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Sommario

Monte Carlo Tree Search (MCTS) è uno degli algoritmi più uti-

lizzati nel campo dell’intelligenza artificiale applicata ai giochi da

tavolo e ai giochi di carte. Lo scopo di questa tesi è di valutare le

prestazioni dell’algoritmo MCTS applicato al puzzle game Sokoban,

confrontandolo con un altro algoritmo ben noto, Iterative Deepen-

ing A*, che ha dimostrato di avere un discreto successo in questo

puzzle game. In questa tesi applichiamo MCTS e IDA* a Sokoban

e Samegame, un altro puzzle game. Sviluppiamo anche una serie

di ottimizzazioni conosciute per MCTS e IDA* e ne presentiamo

alcune nuove. Infine, valutiamo gli effetti delle ottimizzazioni su

entrambi i domini. I nostri risultati mostrano che in Samegame

la formula UCB1-Tuned ottiene prestazioni migliori rispetto a SP-

MCTS, una versione single player di MCTS che ha ottenuto buoni

risultati in quel dominio in passato. In Sokoban, la migliore configu-

razione del MCTS usa l’UCT standard con l’aggiunta delle ottimiz-

zazioni proposte denominate Node Elimination e Cycles Avoidance,

che portano ad un drastico aumento del numero di livelli risolti

dall’algoritmo MCTS in Sokoban. Nonostante ciò, anche con una

serie di miglioramenti che possono essere trovati in letteratura, che

sono stati ampiamente utilizzati e hanno raggiunto risultati di suc-

cesso, l’algoritmo MCTS non ha potuto eguagliare le prestazioni

di IDA* in termini di numero di livelli risolti. Per questo motivo

IDA* rimane ancora il miglior algoritmo per Sokoban.





Abstract

Monte Carlo Tree Search (MCTS) is one of the most used algo-

rithm in the field of Artificial Intelligence applied to board and

card games. The aim of this thesis is to evaluate the performance

of MCTS algorithm applied to the puzzle game Sokoban, comparing

it to another well known algorithm, Iterative Deepening A*, which

has been proven to be quite successful in this puzzle game. In

this thesis we apply MCTS and IDA* to Sokoban and Samegame,

another puzzle game. We also develop a series of known optimiza-

tions to MCTS and IDA* and present some new ones. Finally, we

evaluate the effects of the optimizations on both domains. Our re-

sults show that in Samegame the UCB1-Tuned formula performs

better than SP-MCTS, a single player version of MCTS that ob-

tained good results in that domain in the past. In Sokoban, the

best MCTS configuration uses the standard UCT with the addi-

tion of the proposed optimizations called Node Elimination and

Cycles Avoidance, which lead to a drastic increase in the number

of levels solved. Despite this, even with a set of enhancements that

can be found in the literature, which have been widely used and

have achieved successful results, the MCTS algorithm could not

match IDA* performance in terms of number of solved levels. For

this reason IDA* still remains the best algorithm for Sokoban.
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Chapter 1

Introduction

This thesis focuses on the application of Artificial Intelligence (AI)

to puzzle games. This field was born in the ’50s and the first AI

algorithms, developed for two-players-board games (like Checkers

and Chess), were able to play only final moves of the game or they

could only play at beginners level. In the following years, these

programs could compete against human-expert players due to more

advanced techniques that have been developed. In some cases, it

has been possible to solve a game, i.e. predict the result of a game

played from a certain state in which all the players did the optimal

moves.

The aim of this thesis is to evaluate the performance of Monte

Carlo Tree Search (MCTS) applied to the puzzle game Sokoban, a

single-player computer game in which the player inside a maze has

to push boxes to assigned positions. Only one box at a time can be

pushed and the boxes can not be pulled.

MCTS has been introduced in 2006 by Rèmi Coulom [1], com-

bining tree search with Monte-Carlo evaluations which introduced

independence from domain knowledge and a fine-grained control of

the growth of the tree. Shortly after, Kocsis and Szepesvàri [2] for-

malized this approach into the Upper Confidence Bounds for Trees

(UCT) algorithm, which nowadays is the most used algorithm of

the MCTS family. In contrast with the classical AI algorithms (like

Minimax), that completely explore the search tree, MCTS builds

up a tree in an incremental and asymmetric manner guided by
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many random simulated games. In this way it can explore only

the most promising areas of the tree. Moreover, the exploration

can be stopped at any time returning the current best result, this

make MCTS very efficient in terms of time and memory. Kocsis

and Szepesvàri were also able to prove that, with enough iterations

of the algorithm, MCTS converges to the same result of Minimax.

Due to the successful application of MCTS algorithm to many board

games, in this thesis we evaluate its efficiency in Sokoban comparing

it to another well known algorithm, Iterative Deepening A*, which

has been proven to have a huge success in this puzzle game [3].

1.1 Thesis outline

The structure of the thesis is describe in the following:

• Chapter 2 provides a background of Sokoban, outlining its

rules and complexity. It also provides a description of the

used algorithm Iterative Deepening A* and its enhancements

for the chosen puzzle.

• Chapter 3 reports the state of art of the Monte Carlo Tree

Search (MCTS) algorithm, a description of it and enhance-

ments that have been developed. It also describes a case

study, represented by Samegame, in with MCTS has been

successfully used.

• Chapter 4 presents our solution to the puzzle solving problem,

describing the domain dependent/independent enhancements

used to improve performance.

• Chapter 5 outlines all the experiments used in this thesis in

order to compare the efficiency of the different algorithms in

the different domains. Then compares the results obtained

by the algorithms in the proposed experiments in order to

determine which algorithm has better performance in each

domain.

2



• Chapter 6 presents an analysis of the results with respect to

the aim of the thesis and also set out possible further im-

provements that can be integrated in this work.
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Chapter 2

Puzzles and AI

In this chapter we provide a background of Sokoban, describing the

game rules and its complexity. We then give a short introduction

of the classic algorithm Iterative Deepening A* and some of its

enhancement which have been used in the selected game and that

can be found in literature.

Puzzles have been popular since the dawn of mankind, and are

known for stimulating brain activity and mental welfare as well as

simply being fun. A puzzle is a pastime that consists of a problem

or a riddle that tests the ingenuity of those who are called to solve

it. There are many types of puzzles that can test different problem-

solving skills including logic, pattern recognition, sequence solving,

and word completion. The various types of solutions may require

structuring a form or creating a certain order. The term puzzle

usually refers to single-player games which are enjoyable to play.

By definition a puzzle should have a solution which is aesthetically

pleasing and gives the user satisfaction in reaching it [4].

In the last decades puzzles have become a more interesting field in

computer science due to the fact that finding solutions for them, of-

ten requires the recognition of patterns. This makes puzzles suitable

to be solved using artificial intelligence agents. A lot of different

approaches have been used trying to find a solution to the puzzle

solving problem and it has been discovered that specific artificial

intelligence methods can work better in some domains rather than

in others.
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A large amount of different puzzles and artificial intelligence ap-

plied to them can be found in literature, and one of the most used

algorithm is Iterative Deepening A*. This algorithm has been em-

ployed to solve different puzzle games such as n-Puzzle and Sokoban

obtaining good results [4].

2.1 Sokoban

Sokoban is a single-player computer game created by Hiroyuki Imabayashi

in 1981 and published in December 1982 by Thinking Rabbit, a

software house based in Takarazuka, Japan (the japanese name

”Sokoban” can be translated as ”warehouse keeper”). A level in

Sokoban, as shown in Figure 2.1, consists of a series of rooms and

passageways on a grid, in which are scattered a series of boxes (also

called stones) and goals (the dashed area). The number of boxes

must match the number of goals.

Figure 2.1: Example of a Sokoban level [3]

2.1.1 Rules

The goal of the game is to move every box on a goal square. The

player controls a character (which we will refer to as the pusher)

that can move around the level orthogonally on empty squares and

goal squares. It cannot cross boxes or walls. If the player tries

to move on a square occupied by a box, the box is pushed by one
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square in the direction of the movement, provided that the target

square is either empty or an unoccupied goal. The boxes cannot be

pulled, so some moves can be irreversible.

Once every box is on a goal square, the level is solved. In addition to

solving the level, the player can also try to find an optimal solution.

In Sokoban, the optimality of the solution is usually measured by

minimizing one of two metrics:

• The total number of pushes, i.e. moves which cause the box

to change its position;

• The total number of moves, whether they are simple pusher

movements or actual box pushes.

The canonical metric used is the number of pushes. An optimal

solution for a sokoban level can range from a minimum of one push

and one move (see level 44 of the Microban set [5]) to hundreds of

pushes and thousands of moves. Sokoban uses a standard format

for level files and many level sets have been created by users and

enthusiasts1.

One aspect that differentiates it from most puzzles studied in the

literature is that an irreversible move can lead to a state that we

call deadlock, from which no solution can be found. There are two

main types of deadlock:

• A simple deadlock happens when a box is moved on a square

from which it cannot reach any goal, regardless of the position

of other boxes.

• A freeze deadlock happens when a box is moved on a non

goal square and becomes immovable. That is, when it can’t

be pushed again. This often includes other boxes that become

immovable in turn.

Simple deadlocks only depend on the position of a single box, so

they can be computed once per level and are fairly easy to identify.

Freeze deadlocks instead require interaction between multiple boxes

1Most level sets can be found at http://www.sourcecode.se/sokoban/levels
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so they must be dealt with at run time. Anyhow, the game is not

equipped with deadlock detection mechanisms, so the player can

actually continue to play and interact with other boxes despite the

deadlock situation.

In addition to the two main deadlock types, there are other situa-

tions that will eventually lead to one of the mentioned deadlocks,

but might be recognized earlier. Corral deadlocks are defined as a

situation in which a portion of the board can’t be reached by the

player because its access is blocked by boxes and there’s no way to

get all of those boxes to a goal square. Bipartite deadlocks happen

when all boxes could still reach a goal, but there’s an overlap on

the goals they can reach, meaning that not all goals can be occu-

pied at the same time. In order to solve a Sokoban problem, an

algorithm (as well as a human player) must be able to recognize

these situations early to prune them and reduce the search space.

A few examples of deadlocks are represented in Figure 2.2.

