | 108                                     | 140                                         | 150                               | 120                                         | 184                                  | 127                                         | 148                                        |
| 37                                                       | ATACAMA                                                                      |        | 603876                                                               | 2                                         | 5                                         | 8                                        | 7                                       | 10                                | 5                                       | 17                                          | 5                                 | 16                                          | 14                                   | 13                                          | 10                                         |
| 38                                                       | ATACAMA                                                                      |        | 96603375                                                             | 5                                         | 139                                       | 0                                        | 2                                       | 0                                 | 0                                       | 0                                           | 0                                 | 0                                           | 6                                    | 2                                           | 30                                         |
| 39                                                       | ATACAMA                                                                      |        | 1207066                                                              | 200                                       | 61                                        | 113                                      | 111                                     | 104                               | 71                                      | 119                                         | 123                               | 118                                         | 128                                  | 100                                         | 109                                        |
|                                                          |                                                                              |        |                                                                      | 25                                        | 120                                       | 10                                       |                                         | 20.                               | 10                                      | 20                                          | 220                               | 0                                           | 27                                   | 10                                          | 200                                        |
| 40                                                       | ATACAMA                                                                      |        | 9/11//60                                                             | 35                                        | 130                                       | 10                                       | 0                                       | 2                                 | 10                                      | 29                                          | 23                                | 9                                           | 37                                   | 15                                          | 3                                          |
| 41                                                       | ATACAMA                                                                      |        | 96164087                                                             | 148                                       | 283                                       | 156                                      | 91                                      | 94                                | 71                                      | 80                                          | 73                                | 76                                          | 67                                   | 52                                          | 132                                        |
| 42                                                       | ATACAMA                                                                      |        | 96164157                                                             | 155                                       | 147                                       | 150                                      | 144                                     | 123                               | 119                                     | 133                                         | 115                               | 138                                         | 141                                  | 130                                         | 141                                        |
| 43                                                       | ΑΤΑCAMA                                                                      |        | 96164167                                                             | 40                                        | 37                                        | 40                                       | 42                                      | 53                                | 91                                      | 133                                         | 39                                | 36                                          | 29                                   | 19                                          | 23                                         |
| 44                                                       | ATACAMA                                                                      |        | 05020026                                                             | 281                                       | 136                                       | 238                                      | 109                                     | 133                               | 123                                     | 142                                         | 103                               | 1/13                                        | 153                                  | 131                                         | 155                                        |
| 44                                                       | ATACAMIA                                                                     |        | 35030030                                                             | 104                                       | 130                                       | 2,50                                     | 105                                     | 70                                | 125                                     | 142                                         | 105                               | 145                                         | 155                                  | 151                                         | 155                                        |
| 45                                                       | ATACAMA                                                                      |        | 96164299                                                             | 104                                       | 124                                       | 54                                       | 60                                      | 12                                | 67                                      | 94                                          | 00                                | 00                                          | 89                                   | 62                                          | 00                                         |
| 46                                                       | ATACAMA                                                                      |        | 97117635                                                             | 119                                       | 124                                       | 106                                      | 101                                     | 131                               | 133                                     | 165                                         | 95                                | 102                                         | 97                                   | 35                                          | 68                                         |
| 47                                                       | ATACAMA                                                                      |        | 90203009291                                                          | 12                                        | 14                                        | 5                                        | 25                                      | 18                                | 6                                       | 6                                           | 2                                 | 0                                           | 3                                    | 2                                           | 0                                          |
| 48                                                       | ΑΤΑΓΑΜΑ                                                                      |        | 2238676                                                              | 39                                        | 38                                        | 17                                       | 31                                      | 25                                | 49                                      | 66                                          | 26                                | 29                                          | 26                                   | 27                                          | 24                                         |
| 40                                                       | ATACAMIA                                                                     |        | 2238070                                                              | 35                                        | 10                                        | 100                                      | 107                                     | 2.5                               | 45                                      | 42                                          | 20                                | 25                                          | 20                                   | 70                                          | 24                                         |
| 49                                                       | ATACAMA                                                                      |        | 96164304                                                             | U                                         | 10                                        | 100                                      | 107                                     | 95                                | 91                                      | 42                                          | 80                                | 80                                          | 63                                   | /8                                          | 67                                         |
| 50                                                       | ATACAMA                                                                      |        | 96604081                                                             | 52                                        | 1                                         | 33                                       | 25                                      | 19                                | 30                                      | 10                                          | 22                                | 26                                          | 25                                   | 26                                          | 25                                         |
| 51                                                       | ATACAMA                                                                      |        | 96164164                                                             | 45                                        | 13                                        | 69                                       | 75                                      | 23                                | 0                                       | 1                                           | 0                                 | 0                                           | 0                                    | 0                                           | 0                                          |
| 52                                                       | ΑΤΑCAMA                                                                      |        | 97129583                                                             | 9                                         | 29                                        | 65                                       | 107                                     | 178                               | 36                                      | 54                                          | 45                                | 70                                          | 88                                   | 83                                          | 92                                         |
| 5.2                                                      | LASCAR                                                                       |        | 07117705                                                             | 100                                       | 124                                       | 02                                       | 81                                      | 80                                | 68                                      | 77                                          | 71                                | 76                                          | 87                                   | 104                                         | 51                                         |
| 33                                                       | DASCAR                                                                       |        | 3/11//33                                                             | 105                                       | 124                                       | 120                                      | 100                                     | 00                                | 00                                      | 120                                         | 120                               | 70                                          | 07                                   | 104                                         | 252                                        |
| 54                                                       | LASCAR                                                                       |        | 96603424                                                             | 139                                       | 153                                       | 130                                      | 152                                     | 142                               | 116                                     | 120                                         | 136                               | 114                                         | 168                                  | 163                                         | 253                                        |
| 55                                                       | LASCAR                                                                       |        | 97129593                                                             | 0                                         | 105                                       | 135                                      | 87                                      | 105                               | 109                                     | 131                                         | 57                                | 91                                          | 100                                  | 126                                         | 147                                        |
| 56                                                       | LASCAR                                                                       |        | 97603960                                                             | 96                                        | 29                                        | 47                                       | 36                                      | 95                                | 69                                      | 94                                          | 33                                | 34                                          | 46                                   | 58                                          | 101                                        |
| 57                                                       | LASCAR                                                                       |        | 97129590                                                             | 71                                        | 85                                        | 46                                       | 85                                      | 193                               | 405                                     | 635                                         | 441                               | 271                                         | 29                                   | 45                                          | 34                                         |
| 5.0                                                      | LASCAR                                                                       | 1      | 07120581                                                             | 7                                         | 24                                        |                                          | 25                                      | <br>F                             | 10                                      | 17                                          | 14                                | 2                                           | F                                    | 19                                          | 7                                          |
| 50                                                       | LASLAK                                                                       |        | 3/123201                                                             | 07                                        | 24                                        | 0                                        | 2                                       | 0                                 | 15                                      | 14                                          | 14                                | <u>د</u>                                    | 0                                    | 10                                          | · ·                                        |
| 59                                                       | LASCAR                                                                       |        | /20004077                                                            | 85                                        | 55                                        | 25                                       | ь                                       | 4                                 | U                                       | 4                                           | 1                                 | U                                           | U                                    | U                                           | U                                          |
| 60                                                       | LASCAR                                                                       | l      | 97604089                                                             | 107                                       | 137                                       | 118                                      | 114                                     | 198                               | 14                                      | 174                                         | 0                                 | 122                                         | 82                                   | 99                                          | 61                                         |
| 61                                                       | LASCAR                                                                       |        | 97164295                                                             | 166                                       | 185                                       | 140                                      | 161                                     | 181                               | 196                                     | 192                                         | 153                               | 157                                         | 147                                  | 193                                         | 157                                        |
| 62                                                       | LASCAR                                                                       |        | 96603335                                                             | 22                                        | 22                                        | 21                                       | 19                                      | 20                                | 24                                      | 30                                          | 23                                | 22                                          | 23                                   | 26                                          | 20                                         |
| 63                                                       | LASCAR                                                                       | i      | 1207864                                                              | 193                                       | 205                                       | 195                                      | 206                                     | 206                               | 193                                     | 206                                         | 178                               | 167                                         | 177                                  | 211                                         | 186                                        |
| 55                                                       | LACCAR                                                                       | 1      | 07(02552                                                             | 102                                       | 120                                       | 117                                      | 127                                     | 120                               | 117                                     | 174                                         | 115                               | 114                                         | -//                                  |                                             | 100                                        |
| 64                                                       | LASCAR                                                                       |        | 97603552                                                             | 102                                       | 129                                       | 11/                                      | 127                                     | 130                               | 11/                                     | 1/4                                         | 115                               | 114                                         | 4                                    | U                                           | 0                                          |
| 65                                                       | LASCAR                                                                       |        | 97603389                                                             | 157                                       | 139                                       | 120                                      | 184                                     | 186                               | 142                                     | 170                                         | 174                               | 122                                         | 112                                  | 80                                          | 35                                         |
| 66                                                       | LASCAR                                                                       | I      | 1845282                                                              | 17                                        | 15                                        | 11                                       | 18                                      | 20                                | 10                                      | 8                                           | 11                                | 9                                           | 11                                   | 11                                          | 10                                         |
| 67                                                       | LASCAR                                                                       |        | 97603390                                                             | 286                                       | 229                                       | 237                                      | 234                                     | 215                               | 204                                     | 216                                         | 221                               | 183                                         | 51                                   | 131                                         | 31                                         |
| 68                                                       | LASCAR                                                                       | i      | 81560                                                                | 35                                        | 32                                        | 33                                       | 30                                      | 29                                | 27                                      | 95                                          | 71                                | 32                                          | 33                                   | 56                                          | 35                                         |
| 00                                                       | DAGCAR                                                                       |        | 07117217                                                             | 55                                        | 120                                       | 42                                       | 30                                      | 27                                | 20                                      | 22                                          | 20                                | 32                                          | 33                                   | 74                                          | 42                                         |
| 69                                                       | LASCAR                                                                       | ł      | 9/11/317                                                             | 10                                        | 130                                       | 42                                       | 30                                      | 32                                | 50                                      | 51                                          | 29                                | 35                                          | 30                                   | /4                                          | 42                                         |
| 70                                                       | LASCAR                                                                       |        | 97604022                                                             | 64                                        | 81                                        | 67                                       | 55                                      | 52                                | 35                                      | 44                                          | 46                                | 49                                          | 63                                   | 40                                          | 26                                         |
| 71                                                       | LASCAR                                                                       |        | 270334                                                               | 11                                        | 38                                        | 7                                        | 57                                      | 32                                | 24                                      | 35                                          | 19                                | 7                                           | 7                                    | 14                                          | 13                                         |
| 72                                                       | LASCAR                                                                       |        | 97117393                                                             | 58                                        | 54                                        | 40                                       | 40                                      | 54                                | 39                                      | 76                                          | 49                                | 49                                          | 58                                   | 71                                          | 64                                         |
| 72                                                       | LASCAR                                                                       | 1      | 20110600071                                                          | 0                                         | ,<br>,                                    | E.                                       | <br>7                                   | 9                                 | 4                                       |                                             | 7                                 | 7                                           | 0                                    | 20                                          |                                            |
| /3                                                       | LASCAR                                                                       |        | 201100080/1                                                          | 9                                         | 0                                         | 0                                        | 2                                       | °                                 | 4                                       | 0                                           | /                                 | /                                           | 0                                    | 29                                          | 4                                          |
| 74                                                       | LASCAR                                                                       |        | 9/129524                                                             | 51                                        | 27                                        | 8                                        | 5                                       | U                                 | 46                                      | 40                                          | 30                                | 52                                          | 30                                   |                                             |                                            |
| 75                                                       | LASCAR                                                                       | I      | 1207862                                                              | 8                                         | 8                                         | 3                                        | 5                                       | 7                                 | 7                                       | 10                                          | 6                                 | 6                                           | 7                                    | 8                                           | 5                                          |
| 76                                                       | LASCAR                                                                       |        | 97117031                                                             | 148                                       | 160                                       | 130                                      | 122                                     | 101                               | 108                                     | 112                                         | 107                               | 109                                         | 140                                  | 143                                         | 133                                        |
| 77                                                       | LASCAR                                                                       | 1      | 4078750                                                              | 210                                       | - 50<br>E E                               | 250                                      |                                         | 40                                | 34                                      | 54                                          | <br>g1                            | 14                                          | 10                                   | 210                                         | 20                                         |
|                                                          | LASCAR                                                                       |        | NU/0/30                                                              | 02                                        | 05                                        | 20                                       | 40                                      | +0                                | 54                                      | 54                                          | 01                                | 40                                          | 40                                   | 25                                          | 20                                         |
| 78                                                       | LASCAR                                                                       |        | 97117397                                                             | 174                                       | 184                                       | 108                                      | 102                                     | 117                               | 90                                      | 160                                         | 104                               | 99                                          | 130                                  | 164                                         | 157                                        |
| 79                                                       | LASCAR                                                                       | l      | 1286521                                                              | 57                                        | 90                                        | 109                                      | 139                                     | 253                               | 291                                     | 365                                         | 224                               | 102                                         | 115                                  | 99                                          | 46                                         |
| 80                                                       | LASCAR                                                                       |        | 97117794                                                             | 21                                        | 203                                       | 8                                        | 1                                       | 6                                 | 4                                       | 46                                          | 9                                 | 39                                          | 40                                   | 25                                          | 8                                          |
| 81                                                       |                                                                              | i      | 9711739/                                                             | 4                                         | 11                                        | Á                                        | 2                                       | Å                                 | 2                                       | e<br>e                                      | 2                                 | 0                                           | 2                                    | 2                                           | Ó                                          |
| 91                                                       | LASCAR                                                                       |        |                                                                      | +                                         |                                           | +                                        | 3                                       | +                                 | 4                                       | 5                                           | <u>ی</u>                          | 12                                          | 10                                   | 3                                           | 2                                          |
| 6.2                                                      | LASCAR                                                                       |        | 303388                                                               | 14                                        | 51                                        | 10                                       | 10                                      | 10                                | 5                                       | D                                           | 6                                 | 13                                          | 10                                   | тр                                          | 2                                          |
| 82                                                       | LASCAR                                                                       |        |                                                                      | 467                                       |                                           | - 43                                     | - 40                                    | 124                               | - 140                                   | 1 7 7                                       | 1 2 5                             | 7.40                                        | 100                                  |                                             | 31.0                                       |
| 82<br>83                                                 | LASCAR<br>LASCAR<br>LASCAR                                                   |        | 603557                                                               | 197                                       | 202                                       | 143                                      | 140                                     | 134                               | 140                                     | 1/2                                         | 155                               | 140                                         | 100                                  | 155                                         | 158                                        |
| 82<br>83<br>84                                           | LASCAR<br>LASCAR<br>LASCAR<br>LASCAR                                         |        | 603557<br>97117707                                                   | 197<br>241                                | 202                                       | 223                                      | 244                                     | 227                               | 205                                     | 241                                         | 212                               | 210                                         | 272                                  | 155<br>231                                  | 208                                        |
| 82<br>83<br>84<br>85                                     | LASCAR<br>LASCAR<br>LASCAR<br>LASCAR                                         |        | 603557<br>97117707<br>128653                                         | 197<br>241<br>154                         | 202<br>242<br>141                         | 223<br>86                                | 244                                     | 227                               | 205                                     | 241                                         | 212                               | 210                                         | 272                                  | 155<br>231<br>151                           | 208                                        |
| 82<br>83<br>84<br>85                                     | LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR                               |        | 603557<br>97117707<br>128653                                         | 197<br>241<br>154                         | 202<br>242<br>141                         | 143<br>223<br>86                         | 244<br>91                               | 227<br>95                         | 205<br>92                               | 241<br>119                                  | 212<br>90<br>7                    | 210<br>169                                  | 272                                  | 155<br>231<br>151                           | 208<br>152                                 |
| 82<br>83<br>84<br>85<br>86                               | LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR                     |        | 603557<br>97117707<br>128653<br>1409778                              | 197<br>241<br>154<br>0                    | 202<br>242<br>141<br>9                    | 143<br>223<br>86<br>11                   | 244<br>91<br>6                          | 227<br>95<br>0                    | 205<br>92<br>1                          | 241<br>119<br>12                            | 212<br>90<br>7                    | 210<br>169<br>20                            | 272<br>195<br>38                     | 155<br>231<br>151<br>11                     | 208<br>152<br>4                            |
| 82<br>83<br>84<br>85<br>86<br>87                         | LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR           |        | 603557<br>97117707<br>128653<br>1409778<br>96603877                  | 197<br>241<br>154<br>0<br>160             | 202<br>242<br>141<br>9<br>209             | 143<br>223<br>86<br>11<br>147            | 140<br>244<br>91<br>6<br>167            | 227<br>95<br>0<br>191             | 205<br>92<br>1<br>176                   | 172<br>241<br>119<br>12<br>178              | 212<br>90<br>7<br>193             | 210<br>169<br>20<br>163                     | 272<br>195<br>38<br>208              | 155<br>231<br>151<br>11<br>209              | 208<br>152<br>4<br>175                     |
| 82<br>83<br>84<br>85<br>86<br>87<br>88                   | LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR |        | 603557<br>97117707<br>128653<br>1409778<br>96603877<br>13399         | 197<br>241<br>154<br>0<br>160<br>0        | 202<br>242<br>141<br>9<br>209<br>1        | 143<br>223<br>86<br>11<br>147<br>0       | 140<br>244<br>91<br>6<br>167<br>0       | 227<br>95<br>0<br>191<br>0        | 205<br>92<br>1<br>176<br>0              | 241<br>119<br>12<br>178<br>20               | 212<br>90<br>7<br>193<br>35       | 140<br>210<br>169<br>20<br>163<br>32        | 272<br>195<br>38<br>208<br>58        | 155<br>231<br>151<br>11<br>209<br>47        | 138<br>208<br>152<br>4<br>175<br>57        |
| 82<br>83<br>84<br>85<br>86<br>87<br>88<br>88<br>88<br>89 | LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR<br>LASCAR |        | 603557<br>97117707<br>128653<br>1409778<br>96603877<br>13399<br>4426 | 197<br>241<br>154<br>0<br>160<br>0<br>108 | 202<br>242<br>141<br>9<br>209<br>1<br>103 | 143<br>223<br>86<br>11<br>147<br>0<br>90 | 140<br>244<br>91<br>6<br>167<br>0<br>91 | 227<br>95<br>0<br>191<br>0<br>102 | 148<br>205<br>92<br>1<br>176<br>0<br>90 | 172<br>241<br>119<br>12<br>178<br>20<br>117 | 212<br>90<br>7<br>193<br>35<br>99 | 140<br>210<br>169<br>20<br>163<br>32<br>105 | 272<br>195<br>38<br>208<br>58<br>146 | 155<br>231<br>151<br>11<br>209<br>47<br>162 | 138<br>208<br>152<br>4<br>175<br>57<br>177 |

