POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’'Informazione
Corso di Laurea Magistrale in Ingegneria Matematica

%,
,

a

7, W\
W

%
Iy,

N
Y/ \\\\
e

sign-to-contract: HOW TO ACHIEVE
TRUSTLESS DIGITAL TIMESTAMPING WITH
ZERO MARGINAL COST

Relatori: Prof. Daniele MARAZZINA
Prof. Ferdinando AMETRANO

Tesi di Laurea di:
Leonardo COMANDINI
Matr. 863940

Anno Accademico 2017-2018



Sed quis custodiet ipsos Custodes?
But who will guard the guards themselves?

Juvenal, ¢. 100 A.D.



Contents

[List of Tables|

[List of Figures|

[List of Algorithms|

[Abstract]

[Acknowledgements|

2 Timestamping]
2.1  Commitment Operations| . . . . . . . . . ... ... ... ...

2.2 Time Attestations. . . . . . . . . ...

[3 Trustless Timestamping|

3.0 OP RETURN . . o o0 000

[4 State of the Art of Trustless Timestamping|
[4.1  OpenTimestamps as a Standard| . . . . . . .. ... ... ...
[4.2  OpenTimestamps as a Scalability Solution| . . . . . . . . . ..

(>  Elliptic Curve Commitments|
[>.1  Elliptic Curve Public Key Cryptosystem| . . . . . . . ... ..
[>.2 A New Commitment Operationl . . . . . ... ... ... ...
(5.3  Timestamping Applications| . . . . . . ... .. ... ... ..
[0.0.1  pay-to-contract| . . . . . . ..o
[0.0.2  sign-to-contract| . . . . . . . . ..o

11

iv

vi

vil

viii

12
12
19
20

21
22
26



[6 Practical Analysis of sign-to-contract |

[6.2  sign-to-contract Made Accessiblel . . . . . . .. ..

A. Y TOUDS| . . . .

(B Plugin functioning]

111

45
45
47

54

56
26
o7
o8
o8

59



List of Tables

[4.1  OpenTimestamp receipt execution. . . . . .. ... ... ...

[6.1 Comparison between timestamping schemes.| . . . . . . . . ..

v

46



List of Figures

2.1 Merkle tree example| . . . . . .. ... 0oL 9
[3.1 Simplified scheme of the Bitcoin chain| . . . . . .. ... ... 17
[3.2  Commit arbitrary data in the Bitcoin chain| . . . . . . . . .. 19
[4.1 Calendar timestamping| . . . . . . . .. ... .. .. ... ... 29
[6.1 sign-to-contract with segwit| . . . . . . . . . .. ... ... .. 48
[6.2 Enable the plugin to create timestamps| . . . . . . . . . .. .. 50
(6.3  Sign with sign-to-contract| . . . . . . . ... ... 51
[6.4 Transaction history| . . . . . . . ... ... L. 52
[6.5 Complete the timestamp| . . . . . . . ... .. ... ... ... 53
[B.1 Simplified scheme of the Electrum pluginl . . . . . . . . . . .. 61




List of Algorithms

2.1 Merkle tree constructionl . . . . . . . . .. ... ... 8
[3.1 Bitcoin network behaviour . . . . ... ..o 14
[4.1  Create timestamp on the Bitcoin chain| . . . . . . . .. .. .. 27
[4.2  Client - aggregator - calendar simplified working| . . . . . . .. 28
[4.3  Calendar replace by fee| . . . . . . . . ... ... ... .. 30
[>.1  Commitment to a secp256k1 point using SHA256| . . . . . . . 36
[b.2  ECDSA signature| . . . . . . . . ... ... ... ... 40
[5.3  ECDSA sign-to-contract (s2c)| . . . . . . .. ... ... ... 41

vi



Abstract

Proving that data existed prior to a certain time is helpful in several situ-
ations. Thanks to systems achieving distributed consensus without relying
on a trusted third party, like Bitcoin, it is possible to enhance the secu-
rity of such timestamps. OpenTimestamps is a protocol defining a standard
for creating timestamps and, in addition, it provides a scalability solution.
Currently, an improvement concerning elliptic curve commitments has been
proposed [25]. We aim to give an exhaustive overview upon this new scheme,
its implications and motivations, culminating in the development of a real
world application.

Vil



Acknowledgements

I would first like to thank my thesis advisor Prof. Marazzina for the al-
ways prompt help in writing the research. Then I would like to thank Prof.
Ametrano, who initially unveiled me the true nature of Bitcoin as a tool en-
hancing freedom, successively assisted me in my learning growth, ultimately
he directed me in my research, advicing me when facing doubts and putting
me back on track when I needed.

Next I would like to acknowledge the experts whose work is the skeleton
of the thesis, Peter Todd and Andrew Poelstra. Todd is the first contribu-
tor to OpenTimestamps, his code and publications have been the essential
landmark which inspired almost the whole research. Poelstra is the author
of the code extension that enables the technique examined in the research.

Furthermore I would like to thank the community behind Milano Bitcoin
meetups, they give me the chance to meet experts and enthusiastic people, it
motivated me to deepen my studies and contributed to improve my education
in the subject.

Finally, [ would like to profoundly thank the Eternity Wall team, specially
Riccardo Casatta, Valerio Vaccaro and Luca Vaccaro. Eternity Wall, leading
company in the sector, hosted me for an internship during which the research
was written, their mentorship has been indispensable to achieve the results
composing this work. They patiently counseled me in each step I had to
take, teaching me the correct approach to tackle and solve specific technical
problems in a professional manner. With extreme and consistent availability,
they deeply involved me in the subject, sparking in me profound motivations.

Viil



Chapter 1

Introduction

Associate dates with events is the essential medium to write history. In the
distant past it was appanage of a restricted elite of powerful individuals, with
the evolution and progress of society, the amount of people able to write their
own history has increased. This lead to the emergence of different versions:
not a crucial concern because, as for several human constructions, history can
be a distortion of reality. Converge to a single version is a tough matter, yet it
is grounded into the ability of everyone to write their own history. Precluding
some individuals from the ability to state and record their viewpoint does
compromise the natural interaction between history and reality. In this work
we focus on the primary obstacle: the ability of recording arbitrary events.

Using proper semantics, an event is mapped into data, which are then
embedded in an item suitable for storing and sharing, finally on the resulting
object a date is attached. Each step can be performed in a variety of man-
ners and has its own optimal choices to fulfil the given requirements. In this
work we assume the meaning of the data is given and we refer to the pro-
cedure of binding a date to data as timestamping. We focus on weaknesses
and strengths of every choice, starting from physical to digital timestamp-
ing, with particular emphasis on the trust issue. If a third party is placing
the date on the item containing the data, it may behave maliciously, e.g.
compromising the data or setting a wrong date. This issue can be addressed
using distributed consensus technologies, like Bitcoin, allowing anyone to
write his own version of the events: oppressed people have the possibility to
record what they witness even in hostile environments, reducing powers and
responsibilities of central authorities.

How to make this approach viable and accessible on large scale presents
tough technical steps, resulting in best practices [5] that have been used to
define an open protocol standard. This protocol has emerged as the first
(along with very few others) non-financial blockchain-related working appli-



cation [6].

Our contribution starts with a deep investigation of an improvement pro-
posal [25] 26] to the standard that allows the inclusion of a timestamp inside
a regular bitcoin transaction without increasing its size and hence its cost.
We aim to provide guidelines to properly understand what is behind this
technique and the implications it carries. Finally we present a practical im-
plementation of this new feature we have developed as integration inside
a popular bitcoin open source wallet: users can create timestamps within
transactions with no additional charge.

1.1 Structure

In this work we aim to describe exhaustively foundations, benefits and issues
of arising from the new proposed technique. It requires to traverse different
subjects, mainly cryptography, computer science and distributed systems. In
this section we outline the path we are going to undertake.

In Chapter |2l we define what a timestamp is and we exploit the essential
characteristics of its components: operations and attestations.

In Chapter [3], after a brief introduction on Bitcoin, we show how it can be
used to achieve digital timestamping without relying on trusted third parties.

In Chapter [ we show the state of the art of trustless digital timestamp-
ing, with the open source project OpenTimestamps. We provide a description
of the standard it defines and the solution to address scalability issues.

In Chapter [5| we plunge into the core of the work, analysing the technique
of elliptic curve commitment, with main focus on timestamping applications,
particularly sign-to-contract.

In Chapter [6] we highlight the practical implications of sign-to-contract,
both benefits and issues. Finally we show a plugin for a popular open source
wallet that implements the technique described.

To conclude, in Chapter [7], we summarize what has been discussed and
draw attention to which future works can start from the point reached.



Chapter 2
Timestamping

Placing a certain date on some data is surprisingly useful [13] 10, 18, [30].
An inventor who had a patentable idea or a scientist who came to a relevant
conclusion may want to create a verifiable proof that at a certain moment
they discovered something. This can help them to protect their intellec-
tual property, proving others their precedence over competing claims. In a
communication protocol having the possibility to attach a certain time to
messages can improve the security of the transmission. However it is often
difficult to come to an agreement on which is the correct time to use, so
different security models yield to different practical schemes. When storing
documents in a third party cloud server, it could behave maliciously, for in-
stance modifying their contents. Placing a certain and tamper resistant date
on a document will make harder for the server provider to corrupt that file:
the attacker should also be able to falsify the certificate stating the date.

Other practical applications of this technique are possible, however to
have a complete understanding of the subject it is important to figure out
which are its limits and which are the right choices to take to correctly put
the concepts into practice. So we need to be a little more formal,

Definition 2.0.1. A timestamp is a proof that some data d existed prior to
time t.

To create such proof, d has to cause an event that could not have been
generated without the existence of d. Such event it is bound to time ¢ and
can be observed by others, we call its record time attestation. So a proof
consists in the data d, the set of operations that were applied to cause the
event and the time attestation.

Proofs are useful if they are able to convince the verifiers. He must be
able to check the correctness of the operations and must retain trustworthy



the time attestation. Depending on the problem in exam one should properly
choose which operations and attestations to use.

Let’s consider the case of a sent letter. The data d is the content of the
letter, d caused the palpable letter: if d were different the letter would be
different. When the letter went through the post office a postmark with the
date t was stamped on the letter, the postmark is the time attestation. If
the post officer is trustworthy, a verifier who examines the letter may be
convinced that the content of the letter existed prior to the time stated in
the postmark. However a good counterfeiter could change the content of the
letter or falsify the postmark placing a false date, thus for some cases such
proof would not be appropriate.

In the case of a digital document new problems arises: it is not necessary
to be a good counterfeiter to falsify a document without leaving any kind of
tamper evidence, thus new solutions must be adopted. A timestamp for the
data d should guarantee that if even only a single bit of d is modified the
timestamp proof becomes invalid. To solve this problem cryptography tools
are used [I4]. Digital data can also be shared easily and with little costs, this
is among the features that enables the possibility to achieve distributed and
decentralized consensus. Such an achievement would give user the chance to
timestamp without any trust in a third party.

Resuming, at a certain moment t. some data d exists, then at ¢, someone
(or something) will have the necessity to prove the existence of d, so he imple-
ments the timestamp creation procedure that results in a proof stating that
d existed priort to time t. Consequently at time t, a challenger implements
the verification procedure that ends in a binary result: true if he retains the
proof correct, false otherwise. Naturally we have t. < t. <t < t,.

To avoid common misunderstandings, it is important to clarify what a
timestamp does not prove. The time t is the first moment when d went
to existence, the creation procedure is not instantaneous and of course if
the proof for (d,t) is true then there exists a proof for (d,t') which holds
true for all ¢ > ¢t. A timestamp is not necessarily linked to its creator and
moreover it doesn’t prove that who owns the timestamp (it can be owned by
multiple entities) is the creator of the data d: it just proves that someone
knew d. If an inventor comes up with a timestamp stating that he had a
particularly smart idea prior to time ¢, it does not mean that he was the first
one to have such idea, in fact he could have simply overheard the idea from a
colleague and afterwards timestamped it. A timestamp does not prove that
data d’ # d does not exist. Imagine someone stating that he knew the result
of the elections prior to the vote, he provides a timestamp and claims that it
proves he predicted the correct outcome. However he could be an imposter:
he may had timestamped several different results and once he saw how the

4



vote count ended he will provide only the proof which make him look as a
visionary. Although these limitations being able to timestamp is still useful.
If stronger proofs are needed the used system must be endowed with other
tools that actually provides what is asked.

In the following sections we analyse the two ingredients of timestamp
proofs: operations and attestations.

2.1 Commitment Operations

The operations that compose a timestamp proof should be defined in a pre-
cise way, a verifier will check their correctness when evaluating the proof. An
useful operation binds the data in a way that it is hard or impossible to mod-
ify the data after the creation of the timestamp. Being more general, such
an operation commits the input to the output: the input cannot be changed
without changing the output. The result of the operation is a commitment
to the input, in the sense that it was caused by the input or, in other words,
the input precede in time the output. For instance in the case of a sent letter,
the input is the content of the letter, the piece of paper that is sent is the
output and physically writing the letter is the operation that commits the
input to the output. We can say that a letter is a physical commitment to
its content. If one wants to modify the content of the letter ex post it will
change the letter itself. However, tamper evidence could be extremely hard
to spot.

Digital document are easier to tamper, but they could be defined in a more
precise way, representing each document with bits. To take full advantage of
this, we need a formal definition,

Definition 2.1.1. A function C': X —'Y is a commitment operation if given
x1 € X it is not feasible to compute x4 € X s.t. x1 # x9,C(x1) = C(x9).

