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Abstract

Nowadays, automation techniques are more oriented towards a complete autonomy

of supervision and control systems in order to take the human out of the loop. This

phenomenon is spreading from the consumer area (autonomous vehicles, Ambient

Assisted Living) to the industrial one (machine learning, industry 4.0). Neverthe-

less, recent studies have shown that the cooperation between humans and machines

has a better adaptability and greater productivity with respect to fully autonomous

solutions. Moreover, this choice is preferable when production processes involve the

interaction with dangerous or expensive substances. To better combine the pecu-

liarities of the operator and the machine, they need to share as much information as

possible. For this reason, robot bilateral teleoperation has been considered in this

thesis. In this framework, the user is able to control a slave manipulator at a remote

location from a master station, while at the same time being able to perceive the

robot external environment thanks to accurately designed feedback forces. These

networked systems are notoriously affected by stability and transparency issues. To

solve them, in this thesis a model predictive nonlinear sliding mode control technique

has been developed and generalised to multi DOFs teleoperation systems. Further-

more, the proposed controller is able to guarantee stable environment interaction

while retaining good telepresence (even if affected by delay) thanks to impedance

shaping techniques. Simulation results prove the validity of the approach, improving

the robustness of the system with respect to external disturbances and uncertainties.

The formulated theory has been applied to an anthropomorphic manipulator, un-

derlining the main simulation limits as well as showing new possible improvements

of the proposed theory.
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Sommario

Oggigiorno, le tecniche di automazione sono sempre più orientate verso la completa

autonomia dei sistemi di supervisione e di controllo, così da poter escludere il più

possibile l’intervento dell’uomo. Questo fenomeno si sta diffondendo sia nell’ambito

“consumer” (veicoli autonomi, domotica) che in quello industriale (machine learning,

industria 4.0). Ciononostante, recenti studi hanno mostrato che la cooperazione

tra uomo e macchina possiede più capacità di adattamento e miglior produttività

rispetto ad una soluzione totalmente autonoma. Inoltre, questa scelta è preferita nel

caso in cui i processi produttivi prevedano la manipolazione di sostanze pericolose

o costose. Per poter conciliare al meglio le peculiarità di operatore e macchina, essi

devono condividere più informazioni possibili. Per questa ragione, nella presente tesi

è stato analizzato un sistema di teleoperazione bilaterale. Grazie ad esso, l’utente è

in grado di controllare, dalla propria stazione di comando, un manipolatore remoto

e allo stesso tempo di percepire l’ambiente esterno del robot grazie alla presenza di

un feedback di forza adeguato. A tali sistemi distribuiti sono notoriamente associati

problemi di stabilità e trasparenza. Per poterli risolvere, in questa tesi sono state

sviluppate tecniche di controllo non lineare di tipo model predictive sliding mode,

generalizzandone l’analisi a sistemi di teleoperazione a più gradi di libertà. Inoltre,

il controllore proposto è in grado di garantire la stabilità al contatto con l’ambiente

pur mantenendo una buona tele - presenza, persino se affetto da ritardo. Ciò è

ottenuto grazie a modifiche online delle relazioni d’impedenza. I risultati ottenuti

in simulazione dimostrano la bontà dell’approccio scelto, migliorando la robustezza

del sistema nei confronti di disturbi esterni e incertezze. La teoria formulata è stata

applicata ad un manipolatore antropomorfo, evidenziando i limiti della simulazione

e mostrando nuovi possibili sviluppi della teoria proposta.
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Chapter 1

Introduction

According to the dictionary definition, teleoperation is the capability of controlling

a device, or machine, remotely. Indeed, it is composed by the ancient Greek pre-

fix τ η̃λε- (tèle-), which literally means “far from” and it is usually referred to tasks

where information is transmitted over a significant distance. If the machine remotely

located is constituted by a robotic manipulator, it is possible to talk about teler-

obotics. The essence of these systems is given by the remote interconnection between

two separate devices, which are the operator haptic interface (also known as mas-

ter device) and the remote environment manipulator (also known as slave device).

Therefore, teleoperation systems are realised to extend human capability to interact

with external environments without the need of being in the same location [38].

To realise such interconnection, it is necessary that master and slave devices share

information on their respective environments. This is done in order to provide the

operator with similar conditions as the ones he/she would experience by interacting

directly with the remote location. With a strong and coherent connection, the op-

erator is able to perform the remote task at his/her best, which is the ultimate goal

for a reliable teleoperation system. Several external factors (communication delay,

uncertain remote environment, etc.) can degrade the performance of teleoperation

systems. Thus, several strategies have been studied to deal with these problems.
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Figure 1.1: Patented slave - master bilateral teleoperator by Görtz

1.1 Historic review

The concept of teleoperation as it is intended nowadays was born together with the

industrial nuclear field, where there was the need of handling radioactive materials

without exposing human operators. One of the pioneers of this new research topic

was Raymond Görtz [50], who developed master - slave systems which were firstly

interconnected via mechanical links (end of ‘40s) and then via electrical signals

(1954). His prototype is visible in Figure 1.1. Then, evolution of new applica-

tion fields (space and underwater exploration, microsurgery, etc.) pushed research

towards more precise and reliable teleoperation systems.

Master devices started to differentiate from slave devices and new haptic inter-

faces were born in order to improve the operator performance as much as possi-

ble [75]. Together with these technical improvements, new problems arose. Delay

in the communication channel was firstly addressed by Sheridan [71], who observed

significant performance degradation as well as instability of the control devices. This

was highlighted by the necessity of returning feedback information from the slave to
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the master device (bilateral teleoperation). Another source of instability is generated

when the slave device enters in contact with hard surfaces [31]. According to [38], to

deal with these problems, three types of teleoperation strategies have been proposed:

• Move and wait: first intuitive approach implemented when significant delay

affects the communication channel. Operator performs the desired task with

the master and waits until the slave has performed it before continuing the

task execution. Although intrinsically stable, this approach has extremely low

performance levels;

• Supervisory control: with the introduction of the first calculators, some

teleoperation activities started to be scheduled and the operator acted as a

supervisory entity, who defined the predetermined operation that the slave

should execute [84]. Obviously this technique is applicable only when the

interaction is extremely predictable;

• Predictive control: this strategy makes use of virtual reality devices, which

feed the operator with an undelayed version of the slave environment. In this

way the operator interacts with a prediction of the remote environment. Also

this approach requires a good knowledge of the slave site;

In [27, 28], Valdovinos et al. developed a higher order sliding mode control theory

for bilateral teleoperation systems. Their focus, however, was on 1 DOF networks

only and their stability analysis performed off - line. Park and Cho [10, 59] proposed

a similar approach based on a different sliding surface, but also their experimental set

- up was based on 1 DOF systems. A different approach has been pursued by Spong

et al. [45] and it consists in an on - line energetic analysis of the network, in order

to guarantee its passivity through proper damping injection. Although effective,

this approach significantly deteriorates teleoperation performance (by introducing

conservatism). Analogous reasonings have been performed by Hannaford et al. [68,

32] and Ortega et al. [55]. The work of Salcudean at al. [35] is inspired by the results

obtained by Lawrence about 4 - channel optimization of transparency and stability.

Although it guarantees the optimal trade - off between these two indicators, tuning
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of controllers parameters is complicated and dependent on the human - environment

behaviour.

1.2 Motivation and objective

The main objective of this thesis is to analyse the stability and transparency proper-

ties of a bilateral teleoperation system, in particular when the remote device enters

in contact with unknown environmental conditions. To perform this task, we impose

certain impedance relationships to the master and slave device, which are proved to

realise stable teleoperation in spite of human - environment behaviour. To robustly

impose such dynamics, it has been chosen to adopt sliding mode control technique,

which are able to reject unmodelled dynamics that could interfere with the desired

one and lead to instability.

This objective is motivated by the lack of literature concerning the stability of

bilateral teleoperated systems composed by robotic manipulators. Indeed, results

treated in this thesis are usually implemented on simplified mechanisms, which have

little practical applications. In this dissertation instead, these methodologies have

been extended to a significant real world apparatus, in order to lay the groundwork

for a more in - depth application of bilateral controllers.

1.3 Contributions

This thesis dissertation offers the following contributions with respect to the existing

theory about stable bilateral teleoperation:

• An innovative control scheme for master and slave devices is proposed, based

on MPC minimization process joined with robust higher order sliding mode

techniques. An intuitive modification of the sliding variable in order to ap-

ply Integral Sliding Mode Controller has been proposed as well. A detailed

comparison between different chattering reduction techniques and quantitative

simulation of their performance is conduced, along with an adaptive integral

sliding surface in order to guarantee MPC constraint fulfilment;
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• An analysis of the master and slave impedance parameters variation and their

effect on the overall system stability is performed, with the definition of the

maximum stable bandwidth for a teleoperation system affected by commu-

nication time delay and computation of the optimal impedance parameters.

Passivity control theory is extended to impedance shaping techniques in or-

der to optimize transparency during free motion while retaining stable contact

with the environment. Different impedance adaptation logics are proposed (2

- state switching, continuous parameter variation), with an analysis of their

pros and cons;

• Operational space sliding mode theory is extended to multi DOFs redundant

robotic systems, with completely assignable end effector impedance in Carte-

sian space. A validation of the robustness of this approach with respect to

model uncertainties and disturbances is carried out through numerical simula-

tion. A robust null motion and constraint fulfilment for multi - DOFs systems

(theoretical proofs and simulation validation), and an innovative predictive

sliding surface to deal with systems affected by actuator delays are proposed;

• The theoretical results are implemented on an industrial ABB IRB14000 YuMi

dual arm manipulator. Theoretical results are validated experimentally using

standard impedance control as a benchmark, and by realizing a teleoperation

system using one of the arm as a master device while the other as a slave

device. Free motion teleoperation tracking with the proposed local controllers

is tested.

1.4 Thesis outline

This thesis dissertation is organized based on the following structure:

• Chapter 2 «Teleoperation system analysis»: the main teleoperation

components as well as their interaction are presented. A brief introductory

model for each element that composes the standard teleoperation scheme is

derived, as well as the reasonings which lead to their choice. Main performance
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Figure 1.2: Auxiliary system trajectory for STA sliding mode control

indicators are underlined and the trade - off between stability and transparency

introduced. Finally, some of the control scheme architectures available in lit-

erature are presented and their pros and cons analysed in order to choose the

most adequate one for the thesis objective;

• Chapter 3 «Local controller»: focus of this chapter is the detailed analysis

of the device controllers which are located at the master and slave sides of the

teleoperation system. Here, stability issues related to uncertainties and dis-

turbances acting on the manipulators models have been tackled. In particular,

nonlinear sliding mode techniques have been developed in order to robustly

guarantee desired impedance relationships between the forces acting on the

system and the kinematic quantities associated to the device. Main draw-

backs related to SMC technique are then presented and the main solutions to

them have been reported. A simulation comparison has been adopted in order

to choose the best strategy to design master and slave controllers. SMPC is

also presented at the end of this section;

• Chapter 4 «Global controller»: starting from the results obtained in the

previous chapter, the system analysis moves towards the interconnection be-

tween the master and slave devices. Here, the main stability issues have been

addressed thanks to criteria belonging to network theory. The impedance val-
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Figure 1.3: Three dimensional representation of the robotic arm used for 7 DOFs
simulation

ues for the master and slave devices required to retain stability have been

derived, as well as the maximum operative bandwidth in the case of teleoper-

ation systems affected by communication delay. Then, transparency analysis

has been performed, deriving also for this case the optimal impedance require-

ments. The trade - off between these two design principles is shown as well as

a possible solution based on on - line impedance shaping;

• Chapter 5 «N - DOFs extension»: this chapter generalises the results

found in the local controller section in order to apply them to complex multi

- DOFs robotic systems. Two possible strategies are presented (decentralised

and centralised controllers) and their advantages and disadvantages listed. The

concept of operational space impedance is introduced and methods to control it

robustly are presented. The discussion has been then extended from standard

to redundant manipulators, introducing concepts like null space robust control

and optimal constraints fulfilment. These concepts have been tested through

simulation on 2 DOFs and 7 DOFs models in order to verify the theoretical
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Figure 1.4: Network scheme of a generic bilateral teleoperation system

results. At the end of the section, a way to deal with delays on the actuator

channel is also presented;

• Chapter 6 «Experimental results»: some of the control techniques pre-

sented in the thesis are applied to the experimental apparatus, represented

by the ABB IRB14000 YuMi robot. Before doing so, a brief description of the

available signals and sensors is done. An external torque estimator is derived

to provide perception to the robotic arms. Then, the internal proprietary

control structure is described and the main operative modes listed. Nonide-

ality of the actuation channel (input filtering) as well as joint friction have

been identified and their effects have been compensated. Tracking at the slave

joint level is performed, with different reference profiles. Eventually, bilateral

tracking motion with the proposed local controllers has been realized and its

performance analysed.

Figure 1.5: Frequency spectra for the filtered joints input torque



Chapter 2

Teleoperation system analysis

This chapter introduces the main theoretical concepts regarding teleoperation in its

more general sense. In the next section, a generic teleoperation picture is introduced.

Then, the primary actors, which recite their role in the teleoperation drama, will

be described. A simplified mathematical models of such entities will be introduced.

In the last section, a brief recall on the main control architectures will be drawn, as

well as their pros and cons.

2.1 Teleoperation concept scheme

Since the main objective of bilateral teleoperation is the remote connection between

environments that are physically separated, it seems logical to model the system

structure in a distributed way. This allows to clearly understand the physical com-

ponents of the teleoperator structure and the criticalities that such distribution

generates. Another advantage of this approach is the possibility of considering the

single elements which constitutes the teleoperation scheme separately and focus on

the information flows that occur between different areas of the overall system.

Thanks to this choice, we can take advantage from concepts brought by network

theory in order to put together the skeleton of our teleoperation scheme. In partic-

ular, each element can be represented as a 2 - port network, exchanging forces and

velocities with its mutual blocks. A schematic representation of this idea is visible

at Figure 2.1.
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Figure 2.1: General bilateral teleoperation scheme (distributed representation)

2.1.1 Nomenclature

Before considering the main aspects of teleoperation, it’s useful to introduce the

reader to some terminology.

All the apparatus which belong to the operator environment, such as haptic in-

terfaces, local controllers, etc. will be referred to as located at master side. On

the other hand, all the devices belonging to the teleoperated environment, such as

actuation’s plant, manipulated objects, etc. will be located at slave side. Since

teleoperation devices allow interactions between these two realities, they are equiv-

alently called master-slave controllers.

When the information flow along the communication channel is directed from the

master to the slave only, we talk about unilateral teleoperation schemes. Instead,

when feedback coming both from the master and the slave side are added to the

control loop, teleoperation scheme is said to be bilateral.

The mechanical impedance of a system represents the dynamical relationship

between force and velocity exchanged with the external world. According to [83],

an haptic display is an electromechanical device which is able to properly render

impedance characteristics to the operator.

2.1.2 Performance indicators

As we said in the introductory part, the main objective of a teleoperation system is

to perfectly and robustly render the remote environment to the operator, in order to

accomplish the assigned tasks in the most natural and efficient way available. This
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in spite of the uncertainties affecting the system as well as the time delay caused by

the communication channel.

All these aspects can be summarized more formally by introducing two main

concepts [38]:

• Stability: all the variables on both sides have to be bounded and converge to

specific reference values, irrespectively of operator - environment behaviour;

• Transparency: capability of the teleoperation system to reproduce faith-

fully the slave environment, as if there were no interfaces between the two

remote sites. Such parameter is directly associated with telepresence, which

represents qualitatively operator’s ability to perform tasks in a natural way,

without intensive train and adaptively with respect to unknown and variable

environment [60];

Thanks to these new definitions, the above objective can be rephrased in this way:

an ideal master-slave device will be the one which is able to maximize transparency

while retaining closed-loop stability.

As we can clearly see from [11, 44, 81], there exists an important trade-off be-

tween the impedance range that can be displayed to the operator and the stability

of the whole system. If we increase the bandwidth of our controllers in order to

render better impedance to the operator, we decrease stability margins, allowing

high frequency information to travel around the network. On the other hand, slow

system responses may cause haptic interfaces to feel sluggish and provide poor force

reflection to the operator. This reasoning can be visually interpreted by looking at

Figure 2.2.

A possible measure for transparency can be done evaluating the transmitted

impedance Zt, i.e. the impedance of slave environment seen through the master

teleoperator port (Figure 2.3). Using this quantity we can compute the dynamic

range of impedances that can be shown to the operator, namely the Z-width of the

teleoperation system [12]

Zt,width =
1

ωmax − ωmin

∫ ωmax

ωmin

|| logZt,max(jω)| − | logZt,min(jω)||dω (2.1)
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Figure 2.2: Maximum available perfor-
mance curve for a teleoperation system

Figure 2.3: Transmitted impedance

where Zt,max and Zt,min are defined as the maximum and minimum transmitted

impedances and their values are:

Zt,max(jω) = Zt(jω)|Ze→∞, Zt,min(jω) = Zt(jω)|Ze→0 (2.2)

with Ze equals to the environmental impedance.

According to the definition, teleoperation system A is more transparent than B

when ZA
t,width is grater than ZB

t,width. A more rigorous and detailed analysis on these

performance indicators will be done in chapter 4.

2.2 Teleoperation constitutive elements

As shown in Figure 2.1, constitutive blocks of a teleoperation scheme are sequentially

combined in order to realize the information flow between master and slave sites.

In order to accommodate such diagram, it’s necessary to model them as dynamic

systems which depend on velocities and forces at their ports. Here we are not

making any assumptions on the characteristics of such dynamics (can be non-linear

or time-variant). In the next subsections inner behaviour of each 2-port element is

described and the operator and environment models are introduced.
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2.2.1 Master device

This element needs to model the mechanical interface which is seen by the operator

during any teleoperation task. It can be chosen as a generic N DOFs manipulator,

with joint positions and velocities available for measure as well as the possibility of

estimating the force exerted by the human. To control the robot we can impose a

joint torque vector τm in order to:

1. Provide good haptic feedback to the operator;

2. Display proper impedance characteristic for smooth manipulation;

Applying standard Euler-Lagrange procedure [73], the dynamic model for the

master system in the joint space is straightforwardly derived

Bm(qm)q̈m +Cm(qm, q̇m)q̇m + gm(qm) = τm + J>m(qm)hh (2.3)

where qm, q̇m, q̈m ∈ Rn are, respectively, position, velocity and acceleration vectors,

Bm(qm) ∈ Rn×n is the inertia matrix, Cm(qm, q̇m) ∈ Rn×n contains all Coriolis’

and centrifugal terms, gm(qm) ∈ Rn represents the gravitational component, τm ∈

Rn are the controlled joint torques and J>m(qm)hh ∈ Rn are the joint-equivalent

torques due to a generalized force vector hh ∈ Rm exerted by the human operator at

the manipulator’s end effector. J>m(qm) ∈ Rn×m represents the Jacobian matrix of

master system. Dependency on time of joint variables and torques is here omitted

to simplify equation notation.

Equation (2.3), although very general, is rather difficult to analyse when the

master device is connected to the network. This is mainly due to the coupled

dynamics of each joint and the necessity to export quantities from the operational

space (human force, impedance characteristics) to the joint one. That is why it

is rather common [27, 10] to consider a simplified model for the master device,

constituted by a simple 1 DOF mass-damper system, which captures the essential

elements to properly describe teleoperation network properties.

mmẍm + bmẋm = fm + fh (2.4)
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Figure 2.4: Simplified 1 DOF modelling for slave and master devices

where the dependency on time (ẍm(t), ẋm(t), fm(t), fh(t)) is omitted for the

sake of readability. fh represents the force exerted by the human operator on the

master system while fm is the control force acting on the master device. A schematic

representation of equation (2.4) is shown at Figure 2.4a.

For network analysis purposes, it is useful to define also the master mechanical

impedance Zm (s is the Laplace operator)

Zm =
Fh + Fm
Vm

= mms+ bm (2.5)

where Fh, Fm and Vm are, respectively, the human force, the master control force

and the master speed signals expressed in the Laplace domain.

2.2.2 Slave device

An analogous reasoning can be performed on the slave side, where the teleoperated

device used to perform the remote task is usually a robotic manipulator. Also in

this case, a generic N DOFs dynamic model is introduced, with sensors or estimators

that allow access to positions, velocities and end-effector forces.

Bs(qs)q̈s +Cs(qs, q̇s)q̇s + gm(qs) = τs− J>s (qs)he (2.6)

where qs, q̇s, q̈s ∈ Rl, Bs(qs) ∈ Rl×l, Cs(qs, q̇s) ∈ Rl×l, gs(qs) ∈ Rl, τs ∈ Rl,

J>s (qs) ∈ Rl×k are analogous to master device quantities and he ∈ Rk is the gen-

eralized force vector exerted by the environment on the slave system at the contact
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point. In this case, the slave control torque τs has to be able to:

1. Provide stable contact with the environment;

2. Ensure good tracking capabilities with respect to the master position;

Similarly to the master device, for analysis purposes, it is convenient to consider

also in this case a simplified 1 DOF model, which allows to understand the main

features of the slave system while keeping manageable the overall scheme structure.

msẍs + bsẋs = fs − fe (2.7)

fe represents the force exerted by the environment to the slave system, while fs

is the force applied by the manipulator controller. A schematic representation of

equation (2.7) is available at Figure 2.4b. Also in this case it is possible to define

the slave mechanical impedance Zs as

Zs =
Fs − Fe
Vs

= mss+ bs (2.8)

where Fs, Fe and Vs are, respectively, the slave control force, the environmental force

and the slave speed signals expressed in the Laplace domain.

2.2.3 Communication channel

As reported in [4, 80], one of the main difficulties in describing teleoperation sys-

tems is given by the proper modelling of the interconnection between master and

slave sides. This because the main objective of teleoperated devices is to realize a

remote connection, implying that information may need to travel very long distances

before reaching targets. This introduces a time delay in the channel that can vary

from tenth of milliseconds (industrial teleoperation) to seconds (space/deep ocean

transmission lines [70]).

Based on these considerations, to keep our next developments as general as pos-

sible, we can assume the time delay to be an unknown quantity, chosen externally

according to physical constraints and network characteristics. Moreover, usual com-

munication channel’s latency doesn’t keep fixed with time, but varies according to
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network traffic, adopted protocols, etc. Particularly in the last decades, teleopera-

tion via internet has become a growing field of research and this aspect has become

more relevant [57].

Each signal that has to be exchanged between master and slave can be obtained

through the equation

xdm(t) = xm(t− d(t)) xds(t) = xs(t− d(t)) (2.9)

where d(t) is the time delay function. To maintain a compact notation, from now

on the delay will be indicated with the apex d; if a variable is delayed twice apex

becomes dd, and so on.

Since master and slave devices have a priori different structures, it may be useful

to include constant scaling factors between velocities and forces transmitted through

the network kp, kf ∈ R+. Subscript p indicates kinematic scaling, while f stands for

force scaling.

2.2.4 Environment

Concerning the environment faced by the slave manipulator, we need to model the

interaction as if it was a component of the closed teleoperation control loop. This is

necessary because we want to provide to the operator a force feedback coming from

measurements done at the slave contact point in order to realize a bilateral control

architecture.

There exists a broad and detailed literature about contact mechanics [58], as

well as their effects on teleoperated systems [51, 31]. In accordance with the thesis’

objectives, only a brief recall of the most used contact models is here introduced:

• Hertzian theory (1882): first contact model, developed by Heinrich Hertz

to describe the interaction between two spherical objects. It considers both

surfaces to behave in an elastic way, thus neglecting any dissipative effect due

to the plastic deformation of the object as well as adhesion phenomena;

• Bradley models (1936): opposed to Hertz contact concept, it neglects defor-
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mations at the interaction point, using only Van der Waals forces to explain

attraction and repulsion of bodies;

• JKR theory (1970): extension of the hertzian studies to include adhesive

contact between objects. It is able to consider also pulling forces during the

unload situation;

• DMT theory (1975): general theory of contact adhesion of an elastic spher-

ical particle on a flat and rigid surface. It considers both the Van der Waals

forces and the JKR model. It is rather complete and complicate, useful to

simulate precisely pressure and force distributions at the interaction point;

Coming back to our modelling case, we need to select the most appropriate one

to fit our contact interaction. Since the environment belongs to the slave side, we

should assume that its properties are mostly unknown to the teleoperation system.

This means that we cannot choose too sophisticated models, which would require

identification procedures to determine their parameters. Moreover, contact envi-

ronment dynamically evolves based on performed tasks and/or unmodelled entities.

Due to these considerations, we can choose a simple elastic model, with dissipative

element to model material deformation.

Let’s consider a unidirectional interaction between slave and environment. If

the contact depth is limited, it is possible to linearize the elastic behaviour of the

surfaces, obtaining the following contact law

fe(x) =

 ke(x− xe) + beẋ x ≥ xe

0 x < xe
(2.10)

where ke is the environmental stiffness, while be models dissipative forces due to

material deformations. xe represents the wall position and defines the discontinuity

between free motion and constrained motion.

This model requires few parameters, but it neglects slave flexibility and non-

linearities. Therefore it is useful for a qualitative analysis of control robustness

with respect to very different environmental conditions. Also in this situation, it is
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possible to express the environment impedance Ze as

Ze =
Fe
Ve

= be +
ke
s

(2.11)

where Fe and Ve are, respectively, the force exerted by the environment on the

teleoperation system and the environmental speed (which coincides with the slave

speed except for the sign).

2.2.5 Operator

The last entity that is left to describe is also the most critical one, since it intro-

duces the human component inside the loop. Due to the fact that the operator is

physically connected through a master haptic interface to the teleoperation chain,

its impedance can critically affect loop stability. In particular, the human tends to

adapt his/her behaviour according to the task he/she has to perform and the tactile

feedback perceived.

According to literature [21], two different strategies can be pursued to identify a

meaningful model for the operator:

• Classical approaches [1, 34] consider human limbs as static and passive com-

ponents. The operator is characterized by an ideal force source F des
h , which

models the desired effort he/she wants to apply on master device, plus a fixed

relation Zh which models the mechanical impedance of the human hand. Such

relation identifies the operator bandwidth, limiting the range of frequencies

that he/she can introduce into the system. Since operator and master device

are connected through the haptic interface, master speed vm is equal to the

human speed vh. Thus, Zh is defined as:

Zh =
F des
h − Fh
Vh

=
F des
h − Fh
Vm

= mhs+ bh +
kh
s

(2.12)

where Fh is the human force effectively applied to the teleoperator system.

Parameters mh, bh and kh need to be identified through empirical operator

frequency diagrams. Since hand impedance depends on the performed task as
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well as the operator training, experiments won’t generate constant impedance

parameters. Therefore they should rely on average results (approximation);

• More sophisticated models [85, 53] have been developed to improve human rep-

resentation for control purposes. They rely on the operator capability to adapt

his/her impedance as a consequence of the information perceived through the

haptic interface. While classical methods are substantially open loop descrip-

tions, in these new models operator actively take part to system stability,

varying the control signal according to task requirement and personal experi-

ence (closed loop interaction). Such behaviour has been intensively studied in

the aeronautical field, where pilot’s reactions against plants characteristics is

fundamental to guarantee safe flight conditions.

If we consider the operator as a feedback controller in pursuit of a tracking

task, we can assume that it tries to stabilize the teleoperation system, closing

the loop with a good phase margin. According to McRuer [53], it’s possible to

define a crossover model as in Figure 2.5b, where human behaviour is modelled

with the transfer function:

Ch(s) = K
e−τs

1 + Ts

1 + Tzs

1 + Tps
(2.13)

τ and T represent, respectively, neuromuscular activation latency and limited

actuation bandwidth of the human controller. Reasonable values for τ are

around [30,100] ms, while T is approximately [0.15,0.25] s. Gain K and lead-

lag compensator Tz and Tp are tuned adaptively by the operator in order to

maintain a stable crossover frequency ωc for the loop transfer function

L(s) = C(s)G(s) ≈ Kc
e−τcs

s
, s = jωc

where G(s) represents the master dynamics seen by the human. Input ref-

erence signal for this loop can be either position error (free motion) or force

error (contact with environment) according to operator task requirements.

Criticalities arise in the transition phase, when switching between position to
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force tracking is required. If the system is affected by time delay, incoherency

between force feedback and master position/velocity can easily destabilize the

operator’s control loop (loss of causality between perceived and applied forces);

The operator’s model choice relies on the following considerations: if the human

is well trained and the task is known, he uses only little information coming from the

external environment. He takes advantage of his experience and performs the oper-

ation almost as an open loop controller, showing a quite constant impedance. For

this situation, the simplified model (Figure 2.5a) is enough to describe his behaviour.

On the other hand, if the task is almost unknown and/or there is uncertainty in the

teleoperation environment, the human needs to highly consider sensory information

to improve/accomplish his objective. In this case, it is better to adopt more complex

models, like the McRuer one (Figure 2.5b).

2.3 Control scheme architectures

Once the main teleoperation components have been introduced, it is necessary to

analyse their mutual interaction. This is determined by the teleoperator control

structure, which elaborates the information coming from the master and slave sys-

tems in order to fulfil the performance requirements stated in subsection 2.1.2.

According to literature [44, 80, 34], there are several ways to represent the MIMO

system which identifies the teleoperation plant, depending on the available measure-

ments and the required degree of complexity. In the following subsections, a generic

+

-

(a) Static operator model

-

+

(b) McRuer crossover model

Figure 2.5: Two possible operator models: fixed impedance with imposed force
reference, McRuer crossover with speed tracking configuration
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+ -

++

+ -

++

--

Figure 2.6: Block diagram representation for a generic bilateral teleoperation control
scheme

control structure, introduced by Lawrence [44], has been proposed. Then, the archi-

tecture is specialized in order to generate the major number of teleoperation control

schemes currently available. In the last subsection, previously proposed controllers

are evaluated according to their pro and cons, choosing the most suitable for our

application.

2.3.1 Generalized control scheme

Starting from Figure 2.1, a more rigorous scheme has been developed using block

diagram formalism. This representation keeps a clear physical meaning for the tele-

operation components, while it underlines the interactions generated by the network

architecture. The resulting diagram is visible in Figure 2.6 and the meaning of each

symbol is described in Table 2.1.
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Symbol Meaning

Ze(s) Environmental impedance
Cs(s) Local slave controller
Zs(s) Slave device model
C1−4(s) Master-slave communication channel descriptors
Zm(s) Master device model
Cm(s) Local master controller
Zh(s) Operator impedance

Table 2.1: Nomenclature for the generic control scheme architecture

We can notice that each subsystem (operator, master system, etc.) is described

using a single transfer function, which defines the impedance relationship between

its conjugate variables. For master and slave devices, it is possible to control the

value of such impedance, in order to obtain the desired behaviour required by the

teleoperation system.

In the general control architecture, all information available at the master side

can be sent through the communication channel to the slave side and vice versa.

Since we are describing our mechanical system based on an equivalent representation

(effort - flow formalism), the meaningful quantities that we can broadcast through

the channel are four : master-slave velocity and master-slave force.

Sent signals can be processed using communication channel descriptors, in or-

der to correctly interface master and slave habitats. Usually, scaling factors are

required; this because master devices are designed to be operator compliant, while

slave manipulators are task dependent and could generate incompatible forces and

speeds. Other common descriptors are used to define channel properties, such as

time delays, packet loss and signal degradation.

The desired human force F des
h is used by the operator to impose a given trajectory

to the master device and, consequently, to the entire teleoperation scheme.