| 91                                                                                                           | LASCAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96603956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                                | 31                                                                                                               | 27                                                                                      | 28                                                                            | 28                                                                                | 26                                                                                | 27                                                                                        | 24                                                                                    | 27                                                                            | 41                                                                                       | 33                                                                                             | 35                                                                                         |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 92                                                                                                           | LASCAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 153                                                                                               | 156                                                                                                              | 156                                                                                     | 1/4                                                                           | 204                                                                               | 218                                                                               | 168                                                                                       | 133                                                                                   | 128                                                                           | 1/6                                                                                      | 164                                                                                            | 1/0                                                                                        |
| 95                                                                                                           | LASCAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53                                                                                                | 44                                                                                                               | 34                                                                                      | 44                                                                            | 31                                                                                | 33                                                                                | 39                                                                                        | 56                                                                                    | 76                                                                            | 92                                                                                       | 69                                                                                             | 71                                                                                         |
| 95                                                                                                           | LASCAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97117704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51                                                                                                | 54                                                                                                               | 48                                                                                      | 50                                                                            | 53                                                                                | 52                                                                                | 52                                                                                        | 39                                                                                    | 48                                                                            | 66                                                                                       | 54                                                                                             | 56                                                                                         |
| 96                                                                                                           | LASCAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 246018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                               | 79                                                                                                               | 49                                                                                      | 42                                                                            | 39                                                                                | 26                                                                                | 45                                                                                        | 17                                                                                    | 17                                                                            | 23                                                                                       | 25                                                                                             | 14                                                                                         |
| 97                                                                                                           | LASCAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2015010989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 209                                                                                               | 362                                                                                                              | 43                                                                                      | 189                                                                           | 288                                                                               | 610                                                                               | 492                                                                                       | 431                                                                                   | 27                                                                            | 14/                                                                                      | 45                                                                                             | 47                                                                                         |
| 99                                                                                                           | P. DE VALDIVIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2078560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78                                                                                                | 52                                                                                                               | 45                                                                                      | 3                                                                             | 1                                                                                 | 2                                                                                 | 14                                                                                        | 2                                                                                     | 2                                                                             | 4                                                                                        | 3                                                                                              | 12                                                                                         |
| 100                                                                                                          | P. DE VALDIVIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97117398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                 | 0                                                                                                                | 3                                                                                       | 1                                                                             | 1                                                                                 | 1                                                                                 | 4                                                                                         | 4                                                                                     | 0                                                                             | 1                                                                                        | 1                                                                                              | 1                                                                                          |
| 101                                                                                                          | P. DE VALDIVIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96603951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                 | 3                                                                                                                | 1                                                                                       | 1                                                                             | 0                                                                                 | 0                                                                                 | 26                                                                                        | 0                                                                                     | 5                                                                             | 1                                                                                        | 0                                                                                              | 5                                                                                          |
| 102                                                                                                          | P. DE VALDIVIA<br>P. DE VALDIVIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 920005158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 205                                                                                               | 203                                                                                                              | 203                                                                                     | 232                                                                           | 222                                                                               | 208                                                                               | 242                                                                                       | 129                                                                                   | 145                                                                           | 269                                                                                      | 222                                                                                            | 247                                                                                        |
| 104                                                                                                          | EL BOSQUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97128651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 150                                                                                               | 243                                                                                                              | 136                                                                                     | 204                                                                           | 190                                                                               | 186                                                                               | 181                                                                                       | 180                                                                                   | 181                                                                           | 356                                                                                      | 191                                                                                            |                                                                                            |
| 105                                                                                                          | EL BOSQUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 244355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 115                                                                                               | 71                                                                                                               | 69                                                                                      | 78                                                                            | 65                                                                                | 51                                                                                | 86                                                                                        | 66                                                                                    | 77                                                                            | 89                                                                                       | 73                                                                                             | 72                                                                                         |
| 106                                                                                                          | EL BOSQUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96604084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58                                                                                                | 88                                                                                                               | 12                                                                                      | 16                                                                            | 19                                                                                | 14                                                                                | 25                                                                                        | 20                                                                                    | 1/                                                                            | 1/                                                                                       | 14                                                                                             | 12                                                                                         |
| 108                                                                                                          | ELBOSQUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50104512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                 | 0                                                                                                                | 8                                                                                       | 4                                                                             | 0                                                                                 |                                                                                   | 12                                                                                        | 0                                                                                     | 0                                                                             | 0                                                                                        | 0                                                                                              | 0                                                                                          |
| 109                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27129525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40                                                                                                | 39                                                                                                               | 72                                                                                      | 52                                                                            | 45                                                                                | 37                                                                                | 79                                                                                        | 39                                                                                    | 15                                                                            | 8                                                                                        | 4                                                                                              | 31                                                                                         |
| 110                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96603374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72                                                                                                | 199                                                                                                              | 56                                                                                      | 10                                                                            | 46                                                                                | 19                                                                                | 242                                                                                       | 45                                                                                    | 60                                                                            | 76                                                                                       | 72                                                                                             | 26                                                                                         |
| 112                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96164155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                 | 5                                                                                                                | 0                                                                                       | 1                                                                             | 6                                                                                 | 33                                                                                | 45                                                                                        | 38                                                                                    | 0                                                                             | 26                                                                                       | 52                                                                                             | 0                                                                                          |
| 113                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96164313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86                                                                                                | 92                                                                                                               | 83                                                                                      | 91                                                                            | 67                                                                                | 60                                                                                | 67                                                                                        | 62                                                                                    | 59                                                                            | 72                                                                                       | 75                                                                                             | 60                                                                                         |
| 114                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96603380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59                                                                                                | 4/                                                                                                               | 45                                                                                      | 28                                                                            | 41                                                                                | 40                                                                                | 4/                                                                                        | 41                                                                                    | 45                                                                            | 54                                                                                       | 5/                                                                                             | 48                                                                                         |
| 116                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96164301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                 | 1                                                                                                                | 8                                                                                       | 1                                                                             | 0                                                                                 | 0                                                                                 | 0                                                                                         | 1                                                                                     | 0                                                                             | 73                                                                                       | 59                                                                                             | 71                                                                                         |
| 117                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 164161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                 | 2                                                                                                                | 12                                                                                      | 6                                                                             | 1                                                                                 | 0                                                                                 | 8                                                                                         | 2                                                                                     | 1                                                                             | 2                                                                                        | 5                                                                                              | 3                                                                                          |
| 118                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96603373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98                                                                                                | 99                                                                                                               | 111                                                                                     | 125                                                                           | 107                                                                               | 96                                                                                | 86<br>25                                                                                  | 94                                                                                    | 113                                                                           | 143                                                                                      | 128                                                                                            | 131                                                                                        |
| 120                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96603369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                                                                | 33                                                                                                               | 13                                                                                      | 20                                                                            | 32                                                                                | 24                                                                                | 24                                                                                        | 22                                                                                    | 20                                                                            | 30                                                                                       | 36                                                                                             | 36                                                                                         |
| 121                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96603376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57                                                                                                | 91                                                                                                               | 69                                                                                      | 49                                                                            | 39                                                                                | 28                                                                                | 53                                                                                        | 38                                                                                    | 38                                                                            | 50                                                                                       | 53                                                                                             | 53                                                                                         |
| 122                                                                                                          | O'HIGGINS<br>O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120002907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14<br>6                                                                                           | 140                                                                                                              | 40                                                                                      | 20                                                                            | 29                                                                                | 53                                                                                | 49                                                                                        | 40                                                                                    | 41                                                                            | 35                                                                                       | 52                                                                                             | 14                                                                                         |
| 124                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97128654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19                                                                                                | 12                                                                                                               | 3                                                                                       | 19                                                                            | 21                                                                                | 20                                                                                | 21                                                                                        | 15                                                                                    | 14                                                                            | 18                                                                                       | 46                                                                                             | 34                                                                                         |
| 125                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96603560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                 | 35                                                                                                               | 6                                                                                       | 0                                                                             | 18                                                                                | 9                                                                                 | 23                                                                                        | 14                                                                                    | 17                                                                            | 21                                                                                       | 36                                                                                             | 40                                                                                         |
| 126                                                                                                          | O'HIGGINS<br>O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1207869<br>920017970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/                                                                                                | 37                                                                                                               | 58<br>36                                                                                | 43                                                                            | 53                                                                                | 92                                                                                | 42                                                                                        | 61<br>57                                                                              | 49                                                                            | 78<br>51                                                                                 | 61<br>41                                                                                       | 52                                                                                         |
| 128                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96164089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 124                                                                                               | 173                                                                                                              | 129                                                                                     | 123                                                                           | 126                                                                               | 183                                                                               | 318                                                                                       | 83                                                                                    | 83                                                                            | 109                                                                                      | 94                                                                                             | 96                                                                                         |
| 129                                                                                                          | O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96164317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                 | 21                                                                                                               | 3                                                                                       | 2                                                                             | 4                                                                                 | 5                                                                                 | 4                                                                                         | 4                                                                                     | 2                                                                             | 4                                                                                        | 5                                                                                              | 9                                                                                          |
| 130                                                                                                          | O'HIGGINS<br>O'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 129984<br>96164298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                               | 92                                                                                                               | 85<br>96                                                                                | 85                                                                            | 82<br>97                                                                          | 103                                                                               | 91                                                                                        | 70                                                                                    | /1 83                                                                         | 83<br>76                                                                                 | /1 68                                                                                          | 73                                                                                         |
| 132                                                                                                          | 0'HIGGINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 229                                                                                               | 252                                                                                                              | 155                                                                                     | 168                                                                           | 156                                                                               | 144                                                                               | 192                                                                                       | 158                                                                                   | 173                                                                           | 189                                                                                      | 177                                                                                            | 162                                                                                        |
| 133                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20070352585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103                                                                                               | 116                                                                                                              | 103                                                                                     | 90                                                                            | 91                                                                                | 91                                                                                | 89                                                                                        | 8                                                                                     | 98                                                                            | 105                                                                                      | 107                                                                                            | 95                                                                                         |
| 134<br>135                                                                                                   | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3749172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57                                                                                                | 140                                                                                                              | 92                                                                                      | 88                                                                            | 55<br>146                                                                         | 37<br>180                                                                         | 238                                                                                       | 45                                                                                    | 52                                                                            | 149                                                                                      | 124                                                                                            | 139                                                                                        |
| 136                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97129527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 231                                                                                               | 238                                                                                                              | 178                                                                                     | 168                                                                           | 191                                                                               | 159                                                                               | 170                                                                                       | 178                                                                                   | 168                                                                           | 193                                                                                      | 164                                                                                            | 173                                                                                        |
| 137                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8711761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 184                                                                                               | 180                                                                                                              | 170                                                                                     | 169                                                                           | 173                                                                               | 170                                                                               | 184                                                                                       | 173                                                                                   | 185                                                                           | 161                                                                                      | 135                                                                                            | 136                                                                                        |
| 138                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1101093178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48                                                                                                | 48                                                                                                               | 56<br>187                                                                               | 173                                                                           | 57                                                                                | 50                                                                                | 49                                                                                        | 43                                                                                    | 52                                                                            | 57                                                                                       | 54                                                                                             | 55<br>154                                                                                  |
| 140                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                 | 2                                                                                                                | 4                                                                                       | 2                                                                             | 2                                                                                 | 17                                                                                | 40                                                                                        | 78                                                                                    | 11                                                                            | 6                                                                                        | 8                                                                                              | 3                                                                                          |
| 141                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97129528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                                                               | 140                                                                                                              | 145                                                                                     | 131                                                                           | 140                                                                               | 123                                                                               | 144                                                                                       | 124                                                                                   | 118                                                                           | 116                                                                                      | 117                                                                                            | 129                                                                                        |
| 142                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 129530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                 | 339                                                                                                              | 232                                                                                     | 206                                                                           | 30                                                                                | 0                                                                                 | 207                                                                                       | 3                                                                                     | 3                                                                             | 189                                                                                      | 230                                                                                            | 189                                                                                        |
| 144                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97129529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 156                                                                                               | 130                                                                                                              | 135                                                                                     | 116                                                                           | 119                                                                               | 98                                                                                | 120                                                                                       | 138                                                                                   | 150                                                                           | 144                                                                                      | 146                                                                                            | 111                                                                                        |
| 145                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 129582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 135                                                                                               | 130                                                                                                              | 117                                                                                     | 140                                                                           | 141                                                                               | 130                                                                               | 156                                                                                       | 134                                                                                   | 129                                                                           | 140                                                                                      | 142                                                                                            | 144                                                                                        |
| 146                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                | /6                                                                                                               | 20                                                                                      | 16                                                                            | 14<br>9                                                                           | 14                                                                                | 20                                                                                        | 8                                                                                     | 20                                                                            | 33                                                                                       | 41                                                                                             | 3                                                                                          |