Figure 2.2: Deadlock examples: upper-left: Corral deadlock; upper-right:

Corral deadlock; lower-left: Freeze deadlock; lower-right: Simple deadlock

[3]

2.1.2 Complexity

Assuming that our goal is to minimize the number of pushes, we

can analyze the game by considering only push moves on boxes
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that are reachable from the player current position. Considering

that in the standard set the number of boxes ranges from 6 to 34

and that we can have up to 4 moves per box, the branching factor

can potentially reach a maximum of 136. Of course part of the

complexity of Sokoban relies on the constraints that come from

the risk of creating deadlocks, so in most of the levels the boxes

are densely packed, meaning that the number of available moves is

considerably lower. Level 1 (Figure 2.1), with only 6 boxes is one of

the easiest levels. We can compute an average branching factor b of

3.07, and with a solution length d of 97, the game-tree complexity

becomes approximately 1047. Suppose that we have a similar boxes-

to-moves ratio for all levels, with an average number of boxes of 16

and an average solution length of 284.8, we can roughly estimate

the average game-tree complexity as 10260. Since the game rules

don’t contemplate a limit in the number of moves, and the pusher

can retrace its steps, the game length can be considered potentially

unlimited. Therefore, to solve a Sokoban puzzle, one should avoid

cycles during the search. Junghanns et al. [3] computed the upper

bound for the state-space complexity of Sokoban on a 20×20 board

with walls on the perimeter, as
(
s
b

)
m where s is the total number of

squares, b is the maximum number of boxes and m is the number

of possible pusher positions. This yields a result of 1098. With

an average number of squares of 77 (excluding squares that would

cause simple deadlocks) and an average number of boxes of 16,

the average state-space complexity of the standard levels suite is

approximately 1018. Sokoban has also been shown to be NP-hard

and P-space complete [6] and is considered challenging for both

humans and programs.

2.2 Iterative Deepening A*

Iterative Deepening A* is one of the most successful methods for

puzzle solving that can be found in the literature and it is based

on a classical planning approach.
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2.2.1 Overview

Iterative Deepening A* (IDA*) is a variant of Iterative Deepening

Depth-First Search (IDDFS) that relies on heuristic evaluation to

determine the threshold for the cut point of the current iteration.

It was described by Richard Korf in 1985 [7]. IDDFS is an unin-

formed search method in which a depth limited depth-first search

is repeatedly executed with increasing depth limit until a solution

is found. At each iteration a full depth-first search is performed

until either a solution is found or the entire search tree has been

explored up to the depth limit d. If no solution has been found, d

is increased and the search is repeated.

The method inherits the low memory complexity of depth first

search, while retaining completeness even in presence of unlim-

ited trees. Optimality is preserved if all actions have constant

cost.Similarly to IDDFS, IDA* proceeds in a depth-first manner

with a depth bound, and once the whole tree for that bound has

been explored, the search restarts with an increased bound. Unlike

IDDFS, the threshold is not defined in terms of tree depth, but of

heuristic evaluation. The method used to determine if the search

can continue is based on A* evaluation. A* is an informed search

algorithm first proposed in 1968 by Hart et al. [8] as an improve-

ment over Dijkstra’s algorithm for finding the minimum cost path

in a weighted graph. At each iteration it explores the node that

minimizes

f(n) = g(n) + h(n) (2.1)

where g(n) is the cost of reaching node n from the initial node and

h(n) is a heuristic estimate of the cost from node n to the goal.

In IDA* as in A*, in order to guarantee the optimality of the solu-

tion, the evaluation function hmust satisfy the following conditions:

• Admissibility: h(n) < h∗(n) with h∗(n) being the perfect

heuristic (the actual cost from n to the goal in the optimal

solution.

• Consistency: h(n) ≤ g(n′) + h(n′) − g(n) where n′ is a suc-

cessor of n.
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If these condition are satisfied, and a solution is found, that solution

is guaranteed to be optimal [8].

2.2.2 The Algorithm

IDA* initializes the search threshold as the heuristic value of the

initial state h(n0). It then proceeds in a depth-first exploration until

either the value f(n) = g(n) + h(n) exceeds the threshold or there

are no more successors. When one of these condition is satisfied,

the search returns to the parent node and expands the siblings

of the last explored node, exactly like in IDDFS. This produces an

asymmetric search tree that grows guided by the heuristic function.

The main advantage of this approach with respect to classic A*

algorithm is that it runs in space that is linear in the maximum

search depth, rather than exponential. Pseudocode for IDA* is

showed in Algorithm 1.

2.2.3 State of the art

IDA* has reached good results in Sokoban [3] and in the 15-Puzzle

(and derivatives) [9]. In the context of Sokoban, the only doc-

umented method that can be considered state of the art is the

program Rolling Stone [3]. It implements domain independent en-

hancements [10] to prune the search tree and domain specific en-

hancements that make use of lower level searches to avoid deadlocks,

obtain a tighter lower bound and reduce the search space.

Transposition Tables

Transposition tables consists of data structures used to store in-

formation about visited states and are used to avoid cycles during

the search and to reduce the branching factor. In Rolling Stone the

heuristic evaluation of nodes is stored in the transposition table and

updated according to the result of previous iterations. This allows

the algorithm to improve the heuristic values and prune sub-trees

more efficiently.
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Algorithm 1 IDA*

function IDA*(s0)

create root node n0 with state s0
create solution path with n0

threshold← h(n0)

while result not found do

value← Search(path, 0, threshold)

if value = RESULT then return path

if value =∞ then return failure

threshold← value

function Search(path, g, threshold)

n← Last(path)

f ← g + h(n)

if f > threshold then return f

if IsGoal(n) then return RESULT

min←∞
successors← GenerateSuccessors(n)

for all child in successors do

Push(path, child)

cost← ActionCost(child, n)

t← Search(path, g + cost, threshold)

if t = RESULT then return RESULT

min←MIN(min, t)

Pop(path)
return min

12



Move Ordering

Children of a node are ordered based on the likelihood of leading to

a solution. The move ordering scheme proposed was the following:

1. Inertia moves are considered first. Inertia moves are those

moves that preserve inertia, meaning that they act on the

same stone as the previous move.

2. Then all moves that decrease the lower bound are tried (op-

timal moves), sorted by distance from the stone to its target

goal.

3. Finally, all non-optimal moves are tried, also sorted by dis-

tance to target goals.

Deadlock Tables

Deadlock tables make use of pattern database [11] to match the

current situation to precomputed tables of possible deadlock con-

figurations. The tables are computed offline with all possible com-

binations of walls, stones and empty squares for a fixed-size region.

The deadlock tables are implemented as decision trees, with inter-

nal nodes representing subpatterns and leaves representing whether

the pattern is a deadlock or not. Junghanns et al. [3] built two ta-

bles for regions of roughly 5x4 squares, that differed in the order

the squares in the maze are queried.

Tunnel Macros

A tunnel is defined as a part of the maze where the maneuverability

of the pusher is restricted to a width of one. These regions can-

not have more than one box inside, otherwise they would cause a

deadlock. In order to reduce the branching factor, we can collapse

all pushes of a box inside a tunnel in a single move that makes the

box exit that tunnel.

Goal Macros

When the levels have all goal squares concentrated in a small area, if

there are few entrances to this area, the problem can be decomposed
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in two sub-problems:

• moving boxes to the entrances

• placing boxes on goals

In some cases these two parts can be solved separately. With Goal

Macros, the order in which goal squares must be filled to avoid

deadlocks is precomputed, and when a box reaches an entrance the

only move it can perform is the Goal Macro, that pushes it directly

into its assigned goal.

Goal Cuts

The move pruning of Goal Macros is backpropagated to previous

states when a stone is pushed to a square with a Goal Macro at the

end without interleaving other stone pushes.

Pattern Search

Pattern search uses sub-problem searches to improve the lower

bound and to identify deadlock patterns. It consists of repeated

IDA* searches with patterns of more and more boxes. When a dead-

lock pattern is found, it’s saved and used throughout the search in

addition to those in the deadlock tables. The basic algorithm per-

forms the following steps:

1. Create a test maze with the same walls and goals configura-

tion but containing only the last moved box.

2. Try to find a solution to the test maze.

3. If no solution is found, the pattern is a deadlock. Return

pattern.

4. If a solution is found, add a box that is on a square that is

needed for the solution. A square is needed for the solution if

either the box or the man had to go through it in the solution

found.

5. If search effort is not exhausted, repeat from 2.
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Therefore the pattern search can terminate if the effort is reached,

a deadlock was detected or no more stones can be added. In par-

ticular, three types of specialized search has been implemented:

• Deadlock Search: specialized in finding deadlocks, it ignores

states that are less likely to contain a deadlock to reduce the

cost and be able to include more boxes in the search.

• Penalty Search: specialized in finding conflicts between boxes,

is not allowed to take shortcuts, hence it might discover pat-

terns ignored by the deadlock search. It’s therefore more ex-

pensive and it evaluates less boxes with the same search effort.

• Area Search: specialized on finding deadlocks, it focuses on

areas that are not accessible to the man. It incrementally

includes all boxes that surround those areas, trying to find a

deadlock. This is similar in concept to the PI-Corral pruning

of the YASS solver [12].

Relevance Cuts

Relevance cuts is a forward pruning methods that removes moves

that are considered not relevant. A move is relevant only if the

previous m moves influence it. The influence metric is defined based

on the position of the boxes as follows:

• Alternatives: The more alternatives exist on a path between

two squares, the less the squares influence each other.

• Goal-Skew: for a given square sq, squares on the optimal path

from sq to its goal have a stronger influence than those off the

optimal path.

• Connection: Two adjacent squares between which a stone can

be moved freely influence each other more than two squares

between which only the man can move freely.

• Tunnel: Influence remains constant inside a tunnel.
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Overestimation

Overestimation is based on the idea that a good non admissible

heuristic might be closer to the optimal value than a poor admis-

sible heuristic. Given the complexity of the problem, non optimal

solution are acceptable. Overestimation allows every pattern found

during pattern search to increment the lower bound. This will

postpone ”difficult” situations, giving up optimality but preserving

completeness.
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Chapter 3

Monte Carlo Tree Search

In this chapter we present the second chosen algorithm Monte Carlo

Tree Search, giving a description of this algorithm and of its im-

provements which can be found in literature. We also present and

briefly describe rules and complexity of Samegame, a puzzle domain

where Monte Carlo Tree Search achieve good results.

