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Abstract

Our work belongs to the Machine Learning field, and more specifically in the
research area of Reinforcement Learning. Reinforcement Learning is the activity
performed by an agent that tries to maximize a reward signal, while interacting
with the environment, to achieve a goal. The objective of this thesis is to propose a
new Reinforcement Learning method, called Generalized Gradient Q Iteration, that
belongs to the class of approximate action-value iteration and that can be seen as
generalizing some aspects of algorithms of the same class, such as Fitted Q Iteration.
The main innovation of our method is that it proposes to learn directly the Bellman
Optimality Operator therefore allowing us to move faster towards the optimum, in
the space of action-value functions. We compare our method to Fitted Q Iteration
and show how it obtains comparable or better performances under some settings of
its hyper-parameters. This leads us to be optimistic about the research direction
pursued in this work and motivates us to further study and improve our method.





Sommario

Il nostro lavoro si colloca nell’area di ricerca del Reinforcement Learning, che
è una sottocategoria del Machine Learning (ML) e a sua volta il Machine Learn-
ing fa parte del campo di ricerca dell’Intelligenza Artificiale (IA). Nel tempo sono
state date svariate definizioni di Intelligenza Artificiale. Una delle più famose cat-
egorizzazioni di queste definizioni è dovuta a [Russell and Norvig, 2016] e le par-
tiziona lungo due dimensioni. La prima dimensione contrappone l’atto di ragionare
o pensare intelligentemente all’atto di agire intelligentemente. La seconda dimen-
sione, invece, suggerisce due modi opposti di definire il successo in IA: in termini di
somiglianza ad un comportamento umano oppure di somiglianza ad una razionalità
ideale. Storicamente tutte queste definizioni, che implicano obiettivi e approcci dif-
ferenti, sono state ampiamente seguite e hanno dato origine ai numerosi sottocampi
di cui l’Intelligenza Artificiale è composta oggi, come per esempio il natural lan-
guage processing, il machine learning, l’automated reasoning o la computer vision.
Le applicazioni dell’Intelligenza Artificiale sono molteplici e vanno dalla sanità, alla
finanza ai videogiochi fino alle macchine a guida autonoma.

Più nello specifico il Machine Learning si occupa di costruire sistemi che posso ap-
prendere autonomamente dall’esperienza, senza l’intervento di un operatore umano.
Il Reinforcement Learning è una branca del Machine Learning e il suo scopo prin-
cipale è creare agenti che siano capaci di imparare autonomamente, mentre inter-
agiscono con l’ambiente, a raggiungere un obiettivo predefinito. A questo scopo agli
agenti è consentito compiere delle azioni che abbiano un effetto sull’ambiente e dopo
ogni azione di ricevere un reward numerico, che specifica quanto positiva o negativa
fosse una determinata azione nella circostanza in cui è stata compiuta.

Un agente di Reinforcement Learning interagisce con l’ambiente, che è modellato
secondo il formalismo matematico dei Markov Decision Process [Bellman, 1957], com-
piendo delle azioni e ricevendo un segnale numerico di reward. L’obiettivo dell’agente
è di massimizzare il reward totale ricevuto nel tempo. Per questo motivo gli agenti
usano questo segnale di reward come feedback riguardo le azioni compiute in ogni
circostanza, ovvero in ogni stato dell’ambiente, rinforzando quelle che hanno portato
ad un reward positivo e penalizzando le altre. Questo processo porta l’agente a im-
parare una policy, ovvero una relazione tra i possibili stati dell’ambiente e le azioni



più appropriate per quella circostanza. Al fine di trovare la miglior policy, chiamata
formalmente policy ottima, molti aggenti fanno uso di value function o action-value
function. Queste funzioni rappresentano la stima corrente, fatta dall’agente, riguardo
quanto positivo o negativo sia trovarsi in un dato stato (value function) e quanto pos-
itivo o negativo sia compiere una determinata azione a partire da un determinato
stato (action-value function).

In alcuni casi la policy ottima può essere determinata in maniera esatta ad-
operando alcune tecniche conosciute come Dynamic Programming. Tra queste, una
classe importante di metodi è chiamata Policy Iteration, che comprende come caso
speciale il metodo chiamato action-value iteration. Questo metodo identifica una
sequenza di action-value function, partendo da una funzione casuale e migliorandola
ad ogni passo dell’algoritmo, tramite la risoluzione di un qualche tipo di equazione
di Bellman [Bellman, 2013]. Le equazioni di Bellman definiscono le condizioni di
ottimalità per le value function e sono usate, in qualche variante, da ogni algoritmo
considerato in questa tesi. Uno studio approfondito di questi metodi e molti altri è
dato da [Sutton and Barto, 1998].

Sfortunatamente la maggior parte dei problemi reali sono troppo complessi per
essere risolti in maniera esatta, perché, per esempio, potrebbero avere un numero
molto grande o addirittura illimitato di stati. Per questo motivo, molto spesso non
è possibile trovare la action-value function ottima, ma bisogna accontentarsi di una
buona approssimazione, che possiamo ottenere usando tecniche di Approximate Dy-
namic Programming [Bertsekas, 2007]. Uno di questi metodi approssimati, che è
centrale al nostro lavoro, è chiamato Fitted Q Iteration [Ernst et al., 2005] e può
essere visto come una versione più generale e potente di action-value iteration. An-
che questo metodo infatti costruisce una sequenza di action-value function (che sono
anche chiamate, in letteratura, Q function).

Il nosto lavoro fa parte di questa classe di metodi e definisce un framework,
chiamato Generalized Gradient Q Iteration, che può essere visto come una generaliz-
zazione di alcuni aspetti di Fitted Q Iteration. Come ci suggerisce il nome, il nostro
metodo è pensato per funzionare con algoritmi basati su metodi a gradiente, come
Adam [Kingma and Ba, 2014]. Questi metodi offrono il vantaggio di permettere di
rappresentare le action-value function in maniera parameterica e di richiedere molto
poco sforzo nella configurazione degli hyper-parametri. Il primo modo in cui il nostro
approccio generalizza Fitted Q Iteration è che permette di controllare la granularità
con la quale, ad ogni step dell’algoritmo, viene appresa la action-value function cor-
rente. Questo fatto ci permette di costruire degli algoritmi greedy che si spostano
alla prossima action-value function della sequenza, senza prima aver imparato com-
pletamente la funzione precedente. L’altro e più importante aspetto sotto il quale
generalizziamo consiste nel fatto di proporre di apprendere una parametrizzazione
dell’operatore di Bellman ottimo, invece di apprendere direttamente le action-value



function. L’idea fondamentale è che approssimare l’operatore di Bellman potrebbe
risultare più semplice e potrebbe permettere quindi di muoverci più velocemente nello
spazio delle action-value function. Entrambe queste idee sono volte ad inidirizzare
la principale limitazione di metodi come Fitted Q Iteration, ovvero il fatto di avere
bisogno di risolvere, ad ogni iterazione, un problema di ottimizzazione completo. Il
nostro metodo cerca di porre rimedio a questo difetto e quindi di fornire tempi di
convergenza inferiori, ottendendo comunque la stessa soluzione.

Abbiamo eseguito degli esperimenti, in due problemi diversi e di difficoltà cres-
cente, dove compariamo il nostro framework a Fitted Q Iteration eseguito anch’esso
con metodi a gradiente. Per entrambi gli algoritmi abbiamo usato architetture lin-
eari, sia per le action-value function, che, nel nostro caso per la parametrizzazione
degli operatori di Bellman. Quello che abbiamo potuto osservare è che in entrambi i
problemi, il nostro metodo mostra performance compatibili, se non superiori a quelle
di Fitted Q Iteration, usando specifiche configurazioni degli hyper-parametri. Questi
risultati ci fanno ben sperare, confermando che le idee delinate in questa tesi siano
promettenti e meritino di essere approfondite ulteriormente con lavori futuri.

Alcuni dei possibili sviluppi futuri del nostro lavoro includono il mettere alla prova
il nostro metodo in problemi più difficili e verificare il comportamento nel dettaglio
di tutti i parametri, oltre che l’ideazione e la progettazione di ulteriori architetture
di approssimazione per l’operatore di Bellman, includendo per esempio architetture
basate sulle reti neurali artificiali, condiserando i loro recenti successi.
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Chapter 1

Introduction

1.1 Overivew

Our work belongs to the research area of Reinforcement Learning, which is part
of the Machine Learning (ML) field. In turn Machine Learning belongs to the broad
research category of Artificial Intelligence (AI). Many definitions have been given
about AI, but one of the most famous categorization of these definitions, is due
to [Russell and Norvig, 2016] and divides them along two dimensions. On one di-
mension we have thinking and reasoning intelligently opposed to acting intelligently.
On the other dimension there are two opposite ways to define success for AI: in
terms of similarity to human behavior on one side and to ideal rationality on the
other side. Historically all of these definitions, which imply different goals and dif-
ferent approaches, have been followed, giving rise to the many fields of which AI is
composed today, such as natural language processing, machine learning, automated
reasoning and computer vision. The applications of AI are also numerous, ranging
from healthcare, to finance, video games and self-driving cars.

More specifically Machine Learning deals with the task of building systems that
can learn autonomously from experience, without human intervention. Reinforce-
ment Learning is a branch of Machine Learning and its main goal is to build agents
that are able to learn autonomously, while interacting with the environment, to reach
a predefined objective. In order to do so, they are allowed to perform some actions,
which have effect on the environment and after each action they are given a reward,
signifying how good or bad that action was in that circumstance.

The goal of this thesis is to propose a framework, which characterizes a class
of algorithms, to efficiently solve Reinforcement Learning problems. We tested our
framework against the most successful algorithm in the literature that belongs to the
same class, obtaining good results in two different problems. This suggests that our
ideas are promising and should be continued with further development and studies.
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1.2 Goal and Motivation

A Reinforcement Learning agent interacts with the environment, which is mod-
eled through the mathematical formalism of Markov Decision Processes [Bellman,
1957], by performing some actions and receiving a numerical reward signal. The goal
of the agent is to maximize the total amount of reward received during time. There-
fore the agent uses this reward signal as a feedback for the actions it took in each
circumstance, or state of the environment, to reinforce good actions and penalize
others. This process leads the agent to learn a policy, that is a mapping between
states of the environment and appropriate actions. In order to find the best pol-
icy, more formally called the optimal policy, many agents rely on value functions or
action-value functions. These functions represent respectively the current estimate
of the agent regarding how good or bad it is to be in a determinate state (value
function) and how good or bad it is to take a determinate action in a given state
(action-value function).