2.3.2 2 - channel architectures

First proposed teleoperation control schemes aimed at emulating early bilateral

manipulators, already developed for nuclear applications and hazardous material

processing. These systems were constituted by similar master and slave devices,
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mechanically coupled in order to reproduce the same displacement in the remote

environment.

To replicate their behaviour, only the information about robots position needs to

be transmitted; consequently, this architecture takes the name of position - position

controller (PP). Doing so we are creating a virtual mechanical coupling between

master and slave devices; xm, ẋm act as path reference for the slave controller, while

xs, ẋs generates the haptic feedback for the master controller.

Control signals for the master and slave systems have the following form:

kbm(ẋs − ẋm) + kkm(xs − xm) = fm

kbs(ẋm − ẋs) + kks(xm − xs) = fs

Master device

Slave device
(2.14)

where kbm, kkm are the proportional and derivative parameters for the master side,

while kbs, kks plays the analogous role at the slave side. These terms define the

stiffness of the virtual coupling as well as the amount of compliance showed to the

operator/environment.

This control strategy is totally symmetrical and aims at synchronizing master

and slave movements by means of local feedback regulators. Since it aims at emulat-

ing a mechanical spring-damper link, position - position controllers are intrinsically

passive if controller coefficients are positive [38].

From the Lawrence point of view (Figure 2.6), this controller can be obtained

by imposing C1(s) and C3(s) equal to zero, while C2(s) and C4(s) are equal to 1/s.

Velocity is retrieved from position via numerical differentiation.

Another well known 2 - channel architecture is the so called position - force

controller (PF). According to [3], this is the most intuitive teleoperation control

scheme, because it transmits position reference from master to slave (achieve good

tracking) and external forces from slave to master (achieve haptic feedback).

Also in this case xm, ẋm represent the slave controller’s reference, while fe instead

of xs is transmitted to the master. Obviously this implies the presence of a force

sensor on the slave side or, at least, an estimator which is able to produce such
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signal. Controllers equations become:

−kffe = fm

kbs(ẋm − ẋs) + bks(xm − xs) = fs

Master device

Slave device
(2.15)

where kbs and kks have the same meaning of position - position architecture,

while kf is the reflected force scaling from the slave to the master device.

This control strategy is asymmetrical, because resulting closed-loop equations

have a different structure. In order to write this scheme according to the general

structure proposed in Figure 2.6, this time C1(s) and C2(s) should be equal to zero,

while C3(s) and C4(s) define communication structure (scaling factors, delays, etc.).

2.3.3 3 - channel architectures

These architectures can be seen as an evolution of the 2 - channel control schemes

in order to overcome their intrinsic limitations . As mentioned in [37], every control

strategy which requires slave position/speed feedback suffers from delay induced

forces. To show this phenomenon, it’s necessary to apply control laws (2.14) when

communication channel is affected by time delay:

kbm(ẋds − ẋm) + kkm(xds − xm) = fm

kks(ẋ
d
m − ẋs) + kks(x

d
m − xs) = fs

Master device

Slave device
(2.16)

where apex d stands for delayed variable (xd(t) = x(t− d)). Focusing on the master

equation, its expression can be rewritten by adding and subtracting ẋs and xs:

kbm(ẋs − ẋm) + kkm(xs − xm) + kbm(ẋds − ẋs) + kkm(xds − xs)︸ ︷︷ ︸
delay induced forces

= fm (2.17)

if kbm and kkm have too high values, lag between master and slave positions generates

strong reaction forces reflected to the operator.

To gain advantage from the direct slave force reflection and avoid delay induced

forces, an interesting extension of the position - force architecture can be represented

by the position, force - force (PF-F) architecture. In this case also the operator force
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is sent to the slave device, requiring additional information with respect to the 2 -

channel control structure. However, this disadvantage is compensated by increased

teleoperation performance, as well as the possibility of implementing an absolutely

stable controller [86].

From the Lawrence point of view, this kind of architecture can be represented by

setting C1(s) and C3(s) equals to one (or a scaling factor in case of telefunctioning),

while C4(s) is still 1/s and C2(s) is not used.

2.3.4 4 - channel architectures

As the name already suggests, this category of bilateral controllers considers all the

information available at master - slave sides to perform the control action. Although

4 - channel architectures are more complex than the previous ones (they require

knowledge of external forces on both sides), they can be tuned in order to optimize

system’s transparency while retaining stability [44].

Specific transfer functions are associated at each channel descriptor, according

to the bandwidth at which the teleoperation system will operate. In this case, it’s

not immediate to derive closed-loop equations, since they strongly depend on the

chosen values assigned to C1(s), C2(s), C3(s) and C4(s).

As mentioned in [29], Lawrence optimal tuning will require slave/master accel-

eration transmission. This is usually not possible, therefore only an approximated

behaviour can be obtained.

2.3.5 Control architecture choice

Now that the major teleoperation control architectures have been presented, we can

analyse their pros and cons in order to decide which is the best strategy to realize

our bilateral control scheme.

The position - position architecture, as already mentioned, has been the first one

to be implemented thanks also to its simplicity. In fact, it doesn’t require external

torque-force sensors to perceive environment, while position and speed signals are

immediately available on every robotic system. Moreover, choosing a sufficiently
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high b̄m and b̄s guarantees system’s global stability [56].

Main drawbacks are related to the overall bad performance of these controllers,

in terms of telepresence and operator’s handling. As reported in [37], virtual me-

chanical coupling generated by position - position controllers causes the reflection of

the slave impedance to the master; this implies that the operator should overcome

also the remote dynamics to perform the required task. Eventually, the ultimate

consequence is an altered perception of the environment, which is generally felt

“softer” than it actually is. Another unpleasant effect associated with PP controllers

is the already mentioned delay induced force, that causes the teleoperation system

to be sluggish in free space motion.

For what concern position - force architectures, they tend to better perform

with respect to the position - position ones, since environment is directly perceived

through the remote measured force. Nevertheless, this kind of schemes tends to suf-

fer from communication channel delay and stability is a critical factor [82]; when the

slave enters in contact with stiff environments, it bounces, generating high frequency

reaction forces. Thanks to direct reflection, this signal couples with operator’s dy-

namics, which becomes an integral part of the control loop [31]. Ultimately, the

operator should deal with this impulsive response correctly to regain system’s sta-

bility, which is not intuitive when there’s time delay.

In view of the problems associated with 2 - channel architectures, it seems rea-

sonable to look at more complete schemes to improve system’s performance. In

particular, 3 - channel architecture represents a good compromise between control

complexity and exploitation of information. Indeed, adding the operator force feed-

forward to the scheme (PF-F configuration) allows us to completely assign master

and slave dynamics, while retaining all the good properties of P-F architecture.

Unfortunately, also in this case we have instability associated with hard contact

reflection. To mitigate this drawback, teleoperation network can be stabilized by

means of different techniques (damping injection, passivity-based approach, wave

variables, etc. [38]).

The remaining question is now represented by the convenience of increasing again

architecture’s order, choosing a 4 - channel structure. Although it guarantees op-
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P-P P-F PF-F PF-PF

requires force sensors • • •
intrinsically stable •

slave dynamics reflection • •
completely assignable impedance • •

delay induced forces • •
optimized for transparency •
stiff contact instability • • •

Table 2.2: Overview table of the main teleoperation architecture’s advantages -
disadvantages

timal transparency, resultant bilateral controller needs to be treated as a complete

MIMO system, which implies more involved parameter tuning as well as more com-

plex and computational demanding control techniques (H∞,µ-synthesis). Moreover,

Lawrence developments require a good knowledge of master and slave devices, which

is often not the case (model errors, friction, etc.). Eventually, introduction of slave

position feedback will generate again delay induced forces [37].

For all these reasons, the control architecture chosen for implementing the bilat-

eral teleoperation scheme is the position/force - force one, since it represents a good

trade-off between too simplified strategies (PP, PF) and too general ones (PF-PF).

Moreover, we assume that both environmental and human forces are measurable

quantities. We summarize the main concepts of this section in Table 2.2. For each

column, pro and cons of the presented architectures have been reported. In this way,

it’s possible to visually compare them in order to choose the most effective one.
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Chapter 3

Local controller

In this chapter, a detailed analysis on system local controllers has been conducted.

With the term local controller, we indicate the control structure, attached to the

master and slave devices, which is in charge of determining their desired mechanical

properties.

First of all, a brief recall on impedance control is presented, describing how it can

be applied to our ideal 1 DOF model for master and slave manipulators. Then, its

limitations are shown and a new robust variable structure controller is introduced,

called Sliding Mode Controller (SMC). Also in this case, the design strategy is

developed for both systems. The main SMC drawbacks are then reported. To

overcome such limitations, evolutions of the standard SMC has been considered

(Integral Sliding Mode Controller (ISMC), continuous approximations of signum

function, Higher Order Sliding Mode Controller (HOSMC)). Standard SMC is then

compared with these techniques via a MATLAB - Simulink simulation. At the end,

a brief introduction to Sliding Mode Model Predictive Controller (SMPC) is done,

with emphasis again on the 1 DOF teleoperation set-up.

3.1 Inverse dynamics control

To deal with multivariable non-linear systems, a very useful control technique is

represented by feedback linearization [43]. It consists in the removal of the system

undesired dynamics through a non-linear feedback signal and it is particularly useful
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when the control input can be easily made explicit from system’s dynamic equations.

In the robotic field, feedback linearization goes under the name of inverse dynamics

control [73].

Let’s consider the dynamic equations of the master manipulator (analogous rea-

soning can be done for the slave device):

Bm(qm)q̈m + nm(qm, q̇m) = τm + J>m(qm)hh (3.1)

where, for simplicity, we have assumed nm(qm, q̇m) = Cm(qm, q̇m)q̇m + gm(qm)

to be the main non-linearity source of our system. Dependency on time of kine-

matic quantities here is omitted for clarity. Note that equation (3.1) has always a

linear structure with respect to the control input and the inertia matrix is positive

definite [73].

Therefore, we can choose τm such that:

τm = n̂m(qm, q̇m)− J>m(qm)ĥh + B̂m(qm)v (3.2)

where n̂m, B̂m, ĥh are the estimated values of the dynamic parameters of master

manipulator, while v can be considered as the new control input for the controlled

scheme. Since, usually, n̂m 6= nm, B̂m 6= Bm and ĥh 6= hh, we indicate the

estimation error ∆n = n̂m− nm and similarly for the other terms.

Substituting expression (3.2) into (3.1), the resulting closed-loop equation has

the following form:

q̈m = ζmv+ ηm (3.3)

where ζm = B−1
m B̂m and ηm = B−1

m [∆n− J>m∆hh].

If we perfectly know the manipulator’s dynamics, ζm = 1 and ηm = 0. There-

fore, expression (3.3) can be simplified and the resulting controlled system is repre-

sented by:

q̈ = v (3.4)

Equation (3.4) describes a linear and decoupled n DOF system with respect to the

new input v. Based on this result, control specifications now can be easily fulfilled by
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+

+

Figure 3.1: Inverse dynamics control scheme block diagram

means of any control strategy which is able to deal with a chain of n decoupled double

integrators. Typical solutions to this problem are decentralized control schemes,

such as Proportional Derivative (PD) controllers, that allow a complete tracking

error definition.

The control law represented in equation (3.2) is non-linear, coupled and it rep-

resents the main drawback of the inverse dynamics scheme. Indeed, the flawed

knowledge of manipulator’s structure, joint with variable operative conditions, un-

derline the poor robustness of this control concept. Moreover the computational

burden required for n̂m, B̂m, Ĵm can be significant and it needs to be performed

for each sample time (each different configuration) [73].

For a generic manipulator, inverse dynamics architecture is reported at Fig-

ure 3.1.

3.2 Impedance control

According to Colgate [83], “haptic displays can be considered to be devices which

generate mechanical impedances (relationship between velocity and force)”. Since

our aim in bilateral teleoperation is to make the operator aware of what happens at

the remote site (where the slave manipulator is operating), we need to design master

and slave controllers that are able to trustfully represent virtual environments.

In order to reach this goal, it’s necessary to control the dynamic interaction

between the manipulator and its environment. To do so, we need to impose a given



36 Local controller

+

+

Figure 3.2: Impedance control scheme block diagram

mechanical impedance to the system, so that it can react to external stimuli in a

predictable and safe way.

Control schemes which are able to impose a given mechanical relationship be-

tween force and speed are called impedance controllers. Through them, it’s possible

to fulfil the main requirements both for master and slave manipulators:

• From the operator point of view, impedance control allows to set up desired

mass - spring - damper values, resulting in a smooth and pleasant teleoperation

task. Moreover, force feedback generation is straightforward (it can be seen as

an additional force acting on the haptic interface);

• From the slave device point of view, impedance control determines the link

between external environmental forces and master - to - slave tracking error.

In this way, we can explicitly take into account the manipulator’s degree of

compliance as well as guaranteeing asymptotic error convergence during free

motion;

To properly apply an impedance controller to a mechanical device (manipulator,

1 DOF system, etc.), it is necessary to cancel its intrinsic impedance through an

appropriate inverse dynamics controller, of the type introduced in section 3.1. This

inner control loop is reported in the grey box of Figure 3.2. Once inverse dynamics

has been performed, the new impedance feedback regulator is connected to the

linearized system and the desired mechanical impedance is reached.

In the next subsections, slave and master analysis has been performed on the
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simplified 1 DOF model, in order to avoid difficult expressions and focus on the

intrinsic properties and drawbacks of impedance control schemes.

3.2.1 Master device

Recalling equation (2.4), the master dynamic system for the 1 DOF model is repre-

sented by:

mmẍm + bmẋm = fm + fh (3.5)

According to [10, 28], master device should show to the operator a desired

impedance characteristic of the following type:

m̄mẍm + b̄mẋm + k̄mxm = fh − kffde (3.6)

where m̄m, b̄m, k̄m are the desired values for the inertia, damping and stiffness coef-

ficients and kf represents a constant force scale factor, useful to adapt master and

slave different structures. Eventually, fde is the delayed environmental force coming

from the slave device.

To obtain the relationship (3.6) from master’s dynamics model (3.5), the follow-

ing control law needs to be applied:

fm = b̂mẋm − fh +
m̂m

m̄m

(fh − kffde − b̄mẋm − k̄mxm) (3.7)

where “hat” terms indicate, as usual, estimated quantities, while “bar” terms indicate

the desired ones. Here, the inverse dynamics control is represented by fm = b̂mẋm−

fh + m̂m

m̄m
v, while the impedance control is given by v = fh − kffde − b̄mẋm − k̄mxm.

Writing equation (3.7) in the Laplace domain using the Lawrence formalism leads

to the transfer function:

Cm(s) =
Fm
Vm

= b̂m −
m̂m

m̄m

(
b̄m +

k̄m
s

)
(3.8)

where Fm and Vm represent, respectively, the master force control and the master

speed expressed in the frequency domain. Estimated parameters can be substituted
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with the real ones if there’s no uncertainty in the modelled dynamics (i.e. perfect

cancellation of master’s impedance).

3.2.2 Slave device

Similarly to the master device, also for the slave manipulator we can rewrite the

dynamic system for the 1 DOF model:

msẍs + bsẋs = fs − fe (3.9)

This time, the main target for the slave system is to properly track reference

position and speed coming from the master device. Therefore, it’s necessary to

define the manipulator tracking error x̃s = xs − xdess , where xdess is the desired

slave position and it’s computed based on the communicated master coordinate

xdess = kpx
d
m.

To take advantage of the impedance control formalism introduced in section 3.2,

we need to design a controller that guarantees a closed - loop error equation of the

following type [10, 27]:

m̄s
¨̃xs + b̄s ˙̃xs + k̄sx̃s = −fe (3.10)

By imposing a second order dynamics to the tracking error, we are assuring that,

in free motion (fe = 0), x̃s → 0. Furthermore, x̃s will follow a trajectory defined by

the design parameters m̄s, b̄s, k̄s.

When the slave device enters in contact with the environment (fe 6= 0), equa-

tion (3.10) behaves like an impedance controller between the tracking error and the

external force. Also in this case, the degree of compliance is dictated by the desired

mass - spring - damper parameters.

To realize equation (3.10), we can apply to the slave device the same reasoning

done for the master haptic system. Our controller will be composed of an inverse

dynamics term, which will cancel the intrinsic slave model, and an impedance control

term, which will impose the desired dynamics to the remote manipulator. This turns
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out to be the following control equation [9]:

fs = b̂sẋs + fe +
m̂s

m̄s

(
−fe + m̄skp ẍ

d
m − b̄s ˙̃xs − k̄sx̃s

)
(3.11)

Unfortunately, equation (3.11) cannot be directly applied to the slave device, due

to its dependency from the master acceleration term ẍdm. This information typically

is not available, even at the master side, because acceleration measurements are

difficult to be performed and heavily affected by noise. A possible workaround for

this problem is reported in [9]. It consists in replacing the unknown term with

the master dynamic equation, which is known thanks to the impedance controller

designed in subsection 3.2.1.

If we write the delayed closed - loop master dynamics and we make it explicit

with respect to the acceleration signal, we obtain:

ẍdm =
1

m̄m

(
fdh − b̄mẋdm − k̄mxdm − kff

dd
e

)
(3.12)

where the superscript dd is used to label signals that have been delayed twice, i.e.

they travelled along the communication channel backward and forward (Round Trip

Time (RTT)). If the link between master and slave is symmetric, it can be seen as

the double of the standard delay introduced in unilateral communication.

We can notice that the boxed term in (3.12) represents the haptic feedback given

to the master by the slave, which is sent back to the slave itself to define the remote

site controller.

If we substitute the acceleration term in (3.11) with the master controlled dy-

namics (3.12), we finally obtain the control law that should be applied to the master:

fs =b̂sẋs + fe +
m̂s

m̄s

[
m̄skp
m̄m

(
fdh − b̄mẋdm − k̄mxdm − kffdde

)
− b̄s ˙̃xs − k̄sx̃s − fe

]

=

(
b̂s −

m̂s

m̄s

b̄s

)
ẋs −

m̂s

m̄s

k̄sxs +

(
1− m̂s

m̄s

)
fe + kpm̂s

(
b̄s
m̄s

− b̄m
m̄m

)
ẋdm

+ kpm̂s

(
k̄s
m̄s

− k̄m
m̄m

)
xdm +

m̂s

m̄m

kpf
d
h −

m̂s

m̄m

kfkpf
dd
e (3.13)
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Figure 3.3: Impedance - impedance controllers signals flow through teleoperation
architecture

where the second equation is obtained from the first by substituting the tracking

error expression and collecting the parameters associated to each signal. Since we

are using the information about operator’s force (fdh), this controller can be listed

as a 3 - channel architecture. Signal flows along the bilateral teleoperation system

are shown in Figure 3.3.

To fit control law (3.13) in Lawrence teleoperation scheme (Figure 2.6), we need

to write the transfer functions associated to Cs(s), C1(s) and C4(s):

Cs(s) =
Fs
Vs

= b̂s −
m̂s

m̄s

b̄s +
m̂s

m̄s

k̄s
1

s

C1(s) =
F d
h

Fh
=

m̂s

m̄m

kpe
−τs (3.14)

C4(s) =
V d
m

Vm
= kpm̂s

[(
b̄s
m̄s

− b̄m
m̄m

)
+

(
k̄s
m̄s

− k̄m
m̄m

)
1

s

]
e−τs

If the delay is a-priori known, double delayed environmental force can be directly

computed inside the slave regulator and we can still maintain the generalized control

scheme formalism. If we need to get back the force feedback signal from the master,

an additional channel should be added. This is usually done because in most cases

delay is unknown and moreover it may vary with time.
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3.2.3 Stability limits

Once the control laws for the master and slave devices have been derived, we need

to assess properties and limits of the overall teleoperation scheme. As reported

in [10], performance of impedance controllers which are based on an inverse dynamics

process may deteriorate severely when uncertainty exists in model’s parameters.

If we analyse the controlled system during ideal functioning (m̂m,s = mm,s, b̂m,s =

bm,s), master and slave dynamics are perfectly cancelled and the two closed - loop

equations matched the desired ones (3.6) and (3.10).

Both represent second order systems, with assignable poles. Thus, all the per-

formance and stability requirements can be simply imposed by using standard pole

placement techniques.

Let’s now analyse the robust behaviour of the impedance controller, by consid-

ering imperfect knowledge of model parameters as well as unmodelled - unknown

dynamics (e.g. friction forces, measurement noise, etc.). Let’s suppose that these

effects generate a mismatch between the real manipulator’s coefficients and the es-

timated ones; for now, neglect differences between the measured force values and

the actual ones. Applying the control laws (3.7) and (3.13) to the real systems (3.5)

and (3.9) generates the following closed - loop expressions:

mm

m̂m

m̄mẍm +

[
b̄m +

m̄m

m̂m

(bm − b̂m)

]
ẋm + k̄mxm = fh − kffde (3.15)

m̄s

(
ms

m̂s

ẍs − kpẍdm
)

+
m̄s

m̂s

(bs − b̂s)ẋs + b̄s ˙̃xs + k̄sx̃s = −fe (3.16)

Without dwelling on cumbersome computations for the slave device equation,

we can look at the master one to understand the main limitations of impedance

control approach. For what concern stability issues, let’s focus on the coefficients

that describe the dynamic equation:

mm

m̂m

m̄m︸ ︷︷ ︸
a

ẍm +

[
b̄m +

m̄m

m̂m

(bm − b̂m)

]
︸ ︷︷ ︸

b

ẋm + k̄m︸︷︷︸
c

xm = fh − kffde

To guarantee that the system is stable, all the roots of the characteristic polyno-



42 Local controller

mial as2 +bs+c must have negative real part. Thanks to the Descartes’ rule of signs,

the previous condition can be verified by imposing the following set of inequalities:
mm

m̂m
m̄m > 0

b̄m + m̄m

m̂m
(bm − b̂m) > 0

k̄m > 0

(3.17)

Since all parameters are positive by definition (they represent physical masses,

damping and spring constants), the first and last equations are obviously verified

∀m̂m, m̄m, k̄m. The same cannot be said for the middle one. If we isolate the esti-

mated quantities from the desired ones, we obtain the subsequent stability condition:

bm − b̂m
m̂m

> − b̄m
m̄m

(3.18)

From inequality (3.18) we can draw some interesting considerations. First of all,

the right side of the condition is always negative; this implies that an underestima-

tion of the friction force (bm ≥ b̂m) is sufficient to gain system stability. If this is not

the case (bm < b̂m), choice of the desired parameters becomes critical. If we want a

heavy and lightly damped master device, b̄m
m̄m
→ 0 and the stability region reduces.

Also the estimated mass m̂m plays an important role in scaling up or down the error

generated by the damping factor.

Beyond the stability issue, also in the case where we are able to guarantee the

fulfilment of inequality (3.18), the desired dynamic behaviour for the master sys-

tem is strongly compromised, since coefficient’s a, b, c are very different from the

designed ones. Moreover, the real system may undergo further changes, resulting in

a variation of bm and mm. Eventually, this variation may violate stability limit and

the system could become unstable.

Thanks to all these considerations, we can state that:

• impedance controller, joint with inverse dynamics, is a good control strategy

for applying a defined dynamic model to a mechanical device, such as master

- slave manipulators;
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Figure 3.4: General block diagram for a variable structure control system

• inverse dynamics strongly depends on model’s structure and parameters, mak-

ing the system very sensitive to uncertainties;

• wrong choice of controller parameters and variations in the system’s real

dynamic model may cause the controlled device to drift from its desired

impedance and start to behave unpredictably, even generating closed - loop

instability;

3.3 Sliding mode control

In subsection 3.2.3 we have considered the main limitations that arise from a direct

implementation of impedance controllers. Thus, it’s necessary to find a control

strategy which guarantees the desired dynamics imposition robustly with respect to

the uncertainties that affect the system.

As reported in [14], to deal with the differences between the mathematical model

and the real process, a particular control structure, called sliding mode control

(SMC), has been introduced.

SMC belongs to the class of controllers which goes under the name of Variable

Structure Control Systems (VSCSs). They have been developed thanks to the pi-

oneering work performed by Soviet Union scientists at the end of 1970. Particular

relevance should be given to the researches of U.Itkis [40] and V.I.Utkin [77].

The basic philosophy of a variable structure approach is to have a number of

feedback control laws plus a decision rule, generally called switching function [74]

(Figure 3.4). Through a proper choice of the control law that should be applied to
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the process at each time instant, it’s possible to drive robustly the system near to

the desired operative region. Using this kind of switching non-linear controllers, it

is possible to achieve results which are not available with standard linear techniques

(e.g. impedance control) [43].

To properly design a VSCS, we need to determine two components: the set of

control actions to be applied to the plant and the decision rule that allows the switch

between them. In sliding mode control theory, the switching function is usually

called sliding variable and it’s indicated with the symbol σ. A typical decision rule

adopted for σ is the following:

C(s) =


K, σ > 0

0, σ = 0

−K, σ < 0

(3.19)

whereK represents a constant coefficient. The main goal of a sliding mode controller

is to drive in finite time and maintain the controlled system as near as possible to

the manifold σ = 0, which takes the name of sliding surface [14, 77]. If that happens,

the controlled system will inherit all the characteristics of σ = 0 once it reaches it.

Therefore, we can design σ so that it provides the desired properties we want to

impose on the process, which will be transferred on the controlled plant thanks to

the SMC . This strategy is clearly visible from equation (3.19); since we are changing

the control structure each time σ swaps its sign, we are trying to make σ = 0 an

attractor for the system’s trajectories.

During SMC, the system can be in two different states:

• Reaching state: controlled system is not on the sliding surface yet. Its

trajectory is dictated by the closed - loop equation generated by the regulator

with fixed gain K (or −K);

• Sliding mode: controlled system is attached to the sliding surface σ = 0,

moving along its trajectory thanks to the SMC switching logic;

When the controlled process is in sliding mode condition, it’s usually called equiv-

alent system. To better visualize how SMC operates, for second order differential
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Figure 3.5: Standard phase plane evolution for an SMC controlled process

equations it is possible to represent state evolution using a phase diagram (or phase

plane). Axis coordinates indicate the two system’s state variables, while trajectories

show the path followed by the model through time. In Figure 3.5 we can see a phase

plane evolution for an SMC controlled process. Here, the two states previously listed

are clearly noticeable: up to a given time tf , the system is far from the sliding sur-

face and thanks to the proportional controller it moves towards it. At time tf , σ = 0

is reached and the system goes into sliding mode, following the dotted line imposed

dynamics towards the equilibrium point (0, 0).

SMC has numerous advantages:

1. It decouples the design of system’s desired dynamics from the project of a

stable controller that is able to impose such dynamics;

2. As will be shown in subsection 3.3.4, the controlled system is able to reach

the condition σ = 0 even in the presence of disturbances or uncertainties

in the dynamic model;

3. Process dynamics associated to the sliding mode can be arbitrarily assigned

through a proper choice of σ;

Thanks to points 2 and 3, SMC represents a good solution to alleviate the prob-

lems that affect the impedance control. As an example, in Figure 3.6 is reported
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Figure 3.6: 1 DOF uncertain mechanical system affected by uncertainty: with and
without SMC control

the position trajectory of a 1 DOF mechanical system (similar to the ones used for

master and slave modelling), whose model is affected by uncertainty. On the left,

we can see that the standard impedance controller generates a response dynamics

which is very far from the desired one. The same system is then controlled via

sliding mode techniques and the model mismatch rejection is clear.

3.3.1 Sliding mode design procedure

To properly design an SMC controller, it’s necessary to define the model of the

dynamic system we want to control, written in state - space form. Thus, we need

to rewrite equations (3.5) and (3.9) choosing as state variables x = [ẋm xm]>,

z = [ẋs xs]
>.

ẋ1 = x2

ẋ2 = − bm
mm

x2 +
1

mm

(fh + fm)

ż1 = z2

ż2 = − bs
ms

z2 +
1

ms

(fs − fe)
(3.20)

Since the main objective of a sliding mode controller is to assign a desired

impedance to the system in spite of uncertainties which may affect it, we need

to perform SMC after the inverse dynamic controller (3.2). Doing so, the resultant
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systems will be double integrators affected by model mismatches.

ẋ1 = x2

ẋ2 =
b̂m − bm
mm

x2︸ ︷︷ ︸
ηm(x2)

+
m̂m

mm︸︷︷︸
ζm

vm

ż1 = z2

ż2 =
b̂s − bs
ms

z2︸ ︷︷ ︸
ηs(z2)

+
m̂s

ms︸︷︷︸
ζs

vs
(3.21)

where ζm, ζs, ηm(x2) and ηs(z2) are the parametric uncertainties which affect the

models after inverse dynamics procedure. vs and vm are the new control inputs of

the new dynamic models.

To deal with the systems in (3.21), a standard sliding mode is designed. Its

control action can be written in the following form:

v = veq + vsmc (3.22)

where veq is the equivalent control law and vsmc is the discontinuous term.

As reported in [14], veq is the control action which is required to maintain the

system on the sliding surface. By definition, it is the unique solution of the algebraic

equation σ̇ = 0.

For a more “practical” interpretation, we can think to the equivalent control as the

exact controller which should be applied to the system in order to perform the desired

task. Since our process is affected by model mismatches, veq will also be a function

of such uncertainties (otherwise it would not be able to perform the task correctly).

From this consideration, it turns out that the true equivalent controller cannot be

directly applied as a control law, because it depends on unknown quantities.

Therefore, the best we can do is to design veq as if it was acting on the nominal

plant instead of the real one. Then, the true equivalent controller will be realized

by adding the discontinuous control term, so that we reach σ = 0.

For what concerns vsmc, it is responsible of compensating imperfect model knowl-

edge and it is structured similarly to equation (3.19). More formally, it can be

written as:

vsmc = −K sgnσ = −K σ

|σ|
(3.23)
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To find veq, vsmc and eventually u, the following design points need to be followed:

1. Choice of the sliding manifold: we need to assign the proper value of σ

such that it owns the properties we are interested in;

2. Equivalent control derivation: by applying the veq definition, we use the

value of σ̇ to compute the nominal equivalent control law;

3. Definition of the attraction region: now that we have completed the

computation of sliding mode control action, we need to check if the closed

- loop system is stable or not: this will give us insights on the values to be

assigned to K;

3.3.2 Sliding mode master device

Let’s start computing the control signal for the master device. First of all, we need

to assign a proper dynamic model to σ that fulfils our requirement. As we have done

for the impedance controller, the ideal behaviour we want to obtain is represented

by equation (3.6). Therefore, it seems logic to impose as sliding surface:

I = m̄mẍm + b̄mẋm + k̄mxm − fh + kff
d
e (3.24)

Doing so, if we are able to impose I = 0 ∀t > tf we are guaranteeing that the

system is behaving correctly. If we write equation (3.24) using the state - space

notation introduced in equation (3.20) we obtain:

I = m̄m ẋ2 + b̄mx2 + k̄mx1 − fh + kff
d
e (3.25)

Here, we can see why we cannot apply I as a sliding surface. By definition [19],

the sliding manifold must have an order which is less than the one of the system.

Since we are imposing a desired second order dynamics, the order of equation (3.25)

is equal to the order of the mechanical system. Thus, we cannot choose it as a

sliding surface due to its dependency from the master acceleration (boxed term).

