PoLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’'Informazione
Corso di Laurea Magistrale in Ingegneria Matematica

\\\\“\\mumu,',,#/,
N

“,
>

e
F

o

,
AT

)
“,

“, \\\\
N
Il”’ﬁmumn\\“‘\\

A STOCHASTIC REACHABILITY

APPROACH TO ASSET ALLOCATION.
FROM TIME-BASED TO EVENT-DRIVEN
SYSTEMATIC STRATEGIES

Prof. Emilio BARUCCI

Relatore:
Dott. Gianni POLA

Correlatore:

Tesi di Laurea di:
Andrea SCHIAVON
Matr. 852559

Anno Accademico 2016-2017






Abstract

Before the 1950s, managing other people’s money was a discipline as far
away from being scientifically dictated as it could ever get. For instance,
before Markowitz’s revolutionary paper Portfolio Selection, diversification
was not a universally recognized practice in Asset Allocation. Markowitz’s
work paved the way for new ideas from different scientific and academical
fields to influence Finance and Asset Allocation in particular.

Continuing along this line, in this thesis cutting-edge results in Stochastic
Reachability (which is a concept belonging to the theory of Control Systems)
are employed to tackle the Asset Allocation problem. In particular, once an
investor has specified his risk profile (through a value-at-risk specification)
and a target return, the model will output an optimal investment strategy
having the feature of maximizing the probability of reaching the target return
while keeping the risk under control. This strategy will exhibit a contrarian
behavior, namely it prescribes to buy risky assets (in order to achieve a riskier
position) when performance is down and to sell them when performance is
up.

What are the drivers that lead a portfolio manager to rebalance portfolio
weights? In Part I, the case where time triggers a portfolio rebalancing will
be explored. Although this Time-Driven approach is the most intuitive, it
might incur in non-negligible transaction costs if the rebalancing frequency
is high. On the other hand, in Part II, what causes the portfolio mix to be
readjusted will be the fact that the risky asset cumulative return hits a lower
or upper barrier. This portfolio rebalancing mechanics leads to the so-called
Event-Driven approach to Asset Allocation.

Keywords: Asset Allocation, Stochastic Reachability, Time-Driven approach,
Event-Driven approach.
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Sommario

Contrariamente a quanto accade oggi per i maggiori investitori istituzionali,
prima degli anni '50 chi investiva in borsa lo faceva senza adottare un metodo
rigorosamente scientifico. Il cambio di rotta avvenne nel 1952, quando Harry
Markowitz, fondatore della moderna teoria del portafoglio, pubblico Portfolio
Selection, un articolo che apri la strada ad un flusso di nuove idee provenienti
dall’accademia e da svariate discipline scientifiche, idee che saranno destinate
a rivoluzionare il modo di investire nei decenni successivi.

Proseguendo in questa direzione, nel nostro lavoro vengono utilizzati re-
centi risultati in Stochastic Reachability (concetto sviluppato nella teoria
dei Sistemi di Controllo) per riadattarli in un contesto di Asset Allocation.
In particolare, una volta individuato un adeguato profilo di rischio (tramite
un’indicazione di value-at-risk) e un rendimento da raggiungere, il modello
produrra una strategia di investimento che massimizza la probabilita di rag-
giungere tale rendimento tenendo allo stesso tempo sotto controllo il rischio.
Questa strategia avra la caratteristica di essere Contrarian, cioe prescrive di
acquistare titoli rischiosi quando la performance del portafoglio ¢ buona men-
tre prescrivera di venderli, in favore di titoli privi di rischio, se la performance
e bassa.

Con che criterio dunque, un gestore decide di ribilanciare i pesi di portafo-
glio? Nella prima parte del lavoro verra presentato ’approccio Time-Driven,
in cui ¢ il tempo a dettare la riallocazione dei pesi (e.g. settimanalmente).
Nonostante questo sia il metodo piu intuitivo, ha come svantaggio gli elevati
costi di transazione nel caso di frequenza di riallocazione alta. Nella seconda
parte invece, I’approccio che si segue e quello Event-Driven. Cio significa che
una riallocazione di portafoglio viene effettuata solo quando il valore assoluto
del rendimento cumulato dell’asset rischioso supera una certa soglia.

Parole chiave: Asset Allocation, Stochastic Reachability, Time-Driven ap-
proach, Event-Driven approach.
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Chapter 1

Introduction

Since the first stock exchange opened for trades, investors have been trying
to find ways to allocate their wealth among different securities in order to
maximize returns. As a matter of fact, the techniques which are being em-
ployed nowadays in the investment industry are quite different from those
used in the first half of the 20th century. "Fifty years ago, the business of
managing other people’s money was very much an art not a science, and
was largely a matter of finding someone who was privy to inside information.
But during the 1950s, 1960s and 1970s, academics changed the study of what
became known as portfolio management. They did so in the face of much
initial resistance and scepticism from the industry”E].

1.1 The academia meets the industry

In those days, any market participant would have been aware that invest-
ing was a risky business (nothing ventured, nothing gained). However, a
formal and systematic connection between risk and return was still missing.
The ”annus mirabilis” in asset allocation was 1952, when Harry Markowitz
published his pioneering paper Portfolio Selection in the Journal of Finance,
starting the academic invasion of the financial industry. In his paper, which
is considered to be the starting point of Modern Portfolio Theory (MPT),
Markowitz outlined for the first time how investors should allocate assets so
as to achieve the highest returns given a certain level of risk. After hav-
ing estimated expected returns and the covariance between each security,
an investor, according to Markowitz, has to solve a quadratic programming
problem for obtaining the so-called efficient portfolio frontier. Any portfolio
(a mix of securities) belonging to the frontier is efficient in the sense that it

1See [2].



provides the highest expected return for a given level of risk (standard devia-
tion). Moreover, each of these portfolios has the feature of being deversified.
In Markowitz’s word<?k

A portfolio with sixty different railway securities, for example,
would not be as well diversified as the same size portfolio with
some railroad, some public utility, mining, various sort of manu-
facturing, etc. The reason is that it is generally more likely for
firms within the same industry to do poorly at the same time
than for firms in dissimilar industries.

Building on Markowitz’s work, the second major breakthrough is the
Capital Asset Pricing Model (CAPM) and it was made by another University
professor, William Sharpe. The CAPM, which appeared in the Journal of
Finance in 1964, allows one to compute the expected return from an asset
in terms of its risk. The risk is divided into two components, namely a
systematic risk (which is related to the return of the whole market and
cannot be eliminated) and a non-systematic risk (which is unique to the
asset and could be eliminated by diversifying the portfolio) [18]. In spite of
the unrealistic assumptions which the CAPM is based on [19], it has proved
to be a useful tool for portfolio managers. Other key contributions academia
made to the industry are the Efficient-Market Hypotesis (EMH) (Fama, 1970)
and the Black and Scholes (BS) model. EMH is a theory that states that
security prices perfectly reflect all available information in the market and,
consequently, the whole market cannot be beaten. On the other hand, the
BS model is a mathematically-rigorous theory for pricing options.

Although all of the models above have shown some shortcomings when
applied to the complex reality of capital markets, they have been crucial steps
for reaching what Asset Allocation is today. Nonetheless, ideas from other
scientific fields have continued to enrich Finance and in particular Asset Al-
location. An example of this flourishing contamination is the techniques of
Stochastic Reachability presented in this works which have been borrowed
from the theory of Control Systems and applied to the asset allocation prob-
lem.

