
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Peaks: Adding Proactive Security to OpenPGP
keyservers

Relatore: Prof. Alessandro BARENGHI

Tesi di Laurea di:

Mattia PINI Matr. 834738

Anno Accademico 2017–2018

Abstract

An OpenPGP protocol is a standard used to obtain both confidential-
ity and authenticity in the asynchronous message exchange, especially with
emails.
This protocol, now utilized in every part of the world, is born almost 25
years ago, thanks to Phil Zimmermann.

During the years, many problems have been accumulated over the OpenPGP
world. The number of the keys has boomed, reaching the value of almost 5
million keys. This enormous number is a difficulty for a server based on a
Key-Value storage such as the SKS Keyserver.

I decided to develop this project, creating a new keyserver, to allow more
people to manage it, reaching a complete and precise update.

Furthermore, I have to underline the results came to light from the
paper Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-
Proof? [2]: in fact, it has been fully demonstrated that a lot of keys are
almost obsolete, and many others are still vulnerable.
From this consideration arose the idea to project a keyserver that, not only
would handle all the user’s requests, but would also analyze every single
packet that has intended to form the key.

Overall, this new keyserver should prove that all the keys used in OpenPGP
respect specific security data.

The structure of this paper starts with a brief introduction to the cryp-
tography: its history, development and properties. Then, with an excursus,
it is described what is OpenPGP, how it is structured, which are the algo-
rithms analyzed and how the SKS keyserver works. In the following chapter,
it is detailed the structure of the new keyserver created, while in the final
one can be found the graphs representing the results achieved.

3

Contents

Introduction 1

1 Background and State of the Art 9
1.1 OpenPGP . 9

1.1.1 Brief history . 10
1.1.2 RFC 4880 . 11
1.1.3 Key Packets Category 12
1.1.4 Signature Packets Category 13
1.1.5 Data Packets Category 14

1.2 Asymmetric algorithms . 17
1.2.1 RSA Cryptosystem . 17
1.2.2 Elgamal . 18
1.2.3 DSA . 19
1.2.4 ECDSA . 20
1.2.5 EdDSA . 21
1.2.6 ECDH . 23
1.2.7 Encoding and Decoding Curve Point 23

1.3 SKS keyserver . 25
1.3.1 Synchronization algorithm 26
1.3.2 Synchronization of SKS keyserver 28

2 PEAKS – A reenginered OpenPGP Keyserver 36
2.1 PEAKS . 36

2.1.1 Database . 37
2.1.2 PKS

The new sks db daemon 42

i

CONTENTS CONTENTS

2.1.3 Unpacker . 49
2.1.4 Analyzer . 52
2.1.5 Reconciliation daemon 56
2.1.6 Dump Import . 57
2.1.7 Libraries . 57

3 Experimental Results 59
3.1 Problems found . 59
3.2 Charts . 61

3.2.1 Key dimension . 61
3.2.2 Revocated key . 64
3.2.3 Expired key . 65
3.2.4 Expired signatures . 66
3.2.5 Hash mismatch graph 67
3.2.6 Vulnerable keys . 68
3.2.7 Vulnerable signatures 72
3.2.8 Domain used . 74

Conclusion 78

Bibliography 79

ii

List of Figures

1 Symmetric Cryptography example 2
2 Asymmetric Cryptography example 3
3 Hybrid Cryptoscheme example 4
4 Digital certificate example . 5
5 Certification authority tree 6
6 PKI verification . 7

1.1 List of packets ok an OpenPGP key 10
1.2 OpenPGP radix-64 example 16
1.3 SKS keyserver structure . 25
1.4 Partition tree . 28
1.5 SKS client and server requests 32
1.6 Recon Request Full Sequence Diagram 33
1.7 Recon Request Poly Sequence Diagram 34