In some cases the optimal policy can be determined exactly, by using some tech-
niques known as Dynamic Programming. One important class of those methods is
Policy Iteration, which includes as a special case the action-value iteration method.
This method identifies a sequence of action-value functions, starting with a random
function and improving it at each step, by solving some form of Bellman Equa-
tion [Bellman, 2013]. Bellman Equations define optimality conditions for value func-
tions and are used in some form by every algorithm considered in this thesis. A
thorough study of these methods, and many others, is given in [Sutton and Barto,
1998].

Unfortunately most problems are too complex to be solved exactly because, for
example, they may have an infinite number of states. Therefore the best we can do is
to find a good, but often not optimal, solution using approximate value functions and
approximate techniques [Bertsekas, 2007]. One approximate method that is central
for our work is called Fitted Q Iteration [Ernst et al., 2005] and can be seen as a
more general and powerful version of action-value iteration. Also this method indeed
works by computing a sequence of action-value functions (which are also referred to
as Q functions).

Our work pertains to this class of methods and defines a framework called Gener-
alized Gradient Q Iteration, which can be seen as generalizing Fitted Q Iteration un-
der some aspects. As the name suggests, our method is made to work with gradient-
based algorithms, such as Adam [Kingma and Ba, 2014]. These methods offer the
advantage that let us model value functions in a parametric way and require very
little hyper-parameter tuning. The first way in which our method generalizes Fitted
Q Iteration is that it allows to control the granularity with which an action-value
function is learned on each step of the algorithm. This allows us to build greedy



algorithms that move to the next function of the sequence, before having learned
perfectly the previous one. The other and more important generalization is that
we propose to learn a parameterization of the Bellman Operator, instead of directly
learning action-value functions. The core idea is that trying to approximate the
Bellman Operator could be simpler and could allow us to move faster in the space
of action-value functions. Both of these ideas are meant to address the principal
limitation of Fitted Q Iteration, that is the requirement to solve a complete super-
vised learning problem on each iteration. Our method tries to remedy this deficit,
therefore providing faster convergence times, while still finding the same solution.

We tested our method against Fitted Q Iteration used in conjunction with a lin-
ear action-value architecture and gradient-based methods for solving the supervised
problem at each iteration. Our method shows promising results in the experiments
that we ran, confirming that the ideas of this thesis deserve to be examined in more
detail in future works.

1.3 Outline

The thesis is structured in the following way. Chapter 2 is dedicated to the state
of the art and gives the necessary background to understand the rest of our work.
It starts by introducing the Reinforcement Learning (Section 2.1), Markov Decision
Processes (Section 2.2), Bellman Equations (2.2.2) and then moves to explain some
of the basic Dynamic Programming algorithms (Section 2.3). After this we briefly
discuss about Approximate Solutions methods (Section 2.4) and review some of the
theory and techniques needed to work with real problems with large or unbounded
state spaces. Lastly we introduce the algorithm of Fitted Q Iteration in Subsection
2.4.3.

Chapter 3 contains the main part of thesis and explains the theoretical founda-
tions of our work. It starts (Section 3.1) by laying down the necessary notation by
showing how, starting from Q Iteration, we can generalize several concepts step-by-
step. Then it introduces the framework of Generalized Gradient Q Iteration (Section
3.2) breaking it into three procedures: the core procedure, the cost function and the
weight update procedure. The next section (Section 3.3) examines two possible ap-
proximation architectures for the Bellman Operator, showing pros and cons of both.
The last section of the chapter (Section 3.4) reviews the most important hyper-
parameter of our framework that can be tuned to produce different algorithms and
also explains how under some configuration our framework can be reduced to Fitted
Q Iteration.

Chapter 4 describes some of the experiments that we ran to test the performance
of our framework. We compare various configurations of the hyper-parameters, show-
ing how in each case we manage to improve upon the performances of Fitted Q



Iteration.
Finally Chapter 5 draws our conclusions and highlights some possible future

developments.





Chapter 2

State of the Art

In this chapter we will broadly explore the research field of Reinforcement Learn-
ing, starting with a general introduction (Section 2.1); a rigorous definition of the
Reinforcement Learning problem using Markov Decision Processes (Section 2) and
an overview of the main techniques to solve it efficiently (Sections 3-5).

2.1 What is Reinforcement Learning

Definition 2.1. Reinforcement Learning (RL) is the activity performed by an agent
that tries to maximize a reward signal, while interacting with the environment, to
achieve a goal.

Definition 2.2. A Reinforcement Learning Problem is the definition of the task that
the agent is asked to perform. This includes the definition of the agent, the reward
signal, the environment, and the goal.

Example 2.1. As an example, consider the game of Tetris: the agent is whoever is
playing the game, either human or an algorithm; the goal is to clear all the levels;
the reward signal to be maximized is the game’s score, and the environment is the
playing field.

In a Reinforcement Learning Problem the agent interacts with the environment
by performing some actions, observing what effect they have both on the environment
and reward signal, and using this knowledge to improve its behavior.

For example, in the Tetris Game, the possible action1 is either moving the falling
piece sideways or rotating it by ±90°. Therefore an agent that does not have any
previous knowledge about the game will probably start by performing some random
actions and, after a while, observing that when the fallen pieces are aligned to form
a horizontal line without gaps, the score increases. A RL agent will consequently

1To be precise waiting while the piece falls down is also a possible action
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improve its behavior by trying to repeat the sequence of actions that led to an
increase in the reward2.

2.2 Markov Decision Processes

Markov Decision Processes (MDPs) [Bertsekas, 2005] are a mathematical formal-
ization of the Reinforcement Learning problem.

Definition 2.3 (Markov Decision Process). A Markov Decision Process is a discrete
time stochastic process, represented by a 5-tuple (S,A,R, p, γ). At each time step
t ∈ N0 the agent observes the environment, which is at state St ∈ S, and decides
to perform an action At ∈ A. The process then transitions to state St+1 giving a
reward Rt+1 ∈ R to the agent, according to probability p(St+1, Rt+1|St, At).

• S is the set of environment states observable by the agent.

• A is the set of actions that the agent can select in each state3.

• R ⊂ R is the set of rewards that can be given to the agent.

• p : S ×R×S ×A → [0, 1] is a four argument function giving the probability of
transitioning from state s to state s′ performing action a and obtaining reward
r:

p(s′, r|s, a)
.
= P

(
St+1 = s′, Rt+1 = r | St = s,At = a

)
.

• γ ∈ R is the discount factor. The smaller the discount factor the smaller the
importance of future rewards compared to immediate rewards.

Unless otherwise specified we consider the sets of states S and actions A to be
finite and ordered. This enables us to reference any state with the notation si where
0 ≤ i < |S| and every action with ai where 0 ≤ i < |A|.

2The increased score is effectively a positive reinforcement of the desired behaviour of the agent.
3We do not consider here the case in which the set of actions depends on the current state: A(S)



Definition 2.4 (Markov Property). Markov Decision Process are memory less,
meaning that the current state and action are all that is needed to determine the
probability of the next state and reward. In other words, the distribution probability
of St+1, Rt+1 does not depend on the trajectory S0, A0, R1, S1 . . . St, At but only on
the current state St and action At. This important property is formally expressed
by the following lemma:

P (St+1 = st+1, Rt+1 = rt+1 | S0 = s0, A0 = a0, . . . , St = st, At = at) =

P (St+1 = st+1, Rt+1 = rt+1 | St = st, At = at).

Definition 2.5 (Episodic and continuing tasks). Some problems, called episodic
tasks, have a finite number of time steps, while others called continuing tasks have a
potentially infinite number of time steps.

As an example episodic task, we can consider a card game, like Poker, in which
every game is an episode and has a finite number of turns. On the other hand, a
control problem, like the pole-balancing task, in which the agent has to maintain the
system balanced as long as possible, is a typical example of a continuing problem.

In order to make uniform the mathematical notation for episodic and continuing
task, we introduce the concept of absorbing state:

Definition 2.6 (Absorbing state). Let s ∈ S be a state. Then s is absorbing if and
only if

P (St+1 = s | St = s) = 1.

We can then consider every episodic task as a continuing task by adding an
absorbing state ab to the set of states S, with reward 0:

P (St+1 = ab,Rt+1 = 0 | St = ab) = 1.

Definition 2.7 (Policy). Any agent interacting with a Markov Decision Process
follows a policy, that specifies its behavior in each state. Formally a policy π(a|s) is
a function A× S → [0, 1], giving the probability of selecting action a from state s:

π(a|s) .
= P (At = a | St = s) .

Definition 2.8 (Deterministic Policy). A policy π is deterministic if for each state
s there exists only one action a with probability greater than 0 of being selected.

∃!a such that P (At = a | St = s) > 0.

Since the probability of selecting any other action is 0, the probability of selecting
a is 1. Therefore we can simply the notation for deterministic policies by considering
them a mapping S → A from states to actions:



π(s) = a ⇐⇒ π(s|a) = 1.

Definition 2.9 (Goal). We define the goal of the agent to be finding the policy π
that leads to the maximization of the following function of the rewards sequence,
called discounted return and denoted Gt:

Gt
.
= Rt+1 + γRt+2 + · · · =

∞∑
k=0

γkRt+k+1.

The discount factor γ is used to give more importance to rewards obtained sooner
in time, as opposed to the ones obtained further in the future.

Note that Gt can be expressed recursively as:

Gt =
∞∑
k=0

γkRt+k+1 = Rt+1 +
∞∑
k=1

γkRt+k+1

= Rt+1 + γ
∞∑
k=1

γk−1Rt+1+k let k = j + 1

= Rt+1 + γ
∞∑
j=0

γjRt+1+j+1 = Rt+1 + γGt+1 .

2.2.1 Value functions

In order to find the policy π that maximizes the discounted return, we need a way
to rank policies. This is accomplished with value functions. Intuitively the higher
the return while following a certain policy, the higher is its value.

Definition 2.10 (State-value Function). Let π be a policy. Then vπ : S → R is the
state-value function for policy π:

vπ(s)
.
= Eπ [Gt | St = s] .

The state-value function maps each state s ∈ S to the expected return obtained
from s while following policy π.