1.2 Structure

In this section the structure of the thesis is outlined.
In Chapter 2| we introduce the asset allocation problem and all the quan-
tities related to it, such us the asset class return vector and the portfolio

2See [6].



dynamics. Then, the concept of Stochastic Reachability is explored giving
an idea about its possible fields of application. We conclude the chapter by
discussing the mathematical formulation of the asset allocation problem in
a Stochastic Reachability framework. In particular, the ODAA algorithm,
which all the thesis rely on, is enunciated.

In Chapter [3] we discuss three models which could be employed to de-
scribe the probabilistic properties of the asset class returns vector, namely
the Gaussian (G), GM and Generalized Hyperbolic (GH) model. For each of
them, the model-related features (risk constraint and portfolio value density
function) of the ODAA algorithm are obtained.

In Chapter 4| we focus on techniques for calibrating the models presented
in Chapter |3| to market data. For the GM case, calibration performance
between three calibration methods are compared.

Chapter [5] is dedicated to presenting the numerical results for the time-
driven approach. The ODAA asset allocation strategy is compared to the
Constant-Mix and the CPPI, which are two benchmark policies in the indus-
try. This will end Part

Part [[T] begins with Chapter [0 where a brief introduction of the Discrete
Event System (DES) theory is given. Afterwards, the asset allocation prob-
lem is cast in an Event-Driven (ED) setting, calibration of model parameters
is discussed and numerical results are given.

Chapter [7] constitutes the original part of the thesis. In this chapter
we attempt to generalize the basic ED model of Chapter [f] in two different
ways: first, by modeling the risky asset as a GBM and then by assuming a
stochastic dynamics (Vasicek model) for the risk-free interest rate.

Finally, in Chapter [8| we sum up what has been achieved in this thesis
and propose future research directions.

The MATLAB code used to implement the models presented in the thesis
can be found in the following GitHub repository: https://github.com/
skiamu/Thesis.


https://github.com/skiamu/Thesis
https://github.com/skiamu/Thesis
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Time-driven approach






Chapter 2

Model Description

In this chapter, first the basic financial quantities are introduced and the
asset allocation problem is stated, then the same problem will be embedded
in a dynamical control system framework which will allows us to develop the
stochastic reachability approach to portfolio construction. We closely follow
[28],[27] and [26].

2.1 Portfolio construction

In the financial industry, a group of securities that exhibits similar charac-
teristics in the market place and is subject to the same regulation is called
asset class. Typical asset classes include stocks, bonds, real estate, cash
and commodities. The discipline consisting in allocating investor’s wealth
among different asset classes is called asset allocation. We will now in-
troduce the financial quantities and a formal mathematical setting suitable
for describing the asset allocation problem. Let (€2, F,P) be the underly-
ing probability space and consider a discrete set of time indexed by k € N.
Moreover, let us consider a universe of m € N asset classes. Asset classes’
performance at period £ is described by an m-dimensional random vector

wy, = [wi(1),... ,wk(m)}T where
Zk(i) — Zkfl(i)
Zkfl(ll)

, 1=1,...,m
is the rate of return of the ith asset class and {zx(7) }ren the ith asset class
price process. In general, the correlation of wy can be of two kinds:

e synchronous correlation, that is the correlation among different asset
class at the same time period (i.e. correlation between wy (i) and wy(j)
fori,j=1,...,m)



e time-lagged correlation, that is the correlation among different asset

class at different time period (i.e. correlation between wy (i) and wy(5),
with k # k' fori,5 =1,...,m).

As the time-lagged correlation is usually negligible for short time period, wy
will be a synchronous-correlated random vector. Standard notation is used
for Expected Returns and Covariance Matrix:

(i) = E[lwe(1)], i=1,...,m keN

(i, ) = E{(wku‘) — (@) (i) — ukm)] ij=1,...,m kel

An asset allocation at period k£ € N is a vector u; € R™ whose ith element
indicates the percentage of wealth to be invested in asset class i. This vector
is the leverage the asset manager has at his disposal for driving the portfolio
value towards his goal. The portfolio performance over the period [k — 1, k]
is measured by the portfolio return

Th+1 — Tk
Tk

Tk+1 =

where {z}ren is the portfolio value process. The portfolio return can also
be expressed as a weighted average of each asset class return as

T
Th+1 = U Wiy

By combining the two previous relations we get the following recursive equa-
tion

Tpp1 = Tp(1 + uj wip) (2.1)

which describes the time evolution of portfolio value. In plain words, the
asset allocation problem consists in choosing the vector u, at each time
period k € N (called rebalancing time) so as to achieve investor’s goal. If
the investor is mainly concerned about the final return, the allocation strat-
egy is called total-return allocation. On the other hand, if his objective is
beating a benchmark (an index created to include multiple securities repre-
senting some aspect of the total market), the strategy is called benchmark
allocation. In the following, we will consider only total-return portfolios.

As well as setting the target return, the investor specifies other require-
ments that the portfolio manager must take into consideration. This means
that the asset allocation vector w; is bound to stay within a feasible set Uy,
for each k € N. In this work, the feasible set Uy is obtained by imposing the
following set of constraints:



e budget constraint: Y " ug(i) = 1, all the wealth is invested in the
portfolio

e long-only constraint: wug(z) > 0, = 1,...,m, no short-selling is al-
lowed

e risk constraint: the metric value-at-risk (VQR) is used to limit port-
folio risk.

The form of the risk constraint will actually depend on the model used to
describe the probabilistic properties of vector wy. In Chapter 3| we will tackle
this issue. Let us now cast the asset allocation problem in a more general
mathematical framework.

2.2 Stochastic Reachability Approach

In the previous section the financial setting has been laid out, now it will be
embedded in a more general framework by employing the theory of dynamical
systems. We will see that this formalism will allow us to formulate the asset
allocation problem as a stochastic reachability problem which will be
solved by using dynamic programming (DP) techniques.

2.2.1 The concept of Stochastic Reachability

"In general terms, a reachability problem consists of determining if a given
system trajectory will eventually enter a prespecified set starting from some
initial state” [I0]. For deterministic systems, reachability analysis amounts
to compute the set of states that can be reached by system trajectories. How-
ever, most of real-life problem are non-deterministic and uncertainty must be
taken into account. In these cases, the main concern is determining the prob-
ability that the system reaches a prespecified set. ” Typically, a certain part
of the state space is "unsafe” and the control input of the system has to be
chosen so as to keep the state away from it” [10]. One of the most successful
application of stochastic reachability techniques has been Air Traffic Man-
agement (ATM). "Within the ATM context, safety-critical situation arise
during flight when an aircraft comes closer than a minimum allowed distance
to another aircraft or enters a forbidden region of the airspace. In the current
ATM system, air traffic controllers are in charge of guaranteeing safety by
issuing to pilots corrective actions on their flight plans when a safety-critical
situation is predicted” [10].



Conversely, when Stochastic Reachability is applied to the financial asset
allocation problem, a dual viewpoint is taken. In this context, the focus is on
driving the system state (the value of a portfolio of securities) into a ”safe”
set, and computing the probability that this occurs. The air traffic controller
becomes a portfolio manager and signals issued to the pilot turns into orders
to traders to buy or sell assets so as to adjust the portfolio mix of securities.