| 148                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96603367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 219                                                                                               | 240                                                                                                              | 213                                                                                     | 238                                                                           | 245                                                                               | 250                                                                               | 260                                                                                       | 234                                                                                   | 240                                                                           | 230                                                                                      | 266                                                                                            | 226                                                                                        |
| 149                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1207855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                                | 76                                                                                                               | 72                                                                                      | 67                                                                            | 81                                                                                | 64                                                                                | 88                                                                                        | 45                                                                                    | 45                                                                            | 40                                                                                       | 48                                                                                             | 59                                                                                         |
| 150                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8728337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 160                                                                                               | 218                                                                                                              | 165                                                                                     | 107                                                                           | 150                                                                               | 379                                                                               | 384                                                                                       | 35                                                                                    | 131                                                                           | 182                                                                                      | 163                                                                                            | 155                                                                                        |
| 152                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97128833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                | 17                                                                                                               | 14                                                                                      | 14                                                                            | 47                                                                                | 111                                                                               | 84                                                                                        | 53                                                                                    | 63                                                                            | 77                                                                                       | 54                                                                                             | 44                                                                                         |
| 153                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97129526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                 | 102                                                                                                              | 2                                                                                       | 10                                                                            | 2                                                                                 | 18                                                                                | 0                                                                                         | 2                                                                                     | 0                                                                             | 17                                                                                       | 17                                                                                             | 6                                                                                          |
| 154                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97117798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102                                                                                               | 115                                                                                                              | 132                                                                                     | 116                                                                           | 118                                                                               | 131                                                                               | 185                                                                                       | 97                                                                                    | 110                                                                           | 126                                                                                      | 93                                                                                             | 123                                                                                        |
| 156                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110                                                                                               | 133                                                                                                              | 93                                                                                      | 87                                                                            | 86                                                                                | 73                                                                                | 74                                                                                        | 67                                                                                    | 73                                                                            | 110                                                                                      | 70                                                                                             | 93                                                                                         |
| 157                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 971177460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                 | 7                                                                                                                | 7                                                                                       | 13                                                                            | 14                                                                                | 15                                                                                | 21                                                                                        | 19                                                                                    | 21                                                                            | 25                                                                                       | 15                                                                                             | 17                                                                                         |
| 158                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 920007407<br>97117754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 302                                                                                               | 23                                                                                                               | 137                                                                                     | 4<br>61                                                                       | 8<br>65                                                                           | 51                                                                                | 23<br>52                                                                                  | 9<br>50                                                                               | 13<br>50                                                                      | 1 66                                                                                     | 3<br>64                                                                                        | 56                                                                                         |
| 160                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31                                                                                                | 22                                                                                                               | 16                                                                                      | 19                                                                            | 28                                                                                | 31                                                                                | 128                                                                                       | 64                                                                                    | 87                                                                            | 63                                                                                       | 36                                                                                             | 39                                                                                         |
| 161                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97117752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                | 21                                                                                                               | 3                                                                                       | 1                                                                             | 6                                                                                 | 0                                                                                 | 7                                                                                         | 14                                                                                    | 0                                                                             | 2                                                                                        | 4                                                                                              | 4                                                                                          |
| 162                                                                                                          | СОРІАРО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97117757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                                                | 16                                                                                                               | 12                                                                                      | 10                                                                            | 14                                                                                | 7                                                                                 | 15                                                                                        | 10                                                                                    | 18                                                                            | 16                                                                                       | 9                                                                                              | 10                                                                                         |
| 164                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                                                                                                | 12                                                                                                               | 8                                                                                       | 10                                                                            | 13                                                                                | 12                                                                                | 14                                                                                        | 4                                                                                     | 18                                                                            | 23                                                                                       | 19                                                                                             | 21                                                                                         |
| 165                                                                                                          | COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 128656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31                                                                                                | 52                                                                                                               | 33                                                                                      | 26                                                                            | 44                                                                                | 54                                                                                | 68                                                                                        | 7                                                                                     | 21                                                                            | 22                                                                                       | 14                                                                                             | 18                                                                                         |
| 167                                                                                                          | СОРІАРО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201403011173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                | 5                                                                                                                | 107                                                                                     | 147                                                                           | 156                                                                               | 42                                                                                | 126                                                                                       | 162                                                                                   | 150                                                                           | 118                                                                                      | 106                                                                                            | 99                                                                                         |
| 168                                                                                                          | СОРІАРО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97129597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58                                                                                                | 29                                                                                                               | 100                                                                                     | 207                                                                           | 134                                                                               | 167                                                                               | 113                                                                                       | 183                                                                                   | 81                                                                            | 125                                                                                      | 144                                                                                            | 124                                                                                        |
| 169<br>170                                                                                                   | PSJ COPIAPO<br>PSJ COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 720003002<br>97118838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8<br>95                                                                                           | 16<br>87                                                                                                         | 4<br>91                                                                                 | 24<br>91                                                                      | 1/<br>90                                                                          | 30                                                                                | U<br>98                                                                                   | U<br>84                                                                               | 1 88                                                                          | 139<br>97                                                                                | 158<br>98                                                                                      | 1/1 106                                                                                    |
| 171                                                                                                          | PSJ COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 244558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 66                                                                                                | 159                                                                                                              | 0                                                                                       | 161                                                                           | 62                                                                                | 75                                                                                | 83                                                                                        | 59                                                                                    | 65                                                                            | 73                                                                                       | 76                                                                                             | 73                                                                                         |
| 172                                                                                                          | PSJ COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2003042182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250                                                                                               | 22                                                                                                               | 143                                                                                     | 126                                                                           | 118                                                                               | 186                                                                               | 247                                                                                       | 179                                                                                   | 144                                                                           | 199                                                                                      | 222                                                                                            | 190                                                                                        |
| 173                                                                                                          | PSJ COPIAPO<br>PSJ COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97117755<br>20070352758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 117                                                                                             | 24                                                                                                               | 63<br>113                                                                               | 39                                                                            | 51<br>90                                                                          | 49<br>86                                                                          | 30<br>92                                                                                  | 44<br>87                                                                              | 49<br>95                                                                      | 94                                                                                       | 70<br>99                                                                                       | 53                                                                                         |
| 175                                                                                                          | PSJ COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20070352753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                               | 85                                                                                                               | 72                                                                                      | 74                                                                            | 86                                                                                | 70                                                                                | 85                                                                                        | 80                                                                                    | 53                                                                            | 71                                                                                       | 73                                                                                             | 89                                                                                         |
| 176                                                                                                          | PSJ COPIAPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20070353985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                 | 0                                                                                                                | 0                                                                                       | 33                                                                            | 40                                                                                | 24                                                                                | 33                                                                                        | 7                                                                                     | 25                                                                            | 23                                                                                       | 21                                                                                             | 43                                                                                         |
| 178                                                                                                          | 18 DE OCTUBRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2003042185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 161                                                                                               | 181                                                                                                              | 169                                                                                     | 155                                                                           | 149                                                                               | 143                                                                               | 142                                                                                       | 123                                                                                   | 129                                                                           | 143                                                                                      | 132                                                                                            | 140                                                                                        |
| 179                                                                                                          | 18 DE OCTUBRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1207871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99                                                                                                | 76                                                                                                               | 91                                                                                      | 47                                                                            | 77                                                                                | 67                                                                                | 71                                                                                        | 45                                                                                    | 53                                                                            | 83                                                                                       | 49                                                                                             | 65                                                                                         |
| 180                                                                                                          | 18 DE OCTUBRE<br>18 DE OCTUBRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96603366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 176                                                                                               | 168                                                                                                              | 169                                                                                     | 196<br>0                                                                      | 160                                                                               | 120                                                                               | 142<br>0                                                                                  | 129<br>46                                                                             | 140<br>0                                                                      | 186                                                                                      | 186<br>0                                                                                       | 176                                                                                        |
| 182                                                                                                          | 18 DE OCTUBRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96164168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68                                                                                                | 68                                                                                                               | 62                                                                                      | 69                                                                            | 69                                                                                | 58                                                                                | 64                                                                                        | 58                                                                                    | 49                                                                            | 55                                                                                       | 54                                                                                             | 55                                                                                         |
| 183                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06164162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 182                                                                                               | 195                                                                                                              | 190                                                                                     | 65                                                                            | 114                                                                               | 93                                                                                | 63                                                                                        | 75                                                                                    | 115                                                                           | 149                                                                                      | 116                                                                                            | 131                                                                                        |
| 1 9 4                                                                                                        | 18 DE OCTUBRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30104102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   | •                                                                                                                |                                                                                         | 76                                                                            | 91                                                                                | 71                                                                                | 69                                                                                        | 84                                                                                    | 60                                                                            | 96                                                                                       |                                                                                                | 82                                                                                         |
| 104                                                                                                          | 18 DE OCTUBRE<br>18 DE OCTUBRE<br>18 DE OCTUBRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96164159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72                                                                                                | 95<br>18                                                                                                         | Δ7                                                                                      | 25                                                                            | 0                                                                                 | 0                                                                                 | n                                                                                         | 04                                                                                    | 0                                                                             | 18                                                                                       | 23                                                                                             | 2                                                                                          |
| 185                                                                                                          | 18 DE OCTUBRE<br>18 DE OCTUBRE<br>18 DE OCTUBRE<br>18 DE OCTUBRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96164159<br>96603873<br>96603552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72<br>0<br>76                                                                                     | 95<br>18<br>88                                                                                                   | 47                                                                                      | 25                                                                            | 0 107                                                                             | 0 95                                                                              | 0 107                                                                                     | 0 83                                                                                  | 0 90                                                                          | 18<br>111                                                                                | 23<br>93                                                                                       | 2<br>70                                                                                    |
| 184<br>185<br>186<br>187                                                                                     | 18 DE OCTUBRE<br>18 DE OCTUBRE<br>18 DE OCTUBRE<br>18 DE OCTUBRE<br>18 DE OCTUBRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96164192<br>96164159<br>96603873<br>96603552<br>96603364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72<br>0<br>76<br>0                                                                                | 95<br>18<br>88<br>14                                                                                             | 47<br>103<br>2                                                                          | 25<br>99<br>1                                                                 | 0<br>107<br>5                                                                     | 0<br>95<br>1                                                                      | 0<br>107<br>2                                                                             | 0<br>83<br>5                                                                          | 0<br>90<br>0                                                                  | 18<br>111<br>8                                                                           | 88<br>23<br>93<br>11                                                                           | 2<br>70<br>6                                                                               |
| 185<br>185<br>186<br>187<br>188                                                                              | 18 DE OCTUBRE<br>19 DE OCTUBRE<br>18 DE OCTUBRE<br>18 DE OCTUBRE<br>18 DE OCTUBRE<br>18 DE OCTUBRE<br>18 DE OCTUBRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96164182<br>96164159<br>96603873<br>96603552<br>96603364<br>96164307<br>2260367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72<br>0<br>76<br>0<br>1<br>518                                                                    | 95<br>18<br>88<br>14<br>143<br>530                                                                               | 47<br>103<br>2<br>6<br>318                                                              | 25<br>99<br>1<br>1<br>30                                                      | 0<br>107<br>5<br>1<br>36                                                          | 0<br>95<br>1<br>1<br>41                                                           | 0<br>107<br>2<br>1<br>48                                                                  | 0<br>83<br>5<br>1<br>37                                                               | 0<br>90<br>0<br>0<br>35                                                       | 18<br>111<br>8<br>7<br>42                                                                | 88<br>23<br>93<br>11<br>28<br>43                                                               | 2<br>70<br>6<br>9<br>40                                                                    |
| 184<br>185<br>186<br>187<br>188<br>189<br>190                                                                | 18 DE OCTUBRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96164159<br>96603873<br>96603552<br>96603364<br>96164307<br>2260367<br>4465736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72<br>0<br>76<br>0<br>1<br>518<br>53                                                              | 95<br>18<br>88<br>14<br>143<br>530<br>199                                                                        | 47<br>103<br>2<br>6<br>318<br>54                                                        | 25<br>99<br>1<br>1<br>30<br>37                                                | 0<br>107<br>5<br>1<br>36<br>54                                                    | 0<br>95<br>1<br>1<br>41<br>36                                                     | 0<br>107<br>2<br>1<br>48<br>50                                                            | 0<br>83<br>5<br>1<br>37<br>38                                                         | 0<br>90<br>0<br>36<br>53                                                      | 18<br>111<br>8<br>7<br>42<br>57                                                          | 88<br>23<br>93<br>11<br>28<br>43<br>63                                                         | 2<br>70<br>6<br>9<br>40<br>50                                                              |
| 184<br>185<br>186<br>187<br>188<br>189<br>190<br>191                                                         | 18 DC OTUBRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96164159<br>96603873<br>96603552<br>96603364<br>96164307<br>2260367<br>4465736<br>97128555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72<br>0<br>76<br>0<br>1<br>518<br>53<br>1                                                         | 95<br>18<br>88<br>14<br>143<br>530<br>199<br>6                                                                   | 47<br>103<br>2<br>6<br>318<br>54<br>2                                                   | 25<br>99<br>1<br>1<br>30<br>37<br>0                                           | 0<br>107<br>5<br>1<br>36<br>54<br>1                                               | 0<br>95<br>1<br>1<br>41<br>36<br>0                                                | 0<br>107<br>2<br>1<br>48<br>50<br>12                                                      | 0<br>83<br>5<br>1<br>37<br>38<br>0                                                    | 0<br>90<br>0<br>36<br>53<br>4                                                 | 18<br>111<br>8<br>7<br>42<br>57<br>2                                                     | 88<br>23<br>93<br>11<br>28<br>43<br>63<br>1                                                    | 2<br>70<br>6<br>9<br>40<br>50<br>0                                                         |
| 184<br>185<br>186<br>187<br>188<br>189<br>190<br>191<br>192<br>192                                           | 18 OF OCTUBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96104102<br>96164159<br>96603873<br>96603552<br>96603552<br>96164307<br>2260367<br>4465736<br>97128555<br>96164081<br>9712823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72<br>0<br>76<br>0<br>1<br>518<br>53<br>1<br>41                                                   | 95<br>18<br>88<br>14<br>143<br>530<br>199<br>6<br>79<br>109                                                      | 47<br>103<br>2<br>6<br>318<br>54<br>2<br>51<br>1                                        | 25<br>99<br>1<br>1<br>30<br>37<br>0<br>14<br>0                                | 0<br>107<br>5<br>1<br>36<br>54<br>1<br>56<br>0                                    | 0<br>95<br>1<br>41<br>36<br>0<br>34                                               | 0<br>107<br>2<br>1<br>48<br>50<br>12<br>60<br>27                                          | 0<br>83<br>5<br>1<br>37<br>38<br>0<br>42<br>6                                         | 0<br>90<br>0<br>36<br>53<br>4<br>38<br>17                                     | 18<br>111<br>8<br>7<br>42<br>57<br>2<br>57<br>0                                          | 88<br>23<br>93<br>11<br>28<br>43<br>63<br>1<br>56<br>1                                         | 2<br>70<br>6<br>9<br>40<br>50<br>0<br>49<br>0                                              |
| 184<br>185<br>186<br>187<br>188<br>189<br>190<br>191<br>192<br>193<br>194                                    | 16 OC OCTUBRE     15 OC OCTUBRE     16 DC OCTUBRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30104102           96104159           96603873           96603552           96603552           96603673           96164307           2260367           4465736           97128555           96164081           97128659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72<br>0<br>76<br>0<br>1<br>518<br>53<br>1<br>41<br>15<br>9                                        | 95<br>18<br>88<br>14<br>143<br>530<br>199<br>6<br>79<br>6<br>79<br>109<br>42                                     | 82<br>47<br>103<br>2<br>6<br>318<br>54<br>2<br>51<br>1<br>0                             | 25<br>99<br>1<br>1<br>30<br>37<br>0<br>14<br>0<br>2                           | 0<br>107<br>5<br>1<br>36<br>54<br>1<br>56<br>0<br>9                               | 0<br>95<br>1<br>1<br>41<br>36<br>0<br>34<br>0<br>3                                | 0<br>107<br>2<br>1<br>48<br>50<br>12<br>60<br>27<br>9                                     | 0<br>83<br>5<br>1<br>37<br>38<br>0<br>42<br>6<br>9                                    | 0<br>90<br>0<br>36<br>53<br>4<br>38<br>17<br>7                                | 18<br>111<br>8<br>7<br>42<br>57<br>2<br>57<br>0<br>3                                     | 88<br>23<br>93<br>11<br>28<br>43<br>63<br>1<br>56<br>1<br>4                                    | 2<br>70<br>6<br>9<br>40<br>50<br>0<br>49<br>0<br>49<br>0                                   |
| 184<br>185<br>186<br>187<br>188<br>189<br>190<br>191<br>192<br>193<br>194<br>195                             | 18 DE COTUNNE                                                                                                                                                                                                     | 30104102           96104159           96603873           96603873           96603552           96603364           96164307           2260367           4465736           97128555           96164081           97128559           9912659           99164152                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72<br>0<br>76<br>0<br>1<br>518<br>53<br>1<br>41<br>15<br>9<br>14                                  | 95<br>18<br>88<br>14<br>143<br>530<br>199<br>6<br>79<br>109<br>42<br>23<br>23                                    | 47<br>103<br>2<br>6<br>318<br>54<br>2<br>51<br>1<br>0<br>16                             | 25<br>99<br>1<br>1<br>30<br>37<br>0<br>14<br>0<br>2<br>17                     | 0<br>107<br>5<br>1<br>36<br>54<br>1<br>56<br>0<br>9<br>19                         | 0<br>95<br>1<br>1<br>41<br>36<br>0<br>34<br>0<br>3<br>13                          | 0<br>107<br>2<br>1<br>48<br>50<br>12<br>60<br>27<br>9<br>16                               | 0<br>83<br>5<br>1<br>37<br>38<br>0<br>42<br>6<br>9<br>20                              | 0<br>90<br>0<br>36<br>53<br>4<br>38<br>17<br>7<br>15                          | 18<br>111<br>8<br>7<br>42<br>57<br>2<br>57<br>0<br>3<br>30<br>30                         | 88<br>23<br>93<br>11<br>28<br>43<br>63<br>1<br>56<br>1<br>4<br>28<br>25                        | 2<br>70<br>6<br>9<br>40<br>50<br>0<br>49<br>0<br>49<br>0<br>4<br>15                        |
| 184<br>185<br>186<br>187<br>188<br>189<br>190<br>191<br>192<br>193<br>194<br>195<br>196<br>197               | 18 DO CITUME                                                                                                                                                                                                                                                                                                                                                                                 | 30104102<br>96603873<br>96603873<br>96603852<br>96603364<br>96164307<br>2260367<br>4465736<br>97128555<br>96164081<br>97128659<br>96164152<br>96604077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72<br>0<br>76<br>0<br>1<br>518<br>53<br>1<br>41<br>15<br>9<br>14<br>36<br>21                      | 95<br>18<br>88<br>14<br>143<br>530<br>199<br>6<br>79<br>109<br>42<br>23<br>13<br>9                               | 47<br>103<br>2<br>6<br>318<br>54<br>2<br>51<br>1<br>0<br>16<br>30<br>8                  | 25<br>99<br>1<br>30<br>37<br>0<br>14<br>0<br>2<br>17<br>35<br>13              | 0<br>107<br>5<br>1<br>36<br>54<br>1<br>56<br>0<br>9<br>19<br>28<br>7              | 0<br>95<br>1<br>41<br>36<br>0<br>34<br>0<br>3<br>13<br>18<br>8                    | 0<br>107<br>2<br>1<br>48<br>50<br>12<br>60<br>27<br>9<br>16<br>19<br>14                   | 0<br>83<br>5<br>1<br>37<br>38<br>0<br>42<br>6<br>9<br>20<br>20<br>28<br>4             | 0<br>90<br>0<br>36<br>53<br>4<br>38<br>17<br>7<br>15<br>31                    | 18<br>111<br>8<br>7<br>42<br>57<br>2<br>57<br>2<br>57<br>0<br>3<br>30<br>29<br>5         | 88<br>23<br>93<br>11<br>28<br>43<br>63<br>1<br>56<br>1<br>56<br>1<br>4<br>28<br>26<br>5        | 2<br>70<br>6<br>9<br>40<br>50<br>0<br>49<br>0<br>4<br>15<br>17<br>1                        |
| 184<br>185<br>186<br>187<br>188<br>189<br>190<br>191<br>192<br>193<br>194<br>195<br>196<br>197<br>198        | 18 OF CUTURE                                                                                                                                                                                                                                                                                                                                                                                 | 96164159<br>9660352<br>96603352<br>96603364<br>96164307<br>2260367<br>4465736<br>97128555<br>96164081<br>97128831<br>97128659<br>96164081<br>97128831<br>97128659<br>96164152<br>96164152<br>96164152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72<br>0<br>76<br>0<br>1<br>518<br>53<br>1<br>41<br>55<br>9<br>14<br>36<br>21<br>72                | 95<br>18<br>88<br>14<br>143<br>530<br>199<br>6<br>79<br>109<br>42<br>23<br>13<br>9<br>156                        | 82<br>47<br>103<br>2<br>6<br>318<br>54<br>2<br>51<br>1<br>0<br>16<br>30<br>8<br>76      | 25<br>99<br>1<br>30<br>37<br>0<br>14<br>0<br>2<br>17<br>35<br>13<br>54        | 0<br>107<br>5<br>1<br>36<br>54<br>1<br>56<br>0<br>9<br>19<br>28<br>7<br>88        | 0<br>95<br>1<br>41<br>36<br>0<br>34<br>0<br>3<br>13<br>13<br>18<br>8<br>92        | 0<br>107<br>2<br>1<br>48<br>50<br>12<br>60<br>27<br>9<br>16<br>19<br>14<br>88             | 0<br>83<br>5<br>1<br>37<br>38<br>0<br>42<br>6<br>9<br>20<br>28<br>4<br>92             | 0<br>90<br>0<br>36<br>53<br>4<br>38<br>17<br>7<br>15<br>31<br>11<br>68        | 18<br>111<br>8<br>7<br>42<br>57<br>2<br>57<br>0<br>3<br>30<br>29<br>5<br>94              | 88<br>23<br>93<br>11<br>28<br>43<br>63<br>1<br>56<br>1<br>56<br>1<br>4<br>28<br>26<br>6<br>81  | 2<br>70<br>6<br>9<br>40<br>50<br>0<br>49<br>0<br>4<br>15<br>17<br>17<br>1<br>65            |
| 184<br>185<br>186<br>187<br>188<br>189<br>190<br>191<br>192<br>193<br>194<br>195<br>196<br>197<br>198<br>199 | 18 OC CUURE           18 DC CUURE           19 DC CUURE           19 DC CUURE | 30:24:302         30:60:159           30:60:159         30:60:159           30:60:352         30:60:352           30:60:352         30:60:352           30:60:352         30:60:372           30:60:355         30:60:312           30:60:352         30:60:3372           30:60:027         30:60:027           30:60:027         30:60:027           30:60:027         30:60:027           30:60:027         30:60:027           30:60:027         30:60:027           30:60:027         30:60:027           30:60:027         30:60:027           30:60:027         30:60:027           30:60:027         30:60:027           30:60:027         30:60:027           30:60:027         30:60:027           30:60:027         30:60:027 | 72<br>0<br>76<br>0<br>1<br>518<br>53<br>1<br>41<br>15<br>9<br>9<br>14<br>36<br>21<br>72<br>0<br>0 | 95<br>18<br>88<br>14<br>143<br>530<br>199<br>6<br>79<br>6<br>79<br>109<br>42<br>23<br>13<br>9<br>156<br>13<br>25 | 82<br>47<br>103<br>2<br>6<br>318<br>54<br>2<br>51<br>1<br>0<br>16<br>30<br>8<br>76<br>1 | 25<br>99<br>1<br>30<br>37<br>0<br>14<br>0<br>2<br>17<br>35<br>13<br>54<br>139 | 0<br>107<br>5<br>1<br>36<br>54<br>1<br>56<br>0<br>9<br>19<br>28<br>7<br>88<br>123 | 0<br>95<br>1<br>41<br>36<br>0<br>34<br>0<br>3<br>13<br>13<br>18<br>8<br>92<br>116 | 0<br>107<br>2<br>1<br>48<br>50<br>12<br>60<br>27<br>9<br>16<br>19<br>14<br>88<br>73<br>73 | 0<br>83<br>5<br>1<br>37<br>38<br>0<br>42<br>6<br>9<br>20<br>28<br>4<br>92<br>100<br>- | 0<br>90<br>0<br>36<br>53<br>4<br>38<br>17<br>7<br>15<br>31<br>11<br>68<br>119 | 18<br>111<br>8<br>7<br>42<br>57<br>2<br>57<br>0<br>3<br>30<br>29<br>5<br>94<br>138<br>27 | 88<br>23<br>93<br>11<br>28<br>43<br>63<br>1<br>56<br>1<br>1<br>4<br>28<br>26<br>6<br>81<br>120 | 2<br>70<br>6<br>9<br>40<br>50<br>0<br>49<br>0<br>4<br>4<br>15<br>17<br>17<br>1<br>65<br>89 |