The property required is sometimes referred as second pre-image resis-
tance. For practical purposes X, Y can be thought as bit string spaces, their
element can be seen as bit strings or another of their representations, for in-
stance in hexadecimal digits or using a conventional encoding. The simplest
examples are the append and prepend operations:

Example 2.1.1. “hello”, “world” 2" “helloworld”.

It is impossible to change the inputs without changing the output: the
output contains the inputs themselves. In the example the function is a
binary operation, however, by fixing one input, it is possible to turn these
commitment operations into unary operations:



Example 2.1.2. “world”w “helloworld”.

Append and prepend have two problems: they reveal everything about
the inputs and the size of the output is always greater than the size of the
inputs.

Hiding the input of a commitment is often useful. For instance Robert
Hooke [24] in 1676 had formulated the spring law that will take his name.
He wanted to prove that he knew that without revealing the law itself, so
he published the latin anagram “ceiiinosssttuv”. Later in 1678 he revealed
the solution, “ut tensio, sic vis”(“as the extension, so the force”). However
the anagram is not an optimal commitment operation: “ut vis, sic tensio”is
a solution too. For that time it was an acceptable solution, the verification
procedure had minimal requirements and there was no real incentive in lying.
Nowadays better solutions are available, hence using an anagram will make
the verifier suspicious.

To address these problems cryptographic hash functions are used. Hash
functions maps bit strings of arbitrary finite length into bit strings of fixed
length [11].

Definition 2.1.2. h:{0,1}* — {0,1}" is a hash function if it is computable
in polynomial time in the length of the input.

We will refer at the input of such functions as preimage, and the output
as hash value. The codomain is strictly contained in the domain hence the
presence of collisions (pairs of inputs with identical outputs) is unavoidable.
To give to these functions a practical use some of the following properties
are required

Definition 2.1.3. Let h be a hash function, the following properties may
hold:

e preimage resistance: given h(x) it is not feasible to compute x;

e second-preimage resistance: given x it is not feasible to compute y s.t.
x#y, h(z) = h(y);

e collision resistance: it is not feasible to find x,y s.t. v # y, h(x) =

h(y).

A preimage resistant hash function hides the inputs, this property is some-
times referred as one-wayness. A second-preimage resistant hash function is
also a commitment operation, in addition it hides the input and create a fixed
size fingerprint. A huge file can be mapped into a short bit string which is a



commitment to it. Collision resistance, although is a nice to have, is not nec-
essary for timestamping purposes: when a collision (z # y s.t h(x) = h(y))
is found, x and y are found at the same time [31].

Such properties depend on the dimension of the codomain, which is given
by the parameter n, precisely 2". If it is too low it will be easy to produce
examples that invalidates the properties, if it is too high the hash function is
not a good tool for reducing the size of the input. A good compromise has to
be found, it should be based on the current state of the art of cryptanalysis
and computer science. However what is considered acceptable during a period
may not be accepted in a subsequent one, in fact if new techniques that break
an hash function are discovered, then its use will be considered insecure.
Several hashing functions has been proposed, we show a couple of examples:

Example 2.1.3. SHA1 (Secure Hashing Algorithm) was designed by the Na-
tional Security Agency (NSA), and released in 1995. It maps bit strings to
a 160 bit space, it was considered preimage, second-preimage and collision
resistant. In 2005 cryptanalysts discover a theoretical procedure to find colli-
sions, later practical attacks were published [29], hence it was declared inse-
cure. However only collision resistance was broken, thus it can still be used
for timestamping purposes.

SHA1(b’Hello World!\n’)

a0b65939670bc2c010f4d5d6a0b3e4e4590fb
92b
648a6a6ffffdaadbadb23b8baf90b6168dd16
b3a

SHA1(b’Hello World\n’)

Example 2.1.4. SHA256 belongs to the family SHAZ2, the generation of hash
functions following SHAﬂ. It outputs strings 256 bit long and, at the mo-
ment, it is considered to satisfy all the properties in Definition[2.1.5. Several
systems are built upon this assumption. In addition, as other hash functions,
SHA256 could be modeled as a random oracle, a fixed input will provide al-
ways the same output, since hash functions are deterministic, but the outputs
corresponding to new inputs will give results that are indistinguishable from a
uniform distribution. Note how a little change in the input produces outputs
very dissimilar in both hash functions, this feature helps to spot alterations
in the inputs.

SHA256 (b’Hello World!\n’) 03ba204e50d126e4674c005e04d82e84c21
366780af1£43bd54a37816b6ab340
d2a84f4b8b650937ec8f73cd8be2c74addb

a911bab64df27458ed8229da804a26
LCurrently, it is available SHA3, which contains, among others, KECCAK256.

SHA256 (b’Hello World\n’)

7



Since SHA256 is available, the use of SHA1 should be avoided unless there

1s a particular motivation.

More complex commitment operations are possible. But they should be
used only if there are some valid and shared motivations. Finding a badly
motivated commitment operation in a proof will make verifiers suspicious.

Combining the examples we saw it is possible to implement a data struc-
ture that is useful to embed several commitments into a single hash value,
this structure is called Merkle tree [22]. Let h be a second-preimage resistant
hash function, start from k data to timestamp {d;}*_,, called leaves, compute
their hash values {h(d;)}*_, = {h;}"_,. The first step combines the couples
of adjacent values (if there is one) by concatenating (||) the two values and
computing the hash value of the concatenation: h(h;||h;+1) Vi € [1,k] odd.
The following steps proceed in an analogous manner, but starting from the
results computed at the step before as described in Algorithm

Algorithm 2.1 Merkle tree construction

1: procedure MERKLESTEP ({h;}}_,)
2: S {}
3: for i <+ 1,k st. :=1(2) do

h(hillhiy1) @k

4: S+ Su .
h(h;) 1=k

5: end for

6: return S

7: end procedure

8: procedure MERKLELIZE({d;}¥ ;) > from the leaves to the Merkle tip

9: S {}

10: for i + 1,k do

11: S« SUR(d;) > hash the leaves
12: end for

13: k < |S]

14: while £ # 1 do

15: S <~ MERKLESTEP(S) > if necessary, store S
16: k<« |S|

17: end while

18: return S > Merkle tip

19: end procedure

After at most [log(k)] steps the algorithm ends and one hash value is
returned, it is called Merkle tip or Merkle root. Thanks to reiteration of h

8



Merkle

Root
ﬁ_&
D E

//\ \

A B E-C -------- -----I
S I B e i
''''''''' A 1T
Rt T ot T ) R C R P

Figure 2.1: Merkle tree example. The Merkle root is a commitment to the
leaves {data;}?_;.

the tip is a commitment to all the leaves {d;}*_,, moreover to prove that a
element d; is committed it is not necessary to know all tree, in fact it’s enough
to show the Merkle path starting from d; and ending in the tip. For instance
referring to Figure the minimal requirement to show the commitment of
data3 in MT is the ordered sequence of operations to apply is:

h, append(h4), h, prepend(A), h, append(E), h

Merkle trees can aggregate several commitments into one hash value, giving
a scalability solution: the length of a single proof grows logarithmically with
the number of leaves.

2.2 Time Attestations

Attestations are provided by a notary, which has the authority to state the
time. Notaries are sometimes referred as timestamp servers, who ask for
creating or verifying that a timestamp is referred as client. A time attestation
binds some data d to the time ¢, d could be directly the data to timestamp or



a commitment to them. To properly design a timestamp scheme it is crucial
to analyse which features an attestation should have and how to choose a
notary that provides the desired security.

An attestation should be tamper resistant or, even better, immutable.
Once created no one should be able to modify that, backdating the timestamp
or changing the underlying data without making the attestation invalid.

In the case of a sent letter an important issue comes to the attention:
the attestation (postmark) can be verified only if the letter is in our hands.
This makes the task of a counterfeiter easier, few people will examine the
postmark making the success of the attack more likely. A solution that mit-
igates this issue is widely publishing the attestation, for instance inserting it
in a newspaper. The attacker has an harder task, in most cases, to guar-
antee himself good chances of success he needs to modify several, or even
all, attestations leading to a higher cost. Considering an attestation on a
newspaper, an attacker could counterfeit only the exact copy the verifier is
going to check. To prevent such situation the verifier should check multiple
sources and should not expose any information on where he is retrieving the
copies used to examine. Attestations should be easily accessible, for instance
a good solution is to publish them on the internet.

We call the service providing the attestations notary, it has the authority
to state the time. To maintain such power it has to show itself as trustworthy:
it should place the correct time in the attestations, it should not trick the
clients modifying the timestamp ex post and he should not collude with the
creator of the timestamp to trick a verifier. Moreover a notary should be
competent: if it looses the information necessary to verify the timestamp,
then its creator will be damaged.

A good notary does not make distinctions among clients or data to times-
tamp, in other words it does not censor. An improvement would be if it is not
aware of what it is timestamping, like the case of the commitments hiding
their inputs, but even better if it is not aware of being used as a timestamp
server, like the newspaper.

In the case of a sent letter, the notary is the post officer, he will place the
postmark on the letter giving it a date. Clients must trust such notary, which
in theory can place a wrong date ¢’ instead of ¢, creating a false timestamp
(if t' < t) or a deliberate weaker proof (if ' > t). Alternately he can decide
not to timestamp a letter or modifying its content before timestamping. In
addition the resulting timestamp is unique, thus if it gets damaged or lost
the proof is gone forever.

A notary willing to show himself as more trustworthy can make its pos-
sibly dishonest behaviour harder to implement. A possible solution is to
link all the timestamps so that changing one would implies changing all the

10



subsequent ones. A timestamp proof T'S; for the data d; at the time t;

(ti-1 < t; < t;y1) would have the following structure:
TSO = (do,to,O'N((do,to))) (2 1)
TSz = (di7ti7TSifluo-N((dhti?TSifl))) L= 17"'7Iimax .

where on(z) is a commitment to the data x. Such commitment is created
by the notary, who is (supposedly) the only one who is able to apply oy.
We call this function signature, it can be physical (as a postmark) or digital
(with a public key cryptosystem). The signature oy is a commitment opera-
tion, so if T'S; changes then oy ((d;y1,ti11,T'S;)) changes, thus T'S;,; changes
resulting in 7'S; changing for all j > . Starting from the genesis timestamp
TSy, the linked timestamps {7'S;}/me* form a chain. A trusted notary which
implement this scheme will be preferred by honest clients. Depending on
each particular problem the designer of the system has to properly choose
how to collect the timestamp requests, how to commit them into the chain,
the time frequency, the signature procedure, how to publish the chain and
how to distribute the timestamp proof to the clients.

Even though linking the timestamps is a great improvement with respect
to the previous schemes, having a trusted notary still involves some issues.
The notary may loose what he needs for signing (e.g. stamp, private key); if
an attacker can sign in the place of the notary, it will no longer be considered
authoritative; if no one can sign the clients will be damaged. In addition
the notary can create more than one chain starting from the same genesis
timestamp, then he can use different chains for different clients. Anyhow
nothing can guarantee that a trusted notary will behave honestly in the
future, it can attack some clients in several ways and such bad behaviour can
be hard to spot rapidly, a single client may realize that he has been tricked
only when he needs the timestamp.

Trusted attestations has security issues hence, in some situations, they
could be considered not enough appropriate, yet for years an efficient solution
that does not involve a trusted third party was considered barely impossible.
In 2008 Satoshi Nakamoto proposed [23] which described a system to transfer
value from one party to another without relying on the presence of a central
authority. The system can be also used to timestamp arbitrary data without
trusting any notary.

11



Chapter 3

Trustless Timestamping

Bitcoin enables timestamping in a trustless framework. To show this first we
introduce what Bitcoin is and why it works, then we show two techniques to
timestamp data using the protocol’s digital coins.

As a premise it is important to highlight why and in which terms a trust-
less design is superior to a trusted one. Trusted schemes can be built upon
trustless ones, but the other way around is not possible. Trustless systems
have higher security but the mechanism sustaining it makes thing much more
sophisticated, yielding to less accuracy and efficiency with respect to trusted
ones.

3.1 Bitcoin

Bitcoin is an electronic payment system based on cryptography rather than
trust. A coin is defined as a chain of digital signatures. Each owner transfers
the electronic coin to the next by digitally signing a hash of the previous
transaction and the public key of next owner (or a commitment to it).
Coins doesn’t have to be managed individually, they can be combined
and split in transactions containing multiple inputs and outputs. The last
output appended to a coin is said unspent transaction output, UTXO.
However who receives a transaction cannot verify that who pays him did
not double-spend the coin. To prevent this behaviour it is needed a system to
agree on a single history of the order in which the transactions were received.
The proposed solution starts with a timestamp server: each timestamp it’s
a hash of a block which contains a set of items and the previous timestamp
(if there is one). The resulting data structure forms a chain, which is often

12



referred to as blockchain[t

TS, h(itemso). Z =0 | (3.1)
h(TS;_1||items;) i=1,...,imas

To implement a distributed version of a timestamp server it is used a proof-of-
work (PoW) system similar to Adam Back’s Hashcash [7]. The proof-of-work
consists in scanning for a value (called nonce) to be included in the block
that when hashed produces an hash value (interpreted as an integer) less
then a given target w as pointed in Definition [3.1.1

Definition 3.1.1. The proof-of-work consists in:
given:

e previous timestamp T'S;_1 € {0,1}";
e items to timestamp items; € {0, 1}*;
e target to beat w > 0;

find:
e nonce € {0,1}* s.t. h(TS;||items; 1||nonce) < w.