2.2.2 Mathematical Formulation

Let us introduce the following stochastic discrete-time dynamic control sys-
tem

T1 = f(Th, U, Wer1) = Tx(1 + uf wip1) (2.2)

where, for any £k € N

e 1, € X = R is the system state (the portfolio value), X the system
space

e u; € U C R™ is the control input (the asset allocation vector), U the
control input space

e w; is a m-dimensional random vector (the asset class returns) with
density function p,,

Let U = { p:XXxN—=U } be the class of controls we are interested in,
namely the time-varying control maps. Any u € U is a map such that for any
r € X and any k£ € N, it associates an asset allocation vector uy € U. The
control input space U is shaped by the budget, long-only and risk constraint.
Given N € N we define the set of control sequences as

Un = {7T = {Mk}k:o,...,N NS U}

and call any 7 € Uy a control policy. Moreover, let us denote by 7% a
control policy starting at period k, that is 7 = {p, ..., ux}. We now have
all the necessary ingredients to formulate the asset allocation problem in
stochastic reachability terms.

Problem 2.2.1 (Optimal Dynamic Asset Allocation 1): Given a finite time
horizon N € N and a sequence of target sets {X7,..., Xy} such that each
target set is a subset of the state space X, find the optimal control policy
7™ € Uy_1 that maximizes the following objective function

]P’({wEQ:xoEXO,...,xNGXN}>. (2.3)

10



The target sets {X1,..., Xy} represent investor’s goal and we can think
of them as the ”safe” states where we want the portfolio value to belong to.
For instance, a target set could be X; = [z,,00). Problem is going
to be solved by resorting to Dynamic Programming (DP). However, before
doing that, we need to make explicit the dependence in from the control
policy 7. To this end, let ps(zuw,,,) be the density of random variable ,
once z has been fixed to z € X, and let us introduce the following function.

Definition 2.2.1 (Value function): Given a sequence of target sets { Xy } x>0,
the value function associated with Problem is the following real map

V:NXxXxU—][0,1]
(k,z,7%) = V(k,z,7%)

such that

Iy, () if k=N

Vk,z,7") =
( o ) {ka+1 V(k + 17 2 7Tk+1)pf(xvuvwk+1)(z)dz lf k - N - 1’ T

It is now possible to link the objective function (2.3) to the value function
in the following way (see [26])

IP’({w €Q:x9€ Xp,...,xN € XN}) =V (0, xq, ).

This result is extremely important since it allows us to rewrite the ODAA
problem in terms of the value function as follows

Problem 2.2.2 (Optimal Dynamic Asset Allocation 2): Given a finite time
horizon N € N and a sequence of target sets {X1,..., Xy}, find

7 = argmax V' (0, zo, 7).
TEUN_1

Having restated the Optimal Dynamic Asset Allocation (ODAA) problem
in terms of the value function V' has been crucial in order to directly apply
the powerful technique of DP and solve it [26]. The main result is given in
the following theorem, that is the cornerstone on which this work is based
on.

Theorem 2.2.1 (ODAA algorithm): the optimal value of the ODAA Prob-
lem 2.2.2] is
p* =Jo (*xO)a

11



where for any = € X', Jy(z) is the final step of the following algorithm

In(z) = 1xy ()

Ju@) = sup / T ()P gy (2)dl2
Xk+1

ur €Uy

k=N-1,...,1,0.

(2.4)

The previous result provides us with a backward procedure (it starts at
time N and ends at time 0) whose outputs are the optimal control policy
™ = {u, ..., wy_1} and the optimal joint probability p* of reaching the
target sets. It is worth pointing out some interesting features of the ODAA

algorithm ([2.4)):

e Ji(z) is a function of portfolio realization z € X" at time k. This depen-
dence is hidden behind the probability density function py (s wj.,)-

e The constrained optimization must be numerically carried out in a

space (U) of dimension m € N. At each iteration k = N —1,...,1,0,
the optimization has to be repeated for each x belonging to X} (in
practice, this set will be discretized with a fix step length to have a
finite number of optimizations).

The algorithm presented in theorem does not depend on a par-
ticular distribution of random variable f(x,uy, wyy1) as long as its
explicit functional form is available. Hence the reason to prefer multi-
variate distribution closed under linear combination for modeling w1 .
therefore, this distribution-free property gives us enough freedom to
look outside the usual Guassian world.

Given a period k£ € N and a portfolio value realization v € X, pf(z) € U
tells us which is the optimal allocation mix of our portfolio.

We now ask ourselves which probability distributions are suitable for
vector wy1; the answer to this question is the main objective of the next

chapter.
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Chapter 3

Asset Class Returns modeling

In this chapter, we address the asset class returns modeling issue. As it
was noted in the previous chapter, the ODAA algorithm does not depend
on a particular distribution of the asset class returns vector wy, . However,
by looking at we see that we need the explicit analytical form for the
density function ps( u,w,, ). For this reason, we will be dealing exclusively
with probability distributions closed under linear combination. In this work,
we propose three such distributions:

o (Gaussian
e (Gaussian Mixture
e Generelized Hyperbolic

For each of them, after giving a brief theoretical introduction, we will dis-
cuss the model-related features of the ODAA algorithm. That is, first we
will derive the portfolio value density function pg(zay w,.,) and secondly, an
expression for the risk constraint (which also depends on the distribution
chosen) will be obtained. Moreover, we assume stationarity, therefore the
distribution of wy,; will not depend on k.

3.1 Gaussian model

The first probability distribution we considered is the Gaussian.

Definition 3.1.1 (Gaussian random vector): A m-dimensional random vec-
T. .. . ..

tor w = [wl, e wm] is Gaussian if every linear combination ) " u;w; =

u’w has a one-dimensional Gaussian distribution.
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Let the asset class returns random vector wy; follow a Gaussian distri-
bution with mean g and covariance matrix 3. By definition we have

.73(1 + u;‘gwkﬂ) ~ N(.I(l + ugu),ﬁu;‘gZuk)

i 52
hence
1 1(z—f)?
pf(:v,uk,wk+1)<2) = \/%5_ eXp{ — 57 s z € R. (31)

Let us now introduce the two important concepts of loss function and
value-at-risk that we will use to derive the risk constraint.

Definition 3.1.2 (loss function): Denoting the value of our portfolio at
time k € N by xp.1, the loss function of the portfolio over the period
[k, k + 1] is given by

(37k+1 - $k)

Lpyr o= =2 = —Tjy1 = —U Wi
T
Definition 3.1.3 (Value-at-risk): Given some confidence level 1—a € (0, 1)
the value-at-risk (VQR;_,) of our portfolio is

V@lea = mf{l eR: ]P)(LkJrl < l) >1-—- Oé}.

The V@R is a risk measure commonly use by financial institutions to
assess the risk they run to carry a portfolio of risky securities for a specified
period of time (the portfolio must be kept constant during this time period).
For instance, if our portfolio has an (ez-post) weekly VQRy 99 = 7%, this
means that 99% of the times our portfolio did not suffer a loss greater or
equal than 7% over the investment period. In our case, we receive the V@R
specification as input (ez-ante value-at-risk) by the investor (it is an indicator
of its risk-aversion) and we will construct an asset allocation uy, that satisfies
this risk constraint at each k£ € N.

Using definition (3.1.1]) we have
L ~ N (—uf p,uf Suy,)
———— ——

2
Hp Tp

therefore

P(Ly < VAR, ,) = IP’(Z < %)

Op

=1—a
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— |VQR,_o > —uj p + Z1—ay/ U} Xuy, (3.2)

where Z is a standard normal random variable and z;_,, is the 1 — «a quantile
of the standard normal distribution. The risk constraint in equation ,
together with the budget and long-only constraint, define the control input
space U which is the feasible set of the constrained optimization problem
given in theorem (2.2.1]) at each k.