2.1 ER schema . 37
2.2 Classes of PKS . 43

3.1 RSA key length . 61
3.2 Elgamal key length . 62
3.3 DSA key length . 63
3.4 Revoked primary keys . 64
3.5 Revoked subkeys . 64
3.6 Expired primary keys . 65
3.7 Expired subkeys . 66
3.8 Expired signatures . 67
3.9 Hash mismatch . 67
3.10 RSA vulnerabilities . 68

iii

LIST OF FIGURES LIST OF FIGURES

3.11 Elgamal vulnerabilities . 69
3.12 DSA vulnerabilities . 70
3.13 Signature vulnerabilities . 73
3.14 Domain used 1994–1998 . 75
3.15 Domain usage 1999–2018 . 76

iv

List of Tables

1.1 OpenPGP packets category 12

2.1 PEAKS composition . 36
2.2 List of key errors . 45
2.3 List of Parsing Errors . 47
2.4 Key Vulnerabilities list . 52
2.5 Signature Vulnerabilities list 55

3.1 Key vulnerabilities results . 71
3.2 Signature vulnerabilities results 74
3.3 Other domain . 77

v

List of Algorithms

1.3.1 Computing node index . 30
1.3.2 Computing a node index given an hash 31

vi

Introduction

For thousands of years cryptography has been used to provide a secure
way to communicate between parties. The original idea was to share the en-
crypting and decrypting technique only between the communicating parties
to avoid the possible eavesdropping from an unwanted person. This, bind to
the absence of strong cryptanalysis method and a real definition of when a
cipher is cryptanalytical resistant, was considered a weakness.

With the advent of the modern cryptology, the idea behind the security
of the system changed radically. Everyone should have been able to observe
and analyze the cryptosystem, because everything about it should has been
release to the public, except for the key. This is known as the Kerckhoff’s
Principle. In the modern cryptology a cryptoscheme is considered secure if
the computational complexity to break it is at least equal to the one that we
need to solve a computationally hard problem.

The security properties that has to be ensured in the modern cryptology
are:

Confidentiality: Confidentiality means that an information is not available
to unauthorized user. A user can be any entity that can operate in the
system. e.g. a person or a company.

Authenticity: Authenticity is divided in two part: Authentication and Au-
thorization. The authentication property is needed when we want to
know who is the counterpart. The authorization instead, is needed to
allow or deny specific action to the authenticated user.

Data Integrity: Data integrity refers to the fact that the data can be tam-
per with. If a cryptosystem can ensure data integrity, the counterpart
can verify if the data has been manipulated (for example if part of the

1

Introduction

data is missing or if it has been substituted with another content).

Data Authentication: Authentication and data integrity together can pro-
vide Data Authentication. In this way we can prevent data forgery (i.e.
create false data, conferring its creation to another user).

Non–Repudiation: The non–repudiation property ensures that a state-
ment cannot be retracted.

Symmetric cryptography

In the symmetric cryptography the algorithms use the same key for the
encryption of the plaintext (i.e. non-encrypted data) and the decryption of
the ciphertext(i.e. encrypted data).

Figure 1: Sketch about how the symmetric cryptography works

When two users (e.g. Alice and Bob) want to exchange message through
a symmetric cryptosystem, they have to share a secret key over a secure
channel; once done they can encrypt and decrypt the messages with the
shared key and send them to each other through an unsecured channel.
In this way their messages are protected when travelling over the unsecure
channel, because they are encrypted, and any other user cannot read them.

The symmetric cryptography is very computationally efficient and it pro-
vides confidentiality and data authentication (Alice is sure that only Bob can
read her messages and that the received encrypted message are written only
by Bob and vice-versa), but without the non repudiation. On the contrary,
it is very difficult to exchange the shared secret over a secure channel be-
cause we will need it for every new communication that we want to do.
Furthermore a group communication requires that every possible user pair
in the group shares its secret over a distinct secure channel, thus also the key
management can be a problem; besides, it cannot provide non repudiation.