Definition 2.11 (Action-value Function). Let π be a policy. Then qπ : S ×A → R
is the action-value function for policy π:

qπ(s, a)
.
= Eπ [Gt | St = s,At = a] .

The action-value function maps each state-action pair (s, a) ∈ S × A to the
expected return obtained from state s, selecting action a and then following policy
π.



Theorem 2.1 (Matrix notation). If the sets of states S and actions A are finite,
then any state-value function vπ and action-value function qπ can be represented
respectively as a vector vπ ∈ R|S| and as a vector qπ ∈ R|S||A|.

Proof. If S is finite, then we can define an arbitrary ordering of its elements. Let
si ∈ S denote the i-th state, where 0 ≤ i < |S|, then we can define vπ as:

vπ
.
=
(
vπ (s0) , . . . , vπ

(
s|S|
))T

.

The proof for qπ is similar.

2.2.2 Bellman Equations

Value functions can be expressed as recursive equations, called Bellman Equa-
tions, highlighting the relationship between the value of current and successive states.

Lemma 2.1. First we show how the State-value and Action-value function are mu-
tually recursive:

vπ(s) = Eπ [Gt | St = s]

=
∑
a∈A

π(a | s)Eπ [Gt | St = s,At = a]

=
∑
a∈A

π(a | s)qπ(s, a). (2.1)

Theorem 2.2 (Bellman Equation for qπ).

qπ(s, a) = Eπ [Gt | St = s,At = a]

= Eπ [Rt+1 + γGt+1 | St = s,At = a]

=
∑
s′∈S

∑
r∈R

p
(
s′, r | s, a

) {
r + γEπ

[
Gt+1 | St+1 = s′

]}
=

∑
s′∈S

∑
r∈R

p
(
s′, r | s, a

) [
r + γvπ(s′)

]
(2.2)

=
∑
s′∈S

∑
r∈R

p
(
s′, r | s, a

) [
r + γ

∑
a′∈A

π(a′ | s′)qπ(s′, a′)

]
. (2.3)

Theorem 2.3 (Bellman Equation for vπ).

vπ(s) =
∑
a∈A

π(a | s)qπ (s, a) (2.4)

=
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p
(
s′, r | s, a

) [
r + γvπ(s′)

]
. (2.5)

Like value functions also the Bellman equations for vπ and qπ can be represented



in a more compact form using Matrix notation. In order to do so, let us first define
a matrix form for the rewards and the transition probabilities.

Let P π = (pij) ∈ R|S|×|A| be the state transition matrix, where each element pij
denotes the probability of transitioning from state si to state sj under policy π. We
can define P π in terms of the transition probability function p(s′, r|s, a) as follows:

pij = P (St+1 = sj | St = si) =
∑
a∈A

π(a | si)
∑
r∈R

p (sj , r | si, a) . (2.6)

Let rπ = (ri) ∈ R|S| be the vector of expected rewards obtained from every state,
and defined as:

ri = E [Rt+1 | St = si] =
∑
a∈A

π(a | s)
∑
r∈R

r
∑
sj∈S

p (sj , r | si, a) . (2.7)

Then the Bellman equation for vπ (2.5) can be written in matrix form as:

vπ = rπ + γP πvπ. (2.8)

A similar procedure can be done for qπ by letting Pπ ∈ R|S||A|×|S||A| be the state-
action transition matrix describing the probability of going from (s, a) to (s′, a′)

under policy π and r ∈ R|S||A| to be the vector of expected rewards obtained from
(s, a). Then the Bellman equation for qπ (2.3) can be written as:

qπ = r + γP πqπ. (2.9)

Definition 2.12 (Bellman Operators). The Bellman Equation for qπ (2.3) can be
interpreted as defining a function operator Tπ mapping action-value functions, in the
following way:

Tπ : RS×A → RS×A

(Tπq) (s, a)
.
=

∑
s′∈S

∑
r∈R

p
(
s′, r | s, a

) [
r + γ

∑
a′∈A

π(a′ | s′)q(s′, a′)

]
. (2.10)

The same thing can be done for vπ, by using eq. (2.5):

Tπ : RS → RS

(Tπv) (s)
.
=

∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p
(
s′, r | s, a

) [
r + γv(s′)

]
. (2.11)

Bellman Operators can be formulated for the matrix version of the Bellman
equations as well:



T πq = r + γP πq

T πv = rπ + γP πv. (2.12)

Note that although we used the same symbol Tπ for the Bellman Operator of
both state-value and action-value functions, it will be clear from the context which
of the two is implied.

We are now ready to describe in more detail the concept of optimal policy, that
is a policy that represents the best that can be done in a given MDP.

Definition 2.13 (Optimal policy). A policy is said to be optimal if its expected
return v∗ is greater or equal to that of any other policy:

v∗(s)
.
= max

π
vπ(s).

We denote an optimal policy with π∗ and its state-value and action-value func-
tions respectively with v∗ and q∗.

Since the Bellman Equations for vπ and qπ, that we defined above, are valid for
the value functions of any policy, they must apply also to the state-value function
v∗ and action-value function q∗ of the optimal policy π∗.

This enables us to find two recursive equations, called respectively the Bellman
optimality equation for v∗ and q∗, similar to the ones defined for vπ and qπ.

Theorem 2.4. The value v∗(s) of each state s ∈ S, while following an optimal policy
π∗, must be equal to the maximum action-value q∗(s, a) obtainable from that state:

v∗(s) = max
a∈A

q∗ (s, a) .

Proof. First we note how v∗ and q∗ must obey the mutually recursive relation defined
in Lemma 2.1:

v∗(s) =
∑
a∈A

π∗(a | s)q∗ (s, a) . (by eq. 2.1)

Then we prove that v∗ must be less than or equal to maxa q∗ (s, a):



∀a ∈ A
(
q∗ (s, a) ≤ max

ā∈A
q∗ (s, ā)

)
=⇒∑

a∈A
π∗(a | s)q∗ (s, a) ≤

∑
a∈A

π∗(a | s) max
ā∈A

q∗ (s, ā) =⇒∑
a∈A

π∗(a | s)q∗ (s, a) ≤ max
ā∈A

q∗ (s, ā) =⇒

v∗(s) ≤ max
a∈A

q∗ (s, a).

Finally we show by contradiction that maxa q∗ (s, a) cannot be greater than v∗.
Suppose that there exist a state σ ∈ S where maxa q∗ (σ, a) > v∗(σ). Then we can
construct a policy π′, that behaves identically to π∗ except in σ, where we set:

π′(σ) = argmax
a∈A

q∗ (σ, a) .

Then we have:
vπ′(σ) = max

a∈A
q∗ (σ, a) > v∗(σ).

But this contradicts the fact that π∗ is an optimal policy, and therefore proves
our theorem.

Proposition 2.1 (Bellman optimality equation for v∗).

v∗(s) = max
a

q∗ (s, a) (by Theorem 2.4)

= max
a

∑
s′∈S

∑
r∈R

p
(
s′, r | s, a

) [
r + γv∗(s

′)
]
. (by eq. 2.2)

Proposition 2.2 (Bellman optimality equation for q∗).

q∗(s) =
∑
s′∈S

∑
r∈R

p
(
s′, r | s, a

) [
r + γv∗(s

′)
]

(by eq. 2.2)

=
∑
s′∈S

∑
r∈R

p
(
s′, r | s, a

) [
r + γmax

a′
q∗(s

′, a′)

]
. (by Theorem 2.4)

2.3 Dynamic Programming

In this section we introduce a series of methods, known in the literature as Dy-
namic Programming, that exactly solve the Reinforcement Learning problem of find-
ing the optimal policy π∗, assuming a perfect knowledge of the underlying Markov
Decision Process.

These methods are called exact methods because they store value functions in
a tabular form, without approximations. More specifically, to exactly represent a
state-value function vπ or an action-value function qπ, we need to store respectively



a value for each state s ∈ S and for each state-action pair s, a ∈ S × A. Therefore
the memory required is proportional to S in the former case and to S × A in the
latter.

These methods are called Model-based methods because they require a model of
the environment.

Definition 2.14 (Models). A model is something that simulates the behavior of the
real environment and allows to obtain simulated experience while interacting with
it. Models can be of two types: distribution models and sample models.

Distribution models are a complete model of the environment, in the form of a
Markov Decision Process, therefore including the set of states S, actions A, rewards
R and transition probabilities p.

Sample models, which are usually easier to obtain, only allow the agent to sample
values according to the transition probabilities, but do not give direct access to the
underlying distributions. That is, given an initial state s ∈ S and an action a ∈ A,
an agent can ask for a simulated next state s′ ∈ S and reward r ∈ R, but cannot
directly know the probability p(s′, r | s, a).

All the algorithms presented in this section assume to have a distribution model.

Before exploring Policy Iteration, which is the central algorithm of this section,
we will look more closely at two other algorithms: Policy Evaluation and Policy
Improvement. These will form the basis on which to build the Policy Iteration
algorithm.

2.3.1 Policy Evaluation

The objective of policy evaluation is to compute the state-value function vπ as-
sociated with a policy π. This can be done by finding the value that satisfies the
Bellman Equation for vπ (2.5) for each state s ∈ S:

vπ(s) =
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p
(
s′, r | s, a

) [
r + γvπ(s′)

]
.

Assuming the knowledge of the environment transition probabilities (i.e. to have
a distribution model) then the above condition is equivalent to solving the linear
system of |S| equations expressed by the matrix form of the Bellman equation for vπ
(2.8).

The solution to the above system of equations can also be computed in a more
convenient way, using an iterative method, which is shown in Algorithm 2.1.

The algorithm starts with a random4 estimate v0 of the state-value function vπ,
and at each step k it produces a new estimate vk+1 by applying the Bellman operator
(2.12) to the previous estimate vk:

4The only requirement is that absorbing states are initialized to 0



Algorithm 2.1 Policy Evaluation
input: π policy for which to compute vπ
param: θ threshold > 0, to determine convergence

v0 ← 0
k ← 0
δ ← +∞
while δ > θ:
vk+1 ← T πvk = rπ + γP πvk
δ ← ‖vk+1 − vk‖∞
k ← k + 1

vk+1 ← rπ + γP πvk.

The sequence of state-value functions {v0,v1, . . . } is guaranteed to converge to vπ as
k approaches infinity, because the Bellman operator (2.12) represents a contraction
mapping with vπ as the unique fixed point.

