
Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Optimization models and heuristics for
Virtual Machine placement and migration

Relatore:
Prof. Edoardo Amaldi — Politecnico di Milano

Correlatore:
Prof. Danilo Ardagna — Politecnico di Milano

Tesi Magistrale di:
Marco Romani

Matricola 852361

Anno Accademico 2016-2017

Alla mia famiglia.

Ringraziamenti

Un sentito ringraziamento al Professor Edoardo Amaldi e al Professor Danilo
Ardagna per il costante supporto e disponibilità mostrati nell’arco degli ultimi
sei mesi. Mai avrei pensato di uscire dal Poli, ormai vuoto, alle 20.15 o di col-
legarmi via skype con il mio relatore pur di rispettare l’incontro settimanale.
Grazie davvero.

Un grazie alla mia famiglia. A mia mamma, instancabile supporto e punto
riferimento nei momenti di bisogno. A mio papà, che non ha mai smesso di
darmi consigli anche quando non sapeva nulla dell’argomento.

Un grazie ad Andrea e Roberto per la compagnia intellettuale, ma anche un gra-
zie a Emanuele per quella un po’ meno intellettuale.

Un grazie ad Alessandro e ad Angelo, le persone vanno e vengono ma loro sono
sempre lì.

Infine un grazie a Rosa, che non si è ancora arresa.

v

Contents

Contents vii

List of Figures ix

List of Tables x

1 Introduction 5
1.1 Motivations . 5
1.2 Thesis organization . 8

2 State of the Art 11
2.1 Technology review . 11

2.1.1 Virtualization and Virtual Machines 12
2.1.2 VM Live-Migration . 12
2.1.3 Containers vs VMs . 13
2.1.4 Network topologies . 15

2.2 Previous works . 17
2.2.1 VM Placement Problem . 18
2.2.2 VM Migration Problem . 22
2.2.3 Joint VM Placement and Migration 24
2.2.4 Characterization of this work 26

3 VM Placement Problem 27
3.1 High level description . 27
3.2 Problem description . 28
3.3 First nonlinear programming formulation 30
3.4 Linearization and improvements 32

4 VM Migration Problem 37
4.1 High level description . 37
4.2 Problem description . 38
4.3 First nonlinear programming formulation 40

vii

4.4 Remarks . 46
4.5 Linearization and improvements 46
4.6 Selecting the migrating VMs . 54
4.7 Path selection sub-problem . 56

4.7.1 High level description . 56
4.7.2 Problem description . 56
4.7.3 MILP formulation . 57

5 Heuristics 59
5.1 A GRASP heuristic for the short-term VMPP 59

5.1.1 Greedy randomized construction 60
5.1.2 Local search . 64

5.2 GRASP’s extension for the long-term VMMP 71
5.2.1 Greedy randomized construction 72
5.2.2 Local search . 75
5.2.3 Path Relinking . 76
5.2.4 Sampling version of the VMMP’s heuristic 80
5.2.5 Path selection sub-problem 84

6 Testbed instances 87
6.1 Network . 88
6.2 Servers . 90
6.3 Containers and Virtual Machines 92
6.4 CPU utilization . 94
6.5 Traffic matrices . 97

7 Computational results 105
7.1 VMPP experimental setup . 105
7.2 VMPP’s computational results . 107
7.3 VMMP experimental setup . 114
7.4 VMMP’s computational results . 116

8 Concluding remarks 125

9 Appendix 127
9.1 Short-term VM Placement Problem’s final formulation 127
9.2 Long-term VM Migration Problem’s final formulation 130
9.3 Notes . 133
9.4 High level UML Class Diagram 137

Bibliography 141

viii

List of Figures

1.1 Three-tier web application scheme. 8

2.1 Virtual Machine technology. 12
2.2 Virtual Machine technology vs Container technology. 14
2.3 Fat-Tree topology. 15
2.4 VL2 topology. 16
2.5 Bcube topology. 17

5.1 One-Move-Neighborhood example - Part 1 - VM1 can be moved on
servers S1, S2 or S3 to improve the objective function’s value. Dashed-
arrows represent improving moves. 65

5.2 One-Move-Neighborhood example - Part 2 - VM4 can be moved on
servers S1 or S2 to improve the objective function’s value. Dashed-
arrows represent improving moves. 67

5.3 One-Swap-Neighborhood example - VM2 and VM4’s assignments can
be swapped to improve the objective function’s value. The dashed
arrows represent the two single moves involved in the swap. 68

5.4 Path Relinking example - path from solution sto solution t, passing
through intermediate solutions v’, v” and v”’. 77

6.1 Fat-tree topology with k = 4. 89
6.2 Hewlett Packard ML350Gen10 power consumption. 91
6.3 LenovoSR650 power consumption. 92
6.4 Chrome’s console shows the size of images with respect to the whole

page. 101

9.1 High level GRASP Class Diagram . 137
9.2 High level Path Relinking Class Diagram 138

ix

List of Tables

1.1 Costs in a data center [1]. 6

2.1 State of the art. 26

6.1 SPECpower benchmark. 90
6.2 Microsoft Azure B-series [2]. 93
6.3 Amazon EC2 M4-series [3]. IOPS are generated by looking at the

Azure’s equivalent series. 94
6.4 Hosts’ maximum throughput. 97
6.5 SPECweb2009_PHP, 2012 first quarter [4]. 100
6.6 Web pages inspection. The third column shows the percentage of

data coming from the database tier with respect to the whole page. . 102

7.1 CPLEX one hour run vs GRASP three minutes run, Part 1. 108
7.2 CPLEX one hour run vs GRASP three minutes run, Part 2. 109
7.3 CPLEX one hour run vs GRASP three minutes run, Part 3. 109
7.4 GRASP one hour run vs GRASP three minutes run. 110
7.5 Greedy Rand Construction vs Local Search for the three minutes run. 112
7.6 GRASP three minutes run vs First Fit. 113
7.7 CPLEX one hour run vs GRASP five minutes run. 117
7.8 CPLEX one hour run vs Path Relinking. 119
7.9 CPLEX one hour run vs GRASP five minutes run with sampling and

no Path Relinking. 120
7.10 GRASP three hours run no sampling vs GRASP one hour run with

sampling. 121
7.11 GRASP one hour run with sampling vs Path Relinking. 123

9.1 VMPP parameters and variables. 129
9.2 VMMP parameters. 134
9.3 VMMP variables. 135

x

Abstract

Virtualization is a key component for the deployment of Internet services and
applications nowadays. The main players in this context are cloud data center
providers that offer the infrastructure of their data centers to customers who
need their applications to be hosted by a third party. A cloud provider is inter-
ested in finding the most efficient way of allocating its resources to customers
in order to be able to maximize its profit. This concern consists in finding the
optimal placement of Virtual Machines (VMs) on physical servers. Such place-
ment may need to change over time due the system’s evolution, thus requiring
a constant effort during the entire lifetime of a VM and of the data center itself.

We define two problem variants for VM placement and VM migration, with
particular focus on traffic-awareness. The VM placement problem consists in,
given a data center and a set of new VMs, assigning each VM to exactly one
server, while satisfying all resource capacities. Instead, the VM migration prob-
lem consists in periodically updating the placement of a set of already existing
VMs without violating any resource capacity, including the bandwidth capac-
ities of the network links. Traffic-aware optimization constitutes a currently
popular trend in the field due to the widespread presence of highly intercom-
municating multi-tier applications that seriously threatens to be a bottleneck
for the scalability of modern data center networks.

We provide two Mixed Integer Linear Programming (MILP) formulations to
solve the two problems. Then, since both the problems are NP-hard, to tackle
larger instances we develop two Greedy Adaptive Search Procedures (GRASP).
In particular, the heuristic devised for the VM placement problem consists in
a greedy randomized procedure followed by a local search procedure. Instead,
the heuristic devised for the VM migration problem includes, beside its own
greedy randomized and local search procedures, an adaptation of the Path Re-
linking technique.

In order to determine the quality of the solutions found by the two heuris-
tics, they are compared to the solutions obtained by solving the MILP formula-
tions with the state of the art solver CPLEX on instances with up to 128 servers
for the VM placement and 54 servers for the VM migration , leading to promis-

1

List of Tables

ing relative gaps from the optimal solution of approximately 0% and 8% re-
spectively. The two heuristics are also tested on instances with up to 10000
servers, on which we show the incremental benefits brought by the proposed
techniques and refinements. Finally, as previously done in the literature, we
provide a comparison with a First Fit heuristic. Instances are generated with
data derived from real sources, benchmarks and VM vendors.

2

Sommario

Al giorno d’oggi la virtualizzazione è una componente chiave per la distribuzione
di servizi Internet e applicazioni. I principali attori in questo contesto sono
i provider di cloud data center che offrono l’infrastruttura dei loro data cen-
ter a clienti che necessitano di una parte terza per ospitar la loro applicazione.
Un cloud provider ha interesse nel trovare il modo più efficiente di allocare le
sue risorse ai clienti in modo da massimizzare il suo profitto. Questa preoccu-
pazione consiste nel trovare il collocamento ottimale di Virtual Machine (VM)
su server fisici. Col passare del tempo, tale collocamento potrebbe richedere di
essere cambiato a causa dell’evoluzione del sistema, rendendo così necessario
uno sforzo costante per tutto il tempo di vita di una VM e dello stesso data
center.

Definiamo due varianti di problemi relativi al collocamento di VM e alla
migrazione di VM, con particolare attenzione alla gestione del traffico. Il prob-
lema del collocamento di VM consiste nel, dato un data center e un insieme di
nuove VM, assegnare ogni VM esattamente ad un server assicurandosi di sod-
disfare tutti i vincoli sulle risorse. Invece, il problema della migrazione di VM
consiste nell’aggiornare periodicamente il collocamento di un insieme di VM
già esistenti senza violare alcuno vincolo sulle risorse, tra cui i vincoli di banda
sui link della rete. L’ottimizzazione attenta al traffico costituisce un trend recen-
temente popolare in questo campo grazie alla presenza diffusa di applicazioni
multi-tier dall’intenso traffico interno che minacciano di essere un collo di bot-
tiglia per la scalabilità delle reti dei moderni data center.

Forniamo due formulazioni di Programmazione Lineare Misto-Intera (MILP)
per risolvere i due problemi. In seguito, poichè entrambi problemi sono NP-
difficili, per affrontare istanze di dimensione maggiore sviluppiamo due al-
goritmi di tipo Greedy Adaptive Search Procedure (GRASP). Nello specifico,
l’euristica sviluppata per il problema di collocamento consiste in una proce-
dura greedy randomizzata seguita da una procedura di ricerca locale. Invece,
l’euristica sviluppata per il problema di migrazione include, oltre alla sua pro-
cedura greedy randomizzata e alla sua ricerca locale, una procedura aggiuntiva
che implementa la tecnica del Path Relinking.

3

List of Tables

Per determinare la qualità delle soluzioni trovate dalle due euristiche, queste
sono confrontate con le soluzioni ottenute risolvendo le formulazioni MILP con
il risolutore CPLEX su istanze con al massimo 128 server per il problema di
collocamento e 54 server per il problema di migrazione, portando a promet-
tenti gap relativi nei confronti della soluzione ottima di circa 0% e 8% rispetti-
vamente. Le due euristiche sono anche testate su instanze fino a 10000 server,
sulle quali mostriamo i benefici incrementali delle tecniche e dei miglioramenti
proposti. Infine, come fatto in precedenza nella letteratura, forniamo un con-
fronto con una euristica First Fit. Le istanze sono generate con dati ottenuti da
fonti reali, benchmark e fornitori di VM.

4

CHAPTER 1
Introduction

1.1 Motivations

Virtualization is the key to understand the widespread appearence of Internet
services and cloud computing in today’s world. The ability to separate the log-
ical aspect of an application from the bare metal of the substrate machine on
which it is running opens a whole new set of possibilities with respect to the
past. The market of Internet services is not restricted to few entities that have
the resources to host them. Instead, service providers and owners of generic
applications may rent physical resources from cloud providers in a business
model called Infrastructure as a Service (Iaas). All goes in favor of the end users
that have access to a large variety of different services among which they can
choose what better suits their needs.

This business model promotes the growth of data centers, i.e., facilities that
contain large collections of server farms and exploit economy of scale. Modern
data centers make intense use of virtualization techniques to host customer’s
applications in a transparent way. The customer selects a set of Virtual Ma-
chines (VMs), usually the ones that best match their application’s requirements,
from the cloud provider’s catalog. Then, it is up to the cloud provider to decide
how to allocate them inside the data center to achieve high utilization of re-
sources while at the same time guaranteeing the Quality of Service (QoS) agree-
ments with the customers. The strength of this business model relies on the fact
that a data center acts as a virtually unlimited pool of resources that are given
to applications depending on their needs. Then, when a resource is not needed
anymore, it is released and goes back to the resource pool, ready for being re-
assigned.

5

1. Introduction

Amortized cost Component Sub-components
∼45% Servers CPU, memory, storage systems
∼25% Infrastructure Power distribution and cooling
∼15% Power draw Electrical utility costs
∼15% Network Links, transit, equipment

Table 1.1: Costs in a data center [1].

To be able to maintain this kind of infrastructure, cloud providers have to
face significant costs. Depending of their size, data centers can accomodate
up to dozens, or even hundreds, of thousands of servers. This reflects in an
electricity consumption comparable to a small town. According to [1], a mega
data center’s annual power consumption can cost up to 10 million dollars on
average. This number is probably outdated today. According to Raritan Inc. [5],
one of the leading providers in power managements solutions for data centers,
among the top five challenges for data center managements we can find:

• Improving Utilization of Capacity (Power, Cooling, Space),

• Managing Energy Usage & Costs.

The energy is mainly consumed by servers and network switches. The power
consumption of a server depends on his workload and can range from approxi-
mately 50W when idle to 300W-400W at full load. A lot of effort has been put
in the past to lower the power consumption of an idle machine. The power con-
sumption of a network switch depends on the volume of traffic that it is able to
route. For example, a 24-port switch connected to Gigabit links can require up
to 15W, and often a large data center is equipped with larger switches connected
to 10-Gigabit links. Additionally, there are significant periodic costs devoted to
servers’ and network’s maintainance. ICT technology evolves constantly and
deteriorates quickly, requiring periodical upgrading or fixing. Therefore, while
turning on a server brings an energy cost, the cloud provider would prefer to
have it running and generating the profit that it was paid for. Table 1.1, taken
from [1], provides an overview of the aggregated costs of a data center.

In order to overcome these significant costs, the task of finding the most prof-
itable resource allocation plays a key role. A commonly used metric to describe
this idea is the data center Power Usage Efficiency (PUE) which is defined as:

PUE = (T otalFacilityP ower)/(IT EquipmentP ower)

6

1.1. Motivations

According to [1], a state of the art facility will typically attain a PUE of approx-
imately 1.7, which is far below the average of the world’s facilities but more
than the best. Inefficient enterprise facilities will have a PUE between 2.0 and
3.0. This means that, just through a more careful choice of resource allocations,
power consumption could be reduced by 50%, maybe even more, leading to sig-
nificant profits for the cloud providers and to infrastructures more sustainable
from an environmental perspective.

The efficiency/inefficiency described by the PUE index can be explained by
the phenomenon of fragmentation. A poor resource allocation causes servers
capacities to be inefficiently used, i.e, a fraction of the virtual pool of resources
cannot be used because it is distributed among hosts in fragments too small to
accommodate anything. Fragmentation can also cause applications to be unnec-
essarily split among servers. Ideally the network should be such that any server
has the same distance from all the others, but in reality network topologies
cannot guarantee such property. Therefore, splitting an application organized
in multiple tiers can cause the application traffic to travel through more links
and switches than necessary, causing unnecessary links’ usage, more switches’
power consumption and ultimately more delays for the end-user. Inefficiency
in resource utilization also translates in more power consumed by the cool-
ing system, whose goal is to reduce the machines’ temperature to avoid system
failures. This quantity is quite relevant. Accordingly to [1], out of each watt
delivered, approximately 59% goes to the IT equipment, 8% goes to power dis-
tribution loss, and 33% goes to cooling. Improving resource allocation would
allow for lower cooling costs as well as more applications served at the same
power costs.

Seagate Technology PLC, one of the companies leader in data storage, pro-
vides another list containing the top 10 challenges and priorities for data center
operators [6], including:

• Increasing energy costs,

• High energy consumption,

• Network clogging and connectivity issues,

• System scalability.

The emphasis is put not only on energy-related costs, but also on the difficulty
in realizing larger and larger data centers able to keep up with big-data trends.
In particular, cloud providers are interested in accepting as much requests as
possible. Given that nowadays resources as computing power and memory are
available in generous quantities, the most critical type of resource that can con-
stitute a bottleneck for the scalability of modern data centers is the bandwidth

7

1. Introduction

Figure 1.1: Three-tier web application scheme.

utilization. In fact, in today’s wide spectrum of applications, the most common
ones are three tiers web applications (see Figure 1.1) that require intensive com-
munication from and towards the Internet as well as among themselves. While
data centers employ robust network topologies to partially overcome the issue,
they are not enough and a careful optimization planning is needed to avoid the
saturation of network links.

This focus of optimizing the network aspect goes under the name of traffic-
aware optimization. Such scenario, and the optimization problem related to it,
have been known and studied for quite some time now. However, technologies
involved in this context are always changing and evolving and the techniques
used to solve the problem can be refined to account for new factors and priori-
ties that arise in the real world.

1.2 Thesis organization

This thesis is organized as follows.

In Chapter 2 we briefly discuss some relevant technological aspects, such
as VM consolidation via live-migration, differences between container and VM
technology and most frequently used network topologies. Then, we summarize
a selection of previous works about the optimization problems of VM place-
ment and VM consolidation via live-migration. The VM placement problem
consists in determining the optimal allocation, in terms of traffic management,

8

1.2. Thesis organization

of a set of new VMs, while the VM consolidation problem consists in periodi-
cally updating, through the tool of VM migration, the allocation of some VMs
already running in order to minimize the energy costs of the data center.

In Chapters 3 and 4 respectively we present two variants of the two prob-
lems previously introduced: the short-term VM Placement Problem (VMPP) and
the long-term VM Migration Problem (VMMP). The two are tackled indepen-
dently, but are meant to coexist. For each of them, we provide a Mixed Integer
Linear Programming (MILP) formulation.

In Chapter 5 we describe two Greedy Randomized Adaptive Search Pro-
cedures (GRASP) that we developed to find approximate solutions of the two
problems. The VMPP’s heuristic is composed by a greedy randomized proce-
dure, that builds an initial solution, and by a local search procedure that starts
from such solution and looks for improvements until it reaches a local mini-
mum. The VMPP’s heuristic is composed by a greedy randomized procedure, a
local search procedure and an additional Path Relinking procedure that builds
new solutions starting from a pool of solutions obtained by the local search.

In Chapter 6 we describe how we derived the instances used in our tests
from real-world data, benchmarks and VM vendors.

In Chapter 7 we report the computational results of the comparison between
the quality of the solutions found by our two heuristics and the optimal solu-
tions obtained by solving the MILP formulations with the state of the art solver
CPLEX for instances with up to 128 (VMPP) and 54 servers (VMMP). Larger
instances with up to 10000 servers are also tested.

In Chapter 8 we draw some conclusions and mention some possible future
works.

The Appendix contains some details that were omitted or shortened for
readability throughout the whole thesis, as well as a recap of the more refined
versions of the MILP formulations and some UML class diagrams explaining
how the code of our heuristics is structured and organized, so that anyone will-
ing to adopt it or extend it is offered all the tools to do it.

9

CHAPTER 2
State of the Art

In this chapter we analyze the state of the art related to resource management in
cloud data centers. Section 2.1 is devoted to some relevant technology solutions
and tools that are available to cloud providers and that must be considered
when tackling any problem related to this field. Section 2.2 is devoted to the
two main optimization problems we are interested in: VM placement and VM
migration. We summarize a subset of relevant works in the literature from
which we take inspiration.

2.1 Technology review

In this section we summarize some of the most successful technical solutions
adopted in modern data centers. These solutions are fundamental to under-
stand some of the key aspects and decisions that we are going to make when
modeling the problems later on.

Section 2.1.1 introduces the VM technology, which constitutes the core of the
whole thesis. Section 2.1.2 is devoted to the description of how VM migration is
implemented, which are the tools that make it effective, which are the goals that
drive the choice of the specific techniques that can be used. Section 2.1.3 discuss
the benefits of containers technology that is recently raising in popularity as an
alternative tool to implement virtualization. We go through a direct comparison
with the classical VM technology, pointing out advantages and drawbacks of
both. Finally, Section 2.1.4 contains an overview on the three most commonly
used network topologies in modern data centers.

11

2. State of the Art

Figure 2.1: Virtual Machine technology.

2.1.1 Virtualization and Virtual Machines

Virtualization technologies allow to separate applications from the systems on
which they are running treating them as two distinct independent entities, with
evident benefits in terms of application management, portability and deploy-
ment. Historically, the most successful virtualization technology is the Virtual
Machine (VM) technology. A VM is a software environment that, from the point
of view of an application, acts exactly as a physical machine. It features its own
Operating System that runs on top of the OS of the physical machine, including
a virtual storage, a virtual processor and a virtual memory space. This is possi-
ble thanks to a hypervisor, i.e., a software that operates on a level between the
physical machine and the VM, as shown in Figure2.1. A hypervisor, e.g., Xen,
manages and coordinates all the different VMs running on top of it, making
sure that each one of them is allocated the proper amount of physical resources
at any given time. Indeed, a VM is supposed to be transparent to other VMs
running on the same system, i.e., it should be isolated from anything outside it
and its execution should not be influenced by the behavior of other VMs.

2.1.2 VM Live-Migration

Thanks to virtualization, cloud providers have the possibility not only of choos-
ing the most convenient allocation of VMs, but also of changing VMs deploy-
ments whenever a more convenient configuration becomes available. This even-
tuality is intrinsic in the nature of an online ever-changing system and needs to
be considered to achieve good results in the profit maximization. While offline

12

2.1. Technology review

migration, i.e., turning off a VM on a host and booting an identical new one on
another host, is a possibility, the most appealing option is to be able to migrate
a VM’s memory and execution state through the network towards the new se-
lected host while the VM is running. This way, the end-user does not lose its
session at any point of the process. Two main different techniques exist in the
context of VM Live-Migration: post-copy migration and pre-copy migration [7].
Each of them is designed to strive towards a particular goal, with the two goals
being in contrast with each other.

Post-copy migration chooses to immediately switch the execution of the ap-
plication to the new selected machine. The new hosts will not have yet the
correct memory pages and will need to fetch them from the original host when
required. This implies that there will be a period right after migration in which
the end-user will perceive a significant downgrade of application performance
until the VM has recovered enough memory pages to work correctly. The ad-
vantage of this approach is that memory pages are fetched only once and the
overall migration process have minimum predictable duration, even if the user
experiences full perception of this duration. Since, apart from the migration
traffic, the network has already to sustain the normal traffic loads of VMs that
do not migrate, this advantage can be relevant.

On the other hand, pre-copy migration sends the memory pages to new host
first, and then switches the execution context of the application from the origi-
nal machine to it. This way, the end-user perceives minimal performance down-
grade, almost none. However, since memory pages are sent when the original
VM is still running, many of them can become incorrect shortly after, requir-
ing a longer process of synchronization where modified pages are continuously
sent until a certain level of stability is reached. Only at that point the execu-
tion context is switched. This implies more pages sent than the actual size of
a VM state and more time spent overall. Also, pre-copy migration allows the
possibility to safely recover from a failure during migration, whereas post-copy
migration does not.

If robustness and user experience are mandatory and the system offers enough
network capacity, pre-copy migration is the correct option despite of its lim-
its. In all other cases post-copy migration is preferable due to predictability,
short duration and low resource usage. In particular tests run in [7] show how
pre-copy migration consistently takes up 600% of the time used by post-copy
migration, if not more.

2.1.3 Containers vs VMs

In recent years, containers have grown in popularity as a way to virtualize cus-
tomers’ applications in a cloud environment, the reason being mainly their

13

2. State of the Art

Figure 2.2: Virtual Machine technology vs Container technology.

lightweight nature with respect to classic VMs. A comparative study of Con-
tainers with respect to Virtual Machines is reported in [8].

Differently from a VM, a container does not need to be wrapped in a virtual
OS, but it only requires to load some dependencies to be run on the underlying
OS of the physical machine (see Figure 2.2) with the help of a Container Engine,
such as Docker. Even if this comes at the cost of lower security and isolation for
the applications (they do not have their dedicated virtual CPU and memory and
are not wrapped in an isolated environment), the advantages are definitely rel-
evant. First of all, the lack of a virtual OS means that the impact of a container
on a server is much lower. Consequently the average number of containers
that a single machine is able to host is higher with respect to VMs. Moreover, to
launch a container, there is no need to retrieve the correct OS image from a disk,
boot the OS and finally have it online. This apparently minor aspect allows to
entirely avoid the problem of optimal VM images placements [9]. Therefore,
the overhead for turning on/off a container is much lower with respect to a VM
and the operation can be performed in a matter of seconds instead of minutes.
Also, even if, as of today, containers’ migration is not mature yet [8], the ad-
vantages seems promising. Migrating a container does not require to migrate
the whole OS’s state together with the application’s state, while also loading the
correct OS image on the new destination. Thus, even though a mature technol-
ogy like the VMs pre-migration technique [7] is not available for containers, the
much lower impact on physical links together with lower migration time and
lower booting overhead vastly overcome the reduction in applications’ down-
time achieved by VMs pre-migration. Currently, containers migration can be
implemented through the tool of Chekpoint/Restore in Userspace (CRIU), i.e.,

14

2.1. Technology review

Figure 2.3: Fat-Tree topology.

freezing a running application and checkpoint it to persistent storage as a col-
lection of files that can be later used to restore and run the application from the
point it was frozen at.

2.1.4 Network topologies

The network is the core of a data center. Not any arbitrary kind of network is
able to sustain the business of a cloud provider. A certain number of properties
have to be fulfilled. The architecture has to provide a good scalability level to
be able to face incremental data centers. For this reason, the successful topolo-
gies are organized in different levels of servers groups. Typically a handful of
machines is connected to a common network switch called Top of Rack (ToR).
This group of hosts, called rack, is then connected to other racks through one
or two levels of aggregation nodes in such a way that the distance in terms of
nodes among different groups of servers is always the same. This allows to par-
tially hide the physical structure of the network and to make the geographical
position virtually irrelevant, thus abstracting the distributed resources into a
pool of resources. In case of a Fat-Tree topology , racks are themselves grouped
into pods, and the equidistance property holds both among pods and among
racks inside each pod, as well as among hosts inside each rack.

Figure 2.3 illustrates a Fat-tree topology with four core nodes connected to
three pods. Each pod is constituted by two aggregation nodes and two edge
nodes forming a bipartite graph. Each edge node at the bottom is connected to
two servers constituting a rack. The main advantage of a Fat-tree topology with
respect to a trivial Tree topology is that the bipartite graph in the intermediate

15

2. State of the Art

Figure 2.4: VL2 topology.

level provides more robustness in case of a link failure that would otherwise
isolate a portion of the network.

Instead, the VL2 topology differs from the Fat-Tree for the organization of
aggregation links/nodes and core/nodes. While in the latter each pod is or-
ganized with an internal bipartite graph among aggregation and edge (ToR)
nodes, with the core nodes being outside, the VL2 topology is characterized by
a bipartite graph among the entirety of core nodes and aggregation nodes. Fig-
ure 2.4 shows a VL2 topology featuring a bipartite node of four core nodes and
four aggregation nodes. Such structure leads to a third level with three edge
ToR nodes that are directly connected to the servers. The advantage of VL2
over Fat-Tree is that VL2 is designed to implement valiant load balancing, i.e.,
traffic generated by the edge nodes is forwarded first to a randomly selected
core switch and then back to the actual destination. The rationale behind it is
that when traffic is unpredictable the best way to balance load across all avail-
able links is to randomly select a core switch as an intermediate destination.

Finally, the Bcube topology is a more recent architecture that has its own
peculiarity in a multi-level recursively-defined structure. Instead of being all
located at the bottom level, servers are spread among the multi-level structure.
Figure 2.5 shows a trivial Bcube topology with only one level of Bcubes, each
Bcube containing n = 4 servers. In case of more levels, each Bcube would be
connected to n other Bcubes in the second level, and so on. The advantage
of such topology is the possibility to merge the hosts into the network infras-
tructure, having them acting also as routing nodes and forwarding packets on
behalf of other servers.

Other than equidistance, each of these topologies is able to provide high con-

16

2.2. Previous works

Figure 2.5: Bcube topology.

nectivity, meaning that each server pair can communicate at full bandwidth. To
make this possible, the topology must be able to offer different alternative paths
between server pairs in order to be as robust as possible towards occasional fail-
ures, congestion or traffic peaks occurring in any part of the network. To fully
achieve this type of ideal property, however, the network topology itself is not
enough and a second step in the form of traffic-aware optimization, which is
the focus of this thesis, is needed.

2.2 Previous works

In the literature we found two main areas of research about data center opti-
mization:

• VM placement optimization, which is about deciding the best allocation of
new VMs each time a group of new requests arrives to the cloud provider,

• VM migration optimization, which is about deciding how to migrate VMs
in order to apply a partial reconfiguration of the system and release the
load on some resources to avoid bottlenecks.

In the latter case, often the optimization problem involves only the migration
process of pre-selected VMs, leaving the issue of selecting which VMs need to
be migrated to a pre-processing phase.

17

2. State of the Art

2.2.1 VM Placement Problem

The VM Placement Problem in general is defined as the problem of finding a
suitable assignment between a set of VMs and a set of servers. At the core it
is a generalization of the Bin Packing Problem, from which it inherits the over-
all structure, while adding particular features specific to the context. For ex-
ample, typically each server is modeled as a multi-dimensional knapsack with
constraints on four different dimensions: CPU, RAM, disk and network band-
width. The bandwidth constraints can be extended to links, thus including a
Virtual Network Embedding (VNE) problem inside the formulation. Moreover,
different variants of the problem are defined through the choice of the objective
function. Nowadays, with the growth of intra-application traffic it is a com-
mon idea that good solutions should aim for minimizing the traffic overhead in
the whole network. Indeed, VMs and applications come with a traffic demand
matrix whose corresponding overhead heavily depends on the allocation cho-
sen by the cloud provider. Also, other than links utilization and traffic delays,
servers in a data center consume an amount of energy dependent on their work-
load, and a proper allocation can help in minimizing this cost. VM placement
is a known and well studied issue with several different approaches proposed
in the literature. An overview on the related research area can be found in
[10] and [11]. We are interested in works that cover the optimization problem
related to VM placement, and in the following paragraphs we summarize the
main contributions to which we refer.