To express σ as a function of the system’s state (σ(x)), we need to get rid of
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ẋ2. A possible strategy to do so is reported in [10] and it consists in choosing the

following sliding surface:

σ =
1

m̄m

∫ t

0

I(τ) dτ (3.26)

If we substitute expression (3.25) into equation (3.26), we obtain:

σ = ẋm +
b̄m
m̄m

xm +
k̄m
m̄m

∫ t

0

xm(τ) dτ +
1

m̄m

∫ t

0

(kff
d
e (τ)− fh(τ)) dτ

= x2 +
b̄m
m̄m

x1 +
b̄m
m̄m

∫ t

0

x1(τ) dτ +
1

m̄m

∫ t

0

(kff
d
e (τ)− fh(τ)) dτ (3.27)

Again, we have solved the problem associated to the acceleration term but we

haven’t expressed σ as a function of the state due to the boxed integral of x1. Before

continuing, we have to notice that the following statement holds:

Theorem 3.1. (Sliding mode enforcement) If σ = 0 ∀t > tf , then I = 0 and we are

correctly imposing our desired dynamics

Proof of theorem 3.1 is trivial if we look at equation (3.26) (
∫
I = 0 ⇒ I = 0).

Moreover, theorem 3.1 is only a sufficient condition, since the opposite assertion is

not true (I = 0 ; σ = 0).

Thanks to transformation (3.26), we have “fictitiously” reduced the sliding surface

order by adding a new state - space variable (
∫
x1). Thus, to express σ(x), it’s

necessary to expand the master state - space model, adding a new equation which

defines
∫
x1:

ẋ1 = x2

ẋ2 = x3

ẋ3 = − bm
mm

x3 +
1

mm

(fh + fm)

(3.28)

where the new state vector is x = [
∫
xm xm ẋm]> and the first equation represents

the additional integrator which relates the new state variable with the remaining

model. Substituting the new state - space formulation (3.28) inside the expression
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Figure 3.7: Representation of the sliding manifold in master device phase space
diagram

of σ (3.27), we obtain:

σ = x3 +
b̄m
m̄m

x2 +
k̄m
m̄m

x1 +
1

m̄m

∫ t

0

(kff
d
e (τ)− fh(τ)) dτ

= Gx+ Γ

(3.29)

where G =
[
k̄m
m̄m

b̄m
m̄m

1
]
is the row vector of sliding surface coefficients, while Γ =∫ t

0
(kff

d
e (τ) − fh(τ)) dτ contains all the external signals which affect σ. As we can

see, now σ can be expressed as a function of the system’s state. Moreover, it’s a

linear combination of x, which is a favourable condition because it allows an easy

representation of the manifold [76].

Since we have extended the state vector of master model, now we can no more

represent state evolutions using a phase plane diagram. Thus, we need to adopt a

phase space environment, in which the three coordinates stand for the three com-

ponents of vector x. If we assume no external forces acting on the system (Γ = 0),

σ = 0 can be represented as a plane in the master device phase space (Figure 3.7).

When the controlled system is in sliding mode, its trajectory lays on the plane,

moving according to the desired parameters that define it.

Now that we have our sliding surface, we can apply the equivalent control defi-
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nition and compute veq. First of all, we need σ̇:

σ̇ = ẋ3 +
b̄m
m̄m

ẋ2 +
k̄m
m̄m

ẋ1 +
1

m̄m

(kff
d
e − fh) (3.30)

Since we are applying a first order SMC, the relative degree between the sliding

surface and the controlled system is one (degree of σ = 2 and degree of modified

master device = 3). Therefore, σ̇ will have the same order of the initial mechanical

system, allowing to substitute the master model after dynamic inversion (equa-

tion (3.21)).

σ̇ = ηm(ẋm) + ζm vm +
b̄m
m̄m

ẋm +
k̄m
m̄m

xm +
1

m̄m

(kff
d
e − fh) (3.31)

where we have already replaced state vector items with their physical counterparts.

The boxed term represents the new control variable, that we need to make explicit

in order to compute the equivalent control law.

If we are in sliding mode, σ = 0. So, we must also have σ̇ = 0 to remain on the

sliding surface. This leads to the following equality:

ηm(ẋm) + ζmvm +
b̄m
m̄m

ẋm +
k̄m
m̄m

xm +
1

m̄m

(kff
d
e − fh) = 0

→ veqm = − 1

ζm

[
ηm(ẋm) +

b̄m
m̄m

ẋm +
k̄m
m̄m

xm +
1

m̄m

(kff
d
e − fh)

] (3.32)

where veqm is the equivalent control, i.e. the control signal that would be applied by

SMC once the sliding surface is reached. As we can see, it intercepts all the model

mismatches generated by non perfect dynamic cancellation, obtaining the desired

impedance model.

If we could apply veqm as it is written in equation (3.32), we wouldn’t need to

use SMC any more. Unfortunately, both ζm and ηm(ẋm) are unknown and unpre-

dictable, therefore equation (3.32) is not feasible. The best we can do is to choose

the equivalent control as if it were be applied to the nominal plant, neglecting all

terms which are not at our disposal:

veqm ≈ −
b̄m
m̄m

ẋm −
k̄m
m̄m

xm −
1

m̄m

(kff
d
e − fh) (3.33)
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If we compare equation (3.33) with the impedance controller expression (3.7),

we can notice that they are analogous. This is reasonable because, using a standard

linear controller, the best we can do to impose a given dynamics is represented

precisely by the impedance control.

3.3.3 Sliding mode slave device

Similarly to what we have done for the master device, also for the slave manipulator

we can follow the same approach highlighted in subsection 3.3.1. First of all, let’s

define the sliding surface based on the desired dynamics (3.10):

I = m̄s
¨̃xs + b̄s ˙̃xs + k̄sx̃s + fe (3.34)

Again, to eliminate the dependency from the acceleration term, use transforma-

tion (3.26) to write the feasible sliding surface:

σ = ˙̃xs +
b̄s
m̄s

x̃s +
k̄m
m̄m

∫ t

0

x̃s(τ) dτ +
1

m̄m

∫ t

0

fe(τ) dτ (3.35)

By extending the dynamic state - space model for the slave, it’s possible to rewrite

expression (3.35) as a linear combination of the tracking error vector e = z− kpxd.

ż1 = z2

ż2 = z3

ż3 = − bs
ms

z3 +
1

ms

(fs − fe)

(3.36)

σ = e3 +
b̄s
m̄s

e2 +
k̄s
m̄s

e1 +
1

m̄s

∫ t

0

fe(τ) dτ

= Fe+ Ψ

(3.37)

This time, the plane which describes σ = 0 doesn’t belong to the phase space of

the slave manipulator, but it can be represented in the tracking error phase space〈
˙̃xs, x̃s,

∫
x̃s
〉
.

For what concerns the equivalent control law, we can compute σ̇ and equate it



3.3 Sliding mode control 53

to zero in order to find veqs :

σ̇ = ηs(ẋs) + ζsvs − kpẍdm +
b̄s
m̄s

˙̃xs +
k̄s
m̄s

x̃s +
fe
m̄s

= 0

→ veqs = − 1

ζs

[
ηs(ẋs) +

b̄s
m̄s

˙̃xs +
k̄s
m̄s

x̃s +
fe
m̄s

− kpẍdm
] (3.38)

In the same way for the master device, we need to remove the unknown con-

tributes ζs and ηs(ẋs) in order to obtain a feasible control signal for the slave ma-

nipulator. Resulting veqs has the following form:

veqs ≈ −
b̄s
m̄s

˙̃xs −
k̄s
m̄s

x̃s −
fe
m̄s

+ kpẍ
d
m (3.39)

if we make ẍdm explicit by substituting master controlled dynamics (3.12), we finally

end up with the same expression of the ideal impedance controller (3.13).

3.3.4 Stability analysis

According to subsection 3.2.1, the last thing we have to examine is that the control

law:

vi = veqi −Ki sgnσi i = m, s (3.40)

generates closed - loop dynamics that are asymptotically stable. A common proce-

dure to check system stability in SMC [14, 10, 59] is to rely on Lyapunov theory. It

is based on the definition of an arbitrary energy storage function V (z) (Lyapunov

function), related to system’s state, which must have the following two properties:

1. V (z) must be positive definite:

V (z) ≥ 0 ∀z ∧ V (z) = 0⇔ z = 0

2. V̇ (z) must be negative definite:

V̇ (z) ≤ 0 ∀z ∧ V̇ (z) = 0⇔ z = 0

If conditions 1 and 2 are satisfied, equilibrium point z = 0 is globally asymptotically
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stable.

We already know that once the controlled system has reached the sliding mode,

it has an equilibrium point (x = 0 or e = 0) which is asymptotically stable. This

is a direct consequence of the desired dynamics choice and can be verified easily by

computing the poles of equations (3.6) and (3.10).

Instead, what we need to verify is the enforcement of a sliding mode for every

initial condition of our dynamic system. In other words, we need to prove that σ = 0

is a global attractor for the system.

A good Lyapunov function candidate is represented by the quadratic expression:

V (σ) =
1

2
σ2 (3.41)

Choosing V (σ) as in (3.41), condition 1 of the theorem is verified, while we need

to check the second one. To do so, let’s compute firstly V̇ (σ):

V̇ (σ) = σσ̇ (3.42)

now substitute the expression of σ̇ (3.31) and rewrite it as a function of σ and

system’s parameters. For simplicity, let’s consider only the master case (slave device

demonstration is analogous):

V̇ (σm) = σm

[
ηm(ẋm) + ζmvm +

b̄m
m̄m

ẋm +
k̄m
m̄m

xm +
1

m̄m

(kff
d
e − fh)

]
(3.43)

the last terms of (3.43) correspond to the nominal equivalent control of the master

device retrieved in (3.33), that can be substituted:

V̇ (σm) = σm [ηm(ẋm) + ζmvm − veqm ]

= σm [ηm(ẋm) + ζm (veqm −Km sgnσm)− veqm ]

= σm [ηm(ẋm) + (ζm − 1)veqm − ζmKm sgnσm]

(3.44)

Now, by imposing condition 2 to expression (3.44), we eventually find the fol-
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lowing inequality:

|σm| {[ηm(ẋm) + (ζm − 1)veqm ] sgnσ − ζmKm} < 0 (3.45)

where we have applied signum properties σ = |σ| sgnσ and |σ| = σ sgnσ. Since

sliding mode is usually introduced to deal with systems affected by uncertainty,

condition on Km which can be derived from (3.45) is not sufficiently strict to guar-

antee asymptotic stability despite disturbances. That’s why Utkin at al. [77, 14]

advise to impose a stronger condition on V̇ (σ), known as µ − reachability. It al-

lows us to ensure the sliding mode attraction region with an assignable degree of

robustness. Based on this new definition, theorem’s condition 2 is rewritten as:

V̇ (z) ≤ −µ|z| ∀z ∧ V̇ (z) = 0⇔ z = 0 (3.46)

where µ is a positive parameter which defines the degree of robustness. Higher is

its value, stricter becomes the inequality.

If we perform the same computations shown in (3.44) with the new defini-

tion (3.46), we obtain:

|σm| {[ηm(ẋm) + (ζm − 1)veqm ] sgnσ − ζmKm} < −µ|σm|

→ Km >
1

ζm
[µ+ ηm(ẋm) + (ζm − 1)veqm ]

(3.47)

From inequality (3.47), we can state the following important theorem:

Theorem 3.2. (Sliding mode stability) Let’s consider system (3.21) at which control

law (3.40) is applied. If the uncertainty affecting the system is bounded ( |ηm(ẋm)| ≤

ηmax
m , ζmin

m ≤ ζm ≤ ζmax
m , |veqm | ≤ vmax

m ), then we can choose a value of Km:

Km >
1

ζmin
m

[µ+ ηmax
m + (ζmax

m − 1)vmax
m ] (3.48)

which guarantees that the closed loop system is asymptotically stable for every initial

condition x.

The proof of this theorem is based on the observation that, if we choose Km
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Figure 3.8: Convergence of the expanded state trajectory onto the sliding plane

higher enough to overcome the maximum uncertainty affecting the system, Lyapunov

stability holds and we are ensuring the attractiveness of the sliding manifold.

It is important to notice that all hypothesis done to derive this statement are

reasonable. We need to know only the upper and lower bounds of the disturbances,

while condition on the equivalent control is usually verified thanks to the structure

of veq (linear controller with stable closed - loop poles generates a bounded control

signal). A typical example of sliding mode convergence can be seen in Figure 3.8,

where system’s trajectory (yellow line), after a finite transient, remains on the sliding

plane plotted in the expanded state phase space, until the origin (equilibrium) is

reached.

Observation 3.1. If condition (3.48) is not satisfied, the sliding mode is not nec-

essarily enforced in the controlled system, but the closed - loop state evolution may

be, however, asymptotically stable.

Theorem 3.2 guarantees the convergence of system trajectories onto the sliding

surface and, thanks to the properties of σ, it ultimately assures that the origin is

an asymptotically stable equilibrium. Nevertheless, observation 3.1 remarks that

Lyapunov theorem is only a sufficient condition and we can have closed - loop

trajectories which converges into the origin although no or partial sliding mode is
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Figure 3.9: Three examples of asymptotically stable control systems
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(a) control signal
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Figure 3.10: Control signal for a standard SMC controller. We can notice in the left
plot high frequency oscillation due to chattering

generated. To clarify this fact, an illustrative example is reported in Figure 3.9.

3.3.5 Sliding mode drawbacks

Until now, we have praised the positive properties of sliding mode control, both in

terms of disturbance rejection and enhanced system robustness. Unfortunately, this

favourable behaviour comes at the price of some undesired phenomena, which occurs

mainly when we reach the sliding mode operative condition.

Excessive control signal First of all, we have to notice that the total control

signal (3.40) is proportional to the parameter K associated to the SMC control

contribute. In the previous subsection, we derived an inequality which constrains

to choose a value of K sufficiently high in order to guarantee the sliding mode

to happen. If the uncertainty affecting the process is significant, the sliding gain

could become very large, overcoming the equivalent control signal and saturating

actuators.

The only way to overcome this problem is to acquire more information about

system’s dynamics, in order to reduce uncertainty and bring K boundary inside the

feasibility region.

Chattering Another, more subtle, phenomenon is intrinsic to the nature of SMC

and it’s called chattering. According to [78], it corresponds to undesired stationary
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Figure 3.11: Detail of system position and velocity trajectories when chattering on
the control signal occurs

oscillations, with finite frequency and amplitude, which affects the control signal as

well as the other system variables. Principal cause of chattering phenomena is the

presence of a discontinuity in SMC control action.

When we approach condition σ = 0, the discontinuous control action starts to

change sign each time we cross the sliding manifold. Ideally, this should happen at

infinite frequency, ensuring the permanence of the phase portrait onto the sliding

curve. However, for practical implementations, ideal switching is not achievable:

• Actuators and sensors have finite bandwidths and their unmodelled dynamics

becomes relevant when we require an infinitely fast switching;

• Control logic is usually implemented on a digital platform, which works with

a finite sample rate. Discretization of input and output signals limit the max-

imum switching frequency of our controller;

We can see the effect of discretization on standard SMC by looking at Figure 3.10.

In this case, we are using a simulation step of 4 ms, which constrains the maximum

switching frequency to be below 250 Hz. Once sliding mode is enforced, the signum

function starts to change sign at each iteration, making the control variable oscillate

between ±K at the maximum available frequency.

Chattering phenomenon is disruptive for mechanical mechanisms [72], because it

causes high wear of moving parts (actuators), and high heat losses in power circuits.

Moreover, it results in a poor tracking accuracy, as it can be noticed in Figure 3.11.
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Figure 3.12: Uncontrolled reaching phase can generate very different initial transient
response, although once sliding is enforced controlled system behaves as the desired
one

In section 3.4 and 3.5 some techniques will be presented in order to eliminate or,

at least, attenuate chattering phenomena in sliding mode control.

Uncontrolled reaching phase The last problem that affects standard sliding

mode is related to the transient phase required by the system before reaching sliding

mode condition. We know that the desired impedance dynamics is valid only during

the sliding phase, which is reached in finite time tf thanks to theorem 3.2. Until

that time, the control scheme has no authority on the system behaviour and the

only assertion we can make is that its trajectory is becoming closer to σ = 0.

Since we are designing a robust control law, we would be glad to enforce the de-

sired dynamic behaviour from the initial time t0. Doing so, we are able to guarantee

that the system is behaving in a controlled and predictable way during its entire

state evolution.

An example of how different can be the reaching dynamics from the desired one

is given in Figure 3.12. As we can see, after the initial mismatch, tracking of the

desired dynamics is excellent once sliding mode is reached.

With respect to the previous two caveats, this is easier to solve and a solution

will be detailed in section 3.7.
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3.4 SMC continuous approximations

In many practical applications, like robotic servomechanisms, it is necessary to at-

tenuate chattering in order to guarantee precise positioning and decreased wear

of reduction stages. To do so, the control signal imposed by the SMC should be

smoothed, while retaining all the desirable properties of disturbance rejection and

uncertainty insensitivity.

As said in subsection 3.3.5, the main source of chattering is the discontinuity of

signum function when the system state crosses the sliding manifold. As reported

in [72, 7], the most obvious and immediate way to overcome signum nonlinearity

consists in substituting it with a continuous function approximation s(σ). It should

mimic the behaviour of sgnσ except for a neighbour of the origin, where the two

extremities are blended to obtain a smooth transient.

To this end, most common choices are:

• Saturation function [10]:

s(σ) = sat
(σ
δ

)
(3.49)

• Sigmoid function [72]:

s(σ) = sigmδ σ =
σ

|σ|+ δ
(3.50)

where δ is a constant positive parameter which can be used to increase or decrease

the approximation degree of s(σ) with respect to the ideal signum. Higher is δ,

larger is the linearised region (worse approximation) and vice versa. It represents

also the inverse of the derivative of s(σ) calculated in the origin. An example

of equations (3.49) and (3.50) can be seen in Figure 3.13, for different values of

parameter δ.

The main advantage of this approach consists in its simplicity, since we have to

change only the discontinuous part of our controller. Moreover, it’s easy to prove

that, with δ → 0, s(σ)→ sgnσ and we recover standard sliding mode control. The
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Figure 3.13: Graphical representation of the two most common continuous approx-
imations for the signum function, plotted with various δ

additional parameter can be seen as a new tuning knob, useful to obtain a trade off

between low chattering response and acceptable control error.

Unfortunately, introduction of s(σ) causes the loss of the main properties and

theorems enunciated in section 3.3. In particular, it is not valid any more that the

controlled system reaches σ = 0 in finite time, loosing the robustness of standard

SMC. It can be proved [72] that we are able to remain in the vicinity of σ, without

actually converging to it. That is why we usually refer to these control systems as

quasi - sliding mode controllers.

In many applications, this lack of theoretical correctness is compensated by the

great improvement of control signal’s dynamics. Moreover, by choosing a value of δ

“sufficiently small”, convergence performance of approximated methods are compa-

rable to the ideal sliding mode. Typically, the sigmoid approximation is preferred,

because it is continuous also in its derivative and allows a smoother control signal

with respect to saturation. A visual comparison of sigmoid benefits can be observed

in Figure 3.14.

3.5 Higher order sliding mode control

When dealing with systems affected by chattering, continuous approximations do

not represent the unique solutions that allow us to overcome the problem. During

the last decades, several studies have been performed in order to generalize the main
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Figure 3.14: Chattering removal effect of quasi - sliding control techniques compared
to standard SMC
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concepts of standard SMC and realize a more complete theory on VSCS [47, 46, 5].

Ultimately, this research leads to the introduction of higher order sliding mode

controllers (Higher Order Sliding Mode Controller (HOSMC)). According to [47],

they keep the main advantages of standard SMC, removing the chattering effect

and providing even higher tracking accuracy.

Before starting with these new control techniques, a brief introduction on the

main symbols and definitions is required.

Definition 3.1. The sliding order ρ is the total number of continuous derivatives

of σ that cancel during sliding mode operative condition

σ = σ̇ = σ̈ = · · · = σ(ρ−1) = 0 (3.51)

Definition 3.2. The relative degree r of a Single Input Single Output (SISO) system

is the minimum order of the time derivative of σ in which the control signal v

explicitly appears

∀i ≥ r σ(i) = σ(i)(v) (3.52)

According to these definitions, standard SMC has a sliding order equal to one

(only σ = 0) and also its relative degree is equal to one (σ̇ is a function of the control

input v, see (3.30)).

Due to the property of order reduction, the sliding manifold must have a lower

dynamic order with respect to the system it is applied to. This can be translated in

a condition on ρ and r. Especially, the following inequality is verified:

ρ ≥ r (3.53)

For standard SMC, condition (3.53) is always valid, since ρ by definition cannot

be less than one. This is no more true when we have to control a system using a

sliding manifold with relative degree greater than one. For example, if we remove

the dependency on speed from equation (3.27), we need to derive σ twice before

v appears. In this case, we cannot design a first order sliding mode and we are

constrained to use a value of ρ ≥ 2.
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By sticking to our case (r = 1), higher order sliding modes can be realized by

imposing not only σ = 0, but also its derivatives up to ρ− 1. Therefore, ρ ≥ r + 1

and the new control variable for the system is no more v but v(ρ−1). The advantage

is that the discontinuity now is confined to the time derivative of v, while the true

control input has continuous derivatives up to order ρ − r ≥ 1. This smoothness

condition proves that HOSMC attenuates chattering, guaranteeing at the same time

fulfilment of the sliding requirements on σ (disturbance rejection, etc.).

Higher order methods are a formal extension of standard first order sliding mode,

therefore they inherit all the theorems we have derived in section 3.3. This represents

their superiority with respect to continuous approximation, which was a “practical”

solution based on empirical reasonings. Enhanced control capabilities come at the

price of an increased complexity in the control law definition and a greater number

of information on the system state.

3.5.1 Second order SMC

Among all the various higher order control techniques, the most simple to imple-

ment are represented by Second Order Sliding Mode Controller (SOSMC). They

can be seen as a good trade off between computational complexity in control law

derivation and reasonable chattering attenuation, thanks to the continuity of v.

Condition (3.53) specializes in this case, becoming the equality ρ = r + 1. Thus, in

order to obtain a second order sliding movement on σ, we need to choose a value of

ρ equals to 2, which ultimately amounts to impose σ = σ̇ = 0.

Considering the generalised uncertain SISO system (valid both for master and

slave models)

ẋ1 = x2

ẋ2 = η(x) + ζ(x)v
(3.54)

design procedure for SOSMC pursues these main steps:

1. Definition of a new auxiliary system associated to the original one (3.54).

It is constituted by a chain of integrators and the new state variables are the

sliding surface σ and its derivative. If we define vector z = [σ σ̇]> and w = v̇,
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the auxiliary system can be written as:

ż1 = z2

ż2 = H(z) + p(z)w
(3.55)

where H(z) and d(z) can be easily derived by computing σ̈ and collecting all

the terms associated to v̇;

2. Using standard control techniques, find a value for the new control signal w

that stabilizes the equilibrium point [0 0]>. If we are able to do so, we are

guaranteeing a second order sliding enforcement for our initial SISO system;

3. Based on the definition of w, apply the following control input to the original

plant:

v =

∫
w dt (3.56)

Observation 3.2. To solve point 2 of SOSMC design steps, we cannot use standard

SMC procedures. This is due to the fact that state z is not fully known, because σ̇

generally depends on uncertain quantities. Therefore, difficulty of SOSMC lays in

finding a control law w able to steer state z to zero with little or no knowledge of σ̇.

Based on observation 3.2, different strategies have been elaborated to tackle

the design of an effective second order sliding mode algorithm. Here, we limit our

dissertation to two of the most relevant implementations of SOSMC:

Suboptimal controller [5, 61] In order to guarantee convergence of the auxiliary

system state to the origin, we need a switching logic both on σ and on σ̇. Moreover,

to obtain an asymptotically stable system, it is necessary that the distance between

the equilibrium point (0, 0) and the system state reduces at each crossing of σ =

σ̇ = 0. According to [61], this condition can be verified by imposing the following

inequality (extended µ - reachability):

σ̈σ ≤ −ξ(t)|σ| ξ(t) ≥ ξ1 > 0 (3.57)

Without entering too much into details, we can simply say that inequality (3.57)
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generates a sequence of singular points [z1 z2] = [σMi 0] i = 1, 2, . . . , that converge

towards zero if ξ(t) satisfies [5]: ξ(t) ≤ ξ∗(t) (σ − 1
2
σMi) > 0

ξ(t) ≥ αξ∗(t) otherwise

where ξ∗(t) ≥ ξ1 > 0, α ≥ 1 and σMi is the closer previous singular point.

As usual, if we can guarantee boundedness of uncertainty affecting the auxiliary

system (3.55), at least in a neighbour of the origin:

|H(z)| ≤ H0

0 ≤ P1 ≤ p(z) ≤ P2

(3.58)

it can be proved that the system converges asymptotically towards σ = σ̇ = 0 by

applying algorithm 1, with Umax that satisfies:

Umax > max

(
H0

α∗P1

,
4H0

3P1 − α∗P2

)

Algorithm 1 Suboptimal control algorithm

Require: α∗ ∈ (0, 1) ∩
(

0, 3P1

P2

)
1: procedure ssosmc(z1(t))
2: zmax ← z1(0) . initialization
3: for t > 0 do . iterate at each sample
4: if

[
z1(t)− 1

2
zmax

]
[zmax − z1(t)] > 0 then . switching logic

5: α← α∗

6: else
7: α← 1
8: end if
9: if z1(t) is an extremal point then . ż1(t) = 0

10: zmax ← z1(t) . update switching threshold
11: end if
12: w(t)← −αUmax sgn

(
z1(t)− 1

2
zmax

)
. control law

13: end for
14: end procedure

As we can notice, the suboptimal controller does not require the full knowledge of

σ̇, which makes it a good candidate for our control problem. Unfortunately, we need
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Figure 3.15: Numerical differentiator implemented in SSOSMC to find the extremal
points of σ

to compute σMi, which are the extremal points of σ. Therefore, we need to find when

the derivative of sliding surface changes its sign in order to switch properly. Since

σ̇ is unknown, a possible solution is to rely on numerical differentiation techniques

and zero crossing detectors according to the structure shown in Figure 3.15. To

differentiate σ various strategies can be followed. Here, taking inspiration from [17],

a robust differentiation technique which goes under the name of Levant differentiator

has been adopted. A detailed analysis on its properties and a comparison with other

differentiation techniques can be found in Appendix A. A visual representation of

SSOSMC convergence is given in Figure 3.16a

Super twisting controller [47, 65] This class of higher order sliding mode al-

gorithms represent an evolution of the early studies done by Levant [47], which were

intended to define a contraction criterion independent from the knowledge of σ̇. A

first attempt to solve (3.57), called twisting controller, has been proposed in [49],

but it still requires the knowledge of σ̇ sign to perform the switching logic. Indeed,

the contraction criterion can be written as [61]: ξ(t) ≤ ξ∗(t) σσ̇ < 0

ξ(t) ≥ αξ∗(t) σσ̇ > 0

where ξ∗(t) ≥ ξ1 > 0, α ≥ 1.

It seems that σ̇ is fundamental for the evaluation of second order sliding modes,

but this is not true. In fact, Levant proposed an evolution of the twisting algorithm,

called Super Twisting Algorithm (STA), which requires only the knowledge of σ. Its
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Bm Mm Km

real parameters 2 1 0
estimated parameters 2.6 1.2 0
desired parameters 4 1 4

Table 3.1: Master device parameters used for the simulation comparison of chatter-
ing - avoidance methods

control law has the following structure:

v = −k1

√
|z1| sgn z1 − k2

∫
sgn z1 (3.59)

where k1 and k2 are constant tunable parameters. Also in this case it’s possible

to derive uncertainty boundaries to guarantee finite time convergence of STA to

the origin. However, this leads generally to an overestimation of k1 and k2 which

ultimately turn out in a degradation of control performance. That is why it is

better to tune these kinds of algorithms based on computer - numerical simulations.

Trajectories generated by STA are similar to the ones of twisting algorithm, but

smoothed thanks to the contribution of
√
|z1| (Figure 3.16b).

3.6 Simulation comparison

Now that we have presented all the main methodologies to overcome chattering

problems, we need to compare them in order to find the one which offers the best

compromise between tracking precision and control moderation. To do so, we use

MATLAB - Simulink R© environment to realize the master model (3.5) and standard

SMC control law (3.40). To simulate the uncertainty in estimated parameters and

disturbances acting on the system, the damping coefficient Bm is overestimated by

30%, while device mass is overestimated by 20% (Table 3.1). Although they are still

in the stability region for standard impedance controller, this level of uncertainty

severely degrade tracking performance of the desired impedance.

Simulation has been run for 20 s and a step of 5 N in the human force has been

given at 10 s. In this way we avoid transient effects due to the reaching phase and
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Figure 3.16: Auxiliary system trajectories for two different higher order sliding
mode algorithms in the σ, σ̇ plane. Changing contraction criteria generate peculiar
evolutions
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Sigmoid SMC STA SSOSMC

RMS (m) 1.3534× 10−4 6.4577× 10−5 4.5434× 10−4

Table 3.2: RMS errors for the step tracking performance of the tested sliding mode
control algorithm

we can compare all the algorithms when they are already in sliding mode condition.

Sampling time is equal to 4 ms. Ideally, the control action of SMC should be strong

enough to keep system along the desired trajectory throughout the response. In-

stead, real sliding mode shows little discrepancies at the beginning and the end of

the transient.

The position response profiles for the three tested algorithm is visible in Fig-

ure 3.17a, together with the ideal transient generated using a system tuned with the

desired parameters. Since the four curves are not clearly distinguishable, an error

evaluation is executed with respect to the desired dynamic response (Figure 3.17b).

From these plots we can already draw some interesting conclusions:

• All chattering - avoidance methods correctly reject model uncertainties, track-

ing almost perfectly the reference dynamics;

• From the error evaluation chart, we can underline that the suboptimal control

algorithm differs most from the ideal profile with respect to the sigmoid and

super twisting ones;

• Settling time required for sigmoid SMC and suboptimal algorithm is longer

(≈3 s) compared to the super twisting one (≈2 s);

For a more quantitative analysis, in Table 3.2 the values of RMS errors for all

the tested algorithms are reported. As we have already noticed in our preliminary

considerations, best performance is achieved by STA, with a tracking accuracy of

99.9935%. Up to now we have seen only one side of the coin. To verify that our

modifications to standard SMC are effective, we need to check also the control effort

required and the deviation with respect to the sliding surface σ = 0. These plots

are visible, respectively, in Figure 3.18a and 3.18b.
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Figure 3.17: Comparison between the various type of chattering - avoidance methods
while performing an impedance tracking of a system affected by uncertainty. Top:
position, bottom: error
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Figure 3.18: Comparison between the various type of chattering - avoidance methods
while performing an impedance tracking of a system affected by uncertainty - control
force and sliding variable
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Figure 3.19: Detail of control effort for the three tested algorithms after transient
phase

Sigmoid SMC STA SSOSMC

standard deviation (N) 4.7595× 10−5 0.0151 0.0282

Table 3.3: Variability of control effort after transient phase

At first glance, we notice that all the methods strongly attenuate chattering

with respect to standard SMC (Figure 3.10). Nevertheless, there are some residual

ripples in the suboptimal algorithm, which are due to numerical differentiation of the

sliding surface and strong discontinuity in the auxiliary control action w(t). These

oscillations around sliding manifold are totally absent for sigmoid approximation,

while STA places in between these two cases. Chattering effect can be evaluated

more clearly by looking at the control effort after the transient period (Figure 3.19).

Standard deviation for the three signals is reported in Table 3.3.

Another important aspect that is worth remarking is the oscillation amplitude

irregularity which affects the suboptimal algorithm, with bad sliding mode enforce-

ment. On the contrary, STA, while having a discrete amount of residual ripples

(Table 3.3), shows a much faster convergence towards σ = 0. From Figure 3.18b

we can appreciate the quickness of super twisting to converge to zero, compared to

both sigmoid and suboptimal.
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This agrees with our theoretical results. Indeed, sigmoid guarantees only error

boundedness, therefore it allows sliding detachment for longer periods. Different is

the case of suboptimal algorithm, since its reaction time is as fast as STA but it

experiences a greater error and, consequently, higher oscillations.