2

Introduction

Asymmetric cryptography

In asymmetric cryptography, algorithms use two keys: a public one, that
is shared among all the users, and a private one, that is known only to its
owner. When Bob wants to send a secret message to Alice, he can encrypt
the message with the public key of Alice and send it to her. Alice can decrypt
the message using her private key; in this way every user that can intercept
the message is not able to decrypt it because only Bob knows his private
key, and the confidentiality is ensured.

Figure 2: Sketch about how the asymmetric cryptography works

The asymmetric cryptography can also be used to provide authentication
and non repudiation. Alice can generate a signature over a message with
her private key, and every other user can verify it using Alice’s public key.
Obviously once the signature is created, the signer can encrypt all the data
with the public key of another user to ensure confidentiality, authentication
and eventually data-integrity all together.

Usually the signature is not done on a message but on the output of
an hash function that has the message as input. An hash function, given
an arbitrary length string in input, generates a fixed length output (called
digest or hash). This function has to ensure three properties:

First preimage problem: given a digest the recovering of the input mes-
sage has to be computationally impossible.

Second preimage problem: given a message and its digest, it must be
computationally impossible found another message with the same di-
gest.

Collision resistance: it is computationally impossible to found two mes-
sages with the same digest.

The asymmetric cryptography is though very slow with respect to the

3

Introduction

symmetric one and it need a very long key, to reach the same security margin
of the second one.

Hybrid Cryptoschemes

The two different cryptographic primitives are often used together.
For example when Alice wants to start a communication with Bob, she can
use a symmetric algorithm to encrypt a message and an asymmetric algo-
rithm to share the symmetric secret with Bob.

Data

Encrypt key
using receiver’s

public key

RSA

Encrypted Message

Encrypt Decrypt

Encrypt data
using random

key

q4fzNeBCRSYqv

Encrypted Key

Generate
Random

Key

Data

TIakvAQkCu2u

Random Key

Encrypted Message

Data

q4fzNeBCRSYqv

Encrypted Key

Decrypt data
using key

Decrypt using
receiver’s

private key

RSA

TIakvAQkCu2u

Data

Figure 3: Sketch of how the idea behind an hybrid cryptoscheme

In this way we can share the symmetric secret key over a secure channel
and then use it to encrypt and decrypt the messages.

Another problem with the asymmetric cryptography is the truth about
the binding between the public key and the user who proclaims to own it.
To verify this we can use a digital certificate.

4

Introduction

Digital Certificate

The digital certificate is a document that certified the binding between
a public key and a certain user. It contains a signature done with an asym-
metric cryptosystem.

A digital certificate contains information about how the signature has
been generated and who is the user, owner of the signed key, plus some
other data. It includes the hash algorithm used, the subject name (e.g. can
be a person, a company, an organization), the user that has performed the
signature (can be an entity called certification authority of another user on
the system), eventually it could contain the creation date and the validity
time or the expiration date. Obviously it also contain the signature. It is

Figure 4: An example of the Wikipedia’s digital certificate

distributed as a file with all the information inside.
There are two main infrastructures where the digital certificates are used.

The Public Key Infrastructure (PKI) and the Web Of Trust (WoT).

5

Introduction

Public Key Infrastructure

In a public key infrastructure the certificates are created by an entity
called Certification Authority (CA).

A job for a certification authority is to check (as a matter of fact not
always the check is done by it, but it is usually like that) and certificate that
a public key belongs to a specific user. The checking can be done meeting
the user in person and/or checking its documents.

Root CA

Intermediate CAIntermediate CA Intermediate CA

Issuing CA Issuing CA

Certificate

Figure 5: Sketch of the CA hierarchy [9]

The CAs are organized in a tree structure. Every CA can sign (besides
the users) the certificate of another CA and its one is signed by a distinct
CA. The CA that is not signed by any other CA is called root CA. A root
CA certificate is generated by the CA itself. In Figure 5 there is an example
of the CA tree structure.