3.2 Gaussian Mixture model

In this section we present the second asset class returns model, the Gaussian
Mixture model (GM). After introducing the GM distribution we will derive
the density and the risk constraint, as we did for the Gaussian model. We
closely follow [9].

The standard assumption that asset returns have a multivariate Gaus-
sian distribution is a reasonable first approximation to reality and it usu-
ally has the big advantage of generating analytically tractable theories (e.g.
Markowitz Portfolio Theory). However, the Gaussian model does not cap-
ture two key asset returns features which are observed, on the contrary, in
market real data:

1. the skewed (asymmetric around the mean) and leptokurtic (more fat-
tailed than the Gaussian) nature of marginal probability density func-
tion

2. the asymmetric correlation between asset returns, that is the tendency
of volatilities and correlations to depend on the prevailing market con-
ditions.

To overcome this shortcomings, the Gaussian Mixture (GM) distribution is
a validate alternative to the Gaussian model. Loosely speaking, the pdf of a
GM random vector is a linear combination of Gaussian pdfs (called Gaussian
regimes or mixing components). This closeness to the Normal distribution
offers a good trade-off between analytical tractability and parsimony in the
number of parameters. By adopting a GM model, it is possible to represent
protuberances on the probability iso-density contours, as can be seen in Fig-
ure [3.1] To obtain this highly non-linear dependence structure, we would
usually need cross-moments of all order; a big advantage of the GM distri-
bution is that its dependence structure is fully and conveniently captured by
the means, covariance matrices and weights of each Gaussian regime (as we
will see in the following).
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GMM - PDF Contours

Figure 3.1: Example of a GM density contour plot with two mixing compo-
nents.

Let us begin the more formal introduction on the GM distribution with
its definition.

Definition 3.2.1 (GM distribution): An m-dimensional random vector Z
has a multivariate GM distribution if its probability density function is
of the form

n
pz(Z) = Z Aigp(ﬂri»zi)(z)7 FAS Rm’
i=1
where ¢(,,, =,y is the multivariate Gaussian density with mean vector p; and
covariance matrix ¥; and \; are positive mixing weights summing to one.

The following proposition is crucial for our purposes since it tells us that
linear combinations of GM random vector have a one-dimensional GM dis-
tribution.

Proposition 3.2.1: Linear combinations of GM random vectors follow a
univariate GM distribution. In particular, if Z ~ GM then Y = 07Z,
VO € R™, has a GM distribution with probability density function

py(y) =D Abgua(¥), yeR
=1
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where

o2 =0T¥0 i=1,....m

(2

{ul :OT[LZ Z:L,m

Proof. The Characteristic Function (CF) of a GM random vector is the linear
combination of the CF of the Gaussian mixing components. Indeed,

¢z(u) = E[exp{iu’ Z}] = /m exp{iu’ z}pz(z)dz =

= / exp{iu’ z} Z AP,z (2)dz =
Rm

i=1

= Nox,(u), ueR”
i=1

where X; ~ /\/'(/J,Z-, Ei). Therefore, VO € R™ we have

¢orz(u) = E [eXp{iU(BTZ)}] =E[exp{i(u8")Z}] = dz(ud) =

= Z Nidx,(u0) Z i exp{zu@ i ——u2 0'x,0}) =

Mz’ 01.2

i=1

where X N (u,, Z) Since the CF completely characterizes the distribu-
tion (see [20], theorem 14.1) we have the result. O

Portfolio value density and risk constraint Suppose the asset class
returns vector wy., follow a Gaussian Mixture distribution. We want to
compute the density of random variable f(z,wuy, wiy1) = (1 + uf wyyq).
Thanks to proposition (3.2.1)), we know that the random variable w} wy 1
follows itself a GM (univariate) distribution. Moreover, by integration we
easily derive its Cumulative Distribution Function (CDF). This allows us to
write

Ff(r,uk,wk+1)(z> = P(:C(l + ugwarl) < Z) = qugwarl (’Z - ‘1.)

:ZA@(Z il +uk“l)>, z€R
Py Vrtul Euy
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where ® is the standard normal CDEF. Differentiating with respect to z, we
have

Pl (2) = > Aoz (2), z€R (3.3)
=1

where

o? =z’ u'Su.

{Hz‘ = (1 +u"p)

We now turn to the problem of computing the risk constraint under
the GM distribution assumption. We will follow two different approaches.
Suppose we are given the VQR; _, specification (e.g. 7%); by using definition

(3.1.2)) we have
P(L < V@R,_,) = F(VGR,_,) > 1—a

as noted above, the CDF of L = —u”w is known, therefore
g VAR, —
Sae(Yfhezmy 0
0
i=1

v - (Ve o 3.40)

pi = —u'p
o =u'Su.

(2

where

We present also an alternative method to limit the risk exposure of our
portfolio which turns out to be less computationally intensive. The idea is
to set an upper bound to portfolio return volatility in the following way

(Var [rkﬂ])% = (u;{Auk)% < Omaz (3.5)

where A is the covariance matrix of vector wy,.;. Two questions are left
open: how to compute A and how to link the upper bound o,,,, to the
VQR;_, specification given as input by the investor. As far as the former is
concerned, the following proposition gives us the answer [9]

Proposition 3.2.2: The covariance matrix of a random vector with the GM
distribution can be expressed in terms of mean vectors, covariance matrices
and weights of the mixing components in the following way

A= NZit D AN — ) (s — )"
=1

i=1,j<i
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To answer the latter, we use a Guassian approximation and the fact that,
if the rebalancing frequency is relatively small (e.g. weekly), the portfolio
return mean is negligible. In the end, we obtain

VQR,_,

21—o

Umax

3.3 Generelized Hyperbolic model

The last distribution we propose is the Generalized Hyperbolic (GH). Like
the GM, in its general form also the GH presents a non-elliptical behavior
with asymmetric and fat-tailed marginals. We proceed to give the formal
definition and then derive the density of f(z,ug, wry1) and the expression
of the risk constraint. References for this section are [7] and [21].

Definition 3.3.1 (GH distribution): A m-dimensional random vector X is
said to follow a multivariate GH distribution (X ~ GM,,(\, x, ¥, p, 3, 7))
if

X=p+Wry+VvWAZ

where
e Z~N(0,1,)
e A € R™? is the Cholesky factor of dispersion matrix ¥ (ATA = X)
o p,yeR™

o W ~ N-(\,x,¥), W > 0 and W L Z (see Appendix [A| for the
definition of the Generalized Inverse Gaussian (GIG) distribution). W
is called mixing random variable.

Remark 3.3.1: e )\ Y,y are shape parameters; the larger these param-
eters the closer the distribution is to the Gaussian

e ~ is the skewness parameter. If v = 0 the distribution is symmetric
around the mean

o X|W=w~N(p+wy,w).
The GH distribution contains some special cases:
o If \ = mTH we have a Hyperbolic distribution

e If A\ = —3 the distribution is called Normal Inverse Gaussian (NIG)
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e If y =0 and A > 0 we have the limiting case of the Variance Gamma
(VG) distribution

e [f 1y =0 and A < 0 the resulting distribution is called Student-t.