In [12], Meng et al. consider the VM placement problem with a strong
emphasis on the network constraints. Their version of the problem is called
Traffic-Aware Virtual Machine Placement (TVMPP) and its peculiarity relies in
the objective function that they decided to use:

min
∑

i,j=1,..,n

DijCπ(i)π(j) +
∑
i=1,..,n

eigπ(i) (2.1)

where:

• n is both the number of VMs and VM slots considered, a slot being an
atomic amount of resources in their model,

• π denotes a permutation function that creates valid VM-slots assignments,
i.e., a function that assigns each VM to a valid location (slot),

• C is the communication cost matrix among servers,

• D is the traffic demand matrix among VMs,

18

2.2. Previous works

• vector g is a cost vector between servers and the Internet,

• vector e is the traffic demand vector between VMs and the Internet.

Due to the regularity of common data centers network architectures, authors
suggest that the mutual traffic among VMs pairs contributes to the global traffic
load by a factor depending on, other than the traffic D volume itself, a distance
measure C between the two. This distance is trivially the number of hops ap-
pearing in the shortest path between two VMs. In fact, the longer the path used
by a communication, the higher the number of links on which the traffic is sent.
Also, the second term of the objective function is shown to be a constant value,
due to the identical distance between each server and the Internet in all net-
work architectures. Therefore, it can be omitted. Another peculiarity of their
formulation is that they removed the bin packing nature of the problem by sim-
ply considering the data center machines as collections of identical CPU/RAM
slots to which any VM can be assigned. They also excluded the Virtual Network
Embedding problem by considering static single-path communications among
servers. Despite these simplifications, the problem is not an easy one, being a
case of Quadratic Assignment Problem (QAP).

They proceed to show the NP-hardness of TVMPP by reduction from the Bal-
anced Minimum K-cut Problem (BMKP), which is known to be NP-hard. Then,
following this reduction, they claim that the problem of finding a VM allocation
minimizing the weighted traffic overhead on the data center network is equiv-
alent to the problem of finding an allocation that puts highly communicating
VMs near to each other (e.g., in the same rack), therefore minimizing the traffic
in the core part of the network.

Given this consideration, authors develop a heuristic algorithm based on a
two-phase clustering procedure. This procedure applies separately a clustering
over the slots, which are their units of placement, that aims to find groups of
slots close to each other, then a clustering over the VMs with the goal of creating
groups of VMs with high intra-group traffic and low inter-group traffic. Finally,
given the two sets of clusters, they perform an assignment between the two.

The computational complexity of their heuristic is O(n4) that, despite be-
ing polynomial, is too heavy for computations on realistic instances. However,
we find that their choice of the objective function as well as the hops distance
measure are very interesting and we decided to use them too. The algorithm is
tested on instances of 1024 slots and 1024 VMs and results are compared with
other general QAP algorithms such as Local Optima Pairwise Interchange and
Simulated Annealing. Different realistic network architectures are used (Fat-
tree, VL2, Bcube), while traffic matrices among VMs are randomly generated
following the Global Traffic Model, i.e., VMs can send traffic to any other VM.

19

2. State of the Art

Another interesting work is [13] by Belabed et al. In their version of the
VM placement problem they take into account both the traffic demand and
the energy consumption simultaneously by minimizing a composite objective
function. However, their modeling of the traffic is a bit different from [12] in
the fact that, here, the quantity to minimize is not the global weighted traffic
itself but rather the upper bound of traffic on any link. This is a natural for-
mulation for avoiding bottlenecks but needs a more accurate modeling of the
network elements, making the problem more involved. The energy consump-
tion factor consists trivially in the number of servers that host at least one VM
and therefore cannot be turned off.

They propose a mathematical non-linear formulation for the problem that
includes two particular features: multipath forwarding and virtual bridging.
The first one is done by relaxing the domain of some variables in the formu-
lation and represent the situation in which communications between servers is
not forced on a single path but can be split along different ones allowing for a
more granular level of decisions. Instead, virtual bridging is the possibility to
have servers acting like routing nodes, therefore enabling more routing possi-
bilities.

Then, they developed a repeated matching heuristic that exploits the simi-
larity of the problem with the capacitated facility location problem, in particu-
lar the Single Source Facility Location Problem (SSFLP) and analyze the impact
of the two features previously mentioned on different network architectures.
In the end, they discovered that, when enabled at the same time, the two fea-
tures enter in contrast with each other. Moreover, activating virtual bridging
has an impact only on the traffic-term of the objective function and does not
bring benefits from an energy perspective.

Another interesting aspect of this work is the attention put into parameters
and data selection, in particular when it comes to VMs inter-traffic. Differently
from the previous work, which used the Global Traffic Model, here the authors
point out that in the real world VMs communicate only with the Internet or
with VMs belonging to the same application/customer. Therefore, the traffic
matrix can actually be partitioned into several smaller matrices. In this more
reasonable scenario, also the amount of traffic volumes are not completely ran-
dom. Instead, on average, they follow some predictable (to a certain extent)
distributions due to the common structures of Internet applications. We will
follow the same lines of reasoning when generating any set of instances.

A more recent work [14] by Larumbe and Sansò constitutes the most similar
approach to the problem we are going to face. Their focus is entirely on the VM
placement problem, but they claim that their framework is easily extendable to

20

2.2. Previous works

include VM migration. They define three possible inputs to the problem: add
a new application (i.e., a set of new VMs), remove an application or resize an
application (i.e., add or remove only a part of it). While removing VMs is a
straightforward task that does not require particular decisions, the distinction
between add and resize reflects on different procedures called when solving
heuristically the problem. We will adopt a similar distinction. The authors pro-
vide a MIP (Mixed Integer Programming) formulation for the problem. Since
the goal is to provide online-decisions, each application request is associated to
a time index t. Therefore, solving the problem for time t implies that the solu-
tion is based on all the solutions obtained previously for time t − 1, t − 2 and so
on. This is a quite natural approach that we will also use. However, their for-
mulation considers some aspects in a different manner with respect to us. For
example, the authors decide to include the network embedding aspect of the
problem, i.e., they define each application as a Virtual Network and explicitly
map it to the underlying substrate network of the data center, in a similar way
to [13]. We think that this decision brings too much of an impact on a problem
that aims to be solved online for large instances. Also, in practice, data center
networks architectures have enough link redundancy that, on average, adding
few VMs at a time (with respect to the overall system) does not require explicit
path/link mapping to avoid exceeding bandwidth capacities.

Moreover, they include a power consumption term in the objective function.
We decided to leave this aspect out of the online short-term decision process
and consider it only on the longer time window when a more significant num-
ber of VMs/containers is involved. The idea is that we take a more meaningful
power-aware decision that stays relevant for the entirety of the next long time
interval. This way, VM placement is driven only by traffic-aware metrics, mak-
ing the small decisions more consistent. Also, the traffic-aware metric already
gives incentives for packing groups of VMs/containers on machines close to
each other, or even on the same machine, without unnecessarily turning on too
many servers. Finally, the authors consider also workload variations. They use
a penalization term in the objective function to avoid to fully load each rack of
servers. Thanks to this term, the obtained allocations are more stable during
workload peak periods and subsequent time intervals.

After the MIP formulation, Larumbe and Sansò provide a two-phase heuris-
tic to efficiently solve large instances of the problem. The algorithm is com-
posed of a greedy procedure that quickly determines an initial solution and a
Tabu Search procedure that repeatedly explores the neighborhood of the last
best-solution found and selects the next one to explore. The neighborhood used
consists of solutions that differ from the initial one for the placement of a sin-
gle VM. Implementing a Tabu Search instead of a regular Local Search helps in

21

2. State of the Art

avoiding to get stuck in early local minima far from the optimal solution.
Since authors are particularly concerned with the online efficiency of the

solution, they run their tests on very large instances (up to 128000 servers) and
make comparisons with other naive approaches used in practice, in particular
with the First Fit algorithm. The results show significant advantages in terms
of traffic delay of applications and links’ utilization and minor advantages in
terms of power consumption. Workloads data are taken from a real data center,
but only one VM model and one server model are used, the latter with two
different power configurations.

2.2.2 VM Migration Problem

VM live-migration is generally defined as the problem of moving some VMs
from their current locations to other servers. The idea is that, after a small
dowtime of the involved applications, VMs can return to their normal behavior
in a transparent way. Therefore, booting a new VM on a different machine is
not enough, because the state of VM before migration has to be sent throughout
the network as well. Since it is not reasonable nor realistic that a data center
would build an entire separate network just for these migrations, the problem
requires to integrate the process with the normal traffic traversing the network,
exploiting efficiently the residual link capacities.

Often the VMs to be moved as well as their new selected destinations are
pre-computed by other procedures and assumed as input for the problem. If
one wanted to include the decision of which VMs to move and where to move
them, the already difficult problem would become more challenging. There-
fore, the scope of the decision involves only the choice of which links should be
used and how to split the traffic load among them in order to move all VMs in
the shortest time possible while not saturating the links. This objective comes
from the fact that the ultimate goal of live-migration is to be as less noticeable
as possible for the end-user, meaning that the average downtime of applications
should be minimized, but the cloud provider has also to make sure that the ap-
plications that are not involved in the migration process do not experience any
delay due to the additional overhead on the network.

As for VM placement, VM migration is a relevant and well studied issue.
An overview of the related research area can be found in [15]. Below we sum-
marize two main works that deal with the optimization problem related to VM
migration and to which we refer.

In [16], Liu et al. face the problem of optimizing live migration of VMs.
The goal is to minimize the global migration time of a predefined set of VMs

22

2.2. Previous works

that need to be re-mapped. Their assumption is that, due to constraints on the
resources, the best strategy might not be to move all the VMs simultaneously
but rather assign them to different migration steps. These steps are defined
as time intervals t0, t1 .. tn of predefined length. Therefore, minimizing the
global migration time translates into minimizing the number of steps needed
to move all the VMs, thus resulting in a sort of scheduling problem. Indeed,
they formulate the problem as a Migration Planning problem and provide both
a mathematical non-linear formulation and a MILP formulation derived from
the linearization of the previous one.

One of the peculiarities of their approach is the idea that the constraints on
the resources change significantly throughout the migration process and, there-
fore, the interactions between resources consumed and/or freed by migrating
VMs and resources used by other VMs at every step need to be modeled accu-
rately. We will consider this concept even though our approach does not make
use of multiple migration steps.

Unfortunately, the authors do not implement an heuristic on their own and
just solve the optimization problem on small instances by applying standard
Branch and Bound method and compare the results with a couple of very naive
heuristics, in particular a one-by-one migration heuristic that migrates VMs one
at a time and a completely random heuristic.

The main non-trivial result that they get is that inter-VM bandwidth require-
ments have a significant impact on the migration process and cannot be ig-
nored. This confirms the intuition of the authors and the opposite would have
been strange. Intuitively, having multiple VMs that suspend their traffic for
some amount of time and then recover it elsewhere lately is almost guaranteed
to add depth and complexity to the problem, unless the capacities involved are
so large that the problem itself becomes trivial. We will follow these insights
and include this aspect in our formulation, taking inspiration from some of the
linear constraints used here.

In the recent work [17], the authors tackle the VM migration problem with
a similar but yet different approach. As in [16], they formulate the problem as
a Migration Planning problem with the goal of optimizing the total migration
time so that the performance degradation of the system is minimized. Since
pre-copy migration is a common standard for VM migration, their model in-
cludes parameters regarding the page dirty rate for each VM.

The authors propose their own MILP formulation of the problem. Similarly
to [16], the idea is that not all VMs will be migrated simultaneously, but, de-
pending on the state of the network and on the VM requirements such as the
different page dirty rates, a proper sequencing of migrations should be chosen

23

2. State of the Art

to efficiently utilize the network resources. Differently from [16], however, they
do not pack groups of migrations into discrete time intervals of fixed duration.
Instead, they try to have all the network resources saturated at any given time
during the entire process of migration. This way, it becomes more difficult to
explicitly define the total migration time, because it cannot be expressed nei-
ther as the sum of all single migration times nor as the sum of the duration of
fixed time intervals.

To overcome this obstacle, they reformulate the objective function, claim-
ing that minimizing the total migration time is equivalent to maximizing the
average transmission rate during the whole migration process. This is justified
by the fact that, in general, the migration time of a VM depends only on two
factors: the size of the VM’s state to be transferred, which is known and fixed,
and the transmission rate. Their idea is to repeatedly select groups of VMs that
maximize such criterion until no more VMs need to be moved. Therefore, their
model has to be recomputed and solved for several iterations, specifically each
time any migration comes to an end. Since there are no pre-defined rounds of
migration, at each iteration some of the previously started migrations will be
completed, while others might still be active and the following batch of mi-
grations have to take their presence into account when allocating the network
resources.

Then, since the problem is NP-hard, they propose a fully polynomial time
approximation (FPTA) algorithm based on linear approximation, multicom-
modity flows and Dijkstra Shortest Path algorithm. The algorithm is guaran-
teed to find a k-approximate solution inO(1

(k− σ2)2m(m+nlogm)logn) time, where

n is the number of nodes, m is the number of links and σ is the accuracy of the
underlying linear approximation.

Results are compared with a one-by-one migration heuristic, a grouping-
migration heuristic and with the optimal solutions of the MIP on relatively
small instances. The FPTA algorithm significantly outperforms the two heuris-
tics and remain close to the MIP solutions, while the computing time required
is less than the time needed to solve the LP of the MIP problem. Testbed in-
stances are generated by looking at a real data center’s topology and arbitrarily
choosing some parameters for servers and VMs. Intra-data center architectures
as well as inter-data center architectures are considered, making the algorithm
more general and resilient to the choice of different network topologies.

2.2.3 Joint VM Placement and Migration

As far as we know, the authors of [18] are the only ones that try to tackle both
the VM Placement Problem and VM Migration problem at the same time. Also,

24

2.2. Previous works

they even include the power consumption aspect of the problem in their for-
mulation. They do so by defining a multi-objective function that minimizes a
combination of inter-VM traffic, migration traffic overhead and servers’ power
consumption. Given the extreme difficulty of solving the overall problem all at
once, they opt for a problem formulation that omits several details about both
VM placement and migration.

In particular, they propose a simple MILP formulation that models the as-
signment of new VMs and the re-assignment of VMs already in the system at
the same time, making sure that hosts’ resources are not saturated, but without
explicitly considering the network part of the problem, i.e., capacities on links.
Moreover, while the power consumption term in the objective function is mod-
eled quite precisely (our version will be similar), the inter-VM traffic is modeled
solely as the amount of traffic traversing the network, without considering any
distance measure, and the migration term is very roughly approximated just
with the number of VMs selected for migration. Therefore, this type of formu-
lation does not exploit in any way the intuition that highly inter-communicating
VMs should be grouped in the same rack. It only recognizes the advantage of
putting them in the exact same server. This does not fully address the concern
about lowering the traffic overhead in the core part of the network, an issue
recognized by many works in the field, including the ones already mentioned.
Also, neglecting the modeling of link capacities, at least in the migration half
of the problem, is a very strong assumption, given the results achieved by [16]
and [17] in this field.

Although the formulation proposed is not very involved, the problem is still
NP-hard and the authors solve a relaxation. In particular, they relax some inte-
ger variables (used for assignment) to accept values in the [0,1] interval so that
the formulation becomes an LP formulation that can be quickly solved with any
state of the art solver. Then, they develop a heuristic procedure to build a feasi-
ble solution of the original problem starting from a solution of the relaxed one,
i.e, a procedure to decide whether a variable in [0,1] should be lifted to 1 or
floored to 0 to obtain a feasible assignment.

Their work is validated on instances of relative small size with data centers
hosting 250 VMs. However, the VM parameters are taken from a real vendor
(Amazon EC2), an approach that we also decide to follow. Due to the lack
of both network capacities and distance measures in the formulation, the ap-
proach used in this work does not really need to specify any kind of network
topology. Results are compared to the ones obtained with a Random heuristic
and a First Fit Decreasing heuristic, outperforming them on the quality of the
solutions. However, as it can be expected, an approach based on repeatedly
solving linear relaxations takes a lot more time than a fast greedy procedure.

25

2. State of the Art

Work VMP Migr. Formulation Heuristic Test instances
[12] Yes No traffic-aware, clustering, medium size,

no bin packing O(n4) homog. VMs/ hosts,
3 topologies

[13] Yes No MIP, energy, double-matching small size,
bin packing, VNE heterog. servers,

realistic traffic
[14] Yes No MIP, energy , greedy+ large size,

bin packing, VNE, Tabu Search homog. VMs
traffic-aware and hosts

[16] No Yes MILP, None small size
migr. planning

[17] No Yes MIP, FPTAS based on medium size, param.
migr. planning LP relaxation arbitrarely chosen

[18] Yes Yes MIP, no network rounding procedure small size,
aspect after LP relaxation real VMs

Table 2.1: State of the art.

2.2.4 Characterization of this work

Let us summarize in Table 2.1 the contributions brought by the works previ-
ously discussed in order to have an overview on the state of the research in this
field.

With this thesis, our goal is to tackle both VM placement and VM migration
problems, like in [18], in an joint way, providing a detailed MILP formulation
for each of them. The formulations will take into account the bin packing na-
ture of the problem as well as a strong emphasis on the network aspect through
traffic-aware optimization, without forgetting to look at the power consump-
tion. They will be built putting together the most significant constraints and
aspects of the formulations discussed in the revised literature as well as includ-
ing some new approaches. The models are meant to be directly solved through
state of the art solvers only for small-to-medium instances. Then, we aim to
solve reasonably large instances of the problems with two ad-hoc heuristics,
whose goal is to combine speed and accuracy, like in [14] for the VM placement
problem. The heuristic procedures will be tested on instances ranging from
small to large sizes, generated with real heterogeneous data about VMs, as in
[18], and servers and realistic traffic patterns, like in [13].

26

CHAPTER 3
VM Placement Problem

This chapter is devoted to a variant of the Virtual Machine Placement Prob-
lem, which consists in optimizing the allocation of a new set of VMs on an
already running system, with an emphasis on traffic-awareness and bandwidth
resources.

In Section 3.1 we describe the context of the problem, mentioning the most
relevant aspects and the reasons behind some crucial assumptions. In Section
3.2 we provide a precise definition of the problem, which takes into account the
main features of the setting under consideration. All the required parameters
are specified, as well as the objective function and the constraints. In Section
3.3 we describe a first nonlinear programming formulation which is useful to
understand the meaning of the objective function and the main constraints. In
Section 3.4 we derive a Mixed Integer Linear Programming (MILP) formulation.
This process is carried out step by step. The final version of the formulation,
which can be directly tackled with a state of the art commercial solver, is sum-
marized in the Appendix.

3.1 High level description

We are in the context of an operating data center constantly receiving requests
for the allocation of new VMs and/or the shutdown of older ones. The place-
ment of a new VM on a server needs to be performed within a short amount
of time, e.g., five minutes, in order to keep up with incoming requests. For
this reason, the decision process does not reconsider any allocation done be-
fore and considers the already placed VMs as fixed parts of the system. Given
these assumptions, the VMs’ shutdown becomes trivial and does not actually

27

3. VM Placement Problem

involve any kind of decision. Therefore, only the placement of new VMs is
modeled, while any shutdown request is considered during a of pre-processing
phase. We exclude some servers from the decision by looking at their CPU uti-
lization. Only servers with a CPU utilization factor below a certain threshold
ρ, e.g., 60%, will be taken into account. This criterion simultaneously reduces
the combinatorial complexity of the problem and avoids the saturation of a re-
source that has a strong impact on servers’ performances. The problem consists
in finding the VMs placement that minimizes the global traffic load over the
network.

Since the set of new VMs represents a very small percentage of the overall
system, we do not consider the network as a bottleneck and we do not model it
here. Moreover, the impact of the communication between VMs with respect to
the traffic load directly depends on the number of hops traversed. For the sake
of simplicity, we consider a pre-computed path between every pair of servers
for which we know a-priori the cost, namely the number of hops. New and
existing VMs are owned by a set of customers.

The focus of this thesis is on VM placement and migration. However, since
containers placement differs from VM placement only for the value of some
parameters, in the description of the problem we refer to containers.

3.2 Problem description

Given a data center composed by:

• a set of servers S ,

• a set of under-utilized servers Su ⊂ S (< ρ cpu utilization),

• a set of already placed containers C,

we need to find a placement for a set of new containers C owned by a set of
customers R. Each container c is characterized by a set of resource demands:

CPUcs : CPU utilization contribution of container c over server s,

MEMc : RAM demand of container c,

DISKc : disk IOPS demand of container c,

dcb : outgoing traffic from container c to any other container b,

dbc : incoming traffic to container c from any other container b.

28

3.2. Problem description

Since some containers communicate with the world outside of the data-center,
we use a simple trick to model this factor: we define a special dummy container
c0 that generates and receives all the external traffic, and a special dummy
server s0 equipped with unlimited resources which is meant to only host c0.
For notation purposes, we keep them separated from S and C respectively. For
containers that belong to C the known placement is specified by the following
parameter:

xcs =

1 if container c is placed on server s
0 otherwise

Of course, the assumption is that xc0s0 is equal to 1 and that the above parameter
represents a feasible assignment, meaning that each container is assigned to
one and only one server without exceeding any capacity and the only container
assigned to s0 is c0. Finally, each server s is modeled with a set of residual
resource capacities:

CPU s : residual CPU capacity of server s,

MEMs : residual RAM capacity of server s,

BDW
out
s : residual output bandwidth capacity of server s,

BDW
in
s : residual input bandwidth capacity of server s,

DISKs : residual disk IOPS capacity of server s,

while the known communication cost between any couple of servers (s1, s2) is

given by a parameter COSTs1s2 . To be precise, BDW
out
s and BDW

in
s already ac-

count for possible variations in the traffic demands between pairs of already
existing containers caused by the new containers request. For example, a client
may request a new container in order to reduce the workload of similar con-
tainers, thus changing some already existing values in the traffic matrix. These
changes are already accounted for in our parameters so that we can focus only
on new traffic.

The variant of the short-term VM/container placement problem that we ad-
dress can be stated as follows.

Virtual Machine Placement Problem (VMPP): Given a set S of servers
and a set of C of new VMs (containers), determine an assignment of
each new VM (container) to exactly one server so as to minimize the
traffic load introduced by the new VM (containers) weighted by the
cost of the routing paths, while satisfying the mentioned constraints.

29

3. VM Placement Problem

Old traffic appears as a constant and therefore can be neglected. The objective
function only needs to account for the internal traffic since, for every possible
placement, the hops distance between a server and the WAN outside of the data
center is the same, resulting in a constant. This variant of the problem consid-
ers the objective function defined in [12] as well as the bin-packing structure
used in [13], [14] and [18]. However, differently from [13] and [14], the band-
width constraints are considered as an additional knapsack dimension, without
explicitly modeling the network.

3.3 First nonlinear programming formulation

By considering decision variables:

xcs =

1 if new container c is placed on server s
0 otherwise

∀c ∈ C, ∀s ∈ Su

and the auxiliary variables:

ts1s2 ≥ 0 : amount of new traffic between servers s1 and s2 ∀s1, s2 ∈ S ,

the problem can be formulated as follows:

min
∑
s1,s2∈S

COSTs1s2 · ts1s2 (1.1)

s.t. ∑
s∈Su

xcs = 1 ∀c ∈ C (1.2)

∑
c∈C

CPUcs · xcs ≤ CPU s ∀s ∈ Su (1.3)

∑
c∈C

MEMc · xcs ≤MEMs ∀s ∈ Su (1.4)

∑
c∈C

DISKc · xcs ≤DISKs ∀s ∈ Su (1.5)

∑
c1∈C

∑
c2∈C

dc1c2 · (1− xc2s) · xc1s +
∑
c1∈C

∑
c2∈C∪{c0}

dc1c2 · (1− xc2s) · xc1s+∑
c1∈C

∑
c2∈C

dc1c2 · (1− xc2s) · xc1s ≤ BDW
out
s ∀s ∈ Su (1.6)

30

3.3. First nonlinear programming formulation

∑
c1∈C

∑
c2∈C

dc2c1 · (1− xc2s) · xc1s +
∑
c1∈C

∑
c2∈C∪{c0}

dc2c1 · (1− xc2s) · xc1s+∑
c1∈C

∑
c2∈C

dc2c1 · (1− xc2s) · xc1s ≤ BDW
in
s ∀s ∈ Su (1.7)

ts1s2 =
∑
c1,c2∈C

dc1c2 · xc1s1 · xc2s2 +∑
c1∈C,c2∈C

dc1c2 · xc2s2 · xc1s1 +

∑
c1∈C,c2∈C

dc1c2 · xc1s1 · xc2s2 ∀s1, s2 ∈ S (1.8)

xcs ∈ {0,1} ∀c ∈ C, ∀s ∈ Su .

An explanation of the objective function and constraints is provided below:
The objective function, i.e., Equation (1.1), aims at minimizing the sum of

the new traffic between each pair of servers, that is equivalent to minimize the
overall new traffic introduced in the system. The traffic is given by Equations
(1.8) and is weighted by the number of hops, which is known a-priori for each
servers pair’s path.

Constraints (1.2) express the assignment of containers to servers. Each new
container c must be assigned to exactly one under-utilized server s.

Constraints (1.3)-(1.5) express the servers’ capacity constraints for resources
such as CPU, RAM and disk IOPS. For each server s, the sum of the demands
of new containers assigned to s must not exceed s’s residual capacity for that
resource. This holds for each of the three resources.

Constraints (1.6)-(1.7) express the servers’ capacity constraints for in/out
bandwidth resources. Differently from the three resources discussed above, the
demands related to the bandwidth does not depend only on the single contain-
ers, but also on the placement of inter-communicating containers. This is due
to the fact that the communication between two containers placed on the same
server does not pass through any physical link. Constraints (1.6) impose that

31

3. VM Placement Problem

the new outgoing traffic demand exiting from each server s is given by the traf-
fic between two new containers, or from a new container to an old container,
or from an old container to a new container. In all these cases, the related term
is nonzero only if the source container c1 is assigned to s, while the destina-
tion container c2 is not. External traffic is accounted for by the inclusion of c0.
Symmetrically, Constraints (1.7) deal with incoming traffic demands. The total
demands cannot exceed the residual capacities of the servers.

Equations (1.8) are auxiliary constraints making the new traffic between ev-
ery pair of servers explicit. The first part accounts for the traffic between new
containers, while the second and the third parts account for the traffic new-to-
old and old-to-new respectively.

The formulation is clearly nonlinear due to the presence of bilinear terms, in
particular the multiplication of binary variables in Constraints (1.6), (1.7) and
in the first term of Equations (1.8).

3.4 Linearization and improvements

As previously mentioned, the above formulation contains three types of bilinear
terms, such as:

ts1s2 =
∑
c1,c2∈C

dc1c2 · xc1s1 · xc2s2︸ ︷︷ ︸ +... (1.8),

∑
c1∈C

∑
c2∈C

dc1c2 · (1− xc2s) · xc1s︸ ︷︷ ︸+... (1.6),

∑
c1∈C

∑
c2∈C

dc2c1 · (1− xc2s) · xc1s︸ ︷︷ ︸+... (1.7).

Each product of two variables can be linearized by introducing a new binary
variable w that maintains the same meaning and behavior thanks to three new
constraints:

wc1s1c2s2 ≤ xc1s1 ∀c1, c2 ∈ C, ∀s1, s2 ∈ Su (1.9)

wc1s1c2s2 ≤ xc2s2 ∀c1, c2 ∈ C, ∀s1, s2 ∈ Su (1.10)

wc1s1c2s2 ≥ xc1s1 + xc2s2 − 1 ∀c1, c2 ∈ C, ∀s1, s2 ∈ Su (1.11)

32

3.4. Linearization and improvements

wc1s1c2s2 ∈ {0,1} ∀c1, c2 ∈ C, ∀s1, s2 ∈ S .
Indeed, the product between xc1s2 and xc2s2 is equal to 1 if and only if both
variables have a value of 1, thus forcing wc1s1c2s2 to 1 thanks to Constraints
(1.11). Instead, if either xc1s2 or xc2s2 have value 0, both their product and,
thanks to Constraints (1.9)-(1.10), variable wc1s1c2s2 are equal to 0. This way,
Constraints (1.6) become:

∑
c1∈C

∑
c2∈C

dc1c2 · (xc1s −wc1sc2s) +
∑
c1∈C

∑
c2∈C∪{c0}

dc1c2 · (1− xc2s) · xc1s+∑
c1∈C

∑
c2∈C

dc1c2 · (1− xc2s) · xc1s ≤ BDW
out
s ∀s ∈ Su , (1.12)

while Constraints (1.7) become:∑
c1∈C

∑
c2∈C

dc2c1 · (xc1s −wc1sc2s) +
∑
c1∈C

(
∑

c2∈C∪{c0}

dc2c1 · (1− xc2s)) · xc1s+∑
c1∈C

∑
c2∈C

dc2c1 · (1− xc2s) · xc1s ≤ BDW
in
s ∀s ∈ Su (1.13)

and Equations (1.8) become:

ts1s2 =
∑
c1,c2∈C

dc1c2 ·wc1s1c2s2 +∑
c1∈C,c2∈C

dc1c2 · xc2s2 · xc1s1 +

∑
c1∈C,c2∈C

dc1c2 · xc1s1 · xc2s2

∀s1, s2 ∈ S . (1.14)

The formulation is now a Mixed Integer Linear Program. Since we know a-
priori that containers will communicate only with containers owned by the
same customer, we improve the formulation by partitioning the sets of new
and old containers and the traffic matrix. First of all we define some new sets:

• a set Cr ⊂ C composed by all the new containers owned by customer r ∈
R. There is one of these sets for every customer r and they constitute a
partition of C,

33

3. VM Placement Problem

• a set Cr ⊂ C composed by all the old containers owned by customer r ∈ R.
There is one of these sets for every customer r but they do not constitute
a partition of C because R collects only customers of the new request ,

• a set Sr ⊂ S composed by all the servers that host at least one container
owned by customer r ∈ R. There is one of these sets for every customer r,
but they do not constitute a partition of S .

Then, we can partition the traffic matrix D into |R| traffic matrices Dr , and
the linearization variables w into multiple wr variables. Special container c0
is added to the traffic matrix of every customer r. Constraints (1.6), already
changed into (1.12), finally become:

∑
r∈R

∑
c1∈Cr

∑
c2∈Cr

drc1c2 · (xc1s −w
r
c1sc2s) +

∑
r∈R

∑
c1∈Cr

∑
c2∈Cr∪{c0}

drc1c2 · (1− xc2s) · xc1s+∑
r∈R

∑
c1∈Cr

∑
c2∈Cr

drc1c2 · (1− xc2s) · xc1s ≤ BDW
out
s ∀s ∈ Su . (1.15)

Similarly Constraints (1.7), already changed into (1.13), finally become:

∑
r∈R

∑
c1∈Cr

∑
c2∈Cr

drc2c1 · (xc1s −w
r
c1sc2s) +

∑
r∈R

∑
c1∈Cr

∑
c2∈Cr∪{c0}

drc2c1 · (1− xc2s) · xc1s+∑
r∈R

∑
c1∈Cr

∑
c2∈Cr

drc2c1 · (1− xc2s) · xc1s ≤ BDW
in
s ∀s ∈ Su (1.16)

The linearization Constraints (1.9)-(1.11) also need to be modified as follows:

wrc1s1c2s2 ≤ xc1s1 ∀r ∈ R ∀c1, c2 ∈ Cr , ∀s1, s2 ∈ Su (1.17)

wrc1s1c2s2 ≤ xc2s2 ∀r ∈ R ∀c1, c2 ∈ Cr , ∀s1, s2 ∈ Su (1.18)

wrc1s1c2s2 ≥ xc1s1 + xc2s2 − 1 ∀r ∈ R ∀c1, c2 ∈ Cr , ∀s1, s2 ∈ Su (1.19)

wrc1s1c2s2 ∈ {0,1} ∀r ∈ R ∀c1, c2 ∈ Cr , ∀s1, s2 ∈ Su .