When a user wants to check if a public certificate has to be trusted, he

6

Introduction

Client
Sign a digital object to be distributed

signed with

Send object and the certificate

User2 ID

CA ID

Dev ID

CA ID

CA ID

Check if the CA certificate
is available and check CA ID

If the certificate is good, use the user's public
key to verify
the object

Dev ID

CA ID

Use the CA's Public key to check the signature

User2 ID

CA ID

CA ID

Server

Figure 6: Sketch about the verification of a certificate in a public key infrastructure

checks behind his trusted CA, if there is the one that has performed the
signature on the certificate of the interested host. If he finds the CA he can
verify the signature, using the CA’s public key. If the verification fails the
certificate is not considered authentic. This happen also if the CA that has
performed the signature, is not among those he trusts.

If a certificate is compromised can be revoked. A list of revoked certifi-
cates can be found inside a Certificate Revocation List, an offline list with
all the certificates revoked by a specific CA, or in a Online Certificate Status
Protocol, an online service that let you know if a certificate has been revoked.

The format of the digital certificates in a public key infrastructure is the
X.509, used in many internet protocol (for example in the HTTPS)

Web Of Trust

In the web of trust the role of a CA relies on every user in the system.
Each user can sign the key of other known users, confirming their identity.
A user can have more than one signature per certificate, in order to increase
the trust of the other user on it. Thus if we have to prove the authenticity of
a user A we need to verify at least one signature on his certificate: if one of
them come from a trusted user (and of course if it is valid), the authenticity
is verified, otherwise we have to prove first (in the same way) the authenticity
of a user B, who made the signature that we are checking; once proved, B has
become a trusted user and we can prove the authenticity of the certificate of
A.

The certificates are stored in keyservers so that everyone can have access
to them. There is a network of keyservers, all synchronized together.

7

Introduction

If a certificate has been compromised, a user can revoke his signature,
reducing the level of trust of the other user in that certificate.

A web of trust standard is the OpenPGP, used, for example, in encrypted
mail exchange.

8

Chapter 1

Background and State of the
Art

This chapter shows how the OpenPGP certificates are composed and
synchronized between the keyservers. It also debate about the asymmetric
algorithm used in OpenPGP.

The chapter contains:

• An high level explanation of how OpenPGP is structured, Section 1.1

• A brief history of OpenPGP, Section 1.1.1

• A particular focus about the most important thing, Section 1.1.2

• The asymmetric algorithm used in OpenPGP, Section 1.2

• How the synchronization between the keyservers works, Section 1.3

1.1 OpenPGP

OpenPGP is a security standard that provides confidentiality and au-
thenticity in message and data file exchange. It is used mainly in email
exchange (confidentiality and data origin) and linux package manager (data
origin only). It is used used to handle asymmetric key, exchanging messages
and performing data authentication. An OpenPGP object is represented as
a list of packets, each one containing different information.

9

CHAPTER 1. Background and State of the Art 1.1. OpenPGP

Primary Public key

Textual user-ID

User Attribute

Subkey

Subkey binding sig

User ID Certification

User Attribute
Certification

Figure 1.1: Sketch of a list of packets of an OpenPGP version 4 certificate. Those with
the green background, are the signatures, the blu one is the subkey; the packets with the
red background, finally are the user ID.

In particular an OpenPGP object representing a public key, is called
certificate. In Figure1.1 is shown an example of a sequence of packets, rep-
resenting a certificate in the OpenPGP standard.

The certificates are store in online keyserver, all synchronized together.
There is also some offline software that follows this standard (e.g. GNU
Privacy Guard1) and can be used to create and handle the certificates and
to perform encrypting, descrypting and signing.

