
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Evaluating OpenCL Programming Practices for FPGAs:
a case study on symmetric block ciphers

Relatore: Prof. Alessandro BARENGHI

Tesi di Laurea di:

Michele MADASCHI Matr. 853500

Anno Accademico 2016–2017

Ringraziamenti

Desidero ricordare tutti coloro che mi hanno aiutato nella stesura della tesi con sug-
gerimenti, critiche ed osservazioni: a loro va la mia gratitudine, anche se a me spetta la
responsabilità per ogni errore contenuto in questa tesi.

Ringrazio innanzitutto il professor Barenghi, Relatore, il cui supporto, guida sapiente
e pazienza hanno reso possibile questa tesi.

Proseguo ringraziando il personale del Politecnico di Milano, che ha fornito le infra-
strutture di calcolo e facilitato le ricerche confluite in questa tesi.

Vorrei infine ringraziare le persone a me più care: i miei amici e la mia famiglia, che
mi hanno sempre aiutato e sostenuto nello svolgimento del mio lavoro.

Sommario

Il panorama dei moderni sistemi di calcolo sta mostrando chiari segni di spostamento
dal tradizionale, CPU-centrico modello verso architetture eterogenee, caratterizzate allo
stesso tempo da elevato parallelismo ed efficienza energetica; la recente introduzione di
dispositivi Field-Programmable Gate Array (FPGA) con supporto per applicazioni Open-
CL è un tentativo di occupare questa posizione. Tuttavia, la natura multi-piattaforma
di OpenCL rende necessario lo studio e lo sviluppo di speciali tecniche di ottimizzazione,
tecniche che variano grandemente a seconda del dispositivo in esame. Relativamente a
precedenti architetture con capacità OpenCL, come le GPU, gli sforzi accademici nell’e-
splorazione di tecniche di programmazione per OpenCL su FPGA sono agli inizi. Nel
nostro scritto, studieremo la progettazione e l’implementazione di una serie di cifrari sim-
metrici a blocchi, e mostreremo come differenti scelte nello sviluppo di varie componenti
dell’applicazione OpenCL influenzano la performance della rispettiva implementazione.
Le tecniche studiate comprendono modifiche atte a ridurre il tempo di calcolo, migliorare
l’uso della memoria e rendere i trasferimenti di memoria più efficienti. Il rendimento è
misurato usando metriche come il throughput, il consumo di area, il tempo/memoria
consumato in fase di compilazione e vari indicatori ottenuto per mezzo di analisi statica.
Nel corso dei nostri esperimenti, abbiamo verificato come il loop unrolling (sia auto-
matico che manuale) influisce positivamente sulla performance osservata; si sono anche
dimostrate utili certe ottimizzazioni che impiegano speciali classi di memoria OpenCL,
come la memoria locale e privata. Abbiamo inoltre osservato come l’uso delle tecniche
precedentemente descritte incorre in un determinato costo in termini di risorse sulla FP-
GA. Abbiamo verificato che, nel particolare caso dei cifrari simmetrici a blocchi, non
vi è necessità di adottare schemi particolari per accedere efficientemente agli oggetti in
memoria globale. Infine, ci siamo confrontati con le limitazioni introdotte dal canale di
trasmissione tra il sistema centrale e il dispositivo acceleratore OpenCL, e abbiamo mi-
surato come uno schema di double-buffering permette di lavorare su queste limitazioni,

5

in modo da raggiungere un uso efficiente del canale senza ulteriori costi di area occupata
su FPGA. Grazie ai dati raccolti nel benchmark finale dei cifrari a blocchi da noi imple-
mentati, abbiamo estrapolato una serie speculativa di limiti superiori per il throughput,
in modo da dare uno sguardo al rendimento che potremmo potenzialmente ottenere su
un sistema non affetto dalle sopramenzionate limitazioni nel canale.

6

8

Abstract

The landscape of the modern computing world is showing clear signs of a shift from the
traditional, CPU-based model towards heterogeneous architectures which are at the same
time heavily parallel and energy efficient; the recent introduction of Field-Programmable
Gate Array (FPGA) devices capable of running OpenCL applications is an attempt to fill
this particular position. However, the platform-independent nature of OpenCL makes
it necessary to study and develop special optimization techniques which vary largely
depending on the target device. Relatively to older architectures, such as GPUs, the
academic effort to explore useful OpenCL programming practices for FPGAs is at its
beginning. In our paper, we will study the design and implementation of a series of
symmetric block ciphers, showing how different design choices in the various components
of the OpenCL application influence the performance of the corresponding implemen-
tation. The practices studied encompass modifications which reduce the computation
time, improve the memory usage and make memory transfers more efficient. The perfor-
mance is gauged using metric such as throughput, area usage, compilation time/memory
consumption and various indicators obtained via static analysis. During the course of
our experiments, we verified how loop unrolling (both automatic and manual) positively
affects the measured performance; optimizations making use of special OpenCL memory
classes, such as local and private memory, did also prove very useful. We observed how
using the techniques described above incurs in a certain cost in term of FPGA resources
consumption. We verified that, in the particular case of symmetric block ciphers, there
is no need to adopt special patterns in order to efficiently access global memory objects.
Ultimately, we came to terms with the limitations created by the transmission channel
between the main system and the OpenCL accelerator device, and we measured how a
double-buffering scheme allows to work with those limitations, achieving efficient chan-
nel usage with no extra cost in terms of FPGA area. Using the data gathered in the
final benchmark of our block cipher implementations, we extrapolated a series of specu-

9

lative throughput upper-bounds, thus getting a glimpse of the potential performance on
a system not affected by the channel limitations described above.

10

Contents

Introduction 1
0.1 Organization of the paper . 3

1 State of the Art 5
1.1 Overview of OpenCL . 5

1.1.1 Comparison with C . 9
1.1.2 Host-side API . 12

1.2 OpenCL-enabled accelerators . 14
1.2.1 Comparative summary of OpenCL concepts and implementations . 19

2 Performance Portability between GPUs and FPGAs 23
2.1 Reference: OpenCL best practices . 23
2.2 Reference: OpenCL best practices for GPU 25
2.3 OpenCL best practices for FPGA . 26

2.3.1 Work dimension tuning and loop unrolling 26
2.3.2 Local memory and synchronization 27
2.3.3 Global memory access optimization 30
2.3.4 Host-device transfers optimization 31

2.4 GPU and FPGA best practices compared 33
2.5 Our case of study: symmetric block ciphers 34

3 Experimental Evaluation 45
3.1 Test environment . 45
3.2 Metrics employed . 46
3.3 Experimental validation of programming practices 47

3.3.1 Initial implementation . 47
3.3.2 Round key cached in local memory 50

i

CONTENTS

3.3.3 Disable buffer interleaving . 53
3.3.4 Unified main loop (without unrolling) 54
3.3.5 Main loop full unrolling . 55
3.3.6 Manual partial unrolling . 56
3.3.7 Round key forced into local memory, multiple unrolling techniques 58
3.3.8 Extracting num_rounds as a constant 60
3.3.9 Interlude 1: Strategies to parallelize over multiple work items . . . 61
3.3.10 2 separate workers . 63
3.3.11 4 separate workers . 66
3.3.12 Interlude 2: performance wall . 67
3.3.13 NO-OP test . 68
3.3.14 Pre-final AES design . 69
3.3.15 Final summary . 71

3.4 Horizontal slice . 73

Conclusion 79
3.5 Salient points . 79
3.6 Possible future developments . 80

A Source code 83

B Text dumps 87
B.1 board_spec.xml for aclattila_hpc_16_10 87

Bibliografia 88

ii

List of Figures

1.1 Overview of the OpenCL programming model 8

1.2 A simplified hardware block diagram for the NVIDIA “Fermi” GPU archi-
tecture, from [23] . 14

1.3 Altera’s own Logic Block design (Adaptive Logic Module), from [6]. This
design was employed on boards from the Stratix series. 15

1.4 Design workflow for a single-work-item kernel, from [13] (part 1 of 2) . . . 17

1.5 Design workflow for a single-work-item kernel, from [13] (part 2 of 2) . . . 17

2.1 Diagram of the XTS-AES block encryption procedure, from [2] 37

2.2 XTS-AES encryption of last two blocks when last block is 1 to 127 bits,
from [2] . 38

2.3 XTS-AES decryption of last two blocks when last block is 1 to 127 bits,
from [2] . 39

2.4 AES round structure . 41

2.5 Diagram of a simple 2-round Feistel Network 42

3.1 aes_medium block diagram, Initial Implementation. Instructions are shown
as circles and diamonds, functional blocks are shown as rectangles, mem-
ory accesses and control paths are shown as arrows. Global memory and
instruction accessing global memory are highlighted in blue; un-optimized
function blocks are highlighted in red. 49

iii

LIST OF FIGURES

3.2 aes_medium block diagram, Round key cached in local memory. Instruc-
tions are shown as circles and diamonds, functional blocks are shown as
rectangles, memory accesses and control paths are shown as arrows. Global
memory and instruction accessing global memory are highlighted in blue;
local memory blocksare highlighted in green; un-optimized function blocks
are highlighted in red. 51

3.3 aes_medium block diagram for the variant with round key forced into pri-
vate memory and combined unrolling techniques. Instructions are shown
as circles and diamonds, functional blocks are shown as rectangles, mem-
ory accesses and control paths are shown as arrows. Global memory and
instruction accessing global memory are highlighted in blue. 60

3.4 Multi-pipelined kernel architecture using Intel channels 62
3.5 Timeline diagram for aes_small using 2 workers, zoomed over a section of

the test schedule . 64
3.6 Timeline diagram for aes_small using 4 workers, zoomed over a section of

the test schedule . 67
3.7 Timeline diagram for aes_small using 4 workers and 8 buffers, 1/8 MB

blocksize, zoomed over a section of the test schedule 68
3.8 Timeline diagram for the “No-Op” cipher 69
3.9 Timeline diagram for aes_small single work item with double buffering,

zoomed over a section of the test schedule 70
3.10 Performance of the aes_medium kernel across different design iterations

(pure single work item kernel, without any form of multi-buffering) 72
3.11 Performance of the aes_small kernel across different design iterations . . . 72

iv

List of Tables

1.1 OpenCL implementations comparison . 19

1.2 GPU vs FPGA power/consumption comparison 20

1.3 GPU vs FPGA special characteristics comparison 20

2.1 OpenCL best-practices comparison . 33

2.2 ISO cipher characteristics . 40

3.1 Test data gathered from a AES implementations with or without storing
the key into local memory, part 1 of 2 . 52

3.2 Test data gathered from a AES implementations with or without storing
the key into local memory, part 2 of 2 . 52

3.3 Test data gathered from a AES implementations with or without enabling
memory interleaving, part 1 of 2 . 53

3.4 Test data gathered from a AES implementations with or without enabling
memory interleaving, part 2 of 2 . 53

3.5 Test data gathered from an AES implementation with differentiated main
loops (small vs medium/big) and a variant with unified main loops (no
unrolling), part 1 of 2 . 54

3.6 Test data gathered from an AES implementation with differentiated main
loops (small vs medium/big) and a variant with unified main loops (no
unrolling), part 2 of 2 . 54

3.7 Test data gathered from AES implementations with and without full main
loop unrolling, part 1 of 2 . 55

3.8 Test data gathered from AES implementations with and without full main
loop unrolling, part 2 of 2 . 56

v

LIST OF TABLES

3.9 Test data gathered from AES implementations with different types of loop
unrolling, part 1 of 2 . 57

3.10 Test data gathered from AES implementations with different types of loop
unrolling, part 2 of 2 . 57

3.11 Test data gathered from this AES implementation, compared with the
no-unrolling baseline, part 1 of 2 . 58

3.12 Test data gathered from this AES implementation, compared with the
no-unrolling baseline, part 2 of 2 . 59

3.13 Test data gathered from AES implementations with a single entry point
and AES implementations with multiple entry point (3 in total), part 1 of 2 61

3.14 Test data gathered from AES implementations with a single entry point
and AES implementations with multiple entry point (3 in total), part 2 of 2 61

3.15 Test data gathered from the baseline single work-item AES implementa-
tion and the channel-based multi work-item implementation outlined in
strategy 1, part 1 of 2 . 62

3.16 Test data gathered from the baseline single work-item AES implementa-
tion and the channel-based multi work-item implementation outlined in
strategy 1, part 2 of 2 . 63

3.17 Test data gathered from the baseline single work-item AES implementa-
tion and the multi work-item variant using 2 workers, part 1 of 2 65

3.18 Test data gathered from the baseline single work-item AES implementa-
tion and the multi work-item variant using 2 workers, part 2 of 2 65

3.19 Test data gathered from the baseline single work-item AES implementa-
tion and the multi work-item variant using 2 workers, part 1 of 2 66

3.20 Test data gathered from the baseline single work-item AES implementa-
tion and the multi work-item variant using 2 workers, part 2 of 2 66

3.21 Comparison of the throughput of the 2-workers AES variant against a
No-Op application . 69

3.22 Test data gathered from the baseline single work-item AES implemen-
tation, two-workers implementation and double-buffered single work-item
implementation, part 1 of 2 . 70

3.23 Test data gathered from the baseline single work-item AES implemen-
tation, two-workers implementation and double-buffered single work-item
implementation, part 2 of 2 . 71

vi

LIST OF TABLES

3.24 Test data gathered from the big bang test of all the studied block ciphers,
part 1 of 2 . 73

3.25 Test data gathered from the big bang test of all the studied block ciphers,
part 2 of 2. For space concerns, “Payload size” has been abbreviated to
“PL size” and “Top Kernel/IO” has been abbreviated to “Top K/IO” . . . 74

3.26 Speculative values computed from the results in 3.24 and 3.25 76
3.27 Speculative values computed from the results in 3.24 and 3.25, taking

available resources into account. For space concerns, “Replication factor”
has been abbreviated to “Repl. factor” . 78

vii

LIST OF TABLES

viii

List of Algorithms

1.1.1 Pseudocode for OpenCL host-side boilerplate code 12

2.3.1 Pseudocode for host side multi-buffering . 31

ix

LIST OF ALGORITHMS

x

Introduction

Even in recent times, the ever increasing demand for more and more powerful com-
puting systems shows no signs of weakening. The same can not be said for Moore’s law,
which has recently begun to manifest a significant slowdown, thus showing the limits
of standard general purpose computing systems. The world of information technology
promptly reacted to this change, adopting a strategy towards heterogeneous, massively
parallel computing systems. One of the most important steps in this direction was the
GPGPU, General-Purpose computation on Graphical Processing Units, exploiting the
huge amount of parallel execution units which GPUs offer, along with a high-bandwidth
dedicated memory. In order to tap into the power of such an architecture, various
programming frameworks were also developed, first and foremost OpenCL (Open Com-
puting Language), with has the inherent advantages of being open, royalty-free and
multi-platform by design. The realm of OpenCL developement for GPU devices is now
well explored and documented, in application domains ranging from image processing,
to neural networks, to cryptography.
In even more recent times, the computing world is again showing signs of change, this
time in the direction of systems with improved energy efficiency, a trend which super-
imposes with the already existing slant towards high parallelization. A particular family
of general purpose computing devices is excellent in this domain: Field Programmable
Gate Arrays (FPGA). The peculiarity of FPGAs is a highly reconfigurable internal struc-
ture, which is capable of implementing an arbitrary logic circuit, as defined by the user
through an hardware description language, such as VHDL. FPGAs have been around
for about 20 years already, but, for most of the time, have been relatively limited to the
field of hardware design and prototyping; however, recent advances in both the hardware
itself and the surrounding software ecosystem made possible to employ FPGAs for gen-
eral purpose computation. Indeed, FPGAs manufacturers, such as Altera and Xilinx,
started to release special compilers which allows the user to program their FPGA using

1

Introduction

OpenCL, rather than hardware description languages. This allows to lower the entry
barrier into the realm of FPGA computing, considering how the programming model of
OpenCL is almost at the same level as that of major programming languages, such as
C or C++. Hardware description languages, on the other hand, require a vastly differ-
ent set of practices and patterns which don’t usually have an equivalent in mainstream
programming languages. Another important advantage of OpenCL for FPGAs is the
ability to port existing OpenCL code, infrastructure and know-how from existing CPU
and GPU OpenCL projects. This last point does, however, come with a very big caveat,
which will also represent the starting point for the study presented in this paper. The
OpenCL standard describes a programming model which is completely cross-platform,
in theory; however, writing highly performant OpenCL code requires to make sharp
platform-specific choices, which often do not translate well to different OpenCL-enabled
devices [24]. With this consideration in mind, we set to explore, benchmark and catalog
useful techniques which will allow for the development of efficient OpenCL programs,
constructed having a FPGA target as the main focus. We restricted our studies to the
domain of cryptography; specifically, we chose to implement 9 ISO standard symmetric
block ciphers, with particular focus on AES. The domain of cryptographic functions is
particularly interesting in the context of OpenCL FPGA development for a variety of
reasons, but, at the time of writing, there haven’t been many significant studies on this
topic. Symmetric block ciphers are widely used today as the main workhorse of secure
digital communications; their relative high throughput makes them suitable to encrypt
large bulks of data, while the slower, more complex public key ciphers are commonly
employed only for critical steps such as key exchange or authentication. In fact, sym-
metric block ciphers are designed from the ground up with an efficient hardware and/or
software implementation in mind, a choice which is very relevant to our study, since we
set to develop those block ciphers on an FPGA (close to hardware), using the high level
programming language OpenCL (close to software). Our development strategy pro-
ceeded this way: first, we tackled specifically the AES blockcipher, carrying out a series
of small, incremental improvements in order to probe possible programming and design
patterns; this initial analysis is guided by the consolidated GPU OpenCL best practices,
the Intel/Altera developer documentation and, most importantly, the practical results
obtained by a range of analysis and benchmarking tools, parts of which were provided
by the FPGA vendor and parts of which we developed ourselves during the length of this
project. After we attained an acceptable performance in the AES implementation, we
gathered all the design and programming practices which positively affected its success,

2

Organization of the paper

and used them as a foundation for the development of the remaining block ciphers. At
the end, we tested all the 9 symmetric ciphers, and made our final considerations.