Traditional artificial intelligence methods require a good heuris-

tic function to evaluate moves and could be unsuitable for those

domains in which defining an heuristic using expert knowledge is

particularly difficult. In these situations, Monte Carlo methods can

make up for the lack of a solid heuristic by obtaining an approxi-

mate evaluation of the game-theoretic value of a move, by relying

on the use of simulated playouts. The value of action a in state s

can be expressed as

Q(s, a) =
1

N(s, a)

N(s)∑
i=1

Ii(s, a)zi

Where Q(s, a) is the action-value function, N(s, a) is the number of

times action a has been selected from state s, N(s) is the number

of visits through state s, Ii(s, a) has value 1 if action a was selected

from s in the i− th playout and zi is the final reward of simulation

i. Essentially, the value of an action is computed as the average

reward obtained in the playouts in which that action was taken.

Monte Carlo evaluation was initially applied to tree search as an

alternative to ad-hoc evaluation functions to prune the search tree
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[13] [14]. These methods had the drawback of having no game-

theoretic guarantees on the optimality of the solution. Monte Carlo

evaluation was also applied to Markov Decision Processes with bet-

ter asymptotic properties [15] [16]. First visit Monte Carlo evalu-

ation for example, is an unbiased estimator for the action-value

function, meaning that given enough samples, it will converge to

the actual function.

The algorithm known as Monte Carlo Tree Search (MCTS) [1] was

first proposed as an alternative to min-max trees with Monte Carlo

evaluation and implemented in Crazy Stone, a Go-playing program

that won the 10th KGS computer-Go tournament. Over the years

it has been successfully used in two-player zero-sum games with

high branching factor like Go, Hex and Lines of Action [17].

The next major step in MCTS development was the proposal of

combining the Upper Confidence Bound (UCB1) algorithm of Multi-

Armed Bandit problems to MCTS. This created what we now know

as Upper Confidence Bounds for Trees (UCT) [2]. The UCB1 for-

mula is used to balance exploration and exploitation during the tree

search. Then, once reached a leaf node, a simulation is executed

and the result is backpropagated to the root. UCT is now the most

used among the Monte Carlo methods.

3.1 State of the art

Most of the research on MCTS has been carried out in the context

of the game Go, an high branching factor two-players zero-sum

game with no reliable heuristics for non-terminal positions. In 2016

Silver et al. [18] proposed a method that combined MCTS with

convolutional neural networks and their program AlphaGo was able

to defeat 18-times human world champion Lee Sedol 4-1. They

continued their research and while AlphaGo used expert knowledge

to train the neural networks, their AlphaGo Zero [19] program was

developed with no supervised learning, and was able to beat the

original Alpha Go 100-0.

Another board game in which MCTS has been successfully used

is Hex that, unlike Go, has a robust evaluation function for the
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intermediate states; that is the reason why is possible to create

good artificial intelligence using alpha-beta pruning techniques [20].

In 2007, Arneson et al. [20] developed a program based on Monte

Carlo Tree Search, able to play the board game Hex. The program,

called MoHex, was able to win the silver and the gold medals at

Computer Olympiads in 2008 and 2009 respectively, showing that

it is able to compete with the artificial intelligence based on alpha-

beta pruning.

In the context of puzzle games, the research in MCTS methods

is less developed and relatively recent. In the Samegame puzzle

(Section 3.6.1) the top score in a 20 levels set [21] is currently

held by tcooke with an undocumented method while the best score

among documented algorithms was obtained by Edelkamp et al.

with their Heuristically Guided Swarm Tree Search [22] algorithm,

a parallelized version of MCTS. Great results were also obtained

by Schadd et al. [23] with a variant of the classic UCT algorithm

called Single-Player Monte Carlo Tree Search.

Another puzzle in which MCTS methods excel is the Morpion soli-

taire. The current top scores of 178 and 82 respectively on the

5-T and 5-D versions of Morpion are held by Rosin and his Nested

Rollout Policy Adaptation [24], an extension of Nested Monte Carlo

Search [25] in which the rollout policy is tuned adaptively starting

from a uniform policy.

Guez et al. [26] proposed a method that combined neural networks

and MCTS and trained it on the outcome of a MCTS algorithm on

a set of very simple Sokoban levels (10× 10 grid with a maximum

of 4 boxes). As a result, after the offline supervised training, their

method was able to reach the same performance as the baseline

MCTS method but with far fewer iterations. The paper publica-

tion was eventually rejected due to the fact that the trained NN

was considered to unlikely be able to generalize to other level con-

figurations, in addition to the fact that the complete application of

the method (offline and online phases) required far more resources

than the baseline MCTS.
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3.2 The Algorithm

The MCTS algorithm builds an asymmetric search tree based on

the results of Monte Carlo simulations. The tree growth is guided

by the estimates it provides. It’s an anytime algorithm, meaning

that it can be stopped at any point in its execution and it will

provide the best action for the root state so far. Its estimate values

for the action become more precise as the algorithm continues its

execution. The execution can be divided in four steps per iteration,

as shown in Figure 3.1:

1. Selection: starting from the root node, the algorithm re-

cursively selects a child node according to some policy that

should balance exploration and exploitation, until it reaches

a node that has not been fully expanded, meaning not all of

its moves lead to another node. The selection phase might

also end if it reaches a terminal state;

2. Expansion: According to the expansion policy, one or more

nodes - corresponding to the execution of the current node

unexplored actions - are created and added to the tree;

3. Rollout : a simulated game is played, starting from the newly

created node (the leaf node), until a terminal state. This

simulation is executed according to the default policy and it

produces a reward;

4. Backpropagation: the reward obtained during the rollout phase

is backpropagated through the tree, starting from the leaf

node, upwards towards the root node. Each node contains

the sum of the rewards of its children and the visit count (the

number of times the node has been visited during the search).

The algorithm repeats this four steps until the end condition is

met: this can be either a time constraint, a memory constraint

or a limit in terms of number of iterations. At this point, the

algorithm selects the best action for the root node according to a

chosen criteria. Schadd [28] describes four criteria for selecting the

winning action, based on the work of Chaslot et al. [27]:
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Figure 3.1: Steps of the Monte Carlo tree search algorithm [27]

• max child : selects the child with the highest reward;

• robust child : selects the most visited root child;

• max-robust child : select the root child with both the highest

visit count and the highest reward;

• secure child : select the child which maximizes a lower confi-

dence bound.

A MCTS algorithm is thus defined by the mentioned criterium,

and by the policies used during the search. In the four steps of the

algorithm we can identify four different policies:

• Selection policy : used to determine the way in which the tree

is explored in the selection phase;

• Expansion policy : used to determine which nodes are created

in the expansion phase (usually one or all);

• Simulation policy : used to determine the rollout behaviour.

The usual default policy is a random policy, in which moves

are sampled from a uniform distribution among those avail-

able in the current state, but often a policy handcrafted for

the specific domain can obtain better performance;

• Backpropagation policy : used to determine how the rewards

are propagated in the tree. In the classical version of the
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method the reward is added to the sum of the rewards of a

node and the number of visits is incremented.

A general MCTS approach is summarized in Algorithm 2. In this

algorithm v0 is the root node corresponding to state s0, vl is the last

node reached during the tree policy stage and corresponds to state

sl, and ∆ is the reward for the terminal state reached by running

the default policy from state sl. The result of the overall search

a(BESTCHILD(v0)) is the action a that leads to the best child of the

root node v0, where the exact definition of “best” is defined by the

implementation.

Algorithm 2 General MCTS approach

function MctsSearch(s0)

create root node v0 with state s0
while within computational budget do

vl ← TreePolicy(v0)

∆← DefaultPolicy(s(vl))

Backup(vl,∆)

return a(BestChild(v0))

3.3 Upper Confidence Bounds for Trees

Upper Confidence Bounds for Trees (UCT) is a version of the MCTS

algorithm that uses UCB1 as a tree policy. The selection of a

child node is therefore treated as a multiarmed bandit problem, in

which the rewards correspond to random variables with unknown

distributions. A child node i is thus selected to maximize

UCT =
vi
ni

+ C ×
√

2 lnnp
ni

(3.1)

where vi is the sum of the rewards obtained in all rollouts that have

passed through node i, ni is number of times the node i (child of

p) has been visited, np is number of times the current node has

been visited and C is a constant used to balance exploration and

exploitation. This formula is intrinsically balanced between the
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exploitation and exploration (represented respectively by the first

and second term) as the number of visits of a node ni increases (in-

evitably together with np), the second term decreases, while when

another child of the same parent node is visited, only np in the

numerator increases. The constant value can be adjusted to fa-

vor exploration or exploitation. The value of C = 1 was shown

to ensure the asymptotic optimality of the solution with rewards

the range [0,1] [29]. With rewards outside this range, appropriate

values of C could be found by manual tuning or other automated

method [30]. Algorithm 3 shows the UCT algorithm in pseudocode.

Each node v contains information about: the associated state s(v),

the outgoing action a(v), the total simulation reward Q(v) and

the visit count N (v). To have a more efficient usage of memory,

the associated state s(v) is recomputed as TREEPOLICY descends

the tree, instead of storing it for each node. The term ∆(v, p) in

function BACKUP indicates the component of the reward vector ∆

associated with the current player p at node v. The return value of

the overall search is given by a(BESTCHILD(v0)), that is the action

a associated to the child which has the highest reward, due to the

fact that the exploration parameter c is set to 0 for the final call of

this function on the root node v0.

3.4 Characteristics

MCTS is a popular choice of algorithm for a variety of domains due

to three main characteristics:

1. Analytic: MCTS does not require any domain-specific knowl-

edge, it is sufficient to know only its legal moves and end

conditions. This makes it applicable to any domain that can

be modeled using a tree. However, in its basic version, MCTS

can have low performance and some domain-specific knowl-

edge can be included in order to significantly improve the

speed of the algorithm;

2. Anytime: MCTS backpropagates the outcome at the end of

every iteration, so the whole tree is immediately updated with
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Algorithm 3 UCT Algorithm

function UctSearch(s0)

create root node v0 with state s0
while within computational budget do

vl ← TreePolicy(v0)

∆← DefaultPolicy(s(vl))

Backup(vl,∆)

return a(BestChild(v0, 0))

function TreePolicy(v)

while v is nonterminal do

if v not fully expanded then

return Expand(v)

else

v ← BestChild(v, Cp)

return v

function Expand(v)

choose a ∈ untried actions from A(s(v))

add a new child v’ to v

with s(v’ ) = f (s(v), a)

and a(v’ ) = a

return v’

function BestChild(v, c)

return argmax
v′∈ children of v

Q(v′)
N(v′)

+ c×
√

2 lnN(v)
N(v′)

function DefaulPolicy(s)

while s is non-terminal do

choose a ∈ A(s) uniformly at random

s← f(s, a)

return reward for state s

function Backup(v,∆)

while v is non null do

N(v)← N(v) + 1

Q(v)← Q(v) + ∆(v, p)

v ← parent of v
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the last calculated rewards and visits counts. This allows the

algorithm to stop and return the current best root action at

any moment in time. Allowing the algorithm to run for extra

iterations often improves the result;

3. Asymmetric: The tree policy allows the algorithm to use more

computational resources on the most promising nodes of the

tree, leading to an asymmetric growth of it over time. This

makes the tree adapt to the topology of the search space lead-

ing to a better understanding about the game itself and mak-

ing MCTS suitable for games with high branching factor.

3.5 MCTS Enhancements

A huge number of enhancements have been proposed for the core

MCTS algorithm in order to improve performance, including modi-

fications of the tree policy, the default policy and other more general

modifications related to the backpropagation step and paralleliza-

tion as described in Cameron et al. work [31]. These enhancements

can generally be divided into two categories: Domain independent

enhancements that do not require any prior knowledge about the

domain in order to be applied in it; Domain dependent enhance-

ments that are specific to particular domains. A more specific cat-

egorization can be done considering the used approach.

Bandit-Based Enhancements

This approach modifies the bandit-based method used for node se-

lection in the tree policy. For this kind of enhancements plenty of

different upper confidence bounds have been proposed, often im-

proving bounds or performances in particular circumstances.

Selection Enhancements

This approach modify the tree policy in order to change how MCTS

explores the search tree. The basic idea of selection is to assign a

numeric score to each action in order to balance exploration with

exploitation, so these enhancements influence this score using some
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domain knowledge in order to bias the search toward the most

promising area and make use of different kind of reward estima-

tion.

All Moves As First (AMAF)

This approach modifies how node statistics are updated. The basic

idea is to update statistics for all action that are selected during a

rollout as if they were the first action applied. The AMAF algo-

rithm treats all moves played during selection and rollout steps as

if they were played on a previous selection step, meaning that the

reward estimate for an action a from a state s is updated whenever

a occurs during a playout, even if a was not the actual move chosen

from s.

Game-Theoretic Enhancements

This approach uses the known game-theoretic value of a state to

improve reward estimates for other non-terminal nodes backpropa-

gating it up the tree.

Move Pruning

This approach applies the pruning technique, already used with

minimax, in order to eliminate obviously poor choices and allow

the search to focus more resources on the better ones.

Simulation Enhancements

This approach modifies the default simulation policy for MCTS

which select randomly among the available actions, trying to obtain

more realistic simulations by incorporating domain knowledge into

the playouts.

Backpropagation Enhancements

This approach modifies the backpropagation step involving special

node updates.
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Parallelization Enhancements

This approach exploit the independent nature of each simulation

in MCTS to introduce parallization. More simulations can be per-

formed in a given amount of time and the wide availability of mul-

ticore processors can be exploited. However, parallelization raises

issues such as the combination of results from different sources in

a single search tree, and the synchronization of threads of different

speeds over a network.

3.6 MCTS for puzzles

UCT was initially proposed for two-player games, therefore — as

in minimax and other adversarial search algorithms — some of

its characteristics were based on the assumption that there was

a second player with the goal of minimizing our reward. Schadd

et al. [23] presented a variant called Single-Player Monte-Carlo

Tree Search (SP-MCTS) in which they exploit some properties of

single-player games to increase the effectiveness of MCTS. The core

mechanism of SP-MCTS is the same as in UCT. One of the new

ideas introduced is a variation the selection strategy, which aims to

maximize the following formula:

SP −UCT =
vi
ni

+C×
√

2 lnnp
ni

+

√∑
v2i − ni × ( vi

ni
)2 +D

ni
(3.2)

where the first two terms represent the UCT formula 3.1, while

the newly added term represents possible deviations in the child

node scores. Using the same notation used in the UCT formula,∑
v2i is the sum of squared rewards obtained by rollouts that have

transited through node ni, ni×( vi
ni

)2 is the expected squared reward,

D is a large constant used to ensure that rarely explored nodes are

considered promising.

One of the aspects in which puzzles can differ from zero-sum two-

player games is the range of values for the reward. While in two-

player games the outcome is usually defined as {0, 1
2
, 1} or {-1, 0,

1} for loss, draw or win, in puzzles where the goal is to maximize
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the score the reward can vary greatly in range. Keeping in mind

that [23] chose Samegame as a case study (which has a score in the

order of thousands), the third term of the formula was specifically

designed to take advantage of the score variation. Another major

difference from two-player games is the absence of an opponent.

The consequence is that if the game is deterministic there is no un-

certainty given by the opponent choices. This leads to the second

variation introduced in SP-MCTS: the method to choose the root

action at the end of the search is not one of the four mentioned in

Section 3.2 which generally aim towards the maximization of the

winning probability, but instead the selected action is the one that

belongs to the path which maximizes the top score. In order to

employ this policy and to evaluate equation 3.2 the backpropaga-

tion policy was slightly modified to store in the nodes additional

information like the total squared rewards and the top score. The

best solution, i.e. the one with the highest score, was also stored

throughout the search to ensure that the final result is the best

among all rollouts executed.

Schadd et al. [23] also applied a single-threaded version of root

parallelization [32] called Randomized Restarts in which the search

is repeated multiple times with different random seeds to avoid get-

ting caught in local optima. They used the Cross Entropy Method

[30] to tune the parameters and managed to obtain a score of 78012

in a standardized Samegame test set.

3.6.1 Samegame

Samegame is a fully observable deterministic single player game in-

vented by Kuniaki Moribe under the name ChainShot! in 1985. In

1992 Eiji Fukumoto ported the game to Unix with a slight variation

in settings calling it Samegame. Samegame is a tile-matching game

and numerous variations of the game have been developed over the

years.
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Rules

Samegame is played on an n×m grid containing randomly arranged

blocks of k different colors. The goal of the game is to obtain the

highest score by removing groups of blocks. At every move, the

player can remove a group of two or more orthogonally adjacent

blocks of the same color. Once a block has been removed, all blocks

above it in the same column will slide down until there are no holes

left, as if they were subject to gravity, as shown in Figure 3.2(b).

Once an entire column is removed, all columns on its right will slide

to the left until there are no empty columns left, as shown in Figure

3.2(c).

(a) Playing move (C,3) (b) Playing move (C,4) (c) Result

Figure 3.2: Move sequence example [23]

Points are rewarded for each action according to the formula (n−
2)2, where n is the number of blocks removed with the current

action. The game is over when either the player has cleared the

board, leaving no blocks behind, or there are no more legal moves

left, meaning that there are no two blocks with the same color are

adjacent to each other.

Final points are awarded or subtracted based on the above end

game condition:

• If the player was able to clear the board: A bonus of 1000

points is awarded.

• If the player was unable to clear the board: Points are sub-

tracted using the formula
∑

(ni − 2)2 where ni is the number

of blocks of the same color still on the board.
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The standard game configuration is a 15× 15 board with 5 colors.

Given the scoring system, the maximum theoretical achievable score

is (n×m−2)2+1000, with n and m being rows and columns. With

the standard configuration this results in a total of 49829. This

is only obtainable if the initial configuration contains only a single

color, requiring that no constraint on the minimum number of colors

present are applied. If we consider enforcing the presence of all 5

colors, the maximum score becomes 48861. However, the actual

score for a randomly generated board is rarely higher than 6000

points. On the 20 levels standard test set used in most researches

[23] [25] [24], the average score of the best algorithm is 4392.1 [21].

The same mechanics can be found in other games, with the only

difference often being the scoring formula. In Clickomania! for ex-

ample the objective is minimizing the number of blocks remaining,

thus clearing the board represent the top score. In Jawbreaker, a

the Samegame porting for Microsoft Windows Mobile 2003, the for-

mula used is n(n− 1), while in the Windows 3.1 porting the game

is still called Samegame, but it computes the score as n2 − 3n+ 4.

Complexity

A good estimator for the complexity of a game is the game-tree com-

plexity, that represents the number of leaf nodes in the search tree

and can be approximated by bd, where b is the average branching

factor and d is the average game length. In Samegame the player

can choose a block as a move and in a 15 × 15 board that would

lead to an initial branching factor of 225. In reality, all moves in

the same block group are equivalent so the actual branching factor

is normally smaller. It also generally decreases as the game pro-

gresses. Schadd et al. [23] calculated the average game length and

the average branching factor over 250 different configurations, and

obtained d = 62.2 and b = 21.1, resulting in a game-tree complexity

of 1082.Another estimator for the complexity can be the state-space

complexity, which is the total number of legal board configurations

reachable from the initial state. In the case of Samegame, it can be

computed as Cm where m is the number of columns and C is the

number of possible configurations of a single column, obtained as
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C =
∑n

i=0 k
i, where n is the number of rows and k is the number of

different colors. With n = 15, m = 15 and k = 5 we can obtain a

state-space complexity of 10159. Furthermore, Samegame has been

proven to be at least of complexity class NP-complete [23].

In addition to the sheer values of game-tree and state-space com-

plexity - that render uninformed search methods unfeasible - it’s

very hard to find a reliable admissible heuristic, given that with

every move, new block groups can be created and existing groups

can be dismantled.
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Chapter 4

Our Approach

In this chapter we present our solution to the puzzle solving prob-

lem. The proposed solution takes into account IDA*, MCTS and

some enhancements of standard versions of these algorithms. We

describe the enhancements implemented and added to the basic al-

gorithms and to Sokoban. First, we describe the implemented IDA*

optimizations; next we describe optimizations for the MCTS algo-

rithm. The enhancements are either domain independent, which

can be applied to each algorithm and to both the considered do-

mains, or domain dependent, specific for the different domains.

4.1 IDA* optimizations

The performance of IDA* is strongly tied to the quality of the

heuristic evaluation, however there are techniques that can improve

the results under certain conditions by reducing the size of the

search tree or the order in which nodes are explored.

4.1.1 Transposition Tables

Transposition tables are a data structure that keeps track of the

visited states in order to reduce the branching factor of the game

tree. The assumption at the base of the use of transposition tables is

that the same state can be reached through different paths. When

this assumption holds, transposition tables can be used to avoid

cycles during the search by expanding only nodes that represent a
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state that has not yet been visited. In addition to cycles avoidance,

we can use transposition tables to prune sub-trees according to the

outcome of previous searches.

A transposition table requires: an entry, a record that represent

the state and data relevant to the search; an hash table, the actual

table that holds an entry in each cell.

Figure 4.1: Hash Table [33]

Figure 4.1 shows the typical usage of transposition tables. The

hash value is computed through an hash function specifically built

for the domain we are considering. The perfect hash function should

be built in such a way that two states that should be considered

different for the search purpose have different hash values, while

two state that should be considered equivalent have the same hash

value. Once computed, the hash index, a portion of the hash value

of a state, is used as an index to access the table, while either the

remaining portion of the hash called hash key, or the full hash value

is stored inside the table to handle collisions that might happen

between different states that map onto the same index. Therefore,

the table entry should contain the either the hash key or the hash

value, along with all data that is relevant to the search. In the case

of IDA*, this data include

• Score: the heuristic value obtained in previous visit through

the state. When the state is first added to the transposition

table, the score should be its heuristic value. Once the sub-

tree that starts from the state has been completely explored

up to the threshold, the score oh the state should be up-

dated with the score obtained further along the search, since
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it’s supposed to be more accurate. In the case of IDA*, it’s

computed as the minimum value among the successors of the

current node.

• Depth: the relative depth of the explored sub-tree. This rep-

resents how deep the tree has been explored, starting from

the current state. In the context of IDA*, the depth can be

computed as threshold− g, where threshold is the threshold

of the current iteration and g is the cost of the path from the

root state to the current state.

• Visited : a flag that represent whether the entry is part of

the current path or it has been added in a previous search.

This allows us to discern between cycle avoidance and tree

pruning.

In an ideal setting, the transposition table size would be enough

to hold every state visited during the search. In real applications,

such as Samegame and Sokoban, with large branching factors, we

limit the size of the table as shown in Figure 4.1. A replacement

scheme represent the policy used to handle conflicts. The replace-

ment scheme defines whether upon collision, the entry contained in

the table should be kept or should be replaced with the new entry.

Breuker [33] examined several different replacement schemes based

on different concepts:

• Deep: The entry with the largest depth is kept in the table.

The rationale behind this scheme is that the sub-tree associ-

ated to an entry with a great depth contains more nodes than

the lower depth one, thus containing more accurate informa-

tion and saving more work in case of pruning.

• New : The newest entry is kept in the tree. This scheme is

based on the observation that most transposition occur in

local sub-trees, implying that keeping most recent nodes in

the transposition table allows us to prune more often.

• Old : The oldest entry is kept in the tree. No replacement

occurs. The author included this scheme only for the sake of

completeness.
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• Big : The entry with the largest amount of nodes in the sub-

tree is kept in memory. This is similar to the Deep scheme and

might perform better when the depth is not a good estimator

of the size of the sub-tree, but requires to keep in the entry

also the number of nodes, effectively reducing the number of

entry that can be stored in the table.

• Two-Level : The transposition table is organized in two lev-

els and the replacement scheme is combined with one of the

above. The the main replacement scheme is applied with the

selected entry stored in the first level of the table, while the

entry that would normally be discarded is stored on the sec-

ond level. When retrieving the entry, the second table is used

only if there’s no match in the first table. This scheme allows

us to store both more recent (to increase the number of hits)

and more informative entries (to prune large sub-trees). Note

however that keeping two tables imply that the number of

entry stored for each table is halved.

Breuker [33] results showed that the two-level replacement scheme

obtains the highest reduction in number of explored nodes, with its

Big combination having a slight edge over the Deep one. We decided

however to follow Junghanns et al. [3] example and implemented

a two-level transposition table based on depth, since it lends itself

well for use with IDA*, as depth can be computed before actually

exploring the sub-tree, as mentioned earlier.

As we already mentioned, the effect of transposition tables on IDA*

is two-fold: cycles avoidance and tree pruning. In practice, the

search explores a new node, it first checks the transposition table for

an entry with the same state. If one is found and its depth is greater

than the current estimated depth, the node is not explored further

and its value is returned as the score of the entry. Otherwise, the a

new entry is stored and the search continues among the successors

(Algorithm 1), with the exception that only child nodes that do not

appear as visited are explored.
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4.1.2 Move ordering

IDA* explores in a depth first manner, so if the algorithm explores

promising nodes first, it will find a solution faster. Following this

idea, move ordering sorts the available moves before expansion ac-

cording to a certain criterion. This criterion can be domain de-

pendent, as in [3], or domain independent, as in [10]. We decided

to implement move ordering with a domain independent ordering

criterion by sorting the moves according to the heuristic evalua-

tion of the resulting state. Since in IDA* all iterations except for

the last one perform a complete search, the only contribution of

move ordering is visible on the last iteration, but since that is the

largest one by number of nodes, if the solution is found in an earlier

sub-tree it may reduce execution time by a significant amount.

4.2 MCTS configuration

To identify a specific MCTS configuration we need to define sim-

ulation policies and the rewards used. We defined four different

reward types for Sokoban:

1. R0 : 1 if the state represents a solved level, 0 otherwise.

2. Boxes : the reward is the same as the one used by [34] and is

computed as

r = 0.1× steps+ bON − bOFF + solved (4.1)

where steps is the number of pushes executed, bON is the

number of times a box has been pushed on a goal, bOFF is the

number of times a box has been pushed off a goal and solved

is 10 if the level is solved, 0 otherwise.

3. InverseBM : 1/
√
BM , where BM is the minimum cost perfect

matching on a complete bipartite graph, i.e. the minimum sum

of the distances from each box to its designated goal. BM

is the heuristic evaluation used by [3]. This reward has the

advantage of having values in the range {0,1}.
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4. NegativeBM : −BM . This reward has values in the range

{−∞,0}, but has the advantage of the linearity of the reward.

We tested different simulation policies:

• random: selects a random action among those available in the

current state.

• ε-greedy : selects a random action with probability ε or the

action that maximizes the reward of the resulting state with

probability 1− ε.

• ε-IDA* : selects a random action with probability ε or – with

probability (1 − ε) – perform an IDA* search with a limited

number of nodes and return the first action of the path that

leads to the state with the lowest heuristic value. For this

policy we tested different configurations in terms of number

of IDA* nodes and MCTS iterations.

For the backpropagation policy, in addition to the usual sum of

rewards and number of visits we stored the maximum score, the

sum of the squared rewards and the sum of rewards and visits for

the RAVE optimization (Section 4.3.5). The winning action is the

one with the highest maximum score.

4.3 MCTS optimizations

Standard version of the core MCTS algorithm can be applied to

various domains due to its main characteristic of not requiring

domain-specific knowledge, but when it is needed to compare it

- in a specific domain - with another artificial intelligence modified

in order to have good performance in such domain, it can work not

so well. In order to achieve better results in this kind of compar-

ison, we need to modify the standard algorithm introducing some

enhancements in order to improve performance.

In the proposed solution all enhancements are domain independent,

so can be applied to any domain without prior knowledge about

it, this choice is done in order to have a unique optimized MCTS
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algorithm that can be used in each game considered in this work

without the need of any change due to some specific knowledge.

4.3.1 Object Pooling

The Object Pool pattern is a software creational design pattern

used to improve memory usage and performance. This pattern uses

a set of initialized objects kept ready to use — also called “pool” —

rather than allocating and destroying them on demand. In order

to use this pool, it is possible to require an object from it and then

perform operations on the returned object. When the object is not

used anymore, it can be returned to the pool, in order to have the

possibility to use it again later, rather than destroying it; this can

be done manually or automatically.

The MCTS algorithm can create a large number of objects that are

particularly expensive to instantiate and each object is only needed

for a short period of time; so this can have a huge impact on per-

formance. Using Object Pool pattern it is possible to create a set

of objects that may be reused. When a new object is needed, it is

requested from the pool. If a previously prepared object is avail-

able it is returned immediately, avoiding the instantiation cost. If

no objects are present in the pool, a new item is created and re-

turned. When the object has been used and is no longer needed,

it is returned to the pool, allowing it to be used again in the fu-

ture without repeating the computationally expensive instantiation

process. The same pool can also be used in different consecutive

run of the algorithm leading to a huge benefit in terms of memory

performance.

4.3.2 Node Recycling

This optimization is a memory enhancement that can bring sig-

nificant performance benefits. Considering the structure of the

core MCTS algorithm, performing more iterations causes a huge

increase of memory used by the algorithm, due to the fact that

MCTS usually add a new node on each iteration. So as the number

of iterations — performed by the MCTS algorithm — increase, the
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memory usage of the algorithm is bounded only by the size of the

game tree.

Powley et al. [35] present a study of different memory bounding

techniques for the MCTS algorithm. The technique called Node

Recycling is used in the proposed solution. Node Recycling method

aims to throw away the policy information, learned by MCTS, that

is least relevant to the search preserving as much useful information

as possible in the remaining tree.

The basic idea of this technique is to remove nodes coming from

unpromising areas of the tree and recycle the freed memory to build

more promising ones. This approach is due to the fact that the be-

haviour of MCTS algorithm is to repeatedly visit the most promis-

ing areas of the search tree and, at the same time, decrease the

frequency of exploration of less promising areas. Thus it make

sense to recycle these areas of the tree that have not recently been

accessed, as they have a low priority for being exploited.

The overall idea of Node Recycling is to allocate a fixed pool of

nodes of size determined by a memory budget, rather than creating

a new node upon each expansion step of the algorithm. These nodes

are used until the pool is exhausted, after that the recycling process

begin. The node to be recycled is the leaf node whose statistics have

least recently been accessed, in other words the node for which the

UCB1 score has least recently been calculated.

The implementation of the Node Recycling technique is done trying

to not significantly increase the amount of execution time taken

by each iteration of the MCTS algorithm. In order to find the

least recently accessed leaf node without scanning the whole tree,

a queue structure is used. Nodes of the tree are managed using a

least recently used (LRU) cache implemented as a first-in first-out

(FIFO) queue. During a MCTS iteration, when a node is accessed

it is removed from its current position in the queue and it is pushed

to the back. When the memory budget is reached (the pool of nodes

is empty), the node on top of the queue is recycled.
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4.3.3 SP-MCTS UCB

This optimization is a bandit-based enhancement suggested by Schadd

et al. [23] to improve the selection step of the core MCTS algorithm

modifying the standard UCT with formula 3.2. A description of the

method can be found in Section 3.6.

4.3.4 UCB1-Tuned

This optimization is a bandit-based enhancement suggested by Auer

et al. [36] to tune more finely the bounds of UCB1. This approach

uses formula 4.2 as upper confidence bound for the variance of the

arm j in a multiarmed bandit problem.

V j(s) = (
1

2

s∑
τ=1

X2
j,τ )−X

2
j,s +

√
2 ln t

s
(4.2)

This means that arm j, that has been played s times during the

first t plays, has a variance that is at most the sample variance plus√
2 ln t
s

[36]. Then, the upper confidence bound
√

2 lnn
nj

of UCB1 is

replaced with formula 4.3.√
lnn

nj

min

{
1

4
, V j(nj)

}
(4.3)

4.3.5 Rapid Action Value Estimation (RAVE)

This optimization is an All-Moves-As-First enhancement that com-

bine the standard UCT score for each node with an AMAF score

[37]. Figure 4.2 shows the AMAF heuristics in action on a simple

situation. UCT is used to select actions during selection step of the

core MCTS algorithm, then the simulation step plays some action

leading to a terminal state. The basic idea of AMAF heuristic is

that UCT could have also selected the simulated moves during the

selection step as alternatives. Since these moves were used during

the simulation, their corresponding nodes in the tree have their re-

ward/visit count updated by the AMAF algorithm. Nodes that re-

ceive the extra AMAF update during backpropagation are marked
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Figure 4.2: AMAF heuristic [37]

with an asterisk (*). In order to have both values, a separate count

of rewards and visits for each type of update is maintained. So the

total score of an action is expressed as

αA+ (1− α)U (4.4)

where U represent the standard UCT score and A represent the

AMAF score. The value of α used at each node decrease with each

visit and it is computed, supplying a fixed positive integer V > 0,

after n visit as [37]

max

{
0,
V − v(n)

V

}
(4.5)

where parameter V represent the maximum value of visits a node

can have in order to use the RAVE values to correct the UCT

score; when a node is visited more times than the value expressed

by V, RAVE values are not being used at all. With this approach

exploited areas of the tree will use the accurate statistics more that

unexplored areas of the tree.
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4.3.6 Node Elimination

In addition to known enhancements we propose a new method to

improve MCTS performance in domains with many early terminal

states. One such domain is Sokoban, in which earlier deadlock

detection can significantly reduce the search space. The idea behind

Node Elimination is based on the observation that MCTS often

repeatedly selected nodes that would lead to a deadlock inside the

tree. This was caused by the constraints posed by the problem itself

and we will therefore use Sokoban to illustrate the concept of Node

Elimination.

In a Sokoban search, every rollout can end in either a solved state

or a deadlock. With deadlocks being far more likely in non trivial

levels, penalizing the reward of every rollout that terminated in a

deadlock would not be beneficial to the search, since the hard part

is not minimizing the cost to the solution but actually finding the

solution. Furthermore, the length of the rollout does not give any

insight on the quality of the rollout, since the move that originally

caused a deadlock might have been executed far before the deadlock

was finally detected. This lead to nodes close to the root being

selected many times despite representing a deadlock state, wasting

search resources. The solution we propose to this kind of situation

is a recursive Node Elimination starting from terminal states.

During the backpropagation phase we remove from the tree all

nodes in the current path that have no children and no untried

moves. Terminal nodes are therefore directly eliminated (as they

never have untried moves), effectively removing all deadlocks from

the tree. When a node is eliminated it’s also removed from its par-

ent’s list of children, therefore if every child of a node is a deadlock,

that node is removed too. This goes on recursively, removing dead

sub-trees that have already been fully explored. The elimination

process is illustrated in figure 4.3. Node Elimination was also com-

bined with Node Recycling by removing eliminated nodes from the

node pool.

While in most two-player games, revisiting the same terminal nodes

can be beneficial to the accuracy of the evaluation of the best move,
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Figure 4.3: Node elimination:

Simple Node Elimination (left): only node D can be removed because node

A still has children. Recursive Node Elimination (right): node C is expanded

into terminal node E and — after the 0-length rollout — nodes E, C and

A can be removed because once one is removed, its parent is left with no

children and no untried moves.

in single player games the only required information is the top score

achieved among all rollouts. Therefore, once a path has been fully

explored it’s no longer needed and can be ignored for the rest of the

search. In the context of puzzle games, Node Elimination should

provide the largest improvements in domains where terminal states

can appear early in the search.

4.3.7 Cycles Avoidance

When working in domains where the game tree contains many cy-

cles it’s important to keep track of the visited states in the current

path to ensure that no state is visited more than once, otherwise

the search can enter loops and waste computational resources. In

our SP-MCTS implementation we keep track of all visited states

in the iteration, from the root to the end of the simulation. When
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selecting a move for expanding a node or for performing the roll-

out, we check if the resulting state has already been visited in the

current path. If it is, we considered two options:

• Stop On Cycle: whether the cycle is encountered during the

expansion phase or the simulation phase, the search treats

the last state as terminal and immediately performs the pack-

propagation phase.

• Avoid Cycles : the algorithm tries different moves among those

available in the current state until either a valid non-visited

state is obtained, or no more moves are available. If a valid

state is obtained, the corresponding move is selected, other-

wise the iteration is stopped.

4.4 Sokoban optimizations

In order to test the performance of the algorithm on Sokoban we

had to implement some domain specific optimizations to reduce the

search tree. These are some of the optimizations that were briefly

described in Section 2.2.3.

4.4.1 Push Level Search

In Sokoban the pusher can move freely on the board but in reality

the only relevant moves are those that change the position of a box.

This means that instead of performing the search on states resulting

from a single move, we perform it on an abstract layer in which each

high-level move is actually a sequence of basic moves that ends with

a box being pushed. In order to generate these high level moves,

we need to perform local searches to identify the squares that the

player can reach and from which he can push a box. These local

searches are performed as breadth first searches on the low-level

representation of the state. This solution can increase the branching

factor if the player can reach many boxes from different directions,

but it greatly reduces depth and minimizes the occurrence of cycles,

reducing the overhead introduced by cycle avoidance.
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4.4.2 Deadlock Detection

In addition to the abstract representation of the board, the first

and fundamental optimization required is deadlock detection. We

employed two different techniques to identify two types of deadlock:

simple deadlocks and freeze deadlocks.

Simple deadlocks consist in a set of squares from which a stone

can’t reach any goal. They are computed only once, upon creation

of the state object. To find them, a series of breadth first searches

are performed: starting from each goal, the pusher is moved as

if it was pulling a box instead of pushing it. It tries to pull in

every direction into adjacent squares and recursively repeats the

process for every new square encountered. During the search, all

squares from which the pusher can pull a box are marked as visited,

and represent all positions from which the box can reach that goal.

After the search has been executed for each goal, the squares that

are not marked as visited are those from which no box can reach

a goal and will be kept in a hash table for the duration of the

search. Whenever a box is pushed to one of those squares the state

is flagged as a deadlock.

Freeze deadlock are identified during the search since they depend

on the configuration of multiple boxes. A box is considered frozen if

it can’t move neither horizontally nor vertically. A box can’t move

horizontally if it has a wall on either side, or a frozen box. When

a box is pushed to be adjacent to another box, we check if the box

we just pushed is frozen, and in order to establish that we need to

check if adjacent boxes are frozen. If any one of the chain of boxes

is frozen, the state is a deadlock.

4.4.3 Tunnel Macros

Tunnel Macros are used to merge multiple pushes into a single

move. They reduce tree depth and can help avoid deadlocks that

would occur by pushing two boxes into the same tunnel. A tunnel

can be defined as a portion of the level in which a line of squares is

surrounded by walls. Every time available moves are generated, if

the pattern of box and walls matches the one shown in Figure 4.4,
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instead of a single push, a series of pushes is generated, equal to

the number of squares required to place the box out of the tunnel.

The only exception to this rule is if the tunnel contains a goal; in

this case the box can be stopped on the goal (shown in figure 4.5).

Figure 4.4: Tunnel Macro

Instead of R, the move RR is generated

Figure 4.5: Tunnel Macro Exception

The move R is generated to push the box on the goal. The next time

available moves are computed, move RR will be generated

4.4.4 Goal Macros

Goal Macros are used to identify the order with which goals are

covered by boxes inside a goal room. A goal room is an area of the

board with at least three adjacent boxes, which tries to maximize

the number of squares and minimize the number of entrances and

the number of boxes, according to the following formula

GRoomScore = 1000∗(20−en)+5∗sq−100∗man io−500∗boxes
(4.6)
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where en is the number of entrances, sq is the number of squares,

man io are entrances from which the pusher can enter the goal

room but he cannot push a box through and boxes is the number

of boxes inside the goal room. If a suitable goal room is found, the

next step is to build the Goal Macro Tree. The Goal Macro Tree

contains for each node a hash that represents the boxes on the goal

room’s goals, a sequence of pairs entrance-goal that represent the

goal that the box should be pushed to if it was on that entrance

and a sequence of moves that can be used to execute the macro.

During moves generation, if a box is about to be pushed to an

entrance square, the tree is accessed to retrieve the move sequence.

If the move sequence is valid in the current state, it’s substituted

to the single push. If the sequence is not valid, an online search is

executed by considering a sub-problem in which every other box is

turned into a wall and the only valid goal is the one that should be

filled by the macro. If the search is successful, the sequence is used

as a macro, otherwise the single push is used.

4.4.5 Goal Cuts

Goal Cuts are a simple improvement over Goal Macros for which

instead of adding the Goal Macro to the list of available moves in

the current states, it is returned as the only move available.
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Chapter 5

Experimental results

In this chapter we compare the performance of IDA* and various

versions of MCTS on Samegame and Sokoban.

5.1 Samegame

As a preliminary part of our study, we replicated the experiment

performed by Schadd et al. [23] and compared our results. We

ran an experiment using our implementation of SP-MCTS. Due

to differences of the Samegame implementation, our program was

considerably slower than the one used in [23]. Our implementa-

tion performed an average of 2630 iterations per second against the

13888 iterations per second obtained by [23]. The program used

in [23] performed 100000 iterations and 1000 restarts with search

time distributed per move, which — considering an average solu-

tion length of 64.4 — resulted in an average of 1553 iterations per

move. We decided to keep execution time as a constraint instead

of number of iterations, and to achieve that, we reduced the num-

ber of randomized restarts from 1000 to 180. The resulting MCTS

configuration used a UCT constant of 4.31, a SP-MCTS constant

of 96.67, 1500 iterations per move and 180 restarts. As a result,

we obtained a score of 73586 in the standard test set [21]. Table

5.1 shows the results for each level in the test set in comparison

with the results obtained by [23] and HGSTS [22], the top scoring

documented algorithm for Samegame.
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# Our SP-MCTS SP-MCTS(3) HGSTS

1 2671 2919 2561

2 3723 3797 4995

3 3051 3243 2858

4 3781 3687 4051

5 4001 4067 4633

6 4189 4269 5003

7 2359 2949 2717

8 3881 4043 4622

9 4723 4769 6086

10 2623 3245 3628

11 2689 3259 2796

12 3083 3245 3710

13 2881 3211 3271

14 2687 2937 2432

15 3021 3343 3877

16 4915 5117 6074

17 4717 4959 5166

18 5109 5151 6044

19 4843 4803 5019

20 4639 4999 5175

Total 73586 78012 84718

Table 5.1: Results of our implementation of SP-MCTS

Our results are overall worse than the ones obtained by the original

authors, but considering the difference in the number of restarts,

such outcome is in line with what we expected. This experiment

allowed us to ensure that our implementation is coherent to [23] and

to proceed with further experiments with a baseline for performance

comparisons.

5.1.1 Node Elimination & Cycles Avoidance

We started our optimizations analysis with Node Elimination. To

reduce computation time we performed the tests with 1500 iter-

ations without randomized restarts. The baseline was obtained
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with SP-MCTS and no other optimization. We then enabled Node

Elimination and compared the results, shown in Table 5.2. Node

Configuration Score

Baseline 57965

Node Elimination 56940

Table 5.2: Node Elimination outcome

Elimination obtained a score lower than the baseline. We can as-

sume this is due to the fact that in Samegame revisiting terminal

nodes can help in the estimation of the action value function.

Since in Samegame cycles can’t occur, there was no need to test

Cycles Avoidance.

5.1.2 Parameters tuning

In order to take full advantage of the optimizations we described

in Section 4, we needed to tune their parameters to obtain the best

configuration. In particular, we executed repeated searches with

different values for the RAVE threshold and the memory budget

of Node Recycling. We also tuned again the UCT constant with

UCB1-Tuned, since [23] performed the tuning with the SP-MCTS

formula. Node Elimination has no parameters so it didn’t require

tuning. As before we performed the tests with 1500 iteration and

no randomized restarts. The results of the tuning process are shown

in Tables 5.3 and 5.4.

If we only consider the results with RAVE enabled, it reached the

highest score with V = 100, but contrary to our expectations, it had

an overall negative impact on the score. We concluded that the as-

sumption upon which RAVE is based, does not hold for Samegame,

i.e. moves performed later on in a simulation can’t be considered

as if they were performed at the beginning.

Node Recycling reduced the score too, although less than RAVE,

which means that it may prune good sub-trees in Samegame. With

a memory budget of 600 nodes it produced a score close to the

baseline.

51



V Score

1 57965

5 46663

10 47722

15 49519

25 49239

50 52028

100 54738

Table 5.3: Scores obtained with different RAVE thresholds. The first row

is equivalent to disabling RAVE and represents our baseline.

Nodes Score

300 55302

600 57798

900 54601

1200 56532

1500 57965

Table 5.4: Scores obtained with Node Recycling and different memory bud-

gets. The last row is equivalent to disabling Node Recycling and represents

our baseline.

As shown in Figure 5.1, UCB1-Tuned performed better than SP-

MCTS with different values but reached the highest score with a

constant value of 10.

Figure 5.1: Scores obtained with different constant values
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5.1.3 Results

Considering the results obtained in previous experiments, we per-

formed a comparison between our basic version of SP-MCTS and

SP-MCTS with UCB1-Tuned. For this evaluation we used 1500

iterations and 180 restarts. The results of this comparison can be

seen in Table 5.5. UCB1-Tuned obtained a score of 74136, surpass-

ing our previous score by 550 points.

# Our SP-MCTS UCB1-Tuned

1 2671 2615

2 3723 3763

3 3051 3251

4 3781 3607

5 4001 3891

6 4189 4147

7 2359 2675

8 3881 3875

9 4723 4689

10 2623 2601

11 2689 2683

12 3083 3125

13 2881 2805

14 2687 2687

15 3021 3329

16 4915 4891

17 4717 4639

18 5109 5117

19 4843 4869

20 4639 4877

Total 73586 74136

Table 5.5: Comparison between results obtained by our SP-MCTS imple-

mentation and UCB1-Tuned enhancement.

Finally we performed an experiment to compare our optimized SP-

MCTS against our version of the IDA* algorithm. [23] proposed an

upper bound on the score for Samegame by considering all blocks
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of the same color as adjacent. The bonus of 1000 points for clear-

ing the board is also awarded unless there exists a color of which

a single block is remaining. We ran an experiment with IDA* us-

ing the same heuristic and a maximum of 7500000 nodes, giving

approximately two hours of search time for each level. The re-

sults of this experiment can be seen in Table 5.6 compared with

the best results obtained by MCTS. MCTS strongly outperformed

IDA*, which with 9882 points performed at the level of a human

beginner.

# Optimized MCTS IDA*

1 2615 415

2 3763 387

3 3251 378

4 3607 670

5 3891 592

6 4147 655

7 2675 435

8 3875 505

9 4689 518

10 2601 572

11 2683 295

12 3125 543

13 2805 643

14 2687 177

15 3329 545

16 4891 321

17 4639 457

18 5117 573

19 4869 541

20 4877 660

Total 73586 9882

Table 5.6: Results obtained by comparing Optimized MCTS algorithm with

IDA*
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5.2 Sokoban

Contrary to Samegame, where the reward function was defined as a

part of the game rules, in Sokoban we had to define a reward func-

tion. In order to determine which among those defined in Section4.2

performed better, we compared them using different UCT constant

values. We used the 155 levels of the Microban [5] suite as a test

set throughout all experiments.

5.2.1 Reward types

All tests were performed with random rollouts, Avoid Cycles and

Node Elimination enabled. Furthermore, the search was stopped

as soon as a solution was found. Figures 5.2 through 5.5 show the

impact of the constant on the depth of the generated tree and on

the portion of solved levels for InverseBM, NegativeBM, R0 and

Boxes respectively.

The optimal value for rewards has been proven to be C = 1 for

rewards in the range [0, 1] [2]. Despite having a range between 0

and 1, the best scores for InverseBM were obtained with constants

in the range 0.001 − 0.05. The tree depth graph shows that with

values higher than 0.35 the average depth among all levels remains

almost constant. This can be interpreted as the algorithm leaning

towards exploration for those values. This unusual behavior may

be due to the distribution of the reward function values: while in

constant-sum games in the range [0, 1] the reward distribution is

typically centered on 1
2

with 0 and 1 having the same probability

distribution, the InverseBM reward distribution varies according to

the level and generally leans towards 0. This can cause the 0.35

constant value to assign an higher weight to the exploration part

of the UCT formula.
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(a) Trend of generated tree depth using different constant values

for reward InverseBM

(b) Trend of solved levels rate using different constant values for

reward InverseBM

Figure 5.2
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(a) Trend of generated tree depth using different constant values

for reward NegativeBM

(b) Trend of solved levels rate using different constant values for

reward NegativeBM

Figure 5.3

NegativeBM reaches its maximum score with a constant value of 6

and the generated tree depth decreases more gradually due to the

larger reward range.
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(a) Trend of generated tree depth using different constant values

for reward R0

(b) Trend of solved levels rate using different constant values for

reward R0

Figure 5.4

R0 charts clearly show how this reward type is not suitable for solv-

ing Sokoban using MCTS. The depth of the trees confirms what we

suspected: with the reward being 0 for every rollout except for the

last one (since the search is stopped at the first solution), the only

relevant part of the UCT formula is the exploration component,

which means that for every value of the constant greater than 0,

the algorithm will perform a pure exploration. In our implementa-

tion if two or more nodes have the same UCT value, the selection

phase is deterministic and always chooses the node that was gen-

erated first. This implies that with the constant equal to 0, all

nodes have a UCT value of 0 and the algorithm will perform a pure
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exploitation.

(a) Trend of generated tree depth using different constant values

for reward Boxes

(b) Trend of solved levels rate using different constant values for

reward Boxes

Figure 5.5

The results using Boxes reward do not seem to follow a specific

trend, and with the top score obtained with the constant equal to

0, this too does not appear to be suitable for solving Sokoban with

MCTS.

Considering these results, we selected NegativeBM as a reward for

the following experiments.

We also performed the same experiments using SP-MCTS and UCB1-

Tuned to determine the best reward and constant configuration for

each. The results are shown in Figures 5.6 through 5.9. SP-MCTS
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reached its peak performance with NegativeBM and a constant of

2, while UCB1-Tuned obtained the best result with InverseBM and

a constant of 0.05.

Figure 5.6: SP-MCTS and UCB1-Tuned results with InverseBM

Figure 5.7: SP-MCTS and UCB1-Tuned results with NegativeBM
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Figure 5.8: SP-MCTS and UCB1-Tuned results with Boxes

Figure 5.9: SP-MCTS and UCB1-Tuned results with R0

5.2.2 Node Elimination & Cycles Avoidance

In the following experiment we evaluated the effects of the Node

Elimination and Cycles Avoidance optimizations. The baseline was

obtained with standard UCT, random simulations, Node Elimina-

tion disabled and Cycles Avoidance in Stop On Cycle mode (i.e.

the iteration is stopped if a cycle is detected).

Figure 5.10 shows the number of nodes added to the search tree,

the number of nodes deleted by Node Elimination and the number

of iterations in which the expansion phase was skipped because the

last selected node was terminal (nodes skipped). BASE represents
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Figure 5.10: Nodes added, removed or skipped with combinations of Node

Elimination (NE) and Avoid Cycles (AC)

the baseline. We can see in Table 5.7 how in the baseline the

great majority of the iterations were executed without expanding

the tree, thus terminating either on a cycle or on terminal nodes.

Node Elimination prevented the algorithm from revisiting terminal

nodes, causing it to slightly increase the number of nodes added

to the tree, but its impact on the number of solved levels was not

positive. The Avoid Cycles mode of Cycle Avoidance lead to a

larger increase in the number of expanded nodes, when compared

to Node Elimination. The increase in number of solved levels also

lead to a decrease in the total number of iterations (as the search is

stopped as soon as a solution is found). The combination of Node

Elimination and Avoid Cycles obtained the best results, with far

more nodes added to the tree and the highest number of solved

levels.

Figure 5.11 illustrates the performance of the different configura-

tions with various number of iterations.
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Configuration Added Eliminated Skipped Solved

Baseline 9% 0% 91% 20

Node Elimination 11% 3% 86% 18

Avoid Cycles 24% 0% 76% 44

NE + AC 57% 33% 10% 76

Table 5.7: Percentages of nodes added, eliminated and skipped, along with

the number of solved levels for each configuration. The last row represents

the combination of Node Elimination and Avoid Cycles

Figure 5.11: Solved levels with combinations of Node Elimination (NE) and

Avoid Cycles (AC) and different number of iterations
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5.2.3 Parameters tuning

Then we tested all MCTS optimizations separately, as we done for

Samegame, in order to determine the effect of each one on Sokoban

and, after that, we combined all the enhancement together, trying

to obtain the best result. Again we proceeded with the tuning of

the parameters. In particular, we executed repeated searches with

different values for the RAVE threshold and the memory budget

of Node Recycling. Other enhancements such as UCB1Tuned and

Node Elimination have no parameters, hence they do not require

tuning.

Table 5.8 shows variation in term of performance on the test set as

the parameter V change; this parameter represents the maximum

number of visits a node needs to have before the RAVE values are

not used at all.

V Solved

1 45.8 %

5 41.9 %

10 42.6 %

15 41.9 %

25 42.6 %

50 43.8 %

100 42.6 %

Table 5.8: Levels solved with different RAVE thresholds. The first row is

equivalent to disabling RAVE and represents our baseline.

With the exception of V = 1, which is equivalent to disabling

RAVE, we can see that RAVE solved the highest number of lev-

els with V = 50. However the performance was still lower than

the baseline. As we did for Samegame, we concluded that the as-

sumption necessary for RAVE to perform well does not hold for

Sokoban.

Table 5.9 shows instead performance trend on the test set changing

the parameter responsible for the maximum number of nodes kept

in memory by the Node Recycling optimization; this parameter is
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used as memory budget parameter in order to keep in memory only

the most promising nodes and recycling the less promising ones. We

Nodes Solved

200 43.2 %

400 43.2 %

600 43.2 %

800 43.2 %

1000 45.8 %

Table 5.9: Levels solved with Node Recycling and different memory budgets.

The last row is equivalent to disabling Node Recycling and represents our

baseline.

can see how independently of the memory budget, Node Recycling

performed uniformly worse than the baseline in Sokoban.

5.2.4 Simulation policy

Next we tested different options for the simulation policy: we per-

formed searches using random simulations, ε-greedy and ε-IDA*

with different combinations of IDA* nodes and MCTS iterations.

Since the IDA* simulations were significantly heavier than random

and ε-greedy ones, we compared the policies on similar execution

times. The value of ε was set to 0.2 for both ε-based policies. Table

5.10 shows the results of the various ε-IDA* configurations. Table

5.11 shows the comparison between ε-IDA*, ε-greedy and random

simulation policies. ε-greedy solved 95 levels

IDA* Nodes MCTS Iterations Time Solved

100 100 1h 13m 21s 55.5%

20 500 1h 28m 30s 54.2%

5 1000 1h 0m 50s 54.2%

Table 5.10: Results of ε-IDA*. Each row represents one configuration.
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Policy Iterations Time Solved

ε-IDA*(100) 100 1h 13m 21s 55.5%

ε-greedy 5000 1h 9m 47s 61.3%

Random 5000 1h 11m 55s 52.3%

Table 5.11: Results of the different simulation policies.

5.2.5 Sokoban complexity

During our experiments we noticed that contrary to what we ex-

pected, the performance of MCTS didn’t improve much when in-

creasing the number of iterations. When comparing the number

of levels solved relative to the number of nodes used in IDA* and

the number of iterations performed in MCTS, we noticed a similar

trend (Figures 5.12 and 5.13). After reaching a certain threshold,

the resources needed to solve additional levels increase dramati-

cally. We consider this to be a consequence of the quality of the

heuristic evaluation which is not suitable for levels in which boxes

must be pushed away from goals in order to find a solution. It’s

still not clear why the threshold in MCTS appears earlier than in

IDA*.

Figure 5.12: Levels solved according to number of nodes used in IDA*
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Figure 5.13: Levels solved according to number of iterations performed in

MCTS

5.2.6 Results

The last experiment we performed consisted in the comparison be-

tween IDA* and different versions of MCTS for Sokoban. For this

final comparison we used three versions of MCTS based on the for-

mula used for the estimation of the action-value function: standard

UCT, UCB1-Tuned and SP-MCTS. Standard MCTS used Nega-

tiveBM as a reward with a constant of 6. UCB1-Tuned used In-

verseBM as a reward with a constant of 0.05. SP-MCTS used Neg-

ativeBM as a reward, with a constant of 2. Node Elimination and

Cycles Avoidance were enabled in all three configurations. To keep

a comparable search time between all methods, IDA* used a maxi-

mum of 200000 nodes and all MCTS methods used 10000 iterations

with ε-greedy as a simulation policy, with ε = 0.2. Table 5.12 shows

the final results of this comparison.

Method Solved

IDA* 88.4%

UCT 64.5%

UCB1-Tuned 54.8%

SP-MCTS 60.6%

Table 5.12: Methods comparison
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IDA* solved the highest number of levels with respect to the other

methods. Among MCTS methods, UCT achieved the best perfor-

mance with 64.5% of solved levels.
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Chapter 6

Conclusions

The purpose of this thesis was to measure the performance of MCTS

in Sokoban. We developed various optimizations for MCTS and

verified their effectiveness on Sokoban and Samegame. RAVE ob-

tained poor results in both domains and we concluded that neither

Sokoban nor Samegame fit the AMAF criteria, according to which

all moves performed during a simulation can be considered as if

they were played at the beginning. UCB1-Tuned obtained good

results on Samegame, improving the previous score obtained with

SP-MCTS. Node Recycling obtained poor results in both games

in terms of score and number of solved levels, although its major

contribution concerns memory usage. SP-MCTS performed better

than UCB1-Tuned but worse than UCT on Sokoban. Node Elimi-

nation and Cycles Avoidance provided a considerable improvement

in Sokoban, especially when used together, since they were able to

greatly increase the number of nodes added to the tree and, as a con-

sequence, the number of solved levels. In Samegame, Node Elim-

ination obtained poor performance, mainly because the aim was

to maximize the score instead of finding a single solution, meaning

that revisiting terminal nodes could be beneficial to the accuracy

of the action-value function estimate. As a comparison, IDA* per-

formed very poorly in Samegame, while in Sokoban it obtained the

best results. A brief analysis of Sokoban and the chosen heuristic

rewards led us to believe that the poor performance obtained by

MCTS may be caused by the fact that, while typically MCTS is

used on games where at the end of the simulation the outcome is
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known, in Sokoban at the end of a simulation we needed to provide

an evaluation of the distance from the solution. Since computing

this evaluation would be as difficult as solving the level, we could

only provide a heuristic estimate. IDA*, on the other hand, is de-

signed to use heuristics to guide the search and prune the tree.

According to the results obtained with the tested configurations,

MCTS doesn’t appear to be successful in Sokoban.

6.1 Future research

During our experiments on Sokoban we noticed that the Microban

suite was split between very easy levels, which could be solved with

very few iterations and very hard levels, which couldn’t be solved

within reasonable time. As shown by Figures 5.12 and 5.13 this

was true for both MCTS and IDA*, which means that it was a

characteristic of the levels and not of the specific algorithm. A

more precise analysis on the effects of the optimizations could be

performed by building a test set with levels of gradually increasing

difficulty, in order to obtain more accurate indications on the effect

of each parameter and optimization.

On the subject of improving MCTS performance on Sokoban, bet-

ter results could be obtained with more complex reward functions,

which make use of domain knowledge to improve the accuracy of

the estimated action values.

One final interesting research topic can be the application of the

newly proposed Node Elimination and Cycles Avoidance in other

domains. Cycles Avoidance in the Avoid Cycles variant should be

effective in all games where cycles frequently occur, while our re-

sults suggest that Node Elimination could provide benefits in those

domains where terminal nodes appear early in the game tree and

the goal is not to maximize a score, but to find a single solution.

70



Bibliography

[1] R. Coulom, “Efficient Selectivity and Backup Operators in

Monte-Carlo Tree Search,” in 5th International Conference on

Computer and Games (P. Ciancarini and H. J. van den Herik,

eds.), (Turin, Italy), May 2006.
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