Since convergence happens only in the limit, we need a more practical stopping
criterion. For this reason Algorithm 2.1 has a parameter θ ∈ R and keeps iterating
until ‖vk+1 − vk‖∞ ≤ θ.

2.3.2 Policy Improvement

Policy evaluation allows us to estimate the state-value function vπ of a policy π.
We will now show how we can use this information to improve the current policy π,
thanks to the Policy Improvement Theorem.

Theorem 2.5 (Policy Improvement Theorem). Let π and π̄ be policies such that
∀s ∈ S:

Eπ̄ [vπ(St) ≤ qπ(St, At) | St = s] . (2.13)

Then policy π̄ is as good as, or better than, policy π. Meaning that vπ(s) ≤ vπ̄(s)

for all states s ∈ S.



Algorithm 2.2 Policy Improvement
input: π ∈ A|S|deterministic policy as vector

v ∈ R|S| vector representing the state-value function
// Compute vector q ∈ R|S||A| with components q(s, a) as:
q (s, a)←

∑
j,r p (s′, r | s, a) [r + γv(s)]

π′(s)← argmaxaq(s, a) // Compute new policy π′ for each s ∈ S
is-stable ← π = π′

return is-stable

Proof.

Eπ̄ [vπ(St) ≤ qπ(St, At) | St = s] =⇒

Eπ̄

[ ∞∑
k=0

γkvπ(St+k) ≤
∞∑
k=0

γkqπ(St, At) | St = s

]
=⇒

Eπ̄

[ ∞∑
k=0

γkvπ(St+k) ≤
∞∑
k=0

γk (Rt+k+1 + γvπ(St+k+1)) | St = s

]
=⇒

Eπ̄

[ ∞∑
k=0

γkvπ(St+k) ≤
∞∑
k=0

γkRt+k+1 +
∞∑
k=0

γk+1vπ(St+k+1) | St = s

]
=⇒

Eπ̄

 ∞∑
k=0

γkvπ(St+k) ≤ Gt +
∞∑
j=1

γjvπ(St+j) | St = s

 =⇒

Eπ̄ [vπ(St) ≤ Gt | St = s] =⇒

vπ(s) ≤ Eπ̄ [Gt | St = s] =⇒

vπ(s) ≤ vπ̄(s).

Proposition 2.3. Note that the precondition (2.13) of the Policy Improvement The-
orem, in case policy π is deterministic, becomes:

vπ(s) ≤ qπ (s, π̄(s)) .

Definition 2.15 (Greedy Policy). Let π be a policy and qπ its action-value function.
Then we define the greedy policy with respect to qπ as:

π′(s) = argmax
a∈A

qπ (s, a) .

Note how the greedy policy π′ respects by construction the precondition (Prepo-
sition 2.3) of the Policy Improvement Theorem:



qπ
(
s, π′(s)

)
= max

a∈A
qπ (s, a) ≥ vπ(s),

and therefore it is guaranteed to be as good as, or better than π. That is vπ′(s) ≥
vπ(s) for all states s ∈ S.

Theorem 2.6 (Stability implies optimality). Let π be a policy and π′ the greedy
policy with respect to vπ. Then

π′ = π =⇒ π′ is optimal.

Proof.

π(s) = π′(s) =⇒

π(s) = argmax
a∈A

qπ (s, a) =⇒

vπ(s) = max
a∈A

qπ(s, a).

We can then create an algorithm, called Policy Improvement Algorithm (2.2),
that given a policy π and its state-value function vπ, computes a new improved
policy π′ that is greedy with respect to qπ. Theorem 2.6 shows how the greedy
policy π′ computed by the Policy Improvement algorithm is always strictly better
than π, unless π is already optimal. The algorithm returns True in case the policy
is stable, meaning that π′ = π, and False otherwise.

2.3.3 Policy Iteration

The Policy Iteration Algorithm, shown in Algorithm 2.3, works by taking as input
an initial policy π and repeatedly invoking policy evaluation and policy improvement,
until the policy π converges to the optimal policy π∗.

Algorithm 2.3 policy-iteration
input: π initial policy
for s ∈ S:
vπ(s) = 0

policy-stable = False
while not policy-stable:

policy-evaluation(π, vπ)
policy-stable = policy-improvement(π, vπ)

The initial policy π supplied to the algorithm, can be any policy at all. Usually
it is taken to be as the random policy5.

5The random policy is the policy that at each state assigns equal probability to all possible



2.4 Approximate Solution Methods

In this section we show approximated methods for solving the Reinforcement
Learning problem. As opposed to the exact ones of the previous sections, we assume
that these methods cannot exactly represent value functions and therefore we call
them approximated methods. The reason for this is that many interesting Reinforce-
ment Learning problems have an infinite or very large state space S, that is either
very hard to fit into memory or too computationally expensive to deal with. There-
fore we assume that approximated value functions are parameterized by a weight
vector w ∈ Rd, and, following Sutton’s notation, we denote them as:

ṽ(s,w) ≈ vπ(s).

The purpose of parameterizing our function with a weight vector w, is that the
number of weights is usually much smaller than the number of states (d� |S|). The
most common example is that of linear function approximation:

ṽ(s,w)
.
= φ(s)T ·w =

∑
φi(s) · wi,

where φ(s) ∈ Rd, called feature vector for state s, is a vector of the same dimen-
sion of w.

In this section we focus on the task of approximating the true value function vπ
of a policy π. For this purpose we interact with the environment to collect a series of
samples, which mimic the desired input-output behavior of the value-function. We
denote those samples St 7→ Ut, where St is the state to be updated (input) and Ut
is the desired target value (output). We can then use potentially any supervised
learning method to produce an approximation of vπ.

Since we cannot represent all state-value pairs exactly, we need a metric to indi-
cate how well we are approximating our target. This is accomplished by defining a
cost function C(w) as the prediction objective that we aim to minimize. We select
our prediction objective function to be the Mean Squared Value Error between the
true value function vπ and our approximation ṽ:

C(w)
.
=

1

2

∑
s∈S

µ(s) [vπ (s)− ṽ (s,w)]2 . (2.14)

2.4.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a supervised learning method that updates
the weight vector w at each time step t, according to the gradient of the cost function
C with respect to w:

actions



name target Ut bootstrap exact

True Value vπ (St) × X

Monte Carlo Gt × ×

DP
∑

a,s′,r π (a | St) p (s′, r | St, a) [r + γṽ (s′,wt)] X X

TD(0) St → Rt+1 + γṽ (St+1,wt) X ×

Table 2.1: Update targets

wt+1
.
= wt − α∇C, (2.15)

where the gradient ∇C is the column vector of partial derivatives of C, defined
as follows:

∇C(w)
.
=

(
∂C

∂w1
, . . . ,

∂C

∂wd

)T
. (2.16)

The gradient ∇C is scaled by a small positive factor α in equation (2.15), which
must be decreased over time, to ensure convergence to a local minimum of C.

This method is an instantiation of the more general Gradient Descent algorithm
and is called stochastic because the gradient is computed on a single, stochastically
selected sample.

Theorem 2.7. The cost C (wt) decreases with each update of w:

∆C
.
= C (wt+1)− C (wt) ≤ 0 ∀t.

Proof.

∆C ≈ ∇C ·∆w

= ∇C (−α∇C)

= −α ‖∇C‖2 ≤ 0.

The Stochastic Gradient Descent update rule (2.15) can be expressed in a more
explicit form by expanding the definition of cost function (2.14) and computing the
gradient:



wt+1
.
= wt − α∇C

≈ wt − α∇ [vπ (St)− v̂ (St,wt)]
2

= wt + α [vπ (St)− v̂ (St,wt)]∇v̂ (St,wt) . (2.17)

Note that the gradient of vπ is 0 because we assume to have the true value-
function, which does not depend on the weight vector w. In the general case, though,
the target Ut of our training samples St → Ut won’t be the true value vπ (St) of state
St, but an approximation of it. However SGD is still guaranteed to converge to a
local minimum of C, in the case in which Ut is an unbiased estimate of vπ for all
time steps t:

E [Ut | St] = vπ(St).

The Monte Carlo update target Ut
.
= Gt is an example of unbiased estimate. In

this case the update rule 2.17 becomes:

wt+1
.
= wt + α [Ut − v̂ (St,wt)]∇v̂ (St,wt) . (2.18)

2.4.2 Semi Gradient Methods: PVI, LSPE and TD(0)

If the target Ut is a bootstrapping estimate of vπ (St), such as the TD(0) target
or the DP target (both shown in Table 2.1 on page 35), then it is biased and the
update rule (2.18) is not guaranteed to converge. The reason is that, in this case,
the target Ut depends on the weight vector wt, but we are not taking this fact into
account when computing the gradient of C. Therefore bootstrapping methods that
use eq. (2.18) as their update rule are not proper instances of Stochastic Gradient
Descent, but are instead called Semi Gradient methods.

These methods, despite not converging to a local minimum as robustly as Gra-
dient Descent methods, offer nonetheless some advantages, including faster learning
and the ability to update the weight vector wt immediately without waiting for the
end of the episode. One notable instance of such methods that is guaranteed to con-
verge in the linear case is Semi-Gradient TD(0), which uses the update rule (2.18)
with the TD(0) target (shown in Table 2.1 on page 35).

Two other methods belonging to the same class and that converge to the same
solution as Semi Gradient TD(0) are Projected Value Iteration (PVI) and Least
Squares Policy Evaluation (LSPE). The difference between them is that the former
is model-based and uses the DP update target, while the latter is model-free and
uses the TD(0) update target. Both of those methods differ from Semi Gradient



TD(0) in that they perform the gradient computation using more than one sample,
while stochastic methods discussed so far use only one.

2.4.3 Fitted Q Iteration

Fitted Q Iteration [Ernst et al., 2005] is a batch mode Reinforcement Learn-
ing algorithm, that approximates the optimal action-value function q∗, by solving a
sequence of regression problems.

In batch mode learning, the agent does not interact directly with the environment,
but receives a datasetD of four-tuples (St, At, Rt+1, St+1) collected by an other agent,
which must be used to learn the best possible approximation of the optimal policy.

Let us define the following sequence of action-value functions, by repeatedly
applying the optimal Bellman operator:

q0
.
= 0

qk
.
= Tqk−1.