The proof-of-work is basically finding partial hash collisions for the lead-
ing zero bits. Hash functions such SHA256 are designed in a way that the
fastest algorithm for computing partial collisions is brute forceﬂ Thus finding
a solution to the challenge is computationally expensive, in other words find-
ing a solution proves that CPU time was consumed and energy was expended
for that purpose.

If the hash function has a sufficiently large codomain, it can be, in prac-
tice, arbitrarily hard to find a solution. For instance consider SHA256, the
codomain is {0, 1}?% & Zy2s6, assuming that its outputs have the same prob-
abilities, the chance that a given nonce has hash value less then the target
is 53%5. If w = 1 the proof-of-work is finding a pre-image of 0 (with addi-
tional constraints) but that is not feasible thanks to its preimage resistance
property. So the lower is w the higher is the difficulty, tending towards an
unfeasible problem as w is closer to 1. Assuming that the computational

n [23] it is referred as block chain, later the term blockchain became used regularly.
However, as of writing, such term is associated with an excessive hype which is misguiding
the technological development.

2Some optimizations have been discovered [15], but they still require a massive brute
force component.

13



power used is known, the target can be chosen so that expected time to find
a solution matches a given value.

The proof-of-work is publicly auditable: when a solution is found verifiers
check its correctness computing a single hash and perform one comparison.
If the verification is successful they are convinced that someone has done the
work, without the need to know or trust him. In other words proof-of-work
commits energy to data. This commitment takes the place of the signature in
the linked timestamping scheme , to extend the chain is not necessary
to be able to sign as a notary, instead anyone running a particular software
can try to solve the proof-of-work, who finds the solution will append it to
the chain.

TS, — {h(itemso) i=0 (3.2)

h(T'S;_1||items;||nonce;) i =1, ..., 4max

However the proof-of-work by itself does not prevent the double-spending
problem, it makes computationally expensive to rewrite a chain, but alone it
does not ensure that the chain is unique.

Bitcoin can be seen as a network, nodes are entities who run a software
following a protocol. The network behaviour can be designed as follows:

Algorithm 3.1 Bitcoin network behaviour

: New transactions are broadcast to all nodes.

: Each node collects new transactions into a block.

: Each node works on finding a difficult proof-of-work for its block.

: When a node finds a proof-of-work, it broadcasts the block to all nodes.

: Nodes accept the block only if all transactions in it are valid and not
already spent.

6: Nodes express their acceptance of the block by working on creating the

next block in the chain, using the hash of the accepted block as the

previous hash.

Tt s W N

Nodes always consider the chain with the most proof-of-work to be the
correct one and will keep working on extending it. If two nodes find different
versions of the next block simultaneously, the network will be split into two
sets with different chains. The tie will be broken when the next solution
is found: one chain will have more proof-of-work then the other, the nodes
working on the other branch will switch to the longer one; this event is called
reorg. Reorgs greater than one block may happen, but with exponentially
decreasing probabilities, if the majority of the nodes does not collaborate to

14



behave maliciously; for practical purposes a transaction is considered con-
firmed after 5 blocks are appended to the block including the transaction or,
in other words, when the transaction is 6 blocks deep.

By convention the first transaction in a block is a special transaction
that starts a new coin owned by the creator of the block, called coinbase.
It provides an incentive to the nodes performing the proof-of-work and a
way to initially distribute coins into circulation, since there is no central
authority to issue them. This minting procedure mimes gold extraction:
instead of expending resources to add gold to circulation, in this case CPU
time and energy are consumed to bring to light new coins. Actually nodes
with few computational resources can decide that their chances to find a
solution are too low to even try, thus only some nodes will attempt to solve
the proof-of-work, following the previous analogy they are called miners. The
incentive can be also funded with transaction fees, which are the difference
between inputs and outputs amounts. Fees give a way for miners to prioritize
transactions, higher fees will be preferred; in addition they also provide an
anti denial-of-service measure, for each spamming transaction, the attacker
has to spend a fee greater or equal than some of the ones competing with it
to get into a block. The incentive may help encourage nodes to stay honest.
A miner with enough computational power can defraud people by sending
them coins and then rollback the transactions extending another chain not
containing such transaction. However this undermines the system, people
won’t use it to send payments and the coins will loose their value, damaging
the attacker own wealth. He ought to find more profitable to play by the rules,
contributing to increase the security of transactions and, as a consequence,
of the value of the coins.

If the majority of the miners does not collaborate to attack the network,
the nodes reach consensus over the state of the coins. The chain with the
most work contains the history of all transactions, giving all the information
to retrieve which are the coins that have not been spent, the UTXO set, and
to check that no extra coin was created outside the network minting rules.

The result is surprising, in the network each node has an arbitrary be-
haviour, it may go offline, send false message, lie and attack other nodes. A
node with this behaviour is called Byzantine [33], otherwise is called hon-
est; finding consensus in a network with Byzantine nodes is called Byzantine
agreement. Bitcoin combines cryptography, proof-of-work and an economic
incentive to create a system that comes to a Byzantine agreement. The key
aspect is that the economic incentive is given through the same digital as-
set the system is securing; if the economic incentive was unrelated to the
system, then miners may start to behave maliciously. Although it is often
misunderstood, the technology underlying Bitcoin is not suitable to come to

15



Name (bytes) Description

version (4) The block version number
indicates which set of block
validation rules to follow

previous block header hash | A SHA256(SHA256()) hash

(32) of the previous blocks
header

merkle root hash (32) Merkle root commiting the
transactions of the block

time (4) The block time is a Unix

epoch time when the miner
started hashing the header
(according to the miner)
nBits (4) An encoded version of the
target threshold this blocks
header hash must be less
than or equal to

nonce (4) An arbitrary number miners
change to modify the header
hash in order to produce a
hash less than or equal to
the target threshold

Table 3.1: Bitcoin block header structure.

a Byzantine agreement on arbitrary subjects aside from the history of the
coins. It is possible to build such a system upon Bitcoin but it requires
another layer of consensus.

Nodes in the network must agree on a common set of rules, including
which is the initial block and whether a transaction is valid. The rules
define the consensus, which in turn defines the chain. If a set of nodes
follows different consensus rules the network will split into two networks with
different chains. If the two networks share the genesis block and a part of the
chain, then it is called a fork. We call the set of consensus rules followed by
the Bitcoin network Nakamoto consensus, however to properly address fork
issues a further specification may be necessary.

The size of a block is excessive for some purposes, to save space the
transactions are packed in a Merkle tree;its root, along with other items, is
committed in the block header which is described in Table [3.1] taken from [IJ.

16



Prev Merkle Prev Merkle Prev Merkle
Hash ROOT Nonce Hash RooOt Nonce Hash Root Nonce
A

— —
TXIDL TXID2 TXID3 TXID4
T T T T
Tx1 X2 T3 T4

Figure 3.1: Simplified scheme of the Bitcoin chain. The block header is richer
and the transaction Merkle tree can be deeper

The previous block header hash is a timestamp of the previous block, this
ensures no previous block can be changed without also changing this block
header. The presence of the Merkle root ensures that every transaction in
a block cannot be changed without modifying the header. The inclusion of
the time is a peculiarity of Nakamoto consesus, it may be absent in other
chains following different rules; still miners can set a arbitrary time, if they
will to risk and they fall inside the rules of consensus: time set must be
strictly greater than the median time of the previous 11 blocks moreover
nodes won’t accept blocks with headers more than two hours in the future
according to their clock. The nBits field encodes the target, which is set
in order to have expected time to mine a block equal to 10 minutes. If the
average time to mine the previous block is less than 10 minutes the difficulty
increase, otherwise it decreases. The difficulty adjustment happens every
2016 blocks and use the time field to compute the time interval to mine
those blocks. If all the 32-bit values of the nonce are tested, other fields
can be changed, provided that the consensus rules are respected. Time can
be updated, the Merkle root can be changed by reordering, modifying or
substituting transactions.

Dropping version and the target nBits for a lighter and more essential
notation we can update the chain description in ([3.2)):

B R({0}2%|| M R ||to]Inoncey) i =0

i = : 3.3
{h(TSZ-1||MRZTXHtiHn0ncei) i=1, .. lmas (3:3)

The first block, called genesis block, cannot include a previous timestamp,
the field is set to {0}?°%. The block include in the coinbase transaction the

17



headline of The Times:

“The Times 03/Jan/2009 Chancellor on brink of second bailout
for banks”

It proves that the hash was computed after that newspaper was distributed.
Since each block is a commitment of the previous block, every block is a
commitment to the headline inserted by Nakamoto.

Every bitcoin owner without trusting other users can broadcast without
any permassion a transaction to the network, a miner will include it in a
new block which is appended to the chain or, in other words, it will be
timestamped. Every network full node stores an entire copy of the chain
to ensure the correctness of all bitcoin transactions ever made, thus the
timestamp attestations are widely published.

Assuming the majority of the nodes does not collaborate to attack the
network, the cost of rewriting past blocks in the chain grows exponentially,
making de facto impossible to change the chain. For this reason, provided
not considering the very last blocks, the chain is said to be immutable.

Thus the Bitcoin network is a decentralized, trustless, permissionless no-
tary. Its attestations are stored in a widely published and immutable times-
tamps chain, which defines the network (and vice versa).

Bitcoin does something more than timestamping, Nakamoto consensus
ensures that each UTXO is spent only once, thus to publish a transaction on
the chain is necessary to follow the consensus rules. Anyway while playing
in the consensus framework it’s still possible to write arbitrary data inside
a transaction. As a premise note that a valid transaction can be mined,
but not all valid transactions are relayed by nodes, indeed to strengthen the
network and the resilience of nodes only standard transactions are relayed.
This is a common practice between nodes, not a consensus rule, it may be
changed if new useful transaction types are proposed. By the time of writing
the standard transactions are:

Pay-to-Public-Key (P2PK)

Pay-to-Public-Key-Hash (P2PKH)

Pay-to-Script-Hash (P2SH)
e Multisig
e Null Data (OP_RETURN)

In the following sections we show two ways to timestamp arbitrary data
d into the chain; the idea behind those is summarized in Figure |3.2]

18



Prev Merkle Prev Merkle Prev Merkle
Hash ROOT Nonce Hash Root Nence Hash ROOT Nonce
X

I N
———— . T W
TXID1 TXID2 | TXID3 | | TXID4 |
X T T T T T
DoTXL X2 DoTX3 G Tx4
‘ | TXp | ‘ data | TXa ’

Figure 3.2: Commit arbitrary data in the Bitcoin chain. The transaction
T X, includes some data, in the sense that T Xy = T'X,||datal|T X,.

3.2 Address Commitment

Consider the case of a transaction with one P2PKH output. In theory the
output contains the hash value of the receiver public key computed applying
SHA256 and then RIPEMD160, such value is called address. The locking
puzzle or pubkey script is:

OP_DUP OP_HASH160 <PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

The receiver, who knows the corresponding private key can redeem the bit-
coin locked with an unlocking script or signature script of this kind:

<sig> <pubkey>

To provide a timestamp for the data d it is possible to compute the RIPEMD160
hash of d and put it in place of the public key hash:

OP_DUP OP_HASH160 <DataHash> OP_EQUALVERIFY OP_CHECKSIG

However this pubkey script is not redeemable (unless d is a public key with
known private key). Hence the bitcoin associated to this UTXO are lost, but
a commitment to d will be timestamped in the chain. This technique can also
be used to prove that some bitcoin have been destroyed, called proof-of-burn.

Even though is a viable and working solution this technique should be
avoided, the burned output will stay forever in the database of the UTXO

19



stored by every full node, called mempool. If this happens consistently, it
will bloat the mempool, adding an additional burden in running a full node,
which is not good for the decentralization of the network.

3.3 OP RETURN

To mitigate the UTXO bloat problem, with the Bitcoin Core 0.9.0 release, a
new script opcode, OP_RETURN, was introduced. An OP_RETURN change
creates a provably-prunable output, with script pubkey:

OP_RETURN <Data>

Such output is provably unspendable, thus it will probably have zero bitcoin
locked in, unless used for proof-of-burn. The data field can be filled with at
most 80 bytes of arbitrary data.

OP_RETURN is used for different purposes, writing raw data on the
chain, adding information related to assets linked to a coin or timestamping.
Sometimes the data field starts with a prefix indicating if a second layer
protocol is being used [9).

To create a timestamp for some data d with arbitrary size one should add
to his transaction an OP_RETURN change followed by the hash value of d
with zero bitcoin associated. If the hash function used has a 32 bytes output,
this increases the size of his transaction by 43 bytes (amount 8 bytes, length
script pubkey 1 byte, OP_RETURN 1 byte, length data field 1 byte, data
32 bytes) leading to a lower fee (measured in sat/bytd’]) which may slow
down confirmation time or may lead the user to increase the overall fee, thus
including an OP_RETURN has a cost.

In addition it is important to point out that when one wants to timestamp
he has also to perform a bitcoin transaction. It may be a transaction that
he would have done anyway, but in case these two needs do not coincide,
he has to send some bitcoins to himself adding the OP_RETURN change
to actually write something on the chain. Moreover transactions including
OP_RETURN are easy to spot, hence malicious miners may decide to censor
those. A solution is using address commitment, which can be censored only
by censoring all the UTXO spendable by all the users who want to timestamp
data, which is extremely hard. Keeping this in mind, if there is no fear of
censorship, which presumably happens in most cases, then OP_RETURN is
the correct tool for timestamping.