34

3.4. Linearization and improvements

Finally, auxiliary Equations (1.8), already changed into Equations (1.14), can be
re-written as:

ts1s2 =
∑
r∈R

∑
c1,c2∈Cr

drc1c2 ·w
r
c1s1c2s2 +∑

r∈R

∑
c1∈Cr ,c2∈Cr

drc1c2 · xc2s2 · xc1s1 +

∑
r∈R

∑
c1∈Cr ,c2∈Cr

drc1c2 · xc1s1 · xc2s2

∀s1, s2 ∈ Su . (1.20)

Notice that by restricting t’s and wr ’s definition to just {...×Su ×Su}, the objec-
tive function needs to be slightly updated in order to take into account traffic
respectively going towards and coming from servers that are outside of the de-
cision area, which means any server s ∈ (

⋃
r∈RSr) \ Su . Thus, Equation (1.1)

becomes:

min
∑

s1,s2∈Su

COSTs1s2 · ts1s2 +∑
r∈R

∑
s1∈Su ,s2∈Sr\Su

COSTs1s2 ·
∑

c1∈Cr ,c2∈Cr

drc1c2 · xc2s2 · xc1s1 +

∑
r∈R

∑
s1∈Sr\Su ,s2∈Su

COSTs1s2 ·
∑

c1∈Cr ,c2∈Cr

drc1c2 · xc1s1 · xc2s2 (1.21)

where the second term counts traffic going from Su to Sr , while the third counts

the traffic in the opposite direction. Notice that, within these two terms, a new
container c ∈ Cr can only be placed on a server s ∈ Su , while a container c ∈ Cr
can only be placed on a server s ∈ Sr \Su because other combinations are already
counted by the first complex term. The final formulation is reported in the
Appendix.

35

CHAPTER 4
VM Migration Problem

This chapter is devoted to VM consolidation, i.e., re-allocating some resources
whose utilization is not optimal anymore with strong emphasis on reducing
power consumption and energy costs. The consolidation is done through the
tool of VM live-migration.

In Section 4.1 we provide a concise description of the context of the prob-
lem, its relevant aspects and the reasons behind some particular decisions. In
Section 4.2 we provide a precise definition of the problem, listing all parame-
ters and constraints as well as the objective. Since the problem is an extension
of the VMPP, we build on the definition discussed in Chapter 3. In Section 4.3
we provide a first nonlinear programming formulation of the problem. As in
the VMPP’s case, it is useful to understand the main constraints and the objec-
tive function but cannot be directly used in practice. In Section 4.5 we derive a
MILP formulation as well as discussing other improvements that make the for-
mulation more compact. In Section 4.6 we describe how the subset of VMs to
be migrated is selected from set of all VMs. Indeed, this is a choice that needs to
be separated to the actual migration itself, otherwise the overall problem turns
out to be too challenging. Therefore, we describe some possible criteria for se-
lecting those VMs. Finally, Section 4.7 is devoted to a sub-problem that arises
when, in the VMs allocation resulting from the migration, the routing paths
need to be updated and their costs recomputed.

4.1 High level description

Solving the short-term VM Placement Problem to quickly allocate in a reason-
able time new VMs requests can lead in the long period to resources’ satura-

37

4. VM Migration Problem

tion due to the fact that, up until this point, we never reconsidered a deci-
sion/placement already done. This fact, together with VMs continuously en-
tering and exiting the system, causes situations where a placement that was op-
timal some minutes before may not be optimal anymore and needs to be recon-
sidered. This complex decision process cannot be taken into account every few
minutes because it would lead to a large overhead. The problem to be faced is to
plan VM migration periodically on a longer time interval, e.g., every hour. The
main idea is to update the placement of some VMs without stopping the whole
system. To achieve this, live-migration of VMs is employed. This way, while
most of the data center continues its normal operation, the VMs chosen for mi-
gration suspend their normal incoming and outgoing traffic and their state is
sent through the network to their new placement with a traffic burst that tem-
porarily generates an additional overhead on the physical links involved. The
goal of the VM migration problem is to determine a new configuration that is
more efficient in terms of energy consumption and traffic management.

To further simplify the problem, which is already very challenging, we as-
sume the selection of VMs to migrate to be part of a pre-processing phase car-
ried out by the monitoring system. This pre-processing is performed with two
greedy algorithms executed on each server. Their goal will be to select a set of
VMs whose migration is mandatory and a set of VMs whose migration is only
suggested. For what concerns the migration time and the consequent downtime
of applications, we do not consider it as a variable to be optimized but rather as
part of the parameters. As for the VMPP, in the problem description we refer to
containers instead of VMs.

4.2 Problem description

Given a data center network composed by:

• a set of nodesN that collects both switches and servers,

• a set of servers S ⊂N ,

• a set of arcs E ⊂ N ×N that represents the physical links,

• a set of containers C distributed across the servers,

we want to update the placement of some containers in order to better utilize
the resources. To achieve this goal, live-migration of containers is employed. In
particular, we have:

• a set Cob ⊂ C of containers whose migration is mandatory,

38

4.2. Problem description

• a set Cf ⊂ C of containers whose migration is suggested, but not manda-
tory.

We have to be sure that the system’s resources are capable of satisfying the
containers’ demand in the new configuration as well as during the migration.
In particular:

• each server s is characterized by:

CPUs : CPU capacity (i.e. number of cores),

MEMs : RAM capacity,

BDW out
s : OUT bandwidth capacity,

BDW in
s : IN bandwidth capacity,

DISKs : disk IOPS capacity.

Pmaxs − P idles : power-consumption coefficient,

• each physical link (i, j) is characterized by:

Kij : bandwidth capacity,

• each container c is characterized by:

CPUcs : CPU utilization contribution normalized on server s,

MEMc : RAM demand,

DISKc : disk IOPS demand,

dcb : average traffic from c to any other container b,

dbc : average traffic from any other container b to c,

Qc : size of the container’s state.

We also have the residual amount of each resource related to servers and links:
CPU s, MEMs, BDW

out
s , BDW

in
s , DISKs, K ij . Finally, we know:

• the placement of each container before the migration phase, which is rep-
resented by a binary parameter

xoldcs =

1 if container c is assigned to server s in the old configuration
0 otherwise

∀c ∈ C, ∀s ∈ S ,

• the average time T1 needed for the migration and the maximum time T2 (
> T1) that we allow the migration to take,

39

4. VM Migration Problem

• the on/off state of each server s before the migration phase, represented
by a binary parameter bolds ,

• the set of arcs Ps1s2 that constitute the pre-computed path between each
couple of servers.

• the old traffic amounts tolds1s2 between every couple of servers (s1, s2).

The objective function of the problem is a combination of three terms that aim
at:

1. minimizing the global servers’ energy consumption under the new con-
figuration post-migration,

2. minimizing the global traffic’s load on the network under the new config-
uration post-migration,

3. maximizing the number of migrated containers.

The traffic is weighted by the number of hops traversed, following the approach
of Meng et al. [12]. External traffic is modeled with a dummy container c0 and
a dummy server s0, exactly as described in Chapter 3 for the VMPP.

The variant of the long-term consolidation problem that we consider is the
defined as follows.

Virtual Machine Migration Problem (VMMP): Given a set of servers
S and two sets of possibly migrating VMs (containers) Cob and Cf
with an associated initial placement, determine a new assignment
of every migrating VM (container) to a server so as to minimize the
objective function previously described, while satisfying the men-
tioned constraints.

The objective function is a combination of the ones defined in [12], from which
the traffic term is inspired, and [18], from which the energy and migration
terms are inspired, while the network constraints share some similarities with
the ones in [16], in particular regarding the traffic suspension of migrating
VMs/containers.

4.3 First nonlinear programming formulation

For the sake of readability, let us define:

Cm ≡ Cob ∪Cf

40

4.3. First nonlinear programming formulation

Ps ≡ Pmaxs − P idles .

We consider decision variables:

bnews =

1 if server s is ON in the new configuration
0 otherwise

∀s ∈ S ,

zc =

1 if container c is migrated
0 otherwise

∀c ∈ Cm,

xnewcs =

1 if container c is assigned to server
s in the new configuration

0 otherwise

∀c ∈ Cm, ∀s ∈ S ,

f cij ≥ 0 : amount of bandwidth consumed by the migration of container c on arc
(i, j) ∀(i, j) ∈ E , ∀c ∈ Cm,

together with the auxiliary variables:

us ≥ 0 : cpu utilization of server s in the new configuration ∀s ∈ S ,

ts1s2 ≥ 0 : amount of inter-container traffic between servers s1 and s2 in the new
configuration ∀s1, s2 ∈ S

Notice that the δ notation is used to denote the cut of a set of nodes N (in our
case always singleton nodes), i.e., the set of arcs that connect N to its comple-
ment set N \N . In particular, δ+ indicates outgoing arcs while δ− indicates
incoming arcs. Then, the problem can be formulated as follows:

min
∑
s∈S

Ps ·us + P idles · bnews

+α ·
∑

s1∈S,s2∈S
COSTs1s2 · t

new
s1s2

−β ·
∑
c∈Cf

zc (2.1)

s.t. ∑
s∈S

xnewcs = 1 ∀c ∈ Cm (2.2)

41

4. VM Migration Problem

xnewcs ≤ bnews ∀c ∈ Cm, ∀s ∈ S (2.3)

xoldcs ≤ bnews ∀c < Cm, ∀s ∈ S (2.4)∑
c∈Cm

CPUcs · xnewcs ≤ ρ3 ·CPUs −
∑
c<Cm

CPUcs · xoldcs ∀s ∈ S (2.5)

∑
c∈Cm

MEMc · xnewcs ≤MEMs −
∑
c<Cm

MEMc · xoldcs ∀s ∈ S (2.6)

∑
c∈Cm

DISKc · xnewcs ≤DISKs −
∑
c<Cm

DISKcs · xoldcs ∀s ∈ S (2.7)

∑
c1∈Cm

∑
c2∈Cm

dc1c2 · (1− x
new
c2s) · xnewc1s +

∑
c1∈Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xnewc1s +∑

c1<Cm

∑
c2∈Cm

dc1c2 · (1− x
new
c2s) · xoldc1s +

∑
c1<Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xoldc1s

≤ BDW out
s ∀s ∈ S (2.8)

∑
c1∈Cm

∑
c2∈Cm

dc2c1 · (1− x
new
c2s) · xnewc1s +

∑
c1∈Cm

∑
c2∈(C\Cm)∪{c0}

dc2c1 · (1− x
old
c2s) · xnewc1s +∑

c1<Cm

∑
c2∈Cm

dc2c1 · (1− x
new
c2s) · xoldc1s +

∑
c1<Cm

∑
c2∈(C\Cm)∪{c0}

dc2c1 · (1− x
old
c2s) · xoldc1s

≤ BDW in
s ∀s ∈ S (2.9)

zc = 1 ∀c ∈ Cob (2.10)

∑
j∈δ+(s)

f csj =
Qc
T1
· xoldcs · (1− xnewcs) ∀c ∈ Cm, ∀s ∈ S (2.11)

∑
i∈δ−(s)

f cis =
Qc
T1
· (1− xoldcs) · xnewcs ∀c ∈ Cm, ∀s ∈ S (2.12)

∑
i∈δ−(n)

f cin −
∑

j∈δ+(n)

f cnj = 0 ∀n ∈ N \S , ∀c ∈ Cm (2.13)

42

4.3. First nonlinear programming formulation

∑
c∈Cm

f cij +
∑

s1,s2∈S∪{s0}:(i,j)∈Ps1s2

tolds1s2−∑
s1,s2∈S :(i,j)∈Ps1s2

∑
c1,c2∈Cm

xoldc1s1 · x
old
c2s2 · dc1c2 · (1− (1− zc1) · (1− zc2)) −

∑
s1,s2∈S :(i,j)∈Ps1s2

∑
c1<Cm,c2∈Cm

xoldc1s1 · x
old
c2s2 · dc1c2 · zc2 −

∑
s1,s2∈S :(i,j)∈Ps1s2

∑
c1∈Cm,c2<Cm)

xoldc1s1 · x
old
c2s2 · dc1c2 · zc1−∑

s∈S :(i,j)∈Pss0

∑
c∈Cm

xoldcs · dcc0 · zc −
∑

s∈S :(i,j)∈Ps0s

∑
c∈Cm

xoldcs · dc0c · zc

≤ Kij ∀(i, j) ∈ E (2.14)

zc = 1−
∑
s∈S

xoldcs · xnewcs ∀c ∈ Cm (2.15)

us =

∑
c∈CmCPUcs · x

new
cs +

∑
c<CmCPUcs · x

old
cs

CPUs
∀s ∈ S (2.16)

tnews1s2 =
∑

c1,c2∈Cm

dc1,c2 · x
new
c1s1 · x

new
c2s2+∑

c1∈Cm,c2<Cm

dc1c2 · x
old
c2s2 · x

new
c1s1 +∑

c1<Cm,c2∈Cm

dc1c2 · x
old
c1s1 · x

new
c2s2 +∑

c1,c2<Cm

dc1c2 · x
old
c1s1 · x

old
c2s2 ∀s1, s2 ∈ S (2.17)

xnewcs ,bnews , zc ∈ {0,1} ∀c ∈ Cm, ∀s ∈ S

f cij ∈ R
+ ∀(i, j) ∈ E , ∀c ∈ Cm.

A description of the objective function and constraints is provided below.

43

4. VM Migration Problem

Equation (2.1) is our composite objective function. The first term accounts
for the energy consumption of all servers post-migration and is composed by
the sum of a contribution that is linear in the servers’ utilization and a fixed
contribution due to the on/off state of the servers. The second term corresponds
to the global traffic inside the network post-migration weighted by a cost factor
that indicates the number of hops traversed. The third term gives an incentive
for the containers’ migration when it is not mandatory, because we would like
to move most of them. Since we want an objective expressed in terms of energy
cost, the second and third terms are weighted with two coefficients.

Constraints (2.2) ensure that every container c whose migration is consid-
ered must be assigned to exactly one server s under the new configuration.

Constraints (2.3)-(2.4) enforce the on/off state of each server s under the
new configuration. A server is ON if any container considered for migration is
assigned to it or if any container, whose migration was not considered, was (and
still is) placed on it. The OFF state is forced by the objective function in case of
an empty server.

Constraints (2.5)-(2.7) are knapsack constraints regulating server resources
such as CPU, RAM and disk. Each container c whose migration is considered
consumes a part of the resources of the server where it is placed. For each
server s, the total amount of these demands must not exceed the difference
between the total capacity and the amount of resource already consumed by
other containers. The CPU constraints use a threshold ρ3 (e.g. 0.8) because we
do not want to end up with a configuration that has the same issue we were
trying to solve.

Constraints (2.8)-(2.9) make sure that we do not exceed the out/in band-
width capacities. These resources are less trivial to handle because the band-
width demand of a container heavily depends on the placement of other con-
tainers. The out-bandwidth consumed on a server s is the sum of all traffic
going from containers c1, placed on s, towards containers c2, not placed on s.
These (c1, c2) pairs are decomposed in all four combinations of migrating/non-
migrating containers. Same holds for in-bandwidth. External traffic is counted
by dummy container c0.

Constraints (2.10) make sure that, for every container c whose migration is
mandatory, the related migration variable must be set to 1.

Constraints (2.11)-(2.12) regulate the traffic generated by the migration of
containers in the source points and end points. For each server s and each

44

4.3. First nonlinear programming formulation

migrating container c, the exiting (entering) migration traffic from (in) smust be
equal to the size of c’s state converted into bandwidth if and only if c’s old (new)
placement was (is) on s but new (old) one is not. In all other cases the traffic
is = 0. We use T1 instead of T2 when converting the containers’ size because
we are interested in average times and average flows. Using T2 would provide
lower-bounds on flows which may not be safe when considering capacities that
must not be exceeded.

Constraints (2.13) regulate the migration traffic’s flow inside the network.
For each intermediate switch n, the amount of exiting flow must be equal to the
amount of entering flow. This must hold for the flow related to any possibly
migrating container c.

Constraints (2.14) constitute the core of the problem. These constraints
make sure that all physical links (i, j) are able to accommodate both the inter-
container traffic and the migration traffic at the same time. In particular we
have that the sum of seven different terms must not exceed the link’s capacity.
The first term takes into account all the migration flow traversing (i, j). The sec-
ond term is a constant due to the inter-container traffic between servers before
the migration. Only servers’ pairs whose routing path traverses the link (i, j) are
considered. Paths toward/from the dummy server (Internet) are included. This
second contribute is inaccurate because some of this traffic will be suspended
during the migration due to containers’ downtime. This is taken into account
by the last five terms, three of which subtract the traffic between pairs of both
(possibly) migrating containers, one fixed and one migrating container, one mi-
grating and one fixed container respectively. In particular, one of these contains
a logical zc1 ∨ zc2 which, thanks to De Morgan rule, is reshaped into a logical
!(!zc1∧!zc2), more suitable to be expressed in a mathematical formulation. The
last two terms subtract the quantities related to traffic going to/coming from
the Internet that is suspended.

Constraints (2.15) express the meaning of variables z by linking them to
variables x. A container c is migrated if and only if its new placement differs
from the old one, meaning that all products between xold and xnew should be
equal to 0.

Equations (2.16) are auxiliary constraints expliciting the utilization factor
of a server s post-migration, given by the sum of all the CPU utilization contri-
butions of both migrated and non-migrated containers placed on it. Since we
want it to be in the interval [0,1], it is normalized on the number of cores of the
server.

45

4. VM Migration Problem

Equations (2.17) are auxiliary constraints highlighting the traffic between
each pair of servers post-migration, composed by four terms that account for the
traffic between couples of respectively both (possibly) migrated, one migrated
and one fixed, one fixed and one migrated, both fixed containers.

4.4 Remarks

The formulation presented above is non-linear due to the presence of a bilinear
term in Constraints (2.8), (2.9) and in Equations (2.17) and also due to Con-
straints (2.14), where a logical or between two variables appears. The lineariza-
tion of these terms together with a further manipulation of most of the con-
straints will be discussed later on.

Another issue worth discussing is the fact that the pre-computed paths be-
tween any couple of servers used both here and in the short-term VMPP are
never updated. This might lead in the long period to sub-optimal paths that
together with their related costs guide the solutions towards mediocre results.
It seems natural that the long-term VMMP, which is already performing a sort of
system reconfiguration, should take care of the reconfiguration of these paths
too. However, the formulation presented above is already quite heavy and
adding other constraints, variables and sources of non-linearity (e.g. COSTs1s2
would become a variable) might increase the complexity too much. We would
rather treat it separately as a sub-problem used to iteratively approximate the
correct costs for the main problem. In this way we trade the exact optimum
of the overall problem to gain something on the computational side (e.g. size
of solvable instances), hoping that the solution remains not too far from the
optimal one.

4.5 Linearization and improvements

As previously mentioned, the formulation of VMMP presented in Section 4.3 can
be improved in order to get:

• a MILP formulation through exact linearization of the bilinear terms,

• a more compact formulation at the price of losing some readability.

Exactly as done in Chapter 3.4 for the VMPP, if we take the first term of Equa-
tions (2.17):

tnews1s2 =
∑

c1,c2∈Cm

dc1,c2 · x
new
c1s1 · x

new
c2s2︸ ︷︷ ︸+... ∀s1, s2 ∈ S

46

4.5. Linearization and improvements

and the following terms from Constraints (2.8) and (2.9):∑
c1∈Cm

∑
c2∈Cm

dc1c2 · (1− x
new
c2s) · xnewc1s︸ ︷︷ ︸+... ∀s ∈ S

∑
c1∈Cm

∑
c2∈Cm

dc2c1 · (1− x
new
c2s) · xnewc1s︸ ︷︷ ︸+... ∀s ∈ S ,

we can replace each product of two binary variables with a new binary variable
wc1s1c2s2 adding three new sets of constraints:

wc1s1c2s2 ≤ x
new
c1s1 ∀c1, c2 ∈ Cm, ∀s1, s2 ∈ S (2.18)

wc1s1c2s2 ≤ x
new
c2s2 ∀c1, c2 ∈ Cm, ∀s1, s2 ∈ S (2.19)

wc1s1c2s2 ≥ x
new
c1s1 + xnewc2s2 − 1 ∀c1, c2 ∈ Cm, ∀s1, s2 ∈ S (2.20)

wc1s1c2s2 ∈ {0,1} ∀c1, c2 ∈ Cm, ∀s1, s2 ∈ S .
These together make sure that the w variable acts precisely as the logical and
(product) of two binary variables. Equations (2.17) become:

tnews1s2 =
∑

c1,c2∈Cm

dc1,c2 ·wc1s1c2s2 + ... ∀s1, s2 ∈ S (2.21)

while Constraints (2.8) and (2.9) respectively become:∑
c1∈Cm

∑
c2∈Cm

dc1c2 · (x
new
c1s −wc1sc2s) +

∑
c1∈Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xnewc1s +∑

c1<Cm

∑
c2∈Cm

dc1c2 · (1− x
new
c2s) · xoldc1s +

∑
c1<Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xoldc1s

≤ BDW out
s ∀s ∈ S , (2.22)

∑
c1∈Cm

∑
c2∈Cm

dc2c1 · (x
new
c1s −wc1sc2s) +

∑
c1∈Cm

∑
c2∈(C\Cm)∪{c0}

dc2c1 · (1− x
old
c2s) · xnewc1s +∑

c1<Cm

∑
c2∈Cm

dc2c1 · (1− x
new
c2s) · xoldc1s +

∑
c1<Cm

∑
c2∈(C\Cm)∪{c0}

dc2c1 · (1− x
old
c2s) · xoldc1s

≤ BDW in
s ∀s ∈ S . (2.23)

47

4. VM Migration Problem

In a similar way, taking the third term of Constraints (2.14):

...
∑

s1,s2∈S:(i,j)∈Ps1s2

(
∑

c1,c2∈Cm

xoldc1s1 ·x
old
c2s2 ·dc1c2 ·(1− (1− zc1) · (1− zc2))︸ ︷︷ ︸)) ... ∀(i, j) ∈ E ,

we can express the same logical "zc1 or zc2" with a new binary variable πc1c2 that
behaves in the exact same way. As before, three new sets of constraints need to
be added:

πc1c2 ≥ zc1 ∀c1, c2 ∈ Cm (2.24)

πc1c2 ≥ zc2 ∀c1, c2 ∈ Cm (2.25)

πc1c2 ≤ zc1 + zc2 ∀c1, c2 ∈ Cm (2.26)

πc1c2 ∈ {0,1} ∀c1, c2 ∈ Cm
and Constraints (2.14) become:∑
c∈Cm

f cij +
∑

s1,s2∈S :(i,j)∈Ps1s2

tolds1s2−∑
s1,s2∈S :(i,j)∈Ps1s2

∑
c1,c2∈Cm

xoldc1s1 · x
old
c2s2 · dc1c2 ·πc1c2−∑

s1,s2∈S :(i,j)∈Ps1s2

∑
c1<Cm,c2∈Cm

xoldc1s1 · x
old
c2s2 · dc1c2 · zc2−∑

s1,s2∈S :(i,j)∈Ps1s2

∑
c1∈Cm,c2<Cm

xoldc1s1 · x
old
c2s2 · dc1c2 · zc1−∑

s∈S :(i,j)∈Pss0

∑
c∈Cm

xoldcs · dcc0 · zc −
∑

s∈S :(i,j)∈Ps0s

∑
c∈Cm

xoldcs · dc0c · zc

≤ Kij ∀(i, j) ∈ E . (2.27)

Notice a couple of further observations:

1. the containers’ migration involves only a small subset of containers com-
pared to the whole set C. This means that the vast majority of quanti-
ties (e.g., traffic, resource demands etc.) used in the formulation remain
fixed. Therefore we can get rid of these constant contributes and think

48

4.5. Linearization and improvements

only in terms of variations (e.g. energy variations, traffic variations, de-
mands variations etc.) and residual capacities. We can assume that, before
starting the migration, we also have access to information about the resid-
ual amount of each resource related to servers and links: CPU s, MEMs,
BDW

out
s , BDW

in
s , DISKs, K ij ;

2. Similarly to the VMPP, the set of containers and the traffic matrix can be
partitioned over the set of customers R.

Constraints (2.5)∑
c∈Cm

CPUcs · xnewcs ≤ ρ3 ·CPUs −
∑
c<Cm

CPUcs · xoldcs ∀s ∈ S ,

which is equivalent to:∑
c∈Cm

CPUcs · xnewcs ≤ CPUs − (1− ρ3)CPUs −
∑
c<Cm

CPUcs · xoldcs ∀s ∈ S , (2.5.alt)

can be reformulated by absorbing all contributions of fixed containers into the
residual capacity and leaving only positive and negative contributions of the
ones considered for migration. A (possibly) migrating container brings a posi-
tive contribution if placed on a server and a negative contribution when leav-
ing the server. The two contributions cancel out each other when a container
remains in its place. In particular, the residual CPU on a server can be written
as:

CPU s = CPUs −
∑
c∈Cm

CPUcs · xoldcs −
∑
c<Cm

CPUcs · xoldcs ∀s ∈ S ,

which can be rearranged into:

CPUs = CPU s +
∑
c∈Cm

CPUcs · xoldcs +
∑
c<Cm

CPUcs · xoldcs ∀s ∈ S

that, substituted into (2.5.alt) gives:

∑
c∈Cm

CPUcs · xnewcs ≤ CPU s +
∑
c∈Cm

CPUcs · xoldcs − (1− ρ3)CPUs ∀s ∈ S

which, bringing a term on the left-hand side, finally becomes:∑
c∈Cm

CPUcs · (xnewcs − xoldcs) ≤ CPU s − (1− ρ3) ·CPUs ∀s ∈ S . (2.28)

49

4. VM Migration Problem

Constraints 2.28 enforce that the variation in CPU utilization, caused by con-
tainers migrating in and out of any server s, does not exceed s’s residual CPU
capacity (discounted by an additional factor in the case of these particular con-
straints). For readability, we do not report the steps to modify RAM and disk
constraints because they follow the same reasoning and are, in fact, more trivial.
Constraints (2.6) and (2.7) become:∑

c∈Cm

MEMc · (xnewcs − xoldcs) ≤MEMs ∀s ∈ S (2.29)

∑
c∈Cm

DISKc · (xnewcs − xoldcs) ≤DISKs ∀s ∈ S . (2.30)

Constraints (2.8) and (2.9) and their linearized versions (2.22) and (2.23) follow
the same approach too. However, since they are much more complex, it is useful
to provide the starting point and some intermediate steps (full steps can be
found in the Appendix). The residual servers’ bandwidth can be expressed as:

BDW
out
s = BDW out

s −
∑
c1∈Cm

∑
c2∈Cm

dc1c2 · (1− x
old
c2s) · xoldc1s−∑

c1∈Cm

∑
c2in(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xoldc1s−∑

c1<Cm

∑
c2∈Cm

dc1c2 · (1− x
old
c2s) · xoldc1s −

∑
c1<Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xoldc1s

Then, using the usual manipulation and substitution we can transform (2.22)
into:

∑
c1∈Cm

∑
c2∈Cm

dc1c2 · (x
new
c1s − x

old
c1s + (xoldc1s · x

old
c2s)−wc1sc2s) +∑

c1∈Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · (xnewc1s − x

old
c1s) +∑

c1<Cm

∑
c2∈Cm

dc1c2 · x
old
c1s · (x

old
c2s − x

new
c2s)

≤ BDW out
s

50

4.5. Linearization and improvements

and finally, applying partitioning by customers:

∑
r∈R

∑
c1∈Cm∩Cr

∑
c2∈Cm∩Cr

drc1c2 · (x
new
c1s − x

old
c1s + (xoldc1s · x

old
c2s)−wrc1sc2s) +∑

r∈R

∑
c1∈Cm∩Cr

∑
c2∈(Cr\Cm)∪{c0}

drc1c2 · (1− x
old
c2s) · (xnewc1s − x

old
c1s) +∑

r∈R

∑
c1∈Cr\Cm

∑
c2∈Cm∩Cr

drc1c2 · x
old
c1s · (x

old
c2s − x

new
c2s)

≤ BDW out
s ∀s ∈ S (2.31)

Identically, (2.23) become:

∑
r∈R

∑
c1∈Cm∩Cr

∑
c2∈Cm∩Cr

drc2c1 · (x
new
c1s − x

old
c1s + (xoldc1s · x

old
c2s)−wrc1sc2s) +∑

r∈R

∑
c1∈Cm∩Cr

∑
c2∈(Cr\Cm)∪{c0}

drc2c1 · (1− x
old
c2s) · (xnewc1s − x

old
c1s) +∑

r∈R

∑
c1∈Cr\Cm

∑
c2∈Cm∩Cr

drc2c1 · x
old
c1s · (x

old
c2s − x

new
c2s)

≤ BDW in
s ∀s ∈ S (2.32)

Moving on, when it comes to Constraints (2.10):

zc = 1 ∀c ∈ Cob

clearly variables z are not really necessary and can be directly replaced by their
Equations (2.15). This way, Constraints (2.10) become:

∑
s∈S

xoldcs · xnewcs = 0 ∀c ∈ Cob. (2.33)

Regarding Constraints (2.14), that we have already replaced with (2.27), we can
also absorb the fixed tolds1s2 traffics into the residual link capacity K ij , substitute
variable z with its expression and finally have traffic demands and variables π
partitioned by customers. The final version of these constraints is:

51

4. VM Migration Problem

∑
c∈Cm

f cij− ∑
s1,s2∈S :(i,j)∈Ps1s2

∑
r∈R

∑
c1,c2∈Cr∩Cm

xoldc1s1 · x
old
c2s2 · d

r
c1c2 ·π

r
c1c2 −

∑
s1,s2∈S :(i,j)∈Ps1s2

∑
r∈R

∑
c1∈Cr\Cm,c2∈Cr∩Cm

xoldc1s1 · x
old
c2s2 · d

r
c1c2(1−

∑
s∈S

xoldc2s · x
new
c2s) −

∑
s1,s2∈S :(i,j)∈Ps1s2

∑
r∈R

∑
c1∈Cr∩Cm,c2∈Cr\Cm

xoldc1s1 · x
old
c2s2 · d

r
c1c2(1−

∑
s∈S

xoldc1s · x
new
c1s)

∑
s∈S :(i,j)∈Pss0

∑
r∈R

∑
c∈Cr∩Cm

xoldcs · drcc0 · (1−
∑
s∈S

xoldcs · xnewcs)−

∑
s∈S :(i,j)∈Ps0s

∑
r∈R

∑
c∈Cr∩Cm

xoldcs · drc0c · (1−
∑
s∈S

xoldcs · xnewcs)

≤ K ij ∀(i, j) ∈ E . (2.34)

Then, Equations (2.17), already substituted with (2.21), can be further modi-
fied with partitioning by customers. Moreover, the constant traffic among fixed
containers can be cut, leaving only positive and negative traffic variations re-
lated to (possibly) migrating containers. For this reason, let us rename tnew into
∆tnew:

∆tnews1s2 = ∑
r∈R

∑
c1,c2∈Cr∩Cm

drc1c2 · (w
r
c1s1c2s2 − x

old
c1s1 · x

old
c2s2) +∑

r∈R

∑
c1∈Cr∩Cm,c2∈Cr\Cm

drc1c2 · x
old
c2s2 · (x

new
c1s1 − x

old
c1s1) +∑

r∈R

∑
c1∈Cr\Cm,c2∈Cr∩Cm

drc1c2 · x
old
c1s1 · (x

new
c2s2 − x

old
c2s2) ∀s1, s2 ∈ S . (2.35)

Its domain changes from R+ to R accordingly. Notice that in the first term, a
positive contribution is given if both containers are assigned to the respective
servers after migration, while a negative contribution is given if both containers
were placed on the respective servers before migration. The two contributions
cancel out each other if and only if both containers remain in the same position.