0.1 Organization of the paper

In chapter 1, we describe the intents and outstanding characteristics of the OpenCL
programming language and give a comparison of current state-of-art accelerated com-
puting platforms. In chapter 2 we present our contribution in terms of programming
practices which best suit the existing FPGA and compiler, compared to the existing
OpenCL best practices (both in general and in the specific case of GPUs). The second
part of chapter 2 contains a primer over the theoretical aspects of the blockciphers we
decided to implement. In chapter 3, we show the effects of the various programming prac-
tices described in chapter 2: first, across multiple iteration of the AES blockcipher, last,
across contemporary implementations of all the block ciphers in exam. Each step will
be accompanied with benchmark data, as well as analytic data extracted from compiler-
generated reports. In the last chapter, we draw the final conclusions and suggest future
improvements.

3

Introduction

4

Chapter 1

State of the Art

In this Chapter we describe the existing state of art technologies in the OpenCL
ecosystem. The first part will give an outline of OpenCL in terms of design goals and
programming model, with emphasis on the particular type of parallelism, memory hierar-
chy and synchronization introduced. The second part will describe two existing families
of OpenCL-enabled accelerator devices: GPUs and FPGAs, with emphasis on the latter.
In the last section, we compare and contrast the two classes of devices.

1.1 Overview of OpenCL

OpenCL is an open standard for general purpose parallel computing across a vari-
ety of heterogeneous CPUs, GPUs and accelerators, focusing on high-performance and
portability. [16]

The architecture of a typical OpenCL application is divided into 2 parts: the host
component, which is code running on the main CPU as a normal application, and the
kernel component, which is code running on the accelerator device. The OpenCL stan-
dard defines both a series of API, used by the host application, and a cross-platform
programming language, used to write the kernel code. In practice, the host-side API also
needs runtime components, that is, drivers/modules which allow the native operating
system to interface with the accelerator device, and a compiler to convert the OpenCL
code into a device-specific binary.

As hinted before, OpenCL is designed with parallelism in mind, chiefly under the
paradigm of data-parallelism: conceptually, partition the input data into an homogeneous
grid, then process each partition independently, using a pool of concurrent workers which

5

CHAPTER 1. State of the Art

apply the same function on each data item. This behavior is in many ways similar to that
of the map() operator offered by some high-level programming languages. In practice,
the input data is not partitioned among different workers; instead, the workers are given
an unique (set of) identification number, which they use to select a portion of the global
input data to process. In OpenCL jargon, the workers are called work-items, executing
a function known as kernel ; the total amount of work-items is known as global work size,
and may be organized across 1, 2 or 3 work-dimensions. The global work size and the
number of work dimensions can be specified freely by the developer, and usually follows
the structure of the underlying data to process: for instance, consider the example of an
OpenCL application which computes the sum of two vectors of the same length; the said
application should employ a global work size equal to the length of the vector, and a work
dimension equal to 1. The totality of work-items is also partitioned into a series of work-
groups, all work groups having the same user-defined local work size, which must be a
divisor of the global work size. As stated before, each work-item is associated at runtime
with a set of unique identifiers. Those identifiers are the global id, the local id, and the
group id. The global id is a tuple which specifies the work-item’s “coordinates” across
the various work dimensions. The local id is an index which specifies the work-item’s
position inside its parent work-group. The group id instead is an index which uniquely
identifies the work group in which the work item resides. In the upcoming sections, we
will show how this design structure, reminiscent of the Single Instruction Multiple data
paradigm, reflects well the underlying structure of certain hardware implementations,
which are indeed SIMD machines.

Since the operation of issuing a kernel for execution is asynchronous (i.e. doesn’t
block until all work items have completed their execution), task-based parallelism can
also be achieved. Task parallelism refers to the ability of executing at the same time
multiple kernels performing different tasks, rather than just a homogeneous range of ker-
nels performing the same function.

Another major peculiarity of OpenCL is the introduction of a memory hierarchy, that
is a series of classes which qualify memory objects such as variables, pointers and arrays:
Global memory, which can be read/written by all work-items across all work-groups.
Constant memory, which is read-only, and otherwise behaves the same as the global
memory. Local memory is a read/writeable memory which is shared by all work-
items belonging to the same work-group. Private memory is a memory which can be
read/written, but is visible only to individual work-items.

6

1.1. Overview of OpenCL

Generally, memory classes closer to the bottom of this list are faster than the ones
listed above, although their hardware implementation may vary greatly among different
devices. On the other hand, slower memory classes tend to be more abundant in term
of capacity. Using the various memory classes allows the programmer to better exploit
the different kinds of memories available on accelerator devices. Memory classes do also
come with a set of special restrictions. First of all, a pointer pointing to a certain memory
class can not be cast into a pointer to a different memory class. Another restriction is
that the memory objects passed as arguments to a kernel function can only reside either
in global or local memory.

7

CHAPTER 1. State of the Art

Figure 1.1: Overview of the OpenCL programming model

Figure 1.1 shows a summary of the OpenCL architecture outlined so far; the arrows
denote the flow of data to/from memory.

When working with parallel/multi-threaded applications, it is important to achieve
a proper inter-thread synchronization; this is handled in OpenCL via the use of special
primitives, which operate at different granularity levels: Intra-work-item, using the func-
tion mem_fence(); it is used to make sure that all load/store operation preceding it have
been properly committed to memory, so that the shared memory is viewed consistently

8

1.1. Overview of OpenCL

by all the work-items concerned. Intra-work-group synchronization is instead achieved
using the barrier() procedure, which basically blocks the program flow of the caller
until all work-items in the group have reached the barrier statement. On the host side,
the OpenCL API exposes a specific type, cl_event, which represent high level events, for
example, the completion of a data transfer to the accelerator device. Chapter 3 gives an
in-depth description of the various techniques and APIs to work with cl_event objects.

1.1.1 Comparison with C

The OpenCL language is based on C99, but comes with a set of restrictions and
extensions, most notably the following ones. The C standard library is not available; the
programmer may only access functions declared in their own OpenCL code, plus meth-
ods belonging to a pool of built-in functions. Recursion is forbidden, and will cause a
compile-time error; however, this limitation can often be circumvented by slightly mod-
ifying your program. For instance, the programmer could replace a recursive algorithm
with an iterative version; this modified algorithm would then simulate the recursive be-
havior by pushing the appropriate parameters onto an auxiliary stack data structure (also
specifically implemented by the programmer). Function pointers are not allowed; while
this restriction may hinder the porting of existing C code to OpenCL, it is still possible to
create highly modular code through the use metaprogramming (via C macros). Finally,
OpenCL does not support variadic functions or macros, that is, C functions and macros
with a variable number of parameters.

On the other hand, a series of significative extensions are made to C99: special
qualifiers, built-in types, built-in functions and special extensions.

OpenCL introduces a series of qualifiers which can be applied to the declarations
of variables and pointers; these qualifiers are __private, __local, __constant and
__global, reflecting the underlying memory hierarchy specified in the standard. An-
other special qualifier, __kernel, is used instead to identify a function as an OpenCL
kernel. Finally, the special qualifier __attribute__((attribute-list)) can be used to
specify any non-standard OpenCL attributes. The __attribute__ qualifier is actually
an extension which already exists in C, although is only supported by some compilers,
such as GCC (GNU Compiler Collection). An example of its use is shown in Chapter 3.
The attribute qualifier can be used freely on functions, types, variables or code blocks.

The OpenCL standard also specifies a range of built-int data types; all types are
made available both natively in the OpenCL language and in the API, via the inclusion

9

CHAPTER 1. State of the Art

of the appropriate header.

Scalar data types such as float, double, (unsigned) char / short / int / long are equiv-
alent to the corresponding C99 types, but their bit length is fixed by the standard,
whereas it is implementation-dependent in C (except certain fixed length types,
such as char, float and double).

Vector data types are basically the n-component equivalent of the standard scalar
types (i.e. intn). n can only assume values in {2, 3, 4, 8, 16}.

Miscellaneous types are opaque objects which represent structures such as images
(image2d_t), OpenCL events (cl_event), memory buffers (cl_mem) and compo-
nents of the OpenCL infrastructure (such as the cl_program, which represents
a program containing one or more kernels; cl_kernel, which represents a kernel
function within a program; cl_command_queue, which represents a channel used
to send data and commands to the accelerator device).

Despite the lack of C99’s stdlib, OpenCL offers various built-in functions, most no-
tably mathematical functions, image manipulation functions, work-item functions and
synchronization functions. Mathematical functions allow for common operations on inte-
gers, floating-point numbers and vectors, such as abs(), sin() or distance(). To work
with the built-in image type, a family of image functions is provided. Common opera-
tions include getting the dimensions of an image, and reading/writing pixels at certain
coordinates. Finally, the work-item functions are series of getters which return parame-
ters such as the index of the current work item (get_global_id()), the id of the current
work-group (get_group_id()), the total amount of work-items (get_global_size()),
the number of work dimensions (get_work_dim()), and more (the full list also includes
get_group_id(), get_num_groups(), get_local_size()).

Aside from the standard features described above, specific OpenCL implementations
may also expose custom built-in functions, for instance: cl_intel_printf, an extension
available on some Intel CPUs, allows the programmer to use the usual C printf state-
ment inside the OpenCL code. Combined with the cross-platform nature of OpenCL,
this allows the programmer to easily debug code targeting any platform. In the case of
our project, for instance, we set up the development environment to target the main CPU
instead of an FPGA, thus allowing to debug the OpenCL code very quickly and easily.
Another interesting extension is cl_intel_channels (formerly Altera channels), which
allows to use Intel channels, a feature available on some FPGAs. An Intel Channel is a

10

1.1. Overview of OpenCL

blocking FIFO queue which allows different kernels running at the same time to rapidly
exchange data, without accessing local memory, global memory or the host. We further
investigate the usage of channels in Chapter 3.

Listing 1.1: OpenCL vector addition kernel
1 __kernel void vector_sum(__global const float *A,
2 __global const float *B,
3 __global float *C) {
4 size_t tid = get_global_id(0);
5 C[tid] = A[tid] + B[tid];
6 }

The snippet 1.1 above shows the OpenCL equivalent of “hello world”, a very simple
self-contained OpenCL kernel performing the addition of 2 vectors, useful to demonstrate
the concepts introduced before. The kernel is a normal C function (vector_sum), deco-
rated with the special qualifier __kernel (line 1); the function parameters (pointers to
float A, B and C, respectively on lines 1, 2 and 3) also need a special qualifier, which
specify their memory class (__global). The first statement in the function’s body (line
4) uses the special work item function get_global_id() to retrieve the identifier (inte-
ger) of the current work-item; the parameter (0) passed to the function is used to select
which work dimension to consider. In this example, the kernel is run with a single work
dimension and a global work size equal to the length of the vectors; therefore, the work
item identifiers range from 0 to vector length-1. Finally, the statement at line 5 performs
the actual sum, using the current work item identifier as the displacement within the
vectors.

11

CHAPTER 1. State of the Art

1.1.2 Host-side API

The host-side API (available for a range of programming languages, including C,
C++ and Python) offers methods which handle the lifecycle of an OpenCL application.

Algorithm 1.1.1: Pseudocode for OpenCL host-side boilerplate code
Data: constant source, source code shown in Listing 1.1
Input: Input vector A[], Input vector B[], Integer len, equal to the length of A[],

B[]

Output: Input vector C[] (C[] = A[] +B[])
1 platform ←− get_platform();
2 device ←− get_device(platform);
3 context ←− create_context(device);
4 command_queue ←− create_command_queue(context , device);
5 program ←− create_program(context , source);
6 build_program(program, device);
7 kernel ←− create_kernel(program, ”vector_sum”);
8 buffer_A←− create_buffer(context , len);
9 buffer_B ←− create_buffer(context , len);

10 buffer_C ←− create_buffer(context , len);
11 set_kernel_arg(kernel , 0, buffer_A);
12 set_kernel_arg(kernel , 1, buffer_B);
13 set_kernel_arg(kernel , 2, buffer_C);
14 enqueue_write_buffer(command_queue, buffer_A, len, A[]);
15 enqueue_write_buffer(command_queue, buffer_B , len, B[]);
16 global_work_size ←− len;
17 work_dim ←− 1;
18 enqueue_ndrange_kernel(command_queue, kernel ,work_dim, global_work_size);

19 enqueue_read_buffer(command_queue, buffer_C , len, C[]);
20 release(kernel);release(program);release(command_queue);
21 release(buffer_A);release(buffer_B);release(buffer_C);release(context);

The pseudocode above (Algorithm 1.1.1) shows an example of the host side of an
OpenCL application; the goal of this snippet is to drive the vector addition OpenCL
kernel shown before.

12

1.1. Overview of OpenCL

The first step is to choose cl_platform and cl_device; the cl_platform is a vendor
specific OpenCL implementation, which includes within it a list of available cl_device,
this other object being an abstraction over the actual accelerator hardware device. In
more complex applications with multiple devices and platforms, the programmer may
decide to enumerate all the available devices and platforms, instead of selecting the first
ones available, as we did in this example. After choosing a platform and device (lines 1-2),
the next step is to use them to initialize a new cl_context (line 3), a global object which
will hold the OpenCL envionment’s internal state, and will be needed in order to create
all sorts of special OpenCL objects. Once the context is ready, it can be used to initial-
ized another important object: the cl_command_queue (line 4). Command queues are
the communication channel used by the host to send data and orders to the accelerator;
it is possible to have more than one queue active in the same context. The cl_context
created earlier must also be used to initialize one or more cl_program (line 5-6); a cl_-

program object is an abstraction over a program written in the OpenCL language, either
in source form or in precompiled binary form. In order to actually use the program, one
or more cl_kernel object (abstraction of a kernel function defined in the program) must
be initialized; to do so (line 7), only the parent cl_program and the name of the function
are needed. Before running the kernel, it needs to have the proper variables mapped
to its input parameter; this is achieved with repeated calls to clSetKernelArg(). Han-
dling array-type parameters is slightly more complicated. First, each one of them needs
a corresponding cl_mem object (initialized with the required size, lines 8-10); then, the
cl_mem buffer must be mapped to its kernel argument, as done for simple scalars (with
clSetKernelArg(), lines 11-13); last, the input array must be copied into the accelera-
tor device’s own internal memory. The clEnqueueWriteBuffer() function (lines 14-15)
does precisely that, it is the first of a series of functions which operate by putting a new
command into the command queue. Now that the kernel is ready, it can be launched
using the clEnqueueNDRangeKernel() call (line 18). Global work size, local work size
and work dimensions are also set at this point, hence the ND-Range (N-Dimensional
range) naming. To retrieve the kernel’s output, clEnqueueReadBuffer() (analogous
to clEnqueueWriteBuffer()) is employed (line 19). Finally, in order to properly shut
down the OpenCL host application, the user must invoke specific destructor functions
(lines 20-21) to release the OpenCL objects created so far.

Appendix A.1 shows the C equivalent of the pseudocode described in this section. In
order to make the code easier to follow, many simplifications have been made: there is

13

CHAPTER 1. State of the Art

Figure 1.2: A simplified hardware block diagram for the NVIDIA “Fermi” GPU architec-
ture, from [23]

no error checking, it is assumed to have exactly one platform with exactly one device,
and no headers are included.

1.2 OpenCL-enabled accelerators

Graphics Processing Units (GPUs) are a family of specialized circuits, designed
to accelerate the manipulation of images in memory. The typical operation of a GPU
involves applying a specific operation (such a geometric transform, or a more complex
user-defined shader program) to a large homogeneous matrix of data (pixel colors or
vertex coordinates). This computing paradigm is more generally called Single Instruction
Multiple Data (SIMD), and its influences are evident in the design of both the GPU
hardware and the OpenCL programming model.

Figure 1.2 show a (very simplified) example of GPU structure. In the center-right
of the figure, a bunch of Stream Processors (SP) are visible; SPs are the basic building
blocks of the GPU. A generic SP contains a single-instruction issue unit and multiple
ALU (Arithmetic Logic Unit), although the exact design varies between vendors. nVidia
Stream Processors, for instance, are very simple, and only contain an integer ALU, a
floating-point unit and the aforementioned issue unit. AMD Stream Processors instead
err on the side of complexity, containing multiple ALUs, a self-contained register file, and

14

1.2. OpenCL-enabled accelerators

a branch unit. The instruction issuing is also heavier, since the AMD SP is designed as
Very Long Instruction Word (VLIW) machine. VLIW is a type of processing unit design,
in which each instruction specifies multiple operations that the hardware is capable of
executing at the same time.

Multiple SPs (usually 16 or 32) are grouped together forming a Streaming Multi-
processor (shown on the right side of Figure 1.2). A generic Streaming Multiprocessor
also contains the issue logic (the same instruction is issued to all SPs simultaneously), a
cache (shared among SPs), a register file and a variable number of Special Function Units,
which handle particular functions specific to the graphical domain. The term “Streaming
Multiprocessor” itself refers to the nVidia implementation, the AMD counterpart is called
“SIMD core”; in this paper we will use these terms interchangeably.

Finally, the topmost level of the GPU chip architecture, shown in the left half of
Figure 1.2, is comprised of a grid of such Streaming Multiprocessor, along with video
RAM, L2 cache, and the necessary control logic.

Field-Programmable Gate Arrays (FPGAs) are a family of integrated circuits
that the owner can re-configure on the fly to implement a logic-gate network of their
choosing.

Figure 1.3: Altera’s own Logic Block design (Adaptive Logic Module), from [6]. This
design was employed on boards from the Stratix series.

Shown in Figure 1.3 is an example of Logic Block, the basic building block of a modern
FPGA. Each Logic Block is a small, self-contained unit which includes: a small lookup
table (LUT), one or more full-adders, one or more flip-flops, and various multiplexers and
bypass paths, which allow to use just the combinatorial or just the sequential parts alone.
The lookup table is programmable, and is used to implement an arbitrary combinatorial

15

CHAPTER 1. State of the Art

function; along with the full adders (logic circuits which perform addition of integers),
it constitutes the combinatorial part of the logic block. The sequential part of the logic
block is instead composed of the flip-flops. Each flip-flop can hold one bit of memory.

Multiple logic blocks are clustered together forming Logic Array Blocks (LAB); LABs
are then linked together via an “interconnect network”, which is itself re-configurable to
adapt to the user’s design.

The interconnect network is built using many programmable routing switches, inter-
linked by groups of wires called routing channels. The whole infrastructure of LABs,
switches and channels is dubbed fabric.

Modern manufacturers often include also special hard blocks into the fabric, such as
RAM blocks (also known as on-chip RAM, block RAM, BRAM) and DSP blocks (used for
costly floating point operations); in some cases, entire ARM processors are included [6].

An FPGA can implement purely combinatorial circuits, but is itself a clocked circuit,
operating at a frequency set by an external clock. The FPGA’s routing network also
handles the task of distributing the clock signal to all the required regions of the fabric;
for this reason the path followed by the clock signal can variate its length depending on
the particular programming being run at the moment. The external compiler, responsible
for planning the board configuration, is also tasked with setting the frequency of the main
clock, which must be compatible with the delays introduced by the clock paths. For a
particular program, the maximum frequency at which the FPGA clock is allowed to run
is dubbed fMax (measured in MHz).

Historically, the traditional way to program FPGAs was to use an hardware de-
scription language, such as VHDL or Verilog, but recently FPGA manufacturers started
to experiment with more advanced compilers, which allow to program FPGAs using
OpenCL.

The process of compiling an OpenCL program for a FPGA target is divided into two
phases:

1. After a first optimization pass, the .cl code is converted to hardware description
language; a report of the estimated resource consumption is also generated at this
point. This phase is known as high level synthesis, and ranges in duration between
seconds and minutes, depending on the code complexity.

2. From the hardware description code generated in step 1, the synthesis tool proceeds
to create a netlist (a list of all the logic components and their connections). Finally,

16

1.2. OpenCL-enabled accelerators

the elements of the netlist are mapped to the physical resources of the FPGA, with
a process called place-and-route (the placing of the logic components comes first,
followed by the routing of the interconnection wires). The final result of this step is
a bitstream, which is included in the OpenCL binary (.aocx). This last step lasts
various hours.

Figure 1.4: Design workflow for a single-work-item kernel, from [13] (part 1 of 2)

Figure 1.5: Design workflow for a single-work-item kernel, from [13] (part 2 of 2)

The flow charts 1.4 and 1.5 show how the compile steps explained above influence the

17

CHAPTER 1. State of the Art

design workflow of an OpenCL kernel for FPGA; steps involving the Intel compiler are
highlighted in blue, while the white rectangles indicate actions taken by the developer.

The logic circuit obtained from the synthesis process does process the OpenCL work
items in a way which is radically different from GPUs. Rather than building a series of
functional units, the compiler instances a series of stand-alone pipelines, each processing
more than one work item at a time. The Intel manual [14] [13] refers to these pipelines
as Compute units. The Intel/Altera compiler offers an alternative to this paradigm [5],
based on task parallelism instead of the usual data parallelism. Rather than having
multiple “SIMD pipelines” that process multiple work items at a time, the “single work-
item kernel” is implemented by pipelining only the loop iterations. (the implications and
peculiarities of this technique are expanded in the following chapters).

Comparatively to GPUs, FPGAs are best suited for bit-intensive operations (and,
not, or, xor, shift, rotation, masking) and integer operations, while floating point op-
erations are costly. Conditional branches (which are translated to hardware paths) are
also much cheaper.

There is already a wealth of studies in the realm of developing OpenCL application
for FPGAs, but only a few of them are in the domain of cryptography. Among the exist-
ing studies we examined, we want to highlight [18] (study of an OpenCL implementation
of SHA-1 for Xilinx FPGAs), given that has a similar domain, goal and methodology as
our own study.

18

1.2. OpenCL-enabled accelerators

1.2.1 Comparative summary of OpenCL concepts and implementa-
tions

In this section, we directly compare the OpenCL devices described in this chapter.
The following tables juxtapose GPU and FPGA characteristics divided in different do-
mains: the fist tables summarizes the key OpenCL concepts introduced earlier, along
with their respective GPU and FPGA realization. The second table compares price,
performance and energy efficiency of various off-the-shelf GPU and FPGA models. The
third table lists miscellaneous outstanding characteristics of the two device families.

Table 1.1: Quick comparison between various abstract OpenCL concepts and the under-
ying hardware features of OpenCL accelerators.

OpenCL concept GPU realization FPGA equivalent

work-item stream processor no equivalent
work-group SIMD core no equivalent

private memory register file registers
local memory SIMD core’s internal shared memory on-chip RAM blocks
global memory video RAM off-chip DDR

data parallelism SIMD parallelism pipeline parallelism

Table 1.1 strikes a comparison between various OpenCL concept outlined in this
Chapter and their corresponding GPU and FPGA implementation. For the case of
work-items and work-groups, corresponding to SPs and SIMD cores in GPU the world,
we stated that there is no FPGA equivalent, which is true; however, the Intel manual
hints that a Compute Unit can be considered similar to a work group, in the sense that
both process multiple work items at the same time. Private memory is implemented
using registers in both cases, although GPUs have a fixed register file, whereas FPGAs
can implement registers on-demand by drawing from their pool of flip-flops. Local mem-
ory is also implemented in two different ways: intra-Stream Multiprocessor cache on
GPUs, RAM hard-block on FPGAs. Global memory is instead implemented similarly,
with some kind of large off-chip RAM in both cases. Data parallelism (final row), is also
enacted differently. GPUs employ SIMD parallelism, in which multiple work-items run
simultaneously on multiple processing units; on the other hand, FPGAs enact pipeline
parallelism, in which multiple work-items are processed simultaneously by a pipelined
compute unit.

19

CHAPTER 1. State of the Art

Table 1.2: Comparison between various model of GPU and FPGA in terms of computing
power, power consumption and cost. Source: [8]

Platform Model Processing Power Price Price
Power Efficiency Efficiency
(TFLOPS) (GFLOPS/W) (e) (e/GFLOPS)

GPU GeForce GT 730 0.69 7 80 0.10
GPU Radeon R9 390X 5.91 16 420 0.07
GPU Radeon R9 Fury X 7.17 20 600 0.08

FGA Artix-7 200T 0.65 72 190 0.29
FGA Kintex-7 480T 1.80 72 2,500 1.39
FGA Virtex-7 690T 3.12 78 11,200 3.59

Table 1.2 presents examples of various available GPUs (first 3 rows) and FPGAs
(bottom 3 rows), along with data comparing their processing power, energy efficiency,
price and price efficiency. As shown in this data, GPUs tend to have a greater process-
ing power and cost efficiency, on the other hand FPGAs tend to have a better energy
efficiency. At the time of writing, this observation remains true both for the specific
examples shown above and in the general case of GPUs vs FPGAs at large.

Table 1.3: Comparison of miscellaneous special characeristics of GPUs and FPGAs.

GPU FPGA

average clock speed 1000 MHz 200 MHz
floating-point operation cost low high
branch operation cost high low
bitwise operation cost high low

This final table offers a comparison of various outstanding characteristics which would
not fit in the previous tables. First, the average frequency at which the two classes of
devices operate: around 1000 MHz for GPUs, much lower (200 MHz) for FPGAs; this
big difference is also one of the main causes of the disparity in term energy consumption
shown in the previous table. The other 3 rows offer a qualitative estimate of the cost

20

1.2. OpenCL-enabled accelerators

(in term of both time and code/area size) of certain classes of operation. Floating-
point calculations are very fast and cheap of GPU (indeed, floating point performance
is one of the main concern of GPU designers); on the other hand, as stated repeatedly
in the Intel manual, floating point operations are very costly on FPGA. To mitigate
this, the FPGA designer usually introduce hard DPS blocks to overhaul floating point
computations; the Intel OpenCL for FPGA compiler also offers special switches which
simplify the implementation of floating point units, trading precision for speed. Branch
operations, such as those used in loop and if statements, should generally be avoided for
both classes of devices; however, FPGAs can deal with them better, by implementing
the different branches as different hardware paths. On GPUs instead, the problem is
usually “solved” by processing the instruction in both branches, and only retiring the
instructions for the branch which is taken. Some GPUs, as in the case of AMD, are
endowed with special branch units for the precise purpose of making these instruction
less costly. Finally, it is important to consider also bitwise (AND, NOT, OR, XOR,
NOT, bit masking and shift) operations, which take a key role in our domain of study
(symmetric block ciphers). Fine-grained bitwise operation acting on some specific bits
are particularly costly in GPUs (and even CPUs), which have an architecture based on
fixed size words (usually 32 or 64 bit long); in order to manipulate and re-arrange specific
bits, the compiler must generate multiple instructions, which the device has to execute
sequentially, thus costing more memory and time. On FPGAs instead, bit operations are
not a problem, since implementing basic combinatorial functions is already their normal
way to operate.

21

CHAPTER 1. State of the Art

22

Chapter 2

Performance Portability between
GPUs and FPGAs

This chapter is divided into 2 parts. In the first part, we present the OpenCL de-
sign and programming best practices which we studied during the course of the project.
The first section is structured in 3 parts: first, we introduce a general classification for
OpenCL best practices; afterwards, we employ that classification to describe the GPU
best practices which represented our initial point of reference; finally, we decline the
general classification into the OpenCL FPGA best practices which we studied during the
course of the project. The second part of the chapter introduces the various crypto-
graphic concepts and algorithms which serve as a theoretical foundation for our work.

2.1 Reference: OpenCL best practices

We can divide the various OpenCL best practices into four major classes, depending
on their area of influence. First, the class of techniques which allow to maximize the
accelerator’s resource usage in terms of computation time. This category includes
practices such as global work size tuning, local work size tuning and loop unrolling. The
first two techniques involve finding the optimal values for local and global work size,
either by exhaustive search or through educated guesses. The last practice is instead
performed by the compiler, which will attempt to unroll any loop decorated using the
special directive #pragma unroll. The compiled code inlines all the loop iterations, thus
removing the branch/control instructions handling the loop condition. The literature re-
ports speedup of about 3.7× when unsing this class of techniques, for both GPUs [10] [20]

23

CHAPTER 2. Performance Portability between GPUs and FPGAs

and FPGAs [15]; furthermore, FPGAs running a single task kernel can achieve an even
greater speedup of about 7× [15].

The second wide class of OpenCL best practices contains techniques used to maximize
the exploitation of memory resources (local and private) offered by the accelerator.
This is usually achieved by copying a portion of often re-used global data into a local (or
private) memory buffer, processing it, and then writing it back to global memory. In the
case of local memory, the transfer is split among all work items belonging to the same
work group, which will then synchronize using a barrier() primitive; at this point, the
copy operation is considered complete. Despite the apparent advantages offered by local
memory, there are documented cases [27] when a OpenCL FPGA application showed
little to no speedup from the introduction of local memory.

The third big category is made up of those practices which render the access to
global memory more efficient; the techniques used to achieve this in OpenCL are
collectively classified as memory coalescing. The basic idea behind memory coalescing is
to have work items access the global memory with high locality; this can be done both
within a single work item, by accessing global buffers with a simple, predictable pattern
(i.e. linearly), and between different work items, by having consecutive work items access
consecutive memory regions. From a developer’s perspective, memory coalescing involves
properly laying out the global data in memory; for example, switching between storing
a matrix columns-first or rows-first. The literature reports a speedup of about 30x from
improving the global memory access pattern on GPUs [26].

The fourth and final category encompasses the practices which optimize the transfer
of data to and from the host. The essential way to achieve this is the practice
of multi-buffering, which is mostly host-driven, and therefore equally effective for both
GPUs and FPGAs. Multi buffering in OpenCL involves keeping multiple copies of each
kernel, command queue and memory buffer object; the host-side application orchestrates
the input/output transfers and kernel execution in order to maximize the input/output
channel usage: while the kernel is busy processing the current buffer, the next one is
already being independently transferred. Depending on the type of host-device channel,
double-buffering or even triple-buffering can be implemented, providing an ideal speedup
of 2x and 3x respectively. Another relevant practice is that of properly aligning the
buffers used to copy global data to/from the accelerator. The device usually communicate
with the main system memory using a Direct Memory Access (DMA) engine; however,
those DMA implementations often require the DMA buffer to be properly aligned. The
OpenCL runtime is usually capable of detecting misaligned buffers, and will schedule

24

2.2. Reference: OpenCL best practices for GPU

their transfer on a slow, non-DMA channel with a huge performance penalty.

2.2 Reference: OpenCL best practices for GPU

As hinted in the previous chapter, Stream Processors and Stream Multiprocessors
are the GPU equivalent of the OpenCL concepts of work item and work group; the
consequences of this fact are evident in all the GPU best practices. In the case of global
work size tuning, GPUs favor large work sizes, to better exploit the huge number of SPs
available. The process of tuning the local work size is trickier; given an architecture
with 16-32 SPs per Stream Multiprocessor, the programmer should dimension their work
groups as a multiple of that number. Usually, the ideal local work size lies in the interval
128-512, and is dependent on both the CPU vendor/model and on the particular kernel
in use [4]. The effects of loop unrolling must be viewed in light of the internal structure
of the SP, which too varies between GPU vendors. nVidia GPUs employ a simpler SP
with no branch unit, which benefit greatly from loop unrolling. AMD GPUs on the other
hand employ more complex SP endowed with their own branch unit, which are better
able to handle branch operations, and thus see a lesser performance gain, compared to
nVidia.

The bank of fast, locally shared memory included in each Stream Multiprocessor is
used to implement the OpenCL concept of local memory. Private memory is instead
implemented using the Stream Multiprocessor’s register file, which is even faster than
local memory; however given the scarcity of register resource (even scarcer considering
that it must be split across all the SPs in the SM), GPU developers prefer to use only local
memory for caching, and leave the private memory for simple variables. Another reasong
for caching in local memory, rather than in private memory, is the so called “register
spilling”: when allocating a memory buffer too big to fit into the available registers, the
slower global memory will be used instead. Regarding the barrier constructs, we see
them implemented differently by different vendors: AMD cards possess special hardware
to support synchronization; nVidia cards instead handle the synchronization completely
via software.

Memory coalescing is straightforward to implement in the GPU, as the compiler
can simply replace multiple separate load/store instructions with a single load/store
instruction operating on larger data, thus reducing overhead. The detection of such
consecutive load/store operations is performed via static analysis at compile time, but
this analysis can be hindered by code which accesses the memory in convoluted ways,

25

CHAPTER 2. Performance Portability between GPUs and FPGAs

such as making extensive use of pointer arithmetic.

2.3 OpenCL best practices for FPGA

The OpenCL best practice for an FPGA platform differ greatly from those employed
in GPUs and other families of OpenCL capable devices. This is evident from both the
official Intel documentation [14] [13] and our experimental findings.

2.3.1 Work dimension tuning and loop unrolling

Our experimentations focused, since the beginning, on the developement of single-
work-item kernels. This was motivated by the recommendations found in the official
Intel documentation [14] [13], as well as the results of brief tests involving multi-work-
item kernels. Indeed, single work item kernels allow to make better use of the pipeline-
parallelism characteristic of FPGAs.

In order to be considered a single work item kernel by the compiler, an OpenCL func-
tion must satisfy certain prerequisites: Global work size, Local work size and Work di-
mension must be fixed to 1; furthermore, the kernel must not invoke any of the work item
functions specified in the previous chapter (get_global_id(), get_group_id(), get_-
global_size(), get_work_dim(), get_group_id(), get_num_groups(), get_local_-
size()). Of course, such a kernel needs to receive the whole input vector and its
dimension as explicit parameters.

In contrast with the radically different parallelization paradigm, loop unrolling is a
technique which translates well from the GPU to the FPGA world. There are however a
couple of caveats:

• For maximum performance gain, the loop should be free from loop-carried data
dependencies

• Unrolling a complex loop could incur in a big cost in term of area, since the hardware
implementation will duplicate the combinatorial logic used to compute the loop
body.

Where, for some reasons, normal loop unrolling is not applicable, it has proven useful
to manually unroll the loop by a factor 2, by halving the number of loop iteration and
repeating the instruction inside the loop body twice. For even greater performance
enhancements, the programmer could attempt to combine this technique with normal
compiler-driven loop unrolling.

26

2.3. OpenCL best practices for FPGA

2.3.2 Local memory and synchronization

Copying the frequently re-used data to local memory works in the FPGA domain as
well as it does for GPUs. Of course, when using a single work-item kernel, it must be
implemented differently from the GPU variant; an easy way to do it would be to create
a simple “library” function, akin to memcpy in standard C.

Utilizing local memory on a FPGA however yields a couple unique pitfalls; first of all,
the compiler may decide to replicate the local buffer multiple times inside the Block RAMs
(BRAMs), in order to decrease the kernel latency and increase the fMax (the maximum
frequency at which the FPGA hardware is allowed to operate). For this reason, OpenCL
program files containing more than one kernel can reach high level of block-RAM usage;
the programmer could work around this issue by separating independent kernels into
multiple stand-alone .cl files.

Unique to the FPGA domain is also the ability to implement local variables using
flip-flop registers; on top of the general access speedup, the kernel is also made leaner
and faster, because accessing the private memory in registers does not involve load or
store blocks, unlike the case of local and global memory. The programmer can trigger
this behavior by using the special qualifier __attribute__((register)). That being
said, the final decision of whether to use RAMs or registers is always up to the compiler;
this is somewhat similar to register spilling in GPUs, except that the data is spilled into
local memory, rather than global memory.

Another FPGA peculiarity is the implementation of the __constant memory: con-
stant memory is composed of a fixed-size (16KB by default, modifiable at compile time)
cache located inside the block RAM, and a “master copy” located in global memory.
The lookup of a constant memory object passes first through the relatively fast cache; in
case of read miss, the value has to be loaded from global memory, with a big time penalty.

In regards to the use of local memory, we discovered a peculiar compiler quirk. We
found that the Intel compiler tends to implement memory-intensive operation in a rather
explicit way which is usually not ideal.

27

CHAPTER 2. Performance Portability between GPUs and FPGAs

1 int state; 1 int state, tmp_state;

2 int pads[16]; 2 int pads[16];

3 3

4 for (int i=0; i<16; i++) { 4 for (int i=0; i<16; i++) {

5 state = state ^ pad[i]; 5 tmp_state = state ^ pad[i];

6 state = some_function(state); 6 state = some_function(tmp_state

7 });

7 }

For instance, consider the code snippet shown above on the left: we have a variable,
called state, which is repeatedly updated, first (line 5), by xoring with some other vari-
able named pad, then (line 6), with the result of some unspecified function applied on
state itself. The Intel compiler would implement line 6 in the exact way we wrote it: load
state, load pad[i], compute state xor pad[i], store the result to state. However,
the hardware is not capable of both loading and storing the same variable (state) in the
same cycle; the whole pipeline will be slowed down in order to complete the load/store
operations in different cycles. The issue can be fixed by slightly modifying our code, in-
troducing temporary variables / buffers. The snippet on the right achieves exactly this,
with the introduction of the extra variable tmp_state. In line 6, tmp_state is used to
contain the result of state xor pad[i], afterwards, state is updated with the value of
some unspecified function, applied to the temporary state computed before. It’s easy to
see how this modified structure behaves the same as the one in the left snippet, with the
important difference that state is no longer modified in-place. Our example was built
on purpose to show this principle in action; in the real world, restructuring existing code
to accomodate this compiler quirk may be more complicate to pull off.

Given the single-work-item nature of our kernel, there’s not much need for inter-kernel
or intra-kernel synchronization; all the synchronization steps are performed host-side.
There are mainly 4 ways of doing this. First, by using the clWaitForEvents() function,
which receives as input an array of cl_event objects (and its length); the function will
block the program execution until all the events in the list have completed. A simi-
lar technique involves using wait lists, a couple of optional parameters in clEnqueue*

functions, which specify a set of events that has to complete before the new enqueued

28

2.3. OpenCL best practices for FPGA

operation can start. clEnqueue* functions can also optionally fire a cl_event on comple-
tion, thus allowing to “daisy chain” enqueued operations. The events are opaque objects,
representing the state of an enqueued command; the user does not manage them directly,
but instead relies on specific OpenCL API functions designed to react to specific events.
An example of this technique is shown in our OpenCL host side boilerplate Listing A.1
(the relevant part has also been reported here).

Listing 2.1: fragment from OpenCL host-side boilerplate code

51 clEnqueueNDRangeKernel(

52 command_queue ,

53 kernel,

54 work_dim ,

55 NULL,

56 &global_work_size ,

57 NULL, // let the implementation choose the local work size

58 0, NULL,

59 &kernel_complete);

60
61 clEnqueueReadBuffer(command_queue , buffer_C , CL_TRUE, 0,

vector_length , C, 1, &kernel_complete , NULL);

The final parameter of the clEnqueueNDRangeKernel() call is a pointer to the event
kernel_complete; on return, the function sets the event object to represent the execution
of this particular kernel. On line 61, we see how the clEnqueueReadBuffer() invocation
makes use of wait lists: the 8th parameter (&kernel_complete) is an array of events;
the 7th parameter (1) is the length of the array. These parameters specify a list of
events that must reach the complete (CL_COMPLETE) state before the newly enqueued
operation (reading buffer_C) can begin. Another, easier way to achieve synchronization
is to simply use blocking operations; clEnqueueReadBuffer and clEnqueueWriteBuffer

both expose a boolean parameter which allows the programmer to switch their behavior
between blocking and non-blocking. Finally, the OpenCL command queues offer a degree
of synchronization by default; all the operations inserted into the same command queue
are guaranteed to be issued and completed in the same order they were enqueued by the
host. This is the default behavior, but the programmer can override it by setting the
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE flag when creating the command queue.

We have found that it’s best to use more than one technique as the same time, as

29

CHAPTER 2. Performance Portability between GPUs and FPGAs

done in Algorithm 2.3.1 (the algorithm is explained extensively in the upcoming section),
which is built around the idea of enqueuing most of the operations in a quick “burst”,
and only waiting for the last one to complete. There are however some small caveats to
consider. In Algorithm 2.3.1, we did use multiple queues without any form of inter-queue
synchronization; this is perfectly fine in our domain (implementation of the ECB, CTR
and XTS modes of operation for certain block ciphers), but not in general, especially in
presence of some kind of on-device state which persists across kernel executions. The
command queues do also have a limited (implementation dependent) capacity, and the
burst code should be built with safeties against overloading the queue; our solution was
to periodically perform a blocking “synchronization step” (using clWaitForEvents or a
blocking read). Another important fact to consider is that, as required by OpenCL, the
input buffer should remain unchanged during the duration of write operation; being the
write operation nonblocking, there is no way for the caller to know when they can reclaim
the input buffer, save for waiting the final synchronization. In contrast to Algorithm 2.3.1,
which only returns after the final synchronization with no issue in this sense, our final
implementation employs primitives which process single blocks on-demand. In order to
satisfy the OpenCL requirement while also keeping our flexible design, we introduced
an optional callback to notify the caller when the input buffer is safe to re-use. To do
so, we leveraged the method clSetEventCallback, which allows to associate a specified
cl_event with a custom callback.

2.3.3 Global memory access optimization

Memory coalescing is implemented similarly on FPGAs and GPU; the main difference
is that, while GPUs have discrete load/store unit (usually located inside the SM), the
FPGA must instead infer load/store units using LUT and FF resources. Indeed, better
memory coalescing also results in lower resource consumption.

During the course of our experiments, we were limited to the domain of block ciphers,
which do already access their input and output buffers in a simple linear way, offering
no room for further improvements.

What we tried was to compile the same kernel with and without memory interleav-
ing. Memory interleaving is a feature which allows to store the input/output buffers
interleaved in global memory; this would allow better memory coalescing for operation
involving multiple buffers, such as addition of two vectors.

As shown in the following chapter, this feature didn’t change the performance of our

30

2.3. OpenCL best practices for FPGA

kernel at all.

2.3.4 Host-device transfers optimization

While working with task-parallel single-work-item kernels on FPGAs, it is critical to
consider the dual concepts of multi-buffering and multiple alias kernels. Multi-buffering,
as already described above, is particularly useful when the input/output transfer is the
bottleneck; the multi-buffer infrastructure must manage multiple instance of the same
OpenCL objects, including kernel objects pointing to the same __kernel function. The
“multiple alias kernel” technique is instead useful when kernel execution is the bottleneck;
the host-side and device-side code structures are almost the same, with a key difference.
In order to use this design pattern, the programmer must explicitly declare multiple
“alias” kernel function in their OpenCL code (i.e. kernelFun_1(), kernelFun_2(), ...),
in order to have the compiler generate multiple coexisting pipelines; on the host-side
initialization code, the various kernel objects must be initialized to point to different
kernel “aliases”.
Algorithm 2.3.1: Pseudocode for host side multi-buffering
Data: constant NB , number of buffers used
Input: Input blocks In[], Kernel objects K[NB], Memory buffer objects

Mwrite[NB], Memory buffer objects Mread[NB], Command queues
Q[NB]

Output: Output blocks Out[]
1 b←− 0;
2 while has new input blocks do
3 enqueue_async_write(Q[b], next_input, Mwrite[b]);
4 setup_kernel_params(K[b], Mwrite[b], Mread[b]);
5 enqueue_async_exec(Q[b], K[b]);
6 enqueue_async_read(Q[b], next_output, Mread[b]);
7 b←− (b+ 1 mod NB);

8 for i← 0 to NB do
9 wait_for_finish(Q[i]);

Algorithm 2.3.1 shows an example of the host-side architecture for managing a multi-
buffered infrastructure; depending on how the kernel objectsK[] are initialized, this same
code could handle both simple multi buffering and the “kernel replication” discussed be-
fore. The algorithm is expressed in pseudocode which is close in style to the underlying

31

CHAPTER 2. Performance Portability between GPUs and FPGAs

OpenCL version, but unneeded details have been abstracted away. In line 1, we initialize
variable b (current buffer). For every input block available, we run an iteration of the
main loop (line 2); we don’t assume to know a priori the amount of blocks which the
algorithm will consume. For each iteration, a series of asynchronous operations are in-
serted into the current command queue (Q[b]): the transfer of the incoming input to the
device (line 3), the execution of the current kernel (line 5), the transfer of the resulting
output from the device (line 6). Furthermore, buffer read/write commands also require
an OpenCL memory buffer object to act as a destination/source; before running the
kernel, we make sure that said buffers are correctly mapped as kernel parameters (line
4). Finally, we swap buffer (line 7) and continue looping. Once there are no more input
blocks to process, we can enact the final synchronization phase: for all available buffers
(line 8), we wait the corresponding command queue to complete all operations (line 9).

Due to a limitation in the board’s Direct Memory Access (DMA) controller, all mem-
ory transfer to and from the host system needed to use memory buffers with a proper
alignment (in our case, 64 bit). It’s the programmer’s duty to allocate a buffer with
the proper alignment, for instance, using the aligned_alloc() function, defined in
stdlib.h. Failure to properly align the buffer is not catastrophic, but the driver will be
forced to use very slow non-dma transfer.

32

2.4. GPU and FPGA best practices compared

2.4 GPU and FPGA best practices compared

Table 2.1: The following table summarizes in synthetic form the FPGA and GPU best
practices discussed above, comparing and contrasting equivalent techniques across the
two domains.

OpenCL best practice GPU equivalent FPGA equivalent

Global work size tuning Large work size Global work size = 1
Local work size tuning Fine-tuned local work

size (multiple of 32)
Local work size = 1

Loop unrolling Loop unrolling Loop unrolling; manual
partial loop unrolling

Cache data in local memory Cache data in shared
memory

Cache data in BRAMs

Cache data in private memory Not used Cache data in registers
No equivalent No equivalent Same variable load/s-

tore quirk
Synchronization barrier-based device-

side synchronization
cl_event-based host-
side synchronization

Memory coalescing Locality of global mem-
ory access

Locality of global mem-
ory access; compiler-
driven memory buffer
interleaving

Multi-buffering Multi-buffering Multi-buffering; Multi-
task-parallel-workers

Host-side buffer alignment Host-side buffer align-
ment

Host-side buffer align-
ment

The table above offers a brief summary of the best practices discussed in this chapter.
Useful new practices not included in the Intel programming manual [14] [13] are listed
with emphasis. In order, these techniques are: Manual partial loop unrolling, which
we found to be very effective in practice (Altera’s online discussion forums also provide
anecdotal evidence in support of manual loop unrolling on FPGAs). The quirk occurring
when loading and storing the same variable in the same statement is also a new finding.

33

CHAPTER 2. Performance Portability between GPUs and FPGAs

Finally, the technique used to create multiple seamless workers via kernel aliasing is
also a novel one, exploiting task parallelism which was itself briefly explained in the
documentation. In chapter 4, we make the case for a source-to-source compiler for
translating a GPU-oriented OpenCL kernel into a FPGA-oriented one, based on the
similarities and differences discussed in this chapter.

2.5 Our case of study: symmetric block ciphers

The studies and experimentations conducted during our project are localized to the
domain of cryptography; specifically, we set the goal of optimizing the implementation
of 9 ISO standard symmetric block ciphers (AES, DES, Camellia, CAST5, CLEFIA,
PRESENT, MISTY1, HIGHT and SEED). For each of those ciphers, we implement
methods for handling the ECB, CTR and (when applicable) XTS mode of operation.

A symmetric encryption scheme is formally defined as a tuple

< A,M,K, C, {Ek(), k ∈ K}, {Dk(), k ∈ K} >

where
Ek :M→ C

Dk : C →M

In other words, we have a bijective function, called the encryption function (Ek()),
which maps elements from the plaintext set (M, also known as “message space”) into
elements of the ciphertext set (C, also known as “ciphertext space”), using a specific key
k belonging to the set of keys, or “keyspace” (K). The decryption function, similarly,
maps elements from the ciphertext space into elements of the message space, and is
also bijective. The encryption scheme is called “symmetric” when the encryption and
decryption functions both use the same key, in such a way that applying the decryption
function on the result of the encryption function yields the initial message (Dk(Ek(m)) =

m) and vice-versa (Ek(Dk(c)) = c).

Elements of both the message space and the ciphertext space are constructed as
strings of elements from the alphabet set A. A block cipher is an encryption scheme which
breaks the whole plaintext into blocks of a fixed length (blocklength) over the alphabet
A, and then encrypts one block at a time [19]; the block length is usually expressed in bit.

34

2.5. Our case of study: symmetric block ciphers

Since most real-world message exceed the blocklength, we need a technique to prop-
erly apply the block cipher primitive onto a larger multi-block message. The family of
techniques used for this purpose is called “modes of operation”.

The simplest of all modes of operations is the Electronic Code Book (ECB) [19]
mode. ECB works by evenly splitting the whole input message into blocks of size block-
length; to do so, the input message must have a total length which is multiple of block-
length. Once the message has been split, the encryption function processes the input
blocks separately; the single output ciphertext blocks are concatenated to form the com-
plete ciphertext. In order perform decryption, it is sufficient to swap the encryption func-
tion with the one for decryption. The fact that each encryption operation is independent
from the others makes ECB trivial to parallelize, but this fact also brings some intrinsic
weaknesses. First of all, identical message blocks are translated into identical ciphertext
block, thus leaking information about the structure of the original plaintext, provided
that the message contains many repeated block. Furthermore, ECB does not provide
any data integrity checks, thus allowing the ciphertext blocks to be freely swapped, re-
arranged and individually modified (although the individual modification does result in
a “garbled” decrypted block).

Another mode of operation we used in our project is the Counter (CTR) mode. To
set up CTR mode, another special parameter is needed; this parameter is called Initializa-
tion Vector (IV), and is used to initialize the value of an internal variable called “counter”.
The length of the IV must be equal to the blocklength of the blockcipher being used. The
Counter Mode routine works by incrementing by one the counter variable, which is then
encrypted using the blockcipher’s encryption primitive. Finally, the encrypred counter
is xor-ed with a message block (the message is split into blocks in the same way as for
ECB), yielding the corresponding ciphertext block. Since the counter is always incre-
mented by one, we can compute, for the i-th block, the corresponding value of the counter
as IV + i. Given that we can compute the value of each counter independently from the
predecessor, this mode of operation can too be efficiently parallelized:

Ci ← Ek(IV + i)⊕Mi (2.1)

For the i-th message blockMi and ciphertext block Ci. Another useful feature of CTR is
that the Counter-mode encryption procedure is identical to the Counter-mode decryption
procedure; furthermore, CTR only makes use of the blockcipher’s encryption primitive.

35

CHAPTER 2. Performance Portability between GPUs and FPGAs

For this reasons, CTR is often used in contexts where hardware and memory resources as
scarce, such as in embedded devices. Compared to ECB, CTR does not encrypt identical
message block into identical ciphertext block, and is also immune to block rearranging;
however, CTR remains unable to detect change made to single ciphertext blocks; even
worse, flipping specific bits of the ciphertext will result in flipping the corresponding
bits of the plaintext. Another caveat on the use of CTR is the IV choice: the IV should
be chosen unpredictably (i.e. using a good random number generator), and never re-used.

Finally, we implemented also a third mode of operation: XEX-based tweaked-codebook
mode with ciphertext stealing, or XTS [2].

To properly explain its structure, we will split the name into 2 parts, first: “XEX-
based tweaked-codebook” [22]. The structure of a XEX-based tweaked-codebook superfi-
cially resemples that of CTR, in the sense that an initialization value is used to generate
a series of sequential pads, which are then merged in some way with the plaintext blocks.
To do so, XEX maintains an internal variable, called “tweak”; the tweak is initialized
using an user-supplied “tweak initialization value” (i), which XEX then encrypts using
a second key dubbed “Key 2”. As in the case of CTR, the tweak must have the same
length as the block cipher’s blocklength. For each mesage block (the original message is
split according to the usual technique as in ECB and CTR), the following block routine
is executed:

T ← Ekey2(i)⊗ αj

Cj ← Ekey1(Mj ⊕ T)⊕ T
(2.2)

For the j-th plaintext block the XEX encryption routine acts this way: first, the
encrypted tweak initializer is considered as an element of the Galois Field GF (2128) and
is multiplied by αj , where α is a primitive element of the aforementioned Galois Field.
Then, the j-th plaintext block is encrypted using the tweak we updated before for pre-
whitening and post-whitening (in other words, we encrypt the value of plaintext xor
tweak, then the obtained ciphertext is xored with the tweak again). The key used in this
step is called “key 1”.

36

2.5. Our case of study: symmetric block ciphers

Figure 2.1: Diagram of the XTS-AES block encryption procedure, from [2]

This rather complex block encryption procedure is shown in Figure 2.1; this example
makes use of the AES blockcipher. Also note that the XEX block decryption procedure
only differs in using decryption with key 1, instead of encryption with key 1:

T ← Ekey2(i)⊗ αj

Mj ← Dkey1(Cj ⊕ T)⊕ T
(2.3)

In our implementation, we used the Galois Field GF (2128), with field polynomial
f(x) = x128 + x7 + x2 + 1 as per specification [22]. Furthermore, we defined XTS
methods for all the block ciphers with a compatible 128 bit block length, even though
the specification [2] only covered the use of XTS along with the AES blockcipher.

To get a complete implementation of XTS, we must add a component to perform
ciphertext stealing. Ciphertext stealing is a technique used to deal with long messages
having a length not multiple of the blocksize; this method can be used alongside any
existing mode of operation, but in this paper we will only use it alongside XEX.

37

CHAPTER 2. Performance Portability between GPUs and FPGAs

Figure 2.2: XTS-AES encryption of last two blocks when last block is 1 to 127 bits,
from [2]

The ciphertext stealing procedure is rather complex, but only involves the last full
block plus the last partial block, as shown in Figure 2.2; this diagram for ciphertext
stealing uses the XEX block encryption defined above as a procedure.

We assume to be XTS-encrypting a message unevenly split in blocks of size block-
length, where the first blocks, numbered from 0 to m − 1, are precisely blocklength-bits
long; the last block, with index m, contains a number of bit lower than the blocklength.
Blocks up to m− 2 are encrypted using the usual XEX encryption procedure described
above; the ciphertext-stealing procedure only involves the last 2 blocks. Ciphertext
stealing operates in two steps: first, the last full plaintext block (with index m − 1) is
encrypted normally using the XEX procedure; afterwards, the corresponding ciphertext
block (called CC in the figure) is not concatenated to the previous ciphertext blocks
(with index up to m−2); it is instead saved for later re-use. Since the very last plaintext
block (with index m) is partial, the missing part is constructed by “stealing” the corre-
sponding bits from the ciphertext CC we saved earlier. The XEX encryption routine
is then applied to this “hybrid” block, and the corresponding ciphertext is enqueued to
the output array of blocks (in position m− 1). Lastly, the final partial ciphertext block
(index m) is obtained simply by copying the initial bits of CC , the amount of bit copied
is equal to the length of the last partial input message block.

38

2.5. Our case of study: symmetric block ciphers

Figure 2.3: XTS-AES decryption of last two blocks when last block is 1 to 127 bits,
from [2]

In order to decrypt a message encrypted using XTS, we proceed almost the same way,
with two important differencies. First of all, we must obviously call XEX-decryption
routines; second, we must swap the tweaks used to compute the last full block and the
last partial block, as shown in figure 2.3.

Typically, XTS is used in for encrypting data at rest (i.e. disk encryption); however,
XTS does not include any data integrity check of its own, and should be paired with an
auxiliary data checksum system to protect data integrity.

39

CHAPTER 2. Performance Portability between GPUs and FPGAs

Table 2.2: This table lists all the ISO standard ciphers we tested, along with details of
their interface and internal structure

Cipher name Block length Key size(s) Round structure
bit bit

AES 128 128, 192, 256 SPN
DES 64 56 Feistel network
Camellia 128 128, 192, 256 Feistel network
CAST5 64 40 up to 128, 8 bit increment Feistel network
CLEFIA 128 128, 192, 256 Feistel network
HIGHT 64 128 Feistel network
MISTY1 64 128 Feistel network
PRESENT 64 80, 128 SPN
SEED 128 128 Feistel network

Table 2.2 lists all the block ciphers used in the course of our experiments; in the next
section, we will describe them one by one, with particular focus on AES.
All real-world block ciphers are designed around a common architecture, divided into
two parts: the key schedule and the round structure. The key schedule is a function
which expands the user-provided key into a variable number of round keys, used by the
round structure. The round structure is a complex routine, composed of a fixed sequence
of atomic round functions; the round structure takes the plaintext and the round key
as inputs, and yields the ciphertext as output. The round structure also maintains
an internal state which is initialized using the plaintext, and is transformed into the
ciphertext by the time the encryption is complete. Each atomic round function operates
a series of basic transformations on the cipher’s internal state, based on the current round
number, the current state, and the current round key.

Note that in our project we focused on the round structure design (implemented as
an OpenCL kernel); the key schedule was instead run on the host system, using code
with little to no modification from the existing reference implementations.

AES [11], originally known as Rijndael, is a widespread block cipher, characterized
by an internal structure organized as a Substitution Permutation Network (SPN), a 128
bit block size, and a key length of 128, 192 or 256 bit. The key length determines the
number of rounds (respectively 10, 12 and 14 rounds) and the size of the round keys

40

2.5. Our case of study: symmetric block ciphers

Figure 2.4: AES round structure

expanded in the key schedule (respectively 44, 52 and 60 32-bit words). The single AES
round function is constructed as a series of primitive operations (SubBytes, ShiftRows,
MixColumns and AddRoundKey) on its internal state; the AES state is a 128-bit number,
represented as a grid of 4x4 bytes. At each round, four 32-bit words of round key material
is consumed.

Figure 2.4 shows the AES round structure, an example of SPN design: the SPN is
built as a repetition of simple round functions which transform their input state into
output state. Inside the round function are a series of primitive transformations, each
performing a specific task. SubBytes executes substitution of each byte in the 4x4 input
state, using a special lookup table (S-box) designed for this purpose. ShiftRows rotates
each row in the grid of a fixed amount (respectively, the first, second, third and fourth
rows get rotated 0, 1, 2 and 3 places to the left). MixColumns operates on each indi-
vidual column, which is transformed by multiplication with a fixed 4x4 matrix. Finally,
AddRoundKey performs xor addition between the state and the round key.

There are two (plus one) major ways to implement such a round structure: The
“schoolbook” implementation, which uses 3 separate functions for SubBytes, ShiftRows
and MixColumns. A single 256 byte s-box is used inside the SubBytes procedure. For
decryption, the round structure must be inverted, and the equivalent functions InvSub-
Bytes, InvShiftRows and InvMixColumns must be invoked. InvSubBytes makes use of
a second 256 byte “inverse-s-box”. The “T-tables” implementation conflates the 3
functions SubBytes, ShiftRows and MixColumns together into 4 lookup tables (256× 4

bytes each). For decryption, there are 4 equivalent inverted T-tables, plus one extra
256 byte decryption-only T-table. A compact variant of the T-tables method is also
available, in which only the first 256× 4 byte T-table is stored for both encryption and
decryption, and the other 3 tables are generated applying a rotation of 8, 16 or 24 bit to
the “master” T-table.

41

CHAPTER 2. Performance Portability between GPUs and FPGAs

In our study, those 3 styles where dubbed for brevity “small”, “big” and “medium”
respectively. As stated in the introduction, we used these AES implementations as a
testbed for possible improvements, with the intent of using said improved versions as a
basis to develop the other ciphers examined.

Besides AES, only PRESENT is structured as a Substitution Permutation Network;
all the other ciphers implement either a textbook Feistel Network or some variations on
the basic Feistel formula. PRESENT [9] is a very simple SPN, composed of 31 complete
rounds, plus one final key addition. The round function is also very plain, divided in xor-
key-addition, substitution using 4-bit S-boxes, and a simple bit permutation. As expected
of an SPN cipher, the decryption function simply performs the rounds backwards, and
makes use of the reverse substitution and reverse permutation procedures. Among the
blockciphers presented here, only DES [1] and SEED [17] are structured as a standard
Feistel Network.

Figure 2.5: Diagram of a simple 2-round Feistel Network

In the “schoolbook” Feistel Network (Figure 2.5), the cipher’s state is made up of 2
half-blocks, initialized splitting the input block in 2 parts. At each round, the “right”
half is run trough a Feistel function (F) (which performs key addition, s-box substitu-

42

2.5. Our case of study: symmetric block ciphers

tion and permutation), and is then xor-added to the “left” half; finally, the two resulting
half-blocks are swapped. This scheme allows to re-use the exact same code/hardware for
both encryption and decryption, just by inverting the order of the round key used. In the
figure above, the round keys are marked as K0 and K1. In the case of SEED, the Feistel
function is also implemented as a tiny Feistel network; for this reason, SEED is often
classified as a “nested Feistel network”. The other ciphers listed above employ modified
versions of the usual Feistel network. Camellia [7], for instance, performs an additional
“special round” every 6 Feistel rounds, in which the state is processed using a special
function FL (and its inverse). Pre and post whitening steps are also used, respectively
before the start and at the end of the Camellia round structure. This special design still
allows for re-using the same structure for encryption and decryption, provided that the
sub-keys (Feistel round key, “special” round key and whitening key) are properly inverted.
The reason for this lies in the usage of FL; FL is applied to the right half of the state,
while its inverse is applied to the left half, thus keeping the whole structure invertible.
MISTY1 [21] employs a similar structure; however, in this case the same FL is applied to
both halves, thus requiring to create a stand-alone decryption routine which uses inverse-
FL in its special round. Another outstanding characteristic of MISTY1 is the usage of
different round functions for odd-numbered and even-numbered rounds. CAST5 [3] also
uses multiple Feistel functions (3, run cyclically), but the Feistel structure is the standard
one. In the case of CAST5, the need for a special decryption routine emerges from the
fact that the 3 different functions must be ordered differently. HIGHT and CLEFIA are
the most peculiar ciphers, since their structure, known as “generalized Feistel network”
strays further from the original Feistel paradigm. In the case of HIGHT [12], the input
is split into 8 sub-blocks (also known as branches); those branches are then grouped into
pairs. Each pair is ran through the usual routine of “process the right half with F, add
the result to the left”; however, there are no swaps between branches, the entire sub-block
array is rotated to the left. HIGHT is also special for the reason that its round functions
does not use any S-box at all, but instead relies on modular addition for the “confusion”
component. A component of a block cipher is said to add confusion when it makes
the relation between key and ciphertext as complex as possible [19]. The blockcipher
CLEFIA [25] also employs a generalized Feistel network, albeit with only 4 branches and
a more complex round function (with S-box substitution). For the sake of completeness,
we must note that CLEFIA’s key schedule does in fact use a 8-branch generalized Feistel
network.

43

CHAPTER 2. Performance Portability between GPUs and FPGAs

44

Chapter 3

Experimental Evaluation

In this chapter, we present and discuss the experimental data gathered from the
OpenCL implementation of the various ISO standard block ciphers introduced in the
previous chapter (AES, DES, Camellia, CAST5, CLEFIA, PRESENT, MISTY1, HIGHT
and SEED). In the first part we step through various iterations of the AES blockcipher,
which we used as a reference algorithm to study various possible design and programming
techniques. The various AES implementation encompasses all the design best-practices
described in chapter 2, as well as a few techniques which revealed to be unsuccessful.
After this vertical perspective, we show the results obtained from the 8 other block
ciphers, implemented from the ground-up using the AES best-practices as a reference.

3.1 Test environment

The tests were conducted on an ATTILA -PROD board B.1 (RXCA10X115PF40-
IDK00A), based on the Altera Arria 10 GX series. The host system is a server running
Gentoo Linux (kernel version 4.4.95), with 32 Intel(R) Xeon(R) E5-2620 v4 CPU cores
and 125 GB of RAM. The FPGA is connected to the host system using a PCI-E channel.
We used the Intel FPGA toolkit version 16.1; the compiler version string (aoc �version)
is Version 16.1.0 Build 196.
The test routine consists of 100 repetitions of the ECB encryption procedure with a
random payload. After a battery of 100 repetitions, the payload size is increased by
4MB, then the test is repeated. The maximum payload size is capped at 2GB, but
usually the test stops much earlier (around 120 MB), when the OpenCL API returns an
out of memory error (due to some implementation bug). In the cases where a blockcipher

45

CHAPTER 3. Experimental Evaluation

allows multiple choices for the key length, we have chosen to use the most common:

• AES-128

• Camellia-128

• single DES (56 bit)

• CAST5-80

• CLEFIA-128

• PRESENT-80

3.2 Metrics employed

There is a wealth of available indicators for the performance of our kernels, organized
in various tables throughout this chapter. The simplest one is the throughput calculated
using the test routine, which gives a good blackbox evaluation for the “quality” of a
design iteration. As specified before, our test system drives the tested function with
payloads of increasing size; therefore, the throughput indicator (“max throughput” in the
table) is in fact and indicator of the best throughput across all the block sizes tried, and
comes bundled with the best payload size value. In later experiments, we introduced
an advanced custom profiler, capable of extracting a series of statistics from the test
execution timeline; these evaluations are summarized by the top Kernel/IO indicator,
which express the ratio between the average execution time of the kernel and the average
input+output transfer time. Said value is computed over a time-window around the
moment when the best throughput was encountered.

Another pair of straightforward indicators is the fMax and the II (Initiation Interval),
as returned from the Intel FPGA OpenCL compiler. As explained before, fMax indicates
the maximum frequency at which the FPGA’s circuitry can operate, when running a
particular cl_program; for the FPGA used in our tests, the maximum allowed frequency
is 300MHz. The II describes, for each pipelined loop present in the code, the amount of
clocks to wait between consecutive iterations of the loop; the ideal II value is 1 (the new
iterations are issued with no delay). Since the typical program contains more than one
pipelined loop, our table only shows the worst (highest) II. Both fMax and II give an
idea of how many iterations per second we’d be able to obtain, without actually running
any benchmark.

46

3.3. Experimental validation of programming practices

The compiler also provides a detailed breakdown of the hardware resources used by
the OpenCL program; the percentage of lookup tables (LUT) occupied, the percentage
of Flip Flops (FF) occupied, and the percentage of Block RAM (RAM) used. On top of
those area resource indicators, later experiments also keep track of the kernel compilation
resources, in term of total compiler run-time and maximum resident memory required
by the compile processes.

Another useful metric is the area-time product ; the value of the area term is obtained
from the compiler-generated report, which has a specific field for the device’s “Logic
utilization”; for the FPGA used in our tests, 100% logic utilization corresponds to an
absolute logic utilization of 427200. The time term was instead computed as the time
needed to process 1 Megabyte of data (simply the reciprocal of the throughput expressed
in MB/s).

3.3 Experimental validation of programming practices

In this section we show how the programming practices exposed in the previous
chapter can be used to design an increasingly better AES implementation. The data
from the upcoming experiments are gathered in a series of tables, and show a subset
of the metrics described in the previous section. During the course of our exposition,
various diagrams will also be introduced when needed.

As a side note, these first AES variants only implement kernels for ECB encryp-
tion, ECB decryption and CTR, XTS will be introduced later on. However, we are less
concerned about the XTS kernel as we are for the ECB one, since the benchmarking
procedure only involves the ECB routines.

3.3.1 Initial implementation

Since there are no prior examples to show, this first iteration will provide a reference
implementation.

The small variant is a pretty straightforward translation of the AES round structure
(Figure 2.4) into code; a single main loop over the AES rounds, which makes calls
to the various functions implementing key addition, row shifting, column mixing and
substitution; the substitution is implemented using a single s-box as specified in the
standard. In this version, the AES state is kept as a single private buffer, and all the
modifications are carried out strictly in-place.

47

CHAPTER 3. Experimental Evaluation

Medium and Big are implemented in a slightly different, more complex way, having
the t-table substitutions hidden behind specific C macros; these macros do however
require a distinct input and output state to operate, (each output column is a function
of all the 4 input columns), therefore in-place modification is not possible. This in turn
required to re-structure the main loop to perform two iterations at once, using also an
intermediate temporary state. There are also smaller differences, such as having the
internal state comprised of 4 32-bit words, rather than 16 8-bit characters; two unrolled
loops have the purpose of copying the internal 32-bit state to and from the 8-bit state
passed as a parameter to the encrypt function.

48

3.3. Experimental validation of programming practices

Figure 3.1: aes_medium block diagram, Initial Implementation. Instructions are shown
as circles and diamonds, functional blocks are shown as rectangles, memory accesses
and control paths are shown as arrows. Global memory and instruction accessing global
memory are highlighted in blue; un-optimized function blocks are highlighted in red.

For reference, the compiler-generated block diagram for aes_medium is shown in
Figure 3.1. (At this point in the project, medium was used as the standard reference im-
plementation). The diagram shows a simplified logical representation of the aes_medium
program, which sits in-between the high level OpenCL code and the low level hardware
description language. The diagram is composed of various instructions, represented as
circles or diamonds, which are then grouped together into functional blocks (rectangles).

49

CHAPTER 3. Experimental Evaluation

The official Intel report tool offers a web interface, which provides additional comments
for each block and instruction, and allows to link each functional block with the corre-
sponding OpenCL lines of code. Both the control flow and the memory accesses are
depicted as arrows, whereas the memory resources are represented with colored rectan-
gles. In this graph, the global memory (DDR) is depicted as a blue rectangle; load/store
instructions interacting with the global memory are highlighted using the same color.
The report tool does also identify badly optimized code blocks and instructions, and
highlights them, respectively, in red and yellow, as shown in this example; the specific
blocks marked in Figure 3.1 refer to the key-addition functions.

For the sake of brevity, we won’t report here the host code used to drive this kernel;
it is comprised of a simple sequence of push input, run kernel, get output operations,
all running in blocking mode, and is rather similar to the snippet (Listing A.1) provided
in chapter 1. This host-side structure will remain pretty much unchanged until later
iterations of the project.

3.3.2 Round key cached in local memory

We modified the previous implementation introducing a new logic to store the key
locally, and altered the function signatures accordingly. The modification amounted to
the addition of a __local buffer for storing the key, plus a simple re-implementation of
the memcpy function.

50

3.3. Experimental validation of programming practices

Figure 3.2: aes_medium block diagram, Round key cached in local memory. Instructions
are shown as circles and diamonds, functional blocks are shown as rectangles, memory
accesses and control paths are shown as arrows. Global memory and instruction accessing
global memory are highlighted in blue; local memory blocksare highlighted in green; un-
optimized function blocks are highlighted in red.

The block diagram (Figure 3.2) for this iteration of aes_medium shows that indeed a
couple of local memory buffers (BRAM) were added. The greenish shade of blue indicates
double-pumped local memory banks (double-pumping is a technique which increases the
block RAM read speed, at the cost of area).

51

CHAPTER 3. Experimental Evaluation

Table 3.1: Test data gathered from a AES implementations with or without storing the
key into local memory, part 1 of 2

Technique Codename LUT FF RAM fMax worst II
% % % MHz

Initial implementation small 13.19 12.08 24.78 - 97
Initial implementation medium 14.61 13.91 29.55 - 6
Round key cached in local
memory

small 17.05 17.2 44.2 207.25 97

Round key cached in local
memory

big 14.08 15.24 30.17 244.97 6

Round key cached in local
memory

medium 14.1 15.29 30.17 211.86 6

Table 3.2: Test data gathered from a AES implementations with or without storing the
key into local memory, part 2 of 2

Technique Codename max at payload area-time
Codename throughput size product

MB/s MB Logic*s

Initial implementation small - - -
Initial implementation medium 333.71 120.0 -
Round key cached in local
memory

small 3.60 80.0 29,189

Round key cached in local
memory

big 451.82 80.0 212

Round key cached in local
memory

medium 411.82 76.0 233

Tables 3.1 and 3.2 show the experimental data gathered from running the various
AES variants, with and without using the local memory optimization. This modification
resulted in a noticeable improvement in aes_medium’s throughput (from 333.71 to 411.82
MB/s, equivalent to a 23% speedup). On the other hand, the performance of kernel
“small” was comparatively very poor (3.6 MB/s).

52

3.3. Experimental validation of programming practices

3.3.3 Disable buffer interleaving

Table 3.3: Test data gathered from a AES implementations with or without enabling
memory interleaving, part 1 of 2

Technique Codename LUT FF RAM fMax worst II
% % % MHz

Interleaving enabled (default) small 17.05 17.2 44.2 207.25 97
Interleaving enabled (default) big 14.08 15.24 30.17 244.97 6
Interleaving enabled (default) medium 14.1 15.29 30.17 211.86 6
Interleaving disabled small 17.05 17.2 44.2 - 97
Interleaving disabled big 14.08 15.24 30.17 - 6
Interleaving disabled medium 14.1 15.29 30.17 - 6

Table 3.4: Test data gathered from a AES implementations with or without enabling
memory interleaving, part 2 of 2

Technique Codename max at payload area-time
Codename throughput size product

MB/s MB Logic*s

Interleaving enabled (default) small 3.60 80.0 29,189
Interleaving enabled (default) big 451.82 80.0 212
Interleaving enabled (default) medium 411.82 76.0 233
Interleaving disabled small 3.60 80.0 -
Interleaving disabled big 452.12 76.0 -
Interleaving disabled medium 411.71 72.0 -

Compiling the code with memory interleaving disabled (�no-interleaving default)
resulted in no visible changes in the throughput or the area usage (as shown in tables
3.3 and 3.4). We decided to leave interleaving disabled anyway, as having input, output
and round key stored as contiguous buffers made more sense than allowing the compiler
to interleave them.

53

CHAPTER 3. Experimental Evaluation

3.3.4 Unified main loop (without unrolling)

Building upon the kernel optimized storing the round key in local memory, we mod-
ified all the inner AES routines to accept an input and output state, and introduced
temporary buffers as needed. This also allowed us to unify the round structure across
the small and medium/big variants: the new loop body performs first the key indepen-
dent round functions, generating a temporary state; afterwards, the key addition onto
the temporary state yields the next actual state. This experiment will serve as a baseline
to gauge various loop unrolling techniques.

Table 3.5: Test data gathered from an AES implementation with differentiated main
loops (small vs medium/big) and a variant with unified main loops (no unrolling), part
1 of 2

Technique Codename LUT FF RAM fMax worst II
% % % MHz

Differentiated main loop small 17.05 17.2 44.2 207.25 97
Differentiated main loop big 14.08 15.24 30.17 244.97 6
Differentiated main loop medium 14.1 15.29 30.17 211.86 6
Unified main loop small 13.99 12.67 34.35 238.60 10
Unified main loop big 13.94 13.29 32.65 217.95 2
Unified main loop medium 13.92 13.33 32.65 237.47 2

Table 3.6: Test data gathered from an AES implementation with differentiated main
loops (small vs medium/big) and a variant with unified main loops (no unrolling), part
2 of 2

Technique Codename max at payload area-time
Codename throughput size product

MB/s MB Logic*s

Differentiated main loop small 3.60 80.0 29,189
Differentiated main loop big 451.82 80.0 212
Differentiated main loop medium 411.82 76.0 233
Unified main loop small 269.38 80.0 326
Unified main loop big 269.54 76.0 327
Unified main loop medium 289.47 80.0 307

54

3.3. Experimental validation of programming practices

The numeric results were surprising (tables 3.5 and 3.6), as the throughput values of
the 3 variants were “leveled” to pretty much the same value: small (269.38 MB/s) saw
a huge speed-up (748×), while the performance of medium and big (respectively 289.47
and 269.54 MB/s) was halved.

3.3.5 Main loop full unrolling

Keeping the unified round structure defined before, we tried to improve the main
loop at its core, performing loop unrolling in a smart way: the INNER_AES_LOOP macro
unrolls the main loop by considering that the number of rounds can only be 10, 12 or 14.
The code itself isn’t particularly brilliant, just a series of if statements used to select
the appropriate loop statement; the loop statements have been appropriately decorated
using the #pragma unroll directive.

Table 3.7: Test data gathered from AES implementations with and without full main
loop unrolling, part 1 of 2

Technique Codename LUT FF RAM fMax worst II
% % % MHz

No unrolling small 13.99 12.67 34.35 238.60 10
No unrolling big 13.94 13.29 32.65 217.95 2
No unrolling medium 13.92 13.33 32.65 237.47 2
Full unrolling small 61.46 66.28 171.89 115.67 69
Full unrolling big 29.57 34.1 121.56 200.24 2
Full unrolling medium 29.57 34.1 121.56 203.83 2

55

CHAPTER 3. Experimental Evaluation

Table 3.8: Test data gathered from AES implementations with and without full main
loop unrolling, part 2 of 2

Technique Codename max at payload area-time
throughput size product

MB/s MB Logic*s

No unrolling small 269.38 80.0 326
No unrolling big 269.54 76.0 327
No unrolling medium 289.47 80.0 307
Full unrolling small 38.37 116.0 9,219
Full unrolling big 788.30 56.0 316
Full unrolling medium 789.86 40.0 315

Again, the tuning data (tables 3.7 and 3.8) paints an interesting picture: variants
medium (789.86 MB/s) and big (788.3 MB/s) benefited greatly from this new mainloop
(2.67× and 2.92× respectively), but small’s performance is back to low values (38.37
MB/s). This is easily explained by looking at the resource usage: unrolling the loop made
the kernels much more resource-consuming, especially in the case of “small” (61.46% LUT,
66.28% FF, 171.89% BRAM). The block RAM over-use is especially bad; in order to get
it back to admissible values, the compiler is forced to reduce (or thoroughly disable) local
memory replication; this in turns results in a reduced the fMax and increased pipeline
initiation interval.

3.3.6 Manual partial unrolling

A different mainloop was devised: instead of relying on automatic unrolling, the loop
underwent a “manual partial unrolling of factor 2”; the number of rounds was halved,
and the internal loop body was doubled.

56

3.3. Experimental validation of programming practices

Table 3.9: Test data gathered from AES implementations with different types of loop
unrolling, part 1 of 2

Technique Codename LUT FF RAM fMax worst II
% % % MHz

No unrolling small 13.99 12.67 34.35 238.60 10
No unrolling big 13.94 13.29 32.65 217.95 2
No unrolling medium 13.92 13.33 32.65 237.47 2
Full unrolling small 61.46 66.28 171.89 115.67 69
Full unrolling big 29.57 34.1 121.56 200.24 2
Full unrolling medium 29.57 34.1 121.56 203.83 2
Manual partial unrolling small 18.84 21.9 41.02 224.16 134
Manual partial unrolling big 24.88 29.03 86.47 192.34 1
Manual partial unrolling medium 24.91 28.95 86.47 202.34 1

Table 3.10: Test data gathered from AES implementations with different types of loop
unrolling, part 2 of 2

Technique Codename max at payload area-time
Codename throughput size product

MB/s MB Logic*s

No unrolling small 269.38 80.0 326
No unrolling big 269.54 76.0 327
No unrolling medium 289.47 80.0 307
Full unrolling small 38.37 116.0 9,219
Full unrolling big 788.30 56.0 316
Full unrolling medium 789.86 40.0 315
Manual partial unrolling small 430.40 92.0 290
Manual partial unrolling big 911.90 76.0 216
Manual partial unrolling medium 923.68 64.0 214

As clearly shown in the data (tables 3.9 and 3.10), the kernels employing this “fat”
mainloop were the best performing so far, the resource usage was also reduced from
the fully-unrolled variant; however, a significative disparity between the variants small
(430.4 MB/s) and medium/big (923.86 and 911.9 MB/s) still remained. Compared to the

57

CHAPTER 3. Experimental Evaluation

experiment with no loop unrolling, the speedup of small, medium and big are respectively
1.59×, 3.19× and 3.38×.

3.3.7 Round key forced into local memory, multiple unrolling tech-
niques

This iteration introduced two modifications at the same time: First, we made new a
attempt to force the compiler to store the key into registers (normally used for private
memory), using the special attribute register. Second, we designed new mainloop
which combines normal compiler-driven loop unrolling with the “fat” loop body defined
earlier. This version is also special in having a single unrolled loop rather than three
distinct ones; if statements are used to append “extra rounds” after the main loop.

Table 3.11: Test data gathered from this AES implementation, compared with the no-
unrolling baseline, part 1 of 2

Technique Codename LUT FF RAM fMax worst II
% % % MHz

No unrolling small 13.99 12.67 34.35 238.60 10
No unrolling big 13.94 13.29 32.65 217.95 2
No unrolling medium 13.92 13.33 32.65 237.47 2
Combined unrolling, key in
registers

small 18.55 16.46 61.65 267.52 1

Combined unrolling, key in
registers

big 18.26 17.93 69.83 238.37 15

Combined unrolling, key in
registers

medium 18.23 17.85 69.6 255.55 15

58

3.3. Experimental validation of programming practices

Table 3.12: Test data gathered from this AES implementation, compared with the no-
unrolling baseline, part 2 of 2

Technique Codename max at payload area-time
Codename throughput size product

MB/s MB Logic*s

No unrolling small 269.38 80.0 326
No unrolling big 269.54 76.0 327
No unrolling medium 289.47 80.0 307
Combined unrolling, key in
registers

small 961.25 60.0 110

Combined unrolling, key in
registers

big 936.95 44.0 168

Combined unrolling, key in
registers

medium 946.65 72.0 166

All the 3 implementations managed to reach a high throughput using this these new
modifications (the data are shown in tables 3.11 and 3.12); more surprisingly, aes_small is
now the fastest in the bunch (961.25 MB/s, against the 946.65, 936.95 MB/s of medium,
big). The speedups of small, medium and big are respectively 3.57×, 3.48× and 3.27×
from the no-unrolling baseline. The explanation is that, now that the round key is stored
within private memory, the reads from lookup tables in constant memory become the
new bottleneck since, on this FPGA model, the constant memory is implemented using
a fixed size cache in block RAM.

59

CHAPTER 3. Experimental Evaluation

Figure 3.3: aes_medium block diagram for the variant with round key forced into pri-
vate memory and combined unrolling techniques. Instructions are shown as circles and
diamonds, functional blocks are shown as rectangles, memory accesses and control paths
are shown as arrows. Global memory and instruction accessing global memory are high-
lighted in blue.

The block diagram resulting from this AES version (Figure 3.3) shows how moving
the round key into private memory resulted in a more streamlined implementation, with
much less load/store operations.

Given that this is the best result reached in a non-multi-buffered kernel, this AES
iteration (and the small variant in particular) will be elected as the baseline for the
following implementations.

3.3.8 Extracting num_rounds as a constant

The next logical step was to extract the control-flow dependency on the value of
num_rounds (the parameter used to store the number of AES round to perform), by
means of creating 3 copies of each kernel with the 3 different num_rounds set as compile-
time constants.

60

3.3. Experimental validation of programming practices

Table 3.13: Test data gathered from AES implementations with a single entry point and
AES implementations with multiple entry point (3 in total), part 1 of 2

Technique Codename LUT FF RAM fMax worst II
% % % MHz

Single entry point small 18.55 16.46 61.65 267.52 1
Single entry point big 18.26 17.93 69.83 238.37 15
Single entry point medium 18.23 17.85 69.6 255.55 15
Multiple entry points small 29.97 32.14 152.00 221.04 1
Multiple entry points big 31.31 36.15 168.05 215.42 15
Multiple entry points medium 31.31 36.16 168.05 217.86 15

Table 3.14: Test data gathered from AES implementations with a single entry point and
AES implementations with multiple entry point (3 in total), part 2 of 2

Technique Codename max at payload area-time
Codename throughput size product

MB/s MB Logic*s

Single entry point small 961.25 60.0 110
Single entry point big 936.95 44.0 168
Single entry point medium 946.65 72.0 166
Multiple entry points small 910.69 68.0 212
Multiple entry points big 911.37 44.0 358
Multiple entry points medium 911.92 56.0 358

In practice, this approach resulted in a slight decrease in the overall performance
(data shown in tables 3.13 and 3.14), and was therefore abandoned.

3.3.9 Interlude 1: Strategies to parallelize over multiple work items

Having reached a satisfactory performance for a pure single-work-item kernel, the
next logical step was attempting to scale the architecture horizontally, by replicating
the single-work-item kernel multiple times in order to use all the available resource, and
benefit from the speedup given by 2 or even 4 pipelines working in parallel.

It is worth mentioning that at this point we did also explore a data-parallel multi-

61

CHAPTER 3. Experimental Evaluation

work-item implementation, but it performed poorly both resource-wise and performance-
wise, and was therefore abandoned quickly.

In order to achieve effective task parallelism, 2 major strategies were devised. Strat-
egy 1: Make use of the intel_channels extension (originally called altera_channels),
which allows the user to create inter-kernel FIFO objects, in order to implement both
the multi-pipeline and its control logic entirely on device-side.

Figure 3.4: Multi-pipelined kernel architecture using Intel channels

The architecture, shown in Figure 3.4 is comprised of a “dispatcher” kernel, which
reads data blocks from global memory and forwards them to the appropriate input chan-
nel; each of these channels is polled by a “worker” kernel, which performs the required
encryption and enqueues the data into its own output queue. Finally, a “collector” kernel
moves the output from the channels to the global memory buffer. Strategy 2: Cre-
ate multiple aliases of each kernel and manage them independently via host logic, using
multiple cl_kernel objects, cl_mem buffers and cl_command_queue as needed.

Table 3.15: Test data gathered from the baseline single work-item AES implementation
and the channel-based multi work-item implementation outlined in strategy 1, part 1 of
2

Technique Codename LUT FF RAM fMax worst II
% % % MHz

Single work-item baseline medium 18.23 17.85 69.6 255.55 15
Channel-based multiple work-
item implementation

medium 33.03 34.93 131.02 224.41 15

62

3.3. Experimental validation of programming practices

Table 3.16: Test data gathered from the baseline single work-item AES implementation
and the channel-based multi work-item implementation outlined in strategy 1, part 2 of
2

Technique Codename max at payload area-time
Codename throughput size product

MB/s MB Logic*s

Single work item baseline medium 946.65 72.0 166
Channel-based multiple work-
item implementation

medium 876.58 36 343

Despite being the most promising, strategy 1 didn’t perform well, since reading/writ-
ing to the channels introduced an extra latency we couldn’t manage to get rid of. The
data from our experimentation with channels (tables 3.15 and 3.16) show a throughput
of 876.58 MB/s, worse than the ones obtained previously using the pure single-work-item
kernel. With that considerations, we resolved to proceed forward developing strategy 2.

As a sidenote, strategy 2 was tested using compile units containing only ECB encrypt
kernels, in order to devote all available resources to replicate the specific kernel used for
benchmarking.

Up until this moment, we made use of the official Intel report tool and profiler. How-
ever, during the developement of AES variants derived from strategy 2, the shortcomings
of the official profiler became evident, and we resorted to create a custom profiler of our
own, which overlays an in-depth timeline of the kernel lifetime with useful statistics
computed over a sliding window.

3.3.10 2 separate workers

We implemented multiple workers leveraging the task-parallelism available in OpenCL.
On the OpenCL code side, it was simply a matter of creating multiple copies of the same
kernel, using an appropriate naming scheme. We achieved this exploiting the metapro-
gramming capabilities of C by means of a DECLARE_WORKER_ENCmacro, which is expanded
into an OpenCL kernel with a certain naming scheme. The declare-worker macro is then
supplied to another macro, called FOREACH_WORKER(). The for-each macro is expanded by
applying the argument macro (in this case, the declare-worker macro), to the list {0, 1}.
In this case, the foreach macro is used to declare multiple identical worker kernels, with
names “aesEncCipher_0” and “aesEncCipher_1”.

63

CHAPTER 3. Experimental Evaluation

The host code was entirely restructured according to the algorithm described in Al-
gorithm 2.3.1, with the significant difference that the input chunk is split evenly across
the workers, rather than having the workers process separate chunks altogether.

Figure 3.5: Timeline diagram for aes_small using 2 workers, zoomed over a section of
the test schedule

Figure 3.5 show a fragment of the tuning routine, taken using our custom profiler.

The custom profiler is implemented as a modular component of the host OpenCL
application; it is based around a series of OpenCL API which allow to precisely time
OpenCL events. First, the command queue(s) employed must be initialized with the
proper flag (CL_QUEUE_PROFILING_ENABLE); second, whenever the user wishes to pro-
file an enqueued operation, the corresponding clEnqueue* function must be set to re-
turn a cl_event object, as shown in the previous chapter 2.3.2. The cl_event re-
turned can be used to profile the enqueued operation: to do so, the user must call the
clSetEventCallback() API, which allows to attach an user-supplied callback to an
OpenCL event; the callback is run when the event reaches the “complete” state. As per
OpenCL specification, the user-defined callback receives the triggering cl_event as a pa-
rameter: we implemented the body of the callback as to invoke the clGetEventProfilingInfo()
function on that particular event. This last API call allows the user to obtain various
timestamps related to the life-cycle of the operation linked to a particular event; the
time is returned in nanoseconds, computed using the device’s own time counter. In our

64

3.3. Experimental validation of programming practices

case, we used it to retrieve the start and the end of the execution, but other settings also
allow to retrieve the time at which the operation is enqueued and submitted to the device.

The resulting diagram is divided in two sub-graphs. The upper diagram shows a
high-level timeline of the device operation, displaying input transfers, kernel executions
and output transfers in different colors. The operations are divided into different lanes,
depending on the cl_command_queue on which they were enqueued; the two anonymous
lanes at the bottom summarize all the transfers and all the executions across all command
queues. The lower diagram shows, on the same time-scale, a series of statistics on the
operations shown above, computed using a sliding window approach. “Average kernel du-
ration” and “Average transfer duration” are pretty straightforward and self-explanatory;
“Average kernel II” measures the time interval in-between consecutive “kernel execution
start” events. Finally, “Ratio kernel/IO” indicates the ratio between the value of “Aver-
age kernel duration” and “Average transfer duration”. Notice the double “output read”
between 227400 and 227600 milliseconds; this is not an error, but rather a side effect of
the re-synchronization phase, which was implemented as a “blocking read”.

Table 3.17: Test data gathered from the baseline single work-item AES implementation
and the multi work-item variant using 2 workers, part 1 of 2

Technique Codename LUT FF RAM fMax worst II
% % % MHz

Single work-item baseline small 18.55 16.46 61.65 267.52 1
Multiple work-item imple-
mentation (2 workers)

small 21.57 20.11 80.42 249.25 1

Table 3.18: Test data gathered from the baseline single work-item AES implementation
and the multi work-item variant using 2 workers, part 2 of 2

Technique Codename max at payload area-time
Codename throughput size product

MB/s MB Logic*s

Single work item baseline small 961.25 60.0 110
Multiple work-item imple-
mentation (2 workers)

small 1,458.67 108 87

65

CHAPTER 3. Experimental Evaluation

Performance-wise, the benchmark did well (1458.67 MB/s for the small implementa-
tion, with a speedup of 1.51× from the baseline single work-item version), but did not
quite double the baseline throughput (shown in tables 3.17 and 3.18), as we wished it
would.

3.3.11 4 separate workers

With minimal modifications to the structure of host and kernel code, we were able
to adapt our infrastructure to handle 4 workers at a time.

Table 3.19: Test data gathered from the baseline single work-item AES implementation
and the multi work-item variant using 2 workers, part 1 of 2

Technique Codename LUT FF RAM fMax worst II
% % % MHz

Single work-item baseline small 18.55 16.46 61.65 267.52 1
2-workers implementation small 21.57 20.11 80.42 249.25 1
4-workers implementation small 21.57 20.11 80.42 249.25 1

Table 3.20: Test data gathered from the baseline single work-item AES implementation
and the multi work-item variant using 2 workers, part 2 of 2

Technique Codename max at payload area-time
Codename throughput size product

MB/s MB Logic*s

Single work item baseline small 961.25 60.0 110
2-workers implementation small 1,458.67 108 87
4-workers implementation small 1,398.58 68 91

Tables 3.19 and 3.20 show a comparison between the test data of this 4-workers imple-
mentation, the 2-workers implementation and the single work item baseline. Surprisingly,
the performance of this AES variant (1398.58 MB/s) was even worse than that of the
2-workers version.

66

3.3. Experimental validation of programming practices

Figure 3.6: Timeline diagram for aes_small using 4 workers, zoomed over a section of
the test schedule

As shown in the timeline diagram (Figure 3.6), the execution profile changes dramat-
ically. Since we didn’t actually impose a restrictive schedule for the transfers/kernels,
OpenCL’s own scheduling system took over, resulting in a very chaotic timeline. The ex-
ecution profile shown can be split easily into two parts (divided by the re-synchronization
reads, visible around 18.56s):

1. the left part, with a more chaotic profile, but an overall better performance (higher
kernel/io time ratio, lower kernel II)

2. the right part, with a more regular profile, but a clearly worse performance

Keen-eyed readers will also notice how, in a couple of instances, the kernels on the left
half also happen to overlap a little. This is significant, since, in the previous experiment,
having two distinct workers didn’t make the execution profile any different from using a
single worker with double-buffering.

3.3.12 Interlude 2: performance wall

From the last series of experiments, we derived 2 considerations:

• The performance benefits from having overlaps of kernel executions

67

CHAPTER 3. Experimental Evaluation

• Lowering the block size causes the transfer time to shrink faster than the kernel
execution time

With that in mind, we attempted to modify our infrastructure in order to enqueue
smaller block sizes, scheduling the transfers in a way that would cause them to overlap.

Figure 3.7: Timeline diagram for aes_small using 4 workers and 8 buffers, 1/8 MB
blocksize, zoomed over a section of the test schedule

However, we discovered that very small transfers incur in a significant overhead, which
in turn decreases the efficiency of the input/output transfer, as shown in Figure 3.7.

We framed the overhead problem as caused by the host side infrastructure, and tried
to solve it with a series of improvements in the multi-workers management code. The host
side code was indeed made more streamlined and efficient, but the overhead remained
pretty much unchanged. In the end, we decided to give up and try a different approach.

3.3.13 NO-OP test

We started over, using the 2-workers variant, the all-time best so far, as a baseline. We
devised a sort of “No-Op” cipher, which would only enqueue write and read operations,
but won’t execute any kernel at all.

68

3.3. Experimental validation of programming practices

Figure 3.8: Timeline diagram for the “No-Op” cipher

The timeline of “No-Op” is shown in Figure 3.8; despite not executing any kernel, we
introduced “dummy” kernel events (bottom unnamed lane), as to avoid glitches in the
routines used to generate the bottom diagram (which, needless to say, is meaningless in
this specific case).

Table 3.21: Comparison of the throughput of the 2-workers AES variant against a No-Op
application

Technique Codename max throughput at payload size
MB/s MB

2-workers implementation small 1,458.67 108
No-Op No-Op 1,491.90 40

The throughput value (1491.9 MB/s, as shown in Table 3.21) is very close to that
of the 2-workers implementation, confirmed our suspects: the device-host channel is the
factor limiting our maximum throughput.

3.3.14 Pre-final AES design

Thanks to the insight gathered in No-Op test, we concluded that our best choice for
the final design is:

69

CHAPTER 3. Experimental Evaluation

• A single work-item kernel with no replication

• A host-side architecture using double-buffering

Figure 3.9: Timeline diagram for aes_small single work item with double buffering,
zoomed over a section of the test schedule

The final aes_small iteration is shown in action in Figure 3.9.

Table 3.22: Test data gathered from the baseline single work-item AES implementation,
two-workers implementation and double-buffered single work-item implementation, part
1 of 2

Technique Codename LUT FF RAM fMax worst II
% % % MHz

Single work-item baseline small 18.55 16.46 61.65 267.52 1
2-workers implementation small 21.57 20.11 80.42 249.25 1
Single work-item double-
buffered

small 46.33 53.79 262.00 180.31 1

70

3.3. Experimental validation of programming practices

Table 3.23: Test data gathered from the baseline single work-item AES implementation,
two-workers implementation and double-buffered single work-item implementation, part
2 of 2

Technique Codename max at payload area-time
Codename throughput size product

MB/s MB Logic*s

Single work item baseline small 961.25 60.0 110
2-workers implementation small 1,458.67 108 87
Single work-item double-
buffered

small 1,475.06 76 226

Tables 3.22 and 3.23 compare the results obtained from the baseline pure single
work-item implementation, the multiple work-item implementation (2 workers) and this
double-buffered single work-item implementation. It is at this point that we introduced
the first version of the XTS mode of operation; this first XTS kernel was resource hungry
and not fully optimized, resulting in a slightly lower fMax and a higher kernel/io ratio in
the profiler diagram. Later AES versions attempt fix this, by both improving the code
and moving the XTS kernels to their own, separate OpenCL programs.

3.3.15 Final summary

To give a visible comparison of the throughput of the various AES implementations
examined, we present a couple of plots, showing raw data gathered through the test
routine. The diagrams show the values assumed by the blockcipher throughput across
different payload sizes.

71

CHAPTER 3. Experimental Evaluation

Figure 3.10: Performance of the aes_medium kernel across different design iterations
(pure single work item kernel, without any form of multi-buffering)

Diagram 3.10 shows a comparison of the test data gathered from experiments using
only single work item kernels.

Figure 3.11: Performance of the aes_small kernel across different design iterations

72

3.4. Horizontal slice

Figure 3.11 summarizes performance data gathered from benchmarks of aes_small,
encompassing all the design iterations described so far in this chapter.

3.4 Horizontal slice

The following tables collect raw data obtained from compiling and benchmarking the
blockciphers listed in table 2.2; the following implementations make use of all the best
practices described above (double-buffered single work-item kernel, local/private memory
caching, loops unrolled using a combination of automatic and manual strategies). Note
that, for this “big bang test”, we used an AES implementation split across 3 OpenCL
programs: part 1 includes kernels for ECB encryption, ECB decryption and CTR; part
2 includes a single kernel for XTS encryption; part 3 includes a single kernel for XTS
decryption.

Table 3.24: Test data gathered from the big bang test of all the studied block ciphers,
part 1 of 2

Cipher Cipher variant LUT FF RAM fMax Worst area-time
name II product

% % % MHz

AES single work item,
no XTS

16.88 16.08 61.85 254.84 1 69

AES single work item,
only XTS-encrypt

19 18.85 84.3 179.53 8 81

AES single work item,
only XTS-decrypt

31.47 33.78 133.42 126.45 1 166

Camellia single work item 53.17 64.35 231.95 200.92 8 204
CAST5 single work item 12.89 10.88 24.54 268.6 1 62
CLEFIA single work item 43.05 52.56 239.59 177.55 8 203
DES single work item 19.59 19.44 90.5 231.85 1 58
HIGHT single work item 11.37 8.55 9.42 189 1 45
MISTY1 single work item 11.69 9.45 28.58 258.06 1 40
PRESENT single work item 18.54 18.96 124.82 247.21 1 50
SEED single work item 38.04 45.61 220.98 201.57 8 163

73

CHAPTER 3. Experimental Evaluation

Table 3.25: Test data gathered from the big bang test of all the studied block ciphers,
part 2 of 2. For space concerns, “Payload size” has been abbreviated to “PL size” and
“Top Kernel/IO” has been abbreviated to “Top K/IO”

Cipher Cipher variant Max PL Top Compiler Max
name throughput size K/IO run-time resident mem

MB/s MB hh:mm:ss MB

AES single work item,
no XTS

1,496.53 68 0.401 4:24:53 18,762.26

AES single work item,
only XTS-encrypt

- - - 8:37:31 19,554.85

AES single work item,
only XTS-decrypt

- - - 35:55:05 38,098.16

Camellia single work item 1,477.66 20 0.503 11:07:59 37,157.75
CAST5 single work item 1,496.75 60 0.713 3:15:15 15,096.59
CLEFIA single work item 1,499.38 60 0.565 10:25:19 36,416.80
DES single work item 1,480.57 24 0.861 3:34:23 15,764.96
HIGHT single work item 1,360.65 56 1.025 3:01:06 13,368.93
MISTY1 single work item 1,503.68 24 0.785 2:41:00 13,452.62
PRESENT single work item 1,444.56 12 0.796 3:21:59 14,435.27
SEED single work item 1,493.09 16 0.494 8:22:35 31,630.55

There are some interesting observations to be made, based on the raw data obtained
in the “big bang test” (tables 3.24 and 3.25). First, we can classify the blockciphers into
2 broad sets of “expensive” and “cheap” ciphers, depending on the amount of resource
consumed (both in terms of area and compile-time/memory). It’s immediately evident,
when also comparing the results with table 2.2, that only the ciphers with a 128-bit block
belong to the “expensive” group. This is simply due to the fact that having a 128-bit
block size allows us to also define kernels for the XTS mode of operation [2]; the 64-bit
block ciphers instead did not include XTS kernels, as the specification only described
XTS over a 128-bit block size. That being said, the test procedure only encompasses the
ECB encryption procedure; the XTS routines are implemented but not benchmarked.
Regarding the XTS implementation in OpenCL, it really pushes the limit of the current
Intel OpenCL compiler; for this reason, we developed it as a trade-off in efficiency and
complexity. This shows well in the split aes data: despite being almost identical code-

74

3.4. Horizontal slice

wise, the program for XTS encryption uses much less resources (and is much slower) than
its decryption counterpart; also note how the XTS encryption kernel is the one responsible
for all the “bad” Initiation Intervals equal to 8. This bad II doesn’t actually appear in the
throughput measurements, as the test routine only invokes the ECB encryption primitive.
128-bit block ciphers other than AES were kept as a single compile unit for the sake of
simplicity, but, as shown by the performance reports, their throughput did not suffer
from this choice. Another surprising set of results is given by HIGHT: despite having
a very low resource usage, its fMax and throughput are the lowest in the series; indeed,
the Kernel/IO ratio is also very large, at the point that the kernel runtime, rather than
the input/output transfer, becomes the bottleneck. We suspect that the cause for this
slowness lies in the design of HIGHT, which relies heavily on modular addition operations.
Being devoid of s-boxes, HIGHT gains its non-linearity from the carry paths in addition
operations, however, these same carry lines also constitute critical paths inside the logic
circuit, slowing down the whole system. It would be interesting, for future research, to
test a HIGHT implementation structured as a data-parallel NDrange kernel, rather than
a task-parallel single work item kernel as used here. With the exception of HIGHT,
all the ciphers in exam reach the maximum throughput value allowed by the limited
device-host channel.

75

CHAPTER 3. Experimental Evaluation

Table 3.26: Speculative values computed from the results in 3.24 and 3.25

Cipher name Cipher variant Throughput Worst design Best design
unconstrained throughput throughput
MB/s MB/s MB/s

AES single work item,
no XTS

3,732.00 3,888.55 3,888.55

AES single work item,
only XTS-encrypt

- 342.43 2,739.41

AES single work item,
only XTS-decrypt

- 1,929.47 1,929.47

Camellia single work item 2,937.69 383.22 3,065.80
CAST5 single work item 2,099.22 2,049.26 2,049.26
CLEFIA single work item 2,653.77 338.65 2,709.20
DES single work item 1,719.59 1,768.88 1,768.88
HIGHT single work item 1,360.65 1,441.96 1,441.96
MISTY1 single work item 1,915.51 1,968.84 1,968.84
PRESENT single work item 1,814.77 1,886.06 1,886.06
SEED single work item 3,022.44 384.46 3,075.71

Table 3.26 shows speculative throughput values, computed directly from the data
shown in 3.24 and 3.25. Throughput unconstrained by PCI-E transfer indicates the
maximum possible throughput, without considering input/output bandwidth limitations;
naturally, this indicator only makes sense for kernels having a Kernel/IO (KIO) lower
than 1.0. Unconstrained throughput is computed as:

Xunconstrained = Xio_bound/KIO (3.1)

The intent of this indicator is to predict what performance we’d be able to attain on
an upgraded system, with a faster transfer channel between main system memory and
accelerator board. However, at the time of writing we don’t have access to such a system,
and therefore we can’t evaluate the accuracy of this indicator.

Another interesting value is the Design throughput. The value is computed considering
the ideal case in which the kernel can operate processing one cryptographic block (see
table 2.2) at the maximum allowed speed; this speed depends on both the fMax and the

76

3.4. Horizontal slice

Initiation Interval (II) specified by the compilation report. This indicator differs from
the previous one in that the throughput unconstrained is computed using dynamic data
obtained from live benchmarks, while the design throughput is computed using static
data returned by the Intel compiler.

Xdesign = BScipher ∗ (fMax ∗ II) (3.2)

Our table reports both the worst design throughput, computed using the worst II
value, and the best design throughput, computed using the best II value. The best
II value is almost always equal to 1, and was therefore not reported. In general, an
OpenCL compiled program will contain multiple kernels, some of which are bounded by
containing a loop with a “bad” II, some of which do not contain loops with II greater
than 1; therefore, it makes sense to include both in our analysis.

To sum up, the “unconstrained throughput” and “design throughput” indicators both
serve to give and idea of which performance we’d be able to extract from our kernels in
perfect conditions, albeit with slightly different perspectives.

The data in 3.26 are interesting as they show how, despite the sub-par fMax and
high resource consumption values shown in 3.24, the “expensive” blockciphers (Camellia,
CLEFIA, SEED) are still virtually capable of reaching very high throughput values.

77

CHAPTER 3. Experimental Evaluation

Table 3.27: Speculative values computed from the results in 3.24 and 3.25, taking
available resources into account. For space concerns, “Replication factor” has been ab-
breviated to “Repl. factor”

Cipher Cipher variant Repl. Throughput Worst design Best design
name factor unconstrained throughput throughput

MB/s MB/s MB/s

AES single work item,
no XTS

1 3,732.00 3,888.55 3,888.55

AES single work item,
only XTS-encrypt

1 - 342.43 2,739.41

AES single work item,
only XTS-decrypt

1 - 1,929.47 1,929.47

Camellia single work item 1 2,937.69 383.22 3,065.80
CLEFIA single work item 1 2,653.77 338.65 2,709.20
DES single work item 1 1,719.59 1,768.88 1,768.88
PRESENT single work item 1 1,814.77 1,886.06 1,886.06
SEED single work item 1 3,022.44 384.46 3,075.71

MISTY1 single work item 4 7,662.04 7,875.37 7,875.37
CAST5 single work item 4 8,396.89 8,197.02 8,197.02

HIGHT single work item 8 10,885.18 11,535.64 11,535.64

Table 3.27 shows the same data as 3.26, this time taking into account the possibility
to create multiple alias kernels to use up all the available resources. The table was
built using the values from the previous version, multiplied by a replication factor. The
replication factor was computed by trying to maximize the usage of the scarcest resource
among LUT, FF and RAM; furthermore, a slight BRAM-overuse of 120% was allowed.

As we could expect, the fastest blockcipher in this context is HIGHT, since its low
area demand allows for a replication factor of 8; indeed, its projected performance im-
provement is almost ten-fold. CAST5 and MISTY1 take respectively the second and
third place, while still being more than twice as fast as the fastest AES implementation.
Besides these 3 cases, no other blockcipher attains a replication bonus.

78

Conclusion

In this paper, we studied the OpenCL implementation of various blockciphers for an
FPGA device, and measured how different programming and design techniques affect
their performance and resource consumption.

To do so, we first defined a baseline of OpenCL optimization techniques and a set
of useful performance metrics; afterwards, we stepped through a series of improvements
over our AES implementation, showcasing the effects of different optimization methods.

Finally, we implemented and tested the full range of blockciphers in exam, leveraging
the full range of optimiation techniques described in the previous phase. We were also
able to identify the limitations of the current runtime environment, and we devised a set
of indicators virtually capable of extending our glance beyond said limitations.

3.5 Salient points

We showed how an OpenCL kernel for FPGA benefits from being developed as a
single-work-item kernel, and how its performance can be gauged in terms of fMax and
Initiation Interval; we also identified useful techniques such as automatic loop unrolling
and manual partial loop unrolling, which provide visible performance improvements both
alone and combined. A positive performance improvement was also detected when mov-
ing the round key from global to local memory, and a possibly greater one when moving
again the key from local memory into private memory, made possible by the FPGAs’
unique feature to infer registers on-demand. We observed how, in the case of kernels
implementing symmetric block ciphers, global memory access coalescing and buffer in-
terleaving are non-issues. We verified how employing a double-buffered scheme allows to
partially work around bandwidth limitations in the channel between accelerator device
and host, reaching an almost 100% efficient channel usage with no extra cost in terms

Conclusion

of FPGA resource consumption. Finally, we posited a series of speculative performance
upper-bounds as a starting point for future developments: with the help of a faster host-
device channel, we expect an almost ten-fold performance improvement, as allowed by
the FPGA area limitations.

3.6 Possible future developments

An interesting direction for future exploration is to acquire a runtime environment
with a faster host-FPGA data transfer channel. This would allow to validate the specu-
lations made in Tables 3.26 and 3.27, measure their precision, and possibly unveil some
pitfalls which our experiments didn’t expose due to the aforementioned bandwidth limi-
tations.

Given the differences and similarities between the programming practices on GPUs
and FPGAs highlighted in Table 2.1, we can make the case for a source-to-source com-
piler, with the purpose of translating data-parallel kernel code, designed to run on GPUs,
into task-parallel kernel code, designed to run on FPGAs. As stated in the previous
chapters, the FPGA OpenCL compiler does support also traditional data-parallelism;
however, both the official documentation, our own studies and third-party research [15]
motivate us to prefer a single-work-item implementation.

This newfangled source-to-source compiler should act mainly in 4 directions: First of
all, the kernel should be restructured, by enclosing all the original logic into an “outer
loop” iterating through all the data blocks normally processed by separate work-items
(essentially achieving a serialization of the old work-items and blocks). Next, the special
compiler should detect the code fragments responsible for copying global data into local
memory for re-use, and replace them with the memcpy-like version used in single-work-
item kernels; alternatively, private memory buffers could also be used, provided that
the allocated size is not excessive. Afterwards, the source-to-source compiler should
generate the data-flow graph for the target kernel, and identify those operation which
risk to cause a “same variable load/store” condition; then the compiler could either solve
the issue automatically, or just print a warning message. Finally, the special compiler
should explore the inner kernel structure, in order to find loop statements to improve by
either normal unrolling or using the type of “manual partial unroll” discussed before.

The source-to-source compiler could be designed to parse the data generated by the
official Intel report tool, in order to gain further insight of the target kernel’s structure.

80

Possible future developments

A small progress has already been made in that specific direction, as some of the graphs
and statistics offered in this paper have been obtained by scraping the Intel report data.

81

Conclusion

82

Appendix A

Source code

Listing A.1: OpenCL host-side boilerplate code performing vector-addition

1 const char* programSource =

2 "__kernel void vector_sum(__global const float *A, \n"

3 " __global const float *B, \n"

4 " __global float *C) { \n"

5 " size_t tid = get_global_id(0); \n"

6 " C[tid] = A[tid] + B[tid]; \n"

7 "} \n"

8 ;

9
10 void vector_add_driver(uint8_t *A, uint8_t *B, uint8_t *C,

size_t vector_length) {

11
12 cl_platform_id platform;

13 cl_device_id device_id;

14 cl_context context;

15 cl_command_queue command_queue;

16
17 cl_program program;

18 cl_kernel kernel;

19 cl_event kernel_complete;

20
21 cl_mem buffer_A, buffer_B, buffer_C;

83

Source code

22
23 clGetPlatformIDs(1, &platform, NULL);

24 clGetDeviceIDs(platform , CL_DEVICE_TYPE_DEFAULT , 1, &

device_id , 1);

25 context = clCreateContext(NULL, 1, &device_id , NULL, NULL,

NULL);

26
27 command_queue = clCreateCommandQueue(context, device_id ,

CL_QUEUE_PROFILING_ENABLE , NULL);

28
29 program = clCreateProgramWithSource(context, 1, (const char

**)&programSource , NULL, NULL);

30 clBuildProgram(program, 1, &device_id , NULL, NULL, NULL);

31
32 kernel = clCreateKernel(program, "vector_sum", NULL);

33
34 buffer_A = clCreateBuffer(context, CL_MEM_READ_ONLY ,

vector_length , NULL, NULL);

35
36 buffer_B = clCreateBuffer(context, CL_MEM_READ_ONLY ,

vector_length , NULL, NULL);

37
38 buffer_C = clCreateBuffer(context, CL_MEM_WRITE_ONLY ,

vector_length , NULL, NULL);

39
40 clSetKernelArg(kernel, 0, sizeof(cl_mem), &buffer_A);

41 clSetKernelArg(kernel, 1, sizeof(cl_mem), &buffer_B);

42 clSetKernelArg(kernel, 2, sizeof(cl_mem), &buffer_C);

43
44 clEnqueueWriteBuffer(command_queue , buffer_A, CL_TRUE, 0,

vector_length , A, 0, NULL, NULL);

45
46 clEnqueueWriteBuffer(command_queue , buffer_B, CL_TRUE, 0,

vector_length , B, 0, NULL, NULL);

47

84

48 size_t global_work_size = vector_length;

49 size_t work_dim = 1;

50
51 clEnqueueNDRangeKernel(

52 command_queue ,

53 kernel,

54 work_dim ,

55 NULL,

56 &global_work_size ,

57 NULL, // let the implementation choose the local work

size

58 0, NULL,

59 &kernel_complete);

60
61 clEnqueueReadBuffer(command_queue , buffer_C, CL_TRUE, 0,

vector_length , C, 1, &kernel_complete , NULL);

62
63 clReleaseKernel(kernel);

64 clReleaseProgram(program);

65 clReleaseCommandQueue(command_queue);

66 clReleaseMemObject(buffer_A);

67 clReleaseMemObject(buffer_B);

68 clReleaseMemObject(buffer_C);

69 clReleaseContext(context);

70 }

85

Source code

86

Appendix B

Text dumps

B.1 board_spec.xml for aclattila_hpc_16_10

<?xml version=" 1 .0 "?>
<board version=" 16 .1 " name="atti la_v3_prod">

<compile p r o j e c t="top" r e v i s i o n="top" q sy s_ f i l e="none"
gener i c_kerne l="1">

<generate cmd="quartus_sh␣−t ␣ s c r i p t s /pre_flow_pr . t c l "/>
<syn the s i z e cmd="quartus_cdb␣−t ␣ import_compile . t c l "/>
<auto_migrate platform_type="a10_ref " >

<inc lude f i x e s=""/>
<exc lude f i x e s=""/>

</auto_migrate>
</ compi le>

<dev i ce device_model="10ax115n4f40i3sg_dm . xml">
<used_resources>

<alms num="31307"/> <!−− Tota l ALMs − ALMs a v a i l a b l e to
kerne l_system_inst −−>

<f f s num="46988"/>
<dsps num="0"/>
<rams num="134"/>

</used_resources>

87

Text dumps

</dev i ce>

<!−− DDR4−2133 −−>
<global_mem name="DDR" max_bandwidth="17067" inte r l eaved_bytes

="1024" config_addr="0x018">
<i n t e r f a c e name="board" port="kernel_mem0" type=" s l av e "

width="512" maxburst="16" address="0x00000000" s i z e="0
x100000000" la t ency="240" addpipe="1"/>

</global_mem>

<host>
<kerne l_con f i g s t a r t="0x00000000" s i z e="0x0100000"/>

</host>

<i n t e r f a c e s>
<i n t e r f a c e name="board" port=" kerne l_cra " type="master "

width="64" misc="0"/>
<i n t e r f a c e name="board" port=" kerne l_i rq " type=" i r q " width="

1"/>
<i n t e r f a c e name="board" port=" acl_internal_snoop " type="

streamsource " enable="SNOOPENABLE" width="32" c l o ck="
board . kerne l_c lk "/>

<kerne l_c lk_reset c l k="board . kerne l_c lk " c lk2x="board .
kerne l_clk2x " r e s e t="board . ke rne l_re s e t "/>

</ i n t e r f a c e s>

</board>

88

Bibliography

[1] FIPS PUB 46-3. In Data Encryption Standard (DES). 1999.

[2] IEEE standard for cryptographic protection of data on block-oriented storage de-
vices. IEEE Std 1619-2007, pages c1–32, April 2008.

[3] Carlisle Adams. The CAST-128 encryption algorithm. RFC, 2144:1–15, 1997.

[4] Giovanni Agosta, Alessandro Barenghi, Alessandro Di Federico, and Gerardo Pelosi.
Opencl performance portability for general-purpose computation on graphics pro-
cessor units: an exploration on cryptographic primitives. Concurrency and Compu-
tation: Practice and Experience, 27(14):3633–3660, 2015.

[5] Altera. OpenCL on FPGAs for GPU Programmers.

[6] Altera. FPGA Architecture White Paper, 2006.

[7] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Moriai,
Junko Nakajima, and Toshio Tokita. Camellia: A 128-bit block cipher suitable for
multiple platforms - design and analysis. In Selected Areas in Cryptography, 7th
Annual International Workshop, SAC 2000, Waterloo, Ontario, Canada, August
14-15, 2000, Proceedings, pages 39–56, 2000.

[8] BERTEN DSP S.L. GPU vs FPGA Performance Comparison, 2016.

[9] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT:
an ultra-lightweight block cipher. In Cryptographic Hardware and Embedded Systems
- CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, pages 450–466, 2007.

89

BIBLIOGRAPHY

[10] Chris Cummins, Pavlos Petoumenos, Michel Steuwer, and Hugh Leather. Autotun-
ing opencl workgroup size for stencil patterns. CoRR, abs/1511.02490, 2015.

[11] Morris J. Dworkin, Elaine B. Barker, James R. Nechvatal, James Foti, Lawrence E.
Bassham, E Roback, and James F. Dray Jr. FIPS PUB 197. In Advanced Encryption
Standard (AES), page 47. 2001.

[12] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok Koo,
Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, Hyun Kim, Jongsung
Kim, and Seongtaek Chee. HIGHT: A new block cipher suitable for low-resource
device. In Cryptographic Hardware and Embedded Systems - CHES 2006, 8th In-
ternational Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings, pages
46–59, 2006.

[13] Intel. Intel FPGA SDK for OpenCL Best Practices Guide.

[14] Intel. Intel FPGA SDK for OpenCL Programming Guide.

[15] Qi Jia and Huiyang Zhou. Tuning stencil codes in opencl for fpgas. In 34th IEEE
International Conference on Computer Design, ICCD 2016, Scottsdale, AZ, USA,
October 2-5, 2016, pages 249–256, 2016.

[16] Khronos OpenCL Working Group. The OpenCL Specification version 1.1, 2011.

[17] Hyangjin Lee, Sung Jae Lee, Jaeho Yoon, Dong Hyeon Cheon, and Jaeil Lee. The
SEED encryption algorithm. RFC, 4269:1–16, 2005.

[18] Fernando Martinez-Vallina and Spenser Gilliland. Performance optimization for a
SHA-1 cryptographic workload expressed in opencl for FPGA execution. In Pro-
ceedings of the 3rd International Workshop on OpenCL, IWOCL 2015, Palo Alto,
California, USA, May 12-13, 2015, page 7:1, 2015.

[19] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[20] Giridhar Sreenivasa Murthy, Mahesh Ravishankar, Muthu Manikandan Baskaran,
and Ponnuswamy Sadayappan. Optimal loop unrolling for GPGPU programs. In
24th IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2010, Atlanta, Georgia, USA, 19-23 April 2010 - Conference Proceedings, pages
1–11, 2010.

90

BIBLIOGRAPHY

[21] Hidenori Ohta and Mitsuru Matsui. A description of the MISTY1 encryption algo-
rithm. RFC, 2994:1–10, 2000.

[22] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In Advances in Cryptology - ASIACRYPT 2004, 10th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Jeju Island, Korea, December 5-9, 2004, Proceedings, pages 16–31,
2004.

[23] Ilacai Romero Reyes, Irina Fedyushkina, Vladlen Skvortsov, and Dmitry A. Fil-
imonov. Prediction of progesterone receptor inhibition by high-performance neural
network algorithm. 7:303–310, 01 2013.

[24] Jie Shen, Jianbin Fang, Henk J. Sips, and Ana Lucia Varbanescu. Performance
traps in opencl for cpus. In 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2013, Belfast, United Kingdom,
February 27 - March 1, 2013, pages 38–45, 2013.

[25] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The
128-bit blockcipher CLEFIA (extended abstract). In Fast Software Encryption, 14th
International Workshop, FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007,
Revised Selected Papers, pages 181–195, 2007.

[26] Gert-Jan van den Braak, Bart Mesman, and Henk Corporaal. Compile-time GPU
memory access optimizations. In Proceedings of the 2010 International Confer-
ence on Embedded Computer Systems: Architectures, Modeling and Simulation (IC-
SAMOS 2010), Samos, Greece, July 19-22, 2010, pages 200–207, 2010.

[27] Kui Wang and Jari Nurmi. Using opencl to rapidly prototype FPGA designs. In
IEEE Nordic Circuits and Systems Conference, NORCAS 2016, Copenhagen, Den-
mark, November 1-2, 2016, pages 1–6, 2016.

91

	Introduction
	Organization of the paper

	State of the Art
	Overview of OpenCL
	Comparison with C
	Host-side API

	OpenCL-enabled accelerators
	Comparative summary of OpenCL concepts and implementations

	Performance Portability between GPUs and FPGAs
	Reference: OpenCL best practices
	Reference: OpenCL best practices for GPU
	OpenCL best practices for FPGA
	Work dimension tuning and loop unrolling
	Local memory and synchronization
	Global memory access optimization
	Host-device transfers optimization

	GPU and FPGA best practices compared
	Our case of study: symmetric block ciphers

	Experimental Evaluation
	Test environment
	Metrics employed
	Experimental validation of programming practices
	Initial implementation
	Round key cached in local memory
	Disable buffer interleaving
	Unified main loop (without unrolling)
	Main loop full unrolling
	Manual partial unrolling
	Round key forced into local memory, multiple unrolling techniques
	Extracting num_rounds as a constant
	Interlude 1: Strategies to parallelize over multiple work items
	2 separate workers
	4 separate workers
	Interlude 2: performance wall
	NO-OP test
	Pre-final AES design
	Final summary

	Horizontal slice

	Conclusion
	Salient points
	Possible future developments

	Source code
	Text dumps
	board_spec.xml for aclattila_hpc_16_10

	Bibliografia