3 After segwit the correct metric to use is sat/vbyte instead of sat/byte

20



Chapter 4

State of the Art of Trustless
Timestamping

We analysed the reasons why Bitcoin chain is a valid tool to produce times-
tamps of arbitrary data and we showed two procedures to create such proofs.
However each one may follow his own set of rules to create and formalize
proofs. Omne can use a different set of commitment operations and time
attestations or the same set but formalized in a different way, or even a mix-
ture ot the preceding cases. Although various set of rules may be valid and
completely reasonable, such situation would be a nightmare for users, both
creators and verifiers; during the creation procedure one may ask himself if
challenger will retain his proof correctly formalized, verifiers should equip
themselves with several tools increasing the cost of verifying proofs. In ad-
dition this setting has huge security issues: an higher number of accepted
formalizations increases the surface of attack through which proofs may be
corrupted.

Moreover Bitcoin chain is not the only place where to bind attestation
in a trustless manner. There are other similar technologies that can be used
as a notary with analogous techniques, for instance Litecoin, Ethereum or
MimbleWimble. Although timestamping with other chains is possible, it is
fundamental to realize that it changes the security of the time attestations.
Each chain has its own rules and its own community behind, in some settings
some assumptions may be weaker or false, while in others they may be an
improvement. For each specific case one should realize which is the best
notary to use in order to properly address the problem.

For these reasons is important to have a common an shared standard to
agree on the format used to create timestamps. Such standard should be
open source to let everyone analyse its security and contribute to it with
improvement proposals.

21



In 2012 Peter Todd started working on OpenTimestamps [5, [, B0], a
project that provides a solution to the above issues.

OpenTimestamps aims to be a standard format for blockchain
timestamping. The format is flexible enough to be vendor and
blockchain independent.

In the following years other developers contributed to the source code
improving the standard with more libraries, features and implementations.

4.1 OpenTimestamps as a Standard

OpenTimestamps defines a standard for creating a proof that can be verified
in an easy way and that is not prone to inconsistent behaviours. The defini-
tion comes from the implementation, precisely from the python library which
is currently taken as a reference by the other libraries. Proofs consist in a
sequence of commitment operations heading to at least one time attestation.
Commitment operations take one (unary) or two (binary) inputs to pro-
duce a single output. Note that a binary operation can be turned in a unary
operation by fixing one of the inputs. The available operations are:

OpAppend binary

OpPrepend binary

e OpReverse unary, may get removedE]
e OpHexlify unary

e OpSHA256 unary, cryptographic

e OpRIPEMD160 unary, cryptographic

e OpSHA1 unary, cryptographic

e OpKECCAK256 unary, cryptographic

Time attestations are time-attesting signature, they link a commitment
to an event which has a time associated to. As of writing, the available ones
are:

e UnknownAttestation Placeholder for attestations that aren’t support

Thttps://github.com/opentimestamps/python-opentimestamps /issues/5

22



e PendingAttestation Commitment has been recorded in a remote server
for future attestation

e BitcoinBlockHeaderAttestation Signed by the Bitcoin blockchain:
the commitment digest will be the merkleroot of the blockheader

e EthereumBlockHeaderAttestation Signed by the Ethereum blockchain:
the commitment digest will be the merkleroot of the blockheaderf?]

e LitecoinBlockHeaderAttestation Signed by the Litecoin blockchain:
the commitment digest will be the merkleroot of the blockheader

In the case of a single attestation, a proof is an ordered list of unary oper-
ations ending with a time attestation. However timestamps may have more
than one attestation, in fact they are not limited to be linear lists of opera-
tions, instead they can be structured as a tree with d as the root, commitment
operations as edges and attestations as leaves. This enables the possibility
to attach different attestations to a proof, with possibly completely different
meanings. A proof is conveniently serialized in a receipt, which is conven-
tionally stored in a file whose name ends with .ots; let’s examine an example
of a receipt for a file test.txt containing b’Hello World!\n’. Its receipts
test.txt.ots is:

File sha256: 03ba204e50d126e4674c005e04d82e84c21366780af1f43bd
54a37816b6ab340

Timestamp:

ripemd160

prepend 0100000001e482f9d32ecc3bab57b69d898010857b54457a904979
82ff56£97c4ec58e6£98010000006b483045022100b253add1d1ct
90844338a475a04ff13fc9e7bd242b07762dea07£5608b2de36702
2000b268ca9c3342b3769cdd062891317cdcef87aac310b6855e9d
93898ebbe8ec0121020d8e4d107d2b339b0050efdd4b4a09245aa0
56048£125396374eab6a2ab0709c6fffffff£026533e60500000000
1976a9140b£057d40fbba6744862515£5b55a2310deb772£88acal
860100000000001976a914

2Ethereum attestations were developed for a PoC proving the flexibility of the protocol,
however they are in the dubious module of the OpenTimestamps repository, the reason
given is:

... Ethereum has changed repeatedly in the past due to consensus failures
and forks; as of writing the Ethereum developers plan to radically change
Ethereum’s consensus model to proof-of-stake, whose security model is at best
dubious.

23



append 88ac00000000
# Bitcoin transaction id
7e9f0£7d9daa2d9eb51b2e22f4abe814c3£90539afa778a9bef88dc64627cb2
ec
sha256
sha256
prepend a987f716c533913¢c314c78e35d35884cac943fad2cac49d2b2c69f
4003£85£88
sha256
sha256
prepend decbbb3487ele3f722a49b55a7783215862785f4a3acb392846019
f71dc64a9d
sha256
sha256
prepend b2cal8f485e080478e025dab3d464b416c0elecb6629cOaefce8c8
2144042432
sha2b6
sha256
append 11b0e90661196££4b0813c3edal41babb5e91604837bdf7a0c9df37d
b0e3al1198
sha256
sha2b6
append c34bcl1a4a1093f£d148c016b1e664742914e939efabe4d3d3565159
14b26d9e2
sha256
sha256
append c3e6e7c38c69f6af24c2be34ebacd8257edeb61ec0a21b9535e44432
77be30646
sha256
sha256
prepend 0798bf8606e00024e5d5d54bf0c960£629dfb9dad69157455b6£26
52c0e8de81
sha2b6
sha256
append 3f9ada6d60baa244006bb0aad51448ad2fafb9d4b6487a0999cff26
b91£0£536
sha256
sha2b6
prepend c703019e959a8dd3faef7489bb328bad85574758e7091£01464eb6
5872c975c8
sha256

24




sha2b6

append cbfefff513ff84b915e3fed6£9d799676630£8364ea2a6c7557fad9
4a5b5d788

sha256

sha256

prepend 0be23709859913babd4460bbddf8ed213e7c8773a4blface30f8ac
£d£093b705

sha256

sha256

verify BitcoinBlockHeaderAttestation(358391)

# Bitcoin block merkle root

8alb66ecb7cbd07d8139a7e7d7f2c41aab1£5009b8364aaf61d03ad245e47e

00

The recepit is attesting that the file whose hash is 03ba204e. .. is commit-
ted into the block header number 358391, which has the nTime field set to
"May 28, 2015, 17:41:18 +0200". This means that the file existed prior
to that time, still this is not completely safe: we are assuming that the miner
has not lied [32]. However he cannot put an extremely different date and he
does not have a great incentive to put a false timestamp, nevertheless, we
stay conservative and say that the data contained in the file existed prior to
May 28, 2015.

This timestamp was created with an address commitment, to clarify how
it is committed in the chain in Table [4.1]it is shown the receipt execution. At
the end, the value remaining on the stack is tested against the transaction
Merkle root of block 358391. If they are equal the proof is correct.

The raw transaction of the example is:

0100000001e482£9d32ecc3ba657b69d898010857b54457a90497982f£56£9
7c4ecb8e6£98010000006b483045022100b253add1d1c£90844338a475a04f
£13£c9e7bd242b07762deal07£5608b2de367022000b268ca9c3342b3769cdd
062891317cdcef87aac310b6855e9d93898ebbe8ec0121020d8e4d107d2b33
9b0050efdd4b4a09245aa056048f125396374ea6a2ab0709c6fffffFFF0265
33e605000000001976a9140b£057d40£fbba6744862515£5b55a2310deb772f
88aca0860100000000001976a9141d£8859e60bc679503d16dchb870eb6cedla
57e9d£88ac00000000

It can be decoded with the Bitcoin Core client with:
$ bitcoin-cli decoderawtransction <raw-transaction>

Decoding the transaction one can see the commitment address’}

31t is possible to verify that it is still unspent.

25



Operation Object on the stack
file

sha256 hash of the file

ripemd160 address commitment

prepend 0100. ..

append 88ac... | raw transaction

sha256

sha256 TXID in little endian

sha256

sha256 transactions  merkle
root

Table 4.1: OpenTimestamp receipt execution.

13jUKAUPDEgVPVgsVbeKVNWBv6wAh31vkN
which is the baseb8 encoding of:
1d£8859e60bc679503d16dcb870e6ce91ab7e9df

which can be spotted inside the transaction.

Moving forward from the example it is possible to define procedures to in-
clude the timestamp in the Bitcoin chain, create and verify the corresponding
proof as outlined in Algorithm The procedures could be easily gener-
alized to more general settings, for instance to timestamp on another chain
with slightly different rules. It is important to highlight that the creator of
the proof should always verify its correctness right after the creation. If the
verification is successful he can store the file containing the proof in several
insecure places, since it does not reveal anything more than the hash of the
timestamped data, and store the file containing the data in a secure (if he
needs) location; when challenged to prove the existence of that data prior to
a certain time he will provide data and the corresponding timestamp to who
he needs to convince.

4.2 OpenTimestamps as a Scalability Solu-
tion

As we have seen in the previous section, to create a timestamp is necessary
to do a transaction. To timestamp multiple files it is possible to commit

26



Algorithm 4.1 Create timestamp on the Bitcoin chain

1:
2
3
4:
5:
6
7
8

procedure INCLUDETIMESTAMP(d) > d data to timestamp

choose sequence of commitment operations S§ = [C;]™,

apply S¢ to d, obtain C >dto C
include C' in a transaction T'X

broadcast the transaction to the network

wait until the transaction is confirmed

return d, S§, C, TX

: end procedure

9: procedure CREATETIMESTAMP(d, S¢, C, TX)

10:
11:

12:
13:
14:
15:
16:
17:
18:

decompose the transaction, TX = TX,||C||TX,
SIXID = [prepend T'X,, append TX,, sha256, sha256]

> C to TXID
find the block B including T'X
store B transactions Merkle root M R and height H
retrieve the Merkle path S} « [CIXIP|iTxio 5 TXID to MR
proof < S§ + SEXIP 4 SME > join the commitment operations
attach at the end of proof BitcoinBlockHeaderAttestation (H)

return proof

end procedure

19: procedure VERIFYTIMESTAMP(d, proof, M R)

20:
21:
22:
23:

> MR is retrieved from a trustworthy source
apply proof to d, obtain MRy > execute commitment operations

if MR = MRy then return TRUE > verify attestation
else return FALSE
end if

24: end procedure

27



those in a single hash value using a Merkle tree. As a result, the initial part
of each proof will have different operations, going through different branches
of the tree, while, from the transaction on, the operations will be identical.

However, each time one has to timestamp, he has to do a bitcoin trans-
action, which is not sustainable if too many people have timestamp needs:
it implies an effort for the network and higher fees for all the users.

The solution proposed by the OpenTimestamps developers includes a
centralized trust-minimized system to aggregate timestamps, it involves an
aggregation server and a public calendar server which actually timestamp.
Their operation is descibed in Algorithm

Algorithm 4.2 Client - aggregator - calendar simplified working

: clients send data to timestamp to the aggregator > timestamp requests
: aggregator MERKLELIZE requests received each second > aggregation
. aggregator sends to calendar the Merkle tip to timestamp

: calendar promise he will timestamp the tip > pending attestation
. aggregator sends back to clients incomplete proof until the tip

: calendar aggregates pending tips in a merkle tree > aggregation
: calendar sends a transaction including a merkle tip > timestamp
. the transaction gets confirmed] > attestation complete
. clients ask to the calendar to upgrade the timestamp > upgrade
. calendar sends back clients the complete proofs

. clients verify their proofs > verification

© 0 N O U = W N

— =
—= O

Clients do not send their data directly, instead they send salted hash
values of the data, so the aggregator does not dig into their privacy. At
the first aggregation phase the aggregator append to each value received by
clients a random nonce, so that a client sending malicious data instead of
an hash do not pollute the proof of the leaf adjacent to his. This system
is trust-minimized beacause the clients trust that the calendar will create
timestamp for them. Both calendar and aggregator can censor them, sending
back incorrect proofs or malicious data. However once the calendar has sent
them a correct proof they are fine, the proof will be valid forever regardless
of any future bad behaviour of the aggregator or calendar.

The OpenTimestamp standard supports multiple branch for the commit-
ment operations to include multiple attestations inside a single proof. With
this feature one request can be forwarded to multiple public calendars, giving
the redundancy that mitigates the problem when a calendar server is down

4As pointed out in Section a transaction is considered confirmed when it is 6 or
more blocks deep.

28



Prev Merkle Prev Merkle Prev Merkle
Hash Root Nonce Hash RooOt Nonce Hash Root Nonce
X

/- N
—RA— —Fr—
TXIDL TXID2 TXID3 TXID4
T T T T
TX1 X2 X3 TX4
—Rr— —RA—
hl h2 h3 h4
T T T T
datal data2 data3 data4

Figure 4.1: Calendar timestamping. 7T X3 is the transaction made by the
calendar, it includes a commitment to {data;}?_; obtained with a Merkle
tree. Note that transaction must follow the consensus rules to be included
in the chain, instead data are completely arbitrary.

and lowering the trust put in each single calendar.