52

4.5. Linearization and improvements

The linearization Constraints (2.18)-(2.20) and (2.24)-(2.26), when taking
into account partitioning by customers and z’s substitution, become:

wrc1s1c2s2 ≤ x
new
c1s1 ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm, ∀s1, s2 ∈ S (2.36)

wrc1s1c2s2 ≤ x
new
c2s2 ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm, ∀s1, s2 ∈ S (2.37)

wrc1s1c2s2 ≥ x
new
c1s1 + xnewc2s2 − 1 ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm, ∀s1, s2 ∈ S (2.38)

πrc1c2 ≥ 1−
∑
s∈S

xoldc1s · x
new
c1s ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm (2.39)

πrc1c2 ≥ 1−
∑
s∈S

xoldc2s · x
new
c2s ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm (2.40)

πrc1c2 ≤ 2−
∑
s∈S

(xoldc1s · x
new
c1s + xoldc2s · x

new
c2s) ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm. (2.41)

Constraints (2.15) can be discarded along with variables z. Finally, the objec-
tive function (2.1),after cutting constant energy contributions and considering
energy variations instead, together with traffic variations found in (2.35), be-
comes:

min
∑
s∈S

Ps ·∆us + P idles · (bnews − bolds)

+α ·
∑

s1∈S,s2∈S
COSTs1s2 ·∆t

new
s1s2

+β ·
∑
c∈Cf

∑
s∈S

xoldcs · xnewcs (2.42)

where:

∆us =

∑
c∈Cob∪Cf CPUcs · (x

new
cs − xoldcs)

CPUs
∀s ∈ S (2.43)

is the variation of the server CPU utilization, obtained similarly to Constraints
(2.28). Its domain becomes R.

Notice that the fixed constant P idles contributes as a cost when turning Oon-
server s, while contributes as a gain when turning s off. The last term of equa-
tion (2.42) comes from the substitution of variables z and acts as a penalization
term for not moving a container whose migration was suggested. The final
formulation is a MILP and is summarized in the Appendix along with some
additional notes.

53

4. VM Migration Problem

4.6 Selecting the migrating VMs

Ideally the definition of the set of migrating VMs/containers Cm would be part
of the problem itself. However, this would make the already difficult prob-
lem significantly harder, to the point of not being able to solve even small in-
stances. Giving the possibility to choose which VMs/ containers need to be
moved, where they should be moved and which links they will traverse while
migrating would add too many degrees of freedom to the problem.

Thus, as is usually done in the literature when considering VM migration,
we assume the set Cm to be pre-defined by a pre-processing phase and we focus
on the reduced problem of finding optimal destinations and migration paths.
In this section we provide a possible criterion for this pre-processing phase,
which is the criterion that we will implement.

For each server s ∈ S whose CPU utilization exceeds the established thresh-
old ρ3 (e.g. 0.8), we want to select a set of VMs/containers whose migration
would cause s’s CPU utilization to decrease just enough to go back under the
threshold. Moreover, knowing that we are in the context of traffic-aware op-
timization, these VMs/containers should have a high traffic rate between each
other so that the optimization process will be able to re-allocate them near to
each other without introducing too much additional traffic inside the core of
the network. These set of VMs/containers, when considering all the servers,
constitutes exactly the set Cob. Therefore, given the following parameters:

Cs : set of containers currently allocated on server s,
Ucs : CPU utilization demand of container c on server s,
tc1c2 : traffic requirement between a pair of containers,
CPUs : total CPU capacity, e.g. number of cores, of server s,
and decision variable

xc :=

1 if containerc is chosen to be part of Cob,
0 otherwise,

the problem of choosing which server must be migrated from a generic server s
can be formulated as:

min θ
∑
c∈Cs

Ucs · xc − (1−θ)
∑

c1,c2∈Cs

tc1c2 · xc1 · xc2

s.t. ∑
c∈Cs

Ucs · (1− xc) ≤ ρ3 ·CPUs

54

4.6. Selecting the migrating VMs

xc ∈ {0,1} ∀c ∈ Cs

The problem is itself a NP-hard problem. Indeed, taking θ = 1, the formu-
lation can be manipulated to match the standard formulation of a knapsack
problem by swapping the meaning of variable x with its complement (1-x) so
that x identifies the non-migrating containers, and then transforming the min-
imization problem into a maximization one. Instead, taking θ = 0, the problem
becomes to maximize the inter-traffic of migrating containers while satisfying
the CPU utilization threshold. The term in the objective function is non-linear
but could be linearized with the addition of new variables and constraints, as
extensively done for both VMPP’s and VMMP’s formulations. Also, this term has
a negative coefficient because it is inserted into a minimization function.

Since this is meant to be a relatively fast pre-processing phase that has to
be applied to possibly thousands of servers, we are not interested in solving
this sub-problem in an exact way. Instead, we apply the greedy Algorithm 1.
The procedure repeatedly removes a VM/container from the considered server
until the CPU threshold is satisfied. At each step, the procedure selects the
VM/container that communicates the most with the ones already selected.

Input: Server s with its VMs/containers
Output: VMs/containers Selected whose migration is mandatory

Candidates← get all containers allocated on s;
Selected←∅;
while s’s CPU utilization is above threshold ρ3 do

c← find container in Candidates whose traffic with Selected is the
highest;
Candidates← Candidates \ {c};
Selected← Selected ∪ {c};
remove c from s and update s’s CPU utilization ;

end
return Selected;

Algorithm 1: Greedy procedure for selecting migrating VMs/containers.

Then, after the choice of which VMs/containers belong to the set Cob has
been done, the exact same sub-problem can be defined to select VMs/containers
that should belong to the set Cf , i.e., VMs/containers whose migration is op-
tional. The only difference is in the CPU threshold considered, which is now ρ2
(e.g. 0.6). The same procedure is therefore invoked. Additionally, we defined
Cf to include also all VMs/containers allocated on almost empty servers, i.e.,

55

4. VM Migration Problem

servers whose CPU utilization is under threshold ρ1 (e.g. 0.10 or 0.15). Their
selection is trivial by definition.

As a side note, other reasonable criteria that could be applied/integrated
include the minimization of the cardinality of Cob and Cf or the minimization
of the global size of the VMs/containers belonging to Cob and Cf . These would
reduce respectively the combinatorial complexity of the related VMMP and the
bandwidth requirements associated to the migration phase, the latter being rel-
evant in case of a fully loaded data center with high links saturation. Also,
clearly the cardinality of Cob and Cf is, by definition, bound to grow with the
size of the data center, i.e., with the number of servers. It could be the case,
when considering large instances of thousands of servers, that the cardinality
is too high to allow the problem to be solved in a reasonable amount of time.
In those cases, the sub-problem and Procedure 1 can be modified to include
only a part of the Cob and Cf defined above. This can be done, for example, by
sampling with a specified probability the output of Procedure 1.

4.7 Path selection sub-problem

4.7.1 High level description

As previously mentioned, the choice of using pre-computed paths is reasonable
only if we make sure that they are periodically updated. This way, our paths
adapt themselves to the changing configurations of the system and can provide
meaningful solutions. Our goal here is to find a new set of paths that minimize
the global traffic inside the network once the traffic’s volume is fixed and given.
The traffic is weighted by the lenght of the paths selected. The solutions needs
to take into account the capacity of the physical links involved in each path.
This problem is meant to be solved iteratively to approximate the best paths
and costs used in the VMMP. In addition to this, the paths and costs found in
the final iteration will be used in the short-term VMPP until the next migration
phase.

4.7.2 Problem description

Given a network composed by:

• a set of nodesN representing switches and servers,

• a set of servers S ⊂N ,

• a set of arcs E ⊂ N ×N representing the physical links,

56

4.7. Path selection sub-problem

the path selection sub-problem consists in determining a way to route the traffic
ts1s2 between each couple of servers so that a certain fraction γ of the capacity
Kij of each physical link (i, j) is not exceeded. Each traffic ts1s2 must traverse
one and only one path (i.e. splittable paths are not allowed). The objective is to
find the set of paths that minimize the overall traffic weighted by the length of
each path.

Since the paths between servers and the Internet also have to be selected, we
define two particular servers s0 and t0 that together represent the WAN. Unlike
in VMMP, here there is no need to separate them from the set S , keeping the
notation more readable. In the graph, they are connected to the core edges by
unidirectional dummy links with infinite capacity. In particular, s0 is touched
only by outgoing arcs (it is a source), while t0 is touched only by incoming arcs
(it is a sink). They are modeled as two distinct servers so that no internal traffic
can pass through them exploiting the dummy links.

4.7.3 MILP formulation

By considering decision variables:

φs1s2ij =

1 if link (i, j) is used in the path

from server s1 to server s2
0 otherwise

∀(i, j) ∈ E , ∀s1, s2 ∈ S

COSTs1s2 ≥ 0 : number of switch-nodes traversed in the path from server s1 to
server s2 ∀s1, s2 ∈ S

The problem can be formulated as follows:

min
∑

s1∈S,s2∈S
COSTs1s2 · ts1s2 (3.1)

s.t. ∑
j∈δ+(s1)

φs1s2s1j
−

∑
i∈δ−(s1)

φs1s2is1
= 1 ∀s1, s2 ∈ S (3.2)

∑
j∈δ+(s2)

φs1s2s2j
−

∑
i∈δ−(s2)

φs1s2is2
= −1 ∀s1, s2 ∈ S (3.3)

∑
i∈δ−(n)

φs1s2in −
∑

j∈δ+(n)

φs1s2nj = 0 ∀n ∈ N \S , ∀s1, s2 ∈ S (3.4)

57

4. VM Migration Problem

∑
s1,s2∈S

ts1s2 ·φ
s1s2
ij ≤ α ·Kij ∀(i, j) ∈ E (3.5)

COSTs1s2 =
∑

(i,j)∈E
φs1s2ij − 1 ∀s1, s2 ∈ S (3.6)

φs1s2ij ∈ {0,1} ∀(i, j) ∈ E , ∀s1, s2 ∈ S ,

COSTs1s2 ∈ R
+ ∀s1, s2 ∈ S

A brief description of objective and constraints is presented below.

Equation (3.1) is again the objective function used by Meng et al.[12]. How-
ever, this time the traffic is known while the costs are not. It expresses the global
traffic in the network weighted by the number of switches traversed.

Constraints (3.2) express the fact that, for each servers pair (s1, s2),exactly
one arc exiting from the source s1 must be selected (unsplittable path assump-
tion).

Similarly, Constraints (3.3) deal with arcs entering in the destination.

Constraints (3.4) express the flow balancing in each intermediate node (switch).
The traffic entering in a switch must be equal to the traffic exiting from it, and
this must hold for the traffic related to every servers pair. Due to unsplittable
path assumption, the traffic can be considered unitary here.

Constraints (3.5) are the links capacity constraints. The traffic traversing
each physical link (i.j) must not exceed a certain fraction γ of its capacity. This
is motivated by the fact that we do not want to saturate any link. Otherwise, we
would a priori violate one of the assumptions of the short-term VMPP (i.e., the
link capacities are not a bottleneck).

Constraints (3.6) express the linking between variablesφ and variablesCOST .
The cost of a path depends on its length. The "−1" comes from the fact that the
number of hops traversed in a path is one less than the number of traversed
arcs.

58

CHAPTER 5
Heuristics

This chapter is devoted to the heuristics that we devised for the VMPP and the
VMMP. Heuristics are presented with the help of pseudo-code and some il-
lustrative examples. In Section 5.1 we describe the VMPP’s heuristic, while in
Section 5.2 we describe the VMMP’s heuristic.

5.1 A GRASP heuristic for the short-term VMPP

Since our goal with the short-term VMPP is to tackle large instances of the
problem within a short time limit (e.g., 1-2 minutes) in order to keep up with
the constantly arriving new requests, we choose to develop a greedy heuristic.
However, since a purely greedy approach is prone to very bad quality solu-
tions on certain instances, we decide to device a Greedy Randomized Adaptive
Search Procedure (GRASP) algorithm (e.g., see [19]). Such an approach consists
in two main steps: a greedy randomized construction of an initial solution and a
local search procedure that starts from the initial solution found and stops in a
nearby local minimum w.r.t. the considered neighborhood. The two steps are
repeated multiple times until a stopping condition is satisfied, typically involv-
ing a time limit and/or a prescribed maximum number of iterations. The idea
behind GRASP is to combine the speed of a greedy heuristic to find reasonably
good initial solutions, the power of randomization to explore different regions
of the solution space, and the ability of local search to improve the solution
quality.

The general GRASP framework is summarized in Algorithm 2. In Section
5.1.1 we enter into the details of the greedy randomized procedure. Then, in

59

5. Heuristics

Section 5.1.2 we describe the local search procedure and the considered neigh-
borhoods.

Input: Instance, Max_Iterations, randomization parameter 0 ≤ α ≤ 1
Output: best solution found

Best_Solution←∅;
foreach k = 1 .. Max_Iterations do

Solution← Greedy_Randomized_Construction(α);
Solution← Local_Search(Solution);
if f (Solution) < f (Best_Solution) then

Best_Solution← Solution;
end

end
return Best_Solution;

Algorithm 2: GRASP metaheuristic.

5.1.1 Greedy randomized construction

The purpose of this procedure is to build a solution from scratch while achiev-
ing a compromise between two goals: diversity and quality. First of all, multiple
runs of the procedure on the same instance should produce a sufficiently wide
spectrum of solutions in order to allow the exploration of many different re-
gions of the solution space. Secondly, the procedure should use criteria that
facilitate the creation of initial solutions with an already acceptable quality. To
develop this procedure we refer to the general scheme described in [19] and
to adaptations to the multi-knapsack problem (e.g., see [20]), with which our
problem shares some similarities. Resende and Ribeiro’s scheme, adapted to
our specific problem is shown in Algorithm 3, where Su is the set of under-
utilized servers defined in Chapter 3 and removeFirst is a procedure that grabs
the first element of a list, removing it from the list.

Given a pre-computed ordering of the list of new VMs, we iteratively con-
sider the first VM of the list, remove it from the list and assign it to a "good"
server. The server is chosen among a restricted list of candidates (RCL) that
is built by looking at the incremental cost that the current VM would cause if
assigned to each considered server. The list of new VMs is ordered following
different criteria, such as: descending RAM order, descending CPU order, de-
scending bandwidth order, descending DISK order, random order and times-

60

5.1. A GRASP heuristic for the short-term VMPP

Input: Data center, list of new VMs to place, 0 ≤ α ≤ 1
Output: assignment vector of new VMs to servers

Solution←∅;
while VMs , ∅ do

vm← removeFirst(VMs);
foreach s ∈ Su do

evaluate incrementalCost(vm,s);
end
RCL← buildRCL(α);
s̄← randomly select a candidate from RCL;
Solution← Solution ∪ (vm,s̄);

end
return Solution;

Algorithm 3: Greedy_Randomized_Construction.

tamp order. The incremental cost amounts to the partial objective function
related to the specific VM-server pair (c̄, s̄):

∆f (c̄, s̄) =
∑
s1,s2∈S

∑
c2∈Cr∪Cr :c̄∈Cr

(drc̄c2 ·COSTs1s2 + drc2c̄ ·COSTs2s1) · xc̄s1 · xc2s2 . (5.1)

In particular, since VMs are placed one by one, some terms of Equation () will
refer to VMs whose assignment has not been decided yet. Therefore, the incre-
mental cost computed at runtime will be an inaccurate estimation of Equation
(5.1.1). Only the last VM to be placed will have the complete information to ac-
curately compute it. When all candidate servers’ costs have been evaluated, the
best candidates are grouped in the RCL. In particular, the RCL includes all the
candidate elements whose incremental cost satisfies the following condition:

costc̄,s̄ ≤min_cost +α · (max_cost - min_cost),

where min_cost and max_cost are the incremental costs of the least expensive
and most expensive candidate respectively, and α is a randomization parameter
in the [0;1] interval. A choice of α = 0 makes the procedure a deterministic
greedy heuristic that always selects the candidate with minimum cost, while a
choice of α = 1 corresponds to a completely random heuristic that can select
any candidate with equal probability. Usually we pick an α in the 0.1 - 0.2
range. Each server in the RCL is given a uniform probability of being selected.
The procedure randomly selects one of them, assigns the current VM to it and

61

5. Heuristics

updates all the residual capacities involved. The whole process is repeated for
each new VM in the list. The greedy randomized construction stops either when
there are no more VMs to be placed or when there is no feasible assignment for a
VM. The latter case means that the previous assignments caused an infeasibility
situation and the current GRASP iteration is interrupted. However, even if all
the GRASP iterations fail to find a feasible solution, it is not a proof of the
infeasibility of the problem.

Algorithm 3 describes the allocation of a generic set of new VMs. However,
in the case in which a new customer allocates an entire new application, the cri-
teria used in the procedure to select the RCL do not work as intended. Indeed,
since these VMs are not communicating with any existing VM, the partial incre-
ment in the objective function will be equal to 0 for every feasible assignment.
Moreover, their allocation comes with no pre-existing "constraints" and can be
managed in a different way in order to facilitate the assignment of the other new
VMs and to better utilize residual resources. The alternative procedure used in
this case is reported in Algorithm 4, where computeApplicationRequirements is
a procedure that computes the total sum of a prescribed resource requirement
among a collection of VMs and computeResources is a procedure that computes
the total sum of the residual capacities related to the same resource among all
the servers in a rack.

In this case, we perform a two-level assignment. The first-level assignment
consists in selecting a rack where to allocate the VMs of the new application,
while the second-level assignment consists in assigning the VMs to the servers
of the selected rack. Both assignments are performed with a RCL mechanism.
For the first level, we build a RCL of racks with a criterion similar to 5.1.1.
The cost of a rack is defined as the difference between the rack’s residual ca-
pacity (related to the prescribed resource) and the application’s requirements.
The idea is to match applications and racks so as to efficiently utilize the re-
sources. Similarly to Algorithm 3, we allow different criteria for selecting the
proper rack, e.g., residual RAM, residual bandwidth or a combination of both
and their corresponding VM requirements. Then, we pick a random rack, ac-
cording to a uniform probability distribution, from the RCL and we apply the
second-level assignment to the servers of that rack. Such servers are grouped in
a list ordered by descending RAM residual capacity. Following the order of the
list, the procedures tries to fit as much VMs as possible in each server before
considering the next one in the order. While performing this inner packing, the
order of VMs is chosen dynamically, meaning that at each step we select one
of the VMs that benefit the most from being placed on the server that is cur-
rently being filled, i.e., the VMs that communicate the most with VMs already
placed there. This is done through another RCL whose candidate elements are

62

5.1. A GRASP heuristic for the short-term VMPP

Input: Data Center,list of VMs of the new application, 0 ≤ α ≤ 1
Output: assignment vector of new application’s VMs to servers, list rest

of VMs whose allocation failed

Solution←∅;
req← computeApplicationRequirements(VMs);
foreach r ∈ Racks do

computeResources(r);
end
RCL← buildRCL(α) of racks based on difference between resources
and requirements;

select a rack r̄ at random from RCL;
rackServers← sort servers in r̄ by descending residual RAM;
s← removeFirst(rackServers);
while VMs , ∅ ∧rackServers , ∅ do

foreach vm ∈ VMs do
computeProfit(v,s);

end
RCL← build RCL(α) of VMs with most profits;
vm← select a cadidate at random from RCL;

16 if canBeAllocated(vm,s) then
Solution← Solution ∪ (vm,s);

end
else

if rackServers = ∅ then
break;

end
s← removeFirst(rackServers);
goto line 16;

end
end
rest← VMs;
return (Solution, rest);

Algorithm 4: Greedy_New_App_Construction.

63

5. Heuristics

the new VMs not yet assigned and the profit related to each of them amounts to
the traffic with VMs already assigned to the current server. In the case in which
the procedure fails to assign some VMs to servers in the considered rack, these
remaining VMs are collected in the list rest and their placement is later decided
by invoking Algorithm 3.

Since we defined different criteria for the ordering of VMs and racks in the
two procedures, our implementation of the GRASP runs several greedy ran-
domized constructions in parallel, one for each combination of orderings, in-
cluding the order in the invocation of Algorithms 3 and 4, for a total of 36
threads working simultaneously and independently from each other.

In its basic version, when building the RCL, Algorithm 3 considers all the
feasible servers, but other criteria can be employed to improve the speed of the
procedure while still preserving the quality of the initial solution. For example,
we tried to develop a server indexing mechanism based on an ordered binary
tree to access in logarithmic time the server whose residual resources are just
enough to host a specified VM. This way, we can avoid to consider servers cor-
responding to a lower index in the ordering. Unfortunately, this technique did
not provide significant advantages, probably due to the fact that, on average,
when the servers are not fully loaded, the number of servers considered does
not change significantly and the gain evens out with the slightly higher cost (in
terms of computing time) of moving inside the binary tree.

5.1.2 Local search

Starting from a randomized greedy initial solution, we apply a local search pro-
cedure (see Algorithm 5) based on a deterministic neighborhood exploration
with a best-improve strategy. Since the entire GRASP requires several itera-
tions with randomization, the local search phase overall acts as a local search
with multiple restarts, a common technique used to avoid poor quality local
minima. In particular, we selected two types of neighborhoods:

Input: starting solution Solution
Output: solution that is a locally optimal

while Solution is not locally optimal do
Find s′ ∈ Neighborhood(Solution) with f (s′) < f (Solution);
Solution← s′;

end
return Solution;

Algorithm 5: Local_Search scheme.

64

5.1. A GRASP heuristic for the short-term VMPP

Figure 5.1: One-Move-Neighborhood example - Part 1 - VM1 can be moved on
servers S1, S2 or S3 to improve the objective function’s value. Dashed-arrows repre-
sent improving moves.

One-Move-Neighborhood: contains all the solutions that differ from the cur-
rent solution for the placement of only one new VM. The size of the neigh-
borhood is upper-bounded by the cardinality of the set of new VMs times
the cardinality of Su of under-utilized servers. Therefore,an exhaustive
exploration has a computational complexity of Θ(|C| · |Su |) for each itera-
tion of the local search. The same neighborhood is also used in [14],

One-Swap-Neighborhood: contains all the solutions obtained by exchanging
the position of any pair of new VMs with respect to the current solution.
The size of the neighborhood is upper-bounded by the square of the cardi-
nality of the set of new VMs. Actually, due to symmetry of the pairs, half
of the neighborhood is redundant. The computational complexity associ-
ated to an exhaustive visit is Θ(|C|2) for each iteration of the local search.

To illustrate these two neighborhoods we provide two toy examples.

Example 1 For the One-Move-Neighborhood, we consider a situation with three
racks of servers and four new VMs (see Figure 5.1). VM1 and VM4 are placed

65

5. Heuristics

in the same rack, but on different servers, namely S4 and S5, while VM2 and
VM3 are placed in a different rack, but on the same server S3. We assume that
this configuration is the result of either the greedy randomized construction or
a previous iteration of the local search itself. Due to particular values in the
traffic matrix, it is possible to improve the solution by changing the position of
VM1. Given the objective function (see Equation 1.1 in Chapter 3), it is conve-
nient to move VM1 the rack where VM2 and VM3 are located. Multiple alter-
natives (see dashed-lines in Figure 5.1) are possible, since servers in the same
rack have all the same distance between each others. However, the best choice
is to place VM1 on the same server as VM2 and VM3, i.e., server S3, so that
the traffic between them does not need to traverse the network and its related
costamounts to 0. Therefore, the local search procedure moves VM1 to server
S3. The resulting solution, with an associated objective function’s improvement
of 40, is depicted in Figure 5.2. Due to this operation, the assignment of VM4
is no longer locally optimal and must be changed. Its new destination will be
for sure in the same rack as the other VMs. However, putting VM4 in the ex-
act same server as VM1, VM2 and VM3 is not an option. Indeed, server S3 is
almost fully loaded and its residual resources are not enough to also accommo-
date VM4. The only other alternatives are the other servers in the same rack,
i.e., S1 and S2. From the objective function’s point of view they are equivalent,
therefore some arbitrary tie-breaking criterion establishes which one of them
will host VM4, e.g., server S1.

The resulting solution, whose objective function’s value benefits from an
improvement of 30, is locally optimal (but not optimal, as we shall see). The
One-Move-Neighborhood allowed us to find a better placement for the VMs and
to group them inside the same rack, which is consistent with the general VM
Placement’s goal of freeing the core of the network by concentrating the traffic
down in the racks.

Example 2 For the One-Swap-Neighborhood, we continue from the scenario
derived in Example 1. We have a solution which is locally optimal. There is no
incentive to move any single VM alone because such change would only worsen
or, at best, not improve, the objective function’s value. In particular, moving
any of VM1, VM2 and VM3 would introduce in the network some non-zero
traffic that at the moment is managed in memory. On the other hand, VM4
cannot be moved on the same server as the other VMs due to capacity limits,
and moving it anywhere else would mean canceling the last performed move,
that was the best possible move available among single-VM moves. However,
as shown in Figure 5.3, due to particular values in the traffic matrix, there is a
better solution in which VM4 and VM2 are exchanged. Reaching this solution

66

5.1. A GRASP heuristic for the short-term VMPP

Figure 5.2: One-Move-Neighborhood example - Part 2 - VM4 can be moved on
servers S1 or S2 to improve the objective function’s value. Dashed-arrows represent
improving moves.

from the current solution requires two single-VM moves, but any combination
of the two leads to a worse solution at first, only to see the benefits of it with the
second move. Therefore, the local exploration of the One-Move-Neighborhood is
not able to find that solution. On the other hand, the One-Swap-Neighborhood is
capable of detecting such solutions. Thus, VM2’s location and VM4’s locations
are swapped to obtain a new better solution with an improvement of 10 in the
objective function’s value. Although there is no guarantee that this solution is
globally optimal, the exploration of both neighborhoods can bring significant
improvements.

These two types of neighborhoods are then refined with more efficient ver-
sions to avoid the exhaustive exploration of the neighborhood, at the price of
possibly losing some good solutions. As we shall see, it very rarely happens in
practice.

One-Move-Neighborhood variants If the One-Move-neighborhood is implemented
as defined, the local search becomes very slow in case of large data centers. At
the same time, the structure of the problem allows us to easily discard a priori

67

5. Heuristics

Figure 5.3: One-Swap-Neighborhood example - VM2 and VM4’s assignments can
be swapped to improve the objective function’s value. The dashed arrows represent
the two single moves involved in the swap.

some servers whose selection is (very) unlikely to provide good solutions. Since
we know that VMs may communicate only with VMs of the same customer and
that the cost of the communication depends on the distance between servers.
Whenever we consider to move a VM, we can consider only pods that contain at
least one VM belonging to the same customer.All the other ones, which are the
majority of the pods, can be safely neglected during the exploration, providing a
significant speed-up. We call this neighborhood One-Move-Neighborhood-Large.
The size of such neighborhood is

O(|R| · |Cmaxr | · (|Cmaxr |+ |Cmaxr |) · P odSize)

for each local search iteration, where R is the set of customers, Cmaxr refers to
the largest set of new VMs belonging to a single customer, and Cmaxr refers to
the largest set of old VMs belonging to a single customer. However, the typical
scenario is very far from the worst case to which the bound refers. In a general
situation, the term |Cmaxr | + |Cmaxr | amounts to at most 2, usually 1, because any
reasonable optimization process should put VMs of a same application in the

68

5.1. A GRASP heuristic for the short-term VMPP

same pod or at most in two different pods in case of particularly tight resource
capacities. Therefore, the size of the neighborhood in the general case is

Θ(|R| · |Cmaxr | · P odSize),

which, hiding the partitioning, is equivalent to

Θ(|C| · P odSize),

clearly a significant improvement with respect to the original version of the
neighborhood. However, we can do better. For realistic instances, the pods
are so large that the above reasoning can be applied to more granular scales.
The objective function of the problem is such that we know a priori that the
distance between servers in the same rack is strictly smaller than the distance
between servers in the same pod but in different racks. Therefore, we can con-
sider only racks that contain VMs of the same customer or, pushing the rea-
soning to its limit, we can even consider only servers that contain VMs of the
same customer. We refer to these two neighborhood versions as One-Move-
Neighborhood-Medium and One-Move-Neighborhood-Small respectively. With a
similar reasoning, we can provide a worst-case bound of

O(|R| · |Cmaxr | · (|Cmaxr |+ |Cmaxr |) ·RackSize)

for One-Move-Neighborhood-Medium’s size, that becomes

Θ(|C| ·RackSize)

in the general case. Instead, the worst case and general case related to the One-
Move-Neighborhood-Small are not different enough to require two distinct char-
acterizations. Their size is roughly

O(|C| · (|Cmaxr |+ |Cmaxr |)).

The advantage of the small neighborhood version is that, in general, VMs of the
same customer are not placed all on different servers, but are rather grouped in
a small subset of servers, causing the second term to be a number smaller than
RackSize.

Of course, the more restricted the search is, the more it is likely to miss
good solutions. This chance increases when pods, racks and servers are heav-
ily loaded. However, all these variants of the neighborhood are characterized
by a nice property: each one is strictly included in the larger ones. Thanks to
this property the local search can be set up as a Variable Neighborhood Search.

69

5. Heuristics

The idea is that the procedure repeatedly explores a small neighborhood un-
til it stops in a local minimum. Then, a larger version of the neighborhood
is selected to try to escape from the local minimum. This way, the reduced
computational requirements of the smaller neighborhood is combined with the
higher accuracy of the larger one. We found that a good choice is to use just
One-Move-Neighborhood-Small followed by One-Move-Neighborhood-Medium.