Eventually, the best chattering attenuation method is STA, which represents a

good compromise between long settling times (sigmoid approximation) and too large

dynamic error (suboptimal algorithm).

3.7 Integral sliding mode

The last obstacle we need to tackle is the presence of an uncontrolled reaching

phase during the initial transient of standard SMC. This problem is well known in

literature [30, 17, 79] and it is usually tackled through an adjustment of SMC which

goes under the name of Integral Sliding Mode Control (ISMC).

The main feature of this new control technique is the enforcement of sliding mode

since the initial time instant t0. Therefore, we need that condition σ = 0 is verified

throughout our control period, independently from the initial state of our system

x(0). A standard procedure to perform this is to consider a new modified sliding

variable, called integral sliding surface Σ(x(t),Γ(t)), which is based on the following

definition:

Σ(x(t),Γ(t)) = σ(x(t),Γ(t))− λ(t) (3.60)

where σ(x(t),Γ(t)) is the standard sliding surface retrieved from equation (3.29),

while λ(t) is a suitable reaching function which will be used to impose sliding mode

since t = t0. To compute its value, we can set the time derivative of Σ(x(t),Γ) equal

to zero, considering the system as it is sliding on the new integral manifold [79]:

Σ̇(x(t),Γ(t)) = 0

σ̇(x(t),Γ(t))− λ̇(t) = 0

∂σ

∂x
ẋ+

∂σ

∂Γ
Γ̇ = λ̇(t)

(3.61)
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if we integrate both sides starting from initial condition σ(t0), we finally obtain:

λ(t) =

∫ t

t0

(
∂σ

∂x
ẋ(τ) +

∂σ

∂Γ
Γ̇(τ)

)
dτ + σ(t0) (3.62)

Since Σ(t0) = σ(t0)−σ(t0) = 0, if we choose it as sliding surface, we are starting

directly in sliding mode condition. Moreover, we inherit the convergence properties

of standard SMC, because the control law is unchanged as well as uncertainties (the-

orem 3.2 hypotheses are still verified, we just need to adapt the Lyapunov function

to the new Σ).

By putting everything together, we come up with a sliding mode controller which

is able to totally eliminate reaching phase. Moreover, in our case, the integral sliding

surface can be further simplified.

Theorem 3.3. (Integral sliding mode) If we choose the equivalent control law veq

as the nominal solution of the equation σ̇(x(t),Γ(t)) = 0, the integral sliding surface

formulation becomes:

Σ(x(t),Γ(t)) = σ(x(t),Γ(t))− σ(x(t0),Γ(t0)) (3.63)

For master device, hypothesis is verified by choosing veq according to equation (3.33),

while for the slave device (3.39) can be selected.

Proof. First of all, let’s write the generic device dynamic model, expressed in its

vectorial form:

ẋ = f(x) + gv (3.64)

where f(x) = [x2 x3 η(x)]> and g = [0 0 ζ]>.

Then, we need to substitute equation (3.64) into the reaching function for-

mula (3.62):

λ(t) =

∫ t

t0

(
∂σ

∂x
(f(x) + gv) +

∂σ

∂Γ
Γ̇(τ)

)
dτ + σ(t0) (3.65)

Now, we can apply to v the standard SMC law (3.40), supposing that perfect

disturbance rejection (i.e. sliding mode condition) is achieved by vsmc. This as-
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sumption is verified because, using (3.60), we are laying on the sliding surface since

the initial time instant t0. If sliding mode is enforced, we are left with the equations

of a double integrator generated by the ideal inverse dynamics:

λ(t) =

∫ t

t0

(
∂σ

∂x
(f̄(x) + ḡveq) +

∂σ

∂Γ
Γ̇(τ)

)
dτ + σ(t0) (3.66)

where f̄(x) = [x2 x3 0]> and ḡ = [0 0 1]>. If we now substitute σ = Gx + Γ

(Equation (3.29)), we can compute the partial derivatives, obtaining:

λ(t) =

∫ t

t0

(
G(f̄(x) + ḡveq) + Γ̇(τ)

)
dτ + σ(t0) (3.67)

To conclude the proof, it is sufficient to apply our hypothesis to compute veq and

substitute its value into equation (3.67):

σ̇ = 0

Gẋ+ Γ̇ = 0

G(f̄(x) + ḡveq) + Γ̇ = 0

veq =
−Gf̄(x)− Γ̇

Gḡ

(3.68)

λ(t) =

∫ t

t0

(
G

(
f̄(x) + ḡ

−Gf̄(x)− Γ̇

Gḡ

)
+ Γ̇

)
dτ + σ(t0) = σ(t0)

Thanks to theorem 3.3, in order to apply ISMC to our set-up, it is sufficient to

translate the sliding manifold σ by a constant quantity related to the initial condition

x(t0) of the controlled system.

Since σ(t0) can be a-priori unknown, its value cannot be hard coded in the

control algorithm. To overcome this problem, the initial value of σ can be measured

and memorized. Then, in order to obtain Σ, it can be subtracted from the sliding

variable and used to apply both standard SMC and higher order algorithms.

To verify all these properties of ISMC, a simulation comparison has been per-

formed, with the same set-up used for the chattering - avoidance comparison. In
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Figure 3.20: Transient response of simplified master device with initial position
x =1 m, with and without ISMC

this case, we adopt standard SMC to control the system with given initial condition

x(0) = [1 0]>, obtaining a clear reaching phase before sliding mode is engaged (Fig-

ure 3.21a). Then, the integral sliding surface control logic is implemented, removing

the offset from σ. As it can be seen at Figures 3.20 and 3.21a, this time the reaching

phase is totally removed and the ideal dynamics is tracked from the initial time

instant despite x(0). To clearly visualize the translation of the sliding manifold,

the same trajectories have been plotted in the phase space in Figure 3.21b. As it

can be noticed, convergence point of the new trajectory is different from the one

obtained with standard σ. Indeed, they share the same physical coordinates x and

ẋ, while the one used for state expansion,
∫
x, is different. This quantity represents

a “fictitious” state, that has been added to the system in order to apply SMC the-

ory. Therefore, its value is not related with the other two physical quantities and

the system evolution, in both cases, converges towards the correct equilibrium as in

Figure 3.21a.
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Figure 3.21: Phase portraits of standard SMC and ISMC. As we can notice, reaching
phase is absent for the second one
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3.8 Sliding mode MPC

Up to now, the control objective for our master and slave devices has been simply

represented by tracking an imposed dynamic profile. This can be accomplished using

an impedance control law of the type we have introduced in the earlier sections. With

this choice, we are applying a linear relationship between the control signal veq and

the measured positions and speeds.

Sometimes, however, tracking a desired impedance profile is not the only re-

quirement which we would like to impose on our system. Typical examples are

represented by moderation of control effort, upper and lower saturation of actua-

tors, etc. Moreover, find a closed form solution of Σ̇ = 0 could be not trivial if we

are dealing with multi - DOFs and redundant manipulators (see chapter 5).

These requirements and situations cannot be fulfilled by the standard linear

impedance control, calling for a more advanced control strategy. To this aim, Model

Predictive Control (MPC) has been introduced. This family of algorithms allow to

reformulate the control problem as an optimization one, where different goals can

be considered.

If we choose MPC as a control principle to design veq, while maintaining the

same structure proposed for sliding mode controller in order to reject uncertainties

(equation (3.40)), the final scheme takes the name of Sliding-mode Model Predic-

tive Control SMPC [66, 39, 18]. Doing so we can exploit the advantages of both

techniques, since MPC is very versatile but it requires a good model to be applied,

while SMC can robustly guarantee the permanence of the system evolution onto the

sliding surface but without additional constraints.

In order to design a MPC controller, we need to define a cost function J that

will be minimized and the finite horizon k for which to compute the future control

sequence. Since the optimal veq was directly calculated by imposing Σ̇ = σ̇ = 0 in

nominal conditions, it seems logical to choose J = σ̇ in order to obtain the best

equivalent control with respect to optimization constraints. Finally, k has been

chosen equal to 1 due to the following two remarks:

• Computational power of the experimental set-up is limited and minimization
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+

+

Figure 3.22: SMPC block diagram, where equivalent control information is fed to
the SMC in order to avoid constraint violation

procedure on a larger time window could require more than the available cycle

time to be performed;

• Although the major uncertainties have been rejected by SMC, the prediction of

sliding surface Σ(t+k|t) proposed in section 5.6 has revealed poor experimental

accuracy;

min
v

∣∣∣∣∣∣∣∣v +
b̄

m̄
x3 +

k̄

m̄
x2 +

1

m̄
(kff

d
e − fh)

∣∣∣∣∣∣∣∣2
Q

s.t. Alow ≤ Av ≤ Ahigh,

vlow ≤ v + vsmc ≤ vhigh

(3.69)

where Q > 0 is a weight scalar. Written in this form, optimisation (3.69) repre-

sents a quadratic programming problem, which can be easily solved via open source

algorithms, like qpOASES [20].

It is worth noting that if no constraint is active, the optimum solution of (3.69)

coincides with the standard impedance control law veq. When constraints activate,

MPC imposes an equivalent control law that is different from the theoretical one.

This mismatch is minimized by the cost function structure, which however becomes

different from zero. If SMPC is simply realized by superimposing the sliding mode

action with the new control signal, the mismatch caused by constraint activation is

seen as a sliding surface detachment for SMC. Without other information, this state

movement is interpreted as an additional disturbance acting on the system, which

the controller will try to compensate in order to bring back σ to zero. By doing

so, the constraint imposed by MPC is violated, making one of the most appealing
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Figure 3.23: Improvement of adaptive reaching function with respect to the fixed
nominal one - sliding variable

features of this control class totally useless.

To solve this problem, the scheme modification proposed in Figure 3.22 is adopted

[39]. Equivalent control applied by MPC is not always equal to the optimal one,

therefore we need to communicate its variation also to the sliding mode controller.

Doing so, it will be able to distinguish sliding surface drifts caused by actual dis-

turbances or internal control strategies. More precisely, if veq 6= vopt, theorem 3.3 is

not valid any more. Therefore, to properly design an integral sliding surface that

will not reject the new veq, it is necessary to solve the reaching function:

λ(t) =

∫ t

t0

(
G(f̄(x) + ḡveq) + Γ̇(τ)

)
dτ + σ(t0) (3.70)

with the equivalent control veq coming directly from MPC minimization procedure.

This choice of λ(t) converges to the already analysed case when no constraint is

active, while adapting its value when the MPC controller behaves differently from

the standard impedance one.

To verify these statements, a simulation has been performed, with a set-up similar

to that of subsection 3.6. This time, a model predictive controller is in charge of
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giving the equivalent control and when, at 10 s, a step change in the human force

is given, veq is saturated using a proper constraint. In Figure 3.23 it is possible

to observe the response of standard “fixed” ISMC and adaptive one with reaching

function (3.70). It is clearly visible that mismatch between theoretical and applied

equivalent control causes a drift in σ, which is compensated by SMC violating the

constraint. Instead, with the correct expression of λ(t), this drift is no more present

since SMC is aware that the change in veq is due to a constraint activation in MPC.

If λ(t) is changed on-line according to the current veq, resultant sliding surface

applied to the system does not represent the desired impedance relationship any

more. This is reasonable because, due to limitations in the control action, it is not

possible to reject all the uncertainty and tracking performance worsen consequently.

This effect is visible in Figure 3.24b, where the position response of adaptive ISMC

is compared to the standard one. When the control signal exceeds [−1,1] m s−2, the

modified SMPC saturates its action, guaranteeing constraints fulfilment. Instead, if

λ(t) is kept fixed, constraint is treated as a disturbance and rejected, violating the

maximum imposed acceleration (Figure 3.24a).
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Figure 3.24: Improvement of adaptive reaching function with respect to the fixed
nominal one. Top: control action, bottom: position response



Chapter 4

Global scheme analysis

The goal of this chapter is to move the analysis from the single master/slave device to

the entire teleoperation scheme. To do so, it is necessary to introduce some elements

of network theory, which allow a correct description of teleoperation transparency

and stability properties. Then, some matrix descriptions of the overall scheme are

introduced and the most useful ones selected. Using them, a systematic stability

check is performed, based on different criteria. Particular relevance has been given

to the Llewellyn’s stability criterion, from which the conditions for network stability

have been retrieved. Next, a transparency analysis has been performed and its

trade - off with stability has been assessed. To conclude, previous considerations

have been verified in simulation using a 1 DOF master - 1 DOF slave teleoperation

system and a coupled control logic has been implemented. The criterion chosen

is the maximisation of stability when slave is in contact with the environment,

while transparency is maximised when it moves freely. To change teleoperation

behaviour, network passivity is assessed in real-time. The two proposed strategies

used to realize the impedance switching have been called continuous adaptation and

two - state adaptation.

4.1 Teleoperation matrices representations

In order to shift the analysis from the single architecture element to the network,

it is necessary to introduce a new formalism to model the bilateral teleoperation
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system, which will be useful in the following sections. First of all, let us consider the

models introduced in chapter 2 for the master and slave devices, as well as the oper-

ator and environment representations. For simplicity, let us focus on the single DOF

components; doing so, the complexity of the network is contained. Furthermore, the

extension to more difficult cases can be treated straightforwardly by considering de-

coupled coordinates dynamics in the operational space (superimposition of multiple

1 DOF networks).

A generic mechanical system can be represented as a combination of multi -

poles, which exchange energy at their ports through conjugate variables. These two

functions of time are usually identified with the name of effort and flow and their

product represents the amount of power that is given/taken by the multi - pole

to the rest of the network it is connected to. This descriptive method goes under

the name of equivalent modelling and it is useful to analyse the energy flows in

distributed systems.

In the case of interest, the effort variable is represented by the resultant of the

forces exerted on the mechanic device, while the flow variable (describing the motion

of the system) is the velocity. The mathematical relationship between effort and flow

is called impedance. It defines the behaviour of the device when a force or a velocity

acts on it. In chapter 2, impedance values for the principal teleoperation components

have been already computed:

Zh =
F des
h − Fh
Vm

= mhs+ bh +
kh
s

Ze =
Fe
Ve

= be +
ke
s

Zs =
Fs − Fe
Vs

= mss+ bs

Zm =
Fh + Fm
Vm

= mms+ bm

(4.1)

where Zh is the operator arm impedance relation, Ze is the simplified environmental

contact model and Zs, Zm are the mechanical models, respectively, for the master

and slave devices. According to the definition of multi - poles and equivalent model

given before, it is possible to represent the network generated by these components as
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Figure 4.1: Network representation for a generic bilateral teleoperation scheme

depicted in Figure 4.1. The principal source of energy for the system is represented

by the operator, through the input F des
h . However, the force he/she desires to

impose to the haptic interface is filtered by the arm impedance, represented by

Zh. Therefore, the force effectively applied on the teleoperation network is equal to

Fh. After passing through the master - slave path, the energetic flow reaches the

environment, which is represented by Ze. The force exerted on it (Fe) defines the

slave speed Vs = Ve.

Together with this energetic flow, another one exists in the opposite direction,

which reflects the energy from the environment to the human arm (bilateral teleop-

eration). Consequently, the aggregated system composed by master and slave de-

vices, together with the communication channel, constitutes a 2 - port network [64],

which interfaces the operator to the environment and vice versa (central block in

Figure 4.1). Sharing concepts from circuit theory, the mathematical model of the

teleoperation block can be described in the frequency domain using a 2× 2 matrix,

which relates the effort and flows at each port. According to the chosen couples of

conjugate variables, this matrix can take 6 different formulations. Among them, two

will be the most relevant for the following studies:

• Impedance matrix Z: Fh
Fe

 =

Z11 Z12

Z21 Z22

 Vh

−Ve

 (4.2)

• Hybrid matrix H :  Fh
−Ve

 =

H11 H12

H21 H22

Vh
Fe

 (4.3)
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The first representation has the advantage of describing the interaction be-

tween master and slave ports using homogeneous parameters (all the terms are

impedances). However, the off - diagonal elements, which define the cross corre-

lation between the two ports, have not immediate interpretation. If the reader is

interested in their expressions, a full description of the teleoperation system using

the impedance matrix can be found in [63].

According to [50], hybrid representation is the favourite description of bilat-

eral teleoperation systems. Although H11, H12, H21 and H22 have different unit of

measures, they all have a clear physical meaning. Indeed, their expressions can be

straightforwardly derived from the definitions of master and slave impedances.

Observation 4.1. If the local controllers developed in chapter 3 work correctly, it

is reasonable to assume that the impedance relationships that describe master and

slave devices have the following form:

m̄mẍm + b̄mẋm + k̄mxm = fh − kffde (4.4)

m̄s
¨̃xs + b̄s ˙̃xs + k̄sx̃s = −fe (4.5)

where m̄m, b̄m, k̄m, m̄s, b̄s and k̄s are design parameters.

If this observation holds, the terms of matrix H are:

H11 =
Fh
Vh

∣∣∣∣
Fe=0

= sm̄m + b̄m +
k̄m
s

(4.6)

H12 =
Fh
Fe

∣∣∣∣
Vh=0

= kfe
−ds (4.7)

H21 =
−Ve
Vh

∣∣∣∣
Fe=0

= −kpe−ds (4.8)

H22 =
−Ve
Fe

∣∣∣∣
Vh=0

=
s

s2m̄s + sb̄s + k̄s
(4.9)

where the values for Fh, Vh, Fe and Ve have been derived from the Laplace domain

transformation of (4.4) and (4.5). Expressions (4.6) and (4.9) represent, respec-

tively, the master impedance and the slave admittance, while the off - diagonal
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adimensional terms (4.7) and (4.8) identify the force and position scaling of the

teleoperation system. The hybrid representation is convenient because it confines

the communication channel description on H12 and H21, without modifying the di-

agonal terms related to master and slave sides.

4.2 Stability analysis

The first property that the bilateral teleoperation scheme must satisfy is stability.

According to [16, 10], a 2 - port network is said to be absolutely stable if it is stable

for every possible couple of passive dipoles connected to its extremities. A dipole is

said to be passive if and only if [32]:

∫ t

0

f(τ)v(τ) dτ + E(0) ≥ 0 (4.10)

where f(t) and v(t) are the conjugate variables acting on the dipole and E(0) is the

energy initially stored in the dipole. If in (4.10) the inequality is replaced by an

equality, the element is said to be lossless.

Network passivity is a more tight requirement with respect to absolute stability.

Indeed, it can be proved that passivity implies absolute stability, but not vice versa.

A network which is not absolutely stable can be potentially unstable. This means

that there exists passive termination dipoles which destabilize the network.

Equation (4.10) defines the energy balance of a passive dipole, which cannot be

negative. The 1 - port element that describes the environment (independently on

how complex its representation is) cannot generate energy, therefore it can be consid-

ered as a passive component. Also the operator’s arm is described as an impedance

relationship, inheriting passivity. Moreover, there are evidences that “humans re-

main stable when interacting with passive systems” [83]. This is particularly true if

the teleoperation signals interact with the haptic interface at frequencies which are

high compared to the voluntary motion bandwidth.

That is why it will be sufficient to prove the absolute stability of the 2 - port

master/slave network to guarantee the overall bilateral teleoperation system stabil-
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ity, independently of the possible environments or operators that interact with it.

To do so, several criteria are available in literature, which can be applied to any of

the four matrix representations:

• Raisbeck’s passivity criterion [36]: the 2 - port network described in (4.3)

is passive if and only if:

1. All H terms have no poles in the Right - Half Plane (RHP)

2. Each pole of H which lays on the imaginary axis is simple and its resid-

ual fulfil the following inequalities (Rij is the residual of Hij, R∗ij is the

complex conjugate of Rij):

◦ R11 ≥ 0

◦ R22 ≥ 0

◦ R11R22 −R12R21 ≥ 0 with R21 = R∗12

3. All H terms satisfy ∀ω:

ReH11 ReH22 − (ReH12 + ReH21)2 − (ImH12 − ImH21)2 ≥ 0 (4.11)

• Llewellyn’s absolute stability criterion [33, 10]: the 2 - port network

described in (4.3) is absolutely stable if and only if:

1. H11 and H22 have no poles in the RHP

2. Each pole of H11 and H22 which lays on the imaginary axis is simple and

its residual is real and positive

3. All H terms satisfy ∀ω:

◦ ReH11 ≥ 0

◦ ReH22 ≥ 0

◦ 2 ReH11 ReH22 − ReH12H21 − |ReH22H11| ≥ 0 (4.12)

• Scattering approach [50]: it is based on the definition of incident and re-

flected waves, that are a linear combination of the conjugate variables. These
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waves are related by the scattering operator S:

f(t)− v(t) = S(f(t) + v(t))

Using the frequency domain approach as for the hybrid and impedance matri-

ces, it is possible to define the scattering matrix as a function of H [50]:

S =

1 0

0 −1

 (H − I)(H + I)−1 (4.13)

Once S has been derived, the 2 - port network associated to it is passive if

and only if ||S||∞ ≤ 1

Out of these three theorems, the first and the last ones assess the network passivity,

while the second one defines the conditions for absolute stability. Since passivity

is a more conservative property with respect to absolute stability, the Llewellyn’s

criterion has been adopted to find the values ofH that guarantee network stability.

Doing so, a larger parameter set should be found with respect to the passivity

criteria, that are more stringent.

4.2.1 Llewellyn’s analysis

By substituting (4.6, 4.7, 4.8, 4.9) into Llewellyn’s absolute stability criterion, it

is possible to find the value of matrix H parameters that guarantee teleoperation

network absolute stability:

1. H11 has a pole in zero, therefore it has no RHP poles. H22 poles are defined

as the solutions of the second order equation s2m̄s + sb̄s + k̄s = 0. Since all

slave impedance parameters are positive, by applying Descartes’ sign rule it is

possible to conclude that all poles of H22 have negative real part;

2. Poles of H22 do not lay on the imaginary axis, while H11 pole (which is located

in zero) is simple and its residual is given by:

R11 = lim
s→0

[sH11] = k̄m k̄m ∈ R+
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In order to verify the conditions imposed by the third point of Llewellyn’s crite-

rion, it is necessary to find the frequency response of the hybrid matrix H , which

is simply obtained by substituting s with jω:

H(jω) =

b̄m + j

(
m̄mω −

k̄m
ω

)
kfe

−jωd

−kpe−jωd
jω

−m̄sω2 + jωb̄s + k̄s

 (4.14)

◦ ReH11 = b̄m ≥ 0 ∀ω

◦ ReH22 =
ω2b̄s

(k̄s − m̄sω2)2 + ω2b̄2
s

≥ 0 ∀ω

These two properties are always verified thanks to the positiveness and realness of

the master and slave impedance parameters. Therefore, absolute stability of the

network represented by H is verified ∀ω if and only if condition (4.12) holds. After

having properly made explicit all its terms, the inequality that needs to be fulfilled

has the following form:

2ω2b̄sb̄m
ω2b̄2

s + (ω2m̄s − k̄s)2
+ kpkf (cos 2ωd− 1) ≥ 0 ∀ω (4.15)

The left hand side of the inequality is a function of ω and it is called Llewellyn’s

curve Λ(ω). It is composed by the sum of a rational term and a trigonometrical one,

which generate the behaviour shown in Figure 4.2. It is an adimensional quantity

and it positiveness defines the absolute stability of the analysed network. As said

before, it is possible to achieve the same inequality (4.15) using interchangeably any

network matrix representation. To check whether the Llewellyn’s curve is greater

than zero, different teleoperation operative conditions have been analysed.

No time delay First of all, let’s consider the case where there is no time delay

affecting the communication channel between master and slave. Consequently, d = 0

and the trigonometric term of Λ(ω) cancels out. The remaining expression is:

Λ(ω) =
2ω2b̄sb̄m

ω2b̄2
s + (ω2m̄s − k̄s)2

(4.16)
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Figure 4.2: Llewellyn’s curve for a generic set of impedance parameters and a fixed
time delay

which is positive for every value of ω.

This means that if the teleoperation system is not affected by time delay, then

it is absolutely stable independently of the frequencies of the signals transmitted

through the communication channel and the design parameters choice. This can be

appreciated by looking at the Llewellyn’s curve plot in Figure 4.3a, which is always

positive.

To verify the previous statement, a simple simulation has been set - up. 1 DOF

master and slave systems are controlled using SMC and they are connected without

time delay. The master device is fed with a sinusoidal force reference of amplitude

5 N and frequency 0.2 rad s−1 to simulate the operator task movement. The slave

device interacts with the environment, that is modelled as (2.10) with wall position

xe equal to 0.1 m, wall stiffness k̄e 6× 105 N m−1 and wall damping b̄e 100 N s m−1.

The profiles of master and slave positions during the teleoperation task have been

reported in Figure 4.3b, as well as the wall position. As it can be noticed, no

oscillation occurs neither on the master side nor on the slave side. The master

trajectory is deformed during contact motion thanks to the force feedback coming

from the slave device. When there is no contact with the wall (i.e. free motion), the

tracking error between master and slave devices is negligible.
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Figure 4.3: Bilateral teleoperation network when the communication channel is not
affected by time delay
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General case Let’s now consider a generic communication time delay d (symmet-

ric with RTT equal to 2d), between the master and slave devices. By looking at the

asymptotic behaviour of Λ(ω), the following theorem can be drawn.

Theorem 4.1. (Delay instability) If the teleoperation system is subject to time delay

d different from zero, then it is not possible to guarantee absolute stability for all

frequencies of the signals transmitted through the communication channel

Proof. Let’s consider the limit of the Llewellyn’s curve for increasing ω:

lim
ω→∞

[
2ω2b̄sb̄m

ω2b̄2
s + (ω2m̄s − k̄s)2

+ kpkf (cos 2ωd− 1)

]
(4.17)

this limit can be split into two parts:

• The first part is rational and tends to cancel out for increasing ω

lim
ω→∞

[
2ω2b̄sb̄m

ω2b̄2
s + (ω2m̄s − k̄s)2

]
= 0

• The second part is trigonometric and the limit for ω →∞ is not defined, be-

cause the function continues to oscillate between 0 and −2kpkf at a frequency

which is related to d

lim
ω→∞

[kpkf (cos 2ωd− 1)] = not defined

Therefore, if ω is chosen large enough so that the effect of the rational part is

negligible, there exists a frequency value ω0 at which the Llewellyn’s curve becomes

negative, violating the absolute stability criterion.

Since Llewellyn’s curve always becomes negative at high frequencies, it makes

sense to compute the values of ω ≥ 0 for which the crossing happens. These will

define the available bandwidth in which the teleoperation system can be absolutely

stable also in presence of time delay. Obviously, this bandwidth will depend on the

amount of time delay d affecting the system. Indeed, high delay implies very fast

oscillations in Λ, generating earlier crossings of the stability threshold Λ(ω) = 0.
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Figure 4.4: Llewellyn’s curve and stability limit, with underlined early crossing (red
dot) and high frequency crossing (blue dot)

According to Figure 4.4, the bandwidth at which the network is stable is deter-

mined by the interval of frequencies [ω1, ω2] rad s−1, where ω1 identifies the initial

crossing (red dot) and ω2 the high frequency crossing (blue dot).

Initial crossing It is due to the fact that the Llewellyn’s curve, while starting

at zero, has negative concavity. Therefore, it goes below the stability threshold,

becoming positive only after ω1. These networks are generally potentially unstable,

because when the system reaches an equilibrium condition, signals frequencies tend

to zero.

To avoid such type of crossing, it is necessary to constrain Λ to have initial

positive concavity. In this way, the first oscillation is over the stability threshold.

In order to impose such condition, Llewellyn’s curve second derivative has been

computed and evaluated in the origin. Maxima symbolic computation program has

been adopted to perform this passage:

∂2Λ(ω)

∂ω2

∣∣∣∣
ω=0

≥ 0 → b̄mb̄s
k̄2
s

− d2kfkp ≥ 0 (4.18)

Inequality (4.18) constitutes a relationship between three design parameters (b̄m,
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Figure 4.5: Necessary condition to avoid early crossing of Llewellyn’s curve

b̄s and k̄s). Therefore, if two of them have been chosen according to other design

principles, the third one must fulfil the inequality in order to guarantee no initial

crossing. As it will be seen in the next subsections, b̄m and b̄s have a stronger impact

on Λ(ω) with respect to k̄s. Thus, it seems reasonable to explicit condition (4.18)

on k̄s:

k̄s ≤

√
b̄mb̄s
d2kfkp

(4.19)

Once b̄m and b̄s are chosen, it is necessary to fulfil (4.19) to avoid early crossing.

As it can be seen, the inequality depends on the amount of delay that affects the net-

work. In presence of a very long time delay, Λ(ω) has a highly oscillating behaviour

and k̄s needs to be reduced consequently. That is why, to improve the robustness

of the boundary with respect to d, it is preferable to substitute ≤ in (4.19) with

� (worst case scenario for k̄s). In Figure 4.5, it is possible to check the effect of

condition (4.19) of removing the initial down - slope in the Llewellyn’s curve.

High frequency crossing Thanks to the asymptotic property proved in the-

orem 4.1, there exists a frequency ω2 at which the Llewellyn’s curve crosses the

stability limit for the first time. If condition (4.19) holds, there is no lower bound

for the absolute stability bandwidth and Λ(ω) is positive starting from 0 up to ω2.

This high frequency limit should depend on time delay, because the higher is the fre-

quency of oscillations, the lower is the bandwidth. However, d is generally unknown

and/or not constant. Thus, it would be better to derive a frequency boundary that
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Figure 4.6: Lower envelope of the Llewellyn’s curve compared with the real one

is independent from the value of d. That is why the following analysis will be focused

on the worst case scenario, that is represented by the lower envelope of Llewellyn’s

curve. This is simply obtained by imposing cos 2ωd = −1 in (4.15):

Λmin(ω) =
2ω2b̄sb̄m

ω2b̄2
s + (ω2m̄s − k̄s)2

− 2kpkf (4.20)

A visual representation of Llewellyn’s curve and Λmin can be seen in Figure 4.6. It

is possible to notice that the crossing frequency defined by Λmin is more conservative

than the actual one. If ω̂2 is the value of ω for which Λmin(ω) = 0 at high frequency,

ω̂2 → ω2 if d → ∞. Moreover, the starting point of Λmin is the negative constant

−2kpkf . Therefore Λmin intersect the stability limit always twice and it is necessary

to select only the second relevant one.

Λmin has also the great advantage of being a rational function of ω. Consequently,

the number of crossings with the stability limit is equal to 2 whatever impedance

parameter tuning is chosen. Moreover, it is possible to write Λmin(ω) = 0 as a

biquadratic equation in ω:

kfkpm̄
2
s︸ ︷︷ ︸

a

ω4 + (kfkpb̄
2
s − 2kfkpk̄sm̄s − b̄sb̄m)︸ ︷︷ ︸

b

ω2 + kfkpk̄
2
s︸ ︷︷ ︸

c

= 0 (4.21)
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Out of the 4 solutions, 2 identify negative ω and need to be discarded. For the

remaining 2 solutions, the one with greater modulus is picked:

ω̂2 =

√
−b+

√
b2 − 4ac

2a
(4.22)

4.2.2 Llewellyn’s curve sensitivity

Since it is quite complex to analyse the effect of the various impedance parameters

on the Llewellyn’s curve absolute stability bandwidth (4.22), it is convenient to

perform a sensitivity analysis to roughly understand how the curve modifies its

shape when parameters vary. For this procedure, a fixed time delay d of 0.1 s has

been considered, as well as fixed position and force scaling factors kf = 0.3 and

kp = 1. Their variations will not be considered because their choice is not possible

(time delay) or it is dictated by external motivations (scaling factors).