A calendar spends its own bitcoin to do a transaction, this implies that he
won’t be able to perform an extremely high number of transactions, leading
to less frequent timestamps. As of writing, the calendars use the replace by fee
(RBF) mechanism to spend a fix amount of bitcoin each day. In Algorithm
is described a simplified scheme of its working. This procedure makes the
calendar expenditures fixed: each day has approximately 144 block, so the
amount spent in fee per day is 144 - a, where a is a fixed value set by who
run the calendar.

Thus if the mean fee to get into the next block is high, then the calendar
may wait several blocks before timestamping and clients will have to wait for
a long time to have their receipt upgraded and their data timestamped. This
issue can be addressed if someone is timestamping in place of the calendar,
which could be facilitated by the technique we are showing in Chapter [f

Despite all these considerations, the existence of public calendars is an
extremely remarkable achievement for users: they enable clients to timestamp

29



completely for free their own data. The solution involves some trustE], but
for a limited interval of time and with minimal possible downsides; once the
proof is completed, it is not important if it was created through a central
hub, it has the exact same respectability of any other proof. Furthermore
the calendar learned nothing about the data timestamped since it received
only an hash value. Ultimately the efficient aggregation reduces the burden
caused to the network, making timestamping sustainable even on large scale.

Algorithm 4.3 Calendar replace by fee

1: procedure CALENDARRBF (a, LT) > step a, last timestamp LT
2 fee <0

3 repeat

4 fee < fee+a

5: S« {h;i}, > collect clients timestamp requests
6 MR < MERKLELIZE(S)

7 TX < MAKETX(fee, MR) > create transaction including M R
8 broacast T'X

9 until 7'X is mined

10: return LT > LT to restart the procedure
11: end procedure

Actually a client may implement a trustless system involving the calendar to times-
tamp his data. He would first ask the calendar to timestamp and then wait for the com-
pleted proofs; after a reasonable amount of time, if the calendar delivered what promised,
then the client is fine, otherwise he timestamps by himself.

30



Chapter 5

Elliptic Curve Commitments

Elliptic curve cryptography is used in Bitcoin and in similar systems to secure
the transactions. We will give a brief overview of this cryptosystem, then we
show how an elliptic curve point can be a commitment, finally we describe
the consequent practical timestamping applications with Bitcoin.

5.1 Elliptic Curve Public Key Cryptosystem

We start with a general definition taken from [I6][]

Definition 5.1.1. An elliptic curve Ex defined over a field K of character-
istic # 2,3 is the set of solutions (z,y) € K? to the equation

v =2 +ax+b abeK (5.1)
together with a “point at infinity”O.

O is the projective closure of and may not be described in terms of
two coordinates in K. The points on F form a group with identity element
the point at infinity. The negative point P € E is the second point on Fg
having the same z-coordinate as P. Let P, = (x1,y1) and Py = (22,y2) be
two points on the curve, their sum Py = (x3,y3) = P, + P, is given by:

w3 =—x1 — T+, ys =~y + oz — 33), (5.2)

where

(5.3)

(2 — 1)/ (w2 — 21) if Py # Py,
(322 +a)/(2y1) if P, = D,.

!See Appendix |A| for a more basic approach.

31



This addition operation for elliptic curve points has a geometric interpreta-
tion for K = R, from which the above more general algebraic formulae can
be derived.

Using these formulae, one can compute a multiple mP of a given point
P in polynomial time by means of O(logm) doubling and additions, e.g.
11P = P+ 2(P + 2(2P)). This operation is called scalar multiplication.

In cryptography most applications use finite fields, in particular a finite
field contains p elements with p prime and m > 1. We will confine ourselves
to the case m = 1. Solet K = GF(p) =F, =2, = {0,1,....p — 1}, K is
a finite field, the points of Ek, together with the addition operation defined
above, form a finite Abelian group. The elliptic curve becomes:

Er, ={(z,y) € F}% st.y* =2 +ar+b modp, a,beF,}UO (54)

Let G € Ep, be a conventional element of order n, called generator. The
subgroup generated by G is:

(G) = {2G|x € Z,} C Ex, (5.5)

Which is a cyclic group isomorphic to Z,; in particular, if n is prime, then

Computing the isomorphism from Z, to (G) is efficient, it takes O(logn)
group operations; while the opposite isomorphism is much harder to compute,
at moment, the best algorithm known takes approximately /n operations.
The latter procedure is called discrete logarithm and it stands at the base of
the cryptosystem, more precisely:

Definition 5.1.2. FElliptic Curve Discrete Logarithm Problem (ECDLP).
Given an elliptic curve E defined over GF(q) and two points P,Q € FE,
find an integer x such that (Q = xP if such v exists.

Elliptic curve cryptography is based on the premise that ECDLP is hard,
actually it appears to be more intractable than DLP in finite fields. The
ECDLP difficulty enables a Diffie-Hellmann key exchange which precedes
the ElGamal signature scheme, these techniques are at the foundations of
the public key cryptosystem. Fixed a point P € Ef,, a public key is a point
Q € Eg, while its discrete logarithm z w.r.t. P (zP = Q) is the private key.
Given z is easy and fast to compute (), while given () is infeasible to find .

To classify different curves the Standard for Efficient Cryptography (SEC)
proposed a set of parameter for elliptic curves over IF,:

(p,a,b,G,n,h) (5.6)

32



p prime defines the finite field F,

e a,b € I, define the curve Ef,

G € Ex,\{O} is a generator of the group

n = [(G)| is the order of the group (smallest n > 0 s.t. nG = O)

h = |Eg,|/n is the cofactor

Note that if n prime, then (G) = Ef,, thus n = |Ep,|, h = 1. Bitcoin uses
the curve named secp256k1 with parameters

p = Ox FFFFFFFF FFFFFFFF FFFFFFFEF FFFFFFFF FFFFFFFEF FFFFFEFEF
FFFFFFFE FFFFFC2F
a=0
b=7
G = (0x 79BE667E FODCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9
59F2815B 16F81798,
Ox 483ADA77 26A3C465 S5DAAFBFC OE1108A8 FD17B448 A6855419
9C47D0O8F FB10D4B8)
n = Ox FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B
BFD25E8C D0364141
h=1

With this curve some calculation becomes more efficient, like computing
the modular square root (y/x = 21" mod p, since p = 3 mod 4) and the
modular inverse (z7! = 2P~? mod p, since p prime).

Looking at the generator above one may think that to store an elliptic
curve point is necessary to use 32 bytes for the z-coordinate and 32 bytes for
the y-coordinate. However it is not necessary to use all that space, infact it
is possible to take advantage of the elliptic curve equation. Suppose xz € [,
is the x-coordinate of a point, then y is given by y? = 2® + ax +b mod p,
which, for p prime, has exactly two solutions in IF,,, y and p—y, one is odd and
the other is even. The solutions are easily computable thanks to the above
formula. Having consider this, to store an elliptic curve point P one can
store P, and the parity of P,. In Bitcoin the compressed encoding of a point
P is given by a byte for the parity of P, (02 if even, 03 if odd) followed by
the bytes representing P,., for instance the generator G is encoded as follows:

G = 02 79BE667E FODCBBAC 55A06295 CE870BO7 029BFCDB 2DCE28D9
59F2815B 16F81798

33



5.2 A New Commitment Operation

Combining conveniently elliptic curve points and hash functions, it is possible
to create new commitment operations. A similar technique was used for
the first time for deriving public keys in deterministic wallets [19], then the
concept of embedding a value in an elliptic curve point was exploited [12} [§],
later it was reformulated in a more refined way [25, 26] suitable for the
integration in OpenTimestamps. Let’s analyse how this new commitment
operations are structured.

Proposition 5.2.1. Let Er, be an elliptic curve defined on the finite field F),
with p prime, G € EFf, be the generator of the curve with order n large prime.
Let h be a second-preimage resistant hash function, its input are somehow

serialized in bits, its output are in {0,1}* and are interpreted as integers. Let
C be defined as follows:

C . {0, 1}* X E]Fp — E]Fp (5 7)
m, P — h(P||m)G + P '

If n is close to 2%, then C' is a commitment operation.

Proof. First we show a direct proof that works when P (or P’) is fixed then
we show the general proof.

Let m, P and C(m, P) be fixed. VP’ € Eg, the problem is to find m’ € {0, 1}*
s.t. C(m, P) =C(m/, P") and (m/, P") # (m, P). We want to show that such
problem is infeasible. m/ satisfies h(m/||P")G + P’ = C(m, P). Let = be such
that G = C(m, P) — P’, with 0 < & < n. Let hp be defined as follows:

hP’ : {07 1}* — {07 1}k
m' s h(m'||P)

Consider the elements in {0, 1}* equivalent to x modulo n, namely I, = {h €
{0,1}* ~ Zyr|h =  mod n}. Note that:

w_{(%] itz >n

L%J ifx<n

The problem is finding hy(m’) € I,. Note that hy, is second-preimage
resistant, since it is the composition of two functions with that property,
prepend(P’) and h. Finally, if n ~ 2* the elements in I, are few (eventually
a single one), thus finding m’ is infeasible because hp/ is second-preimage
resistant.

34



Now consider the case in which P is not fixed. We model the hash function
h as a random oracle H with range {0, 1}* ~ Zox. H initially has an empty
table. When someone queries the oracle for a value z € {0,1}*, the oracle
samples uniformly a random value H(z) in Zy: and associate it with z. The
oracle outputs H(z) and annotate it on his table. If someone calls again the
oracle for = he will answer with H(x). The oracle is queried by different
entities for possibly different values. Queries for new values result in a new
line in the table. Thus before querying H for z € {0,1}*, we expect H to
output a uniform random value in Zqx.

Now suppose the discrete logarithm is broken, so anyone can run the map
x — xG both ways. The map:

C:{0,1}* x Es, — Ep,
m, P — H(P|m)G+ P

where h is substituted by H. If P = G, it becomes:

C {01} X Zy, = Zy,
m,z — (H(zG||m) + z) mod n

We show that C' can be used as a random oracle. H is uniformly random
and independent from its inputs, moreover the offset x cannot affect that.
Applying mod n shrinks the range to Z,, still C can be used as a random
oracle. Finally the output of C , which is equivalent to C, is indistinguishable
from the output of a random uniform distribution in Z,. Since n is close to
2" finding a second-preimage to C'(m, P) is infeasible. O

The order n has to be large so that Ep, is rich enough to make the ECDLP
intractable and to avoid shrinking the hash function codomain. Fixed n the
choice of k should be made properly: if it is too low h by itself will be
too weak, if it is too high, |I,| will increase, weakening C. Hence a good
compromise is choosing n the closest possible to 2¥.

The security of the commitment is given by the security of the hash
function, and does not rely on the intractability of the ECDLP. Being able
to compute the private key from the commitment is not enough to compute
a second input committing to the same point, to do so it is necessary to able
to find a second-preimage to an hash value.

With this commitment an elliptic curve point used for one purpose can
be tweaked with h(P||m) and, while still serving for the previous purpose,
it can be a commitment to a value m. In fact suppose x is the private key
of P, P = z@, then C'(m, P) = (h(P||lm) + x)G. So the new private key is
(h(P||m) + z)mod n and, since x is secret and h(P||m) is a constant value,

35



the resulting key is still secret. So each time an elliptic curve point is written,
we can encapsulate it in a commitment to an arbitrary value. This technique
may be extended to more general cases, but we will treat only the case of
elliptic curves.

Several hash functions and elliptic curves can be used, considering we
want to use Bitcoin as notary, we will focus an a particular case with h =
SHA256 and Er, = secp256k1 since Bitcoin itself relies on the assumption
that this hash function and this elliptic curve are not broken. Moreover, the
order of the curve n is extremely closd? to the cardinality of the hash function
codomain 2256, This commitment operation is called OpSecp256k1Commitment.

Furthermore, to use this operation in as OpenTimestamp receipt, it has
to be an unary operation, hence it will take as input P||m and will return
the x-coordinate of C'(mP) as output, both in bytes. More precisely it will
operate as described in Algorithm [5.1} It can be used for several purposes,

Algorithm 5.1 Commitment to a secp256k1 point using SHA256

1: procedure OPSECP256K1COMMITMENT(c) > cis Pllm
2 P, m < DECODE(c) > for bad ¢ return error
3 tweak < h(P||m) > interpreted as an int
4: Q + tweakG + P

5 return ENCODE(Q),) > output in bytes
6: end procedure

however, for this work, we focus only on timestamping.

5.3 Timestamping Applications

On the Bitcoin chain, elliptic curve points are used as public keys locking
bitcoins or as part of the signature. The first case lead to the pay-to-contract
technique, the second to sign-to-contract. We will analyse both uses and we
will explain which one should be preferred.

These names owe their origin to the first application for which they were
though: associate a contract to an elliptic curve point. The term contract
may seem misleading, but it turns out to be useful dealing with sign-to-
contract, since it let us distinguish between the message signed and the con-
tract committed.

2 Assuming that a generic output = of SHA256 is indistinguishable from a sampling
from an uniform distribution in Zgzss, then P(z > n) = 1 — 55 ~ 1073%. So the chance
to choose (P||m) leading to |I,| = 2 is almost zero.

36



5.3.1 pay-to-contract

Public keys are elliptic curve points, here we show how they could commit
to a value while still maintaining the secrecy of the private key.

We illustrate it through an example. Alice needs to send Bob some bit-
coins. Bob has public key P = xG. Bob wants to timestamp the message m.
Bob computes @ = h(P||m)G + P. Bob tells Alice that his public key is Q.
Alice broadcasts a transaction sending bitcoins to (), for instance she uses a
P2PK publishing on the chain:

script pubkey:
<Q> OP_CHECKSIG

Bob can spend the bitcoin locked in this script because he knows P, m and
x, 80 he can compute the private key corresponding to @, that is (h(P||m)+
x) mod n. To create the timestamp proof he has to decompose the transac-
tion including ) and create a proof that will look like:

prepend P

secp256klcommitment

prepend TX_p

append TX_a

sha256

sha256

verify BitcoinBlockHeaderAttestation(block)

In the case of P2PKH, the committed public key is hashed as shown in the
following real example, where b’Pay to contract!\n’ is timestamped:

File sha256: 47257ff8c07£55a2e697ab9d89e47b471£60ab3£6883ed05
44561b2a39a26140

Timestamp:

prepend 02alebaafab082d035c659143660b2526a4ba60d4ab5b2e603905
Oeae9444d56ee

secp256klcommitment

prepend 02

sha256

ripemd160

prepend 01000000018fccf63afdabcf748acfe946a344£417bd4a8994bcl
b£f933501a87986363464c000000006a47304402207724a6a96e91
al0821ee0c6db30a2f764ba8bd1dcdc82812fb958f6b91e97a4al
22062db4df7205e6c97d9833f7ab0d597b7685e8320bb2031£57a

37



a6981cd2£626a40121030eb7a6c01ab07d3bfe598c295e9edfbeb
38e5d2df7320f16b4349fb89a975ab7fdfff£££02e22000000000
00001976a914d8da7633fe644eb12617b2b1f0ba3f0461a2bcbe8
8ac10270000000000001976a914
append 88ac4ed90700
# Bitcoin transaction id
1b07d87e0£4e32d545932b£03e306d1532bc7d91£56e81dee81b7cd0b707a9
9d
sha256
sha256
prepend 9d12daa914a3d39cd25b36516383683aae3ac6£873b952bbabllicc
417650bb49
sha256
sha256
prepend 0123£36690131b2416d32a7e6c3c63110d9d77873911£71ad22740
b398a13874
sha2b6
sha256
append 9f45bbc92ac4ef65bbebbfad479dad6c400f6e7ab96217a20b4e08d
bfab47a4b
sha256
sha2b6
prepend 949c83f6b502ec75c4647dabed4e26d181de07b325eac75881de7b
b715a44c50
sha256
sha256
prepend 2ef8ff1aad05e891215698£e237546c73347967419£33d08baf0d9
71ab00004d
sha256
sha256
append 9bf£69359a440f6a15a2al11adb1£257c96089ad27ef66e57a19056e3
3eccl795b
sha2b6
sha256
prepend c1lc9bb36792745d£3967704dd5d15899babd7b0a9de35486eb339a
b4d00££340
sha256
sha2b6
append cObl13e8aad4dc85a8256efb03272deab59e41fc67bc2f44add154111
c68£700be
sha256

38




sha2b6

append 1bf843d12afce2a7b02ebelf083eb2c39a101a63474a622724£609a
3£08£8c7f

sha256

sha256

append a29eece3554c358e5df3901478c8670c71dbafe4e435c£660a18bb6
09d6d025d

sha256

sha256

append aa2c4696c3b75£73713345a7e427980529519£d067835769b41dcf7
88d6a7c96

sha2b6

sha256

prepend £7290a75923a0c54e87ab50bbeff75£614437ed799347a46053a633

8dbad2b5c7

sha256

sha2b6

verify BitcoinBlockHeaderAttestation(514394)

# Bitcoin block merkle root

be6859¢c5093de84a06e495b6621054616cebbf7a38f24374a225d0da0c0de8

88

The raw transaction with the above TXID is

01000000018fccf63afdabef748acte946a344£417bd4a8994bc1bf933501a
87986363464c000000006a47304402207724262a96e91a10821ee0c6db30a2f
764ba8bd1dcdc82812fb958£6b91e97a4a022062dbAdf7205e6c97d9833£7a
b0d597b7685e8320bb2031£57226981cd2f626a40121030eb7a6c01ab07d3b
fe598c295e9edfbeb38e5d2d £ 7320f 16b4349fb89a975ab7fdf fE£££02e220
00000000000019762914d8da7633fe644eb12617b2b1£0ba3f0461a2bc5e88
ac10270000000000001976291457529515dc2e14701374eb65£0191b61ectd
d0e388ac4ed90700

Where the commitment to the data is underlined.

This technique is completely viable, but it has a relevant issue. Almost all
bitcoin wallets (software to manage private keys) use a deterministic deriva-
tion for creating new keys [34]. An initial value is generated at random using
a cryptographically secure procedure, this value is called seed and sometimes
encoded as a list of words from a given dictionary. The keys are obtained
from the seed using the specifications given by BIP32 and they are something
like h(seed||number). This procedure make possible to completely recover a

39



wallet from the seed only, so if a user wants to use his wallet from another
device he just need to remember the seed and all his private keys will be
reconstructed. Using pay-to-contract actually Bob goes outside of the BIP32
derivation. So if he looses m or P he won’t be able to spend the bitcoin
locked by (). For this reason the use of pay-to-contract for mere timestamp-
ing purposes should be limited.

In the case of a P2PKH, a timestamp made with pay-to-contract reveals
the public key which is the preimage of the receiving address. The public
key will be revealed anyway when the corresponding output will be spent,
but, if it is still unspent, such disclosure may be an undesired feature. In
addition, when spending that UTXO, the public key is actually written in
the chain, giving another anchoring point to create a different timestamp;
this timestamp is just another path from the data to the chain, but it is not
really useful since it cannot precede the other timestamp.

5.3.2 sign-to-contract

The other place where elliptic curve points are published in the chain is
the signature. Bitcoin uses the elliptic curve digital signature algorithm,
ECDSAP| that works as detailed in Algorithm [5.2 The value k is called

Algorithm 5.2 ECDSA signature

1: procedure ECDSASIG(z,m) > x private key signing
> m 32 bytes message to be signed

2 k €r Z,\{0} > select k at random in {1,...,n — 1}

3: R+ kG

4: r < R, mod n > if r =0, fail

5 s+ k7'(m+rz) mod n > if s = 0, fail

6: return (r, s)

7: end procedure

nonce or ephemeral private key, R is called ephemeral public key.

A signature is a couple of integers in {1,...,n — 1}, the first one is the
x-coordinate (mod n) of the ephemeral public key. The idea of sign-to-
contract, exploited in Algorithm [5.3] is to tweak R, so that the first part of
the signature will be a commitment to (also) another message, the contract
c.

3sign-to-contract works also with other signature schemes involving elliptic curves, like
Schnorr signature.

40



Algorithm 5.3 ECDSA sign-to-contract (s2c)

1: procedure ECDSAs2¢(z, m, ¢) > x private key signing
> m 32 bytes message to be signed
> ¢ contract to commit

2: k er Z,\{0} > select k at random in {1,...,n — 1}

3: R+ kG

4: tweak < h(R||c) > interpreted as an int

5 e < (k + tweak) mod n > if e = 0, fail

6: Q + tweakG + R

7 q < @, mod n > if ¢ = 0, fail
> if ¢ # @, commitment fail

8 s+ e Y(m+qgx)modn > if s = 0, fail

9: return (¢, s), R > R is needed to prove the commitment

10: end procedure

Let’s examine a real timestamp for the data b’Sign to contract\n’
made with the described technique.

File sha256: dd60bcfecd023823efdcb8d8abb04939111e£82dc1d674320
Tel64e5aab08844

Timestamp:

append eb7e45e783d98504b2e64342b0bea3df’b

sha256

prepend 0372al1fb359a24eab552e8c588£84b7e08144bbb10e87bfab6db649
8c7df730e867

secp256klcommitment

prepend 01000000018fccf63afdabcf748acfe946a344£417bd4a8994bclb
£933501a87986363464c010000006a4730440220

append 022057db028ba602b467d09f67b6a6327d3219£2d9a264aae935873
146247a18008a0121027£4b59c84fbad07dec6cf£8555214b1d3740
43bcdf47a35fbe08cf5a816b2a9ffdfff£££02a6220000000000001
976a914c7a270deb581a188f1decef735602c£d65a70607c88ac1027
0000000000001976a914ebc32£6£0a4d63da2d1a2f1£5cb762d0d89
824d488acf3d90700

# Bitcoin transaction id

3b6b0£10729cd0d90087e8c8c9261a2b41afa4e26508591700ddd1790b5087

05

sha256

sha2b6

append 8c6c3e7341ac6b64cl17e4558a5279dalccfba0346abbcbleed412db

41




103f£7cbb

sha256

sha256

prepend 8446d10571b0a6c63a0fb9538531d846148c9465eff456¢cccbafol
1a967bc74c

sha256

sha256

prepend 66cdb8cf28763b45e195028566a0bd976afcf7ad072188e711e515
41£6867e43

sha256

sha256

prepend 465585e6b3ff7dfc8d753acce6e60clccd246975641dd4ad8b95c3
803244aca’

sha256

sha256

append 93bcaa3a00534081d6£2230412cde7e59a73acb0d98c809174£630d
e3b07b89d

sha256

sha256

append 0f1b327e68d8700e9c4074d8b4b82b0e28a5a7933£29f643cb27bd5
6bf668ec6

sha256

sha256

append d8738b3726def527296f47a70e0ba6841e35932e2ac8a0832¢25393
ee320d4fc

sha256

sha256

append 73694be809a1£8d8a81£55e812¢c47d388747e1d99003d5b5427cadl
1a5£d4408

sha256

sha256

append 816£b904a9d0678198e84f060aecca9383320bebfec2d23783¢c922b
cdcbb8af?2

sha256

sha256

prepend £42214bc9a9c8e4b61a53e51c94ef9bbb2956202356054cd7a7677
858caae2de

sha256

sha256

prepend 1d71d75e£769c40aec08c7ccdalab4a82ee6e858efb5£8598£5199
a093bb12d1

42




sha256

sha256

append 00b4475e869c96c8c297fce9ea8494f0b8f5c74d7b4e6208ba8fc84
d103f61d2

sha256

sha256

verify BitcoinBlockHeaderAttestation(514550)

# Bitcoin block merkle root

1d978e90baecf86c9b59ecad7d8e635da27aad41b39a1d4452c7654f9d5cd3

dd

The raw transaction with the above TXID is

01000000018fccf63afdabecf748acfe946a3441417bd4a8994bc1bf933501a
87986363464c010000006a4730440220280686720849bfd72a3c7793a45610
db2£0152422183bb1£7181¢ca003674aea5022057db028ba602b467d09£67b6
a6327d3219£2d9a26422e935873146247a18008a0121027£4b59c84fbad07d
ec6cff8555214b1d374043bcdf47a35fbe08cfba816b2a9ffdfffff£02a622
0000000000001976a914c7a270de581a188f1decef735602c£d65a70607c88
ac10270000000000001976a914ebc32f6£0a4d63da2d1a2f1£5cb762d0d898
244d488acf£3d90700

Where the commitment value is underlined.

Using sign-to-contract every signature can include a commitment to a
certain value. Contrary to pay-to-contract, the loss of ¢ or R leads to the
impossibility of proving the commitment but not to a loss of funds. Indeed
the signature published on the chain has already provided to its original
purpose moving the coins to another owner. This makes sign-to-contract a
preferable commitment scheme.

In Algorithm [5.2] and the nonce k is generated at random, however
often computers are poor sources of randomness which may lead to security
issues, namely exposing the nonce k actually reveals the private key x. To
reduce this problem, it is a common practice to avoid the random generation,
instead, it is performed a deterministic derivation of the type k < h(x||m),
the precise specification of h is given by the RFC6979 standard [27]. With
this technique, in a signature, the private key is unique source of entropy used
for security, indeed the message m is public and the nonce k is as secret as z,
since, without x, it is not possible to guess h(z||m). Deterministic nonce and
sign-to-contract are completely independent techniques that can improve a
signature scheme, it is possible to implement one without the other.

43



In addition, exposing two signature for the same message m, generated
with the same private key z, but made using two different nonces ki, ko
reveals the private key. This is a relevant issue when managing bitcoin,
however signing with a deterministic nonce solves this problem. With sign-
to-contract, considering a message m, private x, a deterministic nonce, but
two contracts ci, co, such issue, despite the deterministic derivation, arises
again. Thus is important take care of this chance during the implementation.

Using a deterministic nonce also, in some senseEL closes the subliminal
channel in ECDSA signature. The signer has some arbitrariness in choosing
the nonce and could use it to transmit a certain message, as exploited in
[28]. With sign-to-contract the nonce is still deterministic, but is a function
of z,m and, in addition, ¢. The technique could be seen as a particular
use of the subliminal channel of ECDSA. Consider the case where Alice
wants to secretly communicate a simple message ¢ to Bob. Alice produces
a signature which is a commitment via sign-to-contract to a simple message
c. Alice declares P publicly. Bob knows that ¢ comes from a brute forceable
set S. Bob sees the signature and tries all ¢ € S until he finds the one
which generated the commitment. As a result, Alice sent to Bob a message

without anyone noticing the communication using the subliminal channel
that ECDSA leaves open.

4To verify that the nonce is deterministic, it is necessary the knowledge of the private
key, thus the verification cannot be performed by whoever. Moreover, in some cases, like
bitcoin hardware wallets, extracting the secret key may be hard or unsafe.

44



Chapter 6

Practical Analysis of
stgn-to-contract

We analysed what are the foundations of sign-to-contract from a theoreti-
cal prospective, now we want to focus on which are the real reasons that
give practical purposes to this technique, along with the arising issues. Fi-
nally, we show an application developed by us that makes possible to create
OpenTimestamps proofs with sign-to-contract.