One-Swap-Neighborhood variants Similarly, we can provide a restricted ver-
sion of this neighborhood. Since we know a priori that VMs of different cus-
tomers do not communicate, it is unlikely that exchanging their positions will
bring benefits to the objective function’s value, so we can discard all those pairs.
Intuitively, the swap’s purpose is to explore combinations whose occurrence is
prevented by the particular ordering criteria that we chose in the greedy ran-
domized phase. Swapping VMs of different applications, in general, only put
them further away from the VMs with which they communicate. This sim-
ple reasoning allows to exploit the partitioning of the traffic matrix to greatly
reduce the size of the neighborhood, since only intra-customer swaps are per-
formed. We call this version One-Swap-Neighborhood-Small. Its computational
complexity for both worst case and general case is

Θ(|R| · |Cmaxr |2),

which is equivalent to

Θ(|C| · |Cmaxr |),

clearly an improvement with respect to the basic version of the neighborhood.
Again, half of the VM pairs are redundant, so the actual complexity can be
further reduced. Similarly to the One-Move-Neighborhood case, we can use the
smaller version of the One-Swap-Neighborhood combined with the larger one.

From empirical observations we found that, when used alone, the One-Move-
Neighborhood is able to end up much closer to the optimal solution than the One-
Swap-Neighborhood, but also that the latter allows to escape from local minima
in which the other one does get stuck. Therefore, the final configuration of our
procedure cycles between neighborhoods, specifically in this order: One-Move-
Neighborhood-Small, then One-Move-Neighborhood-Medium, then One-Swap-Neighborhood-
Small, then One-Swap-Neighborhood, then back to the first one. The stopping
condition is satisfied when the search finds a solution that constitutes a local
minimum for all four neighborhoods at the same time.

70

5.2. GRASP’s extension for the long-term VMMP

5.2 GRASP’s extension for the long-term VMMP

In this section we show that the previously described heuristic can be extended
to tackle the more challenging VMMP. As it clearly appears from the formula-
tions provided in Chapters 3 and 4, the VM migration problem can be consid-
ered as an extension of the placement problem with the addition of constraints
on the network resources. A VM that is selected to be reassigned can be viewed
as a new VM entering the system, provided that the resources that it was con-
suming before are properly accounted for.

Given that the VMs selected for migration are the output of a separate pre-
processing phase, discussed in Chapter 4.6, the heuristic can be divided in two
steps: a short initial phase in which all VMs belonging to both sets Cob (manda-
tory migration) and Cf (optional migration) have their assignments undone, and
the actual re-assignment phase, where VMs are reassigned, possibly even on the
same server as before in case of VMs belonging to Cf . The first step accounts
for the resources freed by VMs that are moved, while the second step accounts
for resources consumed by the same VMs in the new allocation. In the end, the
objective function f (see Equation 2.1) is the result of the difference between
the following quantities computed for each VM:

f =
∑

c∈Cob∪Cf

Costt+1
c −Costtc

where the time index t+1 refers to the configuration post-migration and t to the
configuration pre-migration. The two quantities are characterized by a funda-
mental difference: the cost and use of resources related to a VM pre-migration
can be computed exactly without the need of any decision, while the cost post-
migration depends on the new assignment yet to be determined. In case of a
VM that is re-assigned to the same server as before, the two terms simply can-
cel out each other, bringing neither an increment nor a decrease of cost for that
specific VM.

When dividing the procedure into two steps, the second step becomes al-
most exactly another VM Placement Problem, with a few differences:

• the objective function includes a power consumption term and an incen-
tive term for migration,

• constraints on the links’ utilization are now explicit, meaning that we have
to provide actual migration paths that satisfy them.

The second point is not related to the objective function. Constraints on the
links bandwidth only act on feasibility. This is due to the decision of aiming at

71

5. Heuristics

optimizing the configuration of the system in the following long time interval
rather than during the short transitory phase that is the Live-Migration phase.

As for the VMPP, the re-allocation step consists in repeated iterations of a
greedy randomized construction step, described in Section 5.2.1, followed by a
local search procedure, described in Section 5.2.2.

5.2.1 Greedy randomized construction

The greedy randomized construction for the VMMP is summarized in Algorithm
6. The main structure is the same RCL mechanism described in Section 5.1.1,
with just a few variations that consist in a different definition of the incremen-
tal costs and an additional procedure, the canMigrate procedure, that checks
the existence of a feasible migration path from the old placement of the current
migrating VM to the target server selected for the new assignment. The main
block is repeated twice to put emphasis on the fact that VMs in list Cob, whose
migration is mandatory, are processed first, so that they are given more flexi-
bility and are less likely to encounter saturated resources causing infeasibility.
For both lists Cob and Cf we consider the same ordering strategies discussed in
the VMPP’s GRASP, except for the timestamp order that has no meaning here.

As previously mentioned, the procedure depends on sub-procedures incre-
mentalCost and canMigrate. The first one accounts for the increment in the
objective function brought by the reassignment of each VM. The cost of re-
assigning VM c̄ to server s̄ amounts to:

cost(c̄, s̄) = (Pmaxs̄ − P idles̄) ·uc̄,s̄ + β ·∆f new(c̄, s̄) (+P idles̄). (5.2)

where β is the traffic coefficient, ∆f new is the quantity defined in Equation
(5.1.1), except that variable x is replaced by variable xnew. Beside mixing power
consumption and traffic, a crucial part is played by the fixed costs of turning
on a server, indicated between parenthesis. Indeed, each VM can, occasionally,
cause these fixed costs to appear or disappear in addition to its own partial cost.
The procedure handles these fixed costs exactly in this trivial way, accounting
them only when they occur, i.e., adding the fixed cost when a VM is re-assigned
to an empty server. Note that the incremental cost defined above only accounts
for Costt+1

c . This is due to the fact that, when building the RCL, the term Costtc
does not depend on the candidate server and behaves as a constant that does not
influence the decision. It will be taken into account only when attaching a value
to the initial solution found at the end of the greedy randomized construction.

The second sub-procedure is instead summarized in Algorithm 7, where a
Path is a collection (e.g., a list) of links and a flow is a set of paths, and there-
fore links, each attached with the information (flowsize) about the amount of

72

5.2. GRASP’s extension for the long-term VMMP

Input: Data center, list of Cob, list of Cf , 0 ≤ α ≤ 1
Output: new allocation vector of VMs ∈ Cob ∪Cf
Solution←∅;
while Cob , ∅ do

vm← removeFirst(Cob);
foreach s ∈ S do

evaluate incrementalCost(vm,s);
end
RCL← buildRCL(α);

8 s̄← randomly select a candidate from RCL;
if canMigrate(vm, s̄) then

update links and go on ;
end
else

goto line 8;
end
Solution← Solution ∪ (vm,s̄);

end
while Cf , ∅ do

vm← removeFirst(Cf);
foreach s ∈ S do

evaluate incrementalCost(vm,s);
end
RCL← buildRCL(α);

23 s̄← randomly select a candidate from RCL;
if canMigrate(vm, s̄) then

update links and go on ;
end
else

goto line 23;
end
Solution← Solution ∪ (vm,s̄);

end
return Solution;

Algorithm 6: Greedy_Randomized_Construction extended to VMMP.

73

5. Heuristics

Input: a VM vm to migrate, destination server s
Output: True if migration is feasible, False if it is not, migration flows

s̄← obtain old placement of vm ;
P aths← k-shortestP ath(s̄, s);
try to saturate P aths in order ;
if bandwidth capacity is enough then

return (True, (P aths, f lowsize)) ;
end
else

return (False, ∅) ;
end

Algorithm 7: canMigrate sub-procedure.

bandwidth used by the migration of the current VM on that specific link. The
splittable-paths feature of the problem is handled with a call to a k-shortest
path procedure. The distance measure related to a link l = (i, j) is equal to

d(i, j) =
1

residualCapacity(l)
.

This way, links whose capacity is close to saturation are less likely to be con-
sidered. We recommend a choice of k = 2 or k = 3 that is a trade-off between
considering many multi-paths, thus providing more flexibility, and consider-
ing only the shortest path, which is the fastest option. We did not develop the
k-shortestpath procedure. Instead, we approximate it invoking k times the im-
plementation of the Dijkstra shortest path algorithm provided by the Java exter-
nal library JGraphT [21]. The computational complexity of a Dijkstra shortest
path algorithm is much lower than the computational complexity of a k-shortest
paths algorithm, thus making the procedure faster.

Algorithm 7 has a special case. It may happen that a VM is re-assigned to
the same server as before. In such case, there is no traffic related to the migra-
tion burst, but rather the links need to be loaded with the normal application
traffic of the VM. This is due to the fact that these particular VMs, that are
not known in advance, will actually remain active and continue their normal
behavior during the migration phase.

As for the VMPP’s heuristic, we then recognized a specific case in which
Algorithms 6 and 7 can be replaced by a more specialized alternative. In-
deed, when selecting in each server the VMs that need to be moved, the pre-
processing phase described in Chapter 4.6 will sometimes select isolated VMs
and other times will select groups of VMs belonging to the same application/customer.

74

5.2. GRASP’s extension for the long-term VMMP

In the latter case, we want the components of these groups to be close to each
other also in the new configuration so that their traffic do not get scattered
across the data center. Thus, instead of risking the chance of separating those
VMs, we move them together. These groups, or small clusters, are considered
each as a single aggregated VM to which the same canMigrate sub-procedure
is applied. The difference is that in this case the procedure does not take a sin-
gle server as destination, but rather a Top of Rack (ToR) switch. After having
verified that the cluster can migrate through the network and reach such ToR
switch, a small inner GRASP similar to the one used for the VMPP is run for
few iterations with the aim of finding a good assignment of the VMs inside the
related rack. This inner GRASP is sound since the link capacities inside the
rack perfectly match the bandwidth capacities associated to each server in the
VMPP. The crucial part here is the choice of the rack. We try to estimate the
incremental cost that a cluster would bring if destined to each possible rack.
We do this by checking if the resource requirements of the cluster are less than
the residual capacities of the already turned on servers inside the rack. If that is
the case, the estimated incremental cost is simply the sum of the linear power-
consumption terms and the weighted traffic terms of the whole cluster. This is
a quite accurate estimate since, independently from the inner assignment that
will be done later on, servers in the rack are homogeneous and they all have
the same distance from servers in other racks. Instead, if the residual capacity
of turned-on servers is exceeded, the fixed cost for turning on another server
inside the rack is added to the incremental cost.

The two resource requirements/capacities considered are related to CPU
and RAM. These two, together with the five different ordering considered for
Algorithm cmp-greedy-rand-constr, create 10 possible configurations. there-
fore, we execute 10 GRASP procedures in parallel.

5.2.2 Local search

The local search is set up exactly as in the VMPP’s heuristic. The two types of
neighborhoods, namely the One-Move-Neighborhood and the One-Swap-Neighborhood,
are adapted to account for the additional bandwidth constraints on the links,
i.e., to establish if a solution in a neighborhood is feasible, the same procedure
canMigrate(see Algorithm 7) is invoked. As for the VMPP, the two basic versions
of the neighborhood are specialized in One-Move-Neighborhood-Medium, One-
Move-Neighborhood-Small and One-Swap-Neighborhood-Small. They are visited
in the same order as specified in Section 5.1.2 until a common local minimum
is reached. Due to the heavier computational effort required by the network
component of the problem, the One-Swap-Neighborhood in its largest version is
discarded and only the small one is actually used.

75

5. Heuristics

5.2.3 Path Relinking

Since the VMMP turns out to be more challenging than the VMPP, we decided to
add a further step to the GRASP procedure. This step is based on a technique
called Path Relinking, which is described by Resende and Ribeiro in [22] in the
GRASP framework. The idea behind it is to combine pairs of the best solutions
found by the GRASP to find new solutions whose quality is better than the best
one found so far.

A solution of the VMPP can be represented as an assignment vector v ∈ C × 1
of VMs to servers, where C is the set of VMs to be assigned. Each position i ∈ 1..
|C| in the vector stores the information about the server where one of the VMs
will be placed. Since the VMMP is an extension of the placement problem, the
same can be done for the set Cm = Cob ∪ Cf . In addition to this, a solution of
the VMMP has to store the path/paths used by each migrating VM. Given two
solution vectors s and t such that s , t, it is always possible to start from s and
reach t through repeated changes of the components of s whose content differs
from the same positions in vector t. This sequence of changes constitutes a path
connecting the two solutions. The interesting aspect of traversing such path is
that each step of the path represents an element in the solution space, i.e., an
assignment vector of VMs to servers. Some of these intermediate solutions are
infeasible or worse (in terms of the objective function) than s and t, but there is
also the possibility to find better solutions.

Example A toy example is shown in Figure 5.4, where two solutions are linked
together by a path of lenght = 4, i.e., four elements in the starting solution’s
vector s need to be modified to reach the target solution t. The vectors used in
the example represent the assignment of five VMs to five servers. Each cell of
the vector is related to a VM (order is assumed to be the same) and the content
of each cell stores a unique server’s identifier. The intermediate solutions v′,v′′

and v′′′ are new solutions that were not known before applying Path Relinking
and that are possibly better than all the known solutions.

The Path Relinking procedure is shown in Algorithm 8. The procedure iter-
atevely transforms the starting solution into the target solution by changing one
position of the current solution’s vector at a time. The list ∆x,t of the candidate
positions to be modified is initialized as the list of all positions whose content
differs in between the two solutions. At each iteration, the position whose up-
date generates the best new solution is selected to be modified. Differently from
the GRASP, this process is deterministic, with no RCL. When an intermediate
improving solution is detected, a local search procedure is invoked to explore
the neighborhood of such solution which is likely to contain even better ones,

76

5.2. GRASP’s extension for the long-term VMMP

Figure 5.4: Path Relinking example - path from solution s to solution t, passing
through intermediate solutions v’, v” and v”’.

Input: starting solution s, target solution t
Output: solution better than s and t

xbest← best among s and t;
x← s;
∆x,t← compute list of vector positions that differ between s and t;
while ∆x,t , ∅ do

foreach i ∈ ∆x,t do
evaluate benefit in objective function when changing element in
position i;

end
i← position whose change benefits the most;
xi ← ti ;
updateFlows();
if f (x) < f (xbest) then

xbest← localSearch(x);
end
remove i from ∆x,t;

end
return xbest;

Algorithm 8: Path Relinking procedure for VMMP.

77

5. Heuristics

since the related region of the solution space was not visited by the GRASP.
The local search procedure used here is exactly the same as the one used in the
GRASP. At the end of the Path Relinking step, only the best solution found is
kept.

The sub-procedure updateFlows is a procedure that cancels the flows used
by the element in position i of x and applies the flows used in t, i.e., since the
destination of the ith VM’s migration has changed, the path/paths traversed
during migration are updated accordingly. Be careful that, as in the case of the
canMigrate procedure, if the ith VM either was not migrating in solution x or is
not migrating in solution t, the flows needs to be considered differently, since
the flows involved are normal traffic’s flows instead of migration’s flows. The
Path Relinking procedure is implemented with some levels of flexibility:

• Instead of completing the entire path from the starting solution to the fi-
nal solution, there is the option to stop at a prescribed percentage of the
path. This is done by changing the condition on the while loop in Algo-
rithm 8 so that the algorithm stops when list ∆x,t is smaller than a a certain
percentage of its original size. This can be helpful since for some problems
it has been observed that good solutions are more likely to be found near
the starting or target solutions. In such cases, focusing the search only on
those specific portions of the path can save some computing time.

• The path of intermediate solutions connecting s and t is not unique. In
fact, the path depends on the order in which the components of the vec-
tor x are modified. Therefore, the number of possible paths is |∆x,t|!, i.e.,
factorial in the cardinality of the length of a single path. The basic ver-
sion of the procedure exploits the reasonable criterion of choosing at each
step the vector component whose change constitutes the best local choice.
However, following the rationale behind the whole GRASP approach, this
choice could be enriched with the addition of a randomization factor and
a RCL.

• It is not mandatory to modify exactly one positions of the vector x at each
step. There is also the possibility to change multiple vector components
at the same time, thus producing fewer intermediate steps and visiting
fewer solutions. The advantage is that this kind of approach speeds up
the procedure.

Of course, the three modifications described above can be combined to obtain
the best compromise for the particular problem’s instances considered.

Algorithm 8 is used inside a larger procedure, i.e., Algorithm 9. As pre-
viously mentioned, the overall algorithm tries to combine multiple solutions

78

5.2. GRASP’s extension for the long-term VMMP

coming from the GRASP to find new solutions. To achieve this goal, a pool of
solutions of limited size is initialized at the beginning of the algorithm. At first,
the pool contains exactly a subset of solutions coming from the GRASP algo-
rithm. Then, the Path Relinkig procedure is called on each pair of solutions
in the pool and the results are collected in a list of candidate solutions. The
pool of solutions is updated using the list of candidate new solutions. Since we
impose the pool’s size to be limited, the insertion of a new solution can cause
another solution to exit from the pool. The exiting solution is chosen followig
two criteria: quality and diversity. We want to maintain a pool with good solu-
tions that are as different as possible from each other so that they drive the path
relinking procedure to explore more regions of the solution space. Therefore,
when a new solution y is added, we compute the list of solutions in the pool
that are worse than y and among them we discard the most similar to y, i.e., the
one whose number of different elements in the vector is the lowest. If the pool
is actually updated, a new iteration of the algorithm is performed, applying the
Path Relinking Algorithm 8 to all the new solution pairs available, i.e., all the
pairs involving at least one soluton that has just entered the pool. The algorithm
stops when the update of the solution pool does not cause the pool to change
or when a prescribed maximum number of iterations is reached. Since all com-

Input: first pool of solutions
Output: best solution found with Path Relinking

P ool← read_Input();
while P ool does not remain the same do

Candidates←∅;
foreach new pair of solutions (s1, s2) do

s′← Path Relinking(s1, s2);
Candidates← Candidates ∪ {s′};

end
try to update Pool with Candidates;

end
return sbest from Pool;

Algorithm 9: Overall Path Relinking framework.

putations of Path Relinking are independent from each other, the path relinking
procedure on each solution pair in the same iteration can be completely paral-
lelized. A sort of Tabu List feature can also be included to avoid the situation in
which some solutions exiting from the P ool are immediately found and added
again, even though unlikely.

79

5. Heuristics

5.2.4 Sampling version of the VMMP’s heuristic

An issue with the VMMP’s heuristic is that, the larger the instance, i.e., the higher
is the number of servers, the higher will be the number of VMs selected by the
pre-processing phase described in Chapter 4.6. Thus, the complexity increases
much faster than for the VMPP. In particular, in a data center with 10000 servers
it happens that, on average, one VM per server is selected for either mandatory
or optional migration, leading to the migration of thousands of VMs. This un-
realistic situation can be mitigated by filtering part of the input, as hinted in
Chapter 4.6, but the complexity of the problem remains high. Therefore, the
previously described VMMP’s heuristic will perform a limited number of itera-
tions and will not exploit the power of randomization and the potential multi-
ple restarts of the GRASP approach.

To overcome, at least partially, this issue, we propose a modified version of
the algorithm. The idea is to avoid to consider at each step all available alter-
natives, but rather to restrict the choice according to some sort of randomized
criterion. This way, faster iterations should favor search diversification, making
up for the less accurate exploration of the neighborhood. Since the restriction
criterion is partially randomized, it will filter some solutions in some iterations
and other solutions in other iteration, thus acting like a sampling technique
from a wider pool of alternatives. In particular, we aim to speed up the follow-
ing aspects of the GRASP framework:

1. greedy randomized construction, i.e., the generation of an initial feasible
solution,

2. visit of a neighborhood,

3. convergence of an iteration in a local minimum and beginning of a new
iteration.

1) The first point is tackled by modifying Algorithm 6. The new version is
shown in Algorithm 10. The key difference lays in the computation, that is no
more exhaustive, of the incremental costs related to each VM. We restrict the set
of considered servers only to those situated in pods containing VMs of the same
customer/application, following the same reasoning already applied in the lo-
cal search. While in principle this choice could make the procedure miss the
only feasible solutions of particular instances, in practice the instances that are
target of this modified version should have pods so large that such probability is
negligible. Also, we assume that sub-procedureP ods(Cust) returns an updated
set of pods containing VMs whose assignment has been currently determined.
Therefore, in the unlikely, but possible, case of a customer that has all his VMs

80

5.2. GRASP’s extension for the long-term VMMP

Input: Data Center, list of Cob, list of Cf , α
Output: new allocation vector of VMs ∈ Cob ∪Cf
Solution←∅;
while Cob , ∅ do

vm← removeFirst(Cob);
Cust← getCustomer(vm);
foreach r ∈ Racks : r ∈ P ods(Cust) do

s← sampleFrom(r);
evaluate incrementalCost(vm,s);

end
RCL← buildRCL(α);

10 s̄← randomly select a candidate from RCL;
if canMigrateTo(vm, s̄) then

update links and go on ;
end
else

goto line 10;
end
Solution← Solution ∪ (vm,s̄);

end
while Cf , ∅ do

vm← removeFirst(Cf);
Cust← getCustomer(vm);
foreach r ∈ Racks : r ∈ P ods(Cust) do

s← sampleFrom(r);
evaluate incrementalCost(vm,s);

end
RCL← buildRCL(α);

27 s̄← randomly select a candidate from RCL;
if canMigrateTo(vm, s̄) then

update links and go on ;
end
else

goto line 27;
end
Solution← Solution ∪ (vm,s̄);

end
return Solution;

Algorithm 10: Sampling version of the greedy randomized construction.

81

5. Heuristics

considered for migration, the first VM will face an empty set of pods. In such
scenario, the basic version of the procedure is called and then the set of pods
related to the customer is initialized according to the chosen destination of the
VM.

Then, inside the restricted set of pods a further selection is performed. For
each rack, only a random subset of servers is considered. The details depend
on the definition of sampleFrom(r), but an example would be to sample servers
with a probability of

p =
b

Racksize

where b could be equal to 1 or 2. This way, the number of incremental costs
computed is, on average, in the order of O(|Racks||P ods|), instead of O(|S|). The idea
behind it is that, if racks are composed by identical servers, identifying a good
rack (energy-wise) by looking at any of its representatives might be enough in
this phase of the procedure. Indeed, once a VM is assigned to a good rack, the
local search can easily identify if in the same rack there is a more suitable server.

2) Rather than exhaustively considering every solution in the neighborhood
of the current solution, i.e., every possible VM-server pair for the One-Move-
Neighborhood and every VM-VM pair for the One-Swap-Neighborhood, we avoid
some of them. We already partially do that with the use of the more special-
ized neighborhood variants, but it is not enough. We introduce a sort of Tabu
List that forbids some moves for a prescribed number of local search iterations.
The idea is that, if the local search establishes that it is profitable to change
the assignment of a VM, then it will chose the best new assignment for it and
such assignment will remain locally optimal for some iterations. Therefore, it
can be beneficial not to consider all VM-server or VM-VM pairs involving that
particular VM for the next t iterations, i.e., for the visit of the next t successive
neighborhoods, where t is a parameter that can be tuned. For example, t could
be equal to 10% of |Cob∪Cf |, namely the cardinality of the sets of migrating VMs.
The Tabu List will be integrated with the criterion appearing in the following
point.

Point 3) This point is tackled simultaneously in two ways. First, we slightly
modify the basic general scheme of the local search, like shown in Algorithm
11. Instead of continuing the visit of the neighborhoods whenever at least one
improving solution is found, we introduce a minimum incentive δ that we re-
quire to explore a new neighborhood. The procedure treats any solution that do
not improve at least by δ the objective function value, with respect to the best
neighbor found so far, as a non-improving solution. The advantage is that this

82

5.2. GRASP’s extension for the long-term VMMP

Input: starting solution Solution
Output: solution that is a locally optimal

while Solution is not locally optimal do
Find s′ ∈ Neighborhood(Solution) with f (s′) < (f (Solution)− δ);
Solution← s′;

end
return Solution;

Algorithm 11: Modified Local_Search scheme.

technique allows for lower-bounded finite improvements of the objective func-
tion that are guaranteed to converge in a finite amount of time. On the other
hand, the disadvantage is that it may happen that the procedure stops with-
out considering a solution whose short-term improvement is lower than δ but
that would lead to more significant improvements later on. Parameter δ can be
tuned so that its value is large enough to filter a significant number of solutions
while being low enough not to likely incur in the scenario described before and
to have on average the only disadvantage of a precision’s loss in the order of δ.
This approach can be integrated with the one described in the previous point
by adding to the Tabu List also moves (i.e., VMs) that are filtered according to
the δ threshold, with the idea that, at least temporarily, it is unlikely that they
will offer a better improvement.

Then, to avoid that the procedure follows a sequence of neighborhoods that
is most likely to end up in a solution that is worse than the best one found so
far, we can introduce the option of discarding a solution if at any moment it
becomes clear that computing time is being wasted. In particular, we define
two ’discard conditions’:

• check that the solution found by the greedy randomized construction is
not worse of a certain threshold γ1, e.g., 80% of the value of the best
among the initial solutions found,

• after the exploration of each neighborhood, check that the solution cur-
rently considered is not worse than a certain threshold γ2, e.g., 70 % of
the best solution found so far by the overall GRASP.

Whenever a solution does not meet any of such conditions, the current GRASP
iteration is stopped, the solution is discarded and a new iteration begins. Note
that such conditions also imply that different GRASPs working in parallel on
the same instance will share information about the best solutions found, en-
forcing stronger thresholds.

83

5. Heuristics

5.2.5 Path selection sub-problem

In Chapter 4.7 we defined a part of the VMMP that completes the main problem.
We defined it separately to be able to focus on other more interesting aspects of
the problem. The idea is that the two should be solved in a fixed-point-iteration
fashion, like shown in Algorithm 12.

Solution←∅ while not convergent do
Solution← solve VMMP’s main problem ;
fix the values of the main problem’s variables ;
Solution← solve Path selection sub-problem ;
fix the values of the sub-problem’s variables ;

end
return Solution;

Algorithm 12: Fixed-point iteration scheme.

Input: Fixed traffics and allocations found the main procedure
Output: single path for each server pair

Solution←∅;
foreach server s1 ∈ S do

foreach server s2 ∈ S do
p← shortestP ath(s1, s2) ;
Solution← Solution∪ { p } ;
foreach link (i,j) ∈ p do

update ResidualCapacity(i, j) with traffic ts1s2 ;
update distance d(i, j) as the reciprocal of the residual
capacity ;

end
end

end
return Solution;

Algorithm 13: Path selection sub-problem heuristic.

In this thesis we do not design a sophisticated procedure to solve the Path
selection sub-problem. We simply suggest a procedure based on repeated short-
est path computations (see Algorithm 13). We use the Dijkstra’s Shortest Path
algorithm, therefore the inner loop on the set of servers can be omitted, since
such algorithm can simultaneously compute the shortest path from a single

84

5.2. GRASP’s extension for the long-term VMMP

node to each other node in the graph. However, especially for large instances,
it is not necessary to specify all the |S|2 paths between server-pairs. Indeed, the
only paths that need to be specified are the ones between servers with non-zero
traffic ts1s2 , thus making the inner loop much more computationally light.

85

CHAPTER 6
Testbed instances

Testbed instances play a crucial role in the process of validating our heuris-
tics and properly analyzing the algorithms’ behavior. Unfortunately, it is very
difficult to obtain data directly from real data centers. Due to this practical lim-
itation, we need to craft our own instances using our own parameters. However,
an inaccurate parameters’ selection would lead us to computational results that
are not representative of real-world scenarios. Therefore, we aim to validate our
models and algorithms on realistic instances. We generate them randomly, but
using parameters from the literature and/or obtained by reports coming from
real systems. In particular, we focus on gathering information about:

• common network topologies and capacities. In particular, how many hosts,
nodes and links are generated when creating an instance, and how are
they connected. We refer to what is usually done in the literature;

• real servers’ configurations. How many cores, RAM and disk IOPS are
available on real data-centers’ machines and how much power they con-
sume. We inspect benchmarks to have an idea about these data;

• VMs characteristics. We inspect real cloud vendors’ catalogs to determine
plausible VM requirements. A strong emphasis is put on CPU utilization
to which an entire section is devoted;

• traffic requirements and distributions. Given the most common type of
application, which traffic patterns are reasonable and which is the work-
load of a generic application. We mostly refer to the literature here.

Then, since we take data and information from different sources, a few adjust-
ments need to be made in order to make all parameters coherent, such as: con-

87

6. Testbed instances

version of some VM measures otherwise not suitable for our formulation; gen-
eration of missing data omitted by some VM vendors on their catalogs; increase
of values related to link capacities (w.r.t. literature) and hosts’ network inter-
faces (w.r.t. benchmark used) that otherwise would result in a bottleneck when
combined with the rest of the data.

In Section 6.1 we describe how the network topology of our instances is gen-
erated. In Sections 6.2, 6.2 and 6.4 we explain how servers’ and VMs’ param-
eters are obtained. Finally, in Section 6.5 we describe how the traffic matrices
are generated.

6.1 Network

The most widely used network topologies in data-centers are the so called Fat-
tree, VL2 and Bcube, as depicted in [12]. Their popularity derives from their
natural affinity with the most common network architecture, the three-tier ar-
chitecture, which fits well with the context of our analysis, i.e. three-tier web
applications.

Fat-Tree topology when testing fat-tree topologies of different sizes we con-
sider the work by Al-fares et al.[23] This kind of topology is a variation of the
original fat-tree design but provides better scalability and it is often adopted
in the literature. The idea is to build the network starting by the choice of
the number of pods. A pod represents a group of racks and its size is not a-
priori fixed. Instead, the number of racks within a pod as well as the number
of servers within a rack depends on the global size of the network (i.e., on the
number of pods itself). The same holds for the number of core and aggregation
nodes/links. Given the choice of k pods, each pod is composed by k routing
nodes divided in two layers of equal size. In the lower layer (edge nodes), each
node is directly connected with k

2 hosts that represent a rack. Moreover, each
node in the lower layer is directly connected with each node in the upper layer
(aggregation nodes) of the same pod and viceversa. The communications be-
tween machines placed in different pods are routed through (k2)2 core nodes.
Each of these has one direct connection with every pod. Thus, given k pods,
there are exactly k2

4 core nodes, k2 aggregation/edge nodes and k3

4 servers.
A small example with four pods (k = 4) is depicted in Figure 6.1. Each pod

contains two layers of two (k2) switch nodes . Each node in the lower layer (edge
layer) is connected directly to two (k2) machines. The upper layer (aggregation
layer) provides connectivity to each switch node in the core layer, making the
distance between every pod relatively small independently of the size of the

88

6.1. Network

Figure 6.1: Fat-tree topology with k = 4.

data center. Since there are four core nodes (k
2

4), each aggregation node is con-

nected to two (k2) of them. The global number of servers is 16 (k
3

4), four (k
2

4) in
each pod, two (k2) in each rack.

Concerning the link capacities, 1 Gbit/s links were often considered in the
literature for small/medium test instances until a few years ago. However, in
a recent work [17], authors consider a private data center, named PRV2, that
features link capacities ranging from 1 Gbit/s to 10 Gbit/s, even though for
their tests they only use 1 Gbit/s links. Similarly, in [13], authors use 10 Gbit/s
links for some links (i.e., access links). In [23], authors were already pointing
out that, in a three-tier architecture, all links in the core layer as well as some
in the lower layers needed to be 10 Gbit/s ethernet links, a technology that at
the time was becoming cost-competitive. Moreover, all these works considered
physical machines with much lower resources as well as VMs with much lower
requirements (sometimes, too much, as in [16]) than today’s standard (as will
be shown in following sections). Since we aim to simulate as close as possible
today’s systems and use values from VMs provided by real vendors as of today,
and on top of that we need to perform VMs migration, we think that the only
realistic choice is to consider 10 Gbit/s links everywhere. Given that we need
to host several VMs on each physical machine, and that some of them are web
servers that will singularly require more that 1 Gbit/s bandwidth, it is just not
possible to adopt lower capacities.