The first significant observation is that m̄m and k̄m do not appear in the definition

of the Llewellyn’s curve (4.15). Therefore, their values do not influence the stability

property of the network and their values can be tuned in order to obtain the desired

master dynamics. Doing so, it is possible to optimise the manipulability of the haptic

interface or the operator’s comfort without modifying the stability of the network.

Then, b̄m variations have been checked. As it can be seen in Figure 4.10a,

high values of master damping raise the amplitude of Λ(ω) at low frequencies.

This increases the stability bandwidth of the system, as it can be appreciated in

Figure 4.7b. Therefore, b̄m should be set as high as possible to improve absolute

stability. Unfortunately, high damping values on the haptic device interferes with

operator manoeuvres, causing bad feeling and low reactivity. Therefore, this param-

eter is quite critical and its variation should be managed with caution. Moreover,

on - line changes of b̄m may confuse the operator perception of the environment.

For what concerns the variations of m̄s, it is possible to notice the opposite

effect with respect to the previous case. Here, the lower is the parameter value, the

higher is the available stability bandwidth of the teleoperation system (Figures 4.8a

and 4.8b). However, also in this case it is not recommendable to choose m̄s to close
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Figure 4.7: Sensitivity analysis with respect to b̄m variations
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Figure 4.8: Sensitivity analysis with respect to m̄s variations
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to zero, because this would generate a low impedance tracking profile, with the

consequence of a poor disturbance rejection during free motion operations.

The less significant parameter for the definition of ω2 is represented by k̄s. As

it has been anticipated in the initial crossing subsection, its effect is limited to the

low frequency range, having almost no effect on the position of the high frequency

bandwidth (Figures 4.9a and 4.9b). That is why it has been used to derive in-

equality (4.19). By constraining its value, Llewellyn’s curve is not modified at high

frequency, decoupling the tuning of the parameters and making it more simple.

The last parameter is represented by b̄s and it is the one with the most complex

effect. Its variation mainly modifies the central area of the Llewellyn’s curve and its

peak shape. For high values of b̄s, Λ(ω) is flattened and the crossing happens early.

Instead, if b̄s is low, the curve has a high peak value, which has however a very

narrow frequency range (Figure 4.10a). This means that the crossing frequency also

in this situation is low. For this parameter, it makes sense to talk about a trade -

off between a low and flat curve with respect to a high and narrow one.

4.2.3 Llewellyn’s curve optimization

In the previous subsection it has be roughly understood how the impedance pa-

rameters should be tuned in order to obtain a wider absolute stability bandwidth.

Now, it is necessary to find the tuning set which maximizes the Llewellyn’s curve

stability region, in order to be as robust as possible with respect to communication

time delay. To perform this procedure, it is possible to consider the formulation of

ω2 proposed in (4.22) as a cost function for the optimization procedure. Since (4.22)

is strongly non linear, it is preferable to perform this optimization off - line, by

relying on nonlinear constrained program solvers. For computing the maximum ω2,

MATLAB command fmincon has been adopted. It is worth noticing that these kind

of algorithms require a starting tuning to perform the optimization, and the result

they provide is only locally optimal.

Thanks to the sensitivity analysis, it is possible to guess that the cost function

proposed will be unbounded in the directions of b̄m and m̄s. Therefore, to obtain a

meaningful result, it is necessary to bound these directions via proper constraints.
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Figure 4.9: Sensitivity analysis with respect to k̄s variations
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Figure 4.10: Sensitivity analysis with respect to b̄s variations
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They will represent the minimum/maximum tuning choices that can be done in

order not to compromise teleoperation functionalities and they will be indicated as

b̄max
m and m̄min

s . Furthermore, all the impedance parameters b̄m, m̄s, k̄s and b̄s have

to be positive by definition.

Putting together these constraints and condition (4.19), it is possible to write

the following maximization problem:

max
b̄m, b̄s, k̄s, m̄s

ω2

s.t. 0 < b̄m ≤ b̄max
m ,

m̄s ≥ m̄min
s > 0,

b̄s > 0,

0 < k̄s ≤

√
b̄mb̄s
d2kfkp

(4.23)

In order to solve (4.23), it is required to perform a nonlinear optimization subject

to nonlinear constraints, due to the upper limit of k̄s. Since the available solver does

not allow the specification of this type of constraints, it is necessary to substitute a

feasible value of k̄s inside ω2 (e.g. a percentage α of the upper limit). In this way, k̄s

is removed from the optimization parameters and the new problem has only linear

constraints:
max

b̄m, b̄s, m̄s

ω2|
k̄s=α

√
b̄mb̄s

d2kf kp

s.t. 0 < b̄m ≤ b̄max
m ,

m̄s ≥ m̄min
s ,

b̄s > 0

(4.24)

Since (4.24) has less degrees of freedom with respect to (4.23), its maximum

solution should be different. However, thanks to the property of k̄s underlined in

Figure 4.9b, it is reasonable to assume that its variations have negligible effect on

the position of the maximum bandwidth. Therefore, the optimum of (4.24) will

almost coincide with the initial one of (4.23).



106 Global scheme analysis

4.3 Transparency analysis

As it has been shown in subsection 2.1.2, one of the main performance indicators

for a teleoperation system, together with stability, is represented by transparency.

It indicates the capability of the master/slave network to reproduce faithfully the

remote environment to the operator, in order to improve telepresence and task

perception.

Taking advantage of the previous stability analysis, it is possible to observe that

when there is no force feedback coming from the slave to the masted device (i.e. no

environmental contact), the teleoperation network is absolutely stable independently

of the parameters choice (as long as positive). This sentence can be easily proved

by imposing kf equal to zero in the hybrid matrix element H12, obtaining the same

expression for the Llewellyn’s curve as for the no time delay case (4.16).

Therefore, when there is no contact with the environment, it is convenient to tune

system parameters in order to maximize the level of transparency of the network.

According to Lawrence [44], this can be done by choosing a transmitted impedance

Zt that is as close as possible to the environment one Ze. In terms of network

representations, the ideal hybrid matrix that achieves that result corresponds to [2]:

 Fh
−Ve

 =

 0 1

−1 0

Vh
Fe

 (4.25)

With this choice ofH , master device shows no impedance on the operator, while the

slave tracking impedance is infinite. Doing so, the network z - width covers all the

frequency spectrum and perfect match between operator and environmental forces

and velocities is realised (as if the two entities interact directly). Indeed, Fh = Fe

and Ve = Vh, with Zt = Ze. Although this is a very appealing operative condition,

it can be easily shown using the Llewellyn’s curve that (4.25) is not absolutely

stable [33]. If no delay affects the system, Λ(ω) = 0 ∀ω (marginally stable). If the

communication channel introduces a delay different from zero, the Llewellyn’s curve

depicted in Figure 4.11 is obtained, which is always lower or equal to the stability



4.3 Transparency analysis 107

0 20 40 60 80 100 120 140 160 180

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Figure 4.11: Llewellyn’s curve for the ideally transparent hybrid matrix

limit:

Λ(ω) = cos 2ωd− 1 (4.26)

This reasoning shows the clear trade - off between transparency and stability that

has been introduced in chapter 2.

In order to improve the transparency of the teleoperation network, it is necessary

to compute the transmitted impedance Zt and show its dependency from the hybrid

matrix terms. Using the definition presented in subsection 2.1.2:

Fh = ZtVh (4.27)

which is the impedance perceived by the operator when he/she interacts with the

teleoperation system. Using network representation 4.3 and substituting Fe with

ZeVe, it is possible to express 4.27 as:

Fh = [H11 −H12Ze(1 +H22Ze)
−1H21]Vh (4.28)

As an example, let’s suppose now that the environment impedance Ze has the fol-

lowing expression:

Ze = 100 +
600 000

s
(4.29)
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For simplicity, time delay has not be considered in the transparency analysis, since

its effect on the magnitude of the transmitted impedance is marginal and therefore

it has little influence on the computation of the z - width.

First of all, the transmitted impedance of the parameters selected by the opti-

mization solver has been computed. This tuning represents the one which maximizes

the network absolute stability bandwidth according to the Llewellyn’s curve. As it

can be noticed in Figure 4.12 (low impedance line), this choice of slave and mas-

ter impedances generates a Zt which is quite far from the ideal one (dashed line).

Mismatch is particularly significant for the frequencies at which the teleoperation

system usually operates ([0.1,10] rad s−1).

To improve the transparency, the hybrid matrix H should be closer to the ideal

one 4.25. Since the haptic interface impedance relationship has been designed in

order to fulfil operator’s requirements, the best strategy is represented by having the

slave admittance as low as possible (ideally zero). To do so, it is possible to maintain

the same slave poles obtained in the stability optimization process and scaling up the

entire impedance profile by a constant quantity. The new transmitted impedance is

the red line in Figure 4.12. This time, frequency response of Zt is close to the ideal

one for a large set of frequencies, losing transparency only over 500 rad s−1 (out of

the usual teleoperation excitation bandwidth).

Similar conclusions can be drawn by looking at the force feedback fidelity, which

is another important parameter for evaluating teleoperation network performance.

It is defined as the capability of the bilateral control scheme to replicate faithfully

the environmental contact force to the operator:

Fh = KtFe (4.30)

Ideally, it should be Kt = 1 ∀ω and preservation of the whole information generated

by the contact force. As for the transparency, also in this case it is possible to

express Kt as a function of the hybrid matrix terms:

Fh =

[
H12 −

H11

H21

(
H22 +

1

Ze

)]
Fe (4.31)
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Figure 4.12: Evaluation of the transmitted impedance frequency response for differ-
ent parameters tuning
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The same set of impedance parameters used to compute Zt has been adopted for

evaluating the frequency response of Kt, which is reported in Figure 4.13. In this

case, the ideal force transmission is represented by the 0 dB line. As expected, the

stable profile impedance (blue line) has a poor force feedback fidelity compared

to the one with scaled slave parameters (red line). The closer Kt is to the ideal

response, the higher is the capability of distinguishing different environments for

the operator (environmental feedback is not distorted).

4.4 Passivity observer

In the previous two sections, different tuning criteria for the slave and master param-

eters have been adopted, according to the chosen optimization indicator (stability

or transparency). Since they are conflictual, it is not possible to achieve a tuning

which maximizes both. The strategy of real - time variable impedance that will be

implemented in section 4.5 requires knowledge of the network stability in order to

be effectively applied. A successful method to obtain this information is the imple-

mentation of a passivity observer [32, 67, 23]. This block has the role of monitoring

the energetic flows of the 2 - port network and check if the passivity definition (4.10)

holds at each sampling time T . If the bilateral teleoperation network becomes active,

the total energy of the system becomes negative and the network is no more guar-

anteed to be stable. Instability is not mandatory, because passivity is a sufficient

but not necessary condition to system stability (introduces conservatism). However,

this fact is compensated by the simplicity of implementing the observer.

Let’s consider a bilateral teleoperation system which is not affected by time

delay (d = 0). Thanks to this assumption, it is possible to measure the conjugate

variables at the ports of the teleoperation network simultaneously. Then, an energy

sign convention is required in order to correctly balance the flows. The one adopted

is reported in Figure 4.14 and it agrees with the definitions of network forces and

velocities. Now, it is possible to rewrite the passivity definition (4.10) for this 2 -
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Figure 4.13: Evaluation of the transmitted force scaling frequency response for dif-
ferent parameters tuning
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Figure 4.14: 2 port network energy flows scheme

port network:

Em(t) + Es(t) =

∫ t

t0

(fh(τ)vh(τ)− fe(τ)ve(τ)) dτ ≥ E0 ∀t ≥ t0 (4.32)

where Em(t) is the energy flow (entering from the master side) generated by the

operator, Es(t) is the energy flow (entering from the slave side) reflected by the

environment and E0 is the initial energy storage of the network.

A visual representation of these two contributions to the total energy coming

in the 2 - port network is visible in Figure 4.15a. From this graph, the passive

behaviour of the operator and environment can be noticed. The energy reflected by

the remote site to the master site is mainly composed by a peak of elastic energy

and a constant dissipative term, which increases each time the slave manipulator

enters contact with the environment. On the other side, the operator command

force generates an energetic trend which is peculiar of the performed task.

Since there is no time delay, these two quantities can be compared in real - time,

generating the resultant energy flow (Figure 4.15b). To better underline which com-

ponent of this total flow belongs to the master or slave side, the energy contribution

for each port has been shaded. As we would expect, the majority of the energy

entering the network is due to the operator, while the reflected energy of the envi-

ronment represents only a small portion. This is due to the fact that Ze generates

mainly an elastic effect, which is conservative and does not affect the total energy

permanently.



4.4 Passivity observer 113

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

2

4

6

8

10

12

14

16

(a) Em(t) and Es(t) contributes

(b) total energy flow
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Figure 4.16: Saturation of the observed energy inside the passivity observer

4.4.1 Energy storage saturation

One of the main remarks that can be made by looking at the energetic behaviours

observed in Figure 4.15a is the presence of an increasing trend generated by the

dissipative terms, which causes the energy to drift if the network behaves passively

for a long period of time. Consequently, the passivity observer saturates, becoming

insensitive with respect to system activity. Indeed, let’s consider the total energy

flow plotted in Figure 4.16. If the active behaviour starts at 10 s, the observed

energy is represented by the red dot. Since this point is very close to the stability

limit, after a small decrease Etot(t) becomes negative, detecting system potential

instability. If the same active behaviour occurs after 135 s (green dot), a greater

energy level reduction needs to be observed before instability is detected. This

ultimately produces a slow adaptation of the control impedances, leading to large

oscillations. Although the system is not yet unstable, we reach a state of practical

instability from the operative point of view.

To rapidly detect when the system becomes active, it is better to look at the

energetic trend instead of the absolute value of Etot(t). When Etot(t) increases, the

system is dissipating more energy than the one transmitted to the rest of network.

On the other side, when Etot(t) decreases, the system is generating more energy
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that the one it dissipates. Therefore, saturation of the observed energy does not

affect the detection of instability and the time at which it occurs becomes irrele-

vant. This technique has the advantage of obtaining a fast detection of unstable

behaviour. Furthermore, lower control effort is required to recover stability, because

the oscillatory unstable behaviour has just started. The main drawback of this idea

is that it introduces conservatism, due to the stringent requirement with respect to

the passivity definition 4.32. Moreover, it is necessary to add an energy threshold

to avoid false instability detections

4.4.2 Local oscillations

Another issue associated to passivity observers is related to oscillations of the cal-

culated total energy Etot. These fluctuations are associated to the variations of the

conservative energy component of master/slave devices. If a logic based on the en-

ergetic trend has been adopted to detect active behaviour of the network (previous

subsection), oscillations may deceive the observer, be leading it to think that the

system is behaving actively even when it is not in contact with the environment.

This is caused by the fact that a part of the energy injected by the operator into

the teleoperation network is stored by the master and slave mechanical systems in

the form of kinetic and potential energy. Indeed, the effort done by the human is

partially used to accelerate master and slave inertias or load the springs introduced

by their control laws.

According to the particular teleoperation task, the devices may decelerate and

springs may be unloaded. In this situation, the teleoperation system acts as a

reservoir, returning such energy to the operator. If this energy flow is added to the

one reflected by the environment, it can be easily noticed that the operator observes

an outcoming energy which is greater than the incoming one at the remote site.

Therefore, the energy trend is decreasing, resembling a network active behaviour.

This effect can be appreciated by looking at the oscillations of Etot in Figure 4.15b,

mainly generated by conservative energy flows.

To address this problem, it is necessary to look at the various energy contribu-
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tions which constitute Em and Es:

1

2
m̄mẋ

2
m +

∫
b̄mẋ

2
m +

1

2
k̄mx

2
m +

∫
kff

d
e ẋm =

∫
fhẋm = Em (4.33)

1

2
m̄s

˙̃x2
s +

∫
b̄s ˙̃x2

s +
1

2
k̄sx̃

2
s −

∫
kpfeẋ

d
m = −

∫
feẋs = Es (4.34)

the boxed terms of (4.33) and (4.34) represent the kinetic and potential energies

stored by the master and slave devices into the teleoperation network. Their contri-

bution to the total energy exchanged at the two ports is always positive, therefore

they preserve network passivity. Indeed, let’s rewrite the total energy computed by

the observer:

Etot = Em + Es = Em
c + Em

nc + Es
c + Es

nc (4.35)

where the subscript c stands for conservative (boxed) terms, while the remaining

ones are labelled with nc. Since it holds that Em
c ≥ 0 ∀t ≥ t0 and Es

c ≥ 0 ∀t ≥ t0,

the following implication is true:

Em
nc + Es

nc ≥ 0 ⇒ Em + Es ≥ 0 (4.36)

Thus, it is possible to substitute the total observed energy with their non - conser-

vative counterparts in order to verify that the 2 - port network is behaving passively

∀t ≥ t0. Ultimately, the inequality that needs to be verified at every time instant is:

∫
b̄mẋ

2
m +

∫
b̄s ˙̃x2

s ≥
∫
kpfeẋ

d
m −

∫
kff

d
e ẋm (4.37)

where at the left side of the inequality there are the dissipative terms associated

to master and slave devices, while at the right side there are the coupling terms

generated by the position reference and the force feedback. It is interesting to

notice that in case of no delay affecting the system and 1 - to - 1 teleoperation

scaling (kf = kp), inequality (4.37) degenerates into:

∫
b̄mẋ

2
m +

∫
b̄s ˙̃x2

s ≥ 0 (4.38)



4.4 Passivity observer 117

which is always fulfilled if the damping coefficients are positive. This proves that

if the system is not affected by time delay and it has no kinematic/force scaling, it

preserves passivity.

In the general case, condition (4.37) must be checked in real time to monitor the

behaviour of the network. In Figures 4.17a and 4.17b it is possible to compare the

total energy flow with the one of the non conservative contribution. As it can be

noticed, the oscillations associated to the conservative terms are no more present

and only the dissipative and coupling contributions affect the observer. Therefore,

any drop in the new observed Etot
nc is generated only when the environmental force

transmits more energy than the one the master and slave devices are able to dissi-

pate.

Since the implication (4.36) is only sufficient, the passivity condition (4.37) is

more stringent than the theoretical one (4.10), but it allows a fast detection of active

behaviour, which is crucial in order to guarantee system stability for every contact

interaction.

To evaluate (4.37) in presence of time delay, it is necessary to estimate the value

of d, otherwise it is not possible to compare at the same time kpfeẋdm and kffde ẋm.

If this is not feasible (variable, unknown time delay), the observed energy cannot be

real - time estimated and it is necessary to adopt another strategy.

4.4.3 Time delay implementation

Up to now, it has been considered a centralised passivity observer, which is able to

measure at the same time the conjugate variables at each port of the network. Unfor-

tunately, this is usually not the case, because teleoperation systems are distributed

and it is not possible to have access at both terminals simultaneously. Therefore,

Es is only available at the slave side while Em at the master side. To overcome this

issue, the solution proposed in [67] can been adopted. It consists in splitting the

energy contributions at each port in an outcoming and an incoming flow, as depicted
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Figure 4.17: Observed energy at the master and slave sides with and without the
conservative energy contributions
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(a) master side (b) slave side

Figure 4.18: Split of energy flows at the master and slave ports

in Figure 4.18. Doing so, it is possible to write the following two equalities:

Em = Em
in − Em

out

Es = Es
in − Es

out

(4.39)

where Em,s
in ≥ 0 and Em,s

out ≥ 0 are the absolute values of the incoming and outcoming

energies. Then, let’s substitute them into the passivity definition:

Em
in − Em

out + Es
in − Es

out ≥ 0 (4.40)

Now, the main idea is to divide the single passivity observer into two blocks, one

at the master side and one at the slave side. They are responsible for the passivity

of their respective ports and the inequalities they need to satisfy are the followings:

Es
out ≥ Emd

in

Em
out ≥ Esd

in

slave side

master side
(4.41)

where the superscript d for the incoming energies means that they are delayed. The

reasoning behind (4.41) is quite immediate. At each port, the outcoming energy is

compared to the incoming one on the other port d instants before. If this energy

is increased, it means that the network has generated it and therefore it behaves

actively. More formally, it is possible to prove that conditions (4.41) represents a

sufficient condition for the global network passivity [67].

These two passivity observers are very interesting because they can be imple-

mented without any a - priori knowledge of the time delay affecting the system. In

fact, incoming energy information can be sent through the communication channel
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together with the signals, and Emd
in , Esd

in will be delayed by the exact amount of

time that affects the network. The main drawback of this architecture is that the

impedance shaping cannot be performed only on the slave side, but it is necessary

to modify also the impedance profile of the haptic interface if the master observer

detects an active behaviour of the port.

4.5 Variable impedance controller

After having analysed the stability and transparency of the teleoperation 2 - port

network, it is possible to specify the main control objectives for the entire system in

a more rigorous way. Due to the trade - off between stability and transparency, to

achieve safe environmental interaction and good telepresence, it is not possible to

use a single parameter tuning set. This means that, to obtain the maximum from

both indicators, it is necessary to implement a variable impedance system, which is

able to optimize one of the two indicators according to the given operative condition

of the teleoperation system.

In the following simulations, it has been assumed that the network is affected by

a time delay d of 1 s, constant and known. Therefore, it is possible to implement

a centralised passivity observer using the strategies presented in subsections 4.4.2

and 4.4.1. Based on the information obtained through the passivity observer, it is

possible to define in which condition the teleoperation system is working and decide

the best tuning strategy that should be adopted in order to maximize one of the two

performance indicators. Since it is desirable to keep constant the tuning parameters

of the haptic interface to reduce the influence of the control strategy on the operator,

impedance adaptation is realised on the slave one, according to the scheme proposed

in Figure 4.19.

When the system is not in contact with the environment, slave parameters should

be tuned in order to obtain high transparency. Indeed, during free motion, stability

is guaranteed because there is no force feedback. Therefore, it is possible to scale

up the slave impedance profile in order to obtain good tracking accuracy, external

disturbance rejection, etc. When the slave enters contact with the environment, two
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Figure 4.19: Variable impedance control scheme architecture

situations may occur:

• The system is still passive, therefore it is possible to continue maximizing the

transparency in order to render properly Ze to the operator;

• The system starts to behave actively (typical when the slave manipulator

enters in contact with stiff environments). In this case, it is mandatory to

scale down slave impedance parameters in order to increase Llewellyn’s ω2

and regain stability as fast as possible;

To apply the previous reasoning, two paths have been followed.

4.5.1 Continuous adaptation

Slave impedance is downscaled proportionally to the degree of activity measured by

the passivity observer. The slave device is initially tuned based on an high impedance

profile in order to have a good transparency, and the value of its parameters is kept

constant until the system starts to behave actively. After that, the main idea is to

use the amount of active energy generated by the system as a reference signal for

the on - line adaptation of the slave impedance. To do so, it is necessary to properly

condition its value in order to obtain the correct reaction for each amount of active

energy generated. When the system regains passivity, the high impedance profile is

restored to regain transparency.

This method does not take into account if the slave device is in contact with the

environment or not, therefore Ze can be rendered correctly if the system is passive
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Figure 4.21: Two state adaptation control logic for the variable impedance slave
controller

during the initial contact instants. Evolution of master and slave positions and

Llewellyn’s curve variable shape are plotted in Figure 4.20. In the first couple of

figures, the system is performing a free motion task and transparency is maximized.

This can be appreciated by the fact that the Llewellyn’s curve is almost always

below the stability limit. Instead, when the system starts behaving actively, tuning

is changed and the Llewellyn’s curve raises, obtaining a stable contact interaction.

The backlash that occurs to the master device when the slave enters contact with the

environment is due to the high transparency, which reflects the initial force impulse

to the haptic interface.

4.5.2 Two - state adaptation

In this case, the number and shapes of the various slave impedance profiles is fixed.

Two possible parameters tuning are generated off - line, following the two design

principles for high transparency and stability:

• Profile H: it guarantees optimal telepresence and high fidelity free motion for

the teleoperation network;

• Profile L: it assures stability during environmental contact and it damps

potential active behaviour of the network;

Then, the profile choice is regulated using a finite state machine of the type

proposed in Figure 4.21. The criteria chosen to switch between one profile to another

reflect the desire of having a good transparency also for the initial contact instants.

Indeed, profile H is maintained until the slave is in contact with the environment and
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Figure 4.22: Contact force comparison between different slave impedance tunings:
dashed lines represent wall impacts

the system is sufficiently passive. This last condition adds a new tuning parameter

Ē, that should be carefully chosen in order to avoid instability while maintaining

a significant transparency phase. Once profile L is selected, passivity is no more

checked. This has been done in order to avoid the oscillations observed in the

continuous adaptive scheme, caused by the interaction between the energy flows

and the variable impedance mechanism. Profile H is restored only when there is no

more contact with the environment, assuring the stability of the network.

In Figure 4.23, it is possible to observe the same experiment performed for the

continuous adaptation case using the 2 - state switching control logic. In this case,

the two operative conditions shown in 4.23a and 4.23b describe the two different

impedance profiles that have been selected off - line. The second one has been

computed by optimizing ω2 according to subsection 4.2.3, while the other is its

scaled up version (optimized transparency). As it can be noticed, in this case the

admissible tuning range is well defined, generating more predictable system response

without modifying excessively the slave tuning.

The environmental force generated during the experiment is the red line shown

in Figure 4.22. It has been compared with the ones that would be obtained if a fixed

impedance profile were selected. The choice of an L profile for the entire teleopera-



4.5 Variable impedance controller 125

0
5

0
1

0
0

1
5

0

-1

-0
.50

0
.5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

-1

-0
.50

0
.51

(a
)
im

pr
ov
e
ne
tw
or
k
tr
an

sp
ar
en
cy

0
5

0
1

0
0

1
5

0

-1

-0
.50

0
.51

1
.5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

-1

-0
.50

0
.51

(b
)
im

pr
ov
e
co
nt
ac
t
st
ab
ili
ty

F
ig
ur
e
4.
23

:
2
-s

ta
te

ad
ap

ti
ve

im
pe

da
nc
e
co
nt
ro
l:
sl
av
e
an

d
m
as
te
r
po

si
ti
on

pr
ofi

le
s
an

d
Ll
ew

el
ly
n’
s
cu
rv
e
fo
r
tw

o
di
ffe

re
nt

op
er
at
iv
e

co
nd

it
io
ns



126 Global scheme analysis

tion task generates obviously a stable response of the system, but the force seen by

the operator is quite smoothed, with a bad rendering of the external environment.

The opposite situation happens for the H profile, which renders correctly the im-

pulsive initial force, but then it starts to bounce due to the low stable bandwidth.

The 2 state approach takes advantage of both behaviour, correctly rendering the

contact force at the initial time steps and then smoothing it out to avoid bounces

and oscillations.

The two - state adaptation is better than continuous one under several aspects.

It allows off -line optimization and better usage of the tuning parameters, which

are defined a - priori. This results in an easy tuning process and a more controlled

evolution of the network state. Moreover, it does not suffer from oscillations due

to fast passive - active switching, which instead affect the continuous adaptation

procedure. Different criteria can be easily implemented in the finite state machine

to choose proper switching logics.



Chapter 5

N - DOFs extension

An extension of the discussion presented in chapter 3 for multi - DOFs mechanical

systems is reported here. In particular, it is shown how to implement sliding mode

controllers when inverse dynamics are applied to a robotic manipulator, generating

a chain of double integrators affected by uncertainty.

The first possibility is to perform a sequential SMC for each joint, using a de-

coupled sliding surface to cope with joint uncertainties independently. Then, an

operational space impedance controller is introduced, in order to directly define the

end - effector desired behaviour. To deal with the uncertainties affecting this con-

troller, a new coupled sliding surface has been implemented.

Finally, the analysis is extended to redundant manipulators, where there is not

a unique mapping between joint and operational spaces. In this case, optimization

procedures have been implemented to derive the equivalent control law, while the

sliding surface has been extended to remove uncertainties also for the null space

motion.

All these results have been tested in simulation on a 2 - DOF manipulator and

then on a simulated model of ABB YuMi 7 - DOF right arm.
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5.1 Decentralized SMC

First of all, let’s consider the generic n-DOFs model for the slave manipulator intro-

duced in subsection 2.2.2:

Bs(qs)q̈s + ns(qs, q̇s) = τs− J>s (qs)he (5.1)

where ns(qs, q̇s) = Cs(qs, q̇s)q̇s + gm(qs).

After applying the inverse dynamics control law (section 3.1), we come up with

the following perturbed chain of double integrators:

q̈s = ζsv+ ηs (5.2)

where ζs = B−1
s B̂s and ηs = B−1

s [∆ns + J>s ∆he].

By looking at expression (5.2), it can be noticed that each joint acceleration

q̈si i = 1 . . . n is related to the other ones through the coupling terms generated by

imperfect dynamic cancellation. If it is possible to assume that ζs ≈ 1 and ηs ≈ 0

(model knowledge is accurate enough), we can treat coupling terms as disturbances,

obtaining the following “decoupled” sequence:

q̈s1 = v1 + d1

...

q̈sn = vn + dn

(5.3)

The idea of splitting a single complex control design into several simple ones is

known in literature as decentralized control [73]. Then, it is possible to design n

independent control laws, based only on the error associated to each separate joint.

Thus, it is sufficient to iterate the process seen for the 1 DOF case through all the

equations in (5.3).

In order to reject disturbance di, we can take advantage of the SMC already

introduced, while the desired joint dynamics can be specified independently for each

joint:

B̄¨̃q+ C̄ ˙̃q+ ḡq̃ = −Js(q)>he (5.4)
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Figure 5.1: Control scheme of a decentralized SMC controller for multi - DOFs
manipulators

where B̄ = diag(b1, . . . , bn), C̄ = diag(c1, . . . , cn) and ḡ = diag(g1, . . . , gn). Track-

ing error definition in joint space is totally analogous to the one proposed in sub-

section 3.2.2:

q̃ = q− kqdm (5.5)

It can be noticed that equation (5.4) is not fully decoupled when the manipulator

is in contact with the environment, due to the presence of Js(q)>he. However, if

differential kinematics is assumed to be known almost exactly, this contribution can

be easily computed, resulting in an additional torque τi for each individual joint.

The resultant manipulator’s sliding surface σ can be seen as the superimposition

of n joints sliding manifolds:

σ = B̄ ˙̃q+ C̄q̃ +

∫ t

0

(ḡq̃(τ ) + Js(q(τ ))>he)d τ (5.6)

while the equivalent control is simply represented by the vectorial formulation of the

standard impedance control law:

veq = −B̄−1C̄ ˙̃q− B̄−1ḡq̃− B̄−1Js(q)
>he + kpq̈

d
m (5.7)

Since each control loop is almost a standalone entity, convergence property can be

proved for each joint independently and conditions on sliding gain matrix K similar

to the one presented in theorem 3.2 can be drawn. The overall control scheme is

shown in Figure 5.1.
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Up to now, all the advantages of a decentralized architecture have been listed.