This is the sequence computed by the action-value iteration algorithm and there-
fore is guaranteed to converge to the unique fixed point of T , that is the optimal
action-value function q∗. The Fitted Q Iteration algorithm (2.4) computes a similar
sequence that is an approximation of the above. It starts by initializing the current
action-value function q̃0 to 0 and then at each iteration it builds a training set using
the dataset D and the current action-value function q̃k, and uses it to compute the
next action-value function q̃k+1 by applying a supervised learning method.

The Fitted Q Iteration algorithm supports the use of any supervised learning
method to fit the next action-value function q̃k+1 at each step, even non-parametric
ones like kernel based methods. To emphasize that a weight vector w is not required
in all cases, we denote the action-value functions as q̃ (s, a) instead of q̃(s, a,w).

Algorithm 2.4 Fitted Q Iteration
input: D dataset of four-tuples

while not stopping-condition():
// Build dataset consisting of input i = (ii) and
// output o = (oi) vectors of size |D|
for (s, a, r, s′) ∈ D:
ii ← (s, a)
oi ← r + γmaxa q̃k (s′, a)

k ← k + 1
q̃k ←fit(i, o)



If we assume our problem to be deterministic and to known the exact action-value
function qk, then the output vector o built by the algorithm at iteration k, is indeed
equal to the true value of qk+1 for each input element (s, a) ∈ i. This training set
can then be used by the fit procedure to generalize to unseen (s, a) samples and
produce an approximation q̃k+1 of qk+1. In a stochastic context, the values of the
output vector o are not identical anymore to the corresponding true action-values
qk. However their expected value is equal to the true action-value function qk and
therefore the fit procedure can provide anyway an approximation q̃k+1 of qk+1.

The convergence of the sequence of action-value functions identified by Fitted Q
Iteration has been proven to converge under the assumption of using kernel-based
methods (see [Ernst et al., 2005]). Unfortunately those methods are non-parametric
and therefore cannot be used for our work. Nonetheless Fitted Q Iteration has been
shown to provide good results even when using Artificial Neural Networks as the
approximation architecture for the action-value function [Riedmiller, 2005].





Chapter 3

Theoretical Analysis

In this chapter we introduce the original part of our work: the development of
the Generalized Gradient Q Iteration (GGQI) framework. GGQI is a generic method
that designates a class of different algorithms, therefore we refer to it as a framework.

Gradient-based GGQI pertains to the category of approximate dynamic pro-
gramming (or approximate solutions methods). More specifically it requires a para-
metric approximating architecture that can be fitted with gradient-based methods.
This is a stricter requirement compared to the approximate methods introduced in
Chapter 1. Most of those methods can use any supervised learning algorithm because
they are able to obtain input/output samples x 7→ y , which define the behavior of
the function to approximate. In our case we assume this is not possible. Therefore
gradient-based optimization algorithms, like SGD and Adam, are at the core of our
method, since they allow us to approximate a target function simply by minimizing
a cost function C, without providing explicit input/output samples.

Generalizing Q Iteration The method that we propose can be seen as a gener-
alization1 of various methods belonging to the class of action-value iteration, more
commonly referred to as Q iteration. These methods, among which are tabular
action-value iteration and Fitted Q Iteration, try to compute a good approxima-
tion of the optimal q function by generating a sequence of action-value functions
{q̃0, q̃1, . . . , q̃K} through repeated application of some Bellman operator.

Learning the Bellman Operator The core idea of our approach, and at the
same time the main difference with other methods, is to build an approximation of
the projected optimal Bellman operator, that we can use to guide our search for the
best action-value function.

1Meaning that it can be reduced to those algorithms, in particular circumstances
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3.1 Generalizing Q Iteration

We now go through the process of introducing the necessary concepts and nota-
tion needed to properly describe our method.

Q Iteration If we assume to know the environment’s transition probabilities, we
are able to compute the Bellman Optimality Operator, for any action-value function
q : S ×A → R:

T : RS×A → RS×A

(Tq) (s, a)
.
=

∑
s′,r

p
(
s′, r | s, a

) [
r + γmax

a
q(s′, a′)

]
.

Then the easiest thing to do in order to obtain the optimal action-value function
q∗, is to use the Q iteration algorithm, which by repeatedly applying the Bellman
operator identifies a sequence of action-value functions {q0, q1, . . . , qK} that can be
defined as:

qk+1 = Tqk. (3.1)

Approximation Even with the strong assumption of the knowledge of the Bellman
Operator, most of the interesting Reinforcement Learning problems have state and
action spaces too big to be represented exactly in a tabular way. Therefore we need
to resort to approximate solution methods and choose an approximation architecture
for our action-value functions.

Let Q̃ : S×A×Rd → R denote a function representing our chosen approximation
architecture. For example, in the linear case we might have:

Q̃ (s, a,w)
.
= φ (s, a)T w.

ThenQ is the set of all action-value functions representable by our approximation
architecture:

Q .
=
{
q̃w ∈ S ×A → R | q̃w (s, a) = Q̃ (s, a,w)

}
⊂ RS×A.

Unfortunately using an approximation architecture restricts the set of action-
value functions that we can represent and therefore prevents us from applying the Q
Iteration algorithm, defined by eq (3.1). This is because the Bellman operator acts
on the broader set of all possible q functions RS×A, and thus applying it to a function
in Q can result in a function that is outside of it and therefore not representable by
our architecture.



Projection We need a way to “bring back” (or project) the result of Tqw into
the set Q of representable action-value functions. Let us define q̃w ∈ R|S||A| as the
vector with components q̃w (s, a) for each state-action pair (s, a) and T q̃w as the
vector resulting from the application of T to each element of q̃w. Then we would
like to find the vector q̃x that minimizes the distance, according to some chosen
euclidean norm, with T q̃w:

‖T q̃w − q̃x‖
2 .

The operation of finding the vector v in a subspace V ⊆ Rn, that minimizes the
norm with an other vector u in the parent space Rn, is often called projection and
denoted as:

v = Πu
.
= argmin

v∈V
‖u− v‖2 .

Therefore q̃x can be written as:

q̃x = ΠT q̃w = argmin
q̃x∈Q

‖T q̃w − q̃x‖
2 . (3.2)

Equation (3.2) defines the vector form ΠT of a mapping on Q between approxi-
mate action-value functions, called Projected Bellman Operator and denoted ΠT .

Note that the minimization in eq (3.2) is performed on the set of representable
action-value functions Q, but since action-value functions are exactly characterized
by their weight vector w ∈ Rd, we can rewrite the above equation as a minimization
on Rd, which is more convenient for our purposes:

ΠT : Rd → Rd

(ΠT ) (w)
.
= argmin

x∈Rd

‖T q̃w − q̃x‖
2 . (3.3)

Then the usual definition of the Projected Bellman Operator as a mapping be-
tween action-value functions, can be done using (3.3), simply as:

ΠT : Q → Q

(ΠT q̃w) (s, a)
.
= Q̃ (s, a, (ΠTw)) . (3.4)

Assuming the knowledge of the Bellman Operator T , we can compute ΠT q̃w

using any supervised learning method. For example we can use a gradient method
like Stochastic Gradient Descent by defining a cost function



C (w)
.
=
∥∥T q̃wk

− q̃w
∥∥2
, (3.5)

and minimizing it with respect to w. Even though in most cases this will not
lead us to find the action-value function q̃x representing the global minimum of eq.
(3.2), but only a local minimum, this is the best we can do.

Projected Q Iteration With those definitions, we can come back at the Q iter-
ation algorithm, defined by (3.1) and just replace T by ΠT , to obtain the following
sequence of action-value functions:

qwk+1

.
= ΠTqwk

. (3.6)

We refer to this, not surprisingly, as Projected Q Iteration and we can alterna-
tively define it as the corresponding sequence on weight vectors w ∈ Rd:

wk+1
.
= ΠTwk. (3.7)

Although this may seem like to solve our problem of finding the representable
action-value function qw∗ that is closer to the optimal action-value function q∗, this
is not often the case. The repeated application of T , and therefore the Q Iteration
algorithm, is guaranteed to converge to the optimal action-value function q∗ because
the Optimal Bellman Operator T is a contraction mapping with q∗ as its unique
fixed-point. Unfortunately the same cannot be said for ΠT , therefore the sequence
defined by eq 3.7 is not guaranteed to converge, except for some special cases.

Definition 3.1 (Contraction Mapping). Let (X, d) be a metric space. Then a map
T : X → X is called a contraction mapping on X if there exists λ ∈ [0, 1) such that

d (Tx, Ty) ≤ λd (x, y)

for all x, y ∈ X.

Theorem 3.1 (Banach fixed-point theorem). Let (X, d) be a non-empty complete
metric space with a contraction mapping T : X → X. Then T admits a unique
fixed-point x∗ in (i.e. Tx∗ = x∗). Furthermore, x∗ can be found as follows: start
with an arbitrary element x0 ∈ X and define a sequence {xn} by xn = Txn−1, then
xn → x∗. [Banach, 1922]

However even though convergence is not guaranteed, there are many cases in
which algorithms based on some form of Projected Q Iteration obtain good results
in practice. As an example see [Riedmiller, 2005] that describes Fitted Q Iteration
adapted to work with Artificial Neural Networks.



Simulation A further generalization is to give up the hypothesis of knowledge of
the environment’s transition probabilities and therefore the ability to compute the
Optimal Bellman Operator. Without this knowledge we have to resort to simulation
to approximate the value of T . We accomplish this task by defining the Empirical
Bellman Operator.

Definition 3.2 (Empirical Bellman Operator). Let T̂ be a mapping taking as input
an action-value function q̃ ∈ Q and producing as output a function T̂ q̃ : S × A ×
R× S → R. Then T̂ is called empirical Bellman operator and is defined as:

T̂ : Q → RS×A×R×S(
T̂ q̃
) (
s, a, r, s′

) .
= r + γmax

a∈A
q̃
(
s′, a

)
.

To justify the name of the empirical Bellman operator, we note that its expected
value, given any four-tuple (St, At, Rt+1, St+1) collected starting in state s ∈ S and
taking action a ∈ A, is equal to the value of the optimal Bellman operator for that
state-action pair:

E
[(
T̂ q̃
)

(St, At, Rt+1, St+1) | St = s,At = a
]

= (T q̃) (s, a) .

Let q̃ ∈ Q be an action-value function and let D denote a dataset of four-tuples
(St, At, Rt+1, St+1) collected by interacting with the environment, possibly by an
other agent:

D .
=
{(
si, ai, ri, s

′
i

)
| 0 ≤ i < |D|

}
.

Then q̃ = (q̃i) ∈ R|D| is the vector obtained by computing q̃ (s, a) for each tuple
in D:

q̃i
.
= q̃ (si, ai) .

Moreover we can define the matrix form of the empirical Bellman operator as the
vector T̂ q̃ ∈ R|D|, with components:

(
T̂ q̃
)
i

.
=
(
T̂ q̃
) (
si, ai, ri, s

′
i

)
.

The Empirical Bellman Operator is used by many simulation based methods,
such as TD(0) or Fitted Q Iteration. More specifically the sequence of action-value
functions {q̃0, q̃1, . . . , q̃K} computed by Fitted Q Iteration can be formulated, using
the notation we developed so far, as follows:

q̃k+1 = ΠT̂ q̃k, (3.8)



where ΠT̂ can be defined in the same way that we did for T , both as a mapping
on Q and as a mapping on weight vectors w, by just replacing T with T̂ respectively
in equations (3.4) and (3.3).

3.2 Generalized Gradient Q Iteration

In the previous section we summarized the differences between the most impor-
tant methods belonging to the class of Q Iteration, by showing how you can obtain
more powerful algorithms that generalize simpler ones by incrementally dropping
most of their assumptions. In this section we break down our algorithm in three pro-
cedures and analyze them separately to make more clear and simple our exposition.

Q Iteration assumes a perfect knowledge of the environment (i.e. a distribu-
tion model) and to be able to represent any action-value function q : S × A → R.
Projected Q Iteration drops the latter assumption and uses an approximation archi-
tecture Q̃ (s, a,w) to represent action-value functions at the cost of not being able
to ensure convergence in most common cases. Finally simulation based methods like
Fitted Q Iteration drop also the former assumption, by not requiring the knowledge
of the environment’s transition probabilities and instead using the Empirical Bellman
Operator (def. 3.2) to replace the Optimal T .

The core idea of our approach moves a step further in this quest for generalization.
Note how all the methods considered so far learn a sequence of action-value function
by applying some sort of Bellman Operator to the previous function of the sequence.
Each step requires learning a new function and therefore performing an expensive
minimization problem. What we propose is to learn instead the behavior of the
Bellman Operator using a parameterized approximation architecture T̃ (w,ω) with
weight vector ω ∈ Rm and then exploiting it to compute the next action-value
function of the sequence.

Therefore our method works by computing at the same time two sequences. One
sequence of action-value functions {q̃0, q̃1, . . . , q̃k} and one sequence of approximate
Bellman Operators

{
T̃0, T̃1, . . . , T̃k

}
. To be more precise, the sequences computed by

the algorithm are of weight vectors w ∈ Rd and ω ∈ Rm, characterizing respectively
the action-value functions and the Bellman operators.

Definition 3.3 (Approximate Bellman Operator). Let T̃ : Rd ×Rm → Rd denote a
function representing our chosen approximation architecture for the Bellman oper-
ator. Then T is the set of all approximate Bellman operators representable by our
architecture:

T .
=
{
T̃ω ∈ Rd → Rd | T̃ω (w) = T̃ (w,ω)

}
.



Therefore each element T̃ω of T represents an approximate Bellman operator,
characterized by the weight vector ω ∈ Rm. Each T̃ω ∈ T is a function that takes
as input a weight vector wk and computes the next element wk+1 of the sequence.

We defined approximate Bellman operators to be mappings on weight vectors w,
but the definition can be easily extended to action-value functions, in the same way
we did for the Projected Bellman Operator in eq (3.4):

T̃ : Q → Q(
T̃ q̃w

)
(s, a)

.
= Q̃

(
s, a,

(
T̃w
))

. (3.9)

3.2.1 Core procedure

The core procedure of our method is shown in Algorithm 3.1 and works as follows:
at each iteration k, the weight vector ωk ∈ Rm representing the approximate Bellman
operator T̃ωk

is learned and it is then used to compute the next weight vectorwk ∈ Rd

representing the approximate action-value function q̃wk
, by invoking the update-w

procedure.

Algorithm 3.1 Generalized Gradient Q Iteration
input: D dataset of four-tuples
param: Ne number of training epochs to perform each iteration

Np stop training after Np epochs that the cost does not decrease

// Initialize w0 such that ∀s, a : Q̃ (s, a,w0) = 0
// Initialize ω0 in any way
k ← 0
while not stopping-condition():
e← 0
p← 0
ωk ← 0
k ← k + 1
while e < Ne and p < Np:
// find the weights ω that minimize the cost function C
ωe ← adam-train-step(C)
if C (ωe) ≤ C (ωk):
p← 0
ωk ← ωe

else:
p← p+ 1

e← e+ 1
wk ←update-w(ωk−1, wk−1)

In order to learn a good approximation of the Bellman operator we use Adam



[Kingma and Ba, 2014], a gradient-based optimization algorithm, that works very
well in our case and has the advantage of requiring very little hyper-parameter tun-
ing. This is represented in algorithm 3.1 by the adam-train-step procedure which
performs a one-step minimization of the cost function C over the dataset D. The
details of the cost functions are given in the next subsection.

Moreover the procedure shown in Algorithm 3.1 can be tuned by specifying two
hyper-parameters: Ne and Np, which define how the weight vector ωk is learned. At
each iteration k, many Adam optimization steps (or epochs) are performed, by in-
voking the adam-train-step procedure. The training is continued until the number
of epochs is greater or equal to Ne or until Np epochs are performed without obtain-
ing a decrease in the cost function, and therefore without being able to improve the
current weight vector ωe.

The hyper-parameter Ne, representing the maximum number of training epochs
to perform, can be set to any positive integer, or to ∞ to denote that the training
should be halted only when the cost C does not decrease for Np consecutive epochs.
Note that while also the patience hyper-parameter Np can be set to ∞, to denote
the intention to always interrupt the training after Ne epochs, care should be taken
to ensure that at least one of the hyper-parameter is finite, otherwise the procedure
does not terminate.

3.2.2 Cost function

Like other gradient-based methods, Adam requires a cost function C to minimize.
In order to achieve our objective we propose to minimize the sum of the Bellman
errors atNs steps, by consideringNs-times applications of the approximated Bellman
operator.

Definition 3.4 (Cost Function). Let C : Rm → R≥0 be the cost function of weight
vectors ω ∈ Rm, representing the prediction objective that we aim to minimize:

C : Rm → R≥0

C (ω)
.
=

N∑
n=0

∥∥∥T̂ T̃ (n)
ω q̃wk

− T̃ (n+1)
ω q̃wk

∥∥∥2
,

where T̃
(n)
ω denotes the matrix form of the n-step approximated Bellman opera-

tor.
Let T̃ (n)

ω : Rd → Rd be a mapping between weight vectors w, called n-step
approximated Bellman operator, and defined as:



T̃
(0)
ω (w)

.
= w

T̃
(n)
ω (w)

.
= T̃

(n−1)
ω

(
T̃ωw

)
.

Note that this is simply the n-times application of the approximated Bellman
operator T̃ω that we defined above. Indeed in the case in which n = 1, we have

T̃
(1)
ω w = T̃ωw.

The case n = 0 corresponds to 0 applications and therefore returns the weight
vector w unchanged.

The definition of the n-step approximated Bellman operator acting on action-
value functions T̃ (n)

ω : Q → Q is identical to the one we provided for T̃ω in equation
(3.9).

Therefore we can rewrite the n-step cost function in (def. 3.4) more explicitly as:

C (ω)
.
=

Ns∑
n=1

∥∥∥T̂ T̃ (n−1)
ω q̃wk

− T̃ (n)
ω q̃wk

∥∥∥2

=

Ns∑
n=1

|D|∑
i

((
T̂ T̃

(n−1)
ω q̃wk

) (
si, ai, ri, s

′
i

)
−
(
T̃

(n)
ω q̃wk

)
(si, ai)

)2

=

Ns∑
n=1

|D|∑
i

(
ri + γmax

a∈A
Q̃
(
s′i, a, T̃

(n−1)
ω wk

)
− Q̃

(
si, ai,

(
T̃

(n)
ω wk

)))2

.(3.10)

The cost function is implemented as a procedure that can be supplied as argument
to Adam, and its code is shown in algorithm 3.2.

3.2.3 Weight Update

The only part of our method that still needs to be described is the weight update
procedure. The core procedure (Algorithm 3.1) calls the weight update procedure,
update-w, on each iteration k, after the current Bellman Operator T̂ωk

has been
learned, in order to compute the new action-value function’s weights.

The update-w procedure, shown in Algorithm 3.3, is simply the result of applying
N times the current approximate Bellman Operator, defined by the weight vector ω,
to the current estimate of the action-value function defined by the weight vector w.

The procedure has a single hyper-parameter Nu defining the number of updates
to perform.



Algorithm 3.2 Cost Function
input: ω vector of weights characterizing a Bellman Operator T̃ω
param: Ns number of steps of T̃ω to learn

w ← wk

cost ← 0
for i← 0 . . . N:

// compute the cost for each element of D
for (s, a, r, s′) ∈ D:
// compute the target t as T̂ qw
t← r + γmmaQ̃ (s′, a,w)
// compute the prediction p as T̃ qw
w ← T̃ (w,ω)
p← Q̃ (s, a,w)
cost ←cost + (t− p)2

return cost

Algorithm 3.3 Weight Update
input: ω vector of weights characterizing a Bellman Operator T̃ω

w vector of weights to be updated, characterizing an
action-value function q̃w

param: Nu number of times to apply T̃ω

for i← 0 . . . Nu:
w ← T̃ (w,ω)

3.3 Approximation Architectures for the Bellman Oper-
ator

In the previous section we detailed our algorithm and we said that it uses a
parameterized architecture T̃ (w,ω) to approximate the Bellman optimality operator,
but we did not give any example. In this section we are going to examine two possible
approximate architectures for the Bellman Operator.

Note that the architecture has to be parametric, therefore we cannot consider
all the non-parametric architectures, like for example Extremely Randomized Trees
[Geurts et al., 2006], that obtain very good results when used to approximate action-
value function in the Fitted Q Iteration algorithm.