6.1 Benefits and Issues

The most relevant feature of sign-to-contract is the cost reduction. Each
user who is doing a bitcoin transaction can also timestamp with no additional
costs, if the transaction purpose is unrelated to the timestamp, then the cost
of timestamping is reduced to zero. Such timestamp may be used to prove
the existence of an arbitrary high number of files, which does not have to
come from the same user.

Since it does not cost anything, someone may decide to include in the
signature of one of his transactions a commitment to the calendar Merkle
tip (or, more generally, another aggregation of timestamp requests from a
community of clients). This is called external timestamping. Then, who did
the transaction sends to the calendar the information to link the Merkle tip
to the transaction. Now the calendar has all the information to fulfil the
timestamp requests from its clients.

If a calendar receives several external timestamp proofs, it will increase
the timestamping frequency. Clients will have their proof completed in
less time and, in some situation{], the timestamp can be considered more

'Miners can always lie about the time they publish on the block, however each user

45



. extra network
commitment scheme . uncensorable
bytes friendly
address commitment 33 v
OP_RETURN 33+ v
sign-to-contract 0 v v

Table 6.1: Comparison between timestamping schemes. Extra bytes
are computed considering RIPEMD160 for both address commitment and
OP_RETURN, although, for the latter, it is possible to use hash functions

with larger outputs.

accurate.

Another benefit of sign-to-contract is its uncensorability. In fact a
sign-to-contract transaction is indistinguishable from another one, just like
the ones with address commitment; however the latter make the UTXO set
bloats, while sign-to-contract provides a way to create (almost) uncensorable
timestamps without burdening the network.

Alongside these benefits, there are some issues that should be addressed.
An external actor, who is doing external timestamping for a calendar, may
embed some arbitrary data in the proof that he will send back to the calendar,
who will include the received part in the complete proofs to distribute to
clients. However, clients expect the calendar to send them clean proofs; so,
if they receive timestamps which have been partially created by external
actors, they are exposed to new risks: they need to trust that who helped
the calendar has not inserted malicious data, for instance virus activators.
This problem cannot be entirely avoided since sign-to-contract proofs always
contain arbitrary data by who generates the transaction. Such issue could
be limited by asking for proof with a strict format, for instance:

Timestamp: MT
prepend R
secp256klcommitment
prepend TX_p
append TX_a

may associate a time to the block header (slightly) different from the one included. For
instance, someone running a full node can take note of the time when he first received
from the network the block and associate that time to the block header; he is sure that
the time he uses is correct for timestamping, since data was created before he received the
block, but he will have hard times in convincing others.

46



This limits the arbitrariness to only the transaction, in addition it could
be limited even more by constraining the number and type of outputs and
inputs.

Another issue is third party malleability: if (r,s) is a valid signature for
(P,m) then (r,n — s) is a valid signature too. Once a sign-to-contract trans-
action is relayed a third party may change it using the above technique, if
the new version is mined the timestamp proof must be changedﬂ The mal-
leability problem is solved with segregated witness (seqwit) [17], however this
yield to another issue for sign-to-contract proofs. With segwit two versions
of a single transaction are considered: one without the signature (witness)
and the other with. The former when hashed produces the TXID, the latter
the WTXID. The Merkle root in the block header is a commitment to all
the TXIDs, while the WTXIDs are committed in another Merkle tree whose
root is inserted in the coinbase transaction. So for a segwit transaction the
witness is committed in the block header, but the path until there crosses
the WTXID Merkle tree, then the coinbase transaction and finally the TXID
Merkle tree, as shown in Figure [6.1] This has two problems: the proof al-
most double in size (two Merkle tree must be traversed) and the miner may
include malicious data in the coinbase. Those are not insuperable issues, still
they cause some extra layers of complexity in the implementation.

6.2 sign-to-contract Made Accessible

The sign-to-contract technique can be integrated in every Bitcoin signing
software, so that, completely for free, it will also create timestamps. To make
this accessible to everyone we developed a plugin for a popular open source
wallet: Electrum [3], 2]. Electrum is a lightweight wallet, is similar to Simple
Payment Verification (SPV) wallets, but, differently, it asks information to
special nodes, called Electrum servers. The wallet, written in python, has
very few requirements despite being really flexible. Of course, it comes at a
price: privacy and security are not at the highest standard, unless it is used
in very specific Waysﬂ With these premises, it is completely functional for
many purposes and it lends itself to host plugins that extend its working,
like hardware wallet signing. Its features lead our choice to Electrum.

To run Electrum with the plugin it is necessary to use the library python-
opentimestamps including OpSecp256k1Commitment and to include the plu-
gin among the electrum source files. All the detailed instruction, along

2This happens with all commitment schemes passing through a non-segwit transaction.
30ffline signing and connecting to a personal Electrum server would provide a satisfying
but expensive solution.

47



Prev Merkle Prev Merkle Prev Merkle

Hash RoOT Nonce Hash Root Nonce Hash Root Nonce
X
A~ — ... (...
TXID1 TXID2 TXID3 : TXID4
T I T T
™1 PoTX2 ™3 x4
..... [ W —>—
{WTXIDL ! | WTXID2 ! WTXID3 WTXID4
_________ (N N T X
wTx1 | wrx2 | WTX3 DowTxX4 !

Figure 6.1: sign-to-contract with segwit. The signature is in the transaction
with the witness WT X3, which is committed to the coinbase T'X;, which is
committed to Merkle root.

48



with the files constituting the plugin, can be found at https://github.com/
LeoComandini/electrum-timestamp-plugin/ currently in the experimental
branch chﬁ. The reason behind this complicated workaround is that, at this
phase, the code is intended for developers for testing purposes, not yet for a
general public.

If one is familiar with Electrum code, and if the whole framework of sign-
to-contract is clear, the implementation is pretty straightforwardﬂ. We tried
to be the less invasive as possible by using the hooks already present in the
code and to keep, this, combined with the deliberate choice to make the code
the simplest possible, lead to a suboptimal user experience. The signature
procedure mimic the standard one adopted by Electrum, the incomplete
timestamp and the data necessary to create timestamps is stored in a json
file to facilitate debug. Moreover we do not manage sign-to-contract with
segwit, since Electrum servers do not support an RPC to retrieve the Merkle
path from a transaction with its witness to the coinbase and then to the
block header Merkle root.

In Figure [6.2] [6.3] and [6.5] we display few screenshot to give a taste
of what the plugin look like.

At this stage, where OpSecp256k1Commitment is not yet part of the stan-
dard OpenTimestamps library, the plugin may help testing timestamping
with elliptic curve commitments. If and when the improvement proposal will
be merged, after in-depth testing has been passed, we may ask to include the
plugin in the standard release of Electrum.

4The guide to install and run this specific version of the plugin is README-S2C.md
and can be found in the experimental branch. For this work refer to commit 4317cf6, in
the future we hope to improve the code.

5See Appendix |B| for an overview of the plugin functioning and the code for more
details.

49


https://github.com/LeoComandini/electrum-timestamp-plugin
https://github.com/LeoComandini/electrum-timestamp-plugin

Electrum Plugins

1cd E 7

D Cosigner Pool ?
[ Email ?
[ GreenAddress instant ?
D LabelSync 7
(W] Timestamp settings | |7
Two Factc ithe atior i
D Virtual Keyboard ?

Close

Figure 6.2: Enable the plugin to create timestamps. This will let you select
files and create OpenTimestamps proof for them.

20



Transaction ID:

Unknown o]

Description:

Status: Unsigned

Amount sent: 0, mBTC

Size: 374 bytes

Fee: 0,01122 mBTC ( 3, sat/byte )
LockTime: 514999

Inputs (2)
3b6bef1e...0b588705:8 1KCa4mPdBelA23ThFzijbaGuZ73PQVgcAg @,0887
3b6bef1e...0b588705:1 1INVbcnvLeyQH9q8Hie2bHql5TkD r7MNtGd e,1
Qutputs (2)
16qVIbowBpIWvi7GWsGPd2KRudehEFGUIE 0,07748
1Kz4iM2XrJ9Hz2TvAVemQtQtXf11hIFFbt e,1

Copy Export Sign Broadcas

Close

Transaction ID:

c19f5ead72b54c0b7e9dac59ef4497a32b917505b85c193e28b6356d541fb960 2

Description:

StatusfSigned) This signature is also a comnmitment to the files to timestamp
Amount sent: 0, mBTC

Size: 374 bytes

Fee: 0,01122 mBTC ( 3, sat/byte )

LockTime: 514999

Inputs (2)
3b6bef10...0b508705:0 1KCa4mPdBelA23ThFzijbaGuZ73P0QVgcAg @,0887
3b6bef1e...0b588705:1 1INVbcnvLeyQH9q8Hie2bHql5TkD r7MNtGd e,1
Qutputs (2)
16qVIbowBpIWvi7GWsGPd2KRudehEFGUIE 0,07748
1Kz4iM2XrJ9Hz2TvAVemQtQtXf11hIFFbt e,1

Copy G Export 2C sign save Close

Figure 6.3: Sign with sign-to-contract. Sign and create a commitment click-
ing S2C, then broadcast the transaction to the network.

51



File Wallet View Tools Help

2 Historyl ¢ send | “ Receive

v | Date Description Amount Balance
%  Unconfirmed [rbf, 3.0 sat/b, 0.66 MB] -8,01122 8,26166
« 2018-03-2117:58 -8,0112 0,27288
+/ 2018-03-20 16:56 -8,1113 9,28418
« 2018-03-1219:32 -0,00452 0,39548
«  2018-03-09 18:02 +0,4 0,4
Balance: 0,27288 mBTC [-0,01122 unconfirmed] [‘% % (:: .

File Wallet View Tools Help

;] History] ¢ Send | * Receive

~ | Date Description Amount Balance
2018-03-24 21:08 -8,01122
« 2018-03-2117:58 -0,0113 0,27288
« 2018-03-20 16:56 -0,1113 0,28418
+  2018-03-1219:32 -0,00452 0,39548
« 2018-03-09 18:02 +0,4 0,4

Balance: 0,26166 mBTC @ % q .

Figure 6.4: Transaction history. Wait until the transaction is confirmed (6
blocks).

92



Timestamps

Path

@@ /home/leonardo/Desktop/sign-to-contract/README-52C.md

+” /home/leonardo/Desktop/sign-to-contract/s2c.txt

Date

Yet to be confirmed

21 marzo 2018

Add Mew File Upgrade

Timestamps

Path

" /home/leonardo/Desktop/sign-to-contract/README-S2C.md

4+ /home/leonardo/Desktop/sign-to-contract/s2c.txt

Close

< > om O 8D Q Find [B Preview

[+ Split >
Places > Home » Desktop > sign-to-contract
.
B Network 1) i
™ Root README-S2C.md README-S2C.md.
[ Trash ots
Recently Saved :Ek .
Today s2c.ixt s2c.xt.ots

Yesterday

This Month

(LTI

4Files (47 KiB) = )

== 10,3 GiB free

Date

24 marzo 2018

21 marzo 2018

Figure 6.5: Complete the timestamp. Click on upgrade to terminate the

file.

23

timestamp construction. Then the proof is placed next to the timestamped




Chapter 7

Conclusions and Future Work

Bitcoin and similar systems make trustless timestamping possible. A user
can use his own transaction to create such proofs. This represents the high-
est level of security for a timestamp, relying only on the functioning of the
decentralized network.

OpenTimestamps defines a common standard to formalize timestamps.
In addition, it provides a solution to fix the cost and scalability issue: its pub-
lic calendars allow anyone to timestamp for free in a trust-minimized setting.
Elliptic curve commitments can improve OpenTimestamps by giving the pos-
sibility to timestamp at zero marginal cost. If confined to Bitcoin, they give
rise to two practical techniques: pay-to-contract if the commitment is done
using the payee public key, sign-to-contract if the commitment is included
in the signature. The first is viable but leads the user out of a BIP32 logic
and this may compromise his funds in case of unexpected malfunctioning;
the second does not involve this kind of risk, hence it should be preferred.
Thanks to our integration with the bitcoin wallet Electrum, sign-to-contract
can be tested and it is easily accessible.

To push this work further, the next step should be the inclusion of
OpSecp256k1Commitment in the python-opentimestamp library. However,
with segwit, proofs double in size and it is harder to retrieve the information
to independently create the timestamps: this is a problem that would deserve
some research, to assess how to best address it.

Further research could then go in different directions. One path would
be the definition of a reasonable set of rules to allow simple users to help
the calendar by performing external timestamping when signing their own
transactions. Another one could consist in improving the Electrum experi-
ence, by adding a RPC to the Electrum server to retrieve the WTXID Merkle
tree so to independently complete sing-to-contract proofs or by embedding
the possibility to cooperate with calendars providing external timestamps.

o4



Deeper study of elliptic curve commitments to examine applications beyond
timestamping [20] is also a promising avenue for research.

95



Appendix A

From Abstract Algebra to
Finite Fields

In this Appendix we recall basic formal definitions from [2I] to properly
understand what a finite field is.

A.1 Groups

Definition A.1.1. A binary operation x on a set S is a mapping S X S to
S. That is, x is a rule which assigns to each ordered pair of elements from
S an element of S.

Definition A.1.2. A group (G, x*) consists of a set G with a binary operation
x on G satisfying the following three axioms.

(i) The group operation is associative. That is, a * (b c) = (a * b) *
¢ Va,b,ce(.

(i) There is an element 1 € G, called the identity element, such that ax1 =
lxa=a Vaed.

(iii) For each a € G there exists an element a= € G, called the inverse of
a, such thataxa™ ' =a '*a=1.