1.1.1 Brief history

PGP (namely Pretty Good Privacy) was born in 1991, created by Philip
Zimmermann. After some years of development and trouble (Zimmermann
was investigated by the US government for “exporting ammunition without
a license” because, at that time, cryptosystem with keys larger then 40 bits
was considered ammunition, and PGP was used also outside the USA), in
1996 he published the RFC 1991 [1] and founded PGP Inc. In 1997 PGP
Inc proposed to create an open standard, and the year later another pa-
per was published, the first one dedicated to the new OpenPGP format:
RFC 2440 [7], followed, ten years later, by the RFC 4880 [6] that defines the
actual standard, now composed by RSA, Elgamal and DSA, as asymmetric
algorithm, and by the International Data Encryption Algorithm (IDEA),

1https://www.gnupg.org/

10

https://www.gnupg.org/

CHAPTER 1. Background and State of the Art 1.1. OpenPGP

TripleDES, CAST5, Blowfish, AES-128, AES-192, AES-256 and Twofish, as
symmetric algorithm. During the following years the standard was improved
introducing the Camelia Cipher (with the RFC 5581 [24]) and the Elliptic
Curve Cryptography (with the RFC 6637 [11]), arriving at the presentation
of a draft to update the RFC 4880 [17] by Werner Koch, bringing a new
version of OpenPGP (only an idea, not yet implemented by any software)
and the Edward Curve Cryptography.

1.1.2 RFC 4880

A full description of the OpenPGP message format can be found in the
RFC 4880 [6]. Actually there are two version of the OpenPGP format,
version 3 that is deprecated, and version 4 (there is also version 2 but it is
equal to version 3, except for the fact that in version 2 the certificate are
generated by PGP 2.5 or less, so we will treat version 2 and 3 as they are
equals).

A version 3 OpenPGP Public Key is composed by a public key packet,
an optional revocation self signature packet (if the public key is revoked),
and a list of user ID packets, each one followed by the list of the related
signatures.

A version 4 instead has a public key packet (called primary key), followed
by two optional Signatures: a revocation or a direct key signature. Then there
is the list of user IDs and signatures, as version 3, but with an extension:
the list can also contains some user attribute packets, each one followed by
the list of the related signatures. To close the Key there could be a list of
subkeys and, optionally for each one, a list of related signatures.
In version 4 by convention, the primary key is used for the signature while
the subkeys are used for the encryption.

An OpenPGP object (e.g. a public key, a secret key, a message) is a
block composed by several packets. Each packet is formed by an header,
that contains the tag to identify the packet, the length of the packet, and
then the real content; the length can be represent in different ways, based
on the dimension of the content.

The packets can be divided in three macro categories: key packets, sig-
nature packet, data packet. The packets divided by categories are shown in
Table 1.1.

11

CHAPTER 1. Background and State of the Art 1.1. OpenPGP

Table 1.1: List of OpenPGP packets divided in category

key packets signature packets data packets
category category category

Public-Key
Encrypted
Session Key
Packet

Symmetric-Key
Encrypted
Session Key
Packet

Key Material
Packet

Signature Packet

One-Pass
Signature Packet

Key Material
Packet

Compressed Data Packet

Symmetrically Encrypted
Data Packet

Marker Packet

Literal Data Packet

Trust Packet

User ID Packet

User Attribute Packet

Symmetrically Encrypted
and Integrity Protected
Data Packet

Modification Detection
Code Packet

Private/Reserved Packet

1.1.3 Key Packets Category

Public-Key Encrypted Session Key Packet A Public-Key Encrypted
Session Key Packet containing the symmetric key used to encrypt a message.

Symmetric-Key Encrypted Session Key Packet Same as Public-Key
Encrypted Session Key Packet.

Key Material Packet A Key Material packet contains information about
the key; there are four types of Key Material Packet:

• Secret Key

• Secret Subkey

12

CHAPTER 1. Background and State of the Art 1.1. OpenPGP

• Public Key

• Public Subkey

The Subkey packet is defined only in version 4. In this version the Public-
Key is called Primary-Key.
A key is recognized by a fingerprint, a key ID and a version. For a version
3 key, the key ID is the low 64 bits of the public modulus n (in version 3
only the RSA algorithm is defined). On the other hand, the fingerprint is the
MD5 hash of the concatenation between the public modulus n and the public
exponent e. A fingerprint for a version 4 key, is the octet 0x99, followed by
two octet representing the packet length, and the field representing the key,
all hashed with the SHA-1 algorithm. The Key ID is the low 64 bits of the
fingerprint.