Artificial Neural Networks Artificial Neural Networks are one of the most
widely used non-linear architectures and have obtained extra-ordinary results also
when used in the field of Reinforcement Learning. For example, see the results ob-



tained by the DeepMind team with the DQN algorithm [Mnih et al., 2015]. Artificial
Neural Networks have the advantage of being able to approximate very well almost
any function [Csáji, 2001], but are usually a lot slower to train compared to simpler,
maybe linear, architectures.

In our case Artificial Neural Network have another disadvantage: they cannot
model explicitly a contraction mapping and therefore we are not guaranteed that
they have any fixed point.

Fixed Point Architecture A more interesting approach is to try to build an
approximate architecture that explicitly models a contraction mapping. An example
of such an architecture that we considered in our experiments is the following:

T̃ (w,A, b) = w + α (b−Aw) , (3.11)

where is α ∈ R scalar, such that 0 < α ≤ 1, A is a real d× d matrix and b ∈ Rd

is a column vector. In this case the parameters of our architecture are denoted with
the matrix A and the vector b instead of the vector ω.

The fixed point of the system is thus obtained as:

w∗ = T̃ (w∗,ω) =⇒

w∗ = w∗ + α (b−Aw∗) =⇒

Aw∗ = b =⇒

w∗ = A−1b.

Therefore the matrix A needs to be invertible.
Note that the system can be also written as:

T̃ (w,ω) = (I − αA)w + αb,

where I is the identity matrix. The stability of such a system is guaranteed
when (I − αA) is a matrix with eigenvalues of modulus smaller than one. One
way to ensure this condition is to require the matrix A to be positive definite. This
implies that its eigenvalues are positive real and therefore it is possible to find a value
for α small enough to guarantee that the eigenvalues of (I − αA) have modulus less
than one. Therefore stability can be proved.

The big advantages of this approximate architecture are its simplicity that results
in fast training times and above all the fact that we can find the fixed point of T̃
at any time by computing A−1b. The obvious disadvantage is the fact that this
architecture can represent only a small subset of the possible Bellman operators and
therefore may not be a good fit in all cases.



Moreover note that the approximation architecture defined by (3.11), represents
exactly the same dynamic system that we obtain while proving the convergence of
most of the semi gradient methods like Projected Value Iteration or Semi Gradient
TD(0), under linear function approximation.

3.4 Hyper-Parameters

In the previous sections we examined the details of our algorithm, giving details
about both the structure of code and the approximation architectures that can be
used with it. In this section we will review the main hyper-parameters that can be
tuned and explain how changing their values, in combination with different approxi-
mation architectures leads to different algorithms. This is the reason why we defined
our method as a framework rather than a single specific algorithm.

Let us start by giving an overview of the main hyper-parameters:

Ns Number of steps of the approximate Bellman operator T̃ω to use in the cost
function. Setting this parameter higher than 1 causes the algorithm to try to
learn more steps of the Bellman operator. Therefore its approximation will be
less local, at the expense of a higher computational expense.

Ne Number of training epochs to perform while training the approximate Bellman
operator. This number together with Np defines the level of accuracy to which
we want to learn the weight vector ω on each iteration of the algorithm. If
this parameter is set to ∞, the training will continue until there are no more
improvements for a certain period (called patience). The hyper-parameter Np

representing the patience, is not considered in this section, because its goal is
similar to that of Ne and can be fined tuned without impacting the following
study.

Nu Number of updates to perform to the weight vector w. On each iteration after
we computed the current estimate of the Bellman operator T̃ω, we use it to find
the next action-value function, by applying it Nu times to the current weight
vector w.

Gradient Fitted Q Iteration Let us first show how our algorithm can be reduced
to a gradient-based version of Fitted Q Iteration.

Definition 3.5 (Constant architecture). Let our approximation architecture for the
Bellman operator be the function T̃ : Rd × Rm → Rd, defined as:

T̃ (w,ω)
.
= ω,



where we must have |ω| = |w| or equivalently m = d. This function does not
depend on the weight vector w and therefore is called constant.

Let us consider the case in which have Ns = 1. Then the cost function (def. 3.4)
of our algorithm reduces to:

C (ω)
.
=

Ns∑
n=1

∥∥∥T̂ T̃ (n−1)
ω q̃wk

− T̃ (n)
ω q̃wk

∥∥∥2

=
∥∥∥T̂ T̃ (0)

ω q̃wk
− T̃ (1)

ω q̃wk

∥∥∥2

=
∥∥∥T̂ q̃wk

− T̃ωq̃wk

∥∥∥2

=
∥∥∥T̂ q̃wk

− q̃ω
∥∥∥2
. (3.12)

If we set the hyper-parameter to Ne to ∞, we obtain an algorithm that at each
iteration k, minimizes the cost (3.12) until it converges to a local minimum. This is
equivalent to performing the full projection of T̂ q̃wk

into the space of action-value
functions Q, in order to find the next function of the sequence:

q̃wk+1

.
= ΠT̂ q̃wk

.

This is exactly what the Fitted Q algorithm does when using a gradient-based
methods to solve the supervised problems at each iteration.

Greedy Gradient Fitted Q Iteration By setting the parameter Ne to a finite
value, and in the more extreme case to 1, while maintaining Ns = 1 and the constant
approximation architecture explained in the previous paragraph, we obtain a variant
of Fitted Q Iteration, that moves to the next action-value function before completing
the projection operation. The idea is that it could turn out not to be necessary to
learn perfectly every action-value function of the sequence as long as we keep moving
in the correct direction in the space of action-value functions Q.

Other algorithms with non-constant architecture The most interesting case
are the ones when we do not use the constant architecture that we detailed in the
previous paragraph. This is because in that way we are effectively not training the
Bellman Operator, but approximating directly the action-value functions, ignoring
thus the main feature of our algorithm.

Like we have shown for the previous algorithms, by varying the hyper-parameter
Ne from 1 to infinite we can control the detail to which the approximate Bellman
Operator is trained at the current iteration, before moving to the next action-value
function. The lower the parameter the more greedier the algorithm becomes.



By using a non constant architecture such as the ones described in Section 3.3, we
also gain the ability to fine-tune the hyper-parameters Ns and Nu, which otherwise
lose meaning since we have no Bellman Operator to consider.





Chapter 4

Experiments

In this chapter we study the performance of our framework, under various config-
urations of the hyper-parameters, in two problems: the Linear-quadratic-Gaussian
control problem and the Car on the Hill problem and compare its results to the
solutions obtained by Fitted Q Iteration.

4.1 Linear–quadratic–Gaussian Problem

As a first problem we chose a variation of the Linear-quadratic-Gaussian control
problem [Athans, 1971]. The unidimensionality of the problem and the fact that it
admits a closed form solution, considerably simplifies the analysis, and makes it a
good candidate for a first test of the performances of our framework.

Environment In this task the agent moves on a one dimensional straight line,
starting from a random position, with the goal of arriving in the center (i.e. position
0). The agent receives a negative reward each time step proportional to the square
of the distance from the center and to the square of the length of the step it takes
as the current action.

The state space S is unbounded and is equal to the real line R, therefore it is
imperative to use approximate action-value functions:

S .
= R.

The action space A, in our case, is a discrete set of 21 elements, ranging from −8

to 8 and defined as:

A .
= {0.8i | i ∈ Z,−8 ≤ i ≤ 8} .

The next state St+1 at each time step is computed according to the following
equation:
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Figure 4.1: LQG Optimal action-value function

St+1
.
= aSt + bAt + σ,

where the parameters a and b have been set to 1 and the term σ represents a
discrete-time Gaussian white noise process.

The reward given to the agent is always negative and quadratic with respect to
the current state and action, except in position 0, where the reward is null. The
reward is specified by the following equation:

Rt+1
.
= −qS2

t − rA2
t ,

where the parameters q and r have been both set to 0.9.
The optimal policy can be computed in closed form and has the form:

π(s)
.
= −l · s,

where

l = abx
(
b2x+ r

)−1
,

and x is determined by solving the Riccati equation:

x = a2
(
x−

(
xb2 + r

))
+ q.

Dataset collection The dataset has been collected by uniformly sampling the
state space S in the interval [−10, 10] and performing a step by selecting every
possible action in A, starting from each state.



The states in the dataset D are:

S .
=

{
i

15
| i ∈ Z,−150 ≤ i ≤ 150

}
⊂ S.

The size of the set of states S is 301, and therefore the size of the dataset D is
given by:

|D| = |S| · |A| = 301 · 21 = 6321.

Approximation Architectures Both the approximation architecture for the action-
value functions Q̃(s, a,w) and the one for the Bellman operator T̃ (w,ω) have been
chosen to be linear, except for Gradient Fitted Q Iteration and its greedy variant
that do not train the Bellman operator and therefore have a constant T̃ (w,ω) = ω,
like explained in Section 3.4 on page 51.

The action-value function architecture has the form:

Q̃(s, a,w)
.
= φ (s, a)T w =

∑
i

φi (s, a)wi,

where φ (s, a) = (φ1 (s, a) , φ2 (s, a))T ∈ R2 represents the feature vector for the
state-action pair (s, a) and is defined as:

φ1 (s, a)
.
= s · a

φ2 (s, a)
.
= s2 + a2,

while the approximate Bellman operator architecture is the Fixed Point archi-
tecture defined in 3.3.

Fitted Q Iteration with Least Squares The first step of the evaluation of our
framework is to run the Fitted Q Iteration algorithm to be able to compare its
solution to the ones obtained by our method. Since we are using a linear approxi-
mation architecture for the action-value function we decided to use SciKit Learn’s
Least Square Regressor [Pedregosa et al., 2011] to solve the supervised problem per-
formed at each step of Fitted Q Iteration, due to its speed in this case compared to
gradient-based algorithms.

The algorithm converges approximately in 6 iterations, to the solution:

w ≈ (−2.9076,−2.3517)T ,

which results in an action-value function that has a mean squared error of ≈ 6.37

with respect to the optimal action-value function, evaluated over all the state-action



it. w1 w2 mse*

1 1.41794758e-17 -8.99999969e-01 16031.722623

2 -1.78116456 -1.79148525 2328.277009

3 -2.66976558 -2.23696794 86.890258

4 -2.87080458 -2.33493751 5.062161

5 -2.90443403 -2.35043844 6.094046

6 -2.90766497 -2.35178957 6.386884

7 -2.90761501 -2.35173596 6.378294

Table 4.1: LQG FQI Least Squares
Weights computed by 7 steps of FQI with Least Squares in the LQG problem.

pair in the dataset D. Table 4.1 shows the values of the weights and the mean
squared error with the optimal action-value function at each iteration.