Unfortunately, it presents also some major drawbacks:

• It can require high values of SMC gains in order to reject disturbances coming

from inexact inverse dynamics. Moreover, uncertainties are coupled and vary

with robot configuration, making the worst case scenario very difficult to figure

out;

• The desired dynamic parameters bi, ci, gi are expressed in the manipulator’s

joint space, therefore with a decentralized control scheme it is not possible

to impose a determined impedance relationship between the end - effector and

the external environment. This causes a configuration dependant impedance,

because the behaviour seen in the operational space becomes the sum of all

impedance contributes, weighted by the Jacobian matrix. End - effector dy-

namic relationship is variable with respect to the robot configurations, reaching

very big values when robot is close to singularities. This can be considered a

negative aspect if the objective is to keep constant end - effector impedance;

For these reasons, sequential SMC extension can be suitable only for slave de-

vice, because master haptic interfaces require known and constant end - effector

impedance value. Instead, the remote manipulator desired parameters define an

“error dynamics” with respect to the master reference joint positions, which can be

uncorrelated with the operational space.

Nevertheless, the choice of sequential controllers for slave devices generates stabil-

ity issues when environmental contact is taken into account. This because, in some

configurations, variable end - effector impedance could cause very high interaction

forces.

5.2 Operational space SMC

To overcome the decentralized architecture problems, it is necessary to define control

objectives directly in the manipulator operational space. Doing so, it is possible to
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guarantee a known and constant end - effector dynamics, with clear physical - related

parameters (mass, damping, stiffness).

As usual, we start from the inverse dynamics closed - loop equation (5.2), re-

ferred, this time, to the master device:

q̈m = ζmv+ ηm (5.8)

where ζm = B−1
m B̂m and ηm = B−1

m [∆nm− J>m∆hh].

Contrary to the previous subsection, this time the assumption of joint decoupling

is not taken into account. This does not mean that this scheme is able to compensate

for a higher level of uncertainty with respect to the decentralised scheme, but it

simply states that the operational control law will be a centralized one (i.e. v is

defined using all joint information). The desired impedance profile required for the

haptic interface can be extended from the scalar formulation (equation (3.6)) to the

n - dimensional space:

M̄ẍ+ D̄ẋ+ K̄x = hh− kfhde (5.9)

where M̄ = diag(m1, . . . ,mn), D̄ = diag(d1, . . . , dn) and K̄ = diag(k1, . . . , kn).

According to the degrees of freedom of the manipulator, it is feasible to impose a

desired impedance profile to:

• Single spatial coordinates (1 DOF case already studied);

• x, y, z position (at least 3 DOFs);

• Full end - - effector position and orientation (at least 6 DOFs);

By choosing one of the previous three cases, the definitions of x, hh and he should be

adapted consequently. For example, a full position and orientation profile requires:

x =
[
x y z φ θ ψ

]>
hh =

[
fhx fhy fhz τhφ τhθ τhψ

]>
he =

[
fex fey fez τeφ τeθ τeψ

]>



132 N - DOFs extension

Figure 5.2: Centralized control structure for the operational space impedance con-
troller

where (φ, θ, ψ) are the Euler angles associated to the particular representation chosen

to describe end - - effector orientation.

Given equation (5.9), the objective is to design a vectorial controller which is

able to obtain the desired impedance while rejecting uncertainties coming from ηm

and ζm. To perform this task, an SMPC architecture of the type presented in

section 3.8 is implemented. It offers the advantage of a flexible equivalent control

definition through a constrained minimization stage, while retaining SMC robustness

properties. An overview of the control scheme architecture is visible in Figure 5.2.

The sliding surface is a unique coupled vectorial expression and will be indicated

with the symbol σop.

5.2.1 Centralized sliding surface

Following the standard steps introduced in subsection 3.3.1 for 1 DOF sliding mode

control design, it is necessary to introduce the vectorial sliding manifold σop starting

from the desired operational space impedance profile (equation (5.4)):

I = M̄ẍ+ D̄ẋ+ K̄x− hh + kfh
d
e (5.10)

To remove acceleration dependency, integration on both sides is performed, ob-

taining the vectorial form of equation (3.27):

S =

∫
I = M̄ẋ+ D̄x+ K̄

∫
x−

∫
(hh− kfhde) (5.11)
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Up to now, the same passages of the 1 DOF formulation have been performed.

However, this time equation (5.11) cannot be directly implemented, because our

measurements and control signals lay on the joint space, while the impedance profile

is defined in the operational space. Therefore, we need to make S explicit with

respect to the joint variables in order to implement it in our controller.

Let’s consider the manipulator forward and differential kinematics. Thanks to

them, we can express end - effector position, velocity and acceleration as a function

of joint coordinates:

x = T (q) ẋ = J(q)q̇ ẍ = J(q)q̈+ J̇(q)q̇ (5.12)

where T (q) is the direct kinematics of the robotic manipulator, while J(q) = dT (q)
dq

is the Jacobian matrix. Substituting expressions (5.12) into (5.11) we obtain:

S = M̄J(q)q̇+ D̄T (q) + K̄

∫
T (q)−

∫
(hh− kfhde) (5.13)

Although the sliding manifold S can now be computed using only joint position

and velocity measurements, its output still belongs to the Cartesian environment.

This means that each component of S describes the distance between the sliding

surface and the manipulator’s state in the operational space, while control effort

needs to be given in joint space.

Let’s suppose that manipulator’s DOFs are equal to the number of impedance

profiles. If we apply directly S as a sliding surface at joint level, first joint will

be driven based on the Cartesian error of the first coordinate and so on for the

remaining joints. This is not logical because error along a Cartesian direction should

be distributed between all the joints.

To solve this mismatch, it is convenient to use the robot static relationship [73]:

τ = J(q)>h (5.14)

which maps forces and moments at the end - effector with joint torques through the

transpose of the Jacobian matrix. Since the desired impedance profile is a vectorial
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torque and force balance at the end - effector, it is possible to apply equation (5.14)

to derive the equivalent torque balance at the joint level:

Iτ = J(q)>
[
M̄ẍ+ D̄ẋ+ K̄x− hh + kfh

d
e

]
(5.15)

Unfortunately, equation (5.15) cannot be used as a sliding surface, because of its

dependency on ẍ (i.e. q̈). Indeed, if kinematic relationships (5.12) are substituted

in (5.15), it is not possible to make
∫ (
J(q)>M̄q̈

)
independent from q̈ (the Jacobian

matrix is variable with time).

An available alternative consists in defining our operational sliding surface as:

σop = J(q)>S (5.16)

= J(q)>
[
M̄J(q)q̇+ D̄T (q) + K̄

∫
T (q)−

∫ (
hh− kfhde

)]

which is, in general, different from the integral of (5.15).

Let’s assume that expression (5.16) is a valid sliding surface candidate. Since the

initial control objective was to track the desired operational space impedance profile

by imposing I as a sliding manifold (equation (5.10)), it is necessary to verify that

σop still guarantees that. To this aim, the following theorem has been enounced:

Theorem 5.1. (Desired dynamics convergence) Let’s consider an n - DOF ma-

nipulator, with Jacobian’s rank equals to the impedance tracking task dimension

(dim I = n) and far from kinematic singularities. If σop = 0 ∀t ≥ tf , then

I = 0 ∀t ≥ tf and the correct impedance profile is tracked.

Proof. Let’s assume that Q is a set of joint positions which do not contain kinematic

singularities. By hypothesis, the following homogeneous system can be written:

J(q)>
∫
I = 0 (5.17)

thanks to Rouché–Capelli theorem, if matrix J(q)> fulfils the assumption:

rankJ(q)> = n = dim I ∀q ∈ Q
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then, it exists a unique solution for the system (5.17) which corresponds to:

∫
I = 0 ∀t ≥ tf ⇒ I = 0 ∀t ≥ tf

As we have already noticed for the 1 DOF case, this is only a sufficient condition,

since I = 0 does not imply that the operational sliding surface σop goes to zero.

Theorem 5.1 is applicable also if the manipulator is structurally or functionally

redundant (it is sufficient that the rectangular Jacobian matrix has the same rank

of the desired impedance profile). These cases will be treated in detail in section 5.3.

Corollary 5.1. If theorem 5.1 is true (I = 0 ∀t ≥ tf), choosing equation (5.16) as

sliding surface generates the same sliding motion of equation (5.15). Indeed,
∫
Iτ is

different from σop, but they share the same sliding surface.

J(q)>
∫
I = 0 ∀t ≥ tf ⇔

∫
J(q)>I = 0 ∀t ≥ tf

5.2.2 Centralized equivalent control

Once the sliding manifold has been defined, we are left with deriving the equivalent

control law to be applied to the n - DOF manipulator. As usual, veq will be

computed by equating to zero the sliding variable derivative and substituting it in

the nominal dynamic system (i.e. perfect inverse dynamics achieved). Instead of

computing σ̇op, the desired impedance profile I can be used. This is motivated by

the fact that, when system is in sliding mode condition (σop = 0), not only σ̇op = 0

but also I = 0:

M̄ẍ+ D̄ẋ+ K̄x− hh + kfh
d
e = 0 (5.18)

now substitute the kinematic relationships (5.12) to express the desired impedance

profile as a function of joint variables:

M̄(J(q)q̈+ J̇(q)q̇) + D̄J(q)q̇+ K̄T (q)− hh + kfh
d
e = 0 (5.19)



136 N - DOFs extension

Since equivalent control should be computed when the system is in nominal condi-

tions, let’s consider the following manipulator model:

q̈ = v (5.20)

Eventually, substituting (5.20) into (5.19), we came up with the system:

M̄(J(q)v+ J̇(q)q̇) + D̄q̇+ K̄T (q)− hh + kfh
d
e = 0

A(q)v = b(q)
(5.21)

where A(q) = M̄J(q) and b(q) = hh− kfhde − M̄J̇(q)q̇− D̄q̇− K̄T (q).

Here, it is necessary to make a distinction between two cases:

• A(q) is square and invertible;

• A(q) is under-determined (desired impedance dimension is lower with respect

to the manipulator’s DOFs);

Since the second case is typical for redundant manipulators, it will be treated in

subsection 5.3.1. For the first one, it is possible to directly find the expression of

veq by computing the solution of system (5.21):

veq = A(q)−1b(q) (5.22)

Computation of the equivalent control through the inversion of the Jacobian

matrix, although feasible, does not allow to impose additional constraints on joint

limits, control effort, etc. Moreover, this process causes a significant loss of precision

when q is close to singular values, because matrix A(q) loses rank and becomes no

more invertible [62].

Thus, an MPC - like structure can be useful to enhance control specification ca-

pabilities. Indeed, it is possible to rewrite system (5.21) as an optimization problem,

with quadratic cost function:

C = ||A(q)v− b(q)||2 = q>A(q)>A(q)q− 2q>A(q)>b(q) + b>b (5.23)
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where the last term is removed because it represents only a translation of the cost

function (i.e. it does not affect the minimization procedure).

Once C has been computed, it is possible to perform the minimization procedure

with one step predictive horizon, as the one presented in section 3.8. Doing so,

if there are no active constraints, we know already that the solution is the same

as (5.22). Thus, in this case, the main advantage of performing this passage is

given by the possibility of modifying the solution of 5.22 in order to constraint

the state/control variable. Instead, for redundant manipulators, this strategy will

become crucial since 5.22 is not applicable any more.

5.3 Redundant manipulator

If the joint space of a robotic device has an higher dimensionality than the task space

required to perform a given operation, the manipulator is said to be redundant for

that specific task. Since the operational space can have at most 6 DOFs, robots

with more than 6 joints are structurally redundant. Instead, if the required task is

simplified (e.g. only end - effector positioning), the operational space reduces and

manipulators that have ≤ 6 DOFs can become functionally redundant.

Redundancy is very common when we are dealing with impedance specification in

the operational space, because the required dynamic characteristics usually involve

a limited number of dimensions. Therefore, it is necessary to analyse and modify

the theory presented in the previous section in order to deal with under-determined

systems which can accept possibly infinite solutions.

From now on, let’s indicate with the symbol n the dimension of the desired

impedance profile vector, while the number of robot’s Degrees of Freedom (i.e. joint

space dimension) will be labelled with symbol m. For redundant manipulators, the

relationship m > n holds.

5.3.1 MPC equivalent control

Recalling system (5.17), it is worth noticing that matrix A(q) has the same dimen-

sion of the Jacobian and it is equal to dimA(q) = n × m. Since m > n, there
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are more variables than constraints on our system, which is then under-determined.

Consequently, there exist infinite equivalent control vectors that fulfil (5.17).

To choose one of them, a standard solution consists in minimizing an additional

cost function h(v) while retaining the optimality properties of (5.23). This allows

to specify the behaviour of redundant DOFs. For example, a typical requirement is

the penalisation of control effort amplitude, which is obtained by imposing:

h(v) =
1

2
v>Qv

where Q is a positive diagonal weight matrix. This choice of h(q) generates the

following equivalent control vector [73]:

veq = A(q)+b(q) (5.24)

where A(q)+ = A(q)>
(
A(q)A(q)>

)−1 is the right Moore - Penrose pseudo-

inverse of matrix A(q).

If it is desirable to obtain a different solution with respect to (5.24), it is necessary

to select a proper h(q) and to solve a new optimization problem. To perform this

procedure on-line, 1 step prediction horizon MPC can be implemented.

Similarly to subsection 5.2.2, system (5.17) is used to write a quadratic cost

function (5.23) and qpOASES solver is chosen to perform the optimization phase.

Since there exist multiple solutions that guarantee C = 0, algorithm will select (if

no constraint is applied) the closest one with respect to its initial condition, which

will be different, in general, from (5.24). To exploit the redundancy, constraints can

be added to the optimization (5.25). In this way, the best veq which satisfies the

desired impedance and, at the same time, the constraints is selected (e.g. operational

space limitations, maximum accelerations - velocities, etc.).

min
v

||A(q)v− b(q)||2

s.t. Alow ≤ Av ≤ Ahigh,

vlow ≤ v ≤ vhigh

(5.25)
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5.3.2 Null space sliding surface

It has been already remarked that, for redundant manipulators, there is an infinite

number of control laws that can guarantee I = 0. This means that there exists a

subset of the manipulator joint space, called null space, whose projection in the task

space has no effect on the task (Figure 5.3). These “null motions” are responsible

for constraints fulfilment, preserving the main impedance tracking objective. The

number of auxiliary tasks that can be performed is equal to the null space dimension

p = m− n.

If no uncertainty affects the system, veq computed in subsection 5.3.1 will be

sufficient to drive correctly the manipulator and fulfil the constraints imposed by

MPC. Since this is usually not the case, a sliding mode control action is required to

improve the system robustness.

Taking advantage of the result obtained in subsection 5.2.1, the redundant ma-

nipulator sliding surface can be chosen equal to σop (5.16). Doing so, the desired

impedance profile tracking is guaranteed during sliding mode.

Unfortunately, the chosen σop has no knowledge of the manipulator redundancy,

since it has been derived from the Cartesian impedance expression. Indeed, we

have that every null space motion of the robot, by definition, does not modify

the impedance relation. Consequently, if we suppose that ISMC is implemented

(σop(0) = 0), σop(q∗, t) = 0 ∀q∗ ∈ kerQ (kerQ is the joint null space).

Let’s suppose that the manipulator is affected by a disturbance that acts in

Figure 5.3: Mapping between the manipulator joint space and the task space for a
redundant manipulator
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the joint null space joint subset; this will generate deviations in the null space

from the ideal motion trajectory computed by MPC. However, due to the previous

considerations, σop remains zero during these motions, since it is insensitive to the

disturbance. Ultimately, this may lead to constraint violations.

That is why it is necessary to design a new sliding variable which is able to cope

with the uncertainties coming from null space motion.

As first step, we rewrite the standard sliding surface equation (5.16) as an under-

determined system:

σ = J>
∫
I

Jσ = JJ>
∫
I(

JJ>
)−1

Jσ =

∫
I

(5.26)

where JJ> is a n× n invertible matrix (full rank Jacobian hypothesis).

As usual for redundant manipulators, (5.26) admits infinite solutions, which can

be composed by a particular one and a generic one projected in the null space of

(J>J)−1J :

σ = J>
∫
I︸ ︷︷ ︸

σop

+ (I − J>(JJ>)−1J)︸ ︷︷ ︸
P

σ0 (5.27)

Thanks to the initial step, the particular solution coincides with the expression of

σop adopted in subsection 5.2.1, while the remaining term is the projection into the

manipulator’s null space of a new sliding surface σ0. This term will be responsible

for the rejection of disturbances acting in the null space, without affecting the desired

impedance tracking. Indeed, the projection matrix P is defined such that:

(
JJ>

)−1
JP =

(
JJ>

)−1
J(I − J>(JJ>)−1J) = 0 (5.28)

In order to detect deviations from the ideal null space motion trajectory, it is

necessary to check the mismatch between the MPC equivalent control signal we are

currently applying and the signal that would have to be applied to the nominal

nominal system to generate the observed state evolution. More formally, if we
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reverse the definition of the equivalent control law, we can choose:

σ0 s.t. σ̇0 = 0 when v = veq (5.29)

A possible solution to (5.29) is σ0 = 0, but this choice makes the new sliding

surface coincide with the operational space one, that we have already seen to be

not effective. Indeed, this choice does not take into account the null space state.

Another option is represented by:

σ̇0 = v− veq σ0 = q̇− q̇eq (5.30)

which indicates the difference between the actual manipulator speed and the one

that it should have if the MPC control law were applied without uncertainty. This

term is sensitive to disturbances acting on the null space motion and therefore it is

a good candidate for σ0.

Now that we have specified all the terms of (5.27), we can apply SMC techniques

based on σ in order to reject uncertainties in the whole manipulator joint space, not

only in the image of the task space.

5.4 2 - DOF simulation

To verify the results obtained in sections 5.2 and 5.3, a simulation has been set up

in MATLAB - Simulink R©. A fixed step solver and sampling time of 4 ms have been

adopted. To limit the complexity of the mechanical model and focus mainly on the

new control strategies, a 2 DOFs planar manipulator has been implemented.

First of all, let’s briefly recall the kinematic and dynamic relationships which

define the robotic arm model:

• Dynamic model matrices

B =

m1l
2
1 + I1 +m2(a2

1 + l22 + 2a1l2 cos θ2) + I2 m2(l22 + a1l2 cos θ2) + I2

m2(I2
2 + a1l2 cos θ2) + I2 m2l

2
2 + I2


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C =

−2m2a1l2θ̇2 sin θ2 −m2a1l2θ̇2 sin θ2

m2a1l2θ̇1 sin θ2 0

 (5.31)

g =

(m1l1 +m2a1)g cos θ1 +m2gl2 cos(θ1 + θ2)

m2l2g cos(θ1 + θ2)


• Forward kinematics

x = a1 cos(θ1) + a2 cos(θ1 + θ2)

y = a1 sin(θ1) + a2 sin(θ1 + θ2)
(5.32)

• Jacobian matrix

J =

−a1 sin θ1 − a2 sin(θ1 + θ2) −a2 sin(θ1 + θ2)

a1 cos θ1 + a2 cos(θ1 + θ2) a2 cos(θ1 + θ2)

 (5.33)

where θ1 and θ2 are the angles, respectively, of the first and the second joints. a1

and a2 represent the link lengths and l1 and l2 identify the centre of mass position

for each link. m1 and m2 are the link masses and I1, I2 stand for link moments of

inertia. Finally, g is the standard gravity (9.81 m s−2). Joint coordinates are chosen

positive counter-clockwise. A graphical representation of the 2 DOF manipulator

is reported in Figure 5.4. The shaded space represents the boundary of the robotic

arm operative region, while the asterisk is the goal position for the end - effector.

To avoid starting too close to singularity, the initial joint positions have been set to

θ0 = [−0.5 1]>(rad).

Nominal and estimated values adopted for the simulation are reported in Ta-

ble 5.1, together with their percentage of uncertainty. It has been assumed that

geometrical quantities (link lengths, centre of gravities) are known with sufficient

accuracy, so that their estimated values coincide with the nominal ones. Moreover,

in the manipulator model, a diagonal constant friction term is added to matrix C

in order to simulate joint static friction (Cfric = diag(18, 18)).

Aware of the experience regarding higher order sliding mode controllers, to limit

chattering and other undesired effects, STA has been implemented on both joint
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Figure 5.4: Graphic visualization of the 2 DOFs planar manipulator implemented

nominal estimated uncertainty (%)

a1 (m) 2 2 0.0
a2 (m) 2 2 0.0
l1 (m) 1 1 0.0
l2 (m) 1 1 0.0
m1 (kg) 5 4 −20.0
m2 (kg) 3 4 33.3
I1 (kg m2) 1.5 1 −33.3
I2 (kg m2) 1 0.7 −30.0

Table 5.1: Nominal and estimated parameters for the 2 DOFs planar manipulator
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channels, with parameters k1 = [5 5]> and k2 = [40 40]>. To avoid the initial

reaching phase, ISMC is added as well. It is important to notice that, for operational

space sliding surfaces of type (5.16), removal of constant bias due to the initial

offset must be performed before the projection into the joint space of the desired

impedance. This is because theorem 3.3 is not applicable directly to σop. Indeed,

if we choose veq such that I = 0, it holds that:

σ̇op = J>I + J̇>
∫
I = J̇>c c ∈ R2 constant (5.34)

which is neither zero nor constant (violating theorem 3.3 hypothesis). This fact is

a direct consequence of the only sufficient conditions used to derive the equivalent

control in subsection 5.2.2. To overcome this issue, it is possible to apply ISMC

on (5.11), for which the theorem still holds. Indeed, veq is computed based on

I = Ṡ = 0, therefore theorem 3.3 is valid.

Once initial bias of S has been removed, joint space mapping can be performed:

Σop(q(t),Γ(t)) = J(q(t))> (S(q(t),Γ(t))− S(q(t0),Γ(t0))) (5.35)

this passage does not alter the sliding surface initial condition, which is:

Σop(q(t0),Γ(t0)) = J(q(t0))> (S(q(t0),Γ(t0))− S(q(t0),Γ(t0))) = 0 (5.36)

5.4.1 Operational space SMC without redundancy

First simulation consists in forcing x and y coordinates of the 2 DOFs manipulator

to the specified goal position x∗ = [2 − 2]>, starting from x0 and without external

environmental forces. The state evolution in operational space must follow the

desired impedance profile imposed for both coordinates:

M̄ ¨̃x+ D̄ ˙̃x+ K̄x̃ = 0 (5.37)

where M̄ = diag(1, 1), D̄ = diag(4, 4) and K̄ = diag(4, 4).

In Figure 5.5, position responses of the end - effector in the Cartesian space
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are shown. When no sliding mode is enforced on the system, both coordinates

suffer from the uncertainties generated by dynamic inversion, drifting from their

desired profiles. This causes a significant static error in the end - effector final

pose, equal to x = [1.608 − 0.977]>. Connecting operational space SMC to the

same impedance controller, an important improvement can be noticed. In this

case, disturbances on both profiles are rejected and theoretical impedance accurately

tracked (dashed lines). Both components of σop start from zero and converge in

finite time (Figure 5.6a); the control effort required by STA is “almost” chattering

free and its amplitude is comparable with the control signal given by the equivalent

controller (Figure 5.6b).

5.4.2 Operational space SMC with redundancy

In the second simulation, the 2 DOFs manipulator is considered to be functionally

redundant. The impedance tracking task is specified only along the x coordinate,

while constraints are applied to the y coordinates in order to select the equivalent

control law. Therefore, the new Jacobian matrix J1 becomes the first row of J

(dimJ1 = 1× 2). The desired impedance dynamics for x is defined by the following

scalar expression:

M̄x
¨̃x+ D̄x

˙̃x+ K̄xx̃ = 0 (5.38)

while the MPC minimization problem has the following structure:

min
v

∣∣∣∣∣∣∣∣J1v+ J̇1q̇+
D̄x

M̄x

J1q̇ +
K̄x

M̄x

(T1(q)− x∗)
∣∣∣∣∣∣∣∣2

s.t. Alow ≤ Av ≤ Ahigh,

vlow ≤ v ≤ vhigh

(5.39)

where T1(q) is the first row of the 2 DOFs direct kinematics, while x∗ = 2 is the

target position only for x coordinates. To select one among the infinite number of v

which satisfy (5.39), suitable constraints on y should be adopted. Two options have

been considered:

1. constrain y to lie on the x axis (y(t) = 0 ∀t ≥ t0);
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Figure 5.5: Task space end - effector dynamics with and without operational space
sliding surface
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Figure 5.6: Sliding surface and control signal dynamics for operational space SMC
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2. constrain y to follow a TVP arbitrarily imposed;

In both cases, it is necessary to apply a constraint in the Cartesian space position

to a minimization problem where the optimization variables are the joints angular

accelerations. To perform this conversion, Grönwall’s lemma has been employed.

First of all, let’s consider to apply the second constraint to the minimization

problem (5.39). Given the TVP position, velocity and acceleration for each sampling

time (yp(t), ẏp(t), ÿp(t)), it is possible to write:

y(t) = yp(t)

ẏ(t) = ẏp(t)

ÿ(t) = ÿp(t)

∀t ≥ t0 (5.40)

Thanks to the Grönwall’s lemma, equalities (5.40) can be written as the solutions

of a unique stable differential equation of the following type:

ÿ(t) = ÿp(t)− (χ1 + χ2)(ẏ(t)− ẏp(t))− χ1χ2(y(t)− yp(t)) (5.41)

where χ1 and χ2 are positive scalar coefficients. By imposing (5.41), we are ensuring

that, after a reaching transient dictated by χ1 and χ2, constraints (5.40) are fulfilled.

The last step consists in making explicit the dependency on v of the constraint

and write it as an inequality:

Alow = Ahigh = ÿp − J̇2q̇ − (χ1 + χ2)(J2q̇ − ẏp)− χ1χ2(T2(q)− yp)

A = J2

(5.42)

where J2 and T2(q) are the second rows, respectively, of the Jacobian matrix and

direct kinematic. If the first constraint (y(t) = 0 ∀t ≥ t0) is to be applied, it is

sufficient to just substitute (yp(t), ẏp(t), ÿp(t)) with (0, 0, 0).

Since we are forcing only one coordinate to have a desired impedance profile,

σop is based only on equation (5.38). In Figure 5.7a, the first constraint on the y

coordinate has been applied, with and without the null space sliding surface σ0. As

it can be seen, uncertainty in null space motion generates a drift in the vertical direc-
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tion when robust control is not active. However, from this plot one may think that

this tracking error is marginal with respect to the main task objective of impedance

tracking. Unfortunately, this is not always the case. As it is shown in Figure 5.7b,

when the TVP is applied on y, constraint violation is significant. Depending on

the degree of uncertainty affecting the system, such uncontrolled motion may even

compromise the functionality of σop in the main channel. Here σ0 greatly improves

null space motion, allowing fulfilment of MPC constraints.

5.5 7 - DOF simulation

A last simulation step has been performed on a 7 DOFs manipulator model, replica

of the ABB IRB14000 YuMi R© right arm. To generate the robot model, Peter Corke’s

Robotics Toolbox for MATLAB [13] has been used. In particular, , since it interfaces

with MATLAB - Simulink library.

For the sake of brevity, kinematic and dynamical data used for the implementa-

tion of the 7 DOFs manipulator are omitted. Dynamic matrices and vectors B(q),

C(q̇, q) and G(q) are computed on-line given the simulated robot pose. A graph-

ical representation of the robotic arm, with its seven revolution joints, can be seen

in Figure 5.8.

The level of uncertainty given by the inverse dynamic process has been introduced

by underestimating by 20% the value of n(q̇, q) = C(q̇, q)q̇+g(q) in the feedback

linearization (n̂(q̇, q) = 0.8n(q̇, q)).

To force joint variables to follow given reference impedance profiles, a decentral-

ized SMC is designed. Doing so, we avoid dealing with the redundancy problem,

which should be tackled if we consider operational space. Moreover, a decentralized

control strategy does not suffer of kinematic singularities, which in this case can be

difficult to be computed a-priori (on-line check of Jacobian rank).

Equation (5.4) is adopted of each joint, with diagonal matrices B̄ = I7, C̄ =

10 I7 and ḡ = 25 I7, where I7 is the 7 × 7 identity matrix. Model mismatches are

simply modelled by changing the on-line computed value of C(q̇, q) in the inverse

dynamic process.
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Figure 5.7: Constraint fulfilment of the free y coordinate with and without σ0



5.5 7 - DOF simulation 151

Figure 5.8: Three dimensional representation of the robotic arm used for 7 DOFs
simulation in its initial pose q0

Similarly to the 2 DOFs simulation, STA and ISMC are implemented to improve

the performance of the control scheme. In Figure 5.9, the position evolution for each

of the seven joints is reported. It is noticeable that the coupled system uncertainty

has a strong impact on the impedance controller. Indeed, except for the fifth and

seventh joints, the others show a noticeable drift in the response when there is no

SMC (blue lines). The situation significantly improves when disturbance is rejected

by sliding mode contribution. The obtained profiles (dashed yellow lines) are almost

identical to the ideal ones (black lines), except for a short initial transient.

For what concerns control effort of the decentralized SMC, torque profiles for each

joint are reported in Figure 5.10. Thanks to higher order algorithms, the control

signals are almost chattering free, with smooth transients and limited amplitude.

The required action is inside maximum torque limits for each joint, which makes

them feasible to be applied to the real manipulator without damaging it.
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5.6 Predictive SMC

In subsection 3.3.5, one of the main drawbacks associated with standard SMC was

the chattering effect. Main cause of such phenomenon is the discontinuity in the

control action along the sliding surface and solutions have been addressed to remove

it (sections 3.4 and 3.5). Unfortunately, this is not the only source of persistent

oscillations in the control action. Finite actuator dynamics and especially time

delay lower the control frequency bandwidth and may introduce a significant loss

of phase margin. Consequently, a limit cycle establishes around the origin of the

sliding surface phase diagram (Figure 5.11) and we cannot converge towards the

equilibrium point (0, 0). Stable oscillatory behaviour is visible also in the control

variable and in the position response.

If we know the amount of delay d which affects the control channel, it is possible

to improve the performance of the controller by using, instead of the current value of

σ(t), its d-step forward prediction σ̂(t+d|t). This idea has been already exploited in

literature [25, 26, 24] but it is generally applied to stochastic models (autoregressive,

ARMA, etc.).

First of all, let’s consider the general expression of σ for the slave device (3.37).

Its d - step prediction is:

σ̂(t+ d|t) = F ê(t+ d|t) + Ψ̂(t+ d|t) (5.43)

where ê(t + d|t) and Λ̂(t + d|t) are, respectively, the d - step predictors for the

tracking error and the external forces.

Since we have no information about the future evolution of Λ (it depends on

external forces which are a-priori unknown), the best estimate we can perform is

given by the current value of Λ:

Λ̂(t+ d|t) = Λ(t)
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Figure 5.11: Sliding variable evolution in the σ - σ̇ plane. A limit cycle is established
around the origin due to a control action delay of 12 ms

For what concerns the error predictor, it is possible to write:

ê(t+ d|t) = x̂(t+ d|t)− ŵ(t+ d|t)

where x = [q̇ q
∫
q]> is the extended state vector, written using joint coordinates,

while w = [q̇ref qref
∫
qref ]> is the reference input vector (for standard teleopera-

tion they represent master joint coordinates).

To assess the future evolution of the state vector, it is necessary to recall the

generic device dynamic model (3.64) and discretize it. To do so, forward Euler

method has been adopted, because it is computationally efficient and does not require

the solution of algebraic loops (it depends only on previous output time instants).

Discrete time steps are labelled with symbol k, while the equivalent delay is D = d
T

(T is the sampling time). Then, the new discrete state has to be propagated up to

D steps in the future and all the terms which depend on time instants between k

and k+D have to be made explicit by substituting the dynamic model in them. For

the sake of clarity, passages for deriving the 2 - step predictor are here reported:

• Write the vectorial dynamic model (3.64), with control variable delayed by

d = 2T

ẋ(t) = f(x)(t) + gv(t− 2T ) (5.44)
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• Discretize (5.44) with forward Euler

1

T
[x(k + 1)− x(k)] = f(x)(k) + gv(k − 2) (5.45)

• Propagate state vector up to 2 steps in the future

1

T
[x(k + 2)− x(k + 1)] = f(x)(k + 1) + gv(k − 1) (5.46)

• Substitute x(k+1) in order to obtain x(k+2) as a function only of the current

state

x(k + 2) = x(k) + T [f(x)(k) + f(x)(k + 1)] + g[v(k − 1) + v(k − 2)] (5.47)

• Expand the state vector to explicit f(x) = [x2 x3 η(x)]> and g = [0 0 ζ]>

x1(k + 2) = x1(k) + T [x2(k + 1) + x2(k)]

x2(k + 2) = x2(k) + T [x3(k + 1) + x3(k)] (5.48)

x3(k + 2) = x3(k) + T [η(x)(k + 1) + η(x)(k)] + T ζ [v(k − 1) + v(k − 2)]

Boxed terms in (5.48) last equation represent uncertainties at current and future time

steps. Since these quantities are a-priori unknown, the optimal 2 - steps predictor

for x3 is simply given by:

x̂3(k + 2|k) = x3(k) + T [v(k − 1) + v(k − 2)] (5.49)

The convergence of such estimator towards the real value of x3(k+ 2) is dictated by

the rejection capabilities of SMC. More the device model tends to the nominal one,

smaller will be the prediction error. By substituting x3(k + 1) and x2(k + 1) with

their respective expressions in the first two equations, formulations of x̂2(k + 2|k)



5.6 Predictive SMC 157

0 1 2 3 4 5 6 7

3.96

3.97

3.98

3.99

4

4.01

4.02

4.03

4.04
 

Figure 5.12: Standard sliding surface and its 2-step ahead prediction

and x̂1(k + 2|k) are just a matter of trivial computations:

x̂1(k + 2|k) = x1(k) + T [x2(k − 1) + x2(k)]

+ T 2[x3(k − 1) + x3(k − 2)] + T 3[v(k − 3) + v(k − 4)]
(5.50)

x̂2(k + 2|k) = x2(k) + T [x3(k − 1) + x3(k)] + T 3[v(k − 2) + v(k − 3)] (5.51)

For what concerns ŵ(t + d|t), its expression strongly depends on the kind of

input our system is dealing with. If it is possible to know in advance what will be

the future desired trajectory, then ŵ could be set equal to that values. Instead, if

there is no information on the future evolution of the reference signals, the best we

can do is to set the predictor equal to the current value of w (as for the external

inputs case).

In Figure 5.12, the comparison between the standard σ and its 2 steps ahead

prediction is reported. As we can notice, the predictor takes some time to converge

towards the sliding surface (approximately 2 s) but then it correctly tracks the future

behaviour of σ. If we use σ̂(k + 2|k) instead of σ predictive SMC is obtained.

Improvement in sliding precision and stability is visible in Figure 5.13. The limit

cycle has been almost removed.
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Chapter 6

Experimental results

In this chapter, some of the control techniques presented for multi - DOFs manipu-

lators will be applied to the ABB IRB14000 YuMi R© dual arm robot.

In the first section, a brief introduction of the experimental set-up will be given,

as well as a description of the robot operative conditions. Then, the robot external

controller architecture will be analysed, since it represents the interface between the

simulation environment and the robot internal firmware. Here, the two main prob-

lems encountered in the implementation of the various control techniques are shown

(low pass input filter and friction). Impedance tracking experiments have been per-

formed on single joints, adopting a decentralised control strategy. Different sliding

mode algorithms have been tested and their performance have been compared.

Finally, a teleoperation task has been performed, piloting the slave arm through

the master arm. A joint level tracking has been implemented using the proposed

algorithms. Pros and cons of this kind of approach will be reported at the end.

6.1 Experimental set-up

In order to implement the control strategies developed in previous chapters, a dual

arm robotic manipulator has been adopted. Thanks to this choice, it is possible to

simulate teleoperation activities by selecting one of the arm as mater device, while

the other as slave device. Although this is not the usual operative condition for this

kind of manipulator, it has the advantage of requiring one - to - one teleoperation
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Figure 6.1: Dual arm robot adopted for the experiments

mapping (i.e. the possibility of replicating the exact joint movements of master

device onto the slave arm). In this way, it is possible to apply an error definition of

the decentralized type (see (5.5)), where the scaling factor can be used to magnify

the master movements allowing better slave precision. A visual representation of the

manipulator on which the experiments have been performed is shown in Figure 6.1.

The right arm has been used as a master device, while the left arm acted as a slave

device.

The user interfaces with the master arm mainly by moving the end effector in the

operational space in front of the robot. Thanks to the decentralized architecture,

he/she can move also single portions of the manipulator by acting directly on the

joints of interest. At the slave end effector, a tool tip can be attached to interact

with the external environment.

Let’s suppose to divide the manipulator’s operative region into two halves by a

plane passing through the origin and parallel to the z axis. To avoid self collisions,

master and slave have to operate in their respective spatial regions, otherwise they

might interfere. Thus, joint mapping between the two arms has been defined in

such a way that they are specular with respect to the middle plane dividing the two
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subspaces. With this choice, operative regions for the master and slave subsystem are

maximized without the possibility of self collisions. If the operator finds difficult to

operate the robotic arm in this configuration, it is possible to change joint mapping

in order to obtain the same end effector position and orientation. In this case,

particular attention has to be posed on the operative region intersection between

master and slave arms.

6.2 External force estimator

Both slave and master devices are not equipped with neither joint torque sensors

nor end effector force sensors, therefore potential external interactions should be

detected via proper force estimators. The one implemented on the YuMi has been

proposed in [52, 15] and it is based on the computation of the residual torque vectors.

Let’s suppose that the left/right YuMi arm can be described by the following

dynamic equation:

B(q)q̈+C(q, q̇) + Fv(q̇) + g(q) = τ + τext (6.1)

where B(q), C(q̇, q), Fv(q̇), g(q) are, respectively, the inertia and Coriolis - cen-

trifugal matrices, the estimated joint friction contribute and the gravitational load.

τ is the input torque signal given at each joint, while τext is the external torque

exerted by the environment. Now write the generalized momentum p = M(q)q̇

and its derivative:

ṗ = Ṁ(q)q̇+M(q)q̈

= Ṁ(q)q̇+ τ + τext−C(q̇, q)q̇− Fv(q̇)− g(q)
(6.2)

To remove the dependency on Ṁ(q), it is possible to exploit the skew-symmetric

property [73]:

Ṁ(q) = C(q̇, q) +C>(q̇, q) (6.3)
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obtaining the final expression:

ṗ = C>(q̇, q)q̇+ τ + τext− Fv(q̇)− g(q) (6.4)

From the momentum vector it is possible to derive a residual r:

r = K

[
p−

∫ t

0

(
C>(q̇, q)q̇+ τ + r− Fv(q̇)− g(q)

)
dt

]
(6.5)

where K = diag(k1, . . . , k7) is a constant positive definite matrix. Equation (6.5)

represents 7 decoupled first order linear systems with stable poles given by

−k1, . . . ,−k7. The residual dynamics are excited by the external torque vector

τext, that serves as input. Indeed, deriving (6.5), it is possible to write r in a more

familiar form:

ṙ = −Kr+Kτext (6.6)

Therefore, the computed residual is a low pass filtered version of the external torques

acting on the manipulator. If we suppose that the environmental interaction is

confined at the end effector, external torques measured at joint level can be projected

using the inverse of relation (5.14).

h = J+(q)r (6.7)

The proposed estimator does not require the knowledge of joint accelerations,

using only the information coming from the input joint torques. Moreover, its stable

dynamics guarantee that after the interaction has occurred, equilibrium r = 0 is

reached asymptotically.

However, the algorithm shown to compute r is strongly based on the correct

knowledge of the manipulator. Thus, any unmodelled mismatch/disturbance will

reflect into a “fictitious” external torque acting on the robotic arm. If we are using

this information to control the manipulator impedance, these wrong torque estima-

tions could become dangerous for the human operator.

That is why this residual external torque computation can be safely introduced

only when the manipulator model is accurately known, in order to reduce as much
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as possible unpredictable robot behaviours.

As it will be shown in the next sections, YuMi left and right arms models suf-

fer from strong unmodelled dynamics (first of all, joint friction), that will bias the

residual estimator giving wrong external torque measurements. For this reason,

experiments in the next sections have been based on free motion trajectories. Con-

sequently, τext computed according to (6.5) is equal to zero (after a proper signal

conditioning). However, to develop further trials, force estimate is fundamental to

obtain the force feedback signal to be given to the master device.

6.3 External controller

For both arms, ABB YuMi is equipped with internal industrial controllers, that allow

the robot to perform assigned motions both in the joint space and in the Cartesian

space. Their structure is composed of independent PID controllers, one for each

joint. They read the angular positions q(t) through encoders mounted on the motors

and differentiate it to derive the angular speed vector q̇ = ∆q
T
. This information is

used to close 7 independent nested P-PI control loops. A schematic representation

of YuMi control unit is visible in Figure 6.2. The dashed box element constitutes

the internal controller, whose structure cannot be modified. It outputs the reference

torque signal to the motor controller, while it receives as inputs the position and

velocity reference signals and a torque feed-forward τfw which is usually set to zero.

In order to implement the control techniques analysed in chapter 5, it is necessary

to interact with the industrial ABB controller. To do so, a research interface developed

by Lund university, called OPCOM, has been adopted [6]. This program allows to

connect to the ABB YuMi an external controller located on a Linux device. Through

this computer, it is possible to use proper MATLAB - Simulink libraries to read and

write the signals coming from the internal controller. In particular, it is possible

to read the joint angular positions q and the commanded torques to the joints

τ . Parameters Kpp, Kpv and Kiv can be read and written in order to modify the

behaviour of the internal PID controllers. Reference trajectories qref and q̇ref are
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Figure 6.2: Block diagram representation of the YuMi control scheme. The dashed
box indicates the internal proprietary control unit

accessible as well as the torque feed-forward τfw.

According to the previous considerations, when the external controller is attached

to the robot, there are two possible operative conditions:

• Keep the internal ABB control active and generate reference signals for this

“low level” controller (qref and q̇ref ). These signals will be chosen following

an “high level” control strategy (force control, MPC, etc.);

• Deactivate the internal ABB controller by imposing all the PID gains equal

to zero. Doing so, qref and q̇ref inputs become meaningless and the entire

control action has to be given through the τfw channel;

The first operative choice has the great advantage of guaranteeing great tracking

accuracy of the reference positions and speeds thanks to the built in ABB control

loops. This ultimately allows to focus on other control objectives without caring on

how the chosen trajectory will be realised. Instead, the second operative condition

leaves complete freedom to the external control action to generate the desired torque

profile, except for the maximum input frequency (FIR filter on the channel). This

means that τfw should be computed by taking into account all the non linearities

and couplings that were cancelled by PIDs.

According to the theory developed, the second option is the one coherent with

the structure of SMC analysed up to now. Therefore, the external controller will
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turn off internal one and will generate the closed - loop control signal by acting on

the feed - forward torque. The sampling time at which the external controller works

is equal to 4 ms. That is why in previous simulation this fixed sampling time has

been adopted, in order to avoid discretization issues during the implementation.

Proper routines have already been designed for the real - time computation of

dynamic matricesB, C and g as well as Jacobian and forward kinematic expressions

for each arm. Since the dynamic model is particularly complex, the real - time

execution of that function is not feasible (it exceeds the sampling time). Therefore,

the right arm dynamic parameters are calculated on the external computer (faster

than the manipulator one) and then sent in real -time to the robotic arm.

Through the OPCOM interface, it is also possible to interact with some variables

during its execution of the program. This mechanism will be mainly adopted to

start the routine and control the internal program evolution.

All the measurements reported in this chapter have been logged through the ex-

ternal controller, therefore they are constrained to be the accessible inputs/outputs

of the control scheme in Figure 6.2. Internal ABB quantities such as PID torques

cannot be directly observed.

6.3.1 FIR identification

As we can notice, in scheme 6.2 there is a FIR filter which connects the feed-

forward signal τfw to the torque control applied to the motor τ . This block plays a

crucial role in the stability of the SMC controller, because it introduces an actuator

dynamics that lowers significantly the bandwidth of the desired control action. To

visually analyse such effect, it is possible to look at Figure 6.3, where the feed -

forward signal is compared with the real one applied to the system. If we exclude

the one - step delay introduced by the reading procedure (τ (t) = τfw(t − 1)), the

remaining shift and the attenuation introduced in τ are caused by the filter.

In order to compute the filter dynamics and understand the available bandwidth

allowed for the external controller, a frequency response analysis has been performed.

For the sake of brevity, only the first joint FIR identification has been reported.

According to [54], one method of determining empirically the dynamic characteristics
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Figure 6.3: Feed - forward torque signal vs. actual torque applied to the joint motor

of a system is by cross - correlating the input with the output. To perform this, the

unknown transfer function can be computed by calculating:

F (jω) =
Sxy(jω)

Sxx(jω)
(6.8)

where subscripts x = τfw1 and y = τ1 are, respectively, the input and output

signals for the first filter. The term Sxy(jω) represents the cross power spectrum

between input and output signals, while Sxx(jω) is the power spectrum of the input.

Therefore, F (jω) represents the amount of correlation between the input and output

channels normalized with respect to the input power.

To compute Sxy(jω) and Sxx(jω), it is necessary to find the spectra of τfw1 and

τ1 using Discrete Time Fourier Transform (DTFT). Once Tfw1(jω) and T1(jω) have

been calculated, the power spectra needed in (6.8) are:

Sxy(jω) = T1(jω)Tfw1(jω)∗

Sxx(jω) = Tfw1(jω)Tfw1(jω)∗
(6.9)

where superscript ∗ stands for the complex conjugate operator. The identified FIR

transfer function magnitude |F (jω)| can be then plotted on a logarithmic scale (blue
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line in Figure 6.4).

As we can notice, F (jω) resemble the shape of a low pass filter, with cut off

frequency at approximately 100 rad s−1. To perform a more formal analysis, MATLAB

System Identification Toolbox has been adopted. First of all, a FIR filter has been

identified, since it should be the actual filter placed between τfw and τ . To keep

the complexity limited and avoid over - fitting phenomenon, a fourth order FIR has

been adopted (yellow line in Figure 6.4):

F̂FIR(z) = 6.993× 10−3 + 8.846× 10−2z−1 + 2.048× 10−1z−2 + 2.327z−3 (6.10)

However, with this choice fitting to the estimated data is poor (44.6%), especially

at low frequency (offset with respect to the unitary gain). A better fitting could be

obtained by increasing the number of coefficients, at the price of a complex filter

structure. Moreover, fitting is extended also to high frequency ripples which are

mainly due to noise.

Since we are not interested in high frequency dynamics, to detect the maximum

allowed bandwidth a continuous transfer function can be used. According to the

identification toolbox, a good fitting precision can be obtained with the second

order transfer function (red line in Figure 6.4):

F̂2(s) =
−24.42s+ 2.486× 104

s2 + 304.3s+ 2.486× 104 (6.11)

which has 2 complex poles at −152.14±41.28j and a fitting accuracy of 97.25%. The

−3 dB bandwidth of this filter is approximately at 107 rad s−1, which corresponds

to 17 Hz. F̂2(s) has a high frequency zero one decade faster than the two poles and

unitary gain. Loosing a bit of accuracy, F (jω) can be fitted quite well also with a

single pole low pass filter of the following form (green line in Figure 6.4)

F̂1(s) =
74.93

s+ 72.9
(6.12)

Fitting accuracy is reduced but it is still quite high if compared with the FIR model

(91.8%). The transfer function gain is almost unitary and the single pole is located
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Figure 6.5: Frequency spectra for the seven joints input torque during sliding mode
motion. Allowed control bandwidth is significantly smaller than the Nyquist fre-
quency 125 Hz

at −72.9 rad s−1. The −3 dB bandwidth is equal to 79 rad s−1 (≈ 12.5 Hz).

Thanks to its simplicity, the last identified filter has been chosen to model the

internal ABB FIR and to describe main actuator dynamic range. It is worth notic-

ing that the maximum frequency limitation imposed by ABB firmware to external

control signals is significantly lower than the sampling time at which the controller

is operating (Nyquist frequency equal to 125 Hz). This conservationism has been

probably introduced to prevent joint mechanisms from being damaged by torque

references at too high frequency. If on the one hand this filter allows not to consider

elastic effects due to transmission coupling and other high frequency dynamics, on

the other it causes severe oscillations in the SMC joint control loops due to the low

bandwidth available for the switching function. As it can be seen in Figure 6.5,

this effect is common to all joints and it justifies the assumption of the same filter

mounted on each feed - forward channel.

6.3.2 Friction compensation

When dealing with joint motion control, friction introduced by transmissions and

links can be significant. Since we are designing the control law in order to be
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Figure 6.6: Torque control signal applied to joint 3 and the amount of effort required
to overcome friction

robust with respect to model uncertainties, we should expect that friction effects

will be properly rejected by SMC. Unfortunately, this is not completely true. If

the unmodelled friction term is comparable, or even greater than the joint dynamic

model, the required sliding action K needed to bring the system into sliding mode

can be considerably high. This fact, together with the previous considerations about

the maximum achievable control bandwidth, generates oscillations in the control

signal with very high amplitude, that could damage motors and joint structures.

To better explain the relevance of the friction contribution inside the manipulator

model, in Figure 6.6 the torque required to control the TVP trajectory of joint 3 is

reported. As it can be noticed, the amount of friction that the controller needs to

compensate is at least equal to half of the total amount of torque that should be

supplied by τfw. This means that one of the main component of the manipulator

model is uncertain and to compensate it SMC should be tuned too aggressively.

Situation is even worse when wrist joints are analysed, because YuMi is not

equipped with motor brakes for them. Therefore, when the manipulator is off, it is

possible to move the last three joints freely and the perceived friction is quite strong.

If we add the fact that manipulator dynamics close to the end effector are not too

relevant (low inertia and gravity), we easily come up with a dynamic model which
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is almost totally uncertain, since it is mainly composed by the friction term.

As it will be seen in the next section, applying SMC directly without a rough

knowledge of the friction entity is not a good idea. That is why joint friction

estimation has been performed. Through a series of experiments, a friction model

has been fitted for each joint, with particular focus for low speed dynamics which

are typical of teleoperation applications. For a detailed report of this procedure, the

reader can refer to appendix B.

Once the friction model has been retrieved, it is used as an open loop feed

- forward contribute inside the inverse dynamics scheme. Doing so, the effect of

friction uncertainty is significantly reduced, allowing to reduce sliding mode gains

and obtain a more stable and predictable joint behaviour. Obviously, as every open

loop actions, it is fully based on the accuracy of the experiments used to identify

friction (their values become unreliable if operative conditions change).

Although very precise friction models have been presented in appendix B, experi-

ments proved that overestimation of the friction inverse response (decreasing viscous

coefficient at low speeds) causes high frequency oscillations around the steady - state

position. Indeed, no steady state can be reached and friction compensation becomes

useless. To overcome this issue, a simpler model, despite being less precise, has been

fitted:

Fv(q̇) =


τ+
c + κ+q̇ q̇ > q̇th

τ−c + κ−q̇ q̇ < −q̇th
1
2

[
τ
+
th−τ

−
th

q̇th
q̇ + τ+

th + τ−th

]
−q̇th ≤ q̇ ≤ q̇th

(6.13)

where κ+ and κ− are the viscous coefficients vectors, τ+
c and τ−c are the Coulomb

coefficients vectors and q̇th is the speed threshold adopted to linearise the friction

model (0.001 rad s−1). Thanks to this parameter, it is possible to avoid the disconti-

nuity in the standard friction response, ultimately decreasing chattering phenomena

caused by speed measurement noise. For speed values between q̇th and −q̇th, linear

interpolation has been performed (τ+
th = τf |q̇th and τ−th = τf |−q̇th) (Figure 6.7).

Identified values for the seven joints of the slave (left) arm are reported in ta-

ble 6.1. For the master arm this identification has not been performed, because joint
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joint n. τ+
c τ−c κ+ κ−

1 1.9 −1.9 0.05 0.05
2 1.5 −1.5 1.4214 1.2527
3 0.4 −0.35 0.3188 0.5255
4 0.55 −0.54 0.75 0.8
5 0.2289 −0.2543 0.0273 0.0279
6 0.1414 −0.2156 0.0318 0.0213
7 0.1033 −0.1135 0.0474 0.0436

Table 6.1: Identified coefficient for the simplified friction expression

friction introduces a damping coefficient which improves the human manipulability.

6.4 Impedance tracking

In this section, the decentralized controller results for the slave arm are presented.

These preliminary experiments are performed according to the following points:

1. Master (right) arm has been left with the internal ABB Proportional Integral

Derivative (PID) controller in a given position far from the left arm, in order

to not interfere with this one;

2. Slave (left) arm internal PID are disabled and an inverse dynamic control has

been performed through τfw in order to maintain it in the initial commanded

position;

3. The impedance control is given as control input v to the inverse dynamic

scheme, with error impedance profile defined as stated in equation 5.4;

4. According to the chosen parameters and the reference signal given as qref ,

controlled joints should perform the desired movements reaching the stable

final positions;

6.4.1 Step reference

In this case, qref is simply defined as the target joint positions that the manipulator

should reach starting from the initial pose q0. Acceleration and speed references are
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joint n. Ksmc (rad s−2) k1 (rad s−3) k2 (rad s−3)

1 10 20 10
2 10 20 10
3 5 20 10
4 15 14 5
5 130 120 80
6 80 120 80
7 120 120 80

Table 6.2: Tuning parameters chosen for the sigmoid SMC approximation and the
Super Twisting Algorithm in the step experiment

chosen equal to zero and the test is performed in order to check if the tracking

impedance profile imposed at each joint is followed by the manipulator or not. The

impedance controller is tuned so that the n decoupled closed - loop systems (5.4)

should have 2 stable poles in −1 (B̄ = 10I7, C̄ = 20I7 and ḡ = 10i7).

After a few trials, it has been noticed that the sliding variable defined in (5.6)

suffers from integral drift due to the presence of steady - state error. This effect

could make it insensitive to further reference changes or even leading to numerical

overflow, causing the robot to stop working. While in the next subsection this

problem has been removed by properly saturating the upper and lower bounds of

σ, for this earlier experiments it has been preferred to deactivate σ integral part.

Doing so, joint dynamics converges to n decoupled first order linear systems, that

can be found by imposing:

σ = B̄ ˙̃q+ C̄q̃ = 20I7 ˙̃q + 10I7q̃ (6.14)

equal to zero. These systems have a single pole equal to−0.5 and their time evolution

is represented in Figures 6.9, 6.10 and 6.11 (blue lines). In these figures, joint

variables evolution in also presented, with different controllers applied to the scheme.

Firstly, standard impedance controller has been tested (green line). Since it is not

equipped with any type of disturbance rejection, the tracking performance is very

poor. Then, sliding mode is added to the structure, improving the system robustness

and, consequently, the tracking performance.

Given the bandwidth limitations due to the input filter, chattering will surely
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joint n. impedance (rad) sigmoid SMC (rad) STA algorithm (rad)

1 0.2718 0.0051 0.0036
2 0.2562 0.0034 0.0033
3 0.0248 0.0137 0.0016
4 0.7825 0.0434 0.0111
5 0.6120 0.0101 0.0061
6 0.1336 0.0050 0.0017
7 0.1426 0.0179 0.0118

Table 6.3: RMS error associated to impedance control, sigmoid SMC control and
Super Twisting Algorithm for step response trajectories

occur if standard SMC is directly applied. Therefore, chattering avoidance methods

have been implemented (STA and sigmoid SMC with δ = 0.5). To remove the

reaching phase, ISMC is implemented as well. The tuning parameters for each joint

can be seen in Table 6.2.

The overall control torques imposed as τfw are visible in Figure 6.12 for the

first four joints. This choice has been done to empathize the capability of STA to

maintain torque ripples confined in the initial response transient, reaching steady

- state values. This is not the case for sigmoid SMC, whose ripples continue also

when steady state is reached.

In Figure 6.13, evolution of the sliding surfaces for the first four joints is re-

ported. Also in this case, it is interesting to notice that sigmoid SMC guarantees

only boundedness of the surface, while STA imposes its value to zero. This is done

at the price of increasing oscillations around the sliding surface.

For a more quantitative comparison, in Table 6.3 the RMS error between the

three proposed controllers and the reference ideal trajectory have been computed.

Thanks to SMC, it is possible to gain more than an order of precision with respect to

the impedance controller alone. Between the two methods of chattering avoidance,

STA is the best in terms of tracking accuracy, which is however very close to the

one achieved by the sigmoid SMC.

However, when STA is applied to systems affected by high static friction levels (as

in the case of YuMi robotic arm), it tends to suffer from stick - slip phenomena due to

the integral of the sliding surface which composes its formulation (3.59). Although
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Figure 6.8: When friction at low speed is very high, integral action can cause stick
- slip phenomena to occur

that term is the one which guarantees its asymptotic stability, the impossibility of

reaching the exact steady - state value in the position response triggers a limit cycle

around that value (Figure 6.8). This effect is more relevant for wrist joints, since

they are the ones where friction contribution is dominant with respect to the rest of

the dynamic model. For this reason, in the next subsection sigmoid approximation

SMC has been adopted instead of STA. Despite its lower precision, it does not suffer

from stick - slip (it does not contain any integral action). Moreover, it is simpler

to tune. Since the tracking effort required for smooth trajectories is smaller than

the one for step reference, Ksmc can be raised enough to obtain a better tracking

error than the one shown in Figure 6.9 for sigmoid SMC. This obviously at the price

of a more oscillating response, which represents however the control trade - off for

systems affected by high friction values (stick - slip vs chattering).
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Figure 6.9: 1st, 2nd, 3rd joint positions for the step reference impedance tracking
experiment
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Figure 6.10: 4th, 5th, 6th joint positions for the step reference impedance tracking
experiment
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Figure 6.11: Joint position of the 7th joint for the step reference impedance tracking
experiment
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Figure 6.12: Feed - forward torque applied to the first four joints by (a) sigmoid
SMC controller (b) Super Twisting Algorithm controller
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Figure 6.13: Sliding surfaces for the first four joints of the step reference impedance
tracking experiment



6.4 Impedance tracking 181

joint n. Kd (s−1) Kp (s−2) Ksmc (rad s−2)

1 8 16 2
2 12 36 3
3 16 64 5
4 16 64 5
5 70 5 20
6 65 3 20
7 70 7 20

Table 6.4: Tuning parameters chosen for the impedance controller and the sigmoid
SMC approximation in the TVP trajectory experiment

6.4.2 Interpolated TVP reference

By looking at Figure 6.12, it is possible to observe that the overall control torque

required for the step response is very oscillating, also when adopting chattering

prevention algorithm. This vibration, that is due to the limited bandwidth of the

actuation channel, leads to gear wear as well as motors noise.

This effect is partially associated also to the performed test (step response),

which causes a big initial error on the joint variables and consequently generates high

amplitude torque commands. Moreover, this kind of input cannot happen when the

teleoperation system is connected. Indeed, in this case the slave controller receives

reference signals from the master manipulator at each sampling time, generating a

“smooth” trajectory (this obviously depends on the operator’s reactivity).

According to these considerations, a new set of experiments have been performed,

where the new reference input trajectory is an interpolated TVP signal. Since error

is updated every sample, impedance parameters associated to the equivalent control

“lose” their error dynamics meaning, becoming PD tuning coefficients:

veq = q̈ref − B̄−1C̄ ˙̃q− B̄−1ḡq̃ = q̈ref −Kd
˙̃q−Kpq̃ (6.15)

The chosen values forKp andKd, as well as the SMC gainKsmc are reported in

Table 6.4. For the sigmoid approximation, value of δ equal to 0.5 has been chosen.

As usual, ISMC has been implemented to enforce the sliding mode at the beginning

of the experiment.
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joint n. impedance (rad) sigmoid SMC (rad)

1 0.0307 0.002 157
2 0.0301 0.000 510
3 0.0884 0.002 422
4 0.0331 0.000 364
5 0.1163 0.002 511
6 0.2274 0.002 344
7 0.2328 0.001 351

Table 6.5: RMS error associated to impedance and sigmoid SMC control for TVP

From Figure 6.14 to 6.20, the tracking performance of the proposed controller, fed

with TVP reference signal, is evaluated. For each joint, the angular position response

of the impedance controller is reported, together with the SMC one. Although less

pronounced than the previous subsection, also in this case the improvement of sliding

mode controllers with respect to impedance ones is significant.

As we would expect, now torque profiles are smoother than the ones generated

by step reference, without strong oscillations associated to high values of Ksmc. This

has become possible thanks to the additional speed and acceleration feed - forward

terms (q̇ref , q̈ref ) generated by the input trajectory, that allowed more aggressive

impedance tuning (low disturbance rejection required). With a little increment in

the control torque contribution, tracking accuracy is greatly improved.

The last plots represent the joints sliding variables during the response transient.

Due to the approximation of the signum function, sliding mode is not perfectly

enforced on the system. Moreover, steady - state deviation from the sliding surface

can occur, due to the presence of high stiction values. By looking at Figures 6.18

and 6.19, it is possible to notice higher deviations of wrist joints sliding variables with

respect to the arm joints; this effect confirms the increasing uncertainty that SMC

needs to compensate when joints are close to the end effector (friction contribute

becomes dominant in the model equations).

Ultimately, the evaluation of the RMS error between the standard impedance

control and the sigmoid SMC is done in Table 6.5. Their values are significantly

smaller than the step reference case. Moreover, tracking accuracy of SMC is quite

high (tenths of degree).
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Figure 6.14: Impedance tracking with TVP profile for the first joint
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Figure 6.15: Impedance tracking with TVP profile for the second joint
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Figure 6.16: Impedance tracking with TVP profile for the third joint
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Figure 6.17: Impedance tracking with TVP profile for the fourth joint
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Figure 6.18: Impedance tracking with TVP profile for the fifth joint
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Figure 6.19: Impedance tracking with TVP profile for the sixth joint
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Figure 6.20: Impedance tracking with TVP profile for the seventh joint
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Figure 6.21: Conceptual interaction between the master and slave manipulators in
order to perform the teleoperation tracking task

6.5 Teleoperation experiment

Now that a reasonable slave controller has been implemented, it is possible to per-

form teleoperation tasks by using the master arm as a reference generator. Since

this device will be moved freely by the human, it should be controlled in order to

compensate the main dynamics effects. That is why, for this experiment, inverse

dynamics has been performed also on the master device. For the time being, no

haptic feedback has been returned to the operator.

The conceptual operative scheme of the two manipulators has been defined by

the Petri Net (PN) structure presented in Figure 6.21. The initial state of the two

arms Sm1 and Ss1 are the systems rest position, when the robot is deactivated.

When event e occurs, the two transitions associated to it are enabled and they can

fire, leading the master and slave devices to a state where they share the same

coordinates (according to the specular principle in section 6.1). Once both have

reached such position (synchronization), effective teleoperation can start. The slave

system goes in tracking mode (Ss3), while master system remains in Sm2, waiting
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to interact with the operator. Ultimately, if an error during the teleoperation task

is detected (out of joint bounds, too high speeds, etc.), both systems switch into a

failure mode, where they remain until the operator manually resets the experiment.