89

6. Testbed instances

6.2 Servers

In our MILP formulations we model a server as a sort of knapsack with multiple
dimensions. These represent four commonly considered resources, such as:

• number of CPU cores,

• quantity of RAM,

• disk IOPS,

• in/out bandwidth.

Other than that, the VMMP problem requires information about power con-
sumption in order to define a cost coefficient in the objective function. As in
the previous section, we find that in the literature the tested configurations in-
volve machines too small. In [24], authors consider hosts with 4 GB of RAM,
while in [13], Belabed et al. use 20 GB RAM machines. As of today, these
values are close to the ones provided by most laptops or small servers, there-
fore are not compatible with our goals. Instead, for this type of data we look
at some benchmarks. In particular, the benchmark SPECpower_ssj2008 [25]
collects submissions about server resources and energy consumption from dif-
ferent vendors. Looking at submissions made in the third and fourth quarters
of 2017, we select the ones listed in Table 6.1 .

Vendor Model P-max(W) P-idle(W) Cores RAM(GB)

Inspur Corp. NF5280 245 45.7 44 128
Sugon I620-G30 419 67.2 56 192
Dell R640 469 55 56 192
Hewlett Packard ML350Gen10 459 58.1 56 192
Lenovo SR650 183 45.6 28 96
Quanta Comp. Inc. D52BQ-2U 426 39.5 28 192

Table 6.1: SPECpower benchmark.

We tried to select servers whose core/RAM ratio is compatible with the tar-
get of our analysis, i.e., mainly three-tier web applications that are not CPU
intensive but rather memory intensive. Selecting servers with a lot of cores but
few RAM would cause a quick memory saturation and a waste of CPU most of
the times, causing one resource to be less relevant. Concerning the bandwidth,
the submissions on the benchmark reported most of the times only one net-
work interface of 1 Gbit/s connected, but often with the possibility to connect

90

6.2. Servers

Figure 6.2: Hewlett Packard ML350Gen10 power consumption.

a 10 Gbit/s interface. We consider only 10 Gbit/s network interfaces so that
we stay coherent with the network capacities. This consideration is supported
by the data collected about Microsoft and Amazon virtual machines that often
singularly require more than 1 Gbit/s , as shown in the following chapter.

Regarding the disk, there is no direct data about IOPS. The SSD’s or HDD’s
model are the only information available and it can be difficult to find the exact
data that we need. We estimate these data by looking at VMs requirements and
at the average number of VMs that a server should be able to host. This way we
make sure that the disk does not become a bottleneck for other resources and
represents a meaningful part of the problem. Since the VMs’ RAM (GB)/IOPS
requirements range from 1.5 ·10−2 to 4 ·10−2, we establish that all servers can
offer an amount of IOPS equal to their RAM (GB) multiplied by 200.

Last but not least, the power consumption of a server is modeled as if it was
linear with its CPU utilization. This kind of approximation is common in the
literature (e.g., see [26] and [27]) and, given the latest SPECpower’s results, is
reasonably accurate (see Figures 6.2 and 6.3). The slope is obtained by consid-
ering the difference between P-max (the power consumption under maximum
load) and P-idle (the power consumption when the machine is not working).
P-idle is also the offset from which the linear growth starts, as indicated in the
problem formulation in Chapter 4.

91

6. Testbed instances

Figure 6.3: LenovoSR650 power consumption.

6.3 Containers and Virtual Machines

Virtual machines are widely treated in the literature, while containers are rela-
tively new. Our formulation of the problem is not strictly related to any of the
two technologies. It can be applied to both VMs and containers, the only differ-
ence being in the quantities involved, i.e., the same data center configuration
can host a much higher number of containers compared to VMs. Let us recap
the parameters that represent VMs/containers in our mathematical models:

• CPU utilization, normalized on each physical machine,

• RAM demand,

• disk IOPS demand,

• in/out bandwidth demand.

Unfortunately, containers’ supply is currently limited, therefore our testbed in-
stances are tuned with VMs data. As with the servers data, values used in [16]
are too small (e.g., VMs using onlly a few Mbit/s of bandwidth). Wang et al. in
[17], as well as authors of [28], use VMs whose memory ranges in the 1 GB - 10
GB interval, which we found to be compatible with today standards. However,
they do not specify any other resource measure.

We follow the approach of Duong et al. [18], that use data about real VMs
taken from Amazon EC2’s catalog. However, they only use four different VMs,

92

6.3. Containers and Virtual Machines

while we prefer to consider more and from at least two different vendors. For
example, on the official website of Microsoft Azure there is a catalog of VMs
grouped by categories, with prices and resources offered [2], but there is noth-
ing similar about containers. Again, we look for VMs compatible with three-tier
applications. In particular, the Microsoft Azure B-series is described as ideal for
workloads that do not require full and intensive CPU performance, like web
servers and small databases. Their configuration’s details are reported in Table
6.2 .

Name vCPU RAM(GB) Max disk IOPS Max NICs

Standard_B1s 1 1 400 2
Standard_B1ms 1 2 800 2
Standard_B2s 2 4 1600 3
Standard_B2ms 2 8 2400 3
Standard_B4ms 4 16 3600 4
Standard_B8ms 8 32 4320 4

Table 6.2: Microsoft Azure B-series [2].

Since in our formulation we consider the bandwidth requirements expressed
in Mbit/s or Gbit/s, we have to adapt the data on the last column that is ex-
pressed in number of network interfaces. We do this by looking at other se-
ries of virtual machines that report both measures. For example, looking at
the Dsv2-series for a comparison, the Standard_b1s VM’s bandwidth can be
converted into 700 Mbit/s, while the Standard_B8ms VM’s bandwidth can be
translated into 3 Gbit/s. The others can take proportional values in between,
e.g., 1.1 Gbit/s, 1.5 Gbit/s, 2.2 Gbit/s and 2.7 Gbit/s respectively. It is not by
any means a precise conversion but it makes enough sense for the purpose of
our analysis. Regarding the first column, we do not directly use the number of
virtual CPUs as a resource requirement. Instead, we determine the CPU uti-
lization of a VM on a specific server with the technique described in Chapter
6.4 .

Then, since the data about servers come from different vendors, we opt do
the same here and consider what Amazon EC2 offers [3]. We select the VMs
listed in Table 6.3 .

93

6. Testbed instances

Name vCPU RAM(GB) badwidth(Mbit/s) IOPS

m4.large 2 8 450 2400
m4.xlarge 4 16 750 3600
m4.2xlarge 8 32 1000 5000

Table 6.3: Amazon EC2 M4-series [3]. IOPS are generated by looking at the Azure’s
equivalent series.

Instead of looking at the t2-series which is almost identical to the already
selected Azure’s series, we take a more resource-intensive series and discard
the top-end instances because they alone would saturate most of our servers,
causing infeasibility issues. Amazon’s series provides bandwidth measures, but,
unfortunately, does not report a disk IOPS measure. Again, we choose these
values (see last column) within some ranges that resemble the Azure’s ones, i.e.,
we have them scaled with similar vCPU/IOPS and/or RAM/IOPS ratios.

6.4 CPU utilization

Our formulation represents the CPU utilization of a VM in a more detailed way
than simply using its number of virtual cores. In fact, in our model this param-
eter depends both on the VM itself (VM type and workload) and on the server
hosting it. Therefore, we generate this parameter from other data. In particu-
lar, we consider the SPECvirt_sc2013 [29] benchmark that collects information
about the impact of some predefined VM workloads on some machines. The
workflows used are taken from the SPECweb benchmark [4] (used also in the
next chapter) and meant to simulate the traffic workloads of a generic web ap-
plication. The submitted results report a performance metric that measures the
throughput of web servers and application servers when the hosting machine is
fully loaded. To load a machine, the benchmark asks to progressively instanti-
ate standardized tiles (sets) of VMs (e.g., a web server, an application server, a
database every four tiles etc.). A machine is fully loaded when Quality of Ser-
vice metrics start to drop under acceptable values. Using these data, we refer to
Lazowska’s Utilization Law [30] to derive Equation 6.4 and 6.5. In particular,
let us denote with:

Uk: utilization of resource k,

X: throughput,

Dk: service demand of resource k,

94

6.4. CPU utilization

Bk: busy time of resource k,

Ck: number of completion observed,

T : length of observation interval.

The utilization law states:
Uk = X ·Dk (6.1)

and the utilization is also linked to the service demand through:

Dk =
Bk
C

=
Uk · T
C

(6.2)

In our case, resource k is the CPU of a single server s, and its utilization is the
sum of contributes from each VM/container on that server:

Us =
∑
c∈VMs

Ucs (6.3)

Ucs = Xc ·Dcs (6.4)

Finally, the utilization is normalized on each server’s number of cores to obtain
the exact parameter used in the mathematical formulation:

CPUcs = #cores ·Ucs (6.5)

By a quick inspection of different submissions we noticed that, while there
are variations among different machines’ performance (ratio between machine’s
number of cores and number of tiles of VMs hosted), the ratio between web
servers’ and application servers’ throughput is always almost identical, with
very little variations, meaning that their impact on a host does not depend on
the specific host. Therefore, since the VMs used as web servers and application
servers in the benchmark have almost equal size, we decide that, once fixed a
server s, the parameter Dcs can have only three distinct values: Dweb, Dapp and
Ddb. The relation between the first two is estimated in the following way:

Dapp =Dweb ·
scoreweb
scoreapp

=∼ 1.05 ·Dweb (6.6)

while, in the database case, we arbitrarily choose to use:

Ddb = 2 ·Dapp (6.7)

Then, we roughly estimate Dweb by adapting Equation 6.2. In particular, we do
not have directly Cs, the number of completions in the time interval on machine
s, and neither we have any time interval T to refer to. Instead, the benchmark
offers a way to estimate Cs = Cs

T . Knowing that:

95

6. Testbed instances

• a certain number of tiles are hosted in the server,

• every tile is composed of a web server and an application server,

• a database is allocated every four tiles to serve four application servers,

we just sum up the average score of web servers, the average score of applica-
tion servers and a quarter of the score of application servers and multiply this
quantity by the number of tiles:

Cs = #tiles · (scoreweb + scoreapp +
scoreapp

4
) (6.8)

Indeed, the scores of the benchmark are defined as the throughput at maximum
load, i.e., the number of completions per unit of time at maximum load.

Moreover, Equation 6.2 requires to know Uk, the resource utilization in the
configuration we are considering. We have an indication of it by looking either
at the normalized per-tile score or at the total score. This metric is defined as
the performance of the VMs against the theoretical maximum pre-computed
for that system configuration, i.e., the Quality of Service metrics start to drop
when the system is managing ∼ 93% of its maximum workload. Therefore we
take Uk = 0.93.

Since the submissions on SPECvirt do not include the exact same machines
that we selected from SPECpower benchmark in chapter 6.2, we need to adapt
the data about Cs. We do this by using values of machines with a comparable
number of CPU cores. In particular, we use:

• Hewlett Packard DL380Gen10 (56 cores) to estimate the value for Hewlett
Packard ML350Gen10 (56 cores),

• Lenovo ThinkSystem SR650 (56 cores) to estimate the value for Lenovo
ThinkSystem SR650 (28 cores) by simply taking half the value,

• a combination of Hewlett Packard DL380Gen10 (56 cores) and Lenovo
ThinkSystem SR650 (56 cores) to estimate values for Sugon I620-G30 (56
cores) and Dell R640 (56 cores),

• Huawei Fusion RH2285H (36 cores) to estimate the value for Inspur Corp.
NF5280 (44 cores) by scaling up the value of a factor 44

36 ,

• Hangzhou H3C (16 cores) to estimate the value for Quanta Comp. D52BQ-
2U (28 cores) by scaling up the value of a factor 28

16 .

96

6.5. Traffic matrices

Values are reported in Table 6.4 .

Vendor Model Cs
Inspur Corp. NF5280 8030
Sugon I620-G30 13700
Dell R640 13800
Hewlett Packard ML350Gen10 13655
Lenovo SR650 6907
Quanta Comp. Inc. D52BQ-2U 4567

Table 6.4: Hosts’ maximum throughput.

The last element required to apply Equations 6.4 and 6.5 is the throughput
of each VM. This quantity is generated following the rules described in Chapter
6.5 .

We are aware that there exist more accurate ways to estimate these parame-
ters, however, given the data publicly available, this is enough for our analysis.
We ran some tests loading our VMs with workloads (see next section) and CPU
utilizations generated with these parameters and we found that, on average, the
CPU happens to be comparable with the other resources, in particular the RAM
resource, meaning that they all act as reasonable constraints with none being
a bottleneck for the others. Also, our VMs with our workload achieve utiliza-
tion factors similar to the ones of the benchmark. Finally, rather than merging
together all independent data, these parameters give a meaningful correlation
between the workload, and therefore bandwidth requirements, of a VM and its
CPU utilization, which in turn is correlated to the power consumption of the
hosting machine.

6.5 Traffic matrices

As pointed out by Belabed et al. in [13], using completely randomly generated
traffic matrices may not be the best way to proceed. Instead, we should at least
try to mimic real traffic as much as possible. First of all, the traffic matrices
should be partitioned by customers since VMs are only aware of the existence
of other virtual entities owned by the same customer, as done in [13]. This
property was already took into account in our problem formulations and we
exploited it to get more compact models.

We also need to consider meaningful traffic distribution and volumes. In
particular, we look at the work by Greenberg et al. [31]. They analyze the

97

6. Testbed instances

network traffic in a particular type of data center network topology, the VL2
topology. Despite the focus on a specific topology and the year of publication,
their results can be a good starting point. For example, they found that the
vast majority of traffic flows in a data center are made of few bytes. These
small traffics, called "mice flows", are clearly related to the countless ACK mes-
sages, meta-data requests and routing messages that have nothing to do with
the actual traffic generated by the customers’ applications. Their weight on the
system is low and they should not impact the placement and migration deci-
sions, therefore we decide to ignore them. Indeed, the remaining (fewer) flows
account for the 90% of the whole traffic volume. These are the flows that we
are going to consider. The authors found that these flows follow some common
patterns: their size is usually uniformly distributed between 100 MB and 1 GB,
a consequence of system design decisions (e.g 100 MB chunk size to amortize
disk-seek times over read times), and a machine rarely communicates with more
than a dozen of other hosts. Of course, these numbers might be outdated and
need to be translated and adapted to our measures. Since a flow is meant as
a traffic chunk between physical machines, this analysis tells us that the inter-
VM communication has to take on average a fraction of that 100 MB-1 GB (i.e.,
800 Mbit - 8 Gbit) range. Given that a VM mainly communicates with a small
number of other VMs and that these will probably be put on a near, if not on
the same, physical machine, the fact that on average a host has traffic towards a
dozen of other machines is coherent with the demands/capacities ratio brought
by our selection of servers and VMs (i.e., a server on average is able to host
up to 10 VMs which generate traffic towards other VMs placed on a dozen of
nearby machines). Moreover, if we roughly translate the 8 Gbit flow in 8 Gbit/s
bandwidth usage, it almost saturates the bandwidth available on a typical host
as well as the edge link capacities.

Furthermore, in [31], Greenberg et al. discover that the traffic matrices
do not show particular regularities exploitable by some a priori traffic engi-
neering. Instead, they are highly variable, cannot be trivially summarized in
clusters/categories and are also quite unstable, meaning that, given the cur-
rent traffic, it is almost impossible to predict how it will be in the near future.
This lack of short-term predictability comes from the exploit of randomness to
improve performance (e.g., data randomly spread on servers for redundancy
and load distribution reasons). This consideration may suggest that some ro-
bustness and uncertainty measures should be taken into account. We do not
directly include them in our formulation, leaving the topic open for future im-
provements. Our approach instead relies on periodical system reconfiguration
through VMs migration and update of the routing paths. Given this consid-
eration about short-term unpredictability, the average traffic requirements and

98

6.5. Traffic matrices

patterns of well known types of applications as well as time and resource re-
quirements for VMs migration can be reliably estimated.

Similar results are obtained by Benson et al. in [24]. They inspect different
data centers used by different type of customers (e.g., Universities customers
or Cloud customers). One aspect that they point out is that more than half
the traffic generated inside a rack remains inside the rack, even though this
phenomenon is stronger in cloud environments. This observation of course
confirms that the objective function of our formulation makes sense and that
trying to put VMs with high inter-traffic close to each other is what is actually
done in real systems.

Finally, even if our problem formulations are quite general, the context of
our analysis is meant to be mainly the common context of three-tiers web ap-
plications. Thanks to this consideration, we can feed our model and our algo-
rithms with input data that resemble realistic virtual systems (owned by cus-
tomers) composed by web servers, application servers and DBMS. This is done
through an initialization phase that selects some VMs for each tier and assigns
them a traffic coherent with their role. The assumption is that a customer will
have components of the same tier hosted on equivalent VMs and the workload
evenly shared among them.

To guarantee diversity in the VMs’ choices, however, web servers, applica-
tion servers and DBMS are instantiated on random VMs types among the ones
presented in the previous chapters. In particular, for each customer, we select
the average number of HTTP requests that their system will need to sustain.
This number is randomly picked in a range that goes from 400 requests per
second to 4000 requests per second. The interval is chosen by looking at some
Wikipedia traces [32] from 2007-2008, following the approach of [33] and [34].
By manually inspecting some of these traces we found that the number of re-
quests per second mainly ranges in the 1400-3000 range. Given that not every
customer has workloads similar to Wikipedia, we allow a lower lower-bound
and an higher upper-bound in order to have an order of magnitude in the spec-
trum of values. Unfortunately, we were not able to obtain other traces like the
Yahoo’s ones cited in the mentioned works.

Given a customer with workload incoming from the Internet, we select a
number of identical VMs to act as web servers. Then, the bidirectional flow be-
tween web servers and the WAN is equally shared among the web servers. They
need to receive all the traffic flow, so their number is decided based on their
VM model’s bandwidth requirements. Traffic between web servers and appli-
cation servers is again evenly shared, and the same of course is applied to traffic
between application servers and DBMSs. To be more precise, the in/out flow ra-
tio in the web tier is not chosen randomly. Instead, we look at the benchmark

99

6. Testbed instances

SPECweb2009 [4]. Unfortunately, the most recent entry is dated 2012. We find
data collected about three categories of applications: Banking, E-commerce and
Support. Depending on the category, requests to the web servers are different
and characterized by different average sizes of the responses, as shown in Ta-
ble 6.5 .The test is repeated three times for each category, as indicated by the
iterations column.

Category Average Bytes/Request Iteration

Banking 30753 1
Banking 30753 2
Banking 30752 3
E-commerce 141842 1
E-commerce 141844 2
E-commerce 141834 3
Support 536247 1
Support 535318 2
Support 534711 3

Table 6.5: SPECweb2009_PHP, 2012 first quarter [4].

The average bytes/requests ratios are quite stable. Support requests are on
average heavier due to download operations. Knowing that an HTTP request
(HTTP GET or HTTP POST) from a client to a server usually can be estimated
to be approximately 1 KB, we can estimate a reply/request ratio of 30 for bank-
ing applications, 141 for e-commerce applications and 535 for support applica-
tions. When generating virtual entities for a customer, we select randomly one
of these categories and the incoming traffic, then compute the outgoing traffic
accordingly. Then, knowing the traffic volume at the web tier, we can estimate
the volumes at the application tier and database tier.

The output of the web-servers are data wrapped into HTML pages. Their
size, due to HTML, CSS and Javascript code is larger than the related data sent
by the application tier. Therefore we scale the application-level traffic down
by an empirical factor compared to the web-level traffic. To estimate the range
of this factor we inspect some web pages related to E-commerce and banking
websites, both of which nowadays contain also aspects of the support category
(mostly the download of images). We do this little inspection browsing different
pages from the websites of Amazon [35], Mediaworld [36] and Zalando [37] for
the E-commerce category, and from the website of Intesa SanPaolo [38] for the
banking category. In all cases the Italian version of the websites is used. When
downloading a page, we open the Google Chrome browser’s console and look

100

6.5. Traffic matrices

Figure 6.4: Chrome’s console shows the size of images with respect to the whole page.

at the window regarding files and data transiting the network. These data are
grouped into several categories, such as Images, HTML documents, CSS files,
Javascript files and XHR requests.

As a demonstration, we use screenshots from one of Zalando’s catalog pages.
First of all, we look at the weight of images (see Figure 6.4) with respect to the
whole page. Their weight ranges from 30% to 50% for the banking category and
from 50% to 65% for the E-commerce category. Images are stored on the web
servers’ disks, so we subtract their contribution when considering the traffic
between web tier and application tier. Then, we consider the weight of XHR
requests with respect to HTML, CSS and Javascript files. XHR requests contain
data fetched from the databases to fill the content of dynamic pages when the
structure of the page has already been sent. This means that, if we focus our
attention on pages with dynamic content (i.e., pages whose content depends on
parameters and/or the user doing the request), we can compare the size of the
fetched data with the size of the pages’ static structure (HTML, CSS, Javascript
files). This dynamic content roughly constitutes the data sent from application
tier to web tier and whose ratio w.r.t. the whole page we are trying to quantify.
The numbers that we found are shown in Table 6.6 . In particular, each page
has been visited after a reset of the browser’s cache. This way, even though
the estimate might be too conservative (real users will have a certain amount
of files saved locally in cache), the numbers are not influenced by a browser
caching that would cause a less controllable behavior.

101

6. Testbed instances

Website Page type data%

Amazon Search by keyword 3%
Amazon Product 1%
Amazon Offers 2%
Amazon My Orders 1%
Amazon My Kindle 32%
MediaWorld Catalog 7%
MediaWorld Product 8%
Zalando Catalog 15%
Zalando Product 5%
Intesa SanPaolo My Home 26%
Intesa SanPaolo Archive 11%
Intesa SanPaolo Rubric 15%
Intesa SanPaolo Patrimony 10%
Intesa SanPaolo My Cards 18%

Table 6.6: Web pages inspection. The third column shows the percentage of data
coming from the database tier with respect to the whole page.

Apart from the ’My Kindle’ page on the Amazon website, which is likely
an outlier, we can approximately select a 1% - 15% range for the E-commerce
category and a 10% - 25% range for the Banking category. For our instances we
randomly pick a value within these two ranges.

Then, we need to do a similar process to estimate requests rate that arrives to
the last tier, the database tier. When looking at the same web pages listed above,
we manually estimate the size of the dynamic content in terms of common data
representation on a computer, e.g., 4 bytes for an integer value, 8 bytes for a
double precision value and a quantity that depends on the number of characters
for strings, just to have a clue on the order of magnitude of the dimension of
this type of content w.r.t to the whole web page.

As an example, a catalog page of the Amazon website display a list of items,
each one containing some numerical and literal information on the item itself.
We estimate roughly the amount of these data and we multiply them for the
number of items in the displayed list. Since the number found are less precise
than the previous ones and it is difficult to group them in categories, we simply
establish that the traffic rates at this level are generated between the minimum
value and the maximum value observed, i.e., between 5% and 50% with respect
to the traffic rate at the application level.

To recap, when generating a customer (either new or already present if the
data center), we apply this sequence of operations:

102

6.5. Traffic matrices

1. randomly choose if the customer’s application belongs to E-commerce cat-
egory or Banking category (Support category elements will be included in
both),

2. sample a number of requests per second from a Uniform distribution
ranging from 400 (minimum) to 4000 (maximum),

3. an HTTP request is roughly 1 KB, equal to 8 Kbit, so we multiply the
previous number by 8 to obtain the incoming traffic expressed in Kbit/s,

4. depending on the category selected at step 1, select a percentage of images
w.r.t to the web page size and use the in/out factor of the chosen category
together with the in/out factor of images (Support Category) to determine
the percentage of image requests w.r.t . all requests selected at step 2,

5. compute the response traffic by multiplying image requests and other re-
quests by their respective in/out factor, call this number t0, and call t1 the
traffic obtained by subtracting images traffic from t0, i.e., only data and
HTML/CSS/JS traffic,

6. compute the application-to-web traffic by multiplying t1 by a random fac-
tor in the ranges indicated in the previous paragraph, call it t2,

7. compute the database-to-application traffic by multiplying t2 by a ran-
dom factor in the ranges indicated in the previous paragraph, call it t3,

8. the traffic in the other direction follows the same rates chosen above for
each tier and determines the throughput of every VM, used to estimate
the CPU utilization in Section 6.4,

9. for each tier, randomly select a type of VM,

10. for each tier, determine the number of VMs needed dividing the overall
related traffic (more precisely, the maximum between input and output
related traffics) by the chosen VM’s bandwidth requirements. Since we
need an integer number, we round the result up,

11. generate the customer’s traffic matrix by equally splitting the traffic at
each tier among the tier’s VMs,

12. convert all the numbers obtained into the preferred unit of measure, e.g.,
Gbit/s or Mbit/s.

Finally, when generating the set of new VMs, we randomly assign them to
some customers. This means that a part of those customers’ traffic matrix has
to be updated accordingly.

103

CHAPTER 7
Computational results

In this chapter we report the computational results of the tests that we per-
formed. For both the VMPP and the VMMP we:

• describe how the tests were set up, addressing the choice of particular
parameters that were not discussed in previous chapters. We also specify
how the initial configuration is obtained, i.e., how the data center of each
particular instance is populated to simulate a generic plausible scenario,

• show the numerical results obtained. The goal is to analyze the quality of
the solutions and the behavior of the two heuristics. Results are presented
in tables, each followed by a brief analysis.

The general approach guiding all the tests is to compare our heuristics with
either an exact mathematical solver or another heuristic procedure widely used
in practice and/or in the literature.

In Section 7.1 we describe how the VMPP tests were prepared, while in Sec-
tion 7.2 we report the related computational results. Similarly, in Section 7.3
we describe how the VMMP tests were set up and in Section 7.4 we report the
related computational results.

7.1 VMPP experimental setup

Instances for the tests are generated in a pseudo-random way starting from
a specified seed. In this way we can reproduce them and use them multiple
times for comparisons. The Random Number Generator used is provided by
the Java SecureRandom implementation [39]. In particular, for portability, the

105

7. Computational results

underlying algorithm that we use is the SHA1PRNG algorithm that is available on
all Operating Systems. VMPP’s instances are generated as follows:

1. specify the data center’s size and topology, the number of customers’ ap-
plications already allocated, the number of new VMs and the number of
new applications to be allocated;

2. an empty data center is generated according to the structure described
in Chapter 6 and both already existing and new applications are gener-
ated following the rules described at the end of Chapter 6. Then, other
new VMs are randomly added to some applications so that the specified
number of new VMs is reached. In particular, each of these has a 0.66
probability of being assigned to the same customer as the previous one.
This criterion is enforced because otherwise, for large instances, the prob-
ability of generating more than one new VM for a customer would be close
to zero, thus trivializing a portion of the problem;

3. all non-new VMs are placed in the data center, one application at a time.
In particular, for each application a random rack is chosen. Racks are
kept in descending residual RAM order and only the first half is consid-
ered when randomly picking a rack for an application. Having selected a
rack, the procedure tries to allocate the application’s VMs while visiting
the rack’s machines in lexicographical order. The VMs here are ordered
following the pattern "web server - app server - dbms" so that it is likely
to save a lot of bandwidth by putting them on the same server. Other-
wise, a random scattered placement would quickly saturate the servers’
bandwidth capacities. Also, while the initial configuration is assumed to
be non-optimal, it would be unrealistic to have a completely inefficient
configuration. During this allocations, capacities are constantly updated.
If, for any reason, some VMs cannot be placed in the chosen rack, another
one is selected and the same process is applied again. For the allocation
of a single application we give a 10 seconds time-out, after which the all
process is stopped and the current seed is discarded due to supposedly
generating infeasible configurations.

4. during the placement described in the previous point, we specify a thresh-
old for the resources utilization of any server. This can be tuned down to
avoid resource saturation that would cause infeasibility when trying to
solve the problem later, but, on the other hand, the lower the value, the
more difficult it is for the initialization procedure to allocate VMs. For
these tests we use a value of 0.9.

Computations were performed on different machines:

106

7.2. VMPP’s computational results

• the CPLEX solver (version v12.8.0.0) was run on a machine equipped with
8 CPU cores Intel Xeon E31245(3.30GHz) and 16 GB of RAM,

• heuristics were run either on a CHRP IBM 8246-L2T cluster equipped
with 64 POWER7 CPU cores (4.2GHz) and 128 GB of RAM or on a VM
from Microsoft Azure’s [2] catalog, in particular the VM D8s Standard v3,
equipped with 8 virtual CPU cores and 32 GB of RAM.

7.2 VMPP’s computational results

In this section we are going to evaluate different aspects of the VMPP’s heuristic,
such as: optimality gap on instances up to 128 servers, comparison between
runs of different length on large instances with 10000 servers, impact of the
GRASP’s randomization parameter, impact of the local search and comparison
with a naive First Fit heuristic.

Optimality gap First of all, we are interested in knowing the quality of the
solutions found by the algorithm described in Chapter 5. We compared the
quality of the solutions obtained by such algorithm and the solutions found
by solving the MILP formulation with the CPLEX solver. We ran CPLEX on
the MILP formulation reported in the Appendix. The formulation was writ-
ten in the AMPL language. We identified the set of the largest instances solv-
able by CPLEX in reasonable time, i.e., Fat-Tree data centers with up to k = 8
pods, corresponding to 128 servers, 40 new VMs to be placed, including three
new applications, and 210 applications already allocated. Beyond this value
of k, our machine would saturate the memory before being able to terminate a
computation, a situation that already happens with some instances for k = 8.
CPLEX was given a time limit of 3600 seconds, while the algorithm was given
a time limit of 180 seconds. Due to memory concerns, we did run CPLEX using
options ’nodefile=3, treemem=128, mipgap=0.00001’, The first two options
allow to send part of the RAM content to the disk during the computation so
that the memory saturation is less likely to happen. However, together with the
enforced time limit, they may occasionally cause the solver to prematurely stop
in an non-optimal solution. The objective function’s value is expressed in MB/s.
Results are summarized in Tables 7.1, 7.2 and 7.3. The relative gap is computed
as

rel_gap =
heur_value - best_known

best_known
,

where best_known is the solution found by CPLEX. The GRASP was run on the
Azure VM.