1.1.4 Signature Packets Category

Signature Packet A Signature packet represents a binding between a
key packet and a message, a file, or other packet; for example, a user can
sign a message to prove that he is the author, or he can sign a User ID
packet to confirm that it belongs to a specific person. A signature Packet is
composed by various specific subpackets that contains the information about
the signature. Based on the employment, a signature has different types. In
an OpenPGP key these types are:

Certification of a User ID and Public-Key packet : Three types of sig-
nature (generic, persona, casual, positive) that certificate that a user
ID or a user attribute belongs to a public key. The signer chooses a
specific type for the signature, based on the confidence that he has
about the binding between the key and the user ID. The generic cer-
tification indicates the lowest confidence, while the positive one, the
highest.

Subkey and Primary-Key Binding Signature: Two types of signatures
(Subkey Binding and Primary-Key Binding) that bind the subkey to
the primary key and vice-versa. The first one is performed by the pri-
mary key, and states that it owns the subkey, and the second one is

13

CHAPTER 1. Background and State of the Art 1.1. OpenPGP

a statement done by the subkey, indicating that it is owned by the
primary key

Signature directly on a key : A signature computed directly on a key,
that binds the inside information to the signed key.

Key revocation signature: A signature that revokes directly a key.

Subkey revocation signature: A signature that revokes a Subkey or Primary-
Key Binding Signature.

Certification revocation signature: A signature that revokes a certifica-
tion over a user ID or a user attribute.

A signature cannot be physically deleted, to make it meaningless a user has
to create a new signature that revokes the first one.
When a signature is done by and over the same key is called self signature. A
self signature is performed by the public key to certificate that a certain user
ID belongs to it. Is also used to know the primary (i.e. the most important)
User ID packet for an OpenPGP object.
A signature is computed over the hash of the content of the signed packet
plus some other information; the signed hash contains also some info situated
in the same signature packet. For a version 3 signature, the signed hash is
computed over the five octets of the packet body, starting from the signature
type.
For a version 4 instead, the fields hashed are the signature version, signature
type, public-key algorithm, hash algorithm, hashed subpacket length, and
all the hashed subpackets body.
The hashed fields all together form the hashed material.

One-Pass Signature Packet A One-Pass Signature Packet precedes the
signed data and allow to verify the signature on the data during their first
read.

1.1.5 Data Packets Category

Compressed Data Packet A Compressed Data Packet contains obvi-
ously compressed data. It can be found inside an encrypted packet or after
a Signature

14

CHAPTER 1. Background and State of the Art 1.1. OpenPGP

Symmetrically Encrypted Data Packet A Symmetrically Encrypted
Data Packet contains data encrypted with a symmetric key algorithm. Once
decrypted it contains a list of other OpenPGP packets.

Marker Packet Dummy Packet. Must be ignored when received. It con-
tains "PGP" raw string in UTF-8.

Literal Data Packet A Literal Data Packet contains data and a field
explaining how data is formatted.

Trust Packet A Trust Packet is used inside the local keyrings and should
not be exported. It contains information about which key are trustworthy
for the user.

User ID Packet A User ID packet contains the name and (optionally)
the email address of the owner of the key.

User Attribute Packet A User Attribute packet is similar to the User
ID packet, except for the possibility to store more data types other than only
text. It is composed by subpackets (such as the signature packet), but until
now exists the image subpacket only.

Symmetrically Encrypted and Integrity Protected Data Packet A
Symmetrically Encrypted and Integrity Protected Data Packet, is a variant
of the Symmetrically Encrypted Data Packet. This, used together with a
Modification Detection Code Packet, improve the possibility to detect mod-
ification on encrypted data.

Modification Detection Code Packet A Modification Detection Code
Packet contains a checksum of the plaintext data. It is used, as specified
above, with a Symmetrically Encrypted and Integrity Protected Data Packet
to detect possible modification on data.

Private/Reserved Packet A private or reserved packet has no specifica-
tion in RFC 4880. It should be used only in private environment.