The following proposition gives us the closeness under linear transforma-
tion that we need for our modeling purposes

Proposition 3.3.1: If X ~ GH,,(\, x,¢, pu, X,v) and Y = BX +b, where
B € R”™ and b € R?, then

Y ~ GHd()VXaw?BN + b7 BEBT; B’Y)

Suppose w1 ~ GHp, (A, x, ¥, b, X,7). Applying the previous result to
our case, namely Y = f(z,u, wiy1), B = zu} and b = x, we have

f(x7 Uy, wk+1) ~ GHI()‘J X5 ¢7 l’(l + ug#% xQ’u’zEuka m‘z'Y)
N N N—_—

H P Y

and the density reads as (see Appendix |Al

Kooy ( (0+ Q) (0 +72/%) ) exp { (= — )7/5)
(v (x+ Q) (v +72/5) ) -

Ptz up,wii1) (Z) =cC

3.6)

where
Y

N|=

_ (Vx) (e +77E)
(27%)2 K (VX))

and Q(z) = (z — p)/%.
As far as the risk constraint is concerned, we adopt here the alternative
approach expressed in Equation (3.5). The covariance matrix A is easily

derived from Definition and Equation (A.2)); in the end we obtain
A = Var [W]y~" + E[W]Z (3.7)

where

(g)%Km(M)
v/ Ka(VXY)

Vr )= (%) s {atam - SO0y
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Chapter 4

Model Calibration

In this chapter we show how to calibrate the models introduced in Chapter
to market data. The asset class menu we will consider consists of equity, bond
and cash and a suitable index will be used to represent each of these markets
(the dataset will be discussed in Section [5.1)). We focus our attention only
on GM and GH since calibrating the Gaussian model is trivial (it amounts
to compute the sample mean and covariance matrix). As far as the GM
model is concerned, we set the number of mixing Gaussian components to
2. In financial terms, the two mixing components could be interpreted as
economic regimes, namely a tranquil regime and a distressed one (see [7]).
Different calibration methods are available for the GM model, namely the
Method of Moments (MM), Maximum Likelihood (ML) estimation and the
Expectation-Maximization (EM) algorithm. Each of them will be discussed
in Section and also a comparison between them will be provided. Finally,
in Section the GH model will be fitted to data using the Multi-Cycle
Expectation Conditional Maximization (MCECM) algorithm.

4.1 GM calibration

The problem of estimating the parameters of a GM distribution dates back
to [23] and still nowadays it raises in a wide spectrum of different disciplines
(Finance and Classification just to name a few). Thanks to the computational
power available today, the EM algorithm is considered to be the state-of-the-
art method for fitting the GM distribution. Nevertheless, MM and ML are
worth studying as they could provide the starting point for the EM algorithm.
The main reference for the MM method is [15], for the ML [12] and for EM
[21].

21



4.1.1 Method of Moments

In this subsection we present the Method of Moments for calibrating a 3-
dimensional Gaussian Mixture distribution with n = 2 mixing components.
The idea behind MM is basically to match observed and theoretical moments;
this translates into a system of polynomial equations that most of the time,
for big-sized problems, has to be solved numerically. Since we need to fit a
3-dimensional distribution, we will work component-wise: moment-matching
equations will be written for each component along with unimodality con-
straints on each marginal. In order to keep the number of parameters to a
reasonable degree, we will suppose a common correlation matrix between the
two Gaussian mixing components.

Let {Xi,...,X,} be a random sample from a GM distribution whose
density function is

f(Z) = )‘QO(IL1,21)<'Z) + (1 - A)@(uz,ﬂz)(z)a FAS R3' (41>

Our goal is to estimate {\, 1, 31, o, 3o} from the random sample. Due to
the assumption of a shared correlation matrix, the number of actual param-
eters to estimate is 16: A, 6 means, 6 standard deviations and 3 correlations.
To set the notation we give the following definition

Definition 4.1.1 (theoretical and sample moments): Let X be a random
variable and {x1,...,z,} a realization of a random sample. The first four
theoretical and sample moments are:

1
pux = E[X] x:—ij
n
2 2 »_1¢ —\2
ok =E[(X — ux)’] s =) (2;-1)
j=1

x = 2 E[(X - ux)?] 5=

1 ~
Kx = gE[(X — pix)"] K= "

Let X be a random vector with density (4.1)), its ith marginal is
in(Z) = )\go(uli,a%i)(z) + (1 o )\)So(ugi,agi)('z% zeR 1€ {17 2, 3}
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where pj; and UJZZ- denote respectively the ith element of the jth mixing com-
ponent mean vector and the ¢th diagonal entry of the jth mixing component
covariance matrix; in other words, the first subscript indicates the mixing
component, the second the dimension. Computing explicitly the theoretical
moments we obtain

px, = AMai + (1 — Ao

Ug(i = A(U%i + /L%J + (1 - )‘)(‘7;’ + Ngz)

1
= = { [N+ 3i0h) + (L= N0, + 3uaiod)] = 3px,0%, — wk, |
X;

1
Kx;, = py { [/\<:U"11i + 6/1%1'0%@' + 3‘7%1') +(1 - A)(Ngi + 6:“%1‘7%1 + 3agi>]+
X;

where i € {1,2,3}. Equating them with their sample counterparts gives us
the first twelve moment equations. The three correlation equations are de-
rived equating the theoretical covariances (written as a function of correlation
coefficients p;;)

0x,x; = Apijo1i015 + (1 = A)pijo2ioz; + ML — A) (s — pioi) (1 — p2y)

and the sample ones

n,n

Brx, = 3 (0= D)~ )

s=1,t=1

i € {1,2,3} j < i. So far, we have derived 15 equations in 16 unknown
parameters. In order to have as many equations as unknown parameters,
we solve the moment equation system by numerically minimizing the sum
of square differences between theoretical and sample moments for different
values of A in a discretized grid of the interval [0,1]. The optimal A will be
the one giving the smallest residual. Moreover, in the optimization process
we also imposed the following unimodality constraints on each margina]ﬂ
27

(pai — pi)? < Z(O—giai)/(ai +o3) i€{1,2,3}

1See [14] for the proof of this sufficient condition for unimodality for a 2-mixing-
component GM density.
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and positive-definiteness constraints on the standard deviation and correla-
tion parameters. The unimodality constraint is required since bimodal return
distributions are not observed in the market.

4.1.2 The Expectation-Maximization algorithm

In this section we introduce the EM algorithm for calibrating a GM model.
Before diving into it, we need to define the maximum-likelihood estimator
since the EM algorithm comes into play to solve difficulties in the ML method.

Definition 4.1.2 (Likelihood function): Let & = {z1,...,2x5} be a real-
ization of a random sample from a population with pdf f(z|@) parametrized
by 6 = [0y,...,0;]". The likelihood function is defined by

N
L(G\a:) = L(91> s 79N’$17 s 7xk) = Hf(x2|0)
i=1

The following definition of a maximum likelihood estimator is taken from
[12]

Definition 4.1.3 (Maximum-likelihood estimator): For each sample point
xz, let O(x) be the parameters value at which L(6|x) attains its maximum
as a function of 6, with @ held fixed. A maximum-likelihood estimator
(MLE) of the parameters vector @ based on a random sample X is 6(X)

Intuitively, the MLE is a reasonable estimator since is the parameter point
for which the observed sample is most likely. However, its main drawback
is that finding the maximum of the likelihood function (or its logarithmic
transformation) might be difficult both analytically and numerically. Con-
sequently, the idea is to adopt an iterative procedure that converges to a
local maximum. In order to focus on the idea behind the EM algorithm and
not on technical details, we will present it in the simpler case of a univariate
GM distribution with 2 mixing components (as presented in [16]). The inter-
ested reader can refer to [16] for the general case or [25] for a more thorough
discussion.

Consider a mixture of two Gaussian random variables

X =(1-A)X; +AX,

where X; ~ N (p1,0%), Xo ~ N (p12,0%) and A ~ B(]) is the mixing random
variable. The density function of X, parametrized by 8 = [\, i1, 03, iz, 05]7
is

f_)((l') = (1 - )‘)(10(#1,05)(1)) + )‘gp(uz,ag)(l‘)a reR
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Our objective is to find an estimate 8 of 8. Let = {z1,...,zx} be a
realization of a random sample (our data at hand), the log-likelihood function
1s
N
1(8;2) = ) 108 [(1 = N0t (71) + APy 03 (1) (4.2)

=1

In higher dimensions, the direct maximization of (4.2)) is difficult and prevent
the ML method from being successful. Let us suppose to know the following
latent random variables

A = {1 if X; comes from model 2

0 if X; comes from model 1

fori=1,..., N. Model 1 and model 2 indicate the population whose density
is the first or second Gaussian component. In this hypothetical case, the log-
likelihood function would be

0(0;x, A) Z D) 10g (P02 (i) + Ail0g (@03 (i) ]+

N

£330 [(1= A0 log(1 = X) + Arlog(V)].

If the A;’s were known, the maximum-likelihood estimate for y; and o would
be the sample mean and sample variance from the observations with A; = 0.
The same holds true for ps, 03 and A; = 1. The estimate for A would be the
proportion of A; = 1. However, as the A;’s are not known, we use as their
surrogates the conditional expectations

called responsability of model 2 for observation i. The iterative procedure
called EM algorithm consists in alternating an expectation step in which we
assign to each observation the probability to come from each model, and
a mazximization step where these responsabilities are used to update ML
estimates.
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Algorithm 1 EM algorithm for 2-component GM

1. take initial guesses for parameters [i, [z, 52, 52, A
2:  Expectation step: compute responsabilities

/): 7052\ L5
:}/\,L': _ SO(M% 2)( ) 221’7]\[

(1 = Noq 52) (@) + AP, 52) (1)

3:  Maximization step: compute weighted means and standard deviations

N - N A~ ~
T 2 i (1= i) 52 — Doim (=) (i — fi1)?
- N -~ ) 1 — N o~
Zi:l(l - %’) 21;:1(1 - %’)
i — iz T 52 _ i Al — )
N

—~ ) 2 ~
Zi:l Vi sz\il Vi

4: Iterate [2] and [3] until convergence.

A reasonable starting value for zi; and iy is a random sample point z;,
both 71,0, can be set equal to the sample variance and A = 0.5. A full
implementation of the EM algorithm is available in MATLAB and also in
Python.

4.1.3 MM vs ML vs EM

In this subsection we put the calibration methods into practice to see which
one is better at recovering the parameters of a GM distribution. To this end,
we simulated 10* observations from a GM distribution with the following
parameters

[ 6.11e—4 [4.761e—9 2.474e—8 2.731e—8
w1 = [1.373e—3 ¥, = 3.21e—5 —2.55e—6
| 2.34e—3 i 3.656e—4
[ 6.83e—4 [3.844e—9 2.42e—8  6.739e—8
o = | —1.61le—2 Yo = 3.804de—5 —7.644e—6
| —1.75e—2 i 2.757e—3

and A = 0.98. In order to have a fair comparison, the two Gaussian regimes
have a common correlation matrix

1 6.33e—=2 2.07e—8
R = 1 —2.36e—2
1
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Then, we applied the three calibration methods introduced in the previous
section. The result is summarized in Table and [£.3]

Parameter MM exar (%) ML exr (%) EM een (%)
11 6.167e—4 0.94 6.097e—4 0.213 6.11e—4 0.0264
112 1.578e—3 14.98 1.464e—3 6.66 1.368e—3 0.366
113 2.396e—3 2.40 2.209e—3 5.57 2.174e—3 7.066
in 2.757e—8 479.2 4.632e—9 2.70 4.704e—9 1.189
igg 3.215e—5 0.14 3.071le—5 4.31 3.155e—5 1.699
5\]33 3.092e—4 15.4 3.532e—4 3.38 3.661le—4 0.146
212 —3.554e—8 243.6 2.617e—8 5.75 2.249e—8 9.123
ilg —3.1e—8 213.5 3.546e—8 29.86 3.487e—8 27.68
izg —4.805e—7 81.20 —1.973e—6 22.82 —2.756e—4 7.788

Table 4.1: Estimates for the first mixing component and respective estima-
tion errors

Parameter MM emm (%) ML emr (%) EM eem (%)

T 5.461le—4 20.03 6.772e—4 0.843 6.843e—4 0.193
12 —7.26e—3 54.91 —8.424e—3 47770  —1.554e—2  3.481
i3 —8.11e—3 53.65 —8.365e—3  52.21 —1.953e—2  11.605
EAJH 1.157e—8 201.07 3.643e—9 5.21 3.223e—9 16.131
EADQQ 8.133e—5 113.79 8.792e—5 131.1 4.156e—5 9.254
igg 2.108e—3 23.52 1.922e—3 30.30 2.941e—3 6.674
f]lg —3.662e—8  251.31 3.926e—8 62.21 1.545e—8 36.164
ilg —5.244e—8  177.81 7.336e—8 8.86 2.693e—7 299.6
izg —1.996e—6 73.88 —7.787e—6 1.87 3.435e—5 549.4

Table 4.2: Estimates for the second mixing component and respective esti-
mation errors
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Parameter MM ey ML enr(%) EM epm (%)

A 0.94 4.08 0.95 3.06 0.9812 0.119
log L* 1.390e5 1.437e5 1.438e5

Table 4.3: mixing proportion estimate and log-likelihood

From the tables above we see that the EM method is definitely the most
accurate. Therefore, we decide to adopt it as the reference method for cali-
brating the GM model. As far as the MM method is concerned, the formula-
tion given in Section 4.1.1| relies on the assumption of a common correlation
matrix between the two Gaussian regimes. Although this assumption reduces
the number of parameter to be estimated, there is empirical evidence (see
[11]) that this is not the case in global financial markets where correlation
between asset classes is actually increased during bear markets. Nonetheless,
even if MM is not as accurate as EM, it is still a valuable method since it
does not require full time series but only their sample statistics. This turns
out to be particularly useful when distribution parameters are set via mar-
ket hypothesis and economic views (e.g. bull market in the next investment
period) instead of using historical data.

4.2 GH calibration

In this section we present a modified EM scheme (the MCECM algorithm)
for fitting a GH model to data. In Definition (3.3.1)) we introduced the
GH distribution using the so-called (A, x, v, g, X, v)-parametrization. Al-
though this is the most convenient one from a modeling perspective, it
comes with an identification issue: the distributions GH (A, x, ¥, p, 3,7) and
GH(M, x/k, kv, u, kX, kv) are the same (it is easily seen by writing the den-
sity in the two cases). To solve this problem, we require the mixing
random variable W (see Definition (3.3.1))) to have expectation equal to 1.

From Equation (A.2) we have

E[W] = KM:l

Y Ky(VXV)
and if we set @ = y/x® it follows that

Ky (@)

v =a ) (4.3)



The relations above defines the (A, @, pu, ¥, 7)-parametrization, which will be
used in the MCECM algorithm.

Let X ~ GHp, (A, x, ¢, u, %, ~) and {x4,...,x,} be a realization of an
iid random sample. Our objective is to find an estimate of the parameters
represented by 6 = [\, x, ¢, 1, X,v]7. The log-likelihood function to be
maximized is

log L(0; x) =log L(0; @1, ..., x,) = Zlog fx(xi;0) (4.4)
i=1

where fx is the function in (3.6). It well-known that finding a maximizer of
(4.4) might be difficult, therefore we resort to a different approach. The situ-
ation would look much better if we could observe the latent mixing variables
Wi, ...,W,. Let us suppose to be in this fortunate situation and define the
augmented log-likelihood function

10g z(eu L1y, Ln, W17 s 7Wn) = Zl()g fX|W<wZ|Wlu K, 277)+ (45)
=1

+ Y log b (Wi A, x, )

i=1

where we used the fact that fix, w,)(z, w;0) = fx,jw,(x|w; @, B, ) hw, (w; A, x, )
and hy, is the density in (A.I). The advantage of this augmented formula-
tion is that the two terms in can be maximized separately. Although
counter-intuitive, the first term involving the difficult parameters (e.g. a
matrix), is the easiest to maximize and it is done analytically; the second
term has to be treated numerically instead. To overcome the latency of the
mixing variables W;’s, the MCECM algorithm is used. The algorithm con-
sists in alternating an expectation step (in which the W;’s are replaced by an
estimate deducted from the data and the current parameters estimate) and
a mazimization step (where parameters estimates are updated). Suppose we
are at iteration k and 8%) is the current parameters estimate, the two steps
are as follows

e E-step: compute the conditional expectation of the augmented log-
likelihood function given the data and the current parameters estimate

Q(6;6") = Elog L(6; z, W )|z, 0" (4.6)
e M-step: maximize Q(8;0") to get O+,
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In practice, the E-step amounts to numerically maximize the second term

in (4.6)), which is

[Zloghw Wiz A, x, ‘ } Z —Alog y + Aog/xvp+  (4.7)

i=1

—log2K,\(\/X¢)+()\—I)J\E[logWi\w,O 1—5)(\[ Wz, 0% ],+
& 5

E[W;|@,0®] = n( — Aog x + Mog v/xt — log 2K, (v/x¥)) +

B

A—l);&—%x;&—%;m-

In order to proceed further, we need to compute the conditional expectations
&, 0; and n;. Thankfully, the following results holds (see Appendix E.1, [7])

Wil; ~ N7(X = 3d, x + (@ — p) ' E7 (@ — p), ¥ +7"S7 ).
— " ~~ g ~

A X (]

By using Equations (A.2)) and (A.3) we end up with

5, = E[W, e, 6] = (%)5%@ (4.8)
Kx(\/ xv

n = EWilz, 0V] = (ZfM

(4.9)
YRR

& = Ellog W|z, 8] = i{ (i)QM} (4.10)

da (M7 g (39

We have now all the ingredients to present the MCECM algorithm as exposed
in [7]
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Algorithm 2 MCECM

1:

Select reasonable starting points. For instance A = 1,a®) =1, p® =
sample mean, X1 = sample covariance and v() =0

. Compute x* and ¢*) using (4.3))

Compute the weights n; and ¢; using (4.8) and (4.9). Average the weights

to get
1 & - 1 &
Ak — k) § — 2N s

. If a symmetric model is to be fitted set v = 0, else

k)
(k+1) _ Zz 151( (z zcz)
n (k) (k) _

~

. Update pu® and 3%

(k+1) _ 121 1 z ( x; — ")
n 5 (k)

u

(k1) Z 5(k k+1 )(mz M(k—&-l))T B ﬁ(k),y(k+1),y(k+1)T

Set 0 (k2) = [\*) (k) ,u("”rl 2(’““) ,y**1] and compute n*?,§%? and
h

usmg and 1

Maxumze @.7) Wlth respect to /\ and @ (using relation (4.3))) to complete
the calculation of 8% Go to step 2
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Chapter 5

Numerical Results in the
Time-Driven Approach

This chapter is dedicated to presenting the results obtained by applying the
Stochastic Reachability approach (discussed in Chapter [2)) to the asset allo-
cation problem. We recall that the output of the ODAA algorithm (see The-
orem (2.2.1))) is a sequence of allocation maps 7 = {ug, ..., ux_, }. For any
portfolio realization z € R at time k£ € N, the maps p; provides us with the
optimal asset allocation i} (z) = w}; for instance, if uj = [0.2 0.2 O.G]T,
this means that 20% of investor’s wealth should be allocated to the first as-
set class, 20% to the second one and the remaining 60% to the third one.
Objective of this chapter is to see what form these maps have at different
time instants. The chapter unfolds as follows: in Section the dataset is
presented and summarized by some sample statistics, in Section the pa-
rameters of the asset allocation problems are set and the allocation maps for
the GM model are reported. Moreover, the ODAA strategy will be compared
with other famous asset allocation strategies such as the Constant-Mix and
the Constant-Proportion Portfolio Insurance (CPPI).

5.1 The Dataset

Our asset class menu consists of cash, bond and equity. To represent these
markets we adopt the indexes presented in Table [5.1] The dataset is com-
posed of weekly time series from 23 January 2010 to 15 April 2016. The data
is downloaded from Yahoo Financd'| which is also where the reader is re-
ferred for more details of index composition. An overview of the asset classes
is given in Figure [5.1] and Table 5.2l By comparing the annualized mean

"https://finance.yahoo.com/.
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Label Asset Class Index

C Money Market iShares Short Treasury Bond ETF
B US Bond Northern US Treasury Index
E US Equity S&P 500

Table 5.1: Asset class and relative index

return, it is clear that asset class Equity leads to higher performance than
Bond and Bond, in turn, ensures higher performance than Cash. However,
the annualized volatility tells us that the same hierarchy holds true also in
terms of riskiness, being Equity the riskiest investment and Cash the least
risky. Higher sample moments (Skewness and Kurtosis) suggest that the re-
turn distribution diverges significantly from a multivariate Gaussian. Indeed,
a quantitaive proof of this fact is given us by the Henze—ZirkleIﬂ multivariate
normality test which exhibits a zero p-value.

asset class returns histogram
T T T T T

350 T

I Money

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
weekly returns

Figure 5.1: Weekly asset class returns histogram.

2See [1] for a MATLAB implementation.
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Statistic C B E
Mean Return (ann) 0.064%  3.46%  12.11%
Volatility (ann) 0.113%  4.81% 14.81%
Median (ann) 0% 4.58%  17.74%
Skewnwss 0.262 -0.0621 -0.36
Kurtosis 3.90 10.62 4.42
Monthly VQR, g5 0.0808% 3.73%  14.95%
Max Drawdown 0.106% 5.87%  23.98%
Mean Drawdown 0.020%  1.5% 4.62%
Sharpe ratio 0 0.692 0.767

Table 5.2: Asset class returns sample statistics

Finally, the sample correlation matrix is

1 0.166 —0

1 -0

075
454
1

5.2 Optimal Allocation Maps

Let us consider an investment characterized by the following parameters:

2-year investment horizon

initial wealth zo = 1.

target return 6 = 7% per year

monthly (ez-ante) value-at-risk equals to 7%

weekly rebalancing frequency, which means N = 104 portfolio rebal-

The target sets we want our portfolio value to stay within are

Xo= {1}

Xk = [0, OO)
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In practice, these sets are discretized with a discretization step of 10~ and
truncated where the probability measure is negligible; the actual sets used
in the implementation thus are X; = [0.5,1.9] £ = 1,...,103 and Xjo4 =
[(1.07)%,1.9]. As stated in Problem we are looking for a sequence of
allocation maps which maximize the following joint probability

P({we Q:x0€ Xo,...,T104 EXN}).

The final choice to be made before running the ODAA algorithm is picking a
model for the asset class returns. As an example, we opt for the GM model,
which has been fitted to data applying the EM method (see Subsection.
The parameter estimates are:

[1.054e—5 [2.437e—8 1.266e—7 —2.365e—7

1 = |3.713e—4 3, = 3.596e—5 —5.944e—5 (5.1)
2.298¢—3 i 4.232e—4
[ 2.115e—4 [2.372e—8 —7.96le—7 1.277¢—6

po = | 3.105e—2 3, = 2.9e—5  —4.41le=5| (5.2)
| —8.266e—3 i 6.949¢e—5

and A = 0.9908. By applying the backward algorithm enunciated in Theorem
we obtained 103 allocation maps; some of which are reported in Figure
B2

Let us now take the time to analyze the kind of investment strategy
these maps imply. At the beginning of the investment (k = 0), the optimal
strategy prescribes that 25% of investor’s wealth be invested in Bond and
75% in Equity. After 25 weeks, depending on the realization of portfolio
value (x-axis in Figure , the optimal strategy tells us to allocate wealth
as follows: if the portfolio is underperforming (e.g. its value is approximately
below 1.029), the optimal allocation is a mix of Equity and Bond, which is
the riskiest mix allowed (a 100% allocation in Equity is not permitted due
to the risk constraint). As soon as performance gets better (i.e. from 1.029
to 1.16) the Equity weight starts decreasing in favor of more Bond and from
a certain point on, also Cash. When the portfolio is doing well (i.e. above
1.16), the whole wealth is invested in Cash, namely the least risky of the
three asset classes. We could synthesize this behavior by saying that risky
positions are taken when the portfolio is doing poorly, whereas conservative
positions are taken when the portfolio is doing well. This kind of investing
strategy is known in the literature with the name of contrarian strategy. The
name stems from the fact that contrarian investors bet against the prevailing
market trend, namely they try to sell "high” and buy ”low”. Contrarian
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I Cash
0.5 | | Bond
[ JEquity

0.9 1 1.1 1.2 1.3 0.9 1 1.1 1.2 1.3
portfolio value portfolio value
k =77 k =103

0.9 1 1.1 1.2 1.3 0.9 1 1.1 1.2 1.3
portfolio value portfolio value

Figure 5.2: Optimal allocation maps, weekly rebalancing, GM model
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G GM NIG

wk m q wk m q wk m q
p* 79.67% 75.56% 73.26% 78.59% 73.20% 69.44% 78.53% 73.24% 69.47%
pue  79.77% 75.56% 73.28% 78.82% 73.21% 69.58% 78.76% 73.30% 69.32%
time[h]  0.712 0.157  0.050 0.857  0.316 0.283 6.131 1.467  0.371

Table 5.3: Probability of reaching the target set obtained via ODAA algo-
rithm (p*) and Monte-Carlo simulation (pas¢) for the Gaussian, GM and NIG
model and different rebalancing frequencies (weekly, monthly and quarterly).
Time is the computational time of the ODAA algorithm, in hours.

strategies perform well in volatile markets and poorly in trending market
due to their concave nature (see [24]). The optimal strategy obtained by
the ODAA algorithm exhibits the same pattern also at successive rebalancing
times, the only difference is that it becomes more extreme while approaching
the investment end; for instance, at time k = 103 there is no transition
from the riskiest allocation to the least risky one. In this case, intermediate
position are discarded since either the target has already been reached (hence
a 100% Cash position) or it has not (hence the riskiest position).

The joint probability of reaching investor’s goal is J(zq) = p* = 78.72%.
This result is verified by running a Monte-Carlo simulation with 10° draws at
each rebalancing period from a GM distribution with parameters and
(5.2). The joint probability obtained is py;c = 78.73%. Another interesting
feature of the ODAA strategy is that p* increases as the rebalancing frequency
decreases. By looking at Table [5.3] it can be seen that as we move from a
quarterly rebalancing frequancyf)] to a monthly one the optimal probability
goes from 69.44% to 73.20%, and the same happens from monthly to weekly.
This fact is rather intuitive since the more rebalancings the more chances to
steer the portfolio within the target sets. It should be noted however, that in
practice transaction costs have not a negligible impact on portfolio profitabil-
ity when rebalancing is frequent. This is the reason why investment policies
that update portfolio weights only when an ”event” occurs are particularly
appealing (they will be treated in Part .

Next, we used also the Gaussian and the NIG model to describe the

3the problem of switching from a rebalancing frequency to another has been tackled
as follows: the model is calibrated to weekly data, then linear returns are approximated
by log-returns enabling us to write additive relations such as Wmonthly = Wwk1 + ... +
Wyks. Finally, using the hypothesis of iid returns we analytically derive the distribution of
monthly and quarterly returns for the G, GM and NIG model. All this models are closed
under convolution.
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G GM NIG
log L* 4396.2 4471.0 4450.2

Table 5.4: Log-likelihood for G, GM and NIG model

asset class returns distribution. From Table [5.4] we see that the best fitting
is provided by the GM model since it exhibits the highest log-likelihood
function value; nonetheless, the NIG comes right after it. It is not surprising
that the Gaussian model is ranked last as we were well-aware that the data
considered deviates from a multivariate Gaussian sample (see Table [5.2).

5.2.1 ODAA vs CPPI vs Constant-Mix

Within the class of asset allocation strategies, the CPPI and the Constant-
Mix are among the most popular ones (see [24]). After briefly discussing how
they work, we will compare their performance to the ODAA’s one.

CPPI The idea behind the CPPI is to maintain the portfolio exposure to
the risky asset, Ej, equal to a constant multiple m of the portfolio cushion,
Cy. The risky asset is assume to be a mix of Bond and Equity. The cushion
at time k is defined as

(' = max {xk — Fy, O}

where z;, is the portfolio value at time k& and Fj is the so-called portfolio
floor. The floor is a value below which the investor does not want the
portfolio value to fall. In our case, the floor is a risk-free asset which grows
deterministically at the Cash rate. Therefore, once the investor has specified

e an initial allocation ug
e the initial floor Fj
e a cushion multiplier m

e the maximum value-at-risk (VQR;_,) according to his risk profile,
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he can synthesized the CPPI strategy as follows

maximize Auy
U

subject to ujl =1,

w >0 Vie{l,2,3},

2
max’

——
Ey

uZAuk <o

where A= [0 1 1], 0ppee = “o=2, 2 € X and k = 1,...,N. From this
formulation we see that the investor aims at maximizing the allocation in
the risky asset (matrix A selects the allocation in Bond and Equity) while
keeping under control the riskiness of the overall allocation and limiting the
risky exposure to m times the cushion. The covariance matrix A depends
on the model chosen to describe the asset class returns distribution. In our
analysis, we set m = 6, ug = 1, Fj is chosen in such a way to guarantee 90%
of the initial wealth at the end of the investment and the asset class return
random vector follows a GM distribution with parameters and .

The others investment parameters are equal to the ones in the ODAA case.
The CPPI allocation maps are reported in Figure [5.3]

Constant-Mix Following a Constant-Mix strategy means maintaining an
exposure to the risky asset that is a constant proportion of wealth. For
instance, suppose one decides to keep a 60/40 proportion between risky and
risk-free asset. After a rebalancing time, asset prices change causing the
portfolio proportion to change as well. Let us suppose that the risky asset has<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>