107

7. Computational results

Instance best_known grasp_value rel_gap abs_gap cplex_time grasp_iter

1 1525 1525 0 0 511s 27730
2 374,129 374,129 0 0 152s 33457
3 1073,238 1073,238 0 0 706s 20089
4 955,265 955,265 0 0 460s 29684
5 2436,869 2436,869 0 0 1234s 19739
6 2439,231 2439,231 0 0 334s 15280
7 1608,337 1608,337 0 0 328s 25421
8 2034,833 2031,087 -0,002 -3,746 810s 69208
9 1167,8 1167,8 0 0 343s 32986
10 1212,977 1212,977 0 0 179s 9213
11 1586,196 1586,196 0 0 2268s 28392
12 1988,447 1988,447 0 0 462s 21649
13 2691,288 2691,288 0 0 932s 16838
14 882,039 882,039 0 0 221s 27087
15 1234,859 1183,427 -0,042 -51,432 3604s 66666
16 854,095 842,987 -0,013 -11,108 677s 8203
17 548,815 477,804 -0,129 -71,011 836s 11906
18 1499,806 1499,806 0 0 1073s 20248
19 1428,515 1428,515 0 0 1116s 35508
20 2038,881 2038,881 0 0 655s 23373
21 182,994 182,994 0 0 3602s 14048

Table 7.1: CPLEX one hour run vs GRASP three minutes run, Part 1.

In all the considered cases the GRASP procedure is able to match the solution
found by CPLEX and several times, when CPLEX fails to reach the optimum
due to time limit or treemem limit, it manages to outperform it. Such results
are obtained within just 1

20 of the time limit given to CPLEX.

Large instances Having shown that, on average, the performance of the al-
gorithm on reduced, but non-trivial, instances are promising, we proceeded
to analyze the solutions obtanied on very large instances. Our target here are
instances with approximately 10000 servers, corresponding to Fat-Tree topolo-
gies with k = 34 pods. Since we cannot have any proof of optimality for this

108

7.2. VMPP’s computational results

Instance best_known heur_value rel_gap abs_gap cplex_time heur_iter

22 1186,281 484,705 -0,591 -701,576 3603s 15398
23 170,536 155,803 -0,086 -14,733 3602s 25220
24 757,039 757,039 0 0 1237s 18884
25 928,787 928,787 0 0 719s 25623
26 2296,537 2296,537 0 0 1666s 33118
27 1554,956 1475,842 -0,051 -79,114 627s 14048
28 735,558 735,558 0 0 1532s 13269
29 376,157 365,973 -0,027 -10,184 1257s 27890
30 2311,468 2297,239 -0,006 -14,229 2155s 115711
31 1898,568 1902,127 0,002 3,558 1318s 8653
32 1140,626 1041,817 -0,087 -98,81 412s 15120
33 1456,954 1456,954 0 0 1900s 11054
34 2063,4 2063,4 0 0 317s 23493
35 1526,868 1526,868 0 0 2037s 23587
36 1460,027 1460,027 0 0 223s 17065
37 657,284 657,284 0 0 2622s 23713
38 638,768 602,915 -0,056 -35,854 1558s 12626
39 767,34 649,863 -0,153 -117,477 2677s 91311
40 1362,447 1362,447 0 0 479s 37203
41 1396,74 1391,083 -0,004 -5,658 1547s 12973
42 1225,041 1225,041 0 0 2155s 19199

Table 7.2: CPLEX one hour run vs GRASP three minutes run, Part 2.

Instance best_known heur_value rel_gap abs_gap cplex_time [s] heur_iter
Average Gaps -0,03 -28,842

Table 7.3: CPLEX one hour run vs GRASP three minutes run, Part 3.

type of instances, we compare the solutions obtained within a short time limit
(three minutes) with the solutions obtained in a time interval of 60 minutes by
the same procedure, keeping the same 1

20 ratio of the comparison with CPLEX.
This way, given that we have previously shown that the algorithm is able to
obtain solutions with very good quality, we can moderately trust the quality of
solutions coming from a long run. Our goal is to show that the algorithm ap-
proaches very good solutions already in the first minutes of execution, meaning
that it is useful for obtaining good solutions also in an online setting.

Instances feature 10000 servers, 100 new VMs, including 7 new applica-
tions, and 10000 already placed applications. Both the 60 minutes run and the
three minutes run were performed on the IBM POWER7 server. Results are

109

7. Computational results

Instance 60m_value 3m_value rel_diff abs_diff 3m_iter

100 1858,147 1858,147 0 0 259
101 1300,375 1300,375 0 0 283
102 2635,806 2635,806 0 0 314
103 2059,404 2059,404 0 0 318
104 2381,551 2381,551 0 0 323
105 1616,105 1616,105 0 0 333
106 3651,693 3651,693 0 0 339
107 1951,525 1951,525 0 0 448
108 1521,956 1521,956 0 0 388
109 1426,905 1426,905 0 0 374
110 2111,27 2111,27 0 0 457
111 2996,871 2996,871 0 0 421
112 2129,931 2129,931 0 0 354
113 3025,222 3025,222 0 0 333
114 2327,82 2327,82 0 0 339
115 4199,377 4199,377 0 0 371
116 3496,824 3496,824 0 0 379
117 1947,74 1947,74 0 0 294
118 1848,531 1848,531 0 0 295
119 3177,857 3177,857 0 0 278
120 1934,648 1934,648 0 0 335
121 1421,112 1421,112 0 0 352
122 2155,911 2155,911 0 0 373
123 1277,823 1277,823 0 0 395
124 1025,74 1025,74 0 0 368
125 4642,782 4642,782 0 0 383
126 2656,147 2656,147 0 0 432
127 1791,76 1791,76 0 0 370
128 1828,314 1828,314 0 0 334
129 3014,654 3014,69 0 0,037 342

Average Gaps 0 0,001

Table 7.4: GRASP one hour run vs GRASP three minutes run.

reported in Table 7.4. The relative differnce is computed as

rel_dif f =
3min_value - 60min_value

60min_value
.

110

7.2. VMPP’s computational results

Apparently, a long run does not bring significant benefits to the solutions found
within the first minutes. Only one out of 30 instances shows a difference in the
results, and such difference is not significant. Actually, the algorithm converges
within a 1% difference in less than one minute.

Impact of the GRASP randomization factor Then, we would like to know
how the randomization parameter α_grasp, used by the sub-procedure Greedy
Randomized Construction, affects the quality of the results. Until now, tests
have been run with α_grasp = 0.15. We ran again the GRASP on the same large
instances previously described, but this time with α_grasp = 0, corresponding
to a deterministic greedy algorithm. Apparently, even without the randomiza-
tion factor, the algorithm is able to find results of the same quality, therefore we
do not report them again. In particular, despite the variance brought by the pa-
rameter α_grasp, the local search manages to converge to solutions of the same
quality in both cases. This result enforces the choice of a greedy deterministic
procedure in [14].

Impact of the Local Search We would like to see the impact of the local search
on the solutions’ quality to understand if it is worth dedicating time to it. Tak-
ing again the previous set of computations (in particular, the short run), with
α_grasp = 0.15, we compare the value of the best solution found with local
search against the best initial solution found with only the greedy randomized
phase of the procedure. The comparison is shown in Table 7.5.

It appears that, on average, approximately 15% of the final solution’s value is
brought by the Local Search, while the remaining 85% is due to an already
good choice of the initial solution built in the greedy randomized construction’s
phase.

Comparison with First Fit heuristic As frequently done in the literature, e.g.,
in [14] , we compare the performance of our procedure against a naive heuristic
that is often used in practice, the First Fit algorithm. Such procedure is not
traffic-aware and simply assigns a VM to the first server that has enough CPU,
RAM and DISK residual capacity to host it. New VMs were consideredd in
customer order to implicitly help the First Fit. Results are shown in Table 7.6.
Instances used are the large ones with 10000 servers. First Fit was run on the
IBM POWER7 server.

111

7. Computational results

Instance Greedy_Rand Local_Search rel_diff abs_diff
100 2094,687 1858,147 0,127 236,539
101 1816,938 1300,375 0,397 516,563
102 3024,598 2635,806 0,148 388,792
103 2562,859 2059,404 0,244 503,455
104 2746,234 2381,551 0,153 364,683
105 2385,422 1616,105 0,476 769,317
106 4004,909 3651,693 0,097 353,216
107 2104,391 1951,525 0,078 152,866
108 1758,783 1521,956 0,156 236,827
109 1775,634 1426,905 0,244 348,728
110 2290,712 2111,27 0,085 179,441
111 3180,598 2996,871 0,061 183,727
112 2498,397 2129,931 0,173 368,465
113 4255,089 3025,222 0,407 1229,867
114 2418,992 2327,82 0,039 91,172
115 4390,178 4199,377 0,045 190,801
116 3824,298 3496,824 0,094 327,473
117 2808,746 1947,74 0,442 861,005
118 2138,067 1848,531 0,157 289,536
119 3252,048 3177,857 0,023 74,191
120 1976,465 1934,648 0,022 41,817
121 1656,332 1421,112 0,166 235,219
122 2524,39 2155,911 0,171 368,479
123 1487,23 1277,823 0,164 209,408
124 1134,539 1025,74 0,106 108,8
125 4860,777 4642,782 0,047 217,994
126 2873,961 2656,147 0,082 217,814
127 1898,119 1791,76 0,059 106,358
128 1999,56 1828,314 0,094 171,246
129 3141,134 3014,69 0,042 126,444

Average Gaps 0,153 315,675

Table 7.5: Greedy Rand Construction vs Local Search for the three minutes run.

112

7.2. VMPP’s computational results

Instance grasp_value FF_value rel_diff abs_diff
100 1858,147 8778,074 3,724 6919,927
101 1300,375 4246,531 2,266 2946,156
102 2635,806 8084,619 2,067 5448,813
103 2059,404 11031,533 4,357 8972,129
104 2381,551 10122,152 3,25 7740,602
105 1616,105 8445,514 4,226 6829,409
106 3651,693 15054,529 3,123 11402,836
107 1951,525 13533,606 5,935 11582,082
108 1521,956 9687,143 5,365 8165,187
109 1426,905 9223,528 5,464 7796,623
110 2111,27 9003,186 3,264 6891,916
111 2996,871 18135,324 5,051 15138,453
112 2129,931 8336,305 2,914 6206,374
113 3025,222 14050,626 3,644 11025,403
114 2327,82 8428,128 2,621 6100,308
115 4199,377 17321,552 3,125 13122,175
116 3496,824 13557,479 2,877 10060,655
117 1947,74 8715,223 3,475 6767,483
118 1848,531 10524,831 4,694 8676,299
119 3177,857 8032,113 1,528 4854,257
120 1934,648 11399,646 4,892 9464,998
121 1421,112 7432,711 4,23 6011,599
122 2155,911 10359,538 3,805 8203,627
123 1277,823 5600,332 3,383 4322,51
124 1025,74 7283,067 6,1 6257,327
125 4642,782 12917,685 1,782 8274,903
126 2656,147 17383,513 5,545 14727,367
127 1791,76 7864,082 3,389 6072,321
128 1828,314 7852,113 3,295 6023,799
129 3014,69 14379,665 3,77 11365,012

Average Gaps 3,772 8245,685

Table 7.6: GRASP three minutes run vs First Fit.

113

7. Computational results

As expected, the GRASP procedure performs better than a naive First Fit, with
a relative difference ranging from 150-200% to 600%, with an average of ap-
proximately 377%. This means that, on average, our heuristic is able to reduce
the traffic introduced in the data center network to almost 1

5 of the traffic that
would be introduced using First Fit. Such improvement becomes extremely sig-
nificant considering the placement of hundreds of thousands of VMs over the
lifetime of the data center. Since th objective function of the VMPP translates
almost directly into links utilization, this result appears to be better than [14],
where only a 9.9% improvement of links utilization is obtained.

7.3 VMMP experimental setup

As an extension of the VMPP, the initialization of a VMMP’s instance is naturally
built on the procedure described in Section 7.1. Additionally, after all the ap-
plications are given an allocation, there is a step where traffic paths and links’
utilization are computed. According to the formulation in Chapter 4, the in-
put of the problem should include the specification of a pre-defined traffic path
between each servers’ pair. However, for instances with more than a thousand
servers, the number of required paths have caused memory issues. Luckily, only
a subset of paths are actually needed to solve the problem since, for any server
s, there will be only a few servers towards which s will send a non-zero amount
of traffic and vice versa. Therefore, the number of explicitly required paths is
in the order of O(|S|) rather than O|S|2, where S is the set of servers, thus mak-
ing a huge difference memory-wise. Paths are selected according to a repeated
invocation of JGrapht’s [21] implementation of the Dijkstra’s Shortest Path al-
gorithm. In particular, the distance measure associated to each link l = (i, j)
is

distance(i, j) =
1

ResidualCapacity(l)

For each pair of servers associated to a non-zero traffic, the shortest path proce-
dure is called and all the capacities associated to links belonging to the selected
path are updated accordingly to the traffic volume. In this way, an almost satu-
rated link is not likely to be selected by successive invocations of the procedure.
Again, as for the VMPP’s initialization, if at any moment there are no feasible al-
ternatives, the procedure is stopped and the seed is discarded.

Then, the problem requires to specify which VMs require a mandatory mi-
gration and which do not. The general procedure to select them is described in
Chapter 4.6. However, such criterion does not scale well for large instances of
the problem, causing several thousands of VMs to be selected. Therefore, when
running tests on 10000 servers instances we apply a filtering factor of 1

5 to the

114

7.3. VMMP experimental setup

selection of VMs belonging to the set Cf , i.e., each server has a 4
5 chance of being

neglected for the selection of VMs whose migration is not mandatory.
Another crucial aspect that needs to be addressed is related to the choice of

migration parameters:

• parameterQc, which expresses the amount of traffic overhead required for
the migration of a VM/container c, is roughly computed asQc = RAMc[Gbit]

T1[s] ,
where T1 is the specified migration time expressed in seconds;

• migration time T1 can be crucial for the existence of feasible solutions. On
small instances the chance of such a problem is low and migration time is
kept to 240 seconds, i.e. four minutes. For large instances, however, we
use a less tight migration time of 600 seconds, i.e., 10 minutes,

• the objective function of the problem includes coefficients related to the
power consumption, the traffic and an incentive/penalization factor for
migration. The power consumption coefficient is fixed to 1 because we
want the objective expressed in energy terms. The traffic coefficient used
is α = 50 (considering the traffic term expressed in Gbit/s), while the mi-
gration coefficient is sometimes used as β = 1 or β = −1, depending on the
criterion given to help the procedure in breaking symmetries among the
solutions. In particular, it is used as β = −1 for large instances.

The choice of α = 50 has a rational. We did try some values on small/medium
instances to understand how different values impact the type of solutions found.
The values that we considered are:

• α = 0, giving importance only on the servers’ power consumption,

• α = 5, giving little, but non-zero, importance to the traffic term,

• α = 50, giving medium importance to the traffic. With this value, the
power consumption’s term and the traffic terms assume comparable val-
ues, i.e., they both provide a significant impact on the problem,

• α = 500, giving little importance to servers’ power consumption,

• α = +∞, equivalent to forcing the power consumption’s coefficient to zero,
giving all importance to the traffic, like in the VMPP.

The first two choices produce almost identical solutions, with several servers
turned off and a significant energy saving. The last two choices produce very
poor solutions with more servers turned on and increasing energy costs. In-
stead, a choice of α = 50 causes almost as many servers to be turned off as the

115

7. Computational results

first two choices, while better distributing the traffic, therefore reducing the
costs even more.

7.4 VMMP’s computational results

In this section we evaluate different aspects of the VMMP’s heuristic, such as:
optimality gap on instances with up to 54 servers, comparison between the basic
version and the modified version with sampling, comparison between runs of
different length on large instances with 10000 servers, impact of the GRASP’s
randomization parameter and impact of the local search and Path Relinking.

Optimality gap As for the VMPP, we start by comparing the quality of the
solutions found by our heuristic and the ones found by solving the MILP for-
mulation with CPLEX on a set of instances. The GRASP’s time limit was set at
five minutes, while CPLEX’s time limit was set at 60 minutes. Other CPLEX’s
options were set as described in Section 7.2. Since this problem is more chal-
lenging than the placement problem, instances correspond to 6-pods Fat-Tree
data centers, i.e., systems with 54 servers. Results are shown in Table 7.7. The
objective function’s value is expressed in Watts. The number of migrating VMs
ranges between 40 and 80. The GRASP was run on the IBM POWER7 server.

With this setting, as expected, the heuristic algorithm does not reach the op-
timal solution (or the best known) as easily as for the VMPP. However, the
solutions found are still quite close to the optimum, with an average relative
gap of approximately 11%. In particular, gaps vary between 3% and 35% for
the considered instances. In one instance, the heuristic procedure is not able to
find any feasible solution even though there exists at least one. Such particular
case was not considered for the computation of the gaps.

Impact of the GRASP randomization factor As in the VMPP’s case, we ana-
lyze how the value of the parameter α_grasp affects the quality of the solutions.
In particular, we are interested in the comparison between α_grasp = 0.15 and
α_grasp = 0, the latter corresponding to a deterministic greedy procedure.

For this problem, the two alternatives do influence the solutions’ quality,
with the deterministic version achieving an average relative gap of 16% against
the 11% gap of the randomized version. Intuitively, being the problem more
involved with respect to the VMPP and being the objective function a combina-
tion of different quantities, it is reasonable that a deterministic greedy approach
does not perform as well.

116

7.4. VMMP’s computational results

Instance best_known grasp_value rel_gap abs_gap cplex_time grasp_iter

200 -1372,449 -1325,398 0,034 47,051 3603s 53654
201 -1123,262 -1083,786 0,035 39,476 1705s 18175
202 -798,771 -665,324 0,167 133,447 3602s 64317
203 -114,444 -74,264 0,351 40,18 117s 72443
204 -977,917 -682,906 0,302 295,011 3602s 43315
205 -778,907 - - - 2875s 36937
206 -861,826 -785,937 0,088 75,889 694s 66166
207 -1633,917 -1333,694 0,184 300,222 3602s 46902
208 -1045,72 -987,9 0,055 57,82 1038s 20175
209 -1033,846 -949,202 0,082 84,644 3603s 32850
210 -1938,221 -1751,068 0,097 187,153 3602s 33689
211 -1164,607 -1064 0,086 100,607 2107s 39554
212 -452,918 -364,794 0,195 88,124 345s 176011
213 -1582,989 -1435,95 0,093 147,039 3602s 34982
214 -1980,554 -1858,243 0,062 122,311 3602s 9342
215 -1957,39 -1728,093 0,117 229,297 3603s 37228
216 -885,067 -801,337 0,095 83,73 1366s 42907
217 -1386,773 -1167,803 0,158 218,97 3603s 55367
218 -1096,183 -997,469 0,09 98,714 3603s 51700
219 -540,411 -471,329 0,128 69,082 3604s 54171
220 -778,437 -695,484 0,107 82,953 998s 51458
221 -2011,68 -1851,399 0,08 160,28 3602s 36828
222 -1006,892 -955,191 0,051 51,702 3602s 56035
223 -378,421 -360,837 0,046 17,585 2311s 53462
224 -863,164 -790,264 0,084 72,9 3603s 77300
225 -1524,099 -1330,261 0,127 193,838 1053s 49792
226 -1926,007 -1858,954 0,035 67,053 1686s 35097
227 -1298,629 -1197,956 0,078 100,673 3603s 69097
228 -1528,78 -1467,336 0,04 61,444 3605s 56134
229 -1714,472 -1541,092 0,101 173,381 3602s 43838
230 -759,86 -710,426 0,065 49,434 3604s 41565
231 -738,488 -700,084 0,052 38,404 3604s 41632
232 -663,164 -616,609 0,07 46,555 3604s 87555
233 -479,03 -331,758 0,307 147,272 2891s 48413

Average Gaps 0,111 111,583

Table 7.7: CPLEX one hour run vs GRASP five minutes run.

117

7. Computational results

Path Relinking Table 7.7 refers to the outcomes of the VMMP’s heuristic until
the local search phase. If we also include the Path Relinking module, the solu-
tions are subject to further improvement, as shown in Table 7.8. Path Relinking
was used in its deterministic version. Only 25% of the path between two solu-
tions was explored.

The relative gap is reduced from an average value of 11% to an average of 8%,
ranging between 2% and 18% except for one unfortunate case where the gap is
31%. Such particular instance is the one for which the GRASP had the worst
outcome (35% gap), therefore it is reasonable that the Path Relinking proce-
dure, starting from a pool of poor quality solutions, was not able to obtain a
solution close to the optimum.

Sampling We already discussed in Chapter 4 that the number of migrations,
due to how we have defined the input of the problem, grows alongside the
size of the data center so much that a single exhaustive iteration of the VMMP’s
heuristic becomes too computationally heavy for large instances. Therefore, for
those instances, we designed a variant of the algorithm that we need to test.
Such variant is described in Chapter 11. Table 7.9 shows the quality of the
solutions found by such algorithm on the same instances previously considered.
The heuristic was given again a five minutes time limit and was run on the
Azure VM.

First of all, looking at the number of iterations performed (last column), it ap-
pears that this version of the algorithm has a throughput approximately 10
times higher than the basic version. It also appears that, while the quality of
the solutions, with an average of 13%, is not far from the basic version, the al-
gorithm is more inclined to fail when looking for an initial solution. Indeed,
although a higher throughput allows it to consider a higher number of alterna-
tives, sometimes beating the basic version, when there are fewer feasible options
available it can miss them. However, this fact might be inflated by the small
size of the instance causing "tighter" situations and by a non-optimal choice of
internal parameters.

Large instances Finally, we move to instances with up to 10000 servers. As
for the VMPP, we compare a run of the algorithm within its target time limit
to a longer, more trustworthy, run. In particular, we did run the basic version

118

7.4. VMMP’s computational results

Instance best_known PR_value rel_gap abs_gap cplex_time PR_iter

200 -1372,449 -1349,015 0,017 23,434 3603s 4
201 -1123,262 -1096,988 0,023 26,274 1705s 3
202 -798,771 -685,985 0,141 112,786 3602s 6
203 -114,444 -78,593 0,313 35,85 117s 3
204 -977,917 -792,899 0,189 185,019 3602s 5
205 -778,907 - - - 2875s 0
206 -861,826 -792,097 0,081 69,729 694s 2
207 -1633,917 -1389,867 0,149 244,05 3602s 8
208 -1045,72 -989,218 0,054 56,502 1038s 2
209 -1033,846 -977,576 0,054 56,269 3603s 4
210 -1938,221 -1781,382 0,081 156,839 3602s 4
211 -1164,607 -1104,75 0,051 59,857 2107s 5
212 -452,918 -371,871 0,179 81,047 345s 4
213 -1582,989 -1491,759 0,058 91,23 3602s 9
214 -1980,554 -1888,812 0,046 91,742 3602s 3
215 -1957,39 -1786,289 0,087 171,101 3603s 5
216 -885,067 -807,593 0,088 77,474 1366s 2
217 -1386,773 -1200,449 0,134 186,324 3603s 4
218 -1096,183 -1033,872 0,057 62,312 3603s 4
219 -540,411 -496,346 0,082 44,064 3604s 4
220 -778,437 -709,042 0,089 69,394 998s 4
221 -2011,68 -1893,276 0,059 118,404 3602s 2
222 -1006,892 -981,781 0,025 25,112 3602s 5
223 -378,421 -360,837 0,046 17,585 2311s 1
224 -863,164 -808,252 0,064 54,912 3603s 3
225 -1524,099 -1360,008 0,108 164,091 1053s 3
226 -1926,007 -1882,641 0,023 43,366 1686s 4
227 -1298,629 -1224,85 0,057 73,779 3603s 3
228 -1528,78 -1491,275 0,025 37,505 3605s 4
229 -1714,472 -1578,654 0,079 135,819 3602s 5
230 -759,86 -732,306 0,036 27,554 3604s 5
231 -738,488 -706,874 0,043 31,614 3604s 3
232 -663,164 -623,589 0,06 39,576 3604s 4
233 -479,03 -450,076 0,06 28,953 2891s 5

Average Gaps 0,081 81,805

Table 7.8: CPLEX one hour run vs Path Relinking.

119

7. Computational results

Instance best_known grasp_value rel_gap abs_gap cplex_time grasp_iter
200 -1372,449 -1278,171 0,069 94,278 3603s 281962
201 -1123,262 -1060,964 0,055 62,298 1705s 182639
202 -798,771 -684,574 0,143 114,197 3602s 290507
203 -114,444 -39,67 0,653 74,774 117s 191525
204 -977,917 -849,675 0,131 128,243 3602s 211097
205 -778,907 - - - 2875s 145516
206 -861,826 - - - 694s 152919183
207 -1633,917 -1291,884 0,209 342,033 3602s 225648
208 -1045,72 -1021,793 0,023 23,927 1038s 244564
209 -1033,846 - - - 3603s 659702
210 -1938,221 - - - 3602s 3826122
211 -1164,607 -1049,856 0,099 114,75 2107s 254765
212 -452,918 -343,322 0,242 109,596 345s 500681
213 -1582,989 -1436,361 0,093 146,629 3602s 273143
214 -1980,554 -1904,114 0,039 76,44 3602s 280575
215 -1957,39 -1701,174 0,131 256,216 3603s 162253
216 -885,067 -790,691 0,107 94,375 1366s 206232
217 -1386,773 - - - 3603s 287157
218 -1096,183 -947,592 0,136 148,591 3603s 211968
219 -540,411 -467,266 0,135 73,145 3604s 322165
220 -778,437 - - - 998s 394144
221 -2011,68 - - - 3602s 317893
222 -1006,892 -930,026 0,076 76,866 3602s 339068
223 -378,421 -287,929 0,239 90,493 2311s 189896
224 -863,164 -811,004 0,06 52,16 3603s 277721
225 -1524,099 - - - 1053s 2842505
226 -1926,007 -1867,211 0,031 58,796 1686s 122529
227 -1298,629 -1212,661 0,066 85,968 3603s 272029
228 -1528,78 -1262,274 0,174 266,505 3605s 223897
229 -1714,472 -1458,854 0,149 255,618 3602s 117059
230 -759,86 -697,849 0,082 62,012 3604s 200625
231 -738,488 -680,281 0,079 58,207 3604s 212159
232 -663,164 -599,993 0,095 63,172 3604s 315243
233 -479,03 -426,648 0,109 52,382 2891s 302783

Average Gaps 0,132 114,68

Table 7.9: CPLEX one hour run vs GRASP five minutes run with sampling and no
Path Relinking.

120

7.4. VMMP’s computational results

Instance 180m_value 60m_value rel_diff abs_diff 60m_iter
300 -106321,196 -119266,331 -0,122 -12945,135 179
301 -104513,291 -116672,808 -0,116 -12159,517 163
302 -91115,437 -103617,068 -0,137 -12501,631 155
303 -122946,575 -138335,166 -0,125 -15388,592 167
304 -80926,369 -92247,604 -0,14 -11321,235 166
305 -121755,942 -135229,549 -0,111 -13473,607 160
306 -125174,559 -138411,834 -0,106 -13237,276 159
307 -106642,891 -121798,891 -0,142 -15156 158
308 -78157,902 -89165,115 -0,141 -11007,213 175
309 -104807,494 -118686,075 -0,132 -13878,581 152
310 -105096,18 -119100,553 -0,133 -14004,373 169
311 -115304,542 -129103,187 -0,12 -13798,645 172
312 -98689,667 -112268,532 -0,138 -13578,865 149
313 -121388,763 -134317,652 -0,107 -12928,889 172
314 -109383,437 -123560,194 -0,13 -14176,757 109
315 -101132,93 -114521,197 -0,132 -13388,267 105
316 -100353,116 -113222,041 -0,128 -12868,925 88
317 -87213,151 -97983,145 -0,123 -10769,994 113

Average Gaps -0,127 -13143,528

Table 7.10: GRASP three hours run no sampling vs GRASP one hour run with
sampling.

of the VMMP’s heuristic on a set of instances with a time limit of 180 minutes.
Then, we ran the modified version of the algorithm (with sampling) on the same
instances with a time limit of 60 minutes. These particular instances where
derived from the large instances used for the VMPP. A filtering factor of 2 was
applied to the set Cf to lighten the instance a bit. Results are collected in Table
7.10. The number of migrating VMs ranges from 6000 to 7000, while the total
number of VMs is around 50000. The three hours run was performed on the
IBM POWER7 server, while the 60 minutes run was performed on the Azure
VM. The relative difference is computed as

rel_dif f =
60m_value - 180m_value

180m_value
.

Options chosen for the sampling, according to what discussed in Section 5.2.4
were:

• discard factor of 80% for the initial solution,

121

7. Computational results

• discard factor of 65% for any solution found during the local search,

• δ = 50 and Tabu List penalty of 0.1·|Cob∪Cf | for the Local Search’s filtering
and sampling,

• probability of 2
Racksize for the selection of a server in the greedy random-

ized construction step.

Unfortunately, despite our effort in improving the speed of the procedure, even
the modified version of the procedure struggles in performing the desired num-
ber of iterations on such instances. A GRASP approach should aim at thousands
of iteration to guarantee a satisfying exploration of the space of alternative so-
lutions. Despite this consideration, the version of the procedure with sampling
performs better than the regular version, even if the latter was given much more
time. In particular, it manages to find better solutions with an average relative
difference of approximately 13%.

Path Relinking for large instances Unfortunately, due to memory saturation,
we were not able to perform Path Relinking on the solution found by the long
run with the regular version of the procedure. However, we applied it to the
solutions found by the modified version, which are anyway better. Solutions
obtained with Path Relinking are compared to the solutions obtained by the
GRASP with sampling, since they are the best known solutions. Path Relinking
was run on the Azure VM. Results are shown in Table 7.11.

As expected, Path Relinking is able to provide a further average improvement
of approximately 9%, carrying out approximately 10 iterations before meeting
a stopping condition.

122

7.4. VMMP’s computational results

Instance grasp_value PR_value rel_diff abs_diff PR_iter
300 -119266,331 -130321,952 -0,093 -11055,622 12
301 -116672,808 -126619,632 -0,085 -9946,823 11
302 -103617,068 -114437,625 -0,104 -10820,557 12
303 -138335,166 -148559,657 -0,074 -10224,49 9
304 -92247,604 -103311,609 -0,12 -11064,004 11
305 -135229,549 -144960,606 -0,072 -9731,058 11
306 -138411,834 -147982,984 -0,069 -9571,15 10
307 -121798,891 -131769,482 -0,082 -9970,591 9
308 -89165,115 -98833,862 -0,108 -9668,747 9
309 -118686,075 -128330,478 -0,081 -9644,403 4 11
310 -119100,553 -128507,647 -0,079 -9407,094 7
311 -129103,187 -140076,862 -0,085 -10973,675 11
312 -112268,532 -123308,945 -0,098 -11040,413 8
313 -134317,652 -144658,063 -0,077 -10340,411 11
314 -123560,194 -132285,968 -0,071 -8725,774 9
315 -114521,197 -125506,851 -0,096 -10985,654 11
316 -113222,041 -124587,562 -0,1 -11365,521 9
317 -97983,145 -108318,742 -0,105 -10335,597 8

Average Gaps -0,089 -10270,644

Table 7.11: GRASP one hour run with sampling vs Path Relinking.