| 201 | 18 DE OCTUBRE |   | 96603880     | 93     | 127      | 43      | 97    | 7      | 8   | 163            | 94        | 48  | 62      | 115 | 90      |
|-----|---------------|---|--------------|--------|----------|---------|-------|--------|-----|----------------|-----------|-----|---------|-----|---------|
| 202 | 18 DF OCTUBRE |   | 96603370     | 41     | 40       | 32      | 28    | 23     | 19  | 21             | 18        | 21  | 27      | 25  | 26      |
| 202 | 18 DE OCTOBRE |   | 97116201     | 41     | 90       | 17      | 20    | 7      | 10  | 21             | 10        | 13  | 27      | 25  | 20      |
| 203 | DA TORRE      |   | 06164200     | 75     | 112      | 20      | 16    | ,      | 52  | 10             | 10        | 25  | 2       | 17  | 14      |
| 204 | LA TORRE      |   | 96164308     | 25     | 113      | 30      | 10    | 4      | 52  | 10             | 10        | 2   | 2       | 17  | 14      |
| 205 | LA TORRE      |   | 96603371     | 104    | 90       | 87      | 81    | 87     | 11  | 130            | 121       | 11/ | 104     | 95  | 94      |
| 206 | LA TORRE      |   | 97128840     | 103    | 122      | 93      | 125   | 109    | 102 | 115            | 103       | 118 | 141     | 130 | 131     |
| 207 | LA TORRE      |   | 12           | 4      | 14       | 7       | 0     | 4      | 0   | 1              | 0         | 3   | 1       | 4   | 3       |
| 208 | LA TORRE      |   | 96603429     | 48     | 63       | 50      | 56    | 32     | 39  | 40             | 36        | 40  | 50      | 50  | 52      |
| 209 | LA TORRE      |   | 96604082     | 41     | 94       | 70      | 77    | 82     | 86  | 98             | 64        | 54  | 78      | 70  | 62      |
| 210 | LA TORRE      |   | 103829       | 102    | 106      | 72      | 90    | 104    | 115 | 107            | 102       | 120 | 110     | 90  | 111     |
| 211 |               |   | 96164082     | 0      | 108      | 32      | 9     | 0      | 56  | 52             | 18        | 2   | 21      | 0   | 6       |
| 211 | DA TORRE      |   | 00104083     | 106    | 117      | 07      | 05    | 105    | 110 | 105            | 02        | 00  | 112     | 06  | 01      |
| 212 | LA TORRE      |   | 96164292     | 106    | 117      | 8/      | 95    | 105    | 110 | 105            | 92        | 00  | 115     | 96  | 91      |
| 213 | LA TORRE      |   | 96164309     | 113    | 134      | 54      | 32    | 28     | 33  | 44             | 33        | 30  | 21      | 33  | 31      |
| 214 | LA TORRE      |   | 1207861      | 16     | 16       | 20      | 64    | 116    | 174 | 187            | 85        | 53  | 36      | 30  | 37      |
| 215 | LA TORRE      |   | 96164291     | 0      | 11       | 17      | 7     | 3      | 24  | 0              | 7         | 0   | 16      | 3   | 28      |
| 216 | LA TORRE      |   | 96603430     | 86     | 112      | 84      | 83    | 76     | 72  | 79             | 70        | 64  | 57      | 118 | 89      |
| 217 | LA TORRE      |   | 95030037     | 168    | 179      | 61      | 44    | 34     | 50  | 46             | 29        | 31  | 65      | 64  | 56      |
| 218 | LA TORRE      |   | 96603426     | 0      | 0        | 0       | 1     | 0      | 0   | 5              | 3         | 1   | 0       | 2   | 2       |
| 219 | IA TORRE      |   | 96603553     | 129    | 105      | 84      | 86    | 88     | 89  | 119            | 83        | 97  | 72      | 78  | 100     |
| 220 | LA YORDS      |   | 06164170     | 165    | 162      | 162     | 162   | 170    | 160 | 172            | 126       | 157 | 05      | 44  | 40      |
| 220 | LA TURRE      |   | 96164170     | 105    | 105      | 105     | 102   | 170    | 100 | 1/3            | 130       | 137 | 33      | 44  | 40      |
| 221 | LA TORRE      |   | 98111780     | 0      | 1        | 1       | 0     | 1      | Z   | 3              | 3         | Z   | 3       | 0   | 3       |
| 222 | LA TORRE      |   | 120007835    | 6      | 15       | 6       | 9     | 10     | 16  | 28             | 14        | 10  | 14      | 1/  | 21      |
| 223 | ESMERALDA     |   | 11066597     | 114    | 108      | 107     | 110   | 115    | 117 | 112            | 120       | 80  | 116     | 111 | 93      |
| 224 | ESMERALDA     |   | 97128839     | 222    | 254      | 233     | 408   | 386    | 380 | 419            | 296       | 348 | 390     | 346 | 310     |
| 225 | ESMERALDA     |   | 97129523     | 131    | 173      | 104     | 80    | 99     | 91  | 95             | 87        | 111 | 116     | 112 | 85      |
| 226 | ESMERALDA     |   | 97117753     | 188    | 203      | 167     | 137   | 156    | 205 | 324            | 183       | 152 | 127     | 124 | 123     |
| 227 | ESMERALDA     |   | 243934       | 249    | 289      | 115     | 95    | 101    | 100 | 144            | 84        | 123 | 123     | 104 | 97      |
| 228 | ESMERALDA     | 1 | 97112587     | 20     | 81       | 8       | 10    | 7      | 6   | 29             | 8         | 8   | 13      | 17  | 8       |
| 220 | ESMEDADO      | 1 | 0711775/     |        | 24       | 07      | 0     | ,<br>C | 114 |                | 0         | č   | 0       |     | r r     |
| 229 | ESWIERALDA    |   | 3/11//30     | 0      | 24<br>60 | 3/      | 40    | 45     | 110 | 0              | 22        | 0   | U<br>57 | 40  | U<br>10 |
| 230 | ESMERALDA     |   | 11056045     | 69     | 00       | 56      | 48    | 45     | 48  | 35             | 33        | 35  | 5/      | 40  | 18      |
| 231 | ESMERALDA     |   | 20070333832  | U      | /        | /       | 5     | 10     | 9   | 25             | 15        | 8   | 12      | 18  | 18      |
| 232 | ESMERALDA     |   | 20070335153  | 0      | 0        | 6       | 4     | 0      | 13  | 31             | 29        | 25  | 13      | 16  | 11      |
| 233 | JOSE M. C     |   | 97116208     | 145    | 98       | 128     | 63    | 53     | 57  | 40             | 24        | 25  | 29      | 32  | 84      |
| 234 | JOSE M. C     |   | 96117400     | 146    | 154      | 145     | 131   | 145    | 169 | 169            | 146       | 128 | 135     | 117 | 124     |
| 235 | JOSE M. C     |   | 97117797     | 117    | 120      | 78      | 75    | 67     | 78  | 185            | 110       | 116 | 94      | 88  | 79      |
| 236 | JOSE M. C     |   | 97117743     | 0      | 0        | 98      | 39    | 24     | 18  | 7              | 0         | 0   | 0       | 0   | 0       |
| 237 | JOSE M. C     | 1 | 96603594     | 17     | 28       | 21      | 11    | 13     | 13  | 39             | 36        | 25  | 20      | 13  | 7       |
| 220 | 1055 11 0     | 1 | 06602054     | <br>g7 | 120      | 175     | 164   | 175    | 120 | 177            | 161       | 177 | 102     | 190 | 202     |
| 230 | 303E M. C     |   | 07117210     |        | 135      | 1/3     | 104   | 1/3    | 133 | -1/2           | 101       |     | 10      | 100 | 203     |
| 239 | HUAYTIQUINA   |   | 9/11/318     | /      | 5        | 3       | 4     | 5      | /   | /              | U         | 0   | 19      | 10  | 10      |
| 240 | HUAYTIQUINA   |   | 97117316     | 124    | 142      | 97      | 96    | 89     | 79  | /3             | /1        | 94  | 109     | 92  | 97      |
| 241 | HUAYTIQUINA   |   | 97117396     | 70     | 114      | 78      | 67    | 65     | 38  | 63             | 38        | 46  | 40      | 33  | 34      |
| 242 | HUAYTIQUINA   |   | 96603950     | 78     | 75       | 61      | 58    | 65     | 47  | 55             | 95        | 10  | 62      | 53  | 53      |
| 243 | HUAYTIQUINA   |   | 97117637     | 39     | 40       | 52      | 25    | 25     | 21  | 23             | 38        | 84  | 31      | 68  | 67      |
| 244 | HUAYTIQUINA   |   | 95030033     | 75     | 50       | 74      | 76    | 78     | 73  | 90             | 68        | 80  | 84      | 70  | 72      |
| 245 | HUAYTIQUINA   |   | 96603957     | 0      | 0        | 0       | 0     |        | 0   | 28             | 57        | 80  | 68      | 27  | 13      |
| 245 | HUATTIQUINA   |   | 07117075     | 71     | 149      | 42      | 26    | 42     | 24  | 66             | 57<br>E A | 49  | 00      | 74  | 122     |
| 240 | HUATTIQUINA   |   | 9/11/9/5     | 71     | 140      | 43      | 30    | 42     | 34  | 00             | 54        | 40  | 35      | 74  | 122     |
| 247 | HUAYTIQUINA   |   | 97117977     | 265    | 25       | 0       | 0     | 61     | 0   | 0              | 0         | 85  | 26      | 20  | 20      |
| 248 | HUAITIQUINA   |   | 97111715     | 65     | 47       | 49      | 52    | 56     | 46  | 52             | 44        | 47  | 54      | 46  | 49      |
| 249 | HUAYTIQUINA   |   | 97117313     | 21     | 90       | 7       | 0     | 4      | 1   | 37             | 10        | 1   | 12      | 1   | 3       |
| 250 | HUAYTIQUINA   |   | 97117319     | 8      | 23       | 8       | 2     | 1      | 2   | 4              | 1         | 35  | 30      | 24  | 34      |
| 251 | HUAYTIQUINA   |   | 97116203     | 34     | 45       | 34      | 32    | 23     | 19  | 20             | 19        | 25  | 34      | 29  | 39      |
| 252 | HUAYTIOUINA   |   | 7502         | 32     | 26       | 44      | 53    | 37     | 80  | 51             | 10        | 6   | 36      | 43  | 5       |
| 252 | HUAYTIOUINA   |   | 07117622     | 100    | 84       | 78      | 83    | 64     | 64  | 61             | 61        | 72  | 03      | 70  | 69      |
| 255 |               |   | 07117000     | 7      | 27       | 17      | 05    | 19     | 22  | 10             | 10        | 15  | 25      | 22  | 0       |
| 254 | HUATTIQUINA   |   | 97117702     | /      | 27       | 17      | 0     | 10     | 23  | 10             | 15        | 13  | 35      | 22  | 3       |
| 255 | HUAYTIQUINA   |   | 9/11/399     | 1      | 60       | 12      | 3     | 1      | U   | 35             | U         | U   | 1       | 0   | 1       |
| 256 | HUAYTIQUINA   |   | 97117395     | 98     | 76       | 75      | 83    | 71     | 34  | 38             | 31        | 47  | 88      | 79  | 80      |
| 257 | HUAYTIQUINA   |   | 97117976     | 21     | 17       | 20      | 21    | 0      | 29  | 11             | 11        | 14  | 16      | 16  | 21      |
| 258 | HUAYTIQUINA   |   | 97117706     | 252    | 278      | 191     | 174   | 132    | 34  | 0              | 1         | 0   | 1       | 6   | 3       |
| 259 | HUAYTIQUINA   |   | 96164085     | 81     | 96       | 96      | 70    | 60     | 80  | 101            | 81        | 95  | 114     | 72  | 96      |
| 260 | HUAYTIQUINA   |   | 96603959     | 344    | 328      | 308     | 313   | 314    | 254 | 250            | 196       | 242 | 275     | 301 | 275     |
| 261 | HUAYTIOUINA   |   | 971162071    | 3      | 25       | 5       | 6     | 3      | 2   | 7              | 3         | 5   | 17      | 17  | 3       |
| 262 | HUAYTIQUINA   |   | 97117709     | 35     | 7        | 13      | 99    | 198    | 319 | 293            | 193       | 175 | 81      | 4   | 0       |
| 262 | HUAYTIQUINA   |   | 97116205     | 207    | 163      | 150     | 173   | 193    | 322 | 301            | 135       | 1/0 | 157     | 1/3 | 173     |
| 203 | HUATTIQUINA   |   | 07110205     | 06     | 100      | 60      | 66    | 62     | 62  | 02             | 155       | 145 | 70      | 145 | 1/5     |
| 264 | HUATHQUINA    |   | 31110210     | 30     | 100      | 122     | 120   | 03     | 122 | 32             | +0        | 32  | 70      | 30  | 40      |
| 265 | CALAMA        | ł |              | 125    | 119      | 123     | 128   | 122    | 123 | 114            | 111       | 92  | 129     | 123 | 111     |
| 266 | CALAMA        |   | 1207858      | 28     | 40       | 1       | 3     | 0      | 2   | 13             | 4         | 7   | 7       | 7   | 5       |
| 267 | CALAMA        | I | 2261694      | 259    | 226      | 33      | 17    | 15     | 134 | 238            | 93        | 118 | 177     | 138 | 170     |
| 268 | CALAMA        |   | 97128835     | 90     | 52       | 91      | 69    | 44     | 56  | 96             | 88        | 85  | 110     | 93  | 72      |
| 269 | CALAMA        |   | 2242622      | 24     | 26       | 0       | 0     | 0      | 0   | 9              | 0         | 0   | 5       | 0   | 0       |
| 270 | CALAMA        |   | 96603559     | 191    | 186      | 157     | 126   | 144    | 126 | 112            | 119       | 121 | 131     | 112 | 115     |
| 271 | CALAMA        |   | 96603423     | 59     | 28       | 43      | 56    | 71     | 57  | 62             | 53        | 45  | 59      | 54  | 37      |
| 272 | CALAMA        |   | 96603555     | 150    | 166      | 147     | 174   | 150    | 128 | 135            | 106       | 122 | 133     | 102 | 105     |
| 273 | CALAMA        | 1 | 96604021     | 186    | 211      | 178     | 197   | 214    | 164 | 146            | 126       | 113 | 137     | 118 | 108     |
| 274 | CALAMA        | i | 96603875     | 27     | 0        | 11      | 0     | 17     | 15  | 0              | 25        | 12  | 8       | 11  | 17      |
| 275 | CALANNA       | 1 | 06164207     | 21     | 07       | 40      | 37    | 34     | 13  | 9 <sup>c</sup> | 37        | 15  | 75      | 50  | 72      |
| 2/5 | CALAMA        |   | 00003030     | 10     | 55       |         | 57    |        |     |                | 107       |     |         |     | 7.5     |
| 2/6 | LALAMA        |   | 300030/9     | 10     | 27       | U<br>20 | 0/    | 0      | 54  | 0              | 107       | 30  | 00      | /   | 40      |
| 277 | CALAMA        |   | 20/86/       | 2/     | 3/       | 29      | 28    | 35     | 52  | 58             | 35        | 57  | 41      | 52  | 33      |
| 278 | CALAMA        | ł | 96164318     | 78     | 88       | 51      | 66    | 54     | 38  | 40             | 36        | 28  | 46      | 45  | 45      |
| 279 | CALAMA        | L | 96164316     | 178    | 214      | 156     | 150   | 136    | 103 | 167            | 180       | 119 | 139     | 112 | 96      |
| 280 | CALAMA        | I | 96604030     | 1      | 12       | 2       | 0     | 5      | 15  | 8              | 11        | 0   | 153     | 59  | 23      |
| 281 | CALAMA        | 1 | 96164314     | 130    | 209      | 158     | 104   | 103    | 111 | 142            | 139       | 37  | 85      | 101 | 90      |
| 282 | CALAMA        |   | 1845377      | 0      | 27       | 8       | 7     | 20     | 18  | 27             | 21        | 28  | 32      | 63  | 88      |
| 283 | CALAMA        | 1 | 96164319     | 71     | 80       | 64      | 100   | 102    | 79  | 106            | 40        | 29  | 50      | 58  | 39      |
| 204 | CALAMA        | i | 966035540    | 52     | 57       | 48      | <br>1 | 50     | 40  | 16             | 30        | 33  | 60      | 39  | 41      |
| 204 | CALAMA        |   | 222          | 192    | 34       | 70      | 74    | 35     | 47  | 10             | 55        | 55  | 00      |     | 41      |
| 285 | CALAMA        |   | ///          | 162    | 54       | 76      | 24    | 45     | 4/  | 33             | 00        | 22  | 62      | /5  | 01      |
| 286 | CALAMA        |   | 1114134      | 1      | 67       | /1      | /7    | 82     | 84  | 93             | 87        | /3  | 87      | /8  | 64      |
| 287 | VILACO        | L | 20110607427  | 88     | 94       | 85      | 100   | 97     | 83  | 77             | 69        | 69  | 78      | 75  | 70      |
| 288 | VILACO        | 1 | 20070352777  | 0      | 30       | 23      | 18    | 18     | 17  | 25             | 19        | 19  | 24      | 19  | 21      |
| 289 | VILACO        |   | 20020334859  | 112    | 96       | 115     | 100   | 91     | 115 | 125            | 106       | 95  | 109     | 107 | 113     |
| 290 | VILACO        |   | 20100905738  | 125    | 143      | 112     | 112   | 116    | 108 | 117            | 111       | 116 | 129     | 21  | 217     |
| 291 | VILACO        | 1 | 96603878     | 62     | 59       | 53      | 44    | 29     | 35  | 40             | 42        | 47  | 58      | 68  | 66      |
| 202 | VILACO        |   | 11845282     | 120    | 125      | 94      | 96    | 84     | 107 | 127            | 110       | 85  | 114     | 90  | 103     |
| 292 | VIDACO        |   | 2007022      | 204    | 107      | 242     | 207   | 220    | 207 | 201            | 150       | 107 | 222     | 207 | 105     |
| 293 | VILACO        |   | 20070334763  | 204    | 101      | 243     | 207   | 228    | 231 | 201            | 128       | 18/ | 232     | 207 | 192     |
| 294 | VILACO        | ł | 16565989     | 36     | 55       | 51      | 53    | 48     |     | 40             | 51        | 68  | 86      | 8/  | 91      |
| 295 | VILACO        |   |              | 61     | /0       | 106     | 96    | 109    | 46  | /3             | /3        | /8  | 108     | 85  | 41      |
| 296 | VILACO        |   | 200910204836 | 276    | 149      | 49      | 21    | 8      | 72  | 64             | 118       | 163 | 143     | 121 | 118     |
| 297 | VILACO        |   | 120007075    | 120    | 112      | 21      | 82    | 104    | 93  | 90             | 76        | 89  | 100     | 92  | 90      |
| 298 | VILACO        |   | 720003511    | 93     | 297      | 209     | 215   | 211    | 209 | 312            | 167       | 171 | 218     | 231 | 196     |
| 200 | VILACO        | 1 | 20070334472  | 106    | 80       | 90      | 92    | 94     | 88  | 102            | 85        | 109 | 104     | 110 | 96      |
| 299 |               |   |              |        |          |         |       |        |     |                |           |     |         |     |         |