Tracking performance for each joint is reported in Figures 6.22 and 6.23. Ref-

erence signal is given by the master device angular positions, while the slave is

controlled adopting the strategies presented in subsection 6.4.2. The tracking error

between these two signals is shown in Figures 6.24 and 6.25. Bilateral motion con-

trol activation starts at 32 s (dashed line). Any mismatch between the master and

slave positions before that time are due to poor tracking accuracy in the internal

ABB controllers (as in Figure 6.22c).

The first noticeable fact is that the error fluctuation (in particular for the first

three joints) is much greater than the average error analysed in subsection 6.4.2.

This is due to several factors:

• Big joints are the ones which suffer mostly from joint ripples, therefore their

control action cannot be too aggressive (Ksmc should be set lower than the

required one). If more tracking accuracy is needed, limited actuator bandwidth

causes oscillations in τfw which ultimately leads to vibration and noise;

• By looking closer at the time scale, teleoperated movements generates slower

reference signal with respect to the TVP experiment. Thus, static friction

is very relevant and open - loop compensation is not good enough for this low

dynamic range. Ultimately, this causes loss of tracking accuracy;

• If joint gains are set to high values to cope with low speed uncertainty, un-

stable behaviour occurs if the operator moves the master very fast, due to

high torque oscillations;

For all these reasons, a bit of accuracy has been sacrificed in order to obtain

a smooth teleoperation device independently from operator capabilities. Moreover,

this set - up grants a safer interaction with the external environment, allowing a

certain tracking error tolerance without requiring high torques to compensate for it.
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Figure 6.22: Bilateral motion, joint positions: first, second, third
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Figure 6.23: Bilateral motion, joint positions: fourth, fifth, sixth
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Figure 6.24: Bilateral motion, tracking error: first, second, third



6.5 Teleoperation experiment 195

30 35 40 45 50 55 60 65 70

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

(a) fourth joint

30 35 40 45 50 55 60 65 70

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(b) fifth joint

30 35 40 45 50 55 60 65 70

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

(c) sixth joint

Figure 6.25: Bilateral motion, tracking error: fourth, fifth, sixth
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Chapter 7

Conclusions

In this thesis, a comprehensive overview of bilateral teleoperation nonlinear control

strategies has been proposed. The theory validated through simulation has been

developed in order to guarantee stable interaction between the slave device and the

external environment, while performing teleoperation tasks. This system allows to

improve the safety of the remote surroundings also if the operator has not perfect

knowledge of the slave set - up. This is typically the case when only vision sensors are

adopted to help the human to perform the remote task (blind sides). Through haptic

feedback, the operator perception of the obstacles faced by the slave is enhanced.

Thanks to this additional information, he/she will be able to take the correct decision

without damaging the slave environment.

Due to the large scope of this thesis, not all the aspects have been completely

dealt in this dissertation. In particular, experimental application has been lim-

ited due to the huge differences between the simplified simulated model and the

real robotic manipulator. As it can be seen in chapter 6, only a simplified con-

trol scheme over the complex theoretical analysis has been implemented. This has

been motivated by the great difficulties encountered in controlling the joint motion

through the ABB feed - forward torque channel, disabling the internal manipulator’s

loop. This choice has introduced in the proposed schemes a lot of uncertainties

with respect to the parametric mismatch assumed in simulation, requiring a strong

simplification of the theoretical aspects in order to obtain reasonable results.

Nevertheless, it has been shown that SMC can be effectively applied to ser-
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vomechanisms, improving significantly the performance of a linear controller. This

represents a valid alternative with respect to the standard implementation of

impedance controllers as a reference to the internal control loops. Furthermore, all

the theory developed for the 1 DOF case can be extended to each operational space

coordinates thanks to the results achieved in chapter 5.

However, these considerations do not invalidate the theoretical assets presented

in chapters 3 and 4, which are valid for a wide variety of teleoperation schemes.

Their results prove that it is possible to design a bilateral teleoperation system that

maximize transparency while retaining stability properties.

Moreover, the capabilities of the decentralised SMC scheme to guarantee a sta-

ble free motion teleoperation over a significant temporal window has been tested

experimentally. This can be seen as a starting point for a more detailed analy-

sis of nonlinear control strategies applied to complex teleoperation systems, which

nowadays are not very widespread in the industrial field.

7.1 Future developments

The experimental analysis performed on the robotic arm has been proved to be

feasible but limited. In particular, the n DOFs extension properties have not been

fully exploited. Therefore, future research steps can be the following:

• Implementation of the operational space control strategy on the real robotic

arm and assessment of its robustness property. This should be done in order

to extend the global stability results (analysed for the 1 DOF case) to each

coordinate of the operational space. This is also fundamental in order to

help the operator understand the external environment faced by the slave

manipulator;

• Inclusion of the passivity observer presented in chapter 4 to monitor the energy

flows between the master and slave robotic arms. During the experiments, it

has been noticed a strong dependency between system oscillations and imposed

impedance relationship. Consequently, desired dynamics have been forced to
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appropriate values of the parameters. If it is necessary to alter those values

to guarantee passivity, SMC could not be able to track the desired impedance

any more due to the excessive uncertainties;

• To reduce the pressure on SMC and allow impedance shaping, friction estima-

tion could be done in real time and adaptively, instead of the static open - loop

identification proposed in this thesis. If on - line adaptation is introduced, care

must be taken in the computation of the external forces through the residual

estimator, since they will be seen by the friction observer as friction contributes

and it will try to cancel them out;

• Another interesting variation to the proposed algorithm could be represented

by introducing adaptation also to the sliding gain Ksmc. This consideration

comes from the fact that the static friction uncertainty is much greater than

the dynamic one. Since Ksmc should be tuned according to the maximum level

of disturbance acting on the system, often its value is overestimated, causing

unneeded oscillations. In these situations it would be better to allow a large

Ksmc at low speed and then reduce its value according to the lower dynamic

uncertainty;

• Stability of the environmental interaction has not been assessed experimen-

tally, therefore in future studies it will be necessary to introduce external forces

at the slave end effector and properly map them to the master device, in order

to verify the theoretical results that have been exploited in chapter 4.



200 Conclusions



Appendix A

Differentiation procedures

In the numerical analysis field, great attention has been devoted to robust and com-

putationally efficient ways to retrieve derivatives of a given function f(t). Since

ḟ(t) is related only to the function local properties, such methods are easily imple-

mentable in their on-line versions, which are capable to compute real-time deriva-

tives of an incoming (maybe noisy) signal.

A.1 Introduction

Let’s start by assuming that the input signal to our differentiator is derivable at

time t. More precisely, ḟ(t) has to satisfy the Lipschitz condition with a value of

L > 0

Definition A.1. (Lipschitz condition) A function ḟ : [a, b] → R is said to satisfy

the Lipschitz condition if there exists a constant L > 0 such that

|ḟ(t)− ḟ(t′)| ≤ L|t− t′| ∀t, t′ ∈ [a, b] (A.1)

The smallest constant L satisfying equation (A.1) is called Lipschitz constant.

If f(t) is regular enough, Lipschitz condition holds for values of L greater than

a given L̄, which can be computed a priori if the signal bandwidth is known. If

no information is available on f(t), it is possible to choose L̄ based on the Nyquist
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frequency at which the signal has been sampled. Doing so, we are sure that defini-

tion A.1 will hold ∀t ≥ t0 initial time.

Once differentiability of f(t) is guaranteed, it’s possible to apply a variety of

finite difference methods, as proposed in [62], which can be rewritten as first order

linear filters using Laplace transform. This way of proceeding coincides with the

classical numerical differentiation approach and it leads to a series of problems.

Such issues may particularly arise when the system has high frequency information

or it is affected by noise [48]:

• Significant phase lag at the output derivative, as well as an attenuation due

to the filtering effects of the differentiator;

• Error doesn’t tend to zero, also in the presence of vanishing noise, at any

fixed time;

Thanks to these observations, we can state that there exists a trade-off between

noise (high frequency filters) and time delay (low frequency filters) affecting the

output derivative [8]. This fact motivates the research of exact and robust differen-

tiators, which can guarantee the convergence of ḟ(t) with finite transient time.

A.2 Levant differentiator

Consider the problem of tracking a function f(t), using as control variable its deriva-

tive ḟ(t). This objective can be formalized by considering the following first order

state equation

ẋ = u (A.2)

where x represents our estimate of function f(t). Let’s define our sliding surface S

as the tracking error between the function and its estimation. The idea is to find

a control variable u which is capable to impose on system (A.2) (after a finite time

transient process) the following two-sliding modes:

S = x− f(t) = 0 Ṡ = ẋ− ḟ(t) = u− ḟ(t) = 0 (A.3)



A.3 Higher order differentiators 203

using only the on-line measure of function f(t) (ḟ(t) is considered to be an unmea-

surable quantity).

If we look closely at the problem formulation, we can notice that the differen-

tiation task is analogous to the standard second order sliding mode control one.

Therefore, it makes sense to apply second order control techniques to obtain the de-

sired estimate convergence. A possibility is to use the modified 2-sliding algorithm

proposed by Levant and adapted for estimation processes [22]:

ż0 = −λ0L
1/2|z0 − f(t)|1/2sign(z0 − f(t)) + z1

ż1 = −λ1Lsign(z0 − f(t))
(A.4)

If we desire to estimate only the first derivative of f(t), it’s possible to apply

a very crude approximation to the general convergence criterion theorem [48] and

derive a sufficient condition for the asymptotic stability of the previous non-linear

dynamic system. If parameters λ0, λ1 and L are chosen such that the following

inequalities hold

λ1 > 1 ∧ λ2
0 ≥ 4

λ1 + 1

λ1 − 1
(A.5)

the estimator state z = [z0, z1]T tends in finite time to the input function f(t) and

its derivative ḟ(t). A complete stability analysis of Levant differentiator lies outside

to the aim of this work. If the reader is interested in a more detailed analysis

of observer convergence, he/she can refer to [48, 22]. Let’s just say that in more

complex cases it is not possible to analytically find stability bounds for the Levant

differentiator and it’s necessary to rely on computer simulation.

A.3 Higher order differentiators

The Levant differentiator structure can become recursive. This means that it is

possible to impose higher order sliding manifolds simply by enlarging the observer

state up to the n-th derivative of the input function f(t) (f (n)(t)). This feature

is noteworthy, because by using a standard linear differentiation, each step adds

approximations and we cannot iterate our estimation for more than two - three
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times. Instead, Levant n-th order differentiator inherits the property of finite time

convergence, guaranteeing vanishing error for the maximum estimated derivative.

The generic expression of the higher order Levant differentiator is:

ż0 = ν0, ν0 = −λ0L
1

n+1 |z0 − f(t)|
n

n+1 sign(z0 − f(t)) + z1 (A.6)

ż1 = ν1, ν1 = −λ1L
1
n |z1 − ν0|

n−1
n sign(z1 − ν0) + z2

. . . . . .

żn−1 = νn−1, νn−1 = −λn−1L
1
2 |zn−1 − νn−2|

1
2 sign(zn−1 − νn−2) + zn

żn = νn, νn = −λnLsign(zn − νn−1)

Advantages of Levant recursive definition can be resumed through the following

two points:

• each state can be tuned independently using a single parameter λi, without

influencing other states’ dynamics;

• it may be convenient to augment the differentiator’s order to improve the

computation of lower degree derivatives. This is because the last term of

the non-linear state chain contains a sign function which may cause chattering

in the estimated variable (signal deterioration). If another derivative is added

to the differentiator, discontinuity is filtered out and estimation is smoothed;

The last statement may not be valid any more in the case of noise affecting the

system, because increasing the derivative order may introduce more uncertainty in

the estimation.

A.4 Algorithm testing results

In order to prove the superior performance of Levant differentiator with respect to

standard linear observers, a simulation via MATLAB - Simulink R© environment has

been carried out. The chosen input function to be differentiated is

f(x) = sin(t) + 0.01 cos(10t) (A.7)
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(a) f(x) (b) ḟ(x)

Figure A.1: Time evolution of input signal (A.7) and its theoretical derivative (A.8)

and its analytically exact first derivative is equal to

ḟ(x) = cos(t)− 0.1 sin(10t) (A.8)

Levant differentiator is compared with discrete-time linear filters which emulate

the behaviour of an ideal differentiator in a certain frequency range. They are

retrieved from their dual continuous versions via Tustin discretization method. The

region where a linear filter is a good approximation of the ideal differentiator will

be called differentiation bandwidth.

• The first filter has a pole at ωp = 100 rad/s, which is comparable to sys-

tem’s Nyquist frequency (ωN ' 780 rad/s). Its differentiation bandwidth is

[0,50] rad/s;

HHF (z) =
250

3

z − 1

z − 2/3
(A.9)

• The second filter has a pole at ωp = 1 rad/s, approximately one hundredth of

system’s Nyquist frequency. Its differentiation bandwidth is [0,0.5] rad/s;

HLF (z) = 500
z − 1

501z − 499
(A.10)

Levant differentiators are not tuned following inequalities (A.5) because they

result into excessively conservative parameters choices. The chosen approach is to

adapt Levant suggested values [48] verifying the generic convergence theorem validity

via computer simulation. Before computing λi, it is necessary to give an estimation
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Figure A.2: Bode diagrams of HHF (z) and HLF (z) compared to the ideal differen-
tiator frequency response

of the Lipschitz constant. An effective way to properly compute L which fulfils the

definition A.1 consists into overestimating its value, implement the filter, check the

correctness of differentiation and try to reduce it up to a reasonable limit while

maintaining convergence [48]. Another method that can be employed in simulation

consists in computing the second derivative of f , since L must satisfy the following

inequality [8]

sup
t≥t0

∣∣∣∣d2f(t)

dt2

∣∣∣∣ ≤ L (A.11)

Since d2f(t)
dt2

= − sin(t)−cos(10t) and its superior limit is equal to 2, it is sufficient to

choose L > 2 as Lipschitz constant. For simulation comparison, two differentiators

have been set up

• A first order Levant differentiator following equation (A.4).

• A second order Levant differentiator, derived from the n-th order one ((A.6))
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L λ0 λ1 λ2

1st order Levant 10 1.1 1.5
2nd order Levant 10 1.1 2 5

Table A.1: Tuning parameters for the two implemented Levant differentiators

by imposing n = 2. Observed state is z1;

ż0 = ν0, ν0 = −λ0L
1
3 |z0 − f(t)|

2
3 sign(z0 − f(t)) + z1 (A.12)

ż1 = ν1, ν1 = −λ1L
1
2 |z1 − ν0|

1
2 sign(z1 − ν0) + z2

ż2 = ν2, ν2 = −λ2Lsign(z2 − ν1)

The tuning parameters are shown in table A.1.

The performed tests can be divided in the following subcategories:

1. Differentiation of f(t) without disturbances. The input signal is given as

figure A.1 and the four proposed configurations (low frequency - high frequency

linear filters, 1st and 2nd order Levant differentiators) are compared by looking

at their RMS error with respect to the ideal response;

2. Differentiation of f(t) with input disturbance. A band-limited white

noise, with flat Power Spectral Density (PSD) and noise power equal to

1× 10−5 W, is added to the sinusoidal signal (A.7) and it is given as input to

the differentiators. Same comparisons of point 1 are performed;

By looking at figures A.3 and A.4 a lot of interesting conclusions can be drawn.

First of all we can clearly see the trade-off given by linear differentiation. If we

decide to use a low frequency approximation of the ideal differentiator, we obtain

a more stable estimation of ḟ(t) at the price of a poor accuracy also when we have

at our disposal good signal information. Opposite reasoning can be done on the

high bandwidth filter, which has an accuracy degree of the same order of the Levant

differentiator when input signal is clear, but it shows all its instability when noise

affect measurement (even small amounts can cause totally unreliable observations).
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Figure A.3: Simulation comparison between linear and non-linear algorithms with-
out input noise
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RMS error no noise noise

Low bandwidth filter 0.4975 0.5033
High bandwidth filter 0.0100 4.5472
1st order Levant diff. 0.0184 0.1745
2nd order Levant diff. 0.0026 0.1635

Table A.2: Comparison of RMS errors for the four tested differentiators, with and
without noise

Non-linear differentiation techniques demonstrate their high convergence rate

both in the noise-free and disturbed case. In particular we can notice in figure A.3b

that the estimate converges to the theoretical curve without introducing time delay.

Moreover, the smoothing effect of higher order extension is clearly visible, since 1st

order Levant estimate suffers from chattering due to the discontinuity. Absence of

phase lag is even more evident in figure A.4b, where non-linear differentiators are in

phase with their reference despite uncertainty introduced by disturbances.

Finally, a numerical evaluation of RMS errors between ideal and estimated

derivatives is performed.

RMS =

√√√√ 1

N

N∑
i=1

(
˙̂
f(i)− ḟ(i))2 (A.13)

Results are reported in table A.2.
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Friction identification

Among all the non-linearities that affect a manipulator dynamics, one of the most

uncertain is surely the friction torque. Due to gear reduction stages and relatively

slow velocities during common teleoperation procedures, friction may become com-

parable or even bigger with respect to the actuation torque that is necessary to

perform the motion control.

In order to compensate, at least partially, its effect, we need to quantify joint

friction through experimental tests. In this way, we can relax robustness constraints

on joint controllers, reducing the overall control action required and improving the

response.

The following sections report the identification and validation procedure adopted

for the 7 DOFs ABB R© IRB 14000 YuMi right arm. Wrist joints of this robot are

the most critical from the friction point of view, because they are intended to be

freely moved by the operator during end effector pose definition. Therefore, they

show considerably high friction, which, in addition to small inertia, make them

particularly difficult to control.

B.1 Friction - velocity map identification

Before choosing an a-priori friction model, it’s better to look at the relationship that

intervenes between friction torque and the joint speed, namely the friction - velocity

map. This will give us a hint on the relevant phenomena which occur during joint
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Figure B.1: Reference torque profile and measured joint speed during friction iden-
tification experiment

motion, allowing a more appropriate friction model choice.

According to [42], a proper strategy to generate the map consists in feeding the

analysed joint with a low - frequency, sinusoidal torque input, while the remaining

manipulator is locked. Doing so, we can reach joint travel limits and inspect a

wider range of situations with respect to the classical “constant speed” experiments.

Moreover, if the sinusoidal frequency is sufficiently low, Coriolis and centrifugal

effects may be neglected (reduce uncertainties coming from robot dynamics).

After a few trials, the chosen input torque takes the following structure

τref (t) = 0.3 sin
(π

2
t
)

Using this signal we are able to span the full position range of the seventh joint

([−π,π] rad), reaching also the available speed limit (≈ 8 rad/s). The cycle is iter-

ated ten times in order to gather more data and check the trajectory repeatability.

Experimental results are displayed in Figure B.1.

During the test, position is also logged, while the acceleration is retrieved by

direct differentiation of the filtered velocity. Once all the kinematic quantities are

acquired, we can straightforwardly apply the dynamic model in order to compute

the friction torque τf .

τf = τref − bi(q)q̈ − ci(q, q̇)q̇ − gi (B.1)
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Figure B.2: Experimental friction curve obtained with the procedure described in
section B.1

where subscript i indicates the i-th joint whose friction is identified, bi(q) and

ci(q, q̇) are, respectively, the i-th row of the inertia matrix and the i-th row of the

Coriolis - centrifugal matrix. gi is the i-th element of the gravitational vector.

Once τf has been computed, we can finally plot the experimental friction - ve-

locity map, which is visible in Figure B.2.

B.2 Friction model choice

Now that the friction profile is available, it makes sense to replicate its behavior

using an appropriate friction model. According to literature [42] [69], they can be

subdivided mainly into two categories:

• Static models: τf is represented by a non-linear curve in the speed - torque

domain and it is fixed with respect to time. These models capture the main

friction aspects and their parameters are quite easy to be identified. Their im-

plementation is immediate (given joint speed and position, the curve’s equation

returns the friction value). They cannot represent time - dependent phenom-

ena;

• Dynamic models: τf is computed based on the evolution of a dynamic sys-
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tem’s state variable. Doing so, it’s possible to properly represent complex

friction phenomena, such as hysteresis and pre-sliding displacement. These

models require the solution of differential equations during manipulator’s duty

cycle. Therefore, they are computationally more expensive and their evolution

can be hardly predicted. Since usually non-linear dynamic systems are chosen,

also the estimator stability is difficult to be guaranteed;

If we look at Figure B.2, it’s clear that the friction model we have to choose should

model the following effects:

1. Coulomb friction τc: it’s the constant amount of torque that is required to

move the joint at any velocity. Its sign is determined by the speed’s direction

(Figure B.3a);

2. Viscous friction τv: it models the dependency between speed and friction. In

our case, such relation is linear and can be described using a single coefficient

τv = κq̇ (Figure B.3b);

3. Stiction torque τs: it represents the amount of static friction that we need

to overcome in order to rotate the joint, starting from zero velocity condition

(Figure B.3c);

4. Stribeck effect α: it describes the transition phase between static and dy-

namic friction torque, generating a negative viscous coefficient at low speeds

(Figure B.3d);

All the previous effects can be described using a static model and its curve can

be directly interpolated from the experimental data. In particular, equation

τf = [τc + (τs − τc)e−α|q̇|] sgn q̇ + κq̇ (B.2)

which is called Stribeck curve, is suitable to model the majority of characteristics

underlined by the friction - velocity map.

The only relevant aspect which has been neglected in Figure B.2 is the hysteresis

shown between increasing and decreasing velocities. As we have said before, this
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Figure B.3: Static friction models that match the properties required by the exper-
imental data

property cannot be obtained using a static model and thus should require a more

complex dynamic one.

One of the most popular dynamic friction representations is the LuGre model.

In its simpler formulation, it can be described by the following non-linear SISO

system [41]:

ż = q̇ − σ0|q̇|
τc + (τs − τc)e−α|q̇|

z (B.3)

τf = σ1ż + σ0z + κq̇

where z is the internal friction state, σ0 and σ1 describe the entity and shape of the

memory effect and the remaining parameters have been already introduced in the

static friction model.

To generate the estimated friction trajectory for this kind of model it’s necessary
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Figure B.4: LuGre model estimated friction evolution. Difference between increasing
and decreasing speeds is clearly visible

to simulate the dynamic system. Particular attention should be placed on the choice

of σ0 and σ1 as well as the simulation sampling time, in order to avoid unstable

behaviour. LuGre friction evolution can be inspected in Figure B.4.

As it can be seen, while the model is improved in the neighbour of zero speed, it

still lacks to model the real behaviour for higher velocities. In other words, hysteresis

in LuGre model is confined only to a small portion of the friction - speed map, which

is different from the behaviour observed in our experimental data. Other drawbacks

of this model are related tomanipulator implementation (robot sampling time is slow

compared to estimator convergence) as well as difficulty in identifying parameters

(they have a weak physical meaning). For these reasons, the friction model has been

implemented based on the Stribeck curve (Equation (B.2)).

B.3 Joint elasticity

Even though static friction carries a great number of advantages, it still lacks in

representing the high velocity hysteresis underlined in the experiment. To investigate

more deeply such phenomenon, a new test has been performed on the manipulator’s

joint.

Instead of giving a direct sinusoidal input torque as in Section B.1, the axis PID

control loop has been kept active; its reference has been chosen in order to span

the whole angular range at fixed speed q̇0
j . Doing so, we are guaranteeing that the
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Figure B.5: Friction experiment performed to analyse joint elasticity

viscous friction contribution stays constant throughout the experiment (except for

initial and final transients), leaving hysteresis as the only variable component.

If friction had no memory, we should observe a flat characteristic for every en-

countered position. Instead, we observe a positive or negative gradient in the friction

torque while the analysed joint spans different angular positions (Figure B.5). Also

in this case, to compute τf (B.1) has been employed, substituting the sinusoidal

contribute with the internal control input.

In view of the above, hysteresis effect can be explained by assuming a spring-like

behaviour of the joint. Such position dependency is probably due to the internal

cable rooting, which is put in tension or relaxed according to the different joint

orientations.

This phenomenon can be easily approximated using a linear torsional spring,

neglecting other non-linear effects such as dead zones or saturations. If we add

this contribution to the static friction model (B.2), we can obtain a reasonable

approximation of the experimental data acquired in Figure B.2.

τf = [τc + (τs − τc)e−α|q̇|] sgn q̇ + κq̇ + η(q + qo) (B.4)

where η is the torsional spring stiffness, while qo is a constant parameter which

represents the angular position of the spring at rest. The term ηqo generates a friction

offset on τf , therefore it has the same effect as τc. Based on the test performed

in Section B.1, the calculated friction offset should be equal to τc + ηqo; so, τc
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Figure B.6: Graphical representation of the Stribeck curve with added torsional
spring, as shown in Equation (B.4)

has to be obtained by subtracting the spring contribute and qo takes the value

of the angular position at which such offset is computed. However, since spring

contribute is marginal with respect to the Coulomb effect, friction offset is ≈ τc and

η(q + qo) ≈ ηq.

B.4 Parameter identification

Once the model has been chosen, we need to identify its parameters through the

experimental data collected in sections B.1 and B.3. Starting from Equation (B.4),

we can immediately notice that it cannot be expressed as a linear combination of

the parameters, due to the presence of the exponential coefficient α. Therefore, it

is convenient to rely on the physical meaning of each term, as proposed in [42].

First of all, we need to identify the viscous friction coefficient κ, for both positive

and negative speeds. If we consider high velocities, we have that e−α|q̇| → 0 and the

friction curve can be approximated as

τf ≈ τc sgn q̇ + κq̇ + ηq

Moreover, when q̇ is increasing, displacement contribution ηq is small with respect

to the speed one and the hysteresis effect does not yet take place. This is motivated

by the fact that speed transient is much faster than the position one. Consequently,
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the spring behavior can be neglected and the expression further simplified:

τf ≈ τc sgn q̇ + κq̇ (B.5)

Expression (B.5) describes two straight lines, one for the positive and one for the

negative speed - friction half-plane. To be more precise, both τc and κ can be split

according to their sign

τf ≈

τ
+
c + κ+q̇ q̇ ≥ 0

τ−c + κ−q̇ q̇ < 0

(B.6)

Parameters identification is now straightforward, since we just need to extrapo-

late, using least square method, the two linear relations from an appropriate segment

of the experimental data (high velocity, small displacement). Graphical represen-

tation of this process is available in Figure B.7, while numerical values of the four

identified parameters are reported in the first two rows of Table B.1.

For stiction coefficients τ+
s and τ−s the procedure is simpler. Since they determine

the positive (negative) amplitude of the static friction peak, we can localize them

by considering the data collected when speed is very close to zero. once selected, we

can extract the maximum (minimum) value reached at each cycle and average them

(Figure B.8).

Last static parameter left to be identified is the exponential coefficient α. This

number is related with the inverse response of the friction curve at low joint speed.

In particular, it can be approximated by the inverse of Stribeck velocity vs, which is

the lower point reached by the friction curve, before starting to show a linear viscous

behaviour.

Knowing that, a rough estimate of α can be obtained by looking at the friction -

velocity map. First, let’s define a positive and negative threshold to split the linear

viscous behaviour from the non-linear stiction one. The inverse of that threshold

will be chosen as α. Computed values of α and τs are reported in Table B.1 and

their graphical interpretation is explained in Figure B.8.

Now that we have concluded static friction curve estimation, we are left to eval-

uate joint elasticity to complete our process. For a correct η computation, we need
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Figure B.8: Identification of stiction torque τs and inverse Stribeck speed α. Red
dots shows the stiction for each cycle, while red area represents the inverse response
phase

Positive speed Negative speed

κ 0.0214 0.0253
τc 0.1386 −0.1008
τs 0.1714 −0.1870
α 4 4
η 0.0183 0.0147
q̇th 0.005 −0.005

Table B.1: Experimental identified parameter values

to rely on the experiment done in section B.3, which underlines, in Figure B.5b, a

linear relationship between friction torque and joint position.

As we have done for the viscous coefficient, also in this case we can proceed

using least square method to retrieve the two straight lines from the empirical data.

Result of this procedure is shown in Figure B.9, while coefficients are reported in

the last row of Table B.1.

B.5 Implementation and validation

The conclusive section of this appendix deals with the realization of a feed-forward

friction torque compensator, which will partially remove joint model uncertainties.

In this way, the sliding mode controller is allowed to use a smaller gain, improving
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Figure B.9: Identification of joint elastic stiffness and comparison with the experi-
mental result

stability properties as well as attenuating chattering.

Before directly inserting equation (B.4) into the manipulator’s code, we need to

deal properly with the zero-speed discontinuity shown by our model. If we choose

to keep the signum function as it is, measurement noise or any other fluctuation

source will cause strong vibrations at joint level, due to the high frequency switching

between positive and negative feed-forward torque.

A possible solution to this problem is the implementation of symmetric thresholds

on joint speed, deactivating friction compensation when we are inside a chosen

interval. Attention should be placed on the choice of these limits. If they are too

high, friction compensation becomes useless since where there is more need of it

(high static friction) we are not supporting the controller at all. On the other hand,

too tight thresholds do not attenuate chattering.

A good compromise between smooth and reactive response can be reached

through a linear interpolation between the two branches of the friction curve.

Doing so, we assure the continuity of the compensation while reducing solicitations

at zero speed. This reasoning leads to equation (B.7). The main drawback of this

approach is the progressive loss of the Stribeck effect when the threshold is enlarged,

as shown in Figure B.10.
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τf =

 [τc + (τs − τc)e−α|q̇|] sgn q̇ + κq̇ + η(q + qo), |q̇| ≥ q̇th
τ+
th−τ

−
th

2q̇th
q̇ +

τ+
th+τ−th

2
, |q̇| < q̇th

(B.7)

where q̇th is the speed threshold, while τ+
th = τf |q̇th and τ−th = τf |−q̇th represent

the friction curve values at positive and negative threshold speed. Numerical values

adopted for ±q̇th are reported in Table B.1.

Once this last correction is done, we can compare the experimental results with

the estimated ones (Figure B.11). As we can clearly see, all the properties we are

interested in have been modelled quite accurately. The only remarkable mismatch

is at high speeds, where experimental data show a bend with respect to the straight

estimated ones. This phenomenon is probably due to the linear approximation

done for the viscous friction as well as the simplified elastic joint model. This

last argument is confirmed if we look at the friction - position map, where we see

the strong non linearity during position variation. Another aspect that should be

considered is the accuracy of the manipulator dynamic model, which directly reflects

in the friction estimation accuracy.

Once we have checked the accuracy of our model with the experimental data

used to fit it, we need now to perform a more thorough test, in which we validate

the model over a generic joint trajectory. This test will be a true indicator of the

goodness of our procedure.

A generic spline trajectory has been set up, to span a wider range of possible
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Figure B.11: Comparison between estimated and experimental friction values
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Figure B.12: Random spline trajectory used for friction model validation

positions and speeds. Then, to execute it properly, this signal has been given as a

reference input for the internal manipulator control loop (Figure B.12).

Once the joint torque has been recorded, we apply the same procedure as seen

in section B.3 for joint elasticity to extract the friction component from the signal.

Then, it is just a matter of comparing the validation curve with the estimated one

(Figure B.13).

This time, experimentally computed friction is less predictable, since movements

of the joint do not follow a standard cycle and torque measure is affected by noise

(during identification test τref was imposed). However, we can appreciate that the

estimated curve still mimics the main features of the data, giving a meaningful,

although rough, estimation of the friction coefficient in almost any situation.

For the sake of completeness, error evaluation between the actual and estimated

friction has been performed. RMS value of the error between computed friction

torque and estimated one is 0.0439 N m. The majority of such error is focused around

zero. In Figure B.14, when the joint does not move, it is not possible to determine

the actual friction, because the future rotation direction is unknown. However, the

overall performance is quite acceptable and the friction profile tracking reflects the

system real behaviour.
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Figure B.13: Comparison between validation friction curve and estimated one
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