123

CHAPTER 8
Concluding remarks

In this thesis we have studied the overall problem of optimal resource utiliza-
tion in cloud data centers. In particular, the task consists in the optimal allo-
cation of Virtual Machines and/or containers on physical servers. Since a data
center is a dynamic system continuously evolving, the placement of a VM may
need to be updated over time. We defined the variants of two different, but
interconnected, problems: the VM Placement Problem (VMPP) and the VM Mi-
gration Problem (VMMP). The first problem deals with the online deployment
of new VMs selecting their first optimal allocation at the time of entering in
the system. The main concern here is the traffic awareness of the decision pro-
cess. The second problem aims at periodically updating VM allocations that
are no longer optimal due to the evolution of the system. In this context, traffic
awareness is balanced with energy-awareness.

For each problem, we provided a MILP formulation that can be directly tack-
led by state of the art solvers in case of instances with up to 128 servers (VMPP)
and 54 servers (VMMP). Then, we designed a heuristic framework to tackle large
realistic instances of both problems. In particular, we devised two Greedy Ran-
domized Adaptive Search (GRASP) algorithms composed by different modules
that incrementally improve the quality of the solutions. The heuristic for the
VMPP includes a greedy randomized procedure, that builds an initial feasible
solution, and a local search procedure, that finds a nearby local minimum start-
ing from such initial solution. The heuristic for the VMMP consists in a greedy
randomized procedure, a local search procedure and a further procedure im-
plementing the Path Relinking technique.

We tested the heuristics on randomly generated instances built with realis-
tic data gathered from real vendors, benchmarks and renowned studies in the
literature. The goal was to validate the quality of the solutions provided by

125

8. Concluding remarks

the heuristics on instances for which the optimal solution was known thanks to
the MILP formulation, and then to also test the algorithms on large instances.
Computational results are promising, in particular for the VMPP’s heuristic that
achieves an optimality gap of approximately 0% from the optimal solution on
instances with up to 128 servers. It is also able to find very good solutions in
no more than one or two minutes on instances with up to 10000 servers, on
which the procedure was shown not to produce better solutions even with 60
minutes runs. Instead, the VMMP’s heuristic achieves an optimality gap of ap-
proximately 8% on instances with up to 54 servers and is able to tackle large
instances with up to 10000 servers thanks to a computationally lighter refined
version employing solution sampling on top of the basic procedure. There are
no guarantees on the quality of the solutions of large instances of the problems,
but all techniques and refinements that have been applied provide evident ben-
efits.

Possible further improvements include improvements of the MILP formula-
tions, algorithmic improvements and improvements regarding the considered
instances. For example, the formulations could be modified not to impose strict
constraints on the resources, but rather allow the possibility of violations to-
gether with a penalization factor. Instead, the algorithms could benefit from
improvements aimed at increasing the number of iterations performed in the
same computational time in order to have a stronger confidence in the results.
Finally, even though the problems were defined with both VMs and containers
in mind, the heuristics were tested only on VMs data, since we were not able to
gather real data about containers. As for future work, the heuristics could be
tested on instances generated with containers data and on network topologies
different from the Fat-Tree topology, such as the VL2 and Bcube topologies.

126

CHAPTER 9
Appendix

9.1 Short-term VM Placement Problem’s final
formulation

min
∑

s1,s2∈Su

COSTs1s2 · ts1s2 +∑
r∈R

∑
s1∈Su ,s2∈Sr\Su

COSTs1s2 ·
∑

c1∈Cr ,c2∈Cr

drc1c2 · xc2s2 · xc1s1 +

∑
r∈R

∑
s1∈Sr\Su ,s2∈Su

COSTs1s2 ·
∑

c1∈Cr ,c2∈Cr

drc1c2 · xc1s1 · xc2s2 (1.21)

s.t. ∑
s∈Su

xcs = 1 ∀c ∈ C (1.2)

∑
c∈C

CPUcs · xcs ≤ CPU s ∀s ∈ Su (1.3)

∑
c∈C

MEMc · xcs ≤MEMs ∀s ∈ Su (1.4)

∑
c∈C

DISKc · xcs ≤DISKs ∀s ∈ Su (1.5)

127

9. Appendix

∑
r∈R

∑
c1∈Cr

∑
c2∈Cr

drc1c2 · (xc1s −w
r
c1sc2s) +

∑
r∈R

∑
c1∈Cr

∑
c2∈Cr∪{c0}

drc1c2 · (1− xc2s) · xc1s+∑
r∈R

∑
c1∈Cr

∑
c2∈Cr

drc1c2 · (1− xc2s) · xc1s ≤ BDW
out
s ∀s ∈ Su (1.15)

∑
r∈R

∑
c1∈Cr

∑
c2∈Cr

drc2c1 · (xc1s −w
r
c1sc2s) +

∑
r∈R

∑
c1∈Cr

∑
c2∈Cr∪{c0}

drc2c1 · (1− xc2s) · xc1s+∑
r∈R

∑
c1∈Cr

∑
c2∈Cr

drc2c1 · (1− xc2s) · xc1s ≤ BDW
in
s ∀s ∈ Su (1.16)

wrc1s1c2s2 ≤ xc1s1 ∀r ∈ R ∀c1, c2 ∈ Cr , ∀s1, s2 ∈ Su (1.17)

wrc1s1c2s2 ≤ xc2s2 ∀r ∈ R ∀c1, c2 ∈ Cr , ∀s1, s2 ∈ Su (1.18)

wrc1s1c2s2 ≥ xc1s1 + xc2s2 − 1 ∀r ∈ R ∀c1, c2 ∈ Cr , ∀s1, s2 ∈ Su (1.19)

ts1s2 =
∑
r∈R

∑
c1,c2∈Cr

drc1c2 ·w
r
c1s1c2s2 +∑

r∈R

∑
c1∈Cr ,c2∈Cr

drc1c2 · xc2s2 · xc1s1 +

∑
r∈R

∑
c1∈Cr ,c2∈Cr

drc1c2 · xc1s1 · xc2s2

∀s1, s2 ∈ Su (1.20)

xcs ∈ {0,1} ∀c ∈ C, ∀s ∈ Su

wrc1s1c2s2 ∈ {0,1} ∀r ∈ R ∀c1, c2 ∈ Cr , ∀s1, s2 ∈ Su

ts1s2 ∈ R
+ ∀s1, s2 ∈ Su

128

9.1. Short-term VM Placement Problem’s final formulation

Table 9.1: VMPP parameters and variables.

Sets

R customers of the new requests
S physical servers
Su ∈ S under-utilized physical servers (<60% cpu utilization)
Sr ∈ S servers that host containers of client r
C new containers to be placed
Cr ∈ C new containers owned by client r
C already esisting containers
Cr ∈ C already existing containers owned by client r
{c0} dummy container generating all external traffic
{s0} dummy server representing the WAN

Parameters

CPU s residual cpu available on server s
MEMs residual RAM available on server s

BDW
in
s residual out-bandwith available on server s

BDW
out
s residual in-bandwith available on server s

DISKs residual disk IOPS available on server s
CPUcs cpu demand for container c on server s, see problem 2 for details
MEMc ram demand for container c
DISKc i/o per second disk demand for container c
COSTs1s2 pre-computed cost(hops) from server s1 to server s2
drc1c2

traffic demand matrix for client r
xcs = 1 if container c is already placed in server s

Variables

xcs = 1 if container c is placed in server s
wrc1s1c2s2 = 1 if container c1 is placed on server s1 and c2 is placed on s2,

both owned by client r
ts1s2 new traffic between server s1 and server s2

129

9. Appendix

9.2 Long-term VM Migration Problem’s final
formulation

Cm ≡ Cob ∪Cf
Ps ≡ Pmaxs − P idles

min
∑
s∈S

Ps ·∆us + P idles · (bnews − bolds)

+α ·
∑

s1∈S,s2∈S
COSTs1s2 ·∆t

new
s1s2

+β ·
∑
c∈Cf

∑
s∈S

xoldcs · xnewcs (2.42)

s.t. ∑
s∈S

xnewcs = 1 ∀c ∈ Cm (2.2)

xnewcs ≤ bnews ∀c ∈ Cm, ∀s ∈ S (2.3)

xoldcs ≤ bnews ∀c < Cm, ∀s ∈ S (2.4)∑
c∈Cm

CPUcs · (xnewcs − xoldcs) ≤ CPU s − (1− ρ3) ·CPUs ∀s ∈ S (2.28)

∑
c∈Cm

MEMc · (xnewcs − xoldcs) ≤MEMs ∀s ∈ S (2.29)

∑
c∈Cm

DISKc · (xnewcs − xoldcs) ≤DISKs ∀s ∈ S (2.30)

∑
r∈R

∑
c1∈Cm∩Cr

∑
c2∈Cm∩Cr

drc1c2 · (x
new
c1s − x

old
c1s + (xoldc1s · x

old
c2s)−wrc1sc2s) +∑

r∈R

∑
c1∈Cm∩Cr

∑
c2∈(Cr\Cm)∪{c0}

drc1c2 · (1− x
old
c2s) · (xnewc1s − x

old
c1s) +∑

r∈R

∑
c1∈Cr\Cm

∑
c2∈Cm∩Cr

drc1c2 · x
old
c1s · (x

old
c2s − x

new
c2s)

≤ BDW out
s ∀s ∈ S (2.31)

130

9.2. Long-term VM Migration Problem’s final formulation

∑
r∈R

∑
c1∈Cm∩Cr

∑
c2∈Cm∩Cr

drc2c1 · (x
new
c1s − x

old
c1s + (xoldc1s · x

old
c2s)−wrc1sc2s) +∑

r∈R

∑
c1∈Cm∩Cr

∑
c2∈(Cr\Cm)∪{c0}

drc2c1 · (1− x
old
c2s) · (xnewc1s − x

old
c1s) +∑

r∈R

∑
c1∈Cr\Cm

∑
c2∈Cm∩Cr

drc2c1 · x
old
c1s · (x

old
c2s − x

new
c2s)

≤ BDW in
s ∀s ∈ S (2.32)

∑
s∈S

xoldcs · xnewcs = 0 ∀c ∈ Cob (2.33)

∑
j∈δ+(s)

f csj =
Qc
T1
· xoldcs · (1− xnewcs) ∀c ∈ Cm, ∀s ∈ S (2.11)

∑
i∈δ−(s)

f cis =
Qc
T1
· (1− xoldcs) · xnewcs ∀c ∈ Cm, ∀s ∈ S (2.12)

∑
i∈δ−(n)

f cin −
∑

j∈δ+(n)

f cnj = 0 ∀n ∈ N \S , ∀c ∈ Cm (2.13)

∑
c∈Cm

f cij− ∑
s1,s2∈S :(i,j)∈Ps1s2

∑
r∈R

∑
c1,c2∈Cr∩Cm

xoldc1s1 · x
old
c2s2 · d

r
c1c2 ·π

r
c1c2 −

∑
s1,s2∈S :(i,j)∈Ps1s2

∑
r∈R

∑
c1∈Cr\Cm,c2∈Cr∩Cm

xoldc1s1 · x
old
c2s2 · d

r
c1c2(1−

∑
s∈S

xoldc2s · x
new
c2s) −

∑
s1,s2∈S :(i,j)∈Ps1s2

∑
r∈R

∑
c1∈Cr∩Cm,c2∈Cr\Cm

xoldc1s1 · x
old
c2s2 · d

r
c1c2(1−

∑
s∈S

xoldc1s · x
new
c1s) −

∑
s∈S :(i,j)∈Pss0

∑
r∈R

∑
c∈Cr∩Cm

xoldcs · drcc0 · (1−
∑
s∈S

xoldcs · xnewcs) −

∑
s∈S :(i,j)∈Ps0s

∑
r∈R

∑
c∈Cr∩Cm

xoldcs · drc0c · (1−
∑
s∈S

xoldcs · xnewcs)

≤ K ij ∀(i, j) ∈ E

131

9. Appendix

wrc1s1c2s2 ≤ x
new
c1s1 ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm, ∀s1, s2 ∈ S (2.36)

wrc1s1c2s2 ≤ x
new
c2s2 ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm, ∀s1, s2 ∈ S (2.37)

wrc1s1c2s2 ≥ x
new
c1s1 + xnewc2s2 − 1 ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm, ∀s1, s2 ∈ S (2.38)

πrc1c2 ≥ 1−
∑
s∈S

xoldc1s · x
new
c1s ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm (2.39)

πrc1c2 ≥ 1−
∑
s∈S

xoldc2s · x
new
c2s ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm (2.40)

πrc1c2 ≤ 2−
∑
s∈S

(xoldc1s · x
new
c1s + xoldc2s · x

new
c2s) ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm (2.41)

∆us =

∑
c∈Cob∪Cf CPUcs · (x

new
cs − xoldcs)

CPUs
∀s ∈ S (2.43)

∆tnews1s2 = ∑
r∈R

∑
c1,c2∈Cr∩Cm

drc1c2 · (w
r
c1s1c2s2 − x

old
c1s1 · x

old
c2s2) +∑

r∈R

∑
c1∈Cr∩Cm,c2∈Cr\Cm

drc1c2 · x
old
c2s2 · (x

new
c1s1 − x

old
c1s1) +∑

r∈R

∑
c1∈Cr\Cm,c2∈Cr∩Cm

drc1c2 · x
old
c1s1 · (x

new
c2s2 − x

old
c2s2) ∀s1, s2 ∈ S (2.35)

xnewcs ,bnews ∈ {0,1} ∀c ∈ Cm, ∀s ∈ S

f cij ∈ R
+ ∀(i, j) ∈ E , ∀c ∈ Cm

wrc1s1c2s2 ∈ {0,1} ∀r ∈ R, ∀c1, c2 ∈ Cm ∩Cr , ∀s1, s2 ∈ S

πrc1c2 ∈ {0,1} ∀r ∈ R, ∀c1, c2 ∈ Cm ∩Cr

132

9.3. Notes

∆ts1s2 ∈ R ∀s1, s2 ∈ S

∆us ∈ R ∀s ∈ S

9.3 Notes

Regarding the full transformation from Constraints (2.22) to Constraints (2.31):

BDW
out
s = BDW out

s −
∑
c1∈Cm

∑
c2∈Cm

dc1c2 · (1− x
old
c2s) · xoldc1s−∑

c1∈Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xoldc1s−∑

c1<Cm

∑
c2∈Cm

dc1c2 · (1− x
old
c2s) · xoldc1s −

∑
c1<Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xoldc1s

is the residual bandwidth that, reshaped to explicit the total bandwidth, be-
comes

BDW out
s = BDW

out
s +

∑
c1∈Cm

∑
c2∈Cm

dc1c2 · (1− x
old
c2s) · xoldc1s+∑

c1∈Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xoldc1s+∑

c1<Cm

∑
c2∈Cm

dc1c2 · (1− x
old
c2s) · xoldc1s +

∑
c1<Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xoldc1s ,

which, substituted into Constraints (2.22), gives

133

9. Appendix

Table 9.2: VMMP parameters.

Sets

R customers
N nodes of the network (i.e. switch and servers)
E arcs of the network (i.e.physical links)
S physical servers (∼ 10k)
C containers (∼ 100k)
Cr containers owned by client r
Cob containers that must be migrated
Cf containers whose migration is not mandatory
Ps1s2 set of arcs that constitute the precomputed path

between server s1 and server s2
{c0} dummy container generating all external traffic
{s0} dummy server representing the WAN

Parameters

CPU s number of cpu cores of server s
CPU s residual cpu available on server s
MEMs RAM capacity of server s
MEMs residual RAM on server s
BDW in

s in-bandwidth capacity of server s
BDW out

s out-bandwidth capacity of server s

BDW
in
s residual in-bandwidth on server s

BDW
out
s residual out-bandwidth on server s

DISKs disk IOPS capacity of server s
DISKs residual IOPS available on server s
CPUcs cpu utilization demand for container c on server s
MEMc RAM demand for container c
DISKc disk IOPS demand for container c
drc1,c2

traffic demand matrix of customer r
xoldcs = 1 if container c placed on server s pre-migration
T1 average migration time
T2 max migration time
Qc size of container c’s state
Pmaxs − P idles constant related to server s power consumption
Kij capacity of physical link (i, j)
K ij residual capacity of physical link (i, j)
COSTs1s2 cost(hops) from server s1 to server s2 in the new configuration,
tolds1s2 traffic demand from server s1 to server s2 in the old configuration
α,β energy coefficients
ρ1,ρ2,ρ3 cpu utilization thresholds

134

9.3. Notes

Table 9.3: VMMP variables.

Variables
xnewcs = 1 if container c placed on server s post-migration,
bnews = 1 if server s is ON post-migration
f cij traffic burst related to migration of container c on link (i, j)
πrc1c2

= 1 if c1 or c2, owned by r, is involved in the migration
wrc1s1c2s2 = 1 if container c1 is placed on server s1 and c2 is placed on s2,

both owned by client r
∆us cpu utilization’s variation on server s after migration
∆tnews1s2 traffic variation between every couple of servers after migration

∑
c1∈Cm

∑
c2∈Cm

dc1c2 · (x
new
c1s −wc1sc2s) +

∑
c1∈Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xnewc1s +∑

c1<Cm

∑
c2∈Cm

dc1c2 · (1− x
new
c2s) · xoldc1s +

∑
c1<Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xoldc1s

≤

BDW
out
s +

∑
c1∈Cm

∑
c2∈Cm

dc1c2 · (1− x
old
c2s) · xoldc1s+∑

c1∈Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xoldc1s +

∑
c1<Cm

∑
c2∈Cm

dc1c2 · (1− x
old
c2s) · xoldc1s+∑

c1<Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xoldc1s

∀s ∈ S .

The last term on the left-hand side cancels out with the last term of the right-
hand side:

135

9. Appendix

∑
c1∈Cm

∑
c2∈Cm

dc1c2 · (x
new
c1s −wc1sc2s) +

∑
c1∈Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xnewc1s +∑

c1<Cm

∑
c2∈Cm

dc1c2 · (1− x
new
c2s) · xoldc1s

≤

BDW
out
s +

∑
c1∈Cm

∑
c2∈Cm

dc1c2 · (1− x
old
c2s) · xoldc1s+∑

c1∈Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · xoldc1s +

∑
c1<Cm

∑
c2∈Cm

dc1c2 · (1− x
old
c2s) · xoldc1s

∀s ∈ S

Now, bringing terms from the right-hand side to the left-hand side and merging
them with their respective counterparts, we get:

∑
c1∈Cm

∑
c2∈Cm

dc1c2 · (x
new
c1s − x

old
c1s + (xoldc1s · x

old
c2s)−wc1sc2s) +∑

c1∈Cm

∑
c2∈(C\Cm)∪{c0}

dc1c2 · (1− x
old
c2s) · (xnewc1s − x

old
c1s) +∑

c1<Cm

∑
c2∈Cm

dc1c2 · x
old
c1s · (x

old
c2s − x

new
c2s)

≤ BDW out
s ,

that is ready to be partitioned by customers to obtain exactly Constraints (2.31).
Constraints (2.24) and (2.25) could be merged into a single set of constraint:

πc1c2 ≥
1
2

(zc1 + zc2) ∀c1, c2 ∈ Cm (2.24.alt)

This way we could reduce a bit the linearization overhead on the model. How-
ever, even if this choice does not change the solution when solving the problem
in an exact way, it may have an impact when looking for approximate solutions
(e.g. by relaxing variables’ integrality). Constraints (2.39) and (2.40) could be
merged accordingly into:

πrc1c2 ≥ 1− 1
2

∑
s∈S

(xoldc1s · x
new
c1s + xoldc2s · x

new
c2s) ∀r ∈ R ∀c1, c2 ∈ Cr ∩Cm (2.39.alt)

136

9.4. High level UML Class Diagram

Figure 9.1: High level GRASP Class Diagram

9.4 High level UML Class Diagram

Here we report a very high level diagram for the two main components of our
heuristics: the GRASP + Local Search procedure and the Path Relinking pro-
cedure. They are meant just as conceptual scheme to understand the code’s
organization, since the implementation details are much more involved.

Figure 9.1 summarize the structure of the GRASP heuristic’s code. A GRASP
template collects very general interfaces for interacting with a solution or start-
ing the local search phase. Then, different implementations specify how the
Greedy Randomized Construction is applied and how the incremental cost i
computed. An implementation is also provided with a list of Neighborhoods
to run the Local Search procedure. Such Neighborhoods cycle through all so-
lutions thanks to a repeated invocation of the procedure next, helped by the
procedure hasNext whose task is to detect the end of the neighborhood. Each

137

9. Appendix

Figure 9.2: High level Path Relinking Class Diagram

Neighborhoods carries ad-hoc interfaces to evaluate the cost of a new solution
and to generate it.

A solution of the VMPP is stored as a mapping between VMs and servers,
plus a value. Instead, a solution of the VMMP carries an additional information
related to the paths/links used by a VM for its migration flow. Residual ca-
pacities related to a solution are not stored, since they can always be computed
starting from the assignment mapping.

One key component of the whole framework is constituted by the server
stubs. Every component that, at any point, has to manipulate a solution, needs
a copy (stub) of each server. Indeed, since residual capacities are not stored
for every solution, at every step the algorithm needs to manipulate them and
keep them updated to the last solution generated. Therefore, a copy of each
server is needed, otherwise different GRASP procedures working in parallel
would interfere with each others making the capacities non-coherent with the
generated solutions.

Figure 9.2 shows the structure of the Path Relinking code. As explained in
Chapter 5.2.3, a component called P athRel Manager is in charge of maintaining

138

9.4. High level UML Class Diagram

a pool of solutions. Such pool is repeatedly updated after applying Path Relink-
ing to every couple of different solutions in the pool. The actual Path Relinking
between solution pairs is performed in parallel by a list of other identical com-
ponents, called Path Relinking. This type of component is able to compute
the difference between two solutions and to iteratively reduce it by applying a
sequence of moves. It is also able to invoke a Local Search procedure, which
works exactly as for the GRASP.

Both the GRASP code and the Path Relinking code read the input/instance
from a complex data structure here summarized as DataCenter. It recursively
contains pods, racks and servers as well as links and a graph in case of the
VMMP. Additionally, another data structure, that is not reported in the figure,
contains the list of customers and related traffic matrices.

139

Bibliography

[1] Albert Greenberg, James Hamilton, David A Maltz, and Parveen Patel. The
cost of a cloud: research problems in data center networks. ACM SIG-
COMM computer communication review, 39(1):68–73, 2008.

[2] Microsoft Azure. General purpose virtual machine sizes. https:

//docs.microsoft.com/en-us/azure/virtual-machines/windows/

sizes-general. Accessed: 2017-11-30.

[3] Amazon EC2. Amazon ec2 instance types. https://aws.amazon.com/

ec2/instance-types/?nc1=h_ls. Accessed: 2017-11-30.

[4] SPEC. Specweb2009 results. https://www.spec.org/web2009/results/.
Accessed: 2017-12-06.

[5] http://www.raritan.com/blog/detail/the-top-five-data-center-management-challenges.
Accessed: 2018-03-04.

[6] https://www.seagate.com/gb/en/tech-insights/

data-center-management-master-ti/. Accessed: 2018-03-04.

[7] Petter Svärd, B Hudzia, S Walsh, Johan Tordsson, and Erik Elmroth. The
noble art of live vm migration-principles and performance of pre copy,
post copy and hybrid migration of demanding workloads. Technical report,
2014. Tech Report UMINF 14.10. Submitted, 2014.

[8] Prateek Sharma, Lucas Chaufournier, Prashant J Shenoy, and YC Tay. Con-
tainers and virtual machines at scale: A comparative study. In Middleware,
page 1, 2016.

[9] David Breitgand, Amir Epstein, Alex Glikson, Assaf Israel, and Danny
Raz. Network aware virtual machine and image placement in a cloud.
In Network and Service Management (CNSM), 2013 9th International Confer-
ence on, pages 9–17. IEEE, 2013.

141

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general
https://aws.amazon.com/ec2/instance-types/?nc1=h_ls
https://aws.amazon.com/ec2/instance-types/?nc1=h_ls
https://www.spec.org/web2009/results/
http://www.raritan.com/blog/detail/the-top-five-data-center-management-challenges
https://www.seagate.com/gb/en/tech-insights/data-center-management-master-ti/
https://www.seagate.com/gb/en/tech-insights/data-center-management-master-ti/

Bibliography

[10] Mohammad Masdari, Sayyid Shahab Nabavi, and Vafa Ahmadi. An
overview of virtual machine placement schemes in cloud computing. Jour-
nal of Network and Computer Applications, 66:106–127, 2016.

[11] Xiang Sun, Nirwan Ansari, and Ruopeng Wang. Optimizing resource
utilization of a data center. IEEE Communications Surveys & Tutorials,
18(4):2822–2846, 2016.

[12] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Improving the scalability
of data center networks with traffic-aware virtual machine placement. In
INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[13] Dallal Belabed, Stefano Secci, Guy Pujolle, and Deep Medhi. Striking a
balance between traffic engineering and energy efficiency in virtual ma-
chine placement. IEEE Transactions on Network and Service Management,
12(2):202–216, 2015.

[14] Federico Larumbe and Brunilde Sansò. Elastic, on-line and network aware
virtual machine placement within a data center. In Integrated Network
and Service Management (IM), 2017 IFIP/IEEE Symposium on, pages 28–36.
IEEE, 2017.

[15] Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab Hamid, Muhammad
Shiraz, Abdullah Yousafzai, and Feng Xia. A survey on virtual machine mi-
gration and server consolidation frameworks for cloud data centers. Jour-
nal of Network and Computer Applications, 52:11–25, 2015.

[16] Jiaqiang Liu, Li Su, Yuchen Jin, Yong Li, Depeng Jin, and Lieguang Zeng.
Optimal vm migration planning for data centers. In Global Communica-
tions Conference (GLOBECOM), 2014 IEEE, pages 2332–2337. IEEE, 2014.

[17] Huandong Wang, Yong Li, Ying Zhang, and Depeng Jin. Virtual machine
migration planning in software-defined networks. IEEE Transactions on
Cloud Computing, 2017.

[18] Thuan Duong-Ba, Thinh Nguyen, Bella Bose, and Tuan Tran. Joint virtual
machine placement and migration scheme for datacenters. In Global Com-
munications Conference (GLOBECOM), 2014 IEEE, pages 2320–2325. IEEE,
2014.

[19] Mauricio GC Resende and Celso C Ribeiro. Greedy randomized adaptive
search procedures: Advances and applications. Handbook of Metaheuristics,
2nd Edition, Springer, 2008.

142

Bibliography

[20] Ramón Alvarez-Valdés, Francisco Parreño, and José Manuel Tamarit. A
grasp/path relinking algorithm for two-and three-dimensional multi-
ple bin-size bin packing problems. Computers & Operations Research,
40(12):3081–3090, 2013.

[21] http://jgrapht.org/. Accessed: 2018-03-02.

[22] Mauricio GC Resendel and Celso C Ribeiro. Grasp with path-relinking:
Recent advances and applications. In Metaheuristics: progress as real prob-
lem solvers, pages 29–63. Springer, 2005.

[23] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,
commodity data center network architecture. In ACM SIGCOMM Com-
puter Communication Review, volume 38, pages 63–74. ACM, 2008.

[24] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic
characteristics of data centers in the wild. In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement, pages 267–280. ACM, 2010.

[25] SPEC. Specpower_ssj2008 results. https://www.spec.org/power_

ssj2008/results/. Accessed: 2017-11-30.

[26] Dong Zhang, Bing-Heng Yan, Zhen Feng, Chi Zhang, and Yu-Xin Wang.
Container oriented job scheduling using linear programming model. In In-
formation Management (ICIM), 2017 3rd International Conference on, pages
174–180. IEEE, 2017.

[27] Qinghua Zheng, Rui Li, Xiuqi Li, Nazaraf Shah, Jianke Zhang, Feng Tian,
Kuo-Ming Chao, and Jia Li. Virtual machine consolidated placement based
on multi-objective biogeography-based optimization. Future Generation
Computer Systems, 54:95–122, 2016.

[28] Xibo Yao, Hua Wang, Chuangen Gao, Fangjin Zhu, and Linbo Zhai. Vm
migration planning in software-defined data center networks. In High Per-
formance Computing and Communications; IEEE 14th International Confer-
ence on Smart City; IEEE 2nd International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), 2016 IEEE 18th International Conference
on, pages 765–772. IEEE, 2016.

[29] SPEC. Specvirt2013 results. https://www.spec.org/virt_sc2013/

results/. Accessed: 2018-01-26.

[30] Edward D Lazowska, John Zahorjan, G Scott Graham, and Kenneth C Sev-
cik. Quantitative system performance: computer system analysis using queue-
ing network models. Prentice-Hall, Inc., 1984.

143

http://jgrapht.org/
https://www.spec.org/power_ssj2008/results/
https://www.spec.org/power_ssj2008/results/
https://www.spec.org/virt_sc2013/results/
https://www.spec.org/virt_sc2013/results/

Bibliography

[31] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and
Sudipta Sengupta. Vl2: a scalable and flexible data center network. In
ACM SIGCOMM computer communication review, volume 39, pages 51–62.
ACM, 2009.

[32] http://www.wikibench.eu/?page_id=60. Accessed: 2018-01-14.

[33] Kuangyu Zheng, Wenli Zheng, Li Li, and Xiaorui Wang. Powernets: Co-
ordinating data center network with servers and cooling for power opti-
mization. IEEE Transactions on Network and Service Management, 2017.

[34] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. Wikipedia
workload analysis. Vrije Universiteit, Amsterdam, The Netherlands, Tech.
Rep. IR-CS-041, Sepember, 2007.

[35] https://www.amazon.it/.

[36] https://www.mediaworld.it/.

[37] https://www.zalando.it/uomo-home/.

[38] https://www.intesasanpaolo.com/.

[39] https://docs.oracle.com/javase/7/docs/api/java/security/

SecureRandom.html. Accessed: 2018-03-18.

144

http://www.wikibench.eu/?page_id=60
https://www.amazon.it/
https://www.mediaworld.it/
https://www.zalando.it/uomo-home/
https://www.intesasanpaolo.com/
https://docs.oracle.com/javase/7/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/7/docs/api/java/security/SecureRandom.html

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivations
	Thesis organization

	State of the Art
	Technology review
	Virtualization and Virtual Machines
	VM Live-Migration
	Containers vs VMs
	Network topologies

	Previous works
	VM Placement Problem
	VM Migration Problem
	Joint VM Placement and Migration
	Characterization of this work

	VM Placement Problem
	High level description
	Problem description
	First nonlinear programming formulation
	Linearization and improvements

	VM Migration Problem
	High level description
	Problem description
	First nonlinear programming formulation
	Remarks
	Linearization and improvements
	Selecting the migrating VMs
	Path selection sub-problem
	High level description
	Problem description
	MILP formulation

	Heuristics
	A GRASP heuristic for the short-term VMPP
	Greedy randomized construction
	Local search

	GRASP's extension for the long-term VMMP
	Greedy randomized construction
	Local search
	Path Relinking
	Sampling version of the VMMP's heuristic
	Path selection sub-problem

	Testbed instances
	Network
	Servers
	Containers and Virtual Machines
	CPU utilization
	Traffic matrices

	Computational results
	VMPP experimental setup
	VMPP's computational results
	VMMP experimental setup
	VMMP's computational results

	Concluding remarks
	Appendix
	Short-term VM Placement Problem's final formulation
	Long-term VM Migration Problem's final formulation
	Notes
	High level UML Class Diagram

	Bibliography