| 301 | VILACO     | 20070334474 | 229   | 190     | 149   | 96    | 84   | 42    | 97    | 80     | 19        | 98      | 51        | 70        |
|-----|------------|-------------|-------|---------|-------|-------|------|-------|-------|--------|-----------|---------|-----------|-----------|
| 302 | VILACO     | 3907340     | 192   | 145     | 135   | 138   | 132  | 134   | 152   | 117    | 122       | 169     | 134       | 135       |
| 303 | VILACO     | 20070353539 | 183   | 183     | 204   | 173   | 122  | 176   | 181   | 172    | 191       | 200     | 163       | 176       |
| 304 | VILACO     | 2015011490  | 65    | 89      | 145   | 36    | 89   | 77    | 82    | 85     | 86        | 109     | 99        | 105       |
| 305 | VILACO     | 20070334984 | 166   | 62      | 105   | 52    | 84   | 80    | 87    | 67     | 78        | 95      | 87        | 82        |
| 306 | VILACO     | 27000334510 | 1     | 1       | 3     | 13    | 11   | 8     | 13    | 4      | 8         | 8       | 10        | 6         |
| 307 | VILACO     | 100019      | 45    | 47      | 44    | 48    | 58   | 48    | 58    | 49     | 44        | 48      | 48        | 45        |
| 308 | VILACO     | 13170038117 | 5 101 | 103     | 93    | 97    | 91   | 91    | 72    | 88     | 95        | 109     | 97        | 103       |
| 309 | VAYTIQUNA  | 935281      | 22    | 19      | 8     | 28    | 21   | 21    | 10    | 31     | 31        | 46      |           | 1         |
| 310 | ONAR       | 20120611121 | 4 65  | 278     | 141   | 140   | 149  | 156   | 133   | 113    | 105       | 152     | 150       | 171       |
| 311 | ONAR       | 97129508    | 0     | 58      | 12    | 12    | 1    | 6     | 3     | 0      | 5         | 9       | 7         | 0         |
| 312 | VAITIQUINA | 20110602933 | 134   | 156     | 99    | 96    | 91   | 70    | 99    | 60     | 90        | 115     | 123       | 99        |
| 313 | VAITIQUINA | 20110602934 | 161   | 222     | 177   | 159   | 141  | 154   | 174   | 166    | 152       | 175     | 151       | 159       |
| 314 | VAITIQUINA | 20011060422 | 5 52  | 21      | 53    | 20    | 45   | 7     | 54    | 87     | 70        | 84      | 104       | 102       |
| 315 | VAITIQUINA | 20091003570 | 96    | 97      | 90    | 97    | 96   | 87    | 110   | 109    | 104       | 122     | 113       | 109       |
| 316 | VAITIQUINA | 20110604069 | 39    | 39      | 40    | 40    | 37   | 33    | 34    | 33     | 37        | 46      | 61        | 44        |
| 317 | VAITIQUINA | 20131126748 | 01 54 | 71      | 67    | 72    | 44   | 59    | 67    | 50     | 65        | 76      | 72        | 55        |
| 318 | VAITIQUINA | 2015011519  | 110   | 108     | 111   | 114   | 103  | 91    | 94    | 86     | 78        | 76      | 71        | 67        |
| 319 | VAITIQUINA | 20110604259 | 142   | 133     | 104   | 100   | 94   | 64    | 90    | 102    | 100       | 118     | 110       | 112       |
| 320 | VAITIQUINA | 20110604777 | 76    | 64      | 65    | 53    | 101  | 105   | 94    | 58     | 80        | 77      | 53        | 52        |
| 321 | VAITIQUINA | 20110604627 | 162   | 171     | 132   | 125   | 114  | 87    | 107   | 110    | 113       | 96      | 89        | 104       |
| 322 | VAITIQUINA | 20091010438 | 87    | 132     | 157   | 158   | 128  | 109   | 155   | 117    | 108       | 126     | 109       | 105       |
| 323 | VAITIQUINA | 10086418    | 114   | 90      | 105   | 107   | 90   | 77    | 80    | 83     | 81        | 103     | 92        | 88        |
| 324 | VAITIQUINA | 20110604023 | 20    | 63      | 29    | 19    | 30   | 18    | 19    | 13     | 32        | 25      | 35        | 8         |
| 325 | VAITIQUINA | 10086879    | 105   | 129     | 131   | 121   | 117  | 171   | 135   | 98     | 112       | 141     | 137       | 110       |
| 326 | LIPARITA   | 20070334241 | 24    | 21      | 28    | 32    | 14   | 18    | 15    | 3      | 1         | 2       | 18        | 26        |
| 327 | LIPARITA   | 806202      | 26    | 46      | 49    | 44    | 53   | 42    | 47    | 48     | 33        | 61      | 54        | 45        |
| 328 | LIPARITA   | 20070334079 | 136   | 140     | 140   | 140   | 139  | 129   | 103   | 93     | 80        | 100     | 75        | 138       |
| 329 | PSJ VILACO | 3421703     | 102   | 68      | 39    | 47    | 71   | 42    | 44    | 24     | 34        | 38      | 38        | 47        |
| 330 | PSJ VILACO | 717         | 13    | 110     | 36    | 0     | 6    | 0     | 3     | 11     | 14        | 15      | 14        | 0         |
| 331 | PSJ VILACO | 20110004893 | 63    | 70      | 53    | 188   | 16   | 11    | 12    | 15     | 16        | 17      | 23        | 20        |
| 332 | PSJ VILACO | 20402025520 | 10 24 | 42      | 7     | 7     | 0    | 1     | 4     | 10     | 10        | 17      | 6         | 6         |
| 1   |            |             | ENERO | FEBRERO | MARZO | ABRIL | MAYO | JUNIO | JULIO | AGOSTO | SEPTIEMB. | OCTUBRE | NOVIEMBRE | DICIEMBRE |

## Commercial

| N <sup>2</sup> | CALLE          | NOMBRE                  | Nº MEDIDOR   |       |         |       |       |      | CONSUMO | W POR MES |        |           |         |           |           |
|----------------|----------------|-------------------------|--------------|-------|---------|-------|-------|------|---------|-----------|--------|-----------|---------|-----------|-----------|
|                |                |                         |              | ENERO | FEBRERO | MARZO | ABRIL | MAYO | JUNIO   | JULIO     | AGOSTO | SEPTIEMB. | OCTUBRE | NOVIEMBRE | DICIEMBRE |
| 1              | ABAROA         | COMERCIAL               | 97129585     | 386   | 410     | 426   | 377   | 421  | 310     | 359       | 270    | 265       | 300     | 324       | 350       |
| 2              | 21 DE MAYO     | CLUB TOCONAO            | 201308284192 | 41    | 45      | 46    | 8     | 16   | 1       | 27        | 3      | 16        | 38      | 25        | 15        |
| 3              | 21 DE MAYO     | COMERCIAL               | 97117747     | 200   | 216     | 194   | 168   | 106  | 78      | 131       | 145    | 149       | 200     | 175       | 200       |
| 4              | AVDA NORTE     | EMPRESA P Y P           | 201508042330 |       |         |       |       |      |         |           |        |           | 114     | 91        |           |
| 5              | INTERNACIONAL  | COMERCIAL               | 97117632     | 864   | 759     | 737   | 701   | 683  | 569     | 677       | 628    | 585       | 753     | 599       | 645       |
| 6              | INTERNACIONAL  | COMERCIAL               | 3490563      | 1158  | 937     | 827   | 890   | 860  | 720     | 876       | 819    | 754       | 1040    | 805       | 924       |
| 7              | ATACAMA        | CLUB DEPORTIVO ESTRELLA | 96164151     | 31    | 31      | 1     | 3     | 20   | 4       | 12        | 67     | 14        | 24      | 44        | 62        |
| 8              | LASCAR         | NEGOCIO                 | 920007049    | 184   | 212     | 146   | 131   | 105  | 101     | 92        | 101    | 103       | 125     | 151       | 150       |
| 9              | LASCAR         | NEGOCIO                 | 97128832     | 336   | 337     | 300   | 259   | 208  | 168     | 197       | 220    | 207       | 263     | 267       | 194       |
| 10             | LASCAR         | RESTAURANT              | 97603381     | 278   | 266     | 191   | 173   | 147  | 81      | 104       | 99     | 100       | 123     | 132       | 106       |
| 11             | LASCAR         | NEGOCIO                 | 97129592     | 1077  | 1245    | 1015  | 1101  | 964  | 641     | 806       | 770    | 821       | 1004    | 1116      | 1075      |
| 12             | LASCAR         | EMPRESA                 | 20110612748  | 293   | 336     | 273   | 332   | 374  | 359     | 348       | 313    | 294       | 328     | 268       | 254       |
| 13             | P. DE VALDIVIA | ARTESANIA               | 96644169     | 246   | 354     | 226   | 292   | 201  | 162     | 179       | 156    | 173       | 225     | 201       | 197       |
| 14             | P. DE VALDIVIA | ARTESANIA               | 96603362     | 83    | 99      | 72    | 90    | 81   | 48      | 76        | 49     | 85        | 110     | 88        | 69        |
| 15             | P. DE VADIVIA  | NEGOCIO                 | 97117391     | 303   | 261     | 229   | 252   | 234  | 188     | 232       | 196    | 198       | 246     | 270       | 212       |
| 16             | EL BOSQUE      | NEGOCIO                 | 97117749     | 121   | 93      | 47    | 53    | 72   | 78      | 70        | 80     | 85        | 137     | 132       | 74        |
| 17             | O'HIGGINS      | NEGOCIO                 | 2007767271   | 298   | 319     | 229   | 187   | 159  | 120     | 111       | 120    | 171       | 265     | 273       | 288       |
| 18             | O'HIGGINS      | RESTAURANT              | 11057732     | 832   | 918     | 773   | 806   | 764  | 675     | 699       | 637    | 687       | 825     | 781       | 733       |
| 19             | 18 DE OCTUBRE  | LIPIGAS                 | 96117758     | 100   | 122     | 118   | 78    | 32   | 28      | 41        | 35     | 35        | 37      | 34        | 44        |
| 20             | 18 DE OCTUBRE  | ENTEL CHLE S.A          | 92036286     | 2688  | 2710    | 2569  | 2240  | 2392 | 2184    | 2400      | 1751   | 2744      | 2603    | 2455      | 2619      |
| 21             | 18 DE OCTUBRE  | ENTEL CHILE PCS         | 101066       | 299   | 2325    | 2161  | 1827  | 2103 | 1803    | 1978      | 1957   | 1696      | 2128    | 1970      | 2112      |
| 22             | HUAYTIQUINA    | NEGOCIO                 | 97117980     | 446   | 122     | 0     | 171   | 305  | 219     | 253       | 31     | 302       | 379     | 341       | 350       |
| 23             | HUAYTIQUINA    | NEGOCIO                 | 10085702     | 793   | 674     | 643   | 647   | 563  | 467     | 528       | 468    | 543       | 635     | 575       | 666       |
| 24             | HUAYTIQUINA    | NEGOCIO                 | 97117974     | 334   | 351     | 73    | 30    | 88   | 63      | 75        | 133    | 223       | 218     | 247       | 246       |
| 25             | HUAYTIQUINA    | RESTAURANT              | 97117800     | 493   | 561     | 337   | 332   | 248  | 204     | 329       | 303    | 365       | 435     | 413       | 412       |
| 26             | HUAYTIQUINA    | RESTAURANT              | 96603363     | 264   | 253     | 72    | 28    | 8    | 0       | 0         | 0      | 0         | 0       | 0         | 0         |
| 27             | HUAYTIQUINA    | NEGOCIO                 | 98207899     | 383   | 333     | 312   | 306   | 255  | 159     | 181       | 180    | 219       | 324     | 291       | 309       |
| 28             | HUAYTIQUINA    | CASA HOSTAL             | 601164       | 1647  | 1329    | 1322  | 1162  | 1211 | 1211    | 1538      | 1299   | 1175      | 1878    | 1390      | 1481      |
| 29             | CALAMA         | RESTAURANT- EMPRESA     | 1207857      | 772   | 810     | 678   | 695   | 731  | 612     | 784       | 664    | 636       | 597     | 343       | 524       |
| 30             | CALAMA         | BODEGA                  | 96604024     | 215   | 222     | 187   | 185   | 159  | 126     | 137       | 153    | 165       | 231     | 197       | 208       |
| 31             |                | ANTENA MOVISTAR         | 2785279      | 1406  | 1695    | 1558  | 1553  | 1540 | 1830    | 2020      | 1620   | 1894      | 1990    | 1867      | 1922      |
| 32             |                | ANTENA CLARO            | 6253212203   | 709   | 879     | 753   | 783   | 689  | 764     | 830       | 699    | 825       | 875     | 795       | 834       |
|                |                |                         |              | ENERO | FEBRERO | MARZO | ABRIL | MAYO | JUNIO   | JULIO     | AGOSTO | SEPTIEMB. | OCTUBRE | NOVIEMBRE | DICIEMBRE |

## Public

| Nº | CALLE         | NOMBRE                            | Nº MEDIDOR   | CONSUMO KW POR MES |         |       |       |      |       |       |        |           |         |           |           |
|----|---------------|-----------------------------------|--------------|--------------------|---------|-------|-------|------|-------|-------|--------|-----------|---------|-----------|-----------|
|    |               |                                   |              | ENERO              | FEBRERO | MARZO | ABRIL | MAYO | JUNIO | JULIO | AGOSTO | SEPTIEMB. | OCTUBRE | NOVIEMBRE | DICIEMBRE |
| 1  | AVDA NORTE    | CARABINEROS                       | 96604026     | 532                | 538     | 586   | 562   | 578  | 700   |       | 533    | 448       | 514     | 540       |           |
| 2  | AVDA NORTE    | SEDE AGUA POTABLE                 | 201311260324 |                    | 21      | 22    | 29    | 31   | 98    | 75    | 25     | 47        | 36      | 24        | 39        |
| 3  | ATACAMA       | ESCUELA                           | 10086695     | 0                  | 9       | 37    | 224   | 201  | 187   | 110   | 166    | 342       | 262     | 258       | 112       |
| 4  | ATACAMA       | ESCUELA                           | 2013046706   | 608                | 517     | 1188  | 1661  | 2049 | 1771  | 768   | 578    | 663       | 749     | 473       | 277       |
| 5  | ATACAMA       | ESCUELA                           | 2013045060   | 83                 | 104     | 302   | 532   | 404  | 412   | 250   | 240    | 249       | 185     | 171       | 49        |
| 6  | 18 DE OCTUBRE | POSTA TOCONAO                     | 96603428     | 160                | 165     | 160   | 196   | 206  | 205   | 289   | 158    | 176       | 171     | 140       | 143       |
| 7  | LA TORRE      | SEDE COMUNIDAD RADIO              | 96164297     | 570                | 574     | 562   | 567   | 750  | 797   | 852   | 651    | 725       | 784     | 701       | 696       |
| 8  | ESMERALDA     | ESTADIO TECHADO                   |              | 557                | 297     | 88    | 121   | 171  | 417   | 455   | 261    | 244       | 273     | 207       | 386       |
| 9  | HUAYTIQUINA   | SEDE JUNTA DE VECINOS             | 33           | 132                | 54      | 27    | 163   | 76   | 33    | 45    | 78     | 54        | 37      | 20        | 30        |
| 10 | HUAYTIQUINA   | CONAF                             | 97117796     | 200                | 209     | 184   | 193   | 190  | 297   | 389   | 244    | 171       | 197     | 173       | 161       |
| 11 | HUAYTIQUINA   | REGIMIENTO Nº1 TOPATER (Ejercito) | 97117703     | 355                | 292     | 306   | 272   | 361  | 335   | 383   | 241    | 323       | 332     | 328       | 274       |
| 12 | VILACO        | ESTADIO PASTO SINTETICO           |              | 3                  | 7       | 1     | 5     | 7    | 7     | 4     |        | 5         | 7       | 0         | 5         |

## Street Lighting

|   |                           | N MEDIDOR    | ENERO | FEBRERO | MARZO | ABRIL | MAYO | JUNIO | JULIO | AGOSTO | SEPTIEMBRE | OCTUBRE | NOVIEMBRE | DICIEMBRE |
|---|---------------------------|--------------|-------|---------|-------|-------|------|-------|-------|--------|------------|---------|-----------|-----------|
| 1 | ESTACION 1 ESCUELA        | 1101093183   | 163   | 167     | 175   | 186   | 190  | 205   | 215   | 213    | 215        | 209     | 196       | 175       |
| 2 |                           | 27913        | 651   | 703     | 746   | 778   | 796  | 848   | 874   | 827    | 823        | 830     | 811       | 790       |
| 3 | ESTACION 2 TECHADO        | 1101093185   | 762   | 820     | 864   | 856   | 915  | 995   | 987   | 892    | 772        | 842     | 791       | 762       |
| 4 | ESTACION 3 VILACO COPIAPO | 200910201419 | 713   | 502,5   | 515,5 | 616   | 654  | 720   | 735   | 608    | 631        | 609,5   | 648       | 713       |
| 5 | ESTACION 4 18 OCTUBRE     | 27848        | 1.392 | 1477    | 1574  | 1.559 | 1696 | 1860  | 1911  | 1758   | 1624       | 1656    | 1535      | 1392      |
| 6 | ESTACION 5 CALAMA         | 27846        | 937   | 986     | 1033  | 942   | 1169 | 1146  | 1060  | 1060   | 992        | 1001    | 965,5     | 937       |
| 7 | PLAZA                     | 808972       | 533   | 537     | 540   | 543   | 562  | 577   | 668   | 639    | 584        | 575     | 570       | 810       |

# Appendix D

Technical Sheet of PV installed

| Manufacturer          | Model Number      | Description                      | Family                      |  |  |
|-----------------------|-------------------|----------------------------------|-----------------------------|--|--|
| Yingli Energy (China) | YL300P-35b        | 300 W                            | Polycrystalline             |  |  |
|                       |                   | Polycrystalline                  |                             |  |  |
|                       |                   | Module                           |                             |  |  |
| Nameplate Pmax        | PTC [W]           | A <sub>c</sub> [m <sup>2</sup> ] | Ns                          |  |  |
| [W]                   |                   |                                  |                             |  |  |
| 300                   | 270,7             | 1,950                            | 72                          |  |  |
| Nameplate Isc [A]     | Nameplate Voc [V] | Nameplate Ip <sub>max</sub> [A]  | Nameplate Vp <sub>max</sub> |  |  |
|                       |                   |                                  | [V]                         |  |  |
| 8,77                  | 46,30             | 8,17                             | 36,70                       |  |  |
| Average NOCT [°C]     | Туре              | Short Side [m]                   | Long Side [m]               |  |  |
| 45,3                  | Flat Plate        | 0,990                            | 1,970                       |  |  |

# Appendix E

Technical Sheet of Solar Collector installed

| Manufacturer       | Model Number | Description      | Dimensions [mm]  |  |  |
|--------------------|--------------|------------------|------------------|--|--|
| First Solares Co., | FP-GV2.15.00 | Flat Plate Solar | 2048 x 1050 x 95 |  |  |
| Ltd.               |              | Collector        |                  |  |  |
| $A_c [m^2]$        | Pmax [W]     | Working Fluid    | Stagnation       |  |  |
|                    |              |                  | Temperature [°C] |  |  |
| 1,963              | 1825         | Water            | 190,6            |  |  |



## **Appendix F.1**

Actual Situation Scenario Parameters MicroGridPy param: Periods := 35040; param: Years := 20; param: StartDate := '01/01/2011 00:00:00'; param: PlotTime := 1; param: PlotDay := '06/12/2011 01:00:00'; param: PlotScenario := 1; param: Delta Time := 0.25 [hours]; param: PV\_invesment\_Cost := 1000000 [USD/W]; param: Battery\_Invesment\_Cost := 1000000 [USD/Wh]; param: Generator\_Invesment\_Cost := 1.48 [USD/W]; param: Maintenance\_Operation\_Cost\_PV := 0.015 [% of Investment]; param: Maintenance\_Operation\_Cost\_Battery:= 0.015 [% of Investment]; param: Maintenance\_Operation\_Cost\_Generator := 0.015 [% of Investment]; param: Diesel\_Unitary\_Cost := 0.9 [USD/l]; param: Discount\_Rate := 0.025; param: Interest\_Rate\_Loan := 0.07; param: Lost\_Load\_Probability := 0; param: Discharge\_Battery\_Efficiency := 0.95; param: Charge\_Battery\_Efficiency := 0.95; param: Deep\_of\_Discharge := 0.2; param: Inverter\_Efficiency := 0.986; param: Generator\_Efficiency := 0.3; param: Low\_Heating\_Value := 9890 [Wh/l]; param: Value\_Of\_Lost\_Load := 0.0003 [USD/Wh];

```
param: Porcentage_Funded := 0.55;
param: Maximun_Battery_Discharge_Time := 5 [hours];
param: Maximun_Battery_Charge_Time := 5 [hours];
param: PV_Nominal_Capacity := 300 [W];
param: Battery_Reposition_Time := 10 [years];
param: Scenarios :=1;
param: Scenario_Weight :=
1 1;
```

#### Multi Energy System

- param: Periods := 35040;
- param: Years := 20;
- param: StartDate := '01/01/2011 00:00:00';
- param: PlotTime := 1;
- param: PlotDay := '06/12/2011 01:00:00';
- param: PlotScenario := 1;
- param: Delta\_Time := 0.25 [hours];
- param: PV\_Nominal\_Capacity := 300 [W];
- param: Inverter\_Efficiency := 0.986;
- param: PV\_invesment\_Cost := 1000000 [USD/W];
- param: SC\_Nominal\_Capacity := 1825 [W];
- param: SC\_investment\_Cost := 1000000 [USD/W];
- param: Discharge\_Battery\_Efficiency := 0.95;
- param: Charge\_Battery\_Efficiency := 0.95;
- param: Deep\_of\_Discharge := 0.2;
- param: Deep\_of\_Tank\_Discharge := 0.2;
- param: Maximun\_Battery\_Discharge\_Time := 5 [hours];
- param: Maximun\_Battery\_Charge\_Time := 5 [hours];

- param: Maximun\_Tank\_Discharge\_Time:= 2.5 [hours];
- param: Battery\_Reposition\_Time := 10 [years];
- param: Battery\_Invesment\_Cost := 1000000 [USD/Wh];
- param: Tank\_Efficiency := 0.95;
- param: Tank\_Invesment\_Cost := 1000000 [USD/Wh];
- param: Generator\_Efficiency := 0.3;
- param: Low\_Heating\_Value := 9890 [Wh/l];
- param: Diesel\_Unitary\_Cost := 0.9 [USD/l];
- param: Generator\_Invesment\_Cost := 1.48 [USD/W];
- param: Boiler\_Efficiency := 0.6;
- param: Low\_Heating\_Value\_NG := 13100 [Wh/kg];
- param: NG\_Unitary\_Cost := 2.6 [USD/kg];
- param: Boiler\_Invesment\_Cost := 0.1 [USD/W];
- param: Electric\_Resistance\_Efficiency := 1;
- param: Resistance\_Invesment\_Cost := 1000000 [USD/W];
- param: Lost\_Load\_Probability := 0;
- param: Value\_Of\_Lost\_Load := 0.0003 [USD/Wh];
- param: Maintenance\_Operation\_Cost\_PV := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Battery:= 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Generator := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_SC := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Tank := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Boiler := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Resistance := 0.015 [% of Investment];
- param: Discount\_Rate := 0.025;
- param: Interest\_Rate\_Loan := 0.07;
- param: Porcentage\_Funded := 0.55;
- param: Scenarios :=1;
- param: Scenario\_Weight :=

1 1;
param: Classes := 4;
param: Users\_Number\_Class :=
1 32
2 332
3 6
4 1;

## Appendix F.2

```
Standard Scenario Parameters
MicroGridPy
param: Periods := 35040;
param: Years := 20;
param: StartDate := '01/01/2011 00:00:00';
param: PlotTime := 1;
param: PlotDay := '06/12/2011 01:00:00';
param: PlotScenario := 1;
param: Delta_Time := 0.25 [hours];
param: PV_invesment_Cost := 1.67 [USD/W];
param: Battery_Invesment_Cost := 0.6 [USD/Wh];
param: Generator Invesment Cost := 1.48 [USD/W];
param: Maintenance_Operation_Cost_PV := 0.015 [% of Investment];
param: Maintenance_Operation_Cost_Battery:= 0.015 [% of Investment];
param: Maintenance_Operation_Cost_Generator := 0.015 [% of Investment];
param: Diesel_Unitary_Cost := 0.9 [USD/l];
param: Discount_Rate := 0.025;
param: Interest_Rate_Loan := 0.07;
param: Lost_Load_Probability := 0;
param: Discharge_Battery_Efficiency := 0.95;
param: Charge_Battery_Efficiency := 0.95;
param: Deep_of_Discharge := 0.2;
param: Inverter_Efficiency := 0.986;
param: Generator_Efficiency := 0.3;
param: Low_Heating_Value := 9890 [Wh/l];
param: Value_Of_Lost_Load := 0.0003 [USD/Wh];
```

```
param: Porcentage_Funded := 0.55;
param: Maximun_Battery_Discharge_Time := 5 [hours];
param: Maximun Battery Charge Time := 5 [hours];
param: PV_Nominal_Capacity := 300 [W];
param: Battery_Reposition_Time := 10 [years];
param: Scenarios :=1;
param: Scenario_Weight :=
   1;
1
Multi Energy System
param: Periods := 35040;
param: Years := 20;
param: StartDate := '01/01/2011 00:00:00';
param: PlotTime := 1;
param: PlotDay := '06/12/2011 01:00:00';
param: PlotScenario := 1;
param: Delta_Time := 0.25 [hours];
param: PV_Nominal_Capacity := 300 [W];
param: Inverter_Efficiency := 0.986;
param: PV_invesment_Cost := 1.67 [USD/W];
param: SC_Nominal_Capacity := 1825 [W];
param: SC_investment_Cost := 0.3 [USD/W];
param: Discharge_Battery_Efficiency := 0.95;
param: Charge_Battery_Efficiency := 0.95;
param: Deep_of_Discharge := 0.2;
param: Deep_of_Tank_Discharge := 0.2;
param: Maximun_Battery_Discharge_Time := 5 [hours];
param: Maximun_Battery_Charge_Time := 5 [hours];
param: Maximun_Tank_Discharge_Time:= 2.5 [hours];
```

- param: Battery\_Reposition\_Time := 10 [years];
- param: Battery\_Invesment\_Cost := 0.6 [USD/Wh];
- param: Tank\_Efficiency := 0.95;
- param: Tank\_Invesment\_Cost := 0.3 [USD/Wh];
- param: Generator\_Efficiency := 0.3;
- param: Low\_Heating\_Value := 9890 [Wh/l];
- param: Diesel\_Unitary\_Cost := 0.9 [USD/l];
- param: Generator\_Invesment\_Cost := 1.48 [USD/W];
- param: Boiler\_Efficiency := 0.6;
- param: Low\_Heating\_Value\_NG := 13100 [Wh/kg];
- param: NG\_Unitary\_Cost := 2.6 [USD/kg];
- param: Boiler\_Invesment\_Cost := 0.1 [USD/W];
- param: Electric\_Resistance\_Efficiency := 1;
- param: Resistance\_Invesment\_Cost := 0.01 [USD/W];
- param: Lost\_Load\_Probability := 0;
- param: Value\_Of\_Lost\_Load := 0.0003 [USD/Wh];
- param: Maintenance\_Operation\_Cost\_PV := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Battery:= 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Generator := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_SC := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Tank := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Boiler := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Resistance := 0.015 [% of Investment];
- param: Discount\_Rate := 0.025;
- param: Interest\_Rate\_Loan := 0.07;
- param: Porcentage\_Funded := 0.55;
- param: Scenarios :=1;

param: Scenario\_Weight :=

1 1;
param: Classes := 4;
param: Users\_Number\_Class :=
1 32
2 332
3 6
4 1;

## Appendix F.3

Higher fossil fuels prices Scenario Parameters MicroGridPy param: Periods := 35040; param: Years := 20; param: StartDate := '01/01/2011 00:00:00'; param: PlotTime := 1; param: PlotDay := '06/12/2011 01:00:00'; param: PlotScenario := 1; param: Delta\_Time := 0.25 [hours]; param: PV\_invesment\_Cost := 1.67 [USD/W]; param: Battery\_Invesment\_Cost := 0.6 [USD/Wh]; param: Generator\_Invesment\_Cost := 1.98 [USD/W]; param: Maintenance\_Operation\_Cost\_PV := 0.015 [% of Investment]; param: Maintenance\_Operation\_Cost\_Battery:= 0.015 [% of Investment]; param: Maintenance\_Operation\_Cost\_Generator := 0.015 [% of Investment]; param: Diesel\_Unitary\_Cost := 1.4 [USD/l]; param: Discount\_Rate := 0.025; param: Interest\_Rate\_Loan := 0.07; param: Lost\_Load\_Probability := 0; param: Discharge\_Battery\_Efficiency := 0.95; param: Charge\_Battery\_Efficiency := 0.95; param: Deep\_of\_Discharge := 0.2; param: Inverter\_Efficiency := 0.986; param: Generator\_Efficiency := 0.3; param: Low\_Heating\_Value := 9890 [USD/l]; param: Value\_Of\_Lost\_Load := 0.0003 [USD/Wh];

```
param: Porcentage_Funded := 0.55;
param: Maximun_Battery_Discharge_Time := 5 [hour];
param: Maximun_Battery_Charge_Time := 5 [hours];
param: PV_Nominal_Capacity := 300 [W];
param: Battery_Reposition_Time := 10 [years];
param: Scenarios :=1;
param: Scenario_Weight :=
1 1;
```

```
Multi Energy System
param: Periods := 35040;
param: Years := 20;
param: StartDate := '01/01/2011 00:00:00';
param: PlotTime := 1;
param: PlotDay := '06/12/2011 01:00:00';
param: PlotScenario := 1;
param: Delta_Time := 0.25 [hours];
param: PV_Nominal_Capacity := 300 [W];
param: Inverter_Efficiency := 0.986;
param: PV_invesment_Cost := 1.67 [USD/W];
param: SC_Nominal_Capacity := 1825 [W];
param: SC_investment_Cost := 0.3 [USD/W];
param: Discharge_Battery_Efficiency := 0.95;
param: Charge_Battery_Efficiency := 0.95;
param: Deep_of_Discharge := 0.2;
param: Deep_of_Tank_Discharge := 0.2;
param: Maximun_Battery_Discharge_Time := 5 [hours];
param: Maximun_Battery_Charge_Time := 5 [hours];
```

- param: Maximun\_Tank\_Discharge\_Time:= 2.5 [hours];
- param: Battery\_Reposition\_Time := 10 [years];
- param: Battery\_Invesment\_Cost := 0.6 [USD/Wh];
- param: Tank\_Efficiency := 0.95;
- param: Tank\_Invesment\_Cost := 0.3 [USD/Wh];
- param: Generator\_Efficiency := 0.3;
- param: Low\_Heating\_Value := 9890 [Wh/l];
- param: Diesel\_Unitary\_Cost := 1.35 [USD/l];
- param: Generator\_Invesment\_Cost := 1.48 [USD/W];
- param: Boiler\_Efficiency := 0.6;
- param: Low\_Heating\_Value\_NG := 13100 [Wh/kg];
- param: NG\_Unitary\_Cost := 3.9 [USD/kg];
- param: Boiler\_Invesment\_Cost := 0.1 [USD/W];
- param: Electric\_Resistance\_Efficiency := 1;
- param: Resistance\_Invesment\_Cost := 0.01 [USD/W];
- param: Lost\_Load\_Probability := 0;
- param: Value\_Of\_Lost\_Load := 0.0003 [USD/Wh];
- param: Maintenance\_Operation\_Cost\_PV := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Battery:= 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Generator := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_SC := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Tank := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Boiler := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Resistance := 0.015 [% of Investment];
- param: Discount\_Rate := 0.025;
- param: Interest\_Rate\_Loan := 0.07;
- param: Porcentage\_Funded := 0.55;
- param: Scenarios :=1;

param: Scenario\_Weight :=
1 1;
param: Classes := 4;
param: Users\_Number\_Class :=
1 32
2 332
3 6
4 1;
#### Appendix F.4

```
Only Renewable Scenario Parameters
MicroGridPy
param: Periods := 35040;
param: Years := 20;
param: StartDate := '01/01/2011 00:00:00';
param: PlotTime := 1;
param: PlotDay := '06/12/2011 01:00:00';
param: PlotScenario := 1;
param: Delta_Time := 0.25 [hours];
param: PV_invesment_Cost := 1.67 [USD/W];
param: Battery_Invesment_Cost := 0.6 [USD/Wh];
param: Generator Invesment Cost := 1000 [USD/W];
param: Maintenance_Operation_Cost_PV := 0.015 [% of Investment];
param: Maintenance_Operation_Cost_Battery:= 0.015 [% of Investment];
param: Maintenance_Operation_Cost_Generator := 0.015 [% of Investment];
param: Diesel_Unitary_Cost := 1000 [USD/l];
param: Discount_Rate := 0.025;
param: Interest_Rate_Loan := 0.07;
param: Lost_Load_Probability := 0;
param: Discharge_Battery_Efficiency := 0.95;
param: Charge_Battery_Efficiency := 0.95;
param: Deep_of_Discharge := 0.2;
param: Inverter_Efficiency := 0.986;
param: Generator_Efficiency := 0.3;
param: Low_Heating_Value := 9890 [Wh/l];
param: Value_Of_Lost_Load := 0.0003 [USD/Wh];
```

```
param: Porcentage_Funded := 0.55;
param: Maximun_Battery_Discharge_Time := 5 [hours];
param: Maximun_Battery_Charge_Time := 5 [hours];
param: PV_Nominal_Capacity := 300 [W];
param: Battery_Reposition_Time := 10 [years];
param: Scenarios :=1;
param: Scenario_Weight :=
1 1;
```

```
Multi Energy System
```

- param: Periods := 35040;
- param: Years := 20;
- param: StartDate := '01/01/2011 00:00:00';
- param: PlotTime := 1;
- param: PlotDay := '06/12/2011 01:00:00';
- param: PlotScenario := 1;
- param: Delta\_Time := 0.25 [hours];
- param: PV\_Nominal\_Capacity := 300 [W];
- param: Inverter\_Efficiency := 0.986;
- param: PV\_invesment\_Cost := 1.67 [USD/W];
- param: SC\_Nominal\_Capacity := 1825 [W];
- param: SC\_investment\_Cost := 0.3 [USD/W];
- param: Discharge\_Battery\_Efficiency := 0.95;
- param: Charge\_Battery\_Efficiency := 0.95;
- param: Deep\_of\_Discharge := 0.2;
- param: Deep\_of\_Tank\_Discharge := 0.2;
- param: Maximun\_Battery\_Discharge\_Time := 5 [hours];

- param: Maximun\_Battery\_Charge\_Time := 5 [hours];
- param: Maximun\_Tank\_Discharge\_Time:= 2.5 [hours];
- param: Battery\_Reposition\_Time := 10 [years];
- param: Battery\_Invesment\_Cost := 0.6 [USD/Wh];
- param: Tank\_Efficiency := 0.95;
- param: Tank\_Invesment\_Cost := 0.3 [USD/Wh];
- param: Generator\_Efficiency := 0.3;
- param: Low\_Heating\_Value := 9890 [Wh/l];
- param: Diesel\_Unitary\_Cost := 1000000 [USD/l];
- param: Generator\_Invesment\_Cost := 1.48 [USD/W];
- param: Boiler\_Efficiency := 0.6;
- param: Low\_Heating\_Value\_NG := 13100 [Wh/kg];
- param: NG\_Unitary\_Cost := 1000000 [USD/kg];
- param: Boiler\_Invesment\_Cost := 0.1 [USD/W];
- param: Electric\_Resistance\_Efficiency := 1;
- param: Resistance\_Invesment\_Cost := 0.01 [USD/W];
- param: Lost\_Load\_Probability := 0;
- param: Value\_Of\_Lost\_Load := 0.0003 [USD/Wh];
- param: Maintenance\_Operation\_Cost\_PV := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Battery:= 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Generator := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_SC := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Tank := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Boiler := 0.015 [% of Investment];
- param: Maintenance\_Operation\_Cost\_Resistance := 0.015 [% of Investment];
- param: Discount\_Rate := 0.025;
- param: Interest\_Rate\_Loan := 0.07;
- param: Porcentage\_Funded := 0.55;

param: Scenarios :=1; param: Scenario\_Weight := 1 1; param: Classes := 4; param: Users\_Number\_Class := 1 32 2 332 3 6 4 1;

# List of Figures

| Figure 1: Geographical location of Chile, country of the study area. Source: mapsland.com             |            |  |
|-------------------------------------------------------------------------------------------------------|------------|--|
|                                                                                                       | 27         |  |
| Figure 2: Geographical location of the study area. Source: Google maps                                | 29         |  |
| Figure 3: CESP flow diagram. Source: UNESCO Chair Politecnico di Milano                               | 31         |  |
| Figure 4: General scheme of an energy system. Source: Authors                                         | 34         |  |
| Figure 5: Camera installed to monitor energy consumption                                              |            |  |
| Figure 6: Advanced cook stove present in the study area. Source: Authors                              | 40         |  |
| Figure 7: Phases of Water Boiling Test. Source: [26]                                                  | 41         |  |
| Figure 8: Measuring station installed on site. Source: Authors                                        | 46         |  |
| Figure 9: Wind measuring station installed on site. Source: Authors                                   | 48         |  |
| Figure 10: Measurement of local river flows. Source: Authors                                          | 51         |  |
| Figure 11: Riverbed profiles and correction factors. Source: [21]                                     | 52         |  |
| Figure 12: Black Box scheme of the proposed model. Source: Authors                                    | 55         |  |
| Figure 13: Considered micro-grid typology. Source: Authors                                            | 56         |  |
| Figure 14: Equivalent circuit of a PV. $I_L$ is the light current, $I_D$ is the current in the        | e diode,   |  |
| $I_{sh}$ is the current in the shunt resistance, $R_s$ is the series resistance, $R_{sh}$ is the shun | t          |  |
| resistance, I is the current and V is the voltage. Source: [35]                                       | 56         |  |
| Figure 15: Considered thermal system typology. Source: Authors                                        | 59         |  |
| Figure 16: Considered energy system configuration. Source: Authors                                    | 63         |  |
| Figure 17: Reference energy system of the study area. Source: Authors                                 | 70         |  |
| Figure 18: Sankey Diagram of the actual situation in the study area.                                  | 77         |  |
| Figure 19: Geographical relatve positions of San Pedro the Atacama and Tocona                         | o. Source: |  |
| Authors' adaptation from Google Maps                                                                  | 79         |  |
| Figure 20: Area of the village excluded form generator's energy supply. Source:                       | Authors'   |  |
| adaptation from Google Earth                                                                          | 80         |  |
| Figure 21: Sankey Diagram of the study area in first simulated scenario                               | 99         |  |
| Figure 22: Sankey Diagram of the study area in second simulated scenario                              | 105        |  |
| Figure 23: Sankey Diagram of the study area in third simulated scenario.                              | 110        |  |

## **List of Charts**

| Chart 1: Total global energy consumption for heat, 2015. Source: IEA                   | 26 |
|----------------------------------------------------------------------------------------|----|
| Chart 2: TPES of Chile. Source: CNE                                                    | 28 |
| Chart 3: Energy mix present in the domestic driver.                                    | 71 |
| Chart 4: Share of final energy consumption in the domestic driver                      | 72 |
| Chart 5: Energy mix present in the commercial driver                                   | 73 |
| Chart 6: Share of final energy consumption in the commercial driver                    | 74 |
| Chart 7: Energy mix present in the public driver.                                      | 75 |
| Chart 8: Share of final energy consumption in the public driver                        | 76 |
| Chart 9: Daily measured average irradiation in the study area.                         | 81 |
| Chart 10: Monthly average irradiation in the study area.                               | 82 |
| Chart 11: PV unitary power output. W vs 15min                                          | 83 |
| Chart 12: Solar Collector unitary power output. W vs 15min                             | 83 |
| Chart 13: Measured average wind speed in the study area.                               | 84 |
| Chart 14: Wind rose of the measured wind velocities in the study area                  | 85 |
| Chart 15: Yearly and daily wind speed cycles in the study area. Source: [32]           | 86 |
| Chart 16: Electric load profile of the study area in the four seasons - W vs 15min     | 88 |
| Chart 17: Thermal load profiles of the four classes for respective typical user - W vs |    |
| 15min                                                                                  | 89 |
| Chart 18: Electrical energy dispatch as result of MicroGridPy simulation – Standard    |    |
| Scenario                                                                               | 93 |
| Chart 19: Electrical energy dispatch as result of Multi Energy System simulation –     |    |
| Standard Scenario                                                                      | 94 |
| Chart 20: Commercial Thermal energy dispatch as result of Multi Energy System          |    |
| simulation – Standard Scenario                                                         | 95 |
| Chart 21: Domestic Thermal energy dispatch as result of Multi Energy System simulation | on |
| – Standard Scenario.                                                                   | 95 |
| Chart 22: Public Thermal energy dispatch as result of Multi Energy System simulation - | _  |
| Standard Scenario                                                                      | 96 |
| Chart 23: School Thermal energy dispatch as result of Multi Energy System simulation   | _  |
| Standard Scenario.                                                                     | 97 |

| Chart 24: Electrical energy dispatch as result of MicroGridPy simulation – High Fuel    |
|-----------------------------------------------------------------------------------------|
| Prices Scenario                                                                         |
| Chart 25: Electrical energy dispatch as result of Multi Energy System simulation – High |
| Fuel Prices Scenario                                                                    |
| Chart 26: Commercial Thermal energy dispatch as result of Multi Energy System           |
| simulation – High Fuel Prices Scenario                                                  |
| Chart 27: Domestic Thermal energy dispatch as result of Multi Energy System simulation  |
| – High Fuel Prices Scenario                                                             |
| Chart 28: Public Thermal energy dispatch as result of Multi Energy System simulation -  |
| High Fuel Prices Scenario                                                               |
| Chart 29: School Thermal energy dispatch as result of Multi Energy System simulation –  |
| High Fuel Prices Scenario                                                               |
| Chart 30: Electrical energy dispatch as result of MicroGridPy simulation – Only         |
| Renewable Scenario                                                                      |
| Chart 31: Electrical energy dispatch as result of Multi Energy System simulation - Only |
| Renewable Scenario                                                                      |
| Chart 32: Commercial Thermal energy dispatch as result of Multi Energy System           |
| simulation – Only Renewable Scenario                                                    |
| Chart 33: Domestic Thermal energy dispatch as result of Multi Energy System simulation  |
| – Only Renewable Scenario                                                               |
| Chart 34: Domestic Thermal energy dispatch as result of Multi Energy System simulation  |
| – Only Renewable Scenario                                                               |
| Chart 35: School Thermal energy dispatch as result of Multi Energy System simulation -  |
| Only Renewable Scenario                                                                 |

### List of Tables

| Table 1: Electricity prices in Toconao. Source: Authors.                          | 30  |
|-----------------------------------------------------------------------------------|-----|
| Table 2: Monthly average wind speeds in the study area. Source: [32].             | 86  |
| Table 3: Estimated flow rates, gross heads and available powers of the two rivers | 87  |
| Table 4: Economical Parameters of baseline scenario                               | 91  |
| Table 5: Sizing of Standard Scenario – MicroGridPy simulation                     | 93  |
| Table 6: Sizing of Standard Scenario – Multi Energy System simulation             | 98  |
| Table 7: Sizing of High Fuel Prices Scenario – MicroGridPy simulation             | 100 |
| Table 8: Sizing of High Fuel Prices Scenario – Multi Energy System simulation     | 104 |
| Table 9: Sizing of Only Renewable Scenario – MicroGridPy simulation               | 106 |
| Table 10: Sizing of Only Renewable Scenario – Multi Energy System simulation      | 109 |
| Table 11: NPC and LCOE of all considered scenarios.                               | 110 |
|                                                                                   |     |

### **Abbreviation Index**

| ALMA   | Atacama Large Millimeter Array                                            |  |
|--------|---------------------------------------------------------------------------|--|
| ASHRAE | American Society of Heating, Refrigerating and Air-Conditioning Engineers |  |
| CESP   | Comprehensive Energy Solution Planning                                    |  |
| CESPA  | Coperativa Electrica San Pedro de Atacama                                 |  |
| DHW    | Domestic Hot Water                                                        |  |
| DNI    | Direct Normal Irradiation                                                 |  |
| GHI    | Global Horizontal Irradiation                                             |  |
| IEA    | International Energy Agency                                               |  |
| LCOE   | Levelized Cost Of Energy                                                  |  |
| LHV    | Lower Heating Value                                                       |  |
| LP     | Linear Programming                                                        |  |
| LPG    | Liquid Propane Gas                                                        |  |
| MDG    | Millennium Development Goals                                              |  |
| MES    | Multi Energy System                                                       |  |
| NPC    | Net Present Cost                                                          |  |
| PV     | Photovoltaic                                                              |  |
| SAM    | System Advisor Model                                                      |  |
| SDG    | Sustainable Development Goals                                             |  |
| SIC    | Sistema Interconectado Central                                            |  |
| SING   | Sistema Interconectado Norte Grande                                       |  |
| SOC    | State Of Charge                                                           |  |
| TFC    | Total Final Consumption                                                   |  |
| TPES   | Total Primary Energy Supply                                               |  |
| WBT    | Water Boiling Test                                                        |  |
| YCC    | Yearly Constant Cost                                                      |  |

#### Nomenclature

| $C_{soc_{tank}}$        | Tank nominal capacity                                             |
|-------------------------|-------------------------------------------------------------------|
| $E_{Thermal_{Demand}}$  | Study area thermal demand                                         |
| $\dot{m}_{water}$       | Water mass flow rate                                              |
| $P_{out_{Max}}$         | Tank maximum discharge power                                      |
| $c_{Betz}$              | Betz's constant                                                   |
| $C_{Boiler_{finan}}$    | Boiler financial cost                                             |
| $C_{Boiler}$            | Boiler nominal capacity                                           |
| $C_{diesel}$            | Diesel consumption                                                |
| $C_{gen}$               | Generator nominal capacity                                        |
| $C_{Res_{finan}}$       | Resistance financial cost                                         |
| $C_{Resistance}$        | Resistance nominal capacity                                       |
| $C_{SC_{finan}}$        | Solar collector financial cost                                    |
| C <sub>SC</sub>         | Solar collector nominal capacity                                  |
| $C_{Tank_{finan}}$      | Tank financial cost                                               |
| $Cap_{bat}$             | Battery bank nominal capacity                                     |
| $Cost_{finan}$          | Financial cost of the project                                     |
| $Cost_{gas}$            | Gas cost                                                          |
| Cost <sub>Gen Set</sub> | Generator specific cost                                           |
| $Cost_{om}$             | Operation and Maintenance cost                                    |
| $Cost_{rep}$            | Battery reposition cost                                           |
| $D_a$                   | Total energy demand                                               |
| $D_p$                   | Total electrical demand                                           |
| $D_{soc}$               | Tank maximum deep of discharge                                    |
| $D_{thermal}$           | Total thermal demand                                              |
| $E_{bat,ch}$            | Battery energy flow in                                            |
| $E_{bat,dis}$           | Battery energy flow out                                           |
| $E_{Boiler}$            | Boiler energy output                                              |
| E <sub>curt</sub>       | Energy curtailment                                                |
| $E_{El_{Demand}}$       | Electrical demand energy                                          |
| $E_{Gen}$               | Generator energy output                                           |
| $E_{genset}$            | Energy input to the study area from the existing diesel generator |
| $E_{grid}$              | Energy input to the study area from the grid                      |
| $E_{LPG}$               | Energy input to the study area from LPG                           |
| $E_{measured}$          | Energy measured by electric meters                                |
| $E_{one\_year}$         | Energy consumed in one year                                       |
| $E_{PV}$                | Photovoltaic panels energy output                                 |

| $E_{Resistance}$    | Resistance energy output                                       |
|---------------------|----------------------------------------------------------------|
| $E_{SC}$            | Solar collectors energy output                                 |
| $E_{SOC_{Tank}}$    | State of Charge of the Tank                                    |
| $E_{solar}$         | Energy input to the study area from the sun                    |
| $E_{Tank_{out}}$    | Tank energy flow out                                           |
| $E_{task}$          | Energy required to perform a task                              |
| $E_{user}$          | Energy consumed by one user                                    |
| I <sub>bh</sub>     | Direct horizontal irradiation                                  |
| I <sub>dh</sub>     | Diffuse horizontal irradiation                                 |
| Ii                  | Total irradiation on inclined surface                          |
| $m_{LPG}$           | LPG mass                                                       |
| $N_{PV}$            | Number of photovoltaic panels                                  |
| N <sub>SC</sub>     | Number of solar collectors                                     |
| N <sub>Users</sub>  | Number of users                                                |
| $P_{di}$            | Price of diesel                                                |
| Pgross              | Hydro gross power potential                                    |
| $P_{net}$           | Hydro net power potential                                      |
| P <sub>nom</sub>    | Nominal power of appliances                                    |
| $P_{wind}$          | Wind power potential                                           |
| Ż                   | Water flow rate                                                |
| $R_b$               | Rate between horizontal and inclined surface total irradiation |
| $SOC_{bat}$         | Battery state of charge                                        |
| t <sub>task</sub>   | Time required to perform a task                                |
| $U_{Boiler}$        | Boiler specific cost                                           |
| $U_{Res}$           | Resistance specific cost                                       |
| U <sub>SC</sub>     | Solar collector specific cost                                  |
| $U_{Tank}$          | Tank specific cost                                             |
| Uni <sub>bat</sub>  | Battery bank specific cost                                     |
| $v_{air}$           | Wind speed                                                     |
| $v_{water}$         | Water speed                                                    |
| $\alpha_{LP}$       | Slope of the cost curve for the generator system               |
| $\eta_{boiler}$     | Boiler efficiency                                              |
| $\eta_{ch}$         | Battery charge efficiency                                      |
| $\eta_{dis}$        | Battery discharge efficiency                                   |
| $\eta_{Gen}$        | Generator efficiency                                           |
| $\eta_{GenSet}$     | Existing generator efficiency                                  |
| $\eta_{hydro}$      | Hydraulic turbine efficiency                                   |
| $\eta_{inv}$        | Inverter efficiency                                            |
| $\eta_{Resistance}$ | Resistance efficiency                                          |

| $\eta_{SC}$       | Solar collector efficiency                  |
|-------------------|---------------------------------------------|
| $\eta_{tank}$     | Tank thermal efficiency                     |
| $ ho_{air}$       | Air density                                 |
| $ ho_r$           | Albedo                                      |
| $ ho_{water}$     | Water density                               |
| Α                 | Cross sectional area                        |
| С                 | Hydraulic correction factor                 |
| $cp_{water}$      | Water specific heat                         |
| е                 | Discount rate                               |
| fun               | Percentage of investment financed by a bank |
| g                 | Gravitational acceleration                  |
| Н                 | Gross head                                  |
| Inv               | Investment cost                             |
| LHV <sub>di</sub> | Diesel lower heating value                  |
| $LHV_{LPG}$       | LPG lower heating value                     |
| n                 | Number of year of project duration          |
| $NG_{consume}$    | Boiler consume of gas                       |
| ОуМ               | Operations and maintenance costs            |
| Ро                | Probability of occurrence                   |
| r                 | Interest rate                               |
| x                 | Spatial distance                            |
| У                 | Year of occurrence of battery reposition    |
| YCC               | Yearly constant cost                        |
| β                 | Slope of installed panel                    |
| $\Delta T$        | Temperature difference                      |
| $\Delta t$        | Time step                                   |
|                   |                                             |

#### **Bibliography**

- [1] F. Riva, H. Ahlborg, E. Hartvigsson, S. Pachauri, and E. Colombo, "Electricity access and rural development: Review of complex socio-economic dynamics and casual diagrams for more appropriate energy modelling," *Energy Sustain. Dev.*, vol. 43, pp. 203–223, 2018.
- International Energy Agency, "WEO-2017 Special Report: Energy Access Outlook," pp. 1–143, 2017.
- [3] UN, "Millennium Development Goals." [Online]. Available: http://www.un.org/millenniumgoals/.
- UNDP, "UNDP Sustainable Development Goals." [Online]. Available: http://www.undp.org/content/undp/en/home/sustainable-developmentgoals.html.
- [5] WHO, "World Healt Organization (WHO) report: 'Health in 2015: from MDGs to SDGs.'" [Online]. Available: http://www.who.int/mediacentre/news/releases/2015/mdg-sdg-report/en/.
- UN, "UN Sustainable Development 'Open Working Group proposal for Sustainable
   Development Goals.'" [Online]. Available: https://sustainabledevelopment.un.org/focussdgs.html.
- [7] International Energy Agency (IEA), "World Energy Outlook 2016," Secur. Sustain.
   *Together*, p. 684, 2016.
- [8] P. Mancarella, "MES (multi-energy systems): An overview of concepts and evaluation models," *Energy*, vol. 65, no. February, pp. 1–17, 2014.
- [9] U. Collier, "Commentary: More policy attention is needed for renewable heat,"2018. .
- [10] E. Colombo, S. Bologna, and D. Masera, *Renewable Energy for Sustainable Development*. Springer, 2013.
- [11] United Nations Development Programme, Human development report 2016. 2016.
- [12] R. R. Cordero *et al.*, "The Solar Spectrum in the Atacama Desert," *Sci. Rep.*, vol. 6, pp. 1–15, 2016.

- [13] CNE, PNUD, and UTFSM, "Irradiancia Solar En Territorios de la Republica de Chile,"2008.
- [14] Comitato Nacional de Energia (CNE), "Anuario Estadístico de Energía," 2016.
- [15] Istituto Nacional de Estadistica (INE), "Demograficas y Vitales." [Online]. Available: http://www.ine.cl/estadisticas/demograficas-y-vitales.
- [16] Ministerio de Energia de Chile, "Antecedentes del Sistema Electrico en San Pedro de Atacama y Esatado de Avance Mesas de Trabajo," Santiago de Chile, 2017.
- [17] ALMA, "Movie theater and solar energy, some of the benefit projects made possible by ALMA funds for its neighbors." [Online]. Available: http://www.almaobservatory.org/en/announcement/movie-theater-and-solarenergy-some-of-the-benefit-projects-made-possible-by-alma-funds-for-itsneighbors/.
- [18] K. M. B. N. G. Johnson, *Energy supply and use in a rural West African village*.Elsevier, 2012.
- [19] A. C. Menezes, A. Cripps, R. A. Buswell, J. Wright, and D. Bouchlaghem, "Estimating the energy consumption and power demand of small power equipment in office buildings," *Energy Build.*, vol. 75, pp. 199–209, 2014.
- [20] The World Bank, "Beyond Connections: Energy Access Redefined," 2015.
- [21] ESHA, "Guide on How to Develop a Small Hydropower Plant," Eur. Small Hydropower Assoc., p. 296, 2004.
- [22] Engineering ToolBox, "Fuels Higher and Lower Calorific Values." [Online]. Available: https://www.engineeringtoolbox.com/fuels-higher-calorific-valuesd\_169.html.
- [23] Lipigas, "Listado de Precios Gas Residencial." [Online]. Available: https://www.lipigas.cl/hogar/gas-licuado/granel.
- [24] Engineering ToolBox, "Gross and Net Heating Values for some common Gases." [Online]. Available: https://www.engineeringtoolbox.com/gross-net-heatingvalues-d 420.html.
- [25] M. K. E. Youssef, M. M. El-Manfaloty, and H. M. Ali, "Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic

compounds of carob (Ceratonia siliqua L.)," *Food Public Heal.*, vol. 3, no. 6, pp. 304–308, 2013.

- [26] H. S. M. Robert van der Plas, "The Water Boiling Test Version 4.1.2," vol. 2, no. January 2013, p. 52, 2009.
- [27] S. Mandelli, M. Merlo, and E. Colombo, "Novel procedure to formulate load profiles for off-grid rural areas," *Energy Sustain. Dev.*, vol. 31, pp. 130–142, Apr. 2016.
- [28] The American Society of Heating Refrigerating and Air Conditioning Engineering (ASHRAE), 2015 ASHRAE HANDBOOK Inch-Pound Edition. 2015.
- [29] C. P. McKay, E. I. Friedmann, B. Gómez-Silva, L. Cáceres-Villanueva, D. T. Andersen, and R. Landheim, "Temperature and Moisture Conditions for Life in the Extreme Arid Region of the Atacama Desert: Four Years of Observations Including the El Niño of 1997–1998," Astrobiology, vol. 3, no. 2, pp. 393–406, 2003.
- [30] R. Schmidt and A. Díaz, "Instalación y puesta en marcha de la estación de medición de la radiación solar en San Pedro de Atacana," 2009.
- [31] J. Duffie and W. Beckman, Solar Engineering of Thermal Processes. Hoboken, New Jersey: Wiley, 2013.
- [32] Universidad de Chile and F. de C. F. y M. Departamento de Geofísica, "Explorador Eolico." [Online]. Available: http://walker.dgf.uchile.cl/Explorador/Eolico2/.
- [33] M. A. Al-Fawzan, *Methods for Estimating the Parameters of the Weibull Distribution*. 2000.
- [34] Jica, "Department of energy utilization management bureau manuals and Guidelines for micro-hydropower development in rural electrification volume I," *Technology*, vol. I, no. June, pp. 1–268, 2009.
- [35] S. L. B. Subieta, W. Canedo, and ..., "Impact of Diesel generator limitations in the robust sizing of isolated hybrid Microgrids including PV and batteries," *Proc. ECOS ...*, 2017.
- [36] "Python official Website.".
- [37] Willian H, Laird C, Watson J, Woodruff D, *Pyomo Optimization modeling in Python*. .

- [38] "IBM Cplex optimizer official Website.".
- [39] S. Q. S. Balderrama, W. Canedo, M. Fernandez, V. Lemort, "Techno-economic optimization of isolate micro-grids including PV and Li-Ion Batteries in the Bolivian context," 2016.
- [40] J. Duffie and W. Beckman, *Solar Engineering of Thermal Processes, 4th ed.*, vol. 116.2013.
- [41] "Modelica official Website.".
- [42] "National Renewable energy laboratory. Photovoltaic module parameters for the CEC module model." .
- [43] E. Spoletini, "Levelized cost of energy (Icoe) analysis of a low temperature PCM thermal storage combined with a micro-CHP in an apartment block," *Energy Procedia*, vol. 126, pp. 437–444, 2017.
- [44] C. Mandil, "Energy Statistics–Manual," 2005.
- [45] F. Almeida Prado and S. Berg, "Capacity factors of Brazilian hydroelectric power plants," *J. Chem. Inf. Model.*, vol. 53, no. 9, pp. 1689–1699, 2013.
- [46] K. Ajao, O. Oladosu, and O. Popoola, "Using HOMER power optimization software for cost benefit analysis of Hybrid-solar power generation relative to utility cost in Nigeria," Int. J. Res. Rev. Appl. Sci., vol. 7, no. 1, pp. 96–102, 2011.
- [47] S. Pfenninger, J. DeCarolis, L. Hirth, S. Quoilin, and I. Staffell, "The importance of open data and software: Is energy research lagging behind?," *Energy Policy*, vol. 101, no. December 2016, pp. 211–215, 2017.