15

CHAPTER 1. Background and State of the Art 1.1. OpenPGP

In order to avoid unprintable characters, the entire binary stream is en-
coded in base64. It is also followed by the 24-bit Cyclic Redundancy Check
(a method to compute a checksum for a binary string. A C implementation
can be found in [6, Section 6.1, p. 63]) of the stream, encoded in base64 as
well. This encoding method is called Radix-64.

Figure 1.2: Example of an ASCII Armored OpenPGP Public key

An OpenPGP object is composed by:

• A line that identifies the object; for a public key object the line is
- - - - -BEGIN PGP PUBLIC KEY BLOCK- - - - -

• Some optional line that could contain any type of info, e.g. info about
the hostname, the version of the server

• a blank line

• The actual Radix-64 data, included the CRC.

• A line similar to the first one that close the object; for a public key
object the line is
- - - - -END PGP PUBLIC KEY BLOCK- - - - -

This representation is called ASCII Armored object.

16

CHAPTER 1. Background and State of the Art1.2. Asymmetric algorithms

1.2 Asymmetric algorithms

in the OpenPGP standard

1.2.1 RSA Cryptosystem

An RSA public key is composed by a public modulus n, product of two
secret prime factors p and q, and a public exponent e. An RSA cryptosystem
works with modular arithmetic, and relies on the computational hardness of
factoring large integers.

The secret key is composed of two prime numbers, p and q, that are the
factors of n (n = p · q), the value of the Euler’s Totient Function ϕ(n) =

(p− 1)(q − 1) and a secret exponent d = e−1 mod ϕ(n). The values e and d
are thus bound together.

Given an RSA public key kpub = 〈n, e〉 and the corresponding private
kpriv = 〈p, q, ϕ(n), d〉, a message m can be encrypted using the public expo-
nent:

c = Enckpub(m) = me mod ϕ(n) mod n

and decrypted using the secret exponent:

m = Deckpriv(c) = cd mod ϕ(n) mod n

In this way the confidentiality of the message m is ensured because only who
has the secret key can decrypt the message.

To prove authenticity instead, a user can sign a message with his secret
exponent:

s = Signkpriv(m) = md mod ϕ(n) mod n

and send the sign s together with the message m. Any other user can check
the signature, through the public key of the signer:

CheckSignkpub(m, s) = m = se mod ϕ(n) mod n

This equality is true if and only if s has been generated by the user.
In OpenPGP before signing with an RSA key, a message has to be en-

coded with EMSA-PKCS1-v1_5 [21, section 9.2]; to perform this encoding we
have to:

17

CHAPTER 1. Background and State of the Art1.2. Asymmetric algorithms

1. Compute the ASN.1 DER value of the used hash function (the possible
values can be found in [21, Appendix A.2.4, p. 62]), concatenated with
the hash of the message: we call this result t

2. Generate an octet string S = mLen− tLen− 0xFF − 0xFF − 0xFF ,
with mLen desired length of the output string (needs to be at least
tLen+ 11) and tLen the octet length of t.

The output string (means the string that will be signed) will be 0x00‖0x01‖S‖0x00‖t,
where ‖ is the concatenation operator.

1.2.2 Elgamal

Elgamal works in a cyclic subgroup of Zp, (G, ·) of order q with generator
g ∈ G, where the discrete logarithm problem (i.e. given a ∈ 〈g〉, find the
smallest positive integer x ∈ Zq such that gx = a) is computationally impos-
sible. This is ensured setting q as a large prime factor of p − 1, otherwise,
if p − 1 has only small prime factors, computing the discrete logarithms is
trivial, using the Pohlig–Hellman algorithm [16].

In OpenPGP an Elgamal public key is kpub ← 〈p, g, gx〉 where x, chosen
randomly from {1, . . . , q − 1}, is the secret key.

To encrypt a message m (with 0 ≤ m ≤ p− 1) you have to:

1. generate a random number k ∈ {1, . . . , q − 1} and calