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Abstract

Before the 1950s, managing other people’s money was a discipline as far
away from being scientifically dictated as it could ever get. For instance,
before Markowitz’s revolutionary paper Portfolio Selection, diversification
was not a universally recognized practice in Asset Allocation. Markowitz’s
work paved the way for new ideas from different scientific and academical
fields to influence Finance and Asset Allocation in particular.

Continuing along this line, in this thesis cutting-edge results in Stochastic
Reachability (which is a concept belonging to the theory of Control Systems)
are employed to tackle the Asset Allocation problem. In particular, once an
investor has specified his risk profile (through a value-at-risk specification)
and a target return, the model will output an optimal investment strategy
having the feature of maximizing the probability of reaching the target return
while keeping the risk under control. This strategy will exhibit a contrarian
behavior, namely it prescribes to buy risky assets (in order to achieve a riskier
position) when performance is down and to sell them when performance is
up.

What are the drivers that lead a portfolio manager to rebalance portfolio
weights? In Part I, the case where time triggers a portfolio rebalancing will
be explored. Although this Time-Driven approach is the most intuitive, it
might incur in non-negligible transaction costs if the rebalancing frequency
is high. On the other hand, in Part II, what causes the portfolio mix to be
readjusted will be the fact that the risky asset cumulative return hits a lower
or upper barrier. This portfolio rebalancing mechanics leads to the so-called
Event-Driven approach to Asset Allocation.

Keywords: Asset Allocation, Stochastic Reachability, Time-Driven approach,
Event-Driven approach.
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Sommario

Contrariamente a quanto accade oggi per i maggiori investitori istituzionali,
prima degli anni ’50 chi investiva in borsa lo faceva senza adottare un metodo
rigorosamente scientifico. Il cambio di rotta avvenne nel 1952, quando Harry
Markowitz, fondatore della moderna teoria del portafoglio, pubblicò Portfolio
Selection, un articolo che apr̀ı la strada ad un flusso di nuove idee provenienti
dall’accademia e da svariate discipline scientifiche, idee che saranno destinate
a rivoluzionare il modo di investire nei decenni successivi.

Proseguendo in questa direzione, nel nostro lavoro vengono utilizzati re-
centi risultati in Stochastic Reachability (concetto sviluppato nella teoria
dei Sistemi di Controllo) per riadattarli in un contesto di Asset Allocation.
In particolare, una volta individuato un adeguato profilo di rischio (tramite
un’indicazione di value-at-risk) e un rendimento da raggiungere, il modello
produrrà una strategia di investimento che massimizza la probabilità di rag-
giungere tale rendimento tenendo allo stesso tempo sotto controllo il rischio.
Questa strategia avrà la caratteristica di essere Contrarian, cioè prescrive di
acquistare titoli rischiosi quando la performance del portafoglio è buona men-
tre prescriverà di venderli, in favore di titoli privi di rischio, se la performance
è bassa.

Con che criterio dunque, un gestore decide di ribilanciare i pesi di portafo-
glio? Nella prima parte del lavoro verrà presentato l’approccio Time-Driven,
in cui è il tempo a dettare la riallocazione dei pesi (e.g. settimanalmente).
Nonostante questo sia il metodo più intuitivo, ha come svantaggio gli elevati
costi di transazione nel caso di frequenza di riallocazione alta. Nella seconda
parte invece, l’approccio che si segue è quello Event-Driven. Ciò significa che
una riallocazione di portafoglio viene effettuata solo quando il valore assoluto
del rendimento cumulato dell’asset rischioso supera una certa soglia.

Parole chiave: Asset Allocation, Stochastic Reachability, Time-Driven ap-
proach, Event-Driven approach.
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Chapter 1

Introduction

Since the first stock exchange opened for trades, investors have been trying
to find ways to allocate their wealth among different securities in order to
maximize returns. As a matter of fact, the techniques which are being em-
ployed nowadays in the investment industry are quite different from those
used in the first half of the 20th century. ”Fifty years ago, the business of
managing other people’s money was very much an art not a science, and
was largely a matter of finding someone who was privy to inside information.
But during the 1950s, 1960s and 1970s, academics changed the study of what
became known as portfolio management. They did so in the face of much
initial resistance and scepticism from the industry”1.

1.1 The academia meets the industry

In those days, any market participant would have been aware that invest-
ing was a risky business (nothing ventured, nothing gained). However, a
formal and systematic connection between risk and return was still missing.
The ”annus mirabilis” in asset allocation was 1952, when Harry Markowitz
published his pioneering paper Portfolio Selection in the Journal of Finance,
starting the academic invasion of the financial industry. In his paper, which
is considered to be the starting point of Modern Portfolio Theory (MPT),
Markowitz outlined for the first time how investors should allocate assets so
as to achieve the highest returns given a certain level of risk. After hav-
ing estimated expected returns and the covariance between each security,
an investor, according to Markowitz, has to solve a quadratic programming
problem for obtaining the so-called efficient portfolio frontier. Any portfolio
(a mix of securities) belonging to the frontier is efficient in the sense that it

1See [2].
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provides the highest expected return for a given level of risk (standard devia-
tion). Moreover, each of these portfolios has the feature of being deversified.
In Markowitz’s words2:

A portfolio with sixty different railway securities, for example,
would not be as well diversified as the same size portfolio with
some railroad, some public utility, mining, various sort of manu-
facturing, etc. The reason is that it is generally more likely for
firms within the same industry to do poorly at the same time
than for firms in dissimilar industries.

Building on Markowitz’s work, the second major breakthrough is the
Capital Asset Pricing Model (CAPM) and it was made by another University
professor, William Sharpe. The CAPM, which appeared in the Journal of
Finance in 1964, allows one to compute the expected return from an asset
in terms of its risk. The risk is divided into two components, namely a
systematic risk (which is related to the return of the whole market and
cannot be eliminated) and a non-systematic risk (which is unique to the
asset and could be eliminated by diversifying the portfolio) [18]. In spite of
the unrealistic assumptions which the CAPM is based on [19], it has proved
to be a useful tool for portfolio managers. Other key contributions academia
made to the industry are the Efficient-Market Hypotesis (EMH) (Fama, 1970)
and the Black and Scholes (BS) model. EMH is a theory that states that
security prices perfectly reflect all available information in the market and,
consequently, the whole market cannot be beaten. On the other hand, the
BS model is a mathematically-rigorous theory for pricing options.

Although all of the models above have shown some shortcomings when
applied to the complex reality of capital markets, they have been crucial steps
for reaching what Asset Allocation is today. Nonetheless, ideas from other
scientific fields have continued to enrich Finance and in particular Asset Al-
location. An example of this flourishing contamination is the techniques of
Stochastic Reachability presented in this works which have been borrowed
from the theory of Control Systems and applied to the asset allocation prob-
lem.

1.2 Structure

In this section the structure of the thesis is outlined.
In Chapter 2 we introduce the asset allocation problem and all the quan-

tities related to it, such us the asset class return vector and the portfolio

2See [6].
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dynamics. Then, the concept of Stochastic Reachability is explored giving
an idea about its possible fields of application. We conclude the chapter by
discussing the mathematical formulation of the asset allocation problem in
a Stochastic Reachability framework. In particular, the ODAA algorithm,
which all the thesis rely on, is enunciated.

In Chapter 3 we discuss three models which could be employed to de-
scribe the probabilistic properties of the asset class returns vector, namely
the Gaussian (G), GM and Generalized Hyperbolic (GH) model. For each of
them, the model-related features (risk constraint and portfolio value density
function) of the ODAA algorithm are obtained.

In Chapter 4 we focus on techniques for calibrating the models presented
in Chapter 3 to market data. For the GM case, calibration performance
between three calibration methods are compared.

Chapter 5 is dedicated to presenting the numerical results for the time-
driven approach. The ODAA asset allocation strategy is compared to the
Constant-Mix and the CPPI, which are two benchmark policies in the indus-
try. This will end Part I

Part II begins with Chapter 6, where a brief introduction of the Discrete
Event System (DES) theory is given. Afterwards, the asset allocation prob-
lem is cast in an Event-Driven (ED) setting, calibration of model parameters
is discussed and numerical results are given.

Chapter 7 constitutes the original part of the thesis. In this chapter
we attempt to generalize the basic ED model of Chapter 6 in two different
ways: first, by modeling the risky asset as a GBM and then by assuming a
stochastic dynamics (Vasicek model) for the risk-free interest rate.

Finally, in Chapter 8 we sum up what has been achieved in this thesis
and propose future research directions.

The MATLAB code used to implement the models presented in the thesis
can be found in the following GitHub repository: https://github.com/

skiamu/Thesis.

3
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Chapter 2

Model Description

In this chapter, first the basic financial quantities are introduced and the
asset allocation problem is stated, then the same problem will be embedded
in a dynamical control system framework which will allows us to develop the
stochastic reachability approach to portfolio construction. We closely follow
[28],[27] and [26].

2.1 Portfolio construction

In the financial industry, a group of securities that exhibits similar charac-
teristics in the market place and is subject to the same regulation is called
asset class. Typical asset classes include stocks, bonds, real estate, cash
and commodities. The discipline consisting in allocating investor’s wealth
among different asset classes is called asset allocation. We will now in-
troduce the financial quantities and a formal mathematical setting suitable
for describing the asset allocation problem. Let (Ω,F ,P) be the underly-
ing probability space and consider a discrete set of time indexed by k ∈ N.
Moreover, let us consider a universe of m ∈ N asset classes. Asset classes’
performance at period k is described by an m-dimensional random vector

wk =
[
wk(1), . . . , wk(m)

]T
where

wk(i) =
zk(i)− zk−1(i)

zk−1(i)
, i = 1, . . . ,m

is the rate of return of the ith asset class and {zk(i)}k∈N the ith asset class
price process. In general, the correlation of wk can be of two kinds:

• synchronous correlation, that is the correlation among different asset
class at the same time period (i.e. correlation between wk(i) and wk(j)
for i, j = 1, . . . ,m)
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• time-lagged correlation, that is the correlation among different asset
class at different time period (i.e. correlation between wk(i) and wk′(j),
with k 6= k′ for i, j = 1, . . . ,m).

As the time-lagged correlation is usually negligible for short time period, wk

will be a synchronous-correlated random vector. Standard notation is used
for Expected Returns and Covariance Matrix:

µk(i) = E
[
wk(i)

]
, i = 1, . . . ,m k ∈ N

Σk(i, j) = E
[(
wk(i)− µk(i)

)(
wk(j)− µk(j)

)]
i, j = 1, . . . ,m k ∈ N.

An asset allocation at period k ∈ N is a vector uk ∈ Rm whose ith element
indicates the percentage of wealth to be invested in asset class i. This vector
is the leverage the asset manager has at his disposal for driving the portfolio
value towards his goal. The portfolio performance over the period [k − 1, k]
is measured by the portfolio return

rk+1 =
xk+1 − xk

xk

where {xk}k∈N is the portfolio value process. The portfolio return can also
be expressed as a weighted average of each asset class return as

rk+1 = uTkwk+1.

By combining the two previous relations we get the following recursive equa-
tion

xk+1 = xk(1 + uTkwk+1) (2.1)

which describes the time evolution of portfolio value. In plain words, the
asset allocation problem consists in choosing the vector uk at each time
period k ∈ N (called rebalancing time) so as to achieve investor’s goal. If
the investor is mainly concerned about the final return, the allocation strat-
egy is called total-return allocation. On the other hand, if his objective is
beating a benchmark (an index created to include multiple securities repre-
senting some aspect of the total market), the strategy is called benchmark
allocation. In the following, we will consider only total-return portfolios.

As well as setting the target return, the investor specifies other require-
ments that the portfolio manager must take into consideration. This means
that the asset allocation vector uk is bound to stay within a feasible set Uk,
for each k ∈ N. In this work, the feasible set Uk is obtained by imposing the
following set of constraints:

8



• budget constraint:
∑m

i=1 uk(i) = 1, all the wealth is invested in the
portfolio

• long-only constraint: uk(i) ≥ 0, i = 1, . . . ,m, no short-selling is al-
lowed

• risk constraint: the metric value-at-risk (V@R) is used to limit port-
folio risk.

The form of the risk constraint will actually depend on the model used to
describe the probabilistic properties of vector wk. In Chapter 3 we will tackle
this issue. Let us now cast the asset allocation problem in a more general
mathematical framework.

2.2 Stochastic Reachability Approach

In the previous section the financial setting has been laid out, now it will be
embedded in a more general framework by employing the theory of dynamical
systems. We will see that this formalism will allow us to formulate the asset
allocation problem as a stochastic reachability problem which will be
solved by using dynamic programming (DP) techniques.

2.2.1 The concept of Stochastic Reachability

”In general terms, a reachability problem consists of determining if a given
system trajectory will eventually enter a prespecified set starting from some
initial state” [10]. For deterministic systems, reachability analysis amounts
to compute the set of states that can be reached by system trajectories. How-
ever, most of real-life problem are non-deterministic and uncertainty must be
taken into account. In these cases, the main concern is determining the prob-
ability that the system reaches a prespecified set. ”Typically, a certain part
of the state space is ”unsafe” and the control input of the system has to be
chosen so as to keep the state away from it” [10]. One of the most successful
application of stochastic reachability techniques has been Air Traffic Man-
agement (ATM). ”Within the ATM context, safety-critical situation arise
during flight when an aircraft comes closer than a minimum allowed distance
to another aircraft or enters a forbidden region of the airspace. In the current
ATM system, air traffic controllers are in charge of guaranteeing safety by
issuing to pilots corrective actions on their flight plans when a safety-critical
situation is predicted” [10].

9



Conversely, when Stochastic Reachability is applied to the financial asset
allocation problem, a dual viewpoint is taken. In this context, the focus is on
driving the system state (the value of a portfolio of securities) into a ”safe”
set, and computing the probability that this occurs. The air traffic controller
becomes a portfolio manager and signals issued to the pilot turns into orders
to traders to buy or sell assets so as to adjust the portfolio mix of securities.

2.2.2 Mathematical Formulation

Let us introduce the following stochastic discrete-time dynamic control sys-
tem

xk+1 = f(xk,uk,wk+1) = xk(1 + uTkwk+1) (2.2)

where, for any k ∈ N

• xk ∈ X = R is the system state (the portfolio value), X the system
space

• uk ∈ U ⊂ Rm is the control input (the asset allocation vector), U the
control input space

• wk is a m-dimensional random vector (the asset class returns) with
density function pwk

Let U =
{
µ : X × N → U

}
be the class of controls we are interested in,

namely the time-varying control maps. Any µ ∈ U is a map such that for any
x ∈ X and any k ∈ N, it associates an asset allocation vector uk ∈ U . The
control input space U is shaped by the budget, long-only and risk constraint.
Given N ∈ N we define the set of control sequences as

UN =
{
π = {µk}k=0,...,N : µk ∈ U

}
and call any π ∈ UN a control policy. Moreover, let us denote by πk a
control policy starting at period k, that is πk = {µk, . . . , µN}. We now have
all the necessary ingredients to formulate the asset allocation problem in
stochastic reachability terms.

Problem 2.2.1 (Optimal Dynamic Asset Allocation 1): Given a finite time
horizon N ∈ N and a sequence of target sets {X1, . . . , XN} such that each
target set is a subset of the state space X , find the optimal control policy
π? ∈ UN−1 that maximizes the following objective function

P
({
ω ∈ Ω : x0 ∈ X0, . . . , xN ∈ XN

})
. (2.3)
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The target sets {X1, . . . , XN} represent investor’s goal and we can think
of them as the ”safe” states where we want the portfolio value to belong to.
For instance, a target set could be Xk = [xk,∞). Problem (2.2.1) is going
to be solved by resorting to Dynamic Programming (DP). However, before
doing that, we need to make explicit the dependence in (2.3) from the control
policy π. To this end, let pf(x,u,wk+1) be the density of random variable (2.2),
once xk has been fixed to x ∈ X , and let us introduce the following function.

Definition 2.2.1 (Value function): Given a sequence of target sets {Xk}k≥0,
the value function associated with Problem 2.2.1 is the following real map

V : N×X × U → [0, 1]

(k, x, πk) 7→ V (k, x, πk)

such that

V (k, x, πk) =

{
1XN (x) if k = N∫
Xk+1

V (k + 1, z, πk+1)pf(x,u,wk+1)(z)dz if k = N − 1, . . . , 0.

It is now possible to link the objective function (2.3) to the value function
in the following way (see [26])

P
(
{ω ∈ Ω : x0 ∈ X0, . . . , xN ∈ XN}

)
= V (0, x0, π).

This result is extremely important since it allows us to rewrite the ODAA
problem in terms of the value function as follows

Problem 2.2.2 (Optimal Dynamic Asset Allocation 2): Given a finite time
horizon N ∈ N and a sequence of target sets {X1, . . . , XN}, find

π? = arg max
π∈UN−1

V (0, x0, π).

Having restated the Optimal Dynamic Asset Allocation (ODAA) problem
in terms of the value function V has been crucial in order to directly apply
the powerful technique of DP and solve it [26]. The main result is given in
the following theorem, that is the cornerstone on which this work is based
on.

Theorem 2.2.1 (ODAA algorithm): the optimal value of the ODAA Prob-
lem 2.2.2 is

p? = J0(x0),
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where for any x ∈ X , J0(x) is the final step of the following algorithm

JN(x) = 1XN (x)

Jk(x) = sup
uk∈Uk

∫
Xk+1

Jk+1(z)pf(x,uk,wk+1)(z)dz

k = N − 1, . . . , 1, 0.

(2.4)

The previous result provides us with a backward procedure (it starts at
time N and ends at time 0) whose outputs are the optimal control policy
π? = {µ?0, . . . , µ?N−1} and the optimal joint probability p? of reaching the
target sets. It is worth pointing out some interesting features of the ODAA
algorithm (2.4):

• Jk(x) is a function of portfolio realization x ∈ X at time k. This depen-
dence is hidden behind the probability density function pf(x,uk,wk+1).

• The constrained optimization must be numerically carried out in a
space (U) of dimension m ∈ N. At each iteration k = N − 1, . . . , 1, 0,
the optimization has to be repeated for each x belonging to Xk (in
practice, this set will be discretized with a fix step length to have a
finite number of optimizations).

• The algorithm presented in theorem (2.2.1) does not depend on a par-
ticular distribution of random variable f(x,uk,wk+1) as long as its
explicit functional form is available. Hence the reason to prefer multi-
variate distribution closed under linear combination for modeling wk+1.
therefore, this distribution-free property gives us enough freedom to
look outside the usual Guassian world.

• Given a period k ∈ N and a portfolio value realization x ∈ X , µ?k(x) ∈ U
tells us which is the optimal allocation mix of our portfolio.

We now ask ourselves which probability distributions are suitable for
vector wk+1; the answer to this question is the main objective of the next
chapter.

12



Chapter 3

Asset Class Returns modeling

In this chapter, we address the asset class returns modeling issue. As it
was noted in the previous chapter, the ODAA algorithm does not depend
on a particular distribution of the asset class returns vector wk+1. However,
by looking at (2.4) we see that we need the explicit analytical form for the
density function pf(x,uk,wk+1). For this reason, we will be dealing exclusively
with probability distributions closed under linear combination. In this work,
we propose three such distributions:

• Gaussian

• Gaussian Mixture

• Generelized Hyperbolic

For each of them, after giving a brief theoretical introduction, we will dis-
cuss the model-related features of the ODAA algorithm. That is, first we
will derive the portfolio value density function pf(x,uk,wk+1) and secondly, an
expression for the risk constraint (which also depends on the distribution
chosen) will be obtained. Moreover, we assume stationarity, therefore the
distribution of wk+1 will not depend on k.

3.1 Gaussian model

The first probability distribution we considered is the Gaussian.

Definition 3.1.1 (Gaussian random vector): A m-dimensional random vec-

tor w =
[
w1, . . . , wm

]T
is Gaussian if every linear combination

∑m
i=0 uiwi =

uTw has a one-dimensional Gaussian distribution.

13



Let the asset class returns random vector wk+1 follow a Gaussian distri-
bution with mean µ and covariance matrix Σ. By definition we have

x(1 + uTkwk+1) ∼ N
(
x(1 + uTkµ)︸ ︷︷ ︸

µ̃

, x2uTkΣuk︸ ︷︷ ︸
σ̃2

)
hence

pf(x,uk,wk+1)(z) =
1√
2πσ̃

exp

{
− 1

2

(z − µ̃)2

σ̃2

}
, z ∈ R. (3.1)

Let us now introduce the two important concepts of loss function and
value-at-risk that we will use to derive the risk constraint.

Definition 3.1.2 (loss function): Denoting the value of our portfolio at
time k ∈ N by xk+1, the loss function of the portfolio over the period
[k, k + 1] is given by

Lk+1 := −(xk+1 − xk)
xk

= −rk+1 = −uTkwk+1.

Definition 3.1.3 (Value-at-risk): Given some confidence level 1−α ∈ (0, 1)
the value-at-risk (V@R1−α) of our portfolio is

V@R1−α = inf{l ∈ R : P
(
Lk+1 ≤ l

)
≥ 1− α}.

The V@R is a risk measure commonly use by financial institutions to
assess the risk they run to carry a portfolio of risky securities for a specified
period of time (the portfolio must be kept constant during this time period).
For instance, if our portfolio has an (ex-post) weekly V@R0.99 = 7%, this
means that 99% of the times our portfolio did not suffer a loss greater or
equal than 7% over the investment period. In our case, we receive the V@R
specification as input (ex-ante value-at-risk) by the investor (it is an indicator
of its risk-aversion) and we will construct an asset allocation uk that satisfies
this risk constraint at each k ∈ N.

Using definition (3.1.1) we have

Lk+1 ∼ N
(
−uTkµ︸ ︷︷ ︸

µp

,uTkΣuk︸ ︷︷ ︸
σ2
p

)
therefore

P
(
Lk+1 ≤ V@R1−α

)
= P

(
Z ≤ V@R1−α − µp

σp

)
= 1− α

14



=⇒ V@R1−α ≥ −uTkµ+ z1−α

√
uTkΣuk (3.2)

where Z is a standard normal random variable and z1−α is the 1−α quantile
of the standard normal distribution. The risk constraint in equation (3.2),
together with the budget and long-only constraint, define the control input
space U which is the feasible set of the constrained optimization problem
given in theorem (2.2.1) at each k.

3.2 Gaussian Mixture model

In this section we present the second asset class returns model, the Gaussian
Mixture model (GM). After introducing the GM distribution we will derive
the density and the risk constraint, as we did for the Gaussian model. We
closely follow [9].

The standard assumption that asset returns have a multivariate Gaus-
sian distribution is a reasonable first approximation to reality and it usu-
ally has the big advantage of generating analytically tractable theories (e.g.
Markowitz Portfolio Theory). However, the Gaussian model does not cap-
ture two key asset returns features which are observed, on the contrary, in
market real data:

1. the skewed (asymmetric around the mean) and leptokurtic (more fat-
tailed than the Gaussian) nature of marginal probability density func-
tion

2. the asymmetric correlation between asset returns, that is the tendency
of volatilities and correlations to depend on the prevailing market con-
ditions.

To overcome this shortcomings, the Gaussian Mixture (GM) distribution is
a validate alternative to the Gaussian model. Loosely speaking, the pdf of a
GM random vector is a linear combination of Gaussian pdfs (called Gaussian
regimes or mixing components). This closeness to the Normal distribution
offers a good trade-off between analytical tractability and parsimony in the
number of parameters. By adopting a GM model, it is possible to represent
protuberances on the probability iso-density contours, as can be seen in Fig-
ure 3.1. To obtain this highly non-linear dependence structure, we would
usually need cross-moments of all order; a big advantage of the GM distri-
bution is that its dependence structure is fully and conveniently captured by
the means, covariance matrices and weights of each Gaussian regime (as we
will see in the following).
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Figure 3.1: Example of a GM density contour plot with two mixing compo-
nents.

Let us begin the more formal introduction on the GM distribution with
its definition.

Definition 3.2.1 (GM distribution): An m-dimensional random vector Z
has a multivariate GM distribution if its probability density function is
of the form

pZ(z) =
n∑
i=1

λiϕ(µi,Σi)(z), z ∈ Rm,

where ϕ(µi,Σi) is the multivariate Gaussian density with mean vector µi and
covariance matrix Σi and λi are positive mixing weights summing to one.

The following proposition is crucial for our purposes since it tells us that
linear combinations of GM random vector have a one-dimensional GM dis-
tribution.

Proposition 3.2.1: Linear combinations of GM random vectors follow a
univariate GM distribution. In particular, if Z ∼ GM then Y = θTZ,
∀θ ∈ Rm, has a GM distribution with probability density function

pY (y) =
n∑
i=1

λiϕ(µi,σ2
i )(y), y ∈ R
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where {
µi = θTµi i = 1, . . . ,m

σ2
i = θTΣiθ i = 1, . . . ,m

Proof. The Characteristic Function (CF) of a GM random vector is the linear
combination of the CF of the Gaussian mixing components. Indeed,

φZ(u) = E
[

exp{iuTZ}
]

=

∫
Rm

exp{iuTz}pZ(z)dz =

=

∫
Rm

exp{iuTz}
n∑
i=1

λiϕ(µi,Σi)(z)dz =

=
n∑
i=1

λiφXi
(u), u ∈ Rm

where Xi ∼ N
(
µi,Σi

)
. Therefore, ∀θ ∈ Rm we have

φθTZ(u) = E
[

exp{iu(θTZ)}
]

= E
[

exp{i(uθT )Z}
]

= φZ(uθ) =

=
n∑
i=1

λiφXi
(uθ) =

n∑
i=1

λi exp{iuθTµi︸ ︷︷ ︸
µi

−1

2
u2 θTΣiθ︸ ︷︷ ︸

σ2
i

} =

=
n∑
i=1

λiφX̃i(u), u ∈ R

where X̃i ∼ N
(
µi, σ

2
i

)
. Since the CF completely characterizes the distribu-

tion (see [20], theorem 14.1) we have the result.

Portfolio value density and risk constraint Suppose the asset class
returns vector wk+1 follow a Gaussian Mixture distribution. We want to
compute the density of random variable f(x,uk,wk+1) = x(1 + uTkwk+1).
Thanks to proposition (3.2.1), we know that the random variable uTkwk+1

follows itself a GM (univariate) distribution. Moreover, by integration we
easily derive its Cumulative Distribution Function (CDF). This allows us to
write

Ff(x,uk,wk+1)(z) = P
(
x(1 + uTkwk+1) ≤ z

)
= FxuTkwk+1

(z − x)

=
n∑
i=1

λiΦ
(z − x(1 + uTkµi)√

x2uTkΣiuk

)
, z ∈ R
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where Φ is the standard normal CDF. Differentiating with respect to z, we
have

pf(x,uk,wk+1)(z) =
n∑
i=1

λiϕ(µi,σ2
i )(z), z ∈ R (3.3)

where {
µi = x(1 + uTµi)

σ2
i = x2uTΣiu.

We now turn to the problem of computing the risk constraint under
the GM distribution assumption. We will follow two different approaches.
Suppose we are given the V@R1−α specification (e.g. 7%); by using definition
(3.1.2) we have

P
(
L ≤ V@R1−α

)
= FL(V@R1−α) ≥ 1− α

as noted above, the CDF of L = −uTw is known, therefore

n∑
i=1

λiΦ
(V@R1−α − µi

σi

)
≥ 1− α =⇒

n∑
i=1

λiΦ
(
−
{V@R1−α − µi

σi

})
≤ α (3.4)

where {
µi = −uTµi
σ2
i = uTΣiu.

We present also an alternative method to limit the risk exposure of our
portfolio which turns out to be less computationally intensive. The idea is
to set an upper bound to portfolio return volatility in the following way

(Var [rk+1])
1
2 = (uTkΛuk)

1
2 ≤ σmax (3.5)

where Λ is the covariance matrix of vector wk+1. Two questions are left
open: how to compute Λ and how to link the upper bound σmax to the
V@R1−α specification given as input by the investor. As far as the former is
concerned, the following proposition gives us the answer [9]

Proposition 3.2.2: The covariance matrix of a random vector with the GM
distribution can be expressed in terms of mean vectors, covariance matrices
and weights of the mixing components in the following way

Λ =
n∑
i=1

λiΣi +

n,n∑
i=1,j<i

λiλj(µi − µj)(µi − µj)T .

18



To answer the latter, we use a Guassian approximation and the fact that,
if the rebalancing frequency is relatively small (e.g. weekly), the portfolio
return mean is negligible. In the end, we obtain

σmax =
V@R1−α

z1−α
.

3.3 Generelized Hyperbolic model

The last distribution we propose is the Generalized Hyperbolic (GH). Like
the GM, in its general form also the GH presents a non-elliptical behavior
with asymmetric and fat-tailed marginals. We proceed to give the formal
definition and then derive the density of f(x,uk,wk+1) and the expression
of the risk constraint. References for this section are [7] and [21].

Definition 3.3.1 (GH distribution): A m-dimensional random vector X is
said to follow a multivariate GH distribution (X ∼ GMm(λ, χ, ψ,µ,Σ,γ))
if

X = µ+Wγ +
√
WAZ

where

• Z ∼ N
(
0, Id

)
• A ∈ Rm×d is the Cholesky factor of dispersion matrix Σ (ATA = Σ)

• µ,γ ∈ Rm

• W ∼ N−(λ, χ, ψ), W ≥ 0 and W ⊥ Z (see Appendix A for the
definition of the Generalized Inverse Gaussian (GIG) distribution). W
is called mixing random variable.

Remark 3.3.1: • λ, χ, ψ are shape parameters; the larger these param-
eters the closer the distribution is to the Gaussian

• γ is the skewness parameter. If γ = 0 the distribution is symmetric
around the mean

• X|W = w ∼ N
(
µ+ wγ, wΣ

)
.

The GH distribution contains some special cases:

• If λ = m+1
2

we have a Hyperbolic distribution

• If λ = −1
2

the distribution is called Normal Inverse Gaussian (NIG)
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• If χ = 0 and λ > 0 we have the limiting case of the Variance Gamma
(VG) distribution

• If ψ = 0 and λ < 0 the resulting distribution is called Student-t.

The following proposition gives us the closeness under linear transforma-
tion that we need for our modeling purposes

Proposition 3.3.1: If X ∼ GHm(λ, χ, ψ,µ,Σ,γ) and Y = BX+b, where
B ∈ Rd×m and b ∈ Rd, then

Y ∼ GHd(λ, χ, ψ,Bµ+ b, BΣBT , Bγ).

Suppose wk+1 ∼ GHm(λ, χ, ψ,µ,Σ,γ). Applying the previous result to
our case, namely Y = f(x,uk,wk+1), B = xuTk and b = x, we have

f(x,uk,wk+1) ∼ GH1(λ, χ, ψ, x(1 + uTkµ)︸ ︷︷ ︸
µ̃

, x2uTkΣuk︸ ︷︷ ︸
Σ̃

, xuTk γ︸ ︷︷ ︸
γ̃

)

and the density reads as (see Appendix A)

pf(x,uk,wk+1)(z) = c
Kλ− 1

2

(√(
χ+ Q̃(z)

)(
ψ + γ̃2/Σ̃

))
exp

{
(z − µ̃)γ̃/Σ̃

}
(√(

χ+ Q̃(z)
)(
ψ + γ̃2/Σ̃

)) 1
2
−λ

(3.6)
where

c =

(√
χψ
)−λ

ψλ
(
ψ + γ̃2/Σ̃

) 1
2
−λ

(2πΣ̃)
1
2Kλ(

√
χψ)

and Q̃(z) = (z − µ̃)/Σ̃.
As far as the risk constraint is concerned, we adopt here the alternative

approach expressed in Equation (3.5). The covariance matrix Λ is easily
derived from Definition 3.3.1 and Equation (A.2); in the end we obtain

Λ = Var [W ]γγT + E[W ]Σ (3.7)

where

E[W ] =
(χ
ψ

) 1
2 Kλ+1(

√
χψ)

Kλ(
√
χψ)

Var [W ] =
(χ
ψ

) 1

Kλ(
√
χψ)

{
Kλ+2(

√
χψ)−

K2
λ+1(
√
χψ)

Kλ(
√
χψ)

}
.
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Chapter 4

Model Calibration

In this chapter we show how to calibrate the models introduced in Chapter 3
to market data. The asset class menu we will consider consists of equity, bond
and cash and a suitable index will be used to represent each of these markets
(the dataset will be discussed in Section 5.1). We focus our attention only
on GM and GH since calibrating the Gaussian model is trivial (it amounts
to compute the sample mean and covariance matrix). As far as the GM
model is concerned, we set the number of mixing Gaussian components to
2. In financial terms, the two mixing components could be interpreted as
economic regimes, namely a tranquil regime and a distressed one (see [7]).
Different calibration methods are available for the GM model, namely the
Method of Moments (MM), Maximum Likelihood (ML) estimation and the
Expectation-Maximization (EM) algorithm. Each of them will be discussed
in Section 4.1 and also a comparison between them will be provided. Finally,
in Section 4.2 the GH model will be fitted to data using the Multi-Cycle
Expectation Conditional Maximization (MCECM) algorithm.

4.1 GM calibration

The problem of estimating the parameters of a GM distribution dates back
to [23] and still nowadays it raises in a wide spectrum of different disciplines
(Finance and Classification just to name a few). Thanks to the computational
power available today, the EM algorithm is considered to be the state-of-the-
art method for fitting the GM distribution. Nevertheless, MM and ML are
worth studying as they could provide the starting point for the EM algorithm.
The main reference for the MM method is [15], for the ML [12] and for EM
[21].
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4.1.1 Method of Moments

In this subsection we present the Method of Moments for calibrating a 3-
dimensional Gaussian Mixture distribution with n = 2 mixing components.
The idea behind MM is basically to match observed and theoretical moments;
this translates into a system of polynomial equations that most of the time,
for big-sized problems, has to be solved numerically. Since we need to fit a
3-dimensional distribution, we will work component-wise: moment-matching
equations will be written for each component along with unimodality con-
straints on each marginal. In order to keep the number of parameters to a
reasonable degree, we will suppose a common correlation matrix between the
two Gaussian mixing components.

Let {X1, . . . ,Xn} be a random sample from a GM distribution whose
density function is

f(z) = λϕ(µ1,Σ1)(z) + (1− λ)ϕ(µ2,Σ2)(z), z ∈ R3. (4.1)

Our goal is to estimate {λ,µ1,Σ1,µ2,Σ2} from the random sample. Due to
the assumption of a shared correlation matrix, the number of actual param-
eters to estimate is 16: λ, 6 means, 6 standard deviations and 3 correlations.
To set the notation we give the following definition

Definition 4.1.1 (theoretical and sample moments): Let X be a random
variable and {x1, . . . , xn} a realization of a random sample. The first four
theoretical and sample moments are:

µX = E[X] x̄ =
1

n

n∑
j=1

xj

σ2
X = E

[
(X − µX)2

]
s2 =

1

n

n∑
j=1

(xj − x̄)2

γX =
1

σ3
X

E
[
(X − µX)3

]
γ̂ =

1
n

∑n
j=1(xj − x̄)3(√

1
n

∑n
j=1(xj − x̄)2

)3

κX =
1

σ4
X

E
[
(X − µX)4

]
κ̂ =

1
n

∑n
j=1(xj − x̄)4

s4
.

Let X be a random vector with density (4.1), its ith marginal is

fXi(z) = λϕ(µ1i,σ2
1i)

(z) + (1− λ)ϕ(µ2i,σ2
2i)

(z), z ∈ R i ∈ {1, 2, 3}
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where µji and σ2
ji denote respectively the ith element of the jth mixing com-

ponent mean vector and the ith diagonal entry of the jth mixing component
covariance matrix; in other words, the first subscript indicates the mixing
component, the second the dimension. Computing explicitly the theoretical
moments we obtain

µXi = λµ1i + (1− λ)µ2i

σ2
Xi

= λ(σ2
1i + µ2

1i) + (1− λ)(σ2
2i + µ2

2i)

γXi =
1

σ3
Xi

{[
λ(µ3

1i + 3µ1iσ
2
1i) + (1− λ)(µ3

2i + 3µ2iσ
2
2i)
]
− 3µXiσ

2
Xi
− µ3

Xi

}

κXi =
1

σ4
Xi

{[
λ(µ4

1i + 6µ2
1iσ

2
1i + 3σ4

1i) + (1− λ)(µ4
2i + 6µ2

2iσ
2
2i + 3σ4

2i)
]
+

− µ4
Xi
− 6µ2

Xi
σ2
Xi
− 4γXiσ

3
Xi
µXi

}
where i ∈ {1, 2, 3}. Equating them with their sample counterparts gives us
the first twelve moment equations. The three correlation equations are de-
rived equating the theoretical covariances (written as a function of correlation
coefficients ρij)

σXiXj = λρijσ1iσ1j + (1− λ)ρijσ2iσ2j + λ(1− λ)(µ1i − µ2i)(µ1j − µ2j)

and the sample ones

σ̂XiXj =
1

n

n,n∑
s=1,t=1

(xs − x̄)(xt − x̄)

i ∈ {1, 2, 3} j < i. So far, we have derived 15 equations in 16 unknown
parameters. In order to have as many equations as unknown parameters,
we solve the moment equation system by numerically minimizing the sum
of square differences between theoretical and sample moments for different
values of λ in a discretized grid of the interval [0, 1]. The optimal λ will be
the one giving the smallest residual. Moreover, in the optimization process
we also imposed the following unimodality constraints on each marginal1

(µ2i − µ1i)
2 ≤ 27

4
(σ2

2iσ
2
1i)/(σ

2
1i + σ2

2i) i ∈ {1, 2, 3}

1See [14] for the proof of this sufficient condition for unimodality for a 2-mixing-
component GM density.
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and positive-definiteness constraints on the standard deviation and correla-
tion parameters. The unimodality constraint is required since bimodal return
distributions are not observed in the market.

4.1.2 The Expectation-Maximization algorithm

In this section we introduce the EM algorithm for calibrating a GM model.
Before diving into it, we need to define the maximum-likelihood estimator
since the EM algorithm comes into play to solve difficulties in the ML method.

Definition 4.1.2 (Likelihood function): Let x = {x1, . . . , xN} be a real-
ization of a random sample from a population with pdf f(x|θ) parametrized
by θ = [θ1, . . . , θk]

T . The likelihood function is defined by

L(θ|x) = L(θ1, . . . , θN |x1, . . . , xk) =
N∏
i=1

f(xi|θ).

The following definition of a maximum likelihood estimator is taken from
[12]

Definition 4.1.3 (Maximum-likelihood estimator): For each sample point

x, let θ̂(x) be the parameters value at which L(θ|x) attains its maximum
as a function of θ, with x held fixed. A maximum-likelihood estimator
(MLE) of the parameters vector θ based on a random sample X is θ̂(X)

Intuitively, the MLE is a reasonable estimator since is the parameter point
for which the observed sample is most likely. However, its main drawback
is that finding the maximum of the likelihood function (or its logarithmic
transformation) might be difficult both analytically and numerically. Con-
sequently, the idea is to adopt an iterative procedure that converges to a
local maximum. In order to focus on the idea behind the EM algorithm and
not on technical details, we will present it in the simpler case of a univariate
GM distribution with 2 mixing components (as presented in [16]). The inter-
ested reader can refer to [16] for the general case or [25] for a more thorough
discussion.

Consider a mixture of two Gaussian random variables

X = (1−∆)X1 + ∆X2

where X1 ∼ N
(
µ1, σ

2
1

)
, X2 ∼ N

(
µ2, σ

2
2

)
and ∆ ∼ B(λ) is the mixing random

variable. The density function of X, parametrized by θ = [λ, µ1, σ
2
1, µ2, σ

2
2]T ,

is
fX(x) = (1− λ)ϕ(µ1,σ2

1)(x) + λϕ(µ2,σ2
2)(x), x ∈ R.
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Our objective is to find an estimate θ̂ of θ. Let x = {x1, . . . , xN} be a
realization of a random sample (our data at hand), the log-likelihood function
is

l(θ;x) =
N∑
i=1

log
[
(1− λ)ϕ(µ1,σ2

1)(xi) + λϕ(µ2,σ2
2)(xi).

]
(4.2)

In higher dimensions, the direct maximization of (4.2) is difficult and prevent
the ML method from being successful. Let us suppose to know the following
latent random variables

∆i =

{
1 if Xi comes from model 2

0 if Xi comes from model 1

for i = 1, . . . , N . Model 1 and model 2 indicate the population whose density
is the first or second Gaussian component. In this hypothetical case, the log-
likelihood function would be

l0(θ;x,∆) =
N∑
i=1

[
(1−∆i) log

(
ϕ(µ1,σ2

1)(xi)
)

+ ∆i log
(
ϕ(µ2,σ2

2)(xi)
)]

+

+
N∑
i=1

[
(1−∆i) log(1− λ) + ∆i log(λ)

]
.

If the ∆i’s were known, the maximum-likelihood estimate for µ1 and σ2
1 would

be the sample mean and sample variance from the observations with ∆i = 0.
The same holds true for µ2, σ

2
2 and ∆i = 1. The estimate for λ would be the

proportion of ∆i = 1. However, as the ∆i’s are not known, we use as their
surrogates the conditional expectations

γi(θ) = E[∆i|θ,x] = P
(
∆i = 1|θ,x

)
i = 1, . . . , N

called responsability of model 2 for observation i. The iterative procedure
called EM algorithm consists in alternating an expectation step in which we
assign to each observation the probability to come from each model, and
a maximization step where these responsabilities are used to update ML
estimates.
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Algorithm 1 EM algorithm for 2-component GM

1: take initial guesses for parameters µ̂1, µ̂2, σ̂
2
1, σ̂

2
2, λ̂

2: Expectation step: compute responsabilities

γ̂i =
λ̂ϕ(µ̂2,σ̂2

2)(xi)

(1− λ̂)ϕ(µ̂1,σ̂2
1)(xi) + λ̂ϕ(µ̂2,σ̂2

2)(xi)
, i = 1, . . . , N

3: Maximization step: compute weighted means and standard deviations

µ̂1 =

∑N
i=1(1− γ̂i)xi∑N
i=1(1− γ̂i)

, σ̂2
1 =

∑N
i=1(1− γ̂i)(xi − µ̂1)2∑N

i=1(1− γ̂i)

µ̂2 =

∑N
i=1 γ̂ixi∑N
i=1 γ̂i

, σ̂2
2 =

∑N
i=1 γ̂i(xi − µ̂2)2∑N

i=1 γ̂i

4: Iterate 2 and 3 until convergence.

A reasonable starting value for µ̂1 and µ̂2 is a random sample point xi,
both σ̂1, σ̂2 can be set equal to the sample variance and λ̂ = 0.5. A full
implementation of the EM algorithm is available in MATLAB and also in
Python.

4.1.3 MM vs ML vs EM

In this subsection we put the calibration methods into practice to see which
one is better at recovering the parameters of a GM distribution. To this end,
we simulated 104 observations from a GM distribution with the following
parameters

µ1 =

 6.11e−4
1.373e−3
2.34e−3

 Σ1 =

4.761e−9 2.474e−8 2.731e−8
3.21e−5 −2.55e−6

3.656e−4


µ2 =

 6.83e−4
−1.61e−2
−1.75e−2

 Σ2 =

3.844e−9 2.42e−8 6.739e−8
3.804e−5 −7.644e−6

2.757e−3


and λ = 0.98. In order to have a fair comparison, the two Gaussian regimes
have a common correlation matrix

R =

1 6.33e−2 2.07e−8
1 −2.36e−2

1


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Then, we applied the three calibration methods introduced in the previous
section. The result is summarized in Table 4.1, 4.2 and 4.3.

Parameter MM eMM (%) ML eML (%) EM eEM (%)

µ̂1 6.167e−4 0.94 6.097e−4 0.213 6.11e−4 0.0264

µ̂2 1.578e−3 14.98 1.464e−3 6.66 1.368e−3 0.366

µ̂3 2.396e−3 2.40 2.209e−3 5.57 2.174e−3 7.066

Σ̂11 2.757e−8 479.2 4.632e−9 2.70 4.704e−9 1.189

Σ̂22 3.215e−5 0.14 3.071e−5 4.31 3.155e−5 1.699

Σ̂33 3.092e−4 15.4 3.532e−4 3.38 3.661e−4 0.146

Σ̂12 −3.554e−8 243.6 2.617e−8 5.75 2.249e−8 9.123

Σ̂13 −3.1e−8 213.5 3.546e−8 29.86 3.487e−8 27.68

Σ̂23 −4.805e−7 81.20 −1.973e−6 22.82 −2.756e−4 7.788

Table 4.1: Estimates for the first mixing component and respective estima-
tion errors

Parameter MM eMM (%) ML eML (%) EM eEM (%)

µ̂1 5.461e−4 20.03 6.772e−4 0.843 6.843e−4 0.193

µ̂2 −7.26e−3 54.91 −8.424e−3 47.70 −1.554e−2 3.481

µ̂3 −8.11e−3 53.65 −8.365e−3 52.21 −1.953e−2 11.605

Σ̂11 1.157e−8 201.07 3.643e−9 5.21 3.223e−9 16.131

Σ̂22 8.133e−5 113.79 8.792e−5 131.1 4.156e−5 9.254

Σ̂33 2.108e−3 23.52 1.922e−3 30.30 2.941e−3 6.674

Σ̂12 −3.662e−8 251.31 3.926e−8 62.21 1.545e−8 36.164

Σ̂13 −5.244e−8 177.81 7.336e−8 8.86 2.693e−7 299.6

Σ̂23 −1.996e−6 73.88 −7.787e−6 1.87 3.435e−5 549.4

Table 4.2: Estimates for the second mixing component and respective esti-
mation errors
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Parameter MM eMM ML eML(%) EM eEM (%)

λ̃ 0.94 4.08 0.95 3.06 0.9812 0.119

logL? 1.390e5 1.437e5 1.438e5

Table 4.3: mixing proportion estimate and log-likelihood

From the tables above we see that the EM method is definitely the most
accurate. Therefore, we decide to adopt it as the reference method for cali-
brating the GM model. As far as the MM method is concerned, the formula-
tion given in Section 4.1.1 relies on the assumption of a common correlation
matrix between the two Gaussian regimes. Although this assumption reduces
the number of parameter to be estimated, there is empirical evidence (see
[11]) that this is not the case in global financial markets where correlation
between asset classes is actually increased during bear markets. Nonetheless,
even if MM is not as accurate as EM, it is still a valuable method since it
does not require full time series but only their sample statistics. This turns
out to be particularly useful when distribution parameters are set via mar-
ket hypothesis and economic views (e.g. bull market in the next investment
period) instead of using historical data.

4.2 GH calibration

In this section we present a modified EM scheme (the MCECM algorithm)
for fitting a GH model to data. In Definition (3.3.1) we introduced the
GH distribution using the so-called (λ, χ, ψ,µ,Σ,γ)-parametrization. Al-
though this is the most convenient one from a modeling perspective, it
comes with an identification issue: the distributions GH(λ, χ, ψ,µ,Σ,γ) and
GH(λ, χ/k, kψ,µ, kΣ, kγ) are the same (it is easily seen by writing the den-
sity (3.6) in the two cases). To solve this problem, we require the mixing
random variable W (see Definition (3.3.1)) to have expectation equal to 1.
From Equation (A.2) we have

E[W ] =

√
χ

ψ

Kλ+1

(√
χψ
)

Kλ

(√
χψ
) = 1

and if we set ᾱ =
√
χψ it follows that

ψ = ᾱ
Kλ+1

(
ᾱ
)

Kλ

(
ᾱ
) , χ =

ᾱ2

ψ
= ᾱ

Kλ

(
ᾱ
)

Kλ+1

(
ᾱ
) (4.3)
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The relations above defines the (λ, ᾱ,µ,Σ,γ)-parametrization, which will be
used in the MCECM algorithm.

Let X ∼ GHm(λ, χ, ψ,µ,Σ,γ) and {x1, . . . ,xn} be a realization of an
iid random sample. Our objective is to find an estimate of the parameters
represented by θ = [λ, χ, ψ,µ,Σ,γ]T . The log-likelihood function to be
maximized is

logL(θ;x) = logL(θ;x1, . . . ,xn) =
n∑
i=1

log fX(xi; θ) (4.4)

where fX is the function in (3.6). It well-known that finding a maximizer of
(4.4) might be difficult, therefore we resort to a different approach. The situ-
ation would look much better if we could observe the latent mixing variables
W1, . . . ,Wn. Let us suppose to be in this fortunate situation and define the
augmented log-likelihood function

log L̃(θ;x1, . . . ,xn,W1, . . . ,Wn) =
n∑
i=1

log fX|W (xi|Wi;µ,Σ,γ)+ (4.5)

+
n∑
i=1

log hW (Wi;λ, χ, ψ)

where we used the fact that f(Xi,Wi)(x, w;θ) = fXi|Wi
(x|w;µ,Σ,γ)hWi

(w;λ, χ, ψ)
and hWi

is the density in (A.1). The advantage of this augmented formula-
tion is that the two terms in (4.5) can be maximized separately. Although
counter-intuitive, the first term involving the difficult parameters (e.g. a
matrix), is the easiest to maximize and it is done analytically; the second
term has to be treated numerically instead. To overcome the latency of the
mixing variables Wi’s, the MCECM algorithm is used. The algorithm con-
sists in alternating an expectation step (in which the Wi’s are replaced by an
estimate deducted from the data and the current parameters estimate) and
a maximization step (where parameters estimates are updated). Suppose we
are at iteration k and θ(k) is the current parameters estimate, the two steps
are as follows

• E-step: compute the conditional expectation of the augmented log-
likelihood function given the data and the current parameters estimate

Q(θ;θ(k)) = E[log L̃(θ;x,W )|x,θ(k)] (4.6)

• M-step: maximize Q(θ;θ(k)) to get θ(k+1).
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In practice, the E-step amounts to numerically maximize the second term
in (4.6), which is

E
[ n∑
i=1

log hWi
(Wi;λ, χ, ψ)

∣∣∣x,θ] =
n∑
i=1

−λ logχ+ λ log
√
χψ+ (4.7)

− log 2Kλ(
√
χψ) + (λ− 1)E

[
logWi|x,θ(k)

]︸ ︷︷ ︸
ξi

−1
2
χE
[
W−1
i |x,θ(k)

]︸ ︷︷ ︸
δi

+

− 1
2
ψ E
[
Wi|x,θ(k)

]︸ ︷︷ ︸
ηi

= n
(
− λ logχ+ λ log

√
χψ − log 2Kλ(

√
χψ)

)
+

+ (λ− 1)
n∑
i=1

ξi − 1
2
χ

n∑
i=1

δi − 1
2

n∑
i=1

ηi.

In order to proceed further, we need to compute the conditional expectations
ξi, δi and ηi. Thankfully, the following results holds (see Appendix E.1, [7])

Wi|xi ∼ N−
(
λ− 1

2
d︸ ︷︷ ︸

λ̃

, χ+ (xi − µ)TΣ−1(xi − µ)︸ ︷︷ ︸
χ̃

, ψ + γTΣ−1γ︸ ︷︷ ︸
ψ̃

)
.

By using Equations (A.2) and (A.3) we end up with

δi = E[W−1
i |x,θ(k)] =

( χ̃
ψ̃

)− 1
2 Kλ−1(

√
χ̃ψ̃)

Kλ(

√
χ̃ψ̃)

(4.8)

ηi = E[Wi|x,θ(k)] =
( χ̃
ψ̃

) 1
2 Kλ+1(

√
χ̃ψ̃)

Kλ(

√
χ̃ψ̃)

(4.9)

ξi = E[logWi|x,θ(k)] =
d

dα

{( χ̃
ψ̃

)α
2 Kλ+α(

√
χ̃ψ̃)

Kλ(

√
χ̃ψ̃)

}
α=0

(4.10)

We have now all the ingredients to present the MCECM algorithm as exposed
in [7]
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Algorithm 2 MCECM

1: Select reasonable starting points. For instance λ(1) = 1, ᾱ(1) = 1, µ(1) =
sample mean, Σ(1) = sample covariance and γ(1) = 0

2: Compute χ(k) and ψ(k) using (4.3)
3: Compute the weights ηi and δi using (4.8) and (4.9). Average the weights

to get

η̄(k) =
1

n

n∑
i=1

η
(k)
i δ̄(k) =

1

n

n∑
i=1

δ
(k)
i

4: If a symmetric model is to be fitted set γ = 0, else

γ(k+1) =
1

n

∑n
i=1 δ

(k)
i (x̄− xi)

η̄(k)δ̄(k) − 1

5: Update µ(k) and Σ(k):

µ(k+1) =
1

n

∑n
i=1 δ

(k)
i (xi − γ(k+1))

δ̄(k)

Σ(k+1) =
1

n

n∑
i=1

δ
(k)
i (xi − µ(k+1))(xi − µ(k+1))T − η̄(k)γ(k+1)γ(k+1)T

6: Set θ(k,2) = [λ(k), ᾱ(k)µ(k+1),Σ(k+1),γ(k+1)] and compute η
(k,2)
i , δ

(k,2)
i and

ξ
(k,2)
i using (4.9),(4.8) and (4.10)

7: Maximize (4.7) with respect to λ and ᾱ (using relation (4.3)) to complete
the calculation of θ(k,2). Go to step 2
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Chapter 5

Numerical Results in the
Time-Driven Approach

This chapter is dedicated to presenting the results obtained by applying the
Stochastic Reachability approach (discussed in Chapter 2) to the asset allo-
cation problem. We recall that the output of the ODAA algorithm (see The-
orem (2.2.1)) is a sequence of allocation maps π? = {µ?0, . . . , µ?N−1}. For any
portfolio realization x ∈ R at time k ∈ N, the maps µ?k provides us with the

optimal asset allocation µ?k(x) = u?k; for instance, if u?k =
[
0.2 0.2 0.6

]T
,

this means that 20% of investor’s wealth should be allocated to the first as-
set class, 20% to the second one and the remaining 60% to the third one.
Objective of this chapter is to see what form these maps have at different
time instants. The chapter unfolds as follows: in Section 5.1 the dataset is
presented and summarized by some sample statistics, in Section 5.2 the pa-
rameters of the asset allocation problems are set and the allocation maps for
the GM model are reported. Moreover, the ODAA strategy will be compared
with other famous asset allocation strategies such as the Constant-Mix and
the Constant-Proportion Portfolio Insurance (CPPI).

5.1 The Dataset

Our asset class menu consists of cash, bond and equity. To represent these
markets we adopt the indexes presented in Table 5.1. The dataset is com-
posed of weekly time series from 23 January 2010 to 15 April 2016. The data
is downloaded from Yahoo Finance1, which is also where the reader is re-
ferred for more details of index composition. An overview of the asset classes
is given in Figure 5.1 and Table 5.2. By comparing the annualized mean

1https://finance.yahoo.com/.
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Label Asset Class Index

C Money Market iShares Short Treasury Bond ETF

B US Bond Northern US Treasury Index

E US Equity S&P 500

Table 5.1: Asset class and relative index

return, it is clear that asset class Equity leads to higher performance than
Bond and Bond, in turn, ensures higher performance than Cash. However,
the annualized volatility tells us that the same hierarchy holds true also in
terms of riskiness, being Equity the riskiest investment and Cash the least
risky. Higher sample moments (Skewness and Kurtosis) suggest that the re-
turn distribution diverges significantly from a multivariate Gaussian. Indeed,
a quantitaive proof of this fact is given us by the Henze-Zirkler2 multivariate
normality test which exhibits a zero p-value.

Figure 5.1: Weekly asset class returns histogram.

2See [1] for a MATLAB implementation.
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Statistic C B E

Mean Return (ann) 0.064% 3.46% 12.11%

Volatility (ann) 0.113% 4.81% 14.81%

Median (ann) 0% 4.58% 17.74%

Skewnwss 0.262 -0.0621 -0.36

Kurtosis 3.90 10.62 4.42

Monthly V@R0.95 0.0808% 3.73% 14.95%

Max Drawdown 0.106% 5.87% 23.98%

Mean Drawdown 0.020% 1.5% 4.62%

Sharpe ratio 0 0.692 0.767

Table 5.2: Asset class returns sample statistics

Finally, the sample correlation matrix is1 0.166 −0.075
1 −0.454

1

 .
5.2 Optimal Allocation Maps

Let us consider an investment characterized by the following parameters:

• 2-year investment horizon

• weekly rebalancing frequency, which means N = 104 portfolio rebal-
ancings

• monthly (ex-ante) value-at-risk equals to 7%

• target return θ = 7% per year

• initial wealth x0 = 1.

The target sets we want our portfolio value to stay within are

X0 = {1}
Xk = [0,∞) k = 1, . . . , 103

X104 = [(1 + θ)2,∞) = [1.072,∞).
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In practice, these sets are discretized with a discretization step of 10−3 and
truncated where the probability measure is negligible; the actual sets used
in the implementation thus are Xk = [0.5, 1.9] k = 1, . . . , 103 and X104 =
[(1.07)2, 1.9]. As stated in Problem 2.2.1, we are looking for a sequence of
allocation maps which maximize the following joint probability

P
(
{ω ∈ Ω : x0 ∈ X0, . . . , x104 ∈ XN}

)
.

The final choice to be made before running the ODAA algorithm is picking a
model for the asset class returns. As an example, we opt for the GM model,
which has been fitted to data applying the EM method (see Subsection 4.1.2).
The parameter estimates are:

µ1 =

1.054e−5
3.713e−4
2.298e−3

 Σ1 =

2.437e−8 1.266e−7 −2.365e−7
3.596e−5 −5.944e−5

4.232e−4

 (5.1)

µ2 =

 2.115e−4
3.105e−2
−8.266e−3

 Σ2 =

2.372e−8 −7.961e−7 1.277e−6
2.9e−5 −4.411e−5

6.949e−5

 (5.2)

and λ = 0.9908. By applying the backward algorithm enunciated in Theorem
2.2.1, we obtained 103 allocation maps; some of which are reported in Figure
5.2.

Let us now take the time to analyze the kind of investment strategy
these maps imply. At the beginning of the investment (k = 0), the optimal
strategy prescribes that 25% of investor’s wealth be invested in Bond and
75% in Equity. After 25 weeks, depending on the realization of portfolio
value (x-axis in Figure 5.2), the optimal strategy tells us to allocate wealth
as follows: if the portfolio is underperforming (e.g. its value is approximately
below 1.029), the optimal allocation is a mix of Equity and Bond, which is
the riskiest mix allowed (a 100% allocation in Equity is not permitted due
to the risk constraint). As soon as performance gets better (i.e. from 1.029
to 1.16) the Equity weight starts decreasing in favor of more Bond and from
a certain point on, also Cash. When the portfolio is doing well (i.e. above
1.16), the whole wealth is invested in Cash, namely the least risky of the
three asset classes. We could synthesize this behavior by saying that risky
positions are taken when the portfolio is doing poorly, whereas conservative
positions are taken when the portfolio is doing well. This kind of investing
strategy is known in the literature with the name of contrarian strategy. The
name stems from the fact that contrarian investors bet against the prevailing
market trend, namely they try to sell ”high” and buy ”low”. Contrarian
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Figure 5.2: Optimal allocation maps, weekly rebalancing, GM model
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G GM NIG

wk m q wk m q wk m q

p? 79.67% 75.56% 73.26% 78.59% 73.20% 69.44% 78.53% 73.24% 69.47%

pMC 79.77% 75.56% 73.28% 78.82% 73.21% 69.58% 78.76% 73.30% 69.32%

time[h] 0.712 0.157 0.050 0.857 0.316 0.283 6.131 1.467 0.371

Table 5.3: Probability of reaching the target set obtained via ODAA algo-
rithm (p?) and Monte-Carlo simulation (pMC) for the Gaussian, GM and NIG
model and different rebalancing frequencies (weekly, monthly and quarterly).
Time is the computational time of the ODAA algorithm, in hours.

strategies perform well in volatile markets and poorly in trending market
due to their concave nature (see [24]). The optimal strategy obtained by
the ODAA algorithm exhibits the same pattern also at successive rebalancing
times, the only difference is that it becomes more extreme while approaching
the investment end; for instance, at time k = 103 there is no transition
from the riskiest allocation to the least risky one. In this case, intermediate
position are discarded since either the target has already been reached (hence
a 100% Cash position) or it has not (hence the riskiest position).

The joint probability of reaching investor’s goal is J(x0) = p? = 78.72%.
This result is verified by running a Monte-Carlo simulation with 105 draws at
each rebalancing period from a GM distribution with parameters (5.1) and
(5.2). The joint probability obtained is pMC = 78.73%. Another interesting
feature of the ODAA strategy is that p? increases as the rebalancing frequency
decreases. By looking at Table 5.3, it can be seen that as we move from a
quarterly rebalancing frequancy3 to a monthly one the optimal probability
goes from 69.44% to 73.20%, and the same happens from monthly to weekly.
This fact is rather intuitive since the more rebalancings the more chances to
steer the portfolio within the target sets. It should be noted however, that in
practice transaction costs have not a negligible impact on portfolio profitabil-
ity when rebalancing is frequent. This is the reason why investment policies
that update portfolio weights only when an ”event” occurs are particularly
appealing (they will be treated in Part II).

Next, we used also the Gaussian and the NIG model to describe the

3the problem of switching from a rebalancing frequency to another has been tackled
as follows: the model is calibrated to weekly data, then linear returns are approximated
by log-returns enabling us to write additive relations such as wmonthly = wwk1 + . . . +
wwk4. Finally, using the hypothesis of iid returns we analytically derive the distribution of
monthly and quarterly returns for the G, GM and NIG model. All this models are closed
under convolution.
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G GM NIG

logL? 4396.2 4471.0 4450.2

Table 5.4: Log-likelihood for G, GM and NIG model

asset class returns distribution. From Table 5.4 we see that the best fitting
is provided by the GM model since it exhibits the highest log-likelihood
function value; nonetheless, the NIG comes right after it. It is not surprising
that the Gaussian model is ranked last as we were well-aware that the data
considered deviates from a multivariate Gaussian sample (see Table 5.2).

5.2.1 ODAA vs CPPI vs Constant-Mix

Within the class of asset allocation strategies, the CPPI and the Constant-
Mix are among the most popular ones (see [24]). After briefly discussing how
they work, we will compare their performance to the ODAA’s one.

CPPI The idea behind the CPPI is to maintain the portfolio exposure to
the risky asset, Ek, equal to a constant multiple m of the portfolio cushion,
Ck. The risky asset is assume to be a mix of Bond and Equity. The cushion
at time k is defined as

Ck = max
{
xk − Fk, 0

}
where xk is the portfolio value at time k and Fk is the so-called portfolio
floor. The floor is a value below which the investor does not want the
portfolio value to fall. In our case, the floor is a risk-free asset which grows
deterministically at the Cash rate. Therefore, once the investor has specified

• an initial allocation u0

• the initial floor F0

• a cushion multiplier m

• the maximum value-at-risk (V@R1−α) according to his risk profile,

39



he can synthesized the CPPI strategy as follows

maximize
uk

Auk

subject to uTk 1 = 1,

ui ≥ 0 ∀i ∈ {1, 2, 3},
uTkΛuk ≤ σ2

max,

xAuk︸ ︷︷ ︸
Ek

≤ mCk.

where A =
[
0 1 1

]
, σmax = V@R1−α

z1−α
, x ∈ Xk and k = 1, . . . , N . From this

formulation we see that the investor aims at maximizing the allocation in
the risky asset (matrix A selects the allocation in Bond and Equity) while
keeping under control the riskiness of the overall allocation and limiting the
risky exposure to m times the cushion. The covariance matrix Λ depends
on the model chosen to describe the asset class returns distribution. In our
analysis, we set m = 6, u0 = 1 , F0 is chosen in such a way to guarantee 90%
of the initial wealth at the end of the investment and the asset class return
random vector follows a GM distribution with parameters (5.1) and (5.2).
The others investment parameters are equal to the ones in the ODAA case.
The CPPI allocation maps are reported in Figure 5.3.

Constant-Mix Following a Constant-Mix strategy means maintaining an
exposure to the risky asset that is a constant proportion of wealth. For
instance, suppose one decides to keep a 60/40 proportion between risky and
risk-free asset. After a rebalancing time, asset prices change causing the
portfolio proportion to change as well. Let us suppose that the risky asset has
increased its price while the risk-free has fall. At the next rebalancing time,
the Constant-Mix policy prescribes to sell shares of the risky asset and buy
shares of the risk-free in order to recover the 60/40 mix. The constant mix
is chosen by solving the following equivalent formulation of the Markowitz
problem

maximize
u

uTµ

subject to uT1 = 1,

ui ≥ 0 ∀i ∈ {1, 2, 3},
uTΛu ≤ σ2

max.

where σmax = V@R1−α
z1−α

and µ and Λ are the mean and the covariance matrix
of the random vector wk+1 which represents the asset class returns. The
distribution of wk+1 could be any of the ones discussed in Chapter 3. The
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Statistic ODAA CPPI Constant-mix

pMC 78.96% 52.69% 61.38%

Mean Return (ann) 5.81% 7.54% 10.02%

Volatility (ann) 5.00% 7.93% 13.19%

Median (ann) 7.20% 7.33% 9.38%

Skewnwss -2.52 0.282 0.458

Kurtosis 9.10 3.10 3.36

yearly V@R0.99 3.96% 1.83% 4.18%

Max Drawdown 7.16% 6.78% 12.77%

Sharpe ratio 1.163 0.950 0.760

Table 5.5: Investment performance for strategies ODAA, CPPI and
Constant-mix obtained via Monte-Carlo simulation (2× 105 replications).

optimization problem has been solves assuming a GM distribution with pa-
rameters (5.1) and (5.2); the optimal constant mix is

u? =
[
0 0.2352 0.7648

]T
.

The ODAA and Constant-Mix belongs to the concave allocations strate-
gies (see [25]). This means that their policy is to buy risky assets (Equity
and Bond) when they fall and sell them when they raise. Concave strategies
perform well in oscillating markets. Conversely, the CPPI is an example of a
convex strategy: risky assets are bought when they raise and sold when they
fall. This behavior is clear from the allocation maps in Figure 5.3. When
portfolio performance is up, a more risky position is taken, when it is down,
risky assets are sold and a more covered position is taken. Convex strategies
perform well in trending markets.

In order to compare the performance of this three different strategies we
ran a Monte-Carlo simulation. Starting from an initial wealth x0 = 1, 2×105

portfolio trajectories are drawn assuming a GM distribution with parameters
(5.1) and (5.2) for vectors wk+1. Performance and risk figures are reported in
table 5.5. The empirical density function of the 2-year investment return is
reported in Figure 5.4. In figure 5.5 we show the empirical density function
of the investment return in the ODAA case along with the target return.
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Figure 5.3: Optimal CPPI allocation maps, weekly rebalancing, GM model.
An example of a convex strategy.
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Figure 5.4: Empirical density functions of the 2-year return for the ODAA,
CPPI and Constant-mix strategy.

Figure 5.5: Empirical density functions of the 2-year return for the ODAA
strategy. The red vertical line indicates the target return.
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Part II

Event-Driven approach
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Chapter 6

Discrete Event Systems and
Asset Allocation

From this chapter on, we will adopt a different approach to the asset allo-
cation problem: time will no longer be the driver of portfolio rebalancings
but instead, portfolio weights will be updated whenever a predefined event
occurs. This new point of view stems from the fact that when developing the
stochastic reachability approach in Chapter 2, we let the system dynamics
be indexed by an independent variable k ∈ N, which we interpreted as dis-
crete time but, as a matter of fact, the theory did not rely on this particular
interpretation. This gives us the freedom to think of k as an abstract index
(for instance, it could be an event counter). This observation is the basis for
embedding the asset allocation problem in a Discrete Event System (DES)
environment.

In this chapter we will present the basics of DES modeling (Section 6.1)
which are essential for discussing the Event-Driven (ED) approach to asset
allocation (Section 6.2). As far as the Discrete Event Systems are concerned,
the main reference is the rich monograph [13], whereas the ED asset allocation
model is taken from [29].

6.1 Introduction to DES

From a Control System point of view, the dynamical system introduced in
(2.2) can be classified as continuous-state (the state space X is a proper
subset of R) and discrete-time (k ∈ N). Informally, if the state space is a
discrete set and state transitions are observed whenever an ”event” occurs
we will talk about Discrete Event Systems. Systems considered so far are
time-driven, in that we could imagine the systems being synchronized to a
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clock and at every clock tick an event e is drawn from an event space E,
causing the state to change. However, we could think of a different mecha-
nism governing the state transition: at various time instants (not necessarily
known in advanced), some event e ∈ E occurs, making the state change. The
following example will hopefully clarify the difference between Time-Driven
(TD) and ED systems. Imagine a particle bound to move on a plane; at every
tick of a clock an event is drawn and the particle is allowed to move by a unit
step northward, southward, eastward or westward. In this case we have a
TD system whose events are e1 = ”one step North”, e2 = ”one step South”
and so on. On the other hand, suppose there are four players, each of them
capable of making the particle move in his direction by issuing a signal. A
player issues a signal at random times. The resulting system is ED since it
is not synchronized to any clock and state transitions are caused by event
like ek =”player 1 issued a signal”. The formal definition of a DES reads as
follows

Definition 6.1.1 (Discrete Event System): A Discrete Event System
is a discrete-state, event-driven system, that is, its state evolution depends
entirely on the occurrence of asynchronous discrete events over time.

A DES can be studied from three different levels of abstraction. We will
present them in increasing order of complexity

1. untimed : the interest is on the sequences of events that the system
could execute, without any time information. For instance, an untimed
sequence could be

e1, e2, e3, e4, e5, e6

2. timed : in this representation each possible event sequence is coupled
with time information, that is, not only the occurrence order is given
but also the exact time instant when an event happened. For example,
in the timed setting, the following could be a system sample path

(e1, t1), (e2, t2), . . . , (e6, t6)

3. stochastic timed : it is the most detailed description of a DES since it
contains event information on all possible orderings, time information
about the exact instant at which the event occurs and also statistical
information about successive occurrences.

As our modeling purposes required the stochastic timed level of abstraction,
we now give the definition of a Stochastic Clock Structure, which is the tool
used to include time and statistical information to a sequence of events.
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Definition 6.1.2 (Stochastic Clock Structure): The Stochastic Clock
Structure associated with an event set E is a set of CDFs

G = {Gi : i ∈ E}

characterizing the stochastic clock sequences

Vi = {Vi,1, Vi,2, . . .} i ∈ E

where Vi,k is a random variable indicating the kth occurrence time of event
ei.

Remark 6.1.1: Sometimes, instead of modeling the exact time when an
event occurs, as in the definition above, it is more convenient to model the
elapsed time between two events, the so-colled interevent time. In this
case we will write the Stochastic Clock Sequence in the following way

Ti = {Ti,1, Ti,2, . . .} i ∈ E.

If a deterministic clock sequence vi = {vi,1, vi,2, . . .} is given for each event
in E, we will talk about a Clock Structure. The evolution of a DES needs to
be described by a state equation of the form

xk+1 = f(xk, ek+1) k ∈ N (6.1)

where xk is the current state and xk+1 the state once the event ek+1 has
occurred. The above recursive equation is the event-driven equivalent of
Equation (2.2). However, Equation (6.1) describes only the untimed dynam-
ics, that is no time information is included. Conversely, in asset allocation
applications, we are also interested in when an event occurs. For this reason,
after introducing a Clock Structure v = {vi : i ∈ E} associated with a finite
event set E = {e1, . . . , en}, we seek a relationship of the form

ek+1 = h(xk,v1, . . . ,vn)

so that we could replace (6.1) with{
xk+1 = f(xk, ek+1)

ek+1 = h(xk,v1, . . . ,vn).
(6.2)

Equations (6.2) capture the timed dynamics of a DES.
As it was mentioned earlier, the Stochastic timed behavior is what in-

terests us; therefore, we conclude this section by giving the definition of a
Stochastic Timed Automaton (see [13] for a more detailed treatment)
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Definition 6.1.3 (Stochastic Timed Automaton): A Stochastic Timed
Automaton is a six-tuple

(E ,X ,Γ, p, p0,G)

where

E is a countable event set

X is a countable state space

Γ(x) is the set of feasible events, defined ∀x ∈ X

p(x′;x, e′) is the transition probability from state x to state x′ given the
occurrence of event e′

p0(x) is the pmf of the initial state X0 (which is a random variable)

G = {Ti : i ∈ E} is a Stochastic Clock Time of interevent times.

A Stochastic Timed Automaton, together with the dynamics in Equation
(6.2) (where the Clock Structure v is replaced by a Stochastic one V ) gives
the most complete description of a DES. We now move to the asset allocation
application.

6.2 Event-Driven Asset Allocation

In this section we present the first event-driven model, having the objective
to invest in the derivative market. In fact, we will consider a market consist-
ing of a risky asset (a future index) and a risk-free asset (a bank account).
The event-driven approach aims at modeling the industrial practice of rebal-
ancing the portfolio weights whenever an ”event” occurs. In the following,
we suppose that an event has occurred every time the absolute value of the
risky asset cumulative return hits a threshold (e.g. 7%). This policy could
be beneficial in different aspects:

1. in low-volatile markets, when the risky asset price is quite steady, port-
folio weights need not to be updated at predefined time instants but
only when the market conditions have significantly changed. This cuts
down on transaction costs.

2. in high-volatile markets, when the risky asset price repetitively in-
creases and plummets in a short period of time (shorter than the
rebalancing frequency), the event-driven policy can swiftly intervene
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by changing the portfolio exposure without having to wait the next
rebalancing time (which could be after the loss has already become
substantial).

The main goal of this section is first to derive a proper event-driven portfolio
value dynamics and then find its density function, which will be plugged in
the ODAA algorithm (2.2.1). Let us now start off by investigating both the
time-driven dynamics ,which will allow us to estimate how long the invest-
ment is going to last and the event-driven dynamics.

6.2.1 Time-Driven dynamics

A portfolio rebalancing is performed every time the absolute value of the
risky asset cumulative return, starting from an initial baseline, hits a thresh-
old. Let J be this threshold. We suppose the following time-driven discrete
dynamics for the risky asset

Sk+1 = Sk(1 + JN∆t
k+1) k ∈ N. (6.3)

The random variable N∆t
k+1 (which is the (k+1)th element of a sequence of

iid random variables) takes values in the discrete set {1, 0,−1} and indicates
whether the discrete price process has a positive, negative or null jump at
the end of a time interval of length ∆t. If it takes value 1, the discrete price
process {Sk} experiences a positive jump at the end of time period [tk, tk+1],
if the value is -1 then the jump is negative and if the value is 0, the process
has no jumps in this time interval. This is the same as saying that when the
random variable takes the value 1 then the risky asset return, over the period
[tk, tk+1], is greater than J, when the value is -1 then the cumulative return
is smaller than -J and when the value is 0, than it belongs to the interval
[−J, J ]. The superscript ∆t indicates the length of the interval [tk, tk+1]. The
next step is to find a proper distribution for N∆t

k+1. Let the probability mass
function (pmf) of this random variable have the following form

fN∆t
k+1

(y) =


exp{−λ∆t} if y = 0(
1− exp{−λ∆t}

)
p if y = 1(

1− exp{−λ∆t}
)
(1− p) if y = −1

(6.4)

where λ ∈ R+ and p ∈ [0, 1]. This functional form is particularly convenient
since it implies an exponential distribution for the interevent times (also
called holding times in a financial context). This fact is synthesized in the
following proposition
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Proposition 6.2.1: Given the time-driven dynamics of the risky asset in
(6.3) and the pmf (6.4) of random variable N∆t

k+1, let τk+1 be the random
variable indicating the holding time between the kth and the (k+1)th event.
Then τk+1 ∼ exp(λ)

Proof. Let tk be a realization of the random variable Vk, which is an element
of a Stochastic Clock Sequence. It indicates when the kth event occurs. From
the definition of a Stochastic Clock Structure we have

Gk+1(t) = P
(
τk+1 ≤ t

)
= 1− P

(
τk+1 > t

)
but

P
(
τk+1 > t|Tk = tk

)
= P

(
N

(tk+t)−tk
k+1 = 0

)
= P

(
N t
k+1 = 0

)
= exp{−λt}

therefore P
(
τk+1 > t|Tk = tk

)
is independent from tk. Hence

P
(
τk+1 > t|Tk = tk

)
= P

(
τk+1 > t

)
= exp{−λt}

which implies Gk+1(t) = 1−exp{−λt}. Since this is the cdf of an exponential
random variable, we have the result.

Remark 6.2.1: Given that E[τk+1] = 1
λ
, the parameter λ acquires the mean-

ing of speed of the price process. The larger λ, the more frequent portfolio
rebalancings are executed.

6.2.2 Event-Driven dynamics

Dynamics (6.3) is still time-driven since the independent variable k ∈ N
represents discrete time. Instead, in the event-driven framework, we let k
indicate the number of events (portfolio rebalancings or trades). In this con-
text, Sk+1 is the risky asset price after that the (k+1)th portfolio rebalancing
or trade is performed. The event-driven dynamics of the risky asset reads as
follows

Sk+1 = Sk(1 + JÑk+1) k ∈ N (6.5)

where Ñk+1 is distributed according to

fÑk+1
(y) =

{
p if y = 1

1− p if y = −1
(6.6)
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Let us understand how the pmf (6.6) follows from (6.4). First of all, the

random variable Ñk+1 is Bernoullian. In fact, it models whether the next
jump of the risky asset process is positive or negative. Therefore, we are left
to compute the probability that the jump is positive (the parameter q of the
Bernoulli distribution). By applying the Bayes Theorem, the Law of Total
Probability in the continuous case and the fact that τk+1 is exponential with
parameter λ, we obtain

q = P
(
Ñk+1 = 1

)
= P

(
N
τk+1

k+1 = 1|(N τk+1

k+1 = 0)C
)

=
P
(
N
τk+1

k+1 = 1, (N
τk+1

k+1 = 0)C
)

P
(
(N

τk+1

k+1 = 0)C
)

=
P
(
N
τk+1

k+1 = 1
)

1− P
(
N
τk+1

k+1 = 0
)

=

∫∞
0

P
(
N
τk+1

k+1 = 1|τk+1 = t
)
fτk+1

(t)dt

1−
∫∞

0
P
(
N
τk+1

k+1 = 0|τk+1 = t
)
fτk+1

(t)dt

=

∫∞
0

(1− e−λt)pλe−λtdt
1−

∫∞
0
e−λtλe−λtdt

= p.

Parameter p governs the trend of the discrete price process. The greater p,
the more likely it is to have positive jumps.

6.2.3 Portfolio dynamics

We recall that the portfolio we are considering consists of a risky and a risk-
free asset. The event-driven dynamics of the former has been given in (6.5).
In this section, the event-driven dynamics of portfolio value will be derived.
For the sake of simplicity, we assume that the risk-free asset evolves in a
deterministic way with constant interest rate r (continuously compounded).
Throughout this section, let us fix two time instants, tk and tk+1, which
are realizations of random variables Vk and Vk+1. These random variables
indicate the time when the kth and (k+1)th trade take place (or, in other
words, when the kth and (k+1)th event occur).

In general, the event-driven portfolio dynamics is

xk+1 = xk(1 + uCk w
C
k+1 + uSkw

S
k+1) k ∈ N (6.7)
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where uCk , uSk are the portfolio weights of the risk-free and risky asset respec-
tively, wCk+1 and wSk+1 their return over the period [tk, tk+1]. It is important
to remark that the length of the time interval [tk, tk+1] is not deterministic,
but it is a random variable exponentially distributed (see Proposition 6.2.1)
and denoted by τk+1. Consequently, wCk+1 and wSk+1 are returns over this
stochastic time period. From (6.5) we easily get

wSk+1 = JÑk+1 (6.8)

As far as the risk-free asset in concerned, denoting by Ck+1 its price after the
(k+1)th trade, we have

Ck+1 = Ck(1 + wCk+1) = Ck exp{rτk+1}
=⇒ wCk+1 = exp{rτk+1} − 1 (6.9)

where r is the deterministic interest rate of the risk-free asset, continuously
compounded. By plugging (6.8) and (6.9) into (6.7) the portfolio dynamics
becomes

xk+1 = xk(exp{rτk+1}+ ukJÑk+1) k ∈ N (6.10)

where we dropped the superscript S from uSk and set uCk = 1. This reflects
what is usually done in the derivative trading practice, namely keeping a
100% cash position plus a long or short exposure to the derivative. Conse-
quently, the weight uk is allowed to take values in the compact set [−1, 1].

6.2.4 The density of xk+1

In order to apply the ODAA algorithm (see Theorem 2.2.1), the explicit form
of the density of the random variable xk+1 is required. The result is given in
the following proposition

Proposition 6.2.2: The probability density function of random variable
(6.10) (where xk has been fixed to x ∈ X ) is

fxk+1
(z) =

λ

rx

{
p
(z − ξ

x

)−(λ+r
r

)
1[x+ξ,∞) + (1− p)

(z + ξ

x

)−(λ+r
r

)
1[x−ξ,∞)

}
where ξ = xJuk+1 and z ∈ R.

Proof. Let Fτk+1
(t) = (1 − e−λt)1[0,∞)(t) be the cdf of τk+1. The first step

consists in finding the cdf FY of Y = x exp{rτk+1}. By simple calculations
we obtain

FY (y) =
(

1−
(y
x

)−λ
r
)
1[x,∞).
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Let us rewrite the portfolio value at the (k+1)th trade in the following way

xk+1 = Y + xukJÑk+1 = Y + ξÑk+1

and by using the Law of Total Probability we have

Fxk+1
(z) = P

(
Y + ξÑk+1 ≤ z

)
= P

(
Y + ξÑk+1 ≤ z|Ñk+1 = 1

)
P
(
Ñk+1 = 1

)
+

+ P
(
Y + ξÑk+1 ≤ z|Ñk+1 = −1

)
P
(
Ñk+1 = −1

)
= FY (z − ξ)p+ FY (z + ξ)(1− p)

= p
{

1−
(z − ξ

x

)−λ/r}
1[x+ξ,∞) + (1− p)

{
1−

(z + ξ

x

)−λ/r}
1[x−ξ,∞)

Differentiating the cdf with respect to z gives us the result.

6.3 The calibration of p and λ

In this section we calibrate the parameters p and λ of the pmf (6.4) to market
data. We recall that parameter p is responsible of the trend of process {Sk}
whereas λ controls the jump frequency. The time series we are considering
is the daily Future S&P 500 from 22 January 2010 to 25 April 2016. In
order to find estimates p̂ and λ̂ we need to extract a sample of realizations of
random variableN∆t

k+1 from the above time series. This could be accomplished
by applying Algorithm 3 to the data. Indeed, the algorithm outputs the
discrete time series (reported in red in Figure 6.1) and the logical sample
y = {y1, . . . , yn} (denoted by {dtk}k=1,...,n in the algorithm).
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Figure 6.1: Future S&P 500 and its discrete time series. The discrete time
series was obtained with a jump size J = 7%

Algorithm 3 Discrete price and logical time series

Input: price time series {Stk}k=0,...,n, jump size J
Output: discrete price time series {Dtk}k=0,...,n, logical time series

{dtk}k=1,...,n

initialization: Baseline = St0 , Dt0 = St0
for i = 1, . . . , n do

R = Sti/Baseline− 1
if abs(R) > J then

Baseline = Baseline(1 + sign(r)J)
Dti = Baseline
dti = sign(r)

else
Dti = Dti−1

dti = 0
end

end

As estimation method we used maximum likelihood. The likelihood func-
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tion can be written as follows

L(λ, p; y) =
n∏
i=1

fN∆t
k+1

(yi;λ, p)

=
( ∏
i : yi=0

exp(−λ∆t)
)( ∏

i : yi=1

(
1− exp(−λ∆t)

)
p
)( ∏

i : yi=−1

(
1− exp(−λ∆t)

)
(1− p)

)
=
(

exp(−λ∆t)
)α((

1− exp(−λ∆t)
)
p
)β((

1− exp(−λ∆t)
)
(1− p)

)γ
where con

α = card{yi = 0: i = 1, . . . , n}

β = card{yi = 1: i = 1, . . . , n}

γ = card{yi = −1: i = 1, . . . , n}

and ∆t has been set to 1/252. Imposing the first order optimality condition
∇ log(L(λ, p; y)) = 0 and solving with respect to p and λ we obtain the
following estimates

λ̂ = − 1

∆t
log
( α

α + β + γ

)
(6.11)

p̂ =
β

β + γ
(6.12)

The point (p̂, λ̂) is actually a maximizer since the Hessian matrix computed
in this point is definite negative. Setting J = 10% and applying the equations
above to our data we get the following estimates

λ̂ = 2.363

p̂ = 0.733.

Remark 6.3.1: As α + β + γ equals n (the sample size), the estimator of
λ depends only on the number of interval in which there are no jumps (α).
Conversely, the estimator of p depends only on the number of positive and
negative jumps, as it was reasonable to expect.

6.4 Numerical Results

Let us consider an investment with the following parameters:

• N = 10 portfolio rebalancings
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• J = 10%

• r = 1%

• The following target sets: X0 = {1}, Xk = [0,∞) for k = 1, . . . , 9 and
X10 = [(1 + θ)4,∞) with θ = 7%. In the implementation, they were
approximated by Xk = [0.8, 2] for k = 1, . . . , 9 and X10 = [(1 + θ)4, 2]
and discretized with step length 5× 10−4.

In Figure 6.2 are reported some allocation maps obtained by running
the ODAA algorithm with the investment parameters specified above and
model parameters calibrated in the previous section. Each map shows how
to allocate the risky asset at portfolio rebalancing number k. The contrarian
attitude of the strategy is the same as in the time-driven case: when per-
formance is down, the policy prescribes to take a 100% long position in the
risky asset. Conversely, when performance is up, a 100% short position on
the risky asset in taken. In between, there is a range of long/short exposures
which depends on portfolio performance. The joint probability of reaching
the target sets is p? = J(x0) = 73.52%. This result is verified by running a
Monte Carlo simulation with 2 × 106 replications at each rebalancing time.
Sample statistics regarding this 10-reallocation investment are reported in
Table 6.1. Finally, Figure 6.3 shows the histogram of the investment annu-
alized total return.

Figure 6.3: Empirical density function of the annualized investment return.
The red vertical line represents the annualized target return.
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Figure 6.2: Risky asset allocation maps

59



Statistics value

p? 0.735

pMC 0.736

Mean Return (ann) 12.21%

Volatility (ann) 8.74%

Median Return (ann) 11.75%

Skewness 0.8532

Kurtosis 7.384

Sharpe Ratio 1.281

Avg horizon [years] 4.23

yearly V@R0.99
0.01 6.48%

Table 6.1: Investment performance obtained via Monte-Carlo simulation with
2 × 106 replications at each rebalancing time. pMC is the probability of
reaching the target return obtained via Monte-Carlo simulation while p? the
theoretical one.

6.4.1 VaR constraint

When synthesizing the maps reported in Figure 6.2, no risk constraint was
considered, in fact a 100% exposure on the risky asset were allowed. In this
section, in order keep under control the downside risk , the computation of the
allocation maps via ODAA algorithm will be subject to a V@R constraint.
The idea is to prevent the risky asset exposure from being to high. This
is going to be accomplished by following the same logic used in the time-
driven case, that is the variance of the portfolio return over the time period
between two consecutive reallocations will be bounded according to a V@R
specification given as input. The additional complication typical of the event-
driven setting is that the time period over which portfolio return is calculated,
it is not deterministic.

Portfolio return between two successive reallocations is

xk+1 − xk
xk

: = wk+1 = exp{rτk+1} − 1 + ukJÑk+1, (6.13)

therefore, using independence between τk+1 and Ñk+1, the variance of port-
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folio return is simply

Var [wk+1] = Var [exp{rτk+1}] + (ukJ)2 Var
[
Ñk+1

]
=

λr2

(λ− 2r)(λ− r)2
+ (ukJ)24p(1− p) (6.14)

provided that λ > 2r. The V@R constraint can be written as

Var [wk+] ≤ σ2
max, (6.15)

where the upper bound is obtained by scaling the monthly V@R specification
over the expected interevent time as follows

V@R
E[τk+1]
1−α =

√
12E[τk+1]V@Rm

1−α =

√
12

λ
V@Rm

1−α (6.16)

and using the usual Gaussian approximation. In the end, the bound is σmax =√
12V@Rm

1−α/
√
λz1−α where z1−α is the 1−α-quantile of a standard normal.

α has been set to 1% and V@Rm
1−α to 7%.

The allocations maps obtained in this case are similar to the ones reported
in Figure 6.2, the only difference is that the risky exposure never exceeds
76.51%. In table 6.2 we report some sample statistics and risk figures of
the same investment simulation carried out in the previous section with the
addition of the V@R constraint.
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Statistics value

p? 0.734

pMC 0.735

Mean Return (ann) 10.20%

Volatility (ann) 7.37%

Median Return (ann) 9.42%

Skewness 1.09

Kurtosis 7.96

Sharpe Ratio 1.247

Avg horizon [years] 4.23

yearly V@R0.99
0.01 4.51%

Table 6.2: Investment performance obtained via Monte-Carlo simulation with
2 × 106 replications at each rebalancing time and the addition of the V@R
constraint. pMC is the probability of reaching the target return obtained via
Monte-Carlo simulation.
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Chapter 7

Model Extensions

The prime objective of this chapter is to extend the event-driven model of
Chapter 6 in two different ways. On one hand, in Section 7.1 the risky
asset will be modeled in continuous-time as a Geometric Brownian Motion
(GBM), on the other hand, in Section 7.2 we no longer let the risk-free asset
evolve deterministically but instead its short-rate will evolve according to the
Vasicek model.

7.1 A GBM dynamics for the risky asset

Let us consider the same portfolio as the one in Chapter 6, namely a risky and
a risk-free asset. As far as the risk-free asset is concerned, the deterministic
model of Chapter 6 remains unchanged. On the other hand, the following
dynamics for the risky asset is assumed{

dSt = µStdt+ σStdWt

Stk = Sk, t ≥ tk
(7.1)

where {Wt}t≥tk is a unidimensional Brownian motion, µ ∈ R, σ > 0 and tk is
the time when the kth event occurs. Solving the above Stochastic Differential
Equations (SDE) brings

St = Sk exp
{

(µ− σ2/2)(t− tk) + σ(Wt −Wtk)}
= Sk exp

{
µ̃(t− tk) + σ(Wt −Wtk)}

where we defined µ̃ = µ−σ2/2. The cumulative risky asset log-return (start-
ing from tk) is denoted by {Xt}t≥tk and is equal to

Xt = log
(
St/Stk

)
= µ̃(t− tk) + σ(Wt −Wtk). (7.2)
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Given that in the development of the model it will be more convenient to
have the time starting from 0, exploiting the Translation Invariance property
of Brownian motion we define the translated log-return process as follows

X̃t = Xt+tk = µ̃t+ σ(Wt+tk −Wtk) = µ̃t+ σW̃t t ≥ 0. (7.3)

In this case t represents the interevent time instead of clock time.

7.1.1 The double exit problem

In the event-driven setting introduced in the previous chapter, what triggers a
portfolio rebalancing is the fact that the absolute value of process X̃t exceeds
the barrier J . When this happens, we say, in the event-driven jargon, that an
event has occurred. Therefore, it is of prime interest modeling the stochastic
time instant in which the next event takes place. This could be done by
defining the following stopping time

τk+1 = inf
{
t ≥ 0: |X̃t|≥ J

}
(7.4)

= inf
{
t ≥ 0: X̃t /∈ (−J, J)

}
.

Given that the density function of xk+1 is needed in the ODAA algorithm,
we are interested in the distribution of random variable (7.4). This problem
is known in literature as the double exit problem of a Brownian motion with
drift. The central result is given by the following theorem, which covers a
more general case in which the upper and lower barrier are different. The
theorem is taken from [17] as is.

Theorem 7.1.1 (double exit problem): Let Xt = µt+ σWt be a Brownian
motion with drift, µ ∈ R and σ > 0. Moreover, assume there are two constant
barriers b < 0 < a. The distribution of τ = inf

{
t ≥ 0: Xt /∈ (b, a)

}
is

Fτ (t) = 1−
(

exp
{µb
σ2

}
K∞t (a)− exp

{µa
σ2

}
K∞t (b)

)
where

KN
t (k) =

σ2π

(a− b)2

N∑
n=1

n(−1)n+1

µ2

2σ2 + σ2n2π2

2(a−b)2

exp

{
−
(
µ2

2σ2
+

σ2n2π2

2(a− b)2

)
t

}
sin
( nπk
a− b

)
.

Applying the theorem to our case (a = J, b = −J) we get

Fτk+1
(t) = 1−

[
2 cosh

( µ̃J
σ2

)
K∞t (J)

]
, (7.5)

where we used the fact that KN
t (k) is odd as a function of k.
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Remark 7.1.1: Theorem 7.1.1 does not assume the upper and lower barrier
to be equal. This generality would allow us to consider a more realistic
case in which a portfolio riallocation is triggered, for example, when the
cumulative return process is grater than a barrier Jup or lower than −Jdown,
where Jup > Jdown.

7.1.2 Portfolio dynamics and the density of xk+1

Following the same path as in Chapter 6, we are left to compute the event-
driven portfolio dynamics and the portfolio value density function. As far as
the first issue is concerned, the dynamics can be written as follows

xk+1 = xk
(

exp{rτk+1}+ ukX̃τk+1

)
k ∈ N (7.6)

where r is the constant risk-free asset return, τk+1 is the stopping time (7.4),

uk is the risky asset portfolio weight and X̃τk+1
is the return process computed

at the random time τk+1. X̃τk+1
can only assume value J or −J , therefore

it is a Bernoullian random variable. The value of its parameter p is given in
the following lemma (which closely follows exercise 5.20, [4])

Lemma 7.1.1: Let X̃t be the return process (7.3) and τk+1 the stopping

time (7.4). Then X̃τk+1
∼ B(p) where

p = P
(
X̃τk+1

= J
)

(7.7)

=
1− exp{2µ̃J/σ2}

exp{−2µ̃J/σ2} − exp{2µ̃J/σ2}

=
exp{2µ̃J/σ2} − 1

2 sinh(2µ̃J/σ2)
.

Proof. The first step of the proof consists in finding ξ ∈ R \ {0} such that

M = exp{ξX̃t} is a martingale. To this end, we apply Ito’s formula ([4],
Theorem 8.1) to Mt:

dMt = ξMtdX̃t +
1

2
ξ2Mtσ

2dt

=
(
µ̃ξ +

1

2
σ2ξ2

)
Mtdt+ σξMtdW̃t. (7.8)

If the drift in (7.8) is null then {Mt}t≥0 is a martingale. Therefore, we impose
the condition µ̃ξ + 1

2
σ2ξ2 = 0 which brings ξ = −2µ̃/σ2.
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The second part of the proof starts by noticing that also the process
{Mt∧τ}t≥0 is a martingale1(Proposition 5.6, [4]). Moreover, since |Mt∧τ |≤ J
for every t ≥ 0, we can apply the Dominated Convergence Theorem (Propo-
sition 4.2, [4]) in the following way:

E
[
Mτ

]
= E

[
lim
t→∞

Mt∧τ

]
= (Dominated Conv. Theorem)

= lim
t→∞

E
[
Mt∧τ

]︸ ︷︷ ︸
1

=

= 1

hence

E
[
Mτ

]
= exp{2µ̃J/σ2}P

(
X̃τ = −J

)
+ exp{−2µ̃J/σ2}P

(
X̃τ = J

)
= exp{2µ̃J/σ2}

(
1− P

(
X̃τ = J

)
︸ ︷︷ ︸

p

)
+ exp{−2µ̃J/σ2}P

(
X̃τ = J

)
︸ ︷︷ ︸

p

= 1.

Finally, solving for p we obtain the result.

In order to apply the ODAA algorithm we need the probability density
function of random variable xk+1. Its explicit form is given in the following
proposition.

Proposition 7.1.1: Let xk+1 be the random variable (7.6) (where xk has
been fixed to x ∈ X ). Its density function is

fxk+1
(z) =

2 cosh
(
µ̃J
σ2

)
rx

[
pΓ∞z−ξ

x

(J)1(x+ξ,∞) + (1− p)Γ∞z+ξ
x

(J)1(x−ξ,∞)

]
(7.9)

where ξ = xukJ , p is the probability given by Lemma 7.1.1 and

Γ∞z (J) =
σ2π

4J2

∞∑
n=1

n(−1)n+1z−
1
r

(
µ̃2

2σ2 +σ2n2π2

8J2

)
−1 sin(

π

2
n) (7.10)

Proof. The scheme of the proof is the same as the one in Proposition 6.2.2.
Let us rewriting the portfolio dynamics as

xk+1 = x exp{rτk+1}+ xukX̃τk+1
= Y + xukX̃τk+1

.

1for the sake of clarity, we dropped the subscript k + 1 from τk+1
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The first step is to find the cdf of Y .Thanks to Theorem 7.1.1 we have

FY (y) = P
(
x exp{rτk+1} ≤ y

)
= Fτk+1

(1

r
log
(
y/x
))

=

{
1−

[
2 cosh(µ̃J/σ2)K∞1

r
log( y

x
)
(J)
]}

1[x,∞).

By invoking the Law of Total Probability we can write

Fxk+1
(z) = P

(
xk+1 ≤ z

)
= P

(
Y ≤ z − xukX̃τk+1

|X̃τk+1
= J

)
P
(
X̃τk+1

= J
)

+

+ P
(
Y ≤ z − xukX̃τk+1

|X̃τk+1
= −J

)
P
(
X̃τk+1

= −J
)

= FY (z − ξ)p+ FY (z + ξ)(1− p)

= p

{
1−

[
2 cosh(µ̃J/σ2)K∞1

r
log( z−ξ

x
)
(J)
]}

1[x+ξ,∞)+

+ (1− p)
{

1−
[
2 cosh(µ̃J/σ2)K∞1

r
log( z+ξ

x
)
(J)
]}

1[x−ξ,∞).

where ξ = xukJ . Now, the density is obtained differentiating the cdf above.
This amounts to compute d

dz
K∞1

r
log( z−ξ

x
)
(J) and d

dz
K∞1

r
log( z+ξ

x
)
(J). As an exam-

ple, let us compute the first derivative:

d

dz
K∞1

r
log( z−ξ

x
)
(J) =

d

dz

(
σ2π

4J2

∞∑
n=1

n(−1)n+1

µ̃2

2σ2 + σ2n2π2

8J2

(z − ξ
x

)− 1
r

(
µ̃2

2σ2 +σ2n2π2

8J2

)
sin
(π

2
n
))

=
(
− 1

rx

)σ2π

4J2

∞∑
n=1

n(−1)n+1
(z − ξ

x

)− 1
r

(
µ̃2

2σ2 +σ2n2π2

8J2

)
−1

sin
(π

2
n
)

=
(
− 1

rx

)
Γ∞z−ξ

x

(J).

Substituting into

fxk+1
(z) = 2 cosh

( µ̃J
σ2

)[
−p d

dz
K∞1

r
log( z−ξ

x
)
(J)1(x+ξ,∞)−(1−p) d

dz
K∞1

r
log( z+ξ

x
)
(J)1(x−ξ,∞)

]
and rearranging, gives us the result.

Density (7.9) is plotted in Figure 7.1 for different values of the risky asset
portfolio weight uk.
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Figure 7.1: Probability density function of random variable variable xk+1

for different value of the risky-asset weight uk and the following parameters:
x = 0.7, r = 5.5%, µ = 0.114, σ = 0.1602 and J = 10%

7.1.3 Numerical results

In this section we report the results obtained by applying the ODAA al-
gorithm in an event-driven framework and modeling the risky asset as a
Geometric Brownian Motion. Before showing the results however, we need
to discuss the calibration of parameter µ and σ of the GBM dynamics to
market data and the truncation of the series in (7.10). As far as data is con-
cerned, we use the same time series presented in Section 6.3 (observations
from the Future S&P 500 index from 22 January 2010 to 25 April 2016).

GBM calibration Let us consider the discretized solution of SDE (7.1)

Stk+1
= Stk exp

{
(µ− 1

2
σ2)∆t+ σ(Wtk+1

−Wtk)
}

= Stk exp
{

(µ− 1

2
σ2)∆t+ σ

√
∆tZ

}
where Z ∼ N (0, 1). In terms of log-return, we have

Xtk+1
= (µ− 1

2
σ2)∆t+ σ

√
∆tZ.

Let x1, . . . , xn be a random sample of log-returns from a normal population
with mean (µ − 1

2
σ2)∆t and variance σ2∆t. From this random sample we
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obtain the following estimates

σ̂2 =
s2

∆t

µ̂ =
x̄

∆t
+

1

2
σ̂2

where s2 is the sample variance and x̄ the sample mean. Setting ∆t = 1/252
and applying the equations above to our data we get µ̂ = 0.1143 and σ̂ =
0.1602.

Series truncation In practice, the series in (7.10) has to be truncated.
Let ΓNz (J) be the function in (7.10) when the series is truncated at the Nth
term. The residual could be bounded in the following way∣∣Γ∞z (J)− ΓNz (J)

∣∣ ≤ σ2π

4J2

∣∣∣∣ ∞∑
n=N+1

n(−1)n+1z−
1
r

(
µ̃2

2σ2 +σ2n2π2

8J2

)
−1 sin(

π

2
n)

∣∣∣∣
≤ σ2π

4J2

∞∑
n=N+1

nz−
1
r

(
µ̃2

2σ2 +σ2n2π2

8J2

)
−1

≤ σ2π

4J2

∫ ∞
N

nz−
1
r

(
µ̃2

2σ2 +σ2n2π2

8J2

)
−1dn

≤ r

π log z
z−

1
r

(
µ̃2

2σ2 +σ2N2π2

8J2

)
−1

therefore, denoting by ε the maximum error tolerance, we obtain

N(z) ≥

√
−8rJ2

σ2π2

{
µ̃2

2rσ2
+ logz

(επz log z

r

)}
. (7.11)

which is the minimum number of terms in the series in order to have the
specified accuracy.

We considered an investment characterized by the following parameters:

• Initial wealth x0 = 1.

• J = 10%.

• N = 10 portfolio rebalancings.

• The following target sets: X0 = {1}, Xk = [0,∞) for k = 1, . . . , 9 and
X10 = [(1 + θ)3,∞) with θ = 7%. In the implementation, they were
approximated by Xk = [0.7, 2] for k = 1, . . . , 9 and X10 = [(1 + θ)3, 2]
and discretized with a step length of 2× 10−4.
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Figure 7.2: Empirical density function of the annualized investment return
when the risky asset is modeled as a GBM.

• r = 1% (risk-free rate of return).

The allocation maps obtained via ODAA algorithm exhibit the contatrian
attitude typical of all the ODAA strategies presented so far. The joint prob-
ability of reaching the target sets is p? = J(x0) = 0.8834. This result is
verified by running a Monte Carlo simulation with 2 × 106 replications at
each rebalancing period. The outcome in terms of joint probability and
other investment statistics, is reported in Table 7.1. Finally, in Figure 7.2
we show the empirical density function of the annualized investment return.

7.1.4 V@R constraint

Although the probability of reaching the target set after 10 reallocations
is quite high, Figure 7.2 and the V@R figure in Table 7.1 show that in
some scenarios the loss could be particularly severe. We could hedge the
portfolio against this downfall of performance by imposing an ex-ante V@R
constraint when synthesizing the allocation maps in the ODAA algorithm, as
we already did in the time-driven case and in Section 6.4.1. Once the investor
has given us his risk profile through a monthly value-at-risk specification
(V@Rm

1−α), the idea is to bound portfolio volatility in the time span between
two reallocations. In formula Var [wk+1] ≤ σmax, where wk+1 is defined as
follows

xk+ − xk
xk

: = wk+1 = exp{rτk+1} − 1 + ukX̃τk+1
. (7.12)
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Statistics value

p? 0.8834

pMC 0.8835

Mean Return (ann) 5.40%

Volatility (ann) 3.51%

Median Return (ann) 5.94%

Skewness -2.43

Kurtosis 12.30

Sharpe Ratio 1.249

Avg horizon [years] 3.70

yearly V@R0.99
0.01 8.77%

Table 7.1: Investment performance obtained via Monte-Carlo simulation with
2× 106 replication at each rebalancing time.

and σmax =

√
12E[τk+1]V@Rm1−α

z1−α
. We now want to compute the variance of

random variable wk+1. Using the fact that τk+1 ⊥ X̃τk+1
(see [4]), we have

Var [wk+1] = Var [exp{rτk+1}] + u2
k Var

[
X̃τk+1

]
. (7.13)

Unfortunately, variance (7.13) cannot be computed because exp{rτk+1} /∈
L1(Ω), which implies exp{rτk+1} /∈ L2(Ω). However, as the quantity rτk+1 is
small enough in our applications, we consider the first-order approximation
of the exponential term in 7.12. In this way, portfolio variance becomes

Var [wk+1] = r2 Var [τk+1] + u2
k Var

[
X̃τk+1

]
. (7.14)

The second term in 7.14 presents no particular difficulties, indeed we have

Var
[
X̃τk+1

]
= 4J2p(1 − p), where p is given in Lemma 7.1.1. More delicate

is the computation of the first term. This means calculating E[τ 2
k+1] and

E[τk+1]. In the following, we will give the detailed derivation of the first
expectation, the second follows the same logic.

Using the well-known formula for the expectation of positive random
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variables together with the cdf (7.5), we obtain

E[τ 2
k+1] =

∫ ∞
0

P
(
τ 2
k+1 > t

)
dt =

∫ ∞
0

P
(
τk+1 >

√
t
)
dt

= 2 cosh
( µ̃J
σ2

)∫ ∞
0

K∞√
t
(J)dt

= 2 cosh
( µ̃J
σ2

)σ2π

4J2

∞∑
n=1

n(−1)n+1

α(n)
sin(

π

2
n)

∫ ∞
0

exp
{
− α(n)

√
t
}

dt︸ ︷︷ ︸
2/α(n)2

= 2 cosh
( µ̃J
σ2

)σ2π

4J2

∞∑
n=1

2n(−1)n+1

α(n)3
sin(

π

2
n)

where we defined α(n) = µ̃2

2σ2 + σ2n2π2

8J2 . The expected interevent time is equal
to

E[τk+1] = 2 cosh
( µ̃J
σ2

)σ2π

4J2

∞∑
n=1

n(−1)n+1

α(n)2
sin(

π

2
n).

The risk constraint (7.14) is now fully characterized, and therefore it can be
used in the event-driven ODAA algorithm to control the risky asset exposure.
As a matter of fact, in order to implement it, we still need to address the issue

related to the truncation of series
∑∞

n=1
n(−1)n+1

α(n)m
sin(π

2
n), wherem = 2, 3. The

minimum number of terms N required to obtained a residual smaller than ε
could be derived as follows∣∣∣∣ ∞∑

n=N+1

n(−1)n+1

α(n)m
sin(

π

2
n)

∣∣∣∣ ≤ ∞∑
n=N+1

n

α(n)m

≤
∫ ∞
N

n(
σ2n2π2

8J2

)mdn

=
( 8J2

σ2π2

)m 1

(2m− 2)
N−(2m−2) ≤ ε

which brings

N ≥
{( 8J2

σ2π2

)m 1

(2m− 2)ε

} 1
2m−2

. (7.15)

The allocation maps obtained by adding the V@R constraint do not let
the risky exposure exceed 68.41%. In figure 7.2 we report some sample statis-
tics obtained by running a Monte Carlo simulation with 2× 106 replications
at each reallocation and the same investment parameters of the previous case.
The ex-ante monthly V@R specification has been set to 7%.
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Statistics value

p? 0.7865

pMC 0.7866

Mean Return (ann) 5.12%

Volatility (ann) 3.18%

Median Return (ann) 5.63%

Skewness -1.62

Kurtosis 7.70

Sharpe Ratio 1.294

Avg horizon [years] 3.70

yearly V@R0.99
0.01 6.10%

Table 7.2: Investment performance obtained via Monte-Carlo simulation with
2 × 106 replication at each rebalancing time and the addition of the V@R
constraint.
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7.2 Interest rate dynamics for the risk-free

asset

In this section we try to extend the model presented in Chapter 6 by assuming
a dynamics for the bank account interest rate. Starting from the portfolio
dynamics (6.10), our aim is replacing it with

xk+1 = xk

(
exp

{∫ tk+τk+1

tk

rsds
}

+ ukJÑk+1

)
k ∈ N (7.16)

where {rt}t≥tk is the short-rate process and everything else remains un-
changed from Chapter 6. Due to its analytical tractability, we decided to
model the short-rate according to the Vasicek Model (see [8]). The following
SDE provides the dynamics of the short-rate{

drt = a(b− rt)dt+ σdWt

rtk = rk, t ≥ tk
(7.17)

where a, b, σ and rk are positive constants and {Wt}t≥tk is a unidimensional
Brownian motion. The main feature of the Vasicek model is the mean re-
version property: the process will tend to move to its average over time.
Moreover, the process has a non-null probability of becoming negative. This
is no longer a taboo since negative interest rates are observed in the market.

The solution of SDE (7.17) is the following Ornstein–Uhlenbeck process

rt = rke
−a(t−tk) + b(1− e−a(t−tk)) + σe−a(t−tk)

∫ t

tk

ea(s−tk)dWs. (7.18)

However, we are interested in an explicit expression of the integral of process
rt since it appears in the portfolio dynamics (7.16). Therefore, let us define
the integrated short-rate process by vt =

∫ t
tk
rsds. In order to find its explicit

form, we integrate (7.17) from tk to a generic instant t, obtaining

rt = rk + a
(
b(t− tk)− vt

)
+ σ(Wt −Wtk). (7.19)

After equating (7.19) and (7.18) and solving for vt we get

vt =
1

a

[
(rk − b)(1− e−a(t−tk)) + ab(t− tk) + σ

∫ t

tk

(1− e−a(t−s))dWs

]
. (7.20)
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From Appendix B and (Proposition 7.1, [4]) we have that

vt ∼ N
(
η(t− tk), ζ2(t− tk)

)
η(t− tk) = E[vt] =

1

a

[
(rk − b)

(
1− e−a(t−tk)

)
+ ab(t− tk)

]
(7.21)

ζ2(t− tk) = Var [vt] =
σ2

2a3

[
2a(t− tk) + 4e−a(t−tk) − e−2a(t−tk) − 3

]
(7.22)

where t ∈ R+.

Remark 7.2.1: The parameters η(t− tk) and ζ(t− tk) depends only on the
difference t− tk, therefore the distribution of vt is stationary. This fact will
be particularly useful in the following since the distribution of vtk+t (which
is the one we are interested in) depends only on t.

7.2.1 The density of xk+1

The last step is finding the probability density function of the random vari-
able xk+1.

Proposition 7.2.1: Let xk+1 be the random variable (7.16). Then, its
probability density function is

fxk+1
(z) =

p

(z − ξ)

{∫ ∞
0

ϕ
( log

(
z−ξ
x

)
− η(t)

ζ(t)

)( 1

ζ(t)

)
fτk+1

(t)dt

}
1[x+ξ,∞)+

+
(1− p)
(z + ξ)

{∫ ∞
0

ϕ
( log

(
z+ξ
x

)
− η(t)

ζ(t)

)( 1

ζ(t)

)
fτk+1

(t)dt

}
1[x−ξ,∞)

where ξ = xJuk, fτk+1
=
{
λe−λt

}
1[0,∞) is the density of random variable

τk+1, ϕ is the density of a standard normal and η(t), ζ(t) are function (7.21)
and the square root of (7.22) respectively, computed in t+ tk.

Proof. Let us rewrite the portfolio dynamics in the following way

xk+1 = x exp{vtk+τk+1
}+ xJukÑk+1 = Y + ξÑk+1.
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The first step of the proof is finding the cdf of Y:

FY (y) = P
(
x exp{vtk+τk+1

} ≤ y
)

=

∫ ∞
0

P
(
vtk+τk+1

≤ log(y/x)
∣∣τk+1 = t

)
fτk+1

(t)dt

=

∫ ∞
0

P
(
vtk+t ≤ log(y/x)

)
fτk+1

(t)dt

=

{∫ ∞
0

Φ
( log(y/x)− η(t)

ζ(t)

)
fτk+1

(t)dt

}
1[x,∞)

where we used the Law of Total Probability in the continuous case and the
fact that vtk+t is Gaussian with parameters η(t) and ζ(t) (which are the
functions (7.21) and the square root of (7.22) respectively, computed in t+tk).
Φ is the cdf of a standard normal.

Repeating the usual steps, we are able to find the cdf of xk+1:

Fxk+1
(z) = P

(
Y + ξÑk+1 ≤ z

)
= FY (z − ξ)p+ FY (z + ξ)(1− p)

= p

{∫ ∞
0

Φ
( log

(
z−ξ
x

)
− η(t)

ζ(t)

)
fτk+1

(t)dt

}
1[x+ξ,∞)+

+ (1− p)
{∫ ∞

0

Φ
( log

(
z+ξ
x

)
− η(t)

ζ(t)

)
fτk+1

(t)dt

}
1[x−ξ,∞).

where p is the probability that Ñk+1 is equal to 1. Finally, deriving with
respect to z under the integral sign gives us the result.

7.2.2 The calibration of the Vasicek model

In this section we see how parameters a, b and σ of the Vasicek model can
be calibrated to data using the linear regression method. We closely follow
[5].

The first step is to discretize Equation (7.17) in order to find a linear
relation between the short-rate process rt at time instants t and t+ ∆t:

rt+∆t = rt + a(b− rt)∆t+ σ
√

∆tZ

= (1− a∆t)rt + ab∆t+ σ
√

∆tZ (7.23)

where Z ∼ N (0, 1). From (7.23) is clear the linear relation between rt+∆t

and rt. Therefore, the above equation can be rewritten in a fashion suitable
for the linear regression estimation as follows

rt+∆t = αrt + β + ε
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Figure 7.3: Linear relation between consecutive daily 3-month LIBOR rate
quotes.

where {
α = 1− a∆t

β = ab∆t

and ε ∼ N (0, σ2∆t) is the error term. Let us suppose to have a random sam-
ple {r1, . . . , rn}, for example daily 3-month LIBOR quotes. The independent
variable and the response are

y =

r2
...
rn

 x =

 r1
...

rn−1

 .
The linear relation between y and x is reported in Figure (7.3).

Once the least square estimates α̂ and β̂ have been found, we can recover
the estimates of the Vasicek model parameters in the following way

â = 1
∆t

(1− α̂)

b̂ = β̂/(â∆t)

σ̂ = RSE√
∆t

where RSE is the residual standard error of the fitting.
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Applying this method to daily (∆t = 1/252) quotes of 3-month LIBOR
starting from 22 January 2010 to 25 April 2016 brings the following estimates

â = 0.1670

b̂ = 0.0280

σ̂ = 0.0160.
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Chapter 8

Conclusions

In this final chapter we summarize what has been achieved in this thesis and
then suggest some directions for future research.

8.1 The thesis in a nutshell

Recent results in Stochastic Reachability have been the basis for this thesis.
These results (e.g. the ODAA theorem) allowed us to cast the asset alloca-
tion problem in a Control System setting. The generality of this approach
permitted portfolio rebalancings to be driven first by time and then by the
occurrence of discrete events. In the time-driven case, a universe of three as-
set classes (Cash, Bond and Equity) was considered and the allocation maps
for a 2-year investment were obtained. These maps exhibited a contrarian
attitude: the higher the portfolio performance the less risky the asset class
mix, the lower the performance the riskier the mix. In the 2-year investment
example, the ODAA strategy outperformed both the CPPI and the constant-
mix in terms of annualized returns while showing a comparable risk profile.
In the event-driven case, the portfolio consisted of a risk-free asset (a bank
account) and a risky asset (an exposure to a future index). In this context,
the risky asset allocation maps, obtained via ODAA algorithm, showed a
contrarian behavior in the sense that when portfolio performance is up the
risky asset is shorted, when it is down a long position is taken instead.

As far as the time-driven model is concerned, a small contribution to
the literature has been the use of Generalized Hyperbolic distributions, as
an alternative to the Gaussian Mixture model proposed in [28], to describe
the statistical properties of asset class returns. The personal contribution to
the event-driven literature has been the extension of the model introduced
in [29] in two innovative ways. In particular, first the risky asset has been
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modeled as a Geometric Brownian Motion, then an interest rate dynamics
as been considered for the bank account. In the first case, the usual contrar-
ian allocation maps for the risky asset were obtained. In the second case,
the complexity of the formulas made the implementation quite difficult. In
particular,

8.2 Further developments

The first idea could be casting the asset allocation problem in a stochastic
hybrid system setting. A stochastic hybrid system is a control system whose
evolution has a continuous and a discrete component. For instance, the
problem of maintaining the temperature of r ∈ N different rooms within a
certain range over time could be modeled as a stochastic hybrid system. The
discrete state space being the mode (ON or OFF) of the heater switches and
the continuous state space the room temperatures. In an asset allocation
problem, the discrete state space could be the states of the economy. Main
references are [3] for the discrete-time case and [10] for the continuous-time
case.
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Appendix A

Probability Distributions

In this appendix we give further details about the probability distributions
used in part I. Main references are [7], [22] and [21].

A.1 Generalized Inverse Gaussian

Definition A.1.1 (Bessel function): The modified Bessel function of the
third kind (simply called Bessel function) is defined as

Kν(x) =
1

2

∫ ∞
0

tν−1 exp
{
− 1

2
x(t+ t−1)

}
dt, x > 0.

Definition A.1.2 (Generalized Inverse Gaussian): the density of a Gen-
eralized Inverse Gaussian (GIG) random variable W (W ∼ N−

(
λ, χ, ψ

)
)

is

fGIG(w) =
(ψ
χ

)λ
2 wλ−1

2Kλ(
√
χψ)

exp
{
− 1

2

(χ
w

+ ψw
))}

(A.1)

with parameters satisfying
χ > 0, ψ ≥ 0, if λ < 0

χ > 0, ψ > 0, if λ = 0

χ ≥ 0, ψ > 0, if λ > 0

Useful formulas The following formulas are used in the text:

E[W n] =
(χ
ψ

)n
2 Kλ+n(

√
χψ)

Kλ(
√
χψ)

(A.2)

E[logW ] =
{dE[Xα]

dα

}
α=0

(A.3)
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A.2 Density Functions

We give here the probability density function for the general multivariate GH
distribution and same special cases

A.2.1 GH

f(x) = c
Kλ−m

2

(√(
χ+Q(x)

)(
ψ + γTΣ−1γ

))
exp

{
(x− µ)TΣ−1γ

}
(√(

χ+Q(x)
)(
ψ + γTΣ−1γ

))m2 −λ
(A.4)

where Q(x) = (x− µ)TΣ−1(x− µ) and

c =

(√
χψ
)−λ

ψλ
(
ψ + γTΣ−1γ

)m
2
−λ

(2π)
m
2 |Σ| 12Kλ(

√
χψ)

A.2.2 Student-t

Setting the degree of freedom ν = −2λ the density reads

f(x) = c
K ν+m

2

(√(
ν − 2 +Q(x)

)(
γTΣ−1γ

))
exp

{
(x− µ)TΣ−1γ

}
(√(

ν − 2 +Q(x)
)(
γTΣ−1γ

)) ν+m
2

(A.5)

where

c =

(
ν − 2

) ν
2
(
γTΣ−1γ

) ν+m
2

(2π)
m
2 |Σ| 12 Γ(ν

2
)2

ν
2
−1

A.2.3 VG

f(x) = c
Kλ−m

2

(√
Q(x)

(
2λ+ γTΣ−1γ

))
exp

{
(x− µ)TΣ−1γ

}
(√

Q(x)
(
2λ+ γTΣ−1γ

))m2 −λ (A.6)

where

c =
2λλ
(
2λ+ γTΣ−1γ

)m
2
−λ

(2π)
m
2 |Σ| 12 Γ(λ)
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Appendix B

Mean and Variance of an
Integrated Ornstein–Uhlenbeck
process

In this appendix we compute E[vt] and Var [vt] where vt is the random variable
(7.20).

The mean Given that the mean of a stochastic integral in 0 (see [4]), the
mean function is simply

E[vt] =
1

a

[
(rk − b)

(
1− e−a(t−tk)

)
+ ab(t− tk)

]
. (B.1)

The variance

Var [vt] = Var

[
σ

a

∫ t

tk

(1− e−a(t−s))dWs

]
=
(σ
a

)2

E
[(
Wt −Wtk − e−at

∫ t

tk

easdWs

)2]
=
(σ
a

)2
[
(t− tk) + e−2atE

[( ∫ t

tk

easdWs

)2
]
− 2e−atE

[ ∫ t

tk

dWs

∫ t

tk

easdWs

]]
=
(σ
a

)2
[
(t− tk) + e−2at

∫ t

tk

e2asds− 2e−at
∫ t

tk

easds

]
=
(σ
a

)2
[
(t− tk) +

1

2a
(1− e−2a(t−tk))− 2

a
(1− e−a(t−tk))

]
=

σ2

2a3

[
2a(t− tk)− e−2a(t−tk) + 4e−a(t−tk) − 3

]
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where in the fourth equality we used Ito’s lemma ([4],Theorem 7.1) and ([4],
Remark 7.1)
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