A group G is Abelian (or commutative) if, furthermore,
(iv) axb=bxa Va,beGqG.

Definition A.1.3. A group G is finite if |G| is finite. The number of ele-
ments in a finite group is called its order.

o6



Example A.1.1. The set of integers Z with the operation of addition forms
a group. The identity element is 0 and the inverse of an integer a is the
mteger —a.

Example A.1.2. The set Z, = {a € Z|0 < a < n — 1}, with the operation
of addition modulo n, forms a group of order n. The set Z, with the oper-
ation of multiplication modulo n is not a group, since not all elements have
multiplicative inverses.

Definition A.1.4. The multiplicative group of Z, is Z = {a € Z,|gcd(a,n) =
1}. In particular, if n is a prime, then Z; = {a|l <a <n —1}.

Example A.1.3. The set Z} is a group under the operation of multiplication
modulo n, with identity element 1.

Definition A.1.5. A non-empty subset H of a group G is a subgroup of G
if H is itself a group with respect to the operation of G. If H is a subgroup
of G and H # G, then H is called a proper subgroup of G.

Definition A.1.6. A group G is cyclic if there is an element o € Gsuch that
for each b € G there is an integer i with b = of. Such an element « is called
a generator of G.

A.2 Rings

Definition A.2.1. A ring (R, +, X) consists of a set R with two binary op-
erations arbitrarily denoted + (addition) and x (multiplication) on R, satis-
fying the following axioms.

(i) (R,+) is an abelian group with identity denoted 0.

(i1) The operation X is associative. That is, a X (b x ¢) = (a x b) X
¢ Va,b,c € R.

(i1i) There is a multiplicative identity denoted 1, with 1 # 0, such that
1xa=ax1=aVa € R..

(iv) The operation X is distributive over +. That is, a X (b+¢) = (a x b) +
(axc)and (b+c)xa=(bxa)+(cxa) Va,b,c€R.

The ring is a commutative ring if a X b=bxa Va,b € R.

Example A.2.1. The set Z, with addition and multiplication performed
modulo n is a commutative ring.

o7



Definition A.2.2. An element a of a ring R is called a unit or an invertible
element if there is an element b € R such that a X b= 1. The set of units in
a ring R forms a group under multiplication, called the group of units of R.

Example A.2.2. The group of units of the ring Z,, is Z,.

A.3 Fields

Definition A.3.1. A field is a commutative ring in which all non-zero ele-
ments have multiplicative inverses.

mtimes
——f
Definition A.3.2. The characteristic of a field is 0 if 1 + 1+ --- 4+ 1 is never

equal to 0 for any m > 1. Otherwise, the characteristic of the field is the
least positive integer m such that Y"1 =0.

Example A.3.1. the rational numbers Q, the real numbers R and the com-
plex numbers C form fields of characteristic 0 under the usual operations.

Example A.3.2. Z, is a field (under the usual operations of addition and
multiplication modulo n) if and only if n is a prime number. If n is prime,
then Z,, has characteristic n.

A.4 Finite Fields

Definition A.4.1. A finite field is a field F' which contains a finite number
of elements. The order of F' is the number of elements in F.

Proposition A.4.1. (ezistence and uniqueness of finite fields)

(i) If F is a finite field, then F contains p™ elements for some prime p
and integer m > 1.

(i1) For every prime power order p™, there is a unique (up to isomorphism,)
finite field of order p™. This field is denoted by Fpm, or sometimes by

GF(p™Y]

Informally speaking, two fields are isomorphic if they are structurally the
same, although the representation of their field elements may be different.
Note that if p is a prime then Z, is a field, and hence every field of order p
is isomorphic to Z,. Thus the finite field IF,, can be identified with Z,.

1Galois Field

o8



Appendix B

Plugin functioning

In this Appendix we outline how the plugin works to highlight how sign-
to-contract was integrated. We aim to give an overview on which are the
difficulties that arise when integrating this scheme in a signing software,
while avoiding to focus on the complications related to where we decided
to set our implementation. Note that although sign-to-contract per se is
not extremely complicated, the workaround to use it to timestamp involves
actions related to very disparate contexts: hashing the file, communicate
with network, create a bitcoin transaction, extract the key from the wallet,
perform elliptic curve math, properly encode the signature and then the
transaction, broadcast the transaction, retrieve the information to complete
the proof and finally correctly serialize the timestamp. Explaining in details
how all those actions are performed goes beyond the purpose of this work, for
a deeper analysis, examine the code. We proceed by illustrating the plugin
functioning, use Figure to follow the description.

The procedure is divided in 5 steps, Add New File, Create New TX, S2C,
Send TX and Upgrade. When running the application, each of these steps
needs some action to be performed and a button to be pressed, in this sense
they pause the flow of the procedure.

At first stage, it is possible to add new files to timestamp. They are
included in a support database: it is stored their path and the corresponding
incomplete proof, which, at this phase, is the file hash. In the following steps,
the proof is extended with the new operations that are applied to the hash
value.

The second phase consists in creating a new transaction. Once chosen the
destination for the coins, it is performed a coin selection among the UTXOs
in the wallet, the result is an unsigned transaction u7'X.

Then one may sign ©v7'X in the standard way, by pressing sign, or with
sign-to-contract, pressing S2C. If the latter is chosen, all the files to timestamp

29



in the database are salted and then committed in a Merkle tree, with tip MT'.
The operations of each branch are appended to the corresponding proof, as a
result all the proofs lead to MT'. Then the actual sign-to-contract procedure
is implemented, the private key is retrieved from the wallet, uT X is signed
with contract MT, generating the singed transaction 7'X.

When T'X is broadcast to the network, the proofs are extended until its
TXID. Then, it is necessary to wait until TX is confirmed, that is when it
is at least 6 blocks deep.

Finally the upgrade phase can be performed: the Merkle path, from the
TXID to the block header Merkle root, is retrieved from the network and ap-
pended to the incomplete proofs, turning them into legit timestamps. Next to
each file to timestamp is placed a .ots file which is the serialized timestamp.

60



13822002
-p1-UubLs

L
L =

5400.d
a1epdn

I

s10° L.
21B3JD N

sjooud s100.d
219 dwod 21epdn

9L

szLLadaW [

uoL1d9|9s
uLod

gag o1
aLtd ppv

X1 MeN
21e3JdD

SBA

Figure B.1: Simplified scheme of the Electrum plugin for sign-to-contract.

61



Bibliography

1]

Bitcoin developer guide. https://bitcoin.org/en/developer-
reference.
Electrum source code. https://github.com/spesmilo/electrum.

Electrum website. https://electrum.org/.
Opentimestamps source code. https://github.com/opentimestamps|
Opentimestamps website. https://opentimestamps.org/.

AMETRANO, F. M., BARucci, E., MARAzZZINA, D., AND
ZANERO, S. Response to ESMA/2016/773. the distributed
ledger technology applied to securities markets. https:
//www.esma.europa.eu/press-news/consultations/consultation-
distributed-ledger-technology—-applied-securities—markets,
2016.

BAck, A. Hashcash - a denial of service counter-measure. Tech. rep.,
2002.

Back, A., CorarLrLo, M., DasHJR, L., FRIEDENBACH, M.,
MAXWELL, G., MILLER, A., POELSTRA, A., TIMN, J., AND WUILLE,
P. Enabling blockchain innovations with pegged sidechains. https:
//blockstream.com/sidechains.pdf, 2014.

BARTOLETTI, M., AND POMPIANU, L. An analysis of bitcoin op_return
metadata. In Financial Cryptography and Data Security - FC 2017 In-
ternational Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA,
Sliema, Malta, April 7, 2017, Revised Selected Papers (2017), pp. 218
230.

BAYER, D., HABER, S., AND STORNETTA, W. S. Improving the effi-
ciency and reliability of digital time-stamping. In Sequences II: Methods

62


https://bitcoin.org/en/developer-reference
https://bitcoin.org/en/developer-reference
https://github.com/spesmilo/electrum
https://electrum.org/
https://github.com/opentimestamps
https://opentimestamps.org/
https://www.esma.europa.eu/press-news/consultations/consultation-distributed-ledger-technology-applied-securities-markets
https://www.esma.europa.eu/press-news/consultations/consultation-distributed-ledger-technology-applied-securities-markets
https://www.esma.europa.eu/press-news/consultations/consultation-distributed-ledger-technology-applied-securities-markets
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

in Communication, Security and Computer Science (1993), Springer-
Verlag, pp. 329-334.

DAMGARD, I. B. A design principle for hash functions. In Proceedings
on Advances in Cryptology (New York, NY, USA, 1989), CRYPTO 89,
Springer-Verlag New York, Inc., pp. 416-427.

GERHARDT, 1., AND HANKE, T. Homomorphic payment addresses and
the pay-to-contract protocol. CoRR abs/1212.3257 (2012).

HABER, S., AND STORNETTA, W. S. How to time-stamp a digital
document. Journal of Cryptology 3 (1991), 99-111.

HABER, S., AND STORNETTA, W. S. Secure names for bit-strings. In

in ACM Conference on Computer and Communications Security (1997),
ACM Press, pp. 28-35.

HaNkE, T. Asicboost - A speedup for bitcoin mining. CoRR
abs/1604.00575 (2016).

KosriTz, N. Elliptic curve cryptosystems. Mathematics of Computa-
tion 48, 177 (Jan. 1987), 203-209.

LomBROZO, E., LAu, J., AND WUILLE, P. Segregated witness (con-
sensus layer). https://github.com/bitcoin/bips/blob/master/bip-
0141.mediawiki, 2015.

Massias, H., AviLA, X. S., AND QUISQUATER, J.-J. Design of a
secure timestamping service with minimal trust requirement. In the
20th Symposium on Information Theory in the Beneluzx (1999).

MAXWELL, G. Deterministic wallets. https://bitcointalk.org/
index.php?topic=19137.0 2011.

MaxweLL, G.  Taproot: Privacy preserving switchable script-
ing. https://lists.linuxfoundation.org/pipermail/bitcoin-dev/
2018-January/015614.html, 2018.

MEeNEZES, A. J., OorscHOT, P. C. V., VANSTONE, S. A., AND
RivesT, R. L. Handbook of applied cryptography, 1997.

MERKLE, R. C. Protocols for public key cryptosystems. In Proceed-
ings of the 1980 IEEE Symposium on Security and Privacy, Oakland,
California, USA, April 14-16, 1980 (1980), pp. 122-134.

63


https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://bitcointalk.org/index.php?topic=19137.0
https://bitcointalk.org/index.php?topic=19137.0
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.html

23]

[24]

[31]

32]

[33]

[34]

NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf, 2008.

PETROSKI, H. Invention by design: How engineers get from thought
to things. In in ACM Conference on Computer and Communications
Security (1997), MA: Harvard University Press., p. 11.

PoeLSTRA, A. Add opsigntocontract with tag ‘0x09°. https://
github.com/opentimestamps/python-opentimestamps/pull/14.

POELSTRA, A. operation to commit to secp256kl points? |https:
//github.com/opentimestamps/python-opentimestamps/issue/12.

PoORNIN, T. Deterministic Usage of the Digital Signature Algorithm
(DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA). RFC
6979, Aug. 2013.

SIMMONS, G. J. The history of subliminal channels. IEEFE Journal on
Selected Areas in Communications 16, 4 (1998), 452-462.

STEVENS, M., BURSZTEIN, E., KARPMAN, P., ALBERTINI, A., AND
MARKOV, Y. The first collision for full sha-1. Cryptology ePrint
Archive, Report 2017/190, 2017. https://eprint.iacr.org/2017/190.

Topbp, P. Opentimestamps:  Scalable, trust-minimized, dis-
tributed timestamping with bitcoin. https://petertodd.org/2016/
opentimestamps—announcement.

TobD, P. Shal is broken, but it’s still good enough for opentimestamps.
https://petertodd.org/2017/shal-and-opentimestamps-proofs.

TobpD, P. Interpreting ntime for the purpose of bitcoin-attested times-
tamps. https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2016-September/013120.html, 2016.

WATTENHOFER, R. The Science of the Blockchain, 1st ed. CreateSpace
Independent Publishing Platform, USA, 2016.

WUILLE, P. Hierarchical deterministic wallets. https://github.com/
bitcoin/bips/blob/master/bip-0032.mediawiki, 2012.

64


https://github.com/opentimestamps/python-opentimestamps/pull/14
https://github.com/opentimestamps/python-opentimestamps/pull/14
https://github.com/opentimestamps/python-opentimestamps/issue/12
https://github.com/opentimestamps/python-opentimestamps/issue/12
https://eprint.iacr.org/2017/190
https://petertodd.org/2016/opentimestamps-announcement
https://petertodd.org/2016/opentimestamps-announcement
https://petertodd.org/2017/sha1-and-opentimestamps-proofs
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-September/013120.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-September/013120.html
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Acknowledgements
	Introduction
	Structure

	Timestamping
	Commitment Operations
	Time Attestations

	Trustless Timestamping
	Bitcoin
	Address Commitment
	OP_RETURN

	State of the Art of Trustless Timestamping
	OpenTimestamps as a Standard
	OpenTimestamps as a Scalability Solution

	Elliptic Curve Commitments
	Elliptic Curve Public Key Cryptosystem
	A New Commitment Operation
	Timestamping Applications
	pay-to-contract
	sign-to-contract


	Practical Analysis of sign-to-contract 
	Benefits and Issues
	sign-to-contract Made Accessible

	Conclusions and Future Work
	From Abstract Algebra to Finite Fields
	Groups
	Rings
	Fields
	Finite Fields

	Plugin functioning