Gradient Fitted Q Iteration Gradient Fitted Q Iteration produces results al-
most identical to the Least Squares version. The weight vector w has been initialized
to 0, to ensure that the first target that is learned is equal to the reward. Note that
the algorithm learn the weight vector ω, even if in this case it simply represents the
weights of the action-value function, and at the end of each iteration ω is copied into
w.

The weight ω have been initialized in an intentionally bad way in order to see if
the algorithm can recover from bad initial weights:

ωbad
.
= (5, 10)

ω0
.
= ωbad.

See Figure 4.2 on page 59 to see the performance of this algorithm compared to
the corresponding one with the Fixed Point architecture.

Gradient Fitted Q Iteration with Ne = 1 The greedy version of the previous
algorithm, that is the one obtained by training the action-value function for just
one epoch each iteration (Ne = 1). The algorithm diverges to +∞ in the case we
initialize it with w0 = 0 (and ω0 = ωbad).

In case we initialize the weights (both w0 and ω0), with the same weights found
after one step by Gradient Fitted Q Iteration, which are the weights learned when
trying to approximate the reward:



Figure 4.2: FQI vs GGQI on LQG
The two plots show respectively the changes in the two components of the weight
vectorw = (w0, w1). Each plot shows the same weight component for two algorithms:
Gradient FQI and GGQI with Ns = 1 and Ne =∞. In this experiment our method
is able to learn the same solution of FQI, slightly faster. On the horizontal axis are
the epochs of learning divided by 100.

wr
.
= (4.71210274e− 15,−8.99998803e− 01) ,

the algorithm goes towards the fixed point but then oscillates around it. See
Figure 4.3 on page 60 for a comparison of this method with the corresponding greedy
method with Fixed Point Architecture and Ns = 2.

Fixed Point architecture with Ne = ∞ Another trial is to run our algorithm
with the Fixed Point architecture described in Section 3.3 and setting Ne =∞. This
setting is able to converge to the fixed point in the same number of total epochs as
Gradient Fitted Q Iteration.

In order to make a fair comparison with Gradient Q Iteration, the initial weights
have been set in the following way:

w0
.
= 0

A0
.
= I

b0
.
= ωbad.

Setting A and b, which represent the weights of the Fixed point architecture, in
this way ensures that the initial fixed point is equal to ωbad:



Figure 4.3: Greedy Algorithms on LQG
These plots, divided in two rows and two columns, show on each column the evolution
of a component of the weight vector w = (w0, w1). The first rows compares the
greedy version (Ne = 1) of Gradient FQI with the greedy (Ne = 1) GGQI with
Fixed Point architecture (with Ns = 2), when their initial weights are set to ωbad. In
this case Greedy FQI diverges almost immediately, while the Fixed Point architecture
does not diverge but does not go to the correct fixed point either.
In the second row, we initialized the algorithms from wr, and in this case we can
see how Greedy FQI oscillates for very long, while the greedy Fixed Point converges
almost immediately to the correct solution.



w∗0 = A−1
0 b0 = ωbad.

Fixed Point architecture with Ne = 1 and Ns = 2 Running the greedy version
of Fitted Q Iteration (i.e. with Ne = 1) goes very fast towards the fixed point, but
oscillates around it. We can try to fix this by learning two steps of the approximate
Bellman Operator, instead of moving directly in the action-value function space like
Fitted Q Iteration.

We tried again starting the algorithm, like in the previous setting, that is with
w0 = 0 and with A−1b = ωbad. In this case the algorithm does not diverge to +∞,
like Fitted Q Iteration with Ne = 1, but converges to point that is distant from the
correct solution.

If we initialize the weights, with the ones found after one step of Gradient Fitted
Q Iteration:

w0
.
= wr

A−1
0 b0

.
= wr.

Then the algorithm does not diverge and goes very quickly to the correct fixed
point.

4.2 Car on the Hill Problem

We consider now the Car on the Hill problem, in which an agent needs to drive
a car on top of a hill (See Figure 4.4 on page 62). The state space is continuous and
consists of tuples (p, s) representing the position and speed of the agent:

S = {(p, s) ∈ R | −1 < p < 1 ∧ −3 ≤ s ≤ 3} .

The agent start at position −0.5, at the bottom of the valley and can select only
two actions

A .
= {−4, 4} ,

that influence the acceleration of the car, making it respectively smaller and
bigger. The goal of the agent is to bring the car on top of the hill as fast as possible
while avoiding to reach positions p < −1 and speeds |v| > 3.

Note that due to the forces acting on the car, the agent cannot simply accelerate
to win, but needs first go back to gain momentum.



For the exact equations governing the system, see [Ernst et al., 2005, Appendix
C.2].

Figure 4.4: The Car on the Hill control problem
Representation of the shape of the Hill (taken from [Ernst et al., 2005])

In order to compare the performance of our algorithm graphically, we computed
a baseline action-value function for this problem performing 10 steps of Fitted Q
Iteration with Extremely Randomized Trees (see Figure 4.5 on page 63). We then
measured the mean squared error of the other algorithms that we ran with respect
to this action-value function.

Moreover for each algorithm we computed the score like suggested by [Ernst
et al., 2005].

Dataset collection The dataset has been collected similarly to what has been
done for the previous problem, that is by uniformly sampling the state space S and
performing a step by selecting every possible action in A, starting from each state.

The states in the dataset D are:

S .
= {(0.02 · i, 0.2 · j) | i, j ∈ Z,−50 ≤ i ≤ 50 ∧ −15 ≤ j ≤ 15} ⊂ S.

The size of the set of states S is 101 · 31 = 3131, and therefore the size of the
dataset D is given by:

|D| = |S| · |A| = 3131 · 2 = 6262.

Approximation Architectures The approximation architecture used in this prob-
lem, for the action-value functions and the Bellman Operators are both linears, like
in the previous case. The architecture used for the approximate Bellman Operator,
when used, is the Fixed Point architecture (Section 3.3).

The features for the action-value functions, in this case are tiles. We used 8

tilings, each composed of 5 × 5 tiles, with displacement vector set to the first odd
integers (1, 3, 5, 7, . . . ) as recommended by [Miller and Glanz, 1996].



Figure 4.5: V function of Extra-Trees
This plot shows the value function computed by an Extra-Trees regressor after 10
iterations of Fitted Q Iteration. On the horizontal axis there are the positions p,
ranging from −1 to 1. On the vertical axis there is the speed s, ranging from 3 to
−3.



Gradient Fitted Q Iteration and Fixed Point Architecture with Ne = ∞
As in the same problem we executed Gradient FQI for 10 iterations. It obtained a
score of 0.2274.

We then ran our algorithm with Ne = ∞ and 10 iterations and it obtained a
slightly better score of 0.2339.

Figure 4.6 on page 65 compares the mean squared error of these two algorithms
with respect to the baseline action-value function computed with Extra-Trees. Both
algorithm tend to get closer and closer to that function, while our algorithm seems
to get there slightly faster.

Greedy Variants Ne = 100 In this context we ran our greedy algorithms with
a less aggressive setting of Ne = 100, as opposed to Ne = 1 that we used for the
previous problems. This means that the algorithms learn for 100 epochs before
moving to the next action-value function of the sequence.

We executed our algorithm with Ns = 1 and compared it with the performance
of the greedy version of gradient FQI. They obtained both lower scores than the
versions with Ne =∞ and we had to initialize their weights with the ones obtained
by learning the reward with one step of FQI in order to have better results. The
scores are 0.1533 for FQI and 0.1574 for GGQI.

Figure 4.7 on page 66 shows the mean squared error computed while running
those algorithms with respect to the baseline action-value function learned with FQI
and Extra-Trees. They both converge almost bringing the error to 0, even though
GGQI seems to be more stable towards the end.



Figure 4.6: FQI vs GGQI on Car on the Hill
This plot compares the mean squared error of FQI and GGQI (with Ne = ∞ and
Ns = 1) with respect to the action-value function computed with Extra-Trees and
10 steps of FQI. On the horizontal axis are the epochs of learning divided by 100.



Figure 4.7: Greedy Algorithms on Car on the Hill
This plot compares the mean squared error of FQI (Ne = 100) and GGQI (with
Ne = 100 and Ns = 2) with respect to the action-value function computed with
Extra-Trees and 10 steps of FQI. On the horizontal axis are the epochs of learning
divided by 100.





Chapter 5

Conclusions and Future Work

This thesis belongs to the research area of Reinforcement Learning and its goal
was to propose a new framework: Generalized Gradient Q Iteration.

This framework consists of a generic method with a series of hyper-parameters
that can be tuned in order to obtain different algorithms. Our method belongs
to the class of Q Iteration, and indeed we showed how under some setting of the
hyper-parameters it can be reduced to Fitted Q Iteration.

The first characteristics that sets apart our method from Fitted Q Iteration is
the ability to fine-tune the level at which action-value functions are approximated
on each step of the algorithm. This allows us to avoid performing the full projection
and moving to the next action-value function before having fully learned the previous
one. As long as the algorithm keeps moving in the correct direction, convergence is
sped up by a significant factor.

The second and bigger characteristic of our method is that we have the ability
to learn an approximation of the Bellman optimality operator. The core idea is
that if we manage to approximate in a good way the Bellman operator we can then
use this knowledge to move very quickly towards the optimal action-value functions.
We proposed various approximation architectures for the Bellman Operator, among
which one that we called Fixed Point architecture has an explicit representation of
its fixed point. This has the obvious advantage of allowing us to move directly to
such fixed point.

We tested our framework in various experiments and showed how in every case,
under the appropriate settings, it manages to get performances that are comparable
or slightly better than those of Fitted Q Iteration. This encourages us to think that
with this work we moved in the right direction and that with more study we can
further improve and refine our method.

One possible future development is to test our method in other more challenging
tasks and to try and experiment with different approximation architectures for the
Bellman Operator, in particular with Deep Neural Networks, considering their recent
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spectacular successes. Another interesting future improvement would be to prove the
convergence of our method, using the above mentioned Fixed Point architecture, in
the linear case to the same solution found by semi-gradient methods such as semi-
gradient TD(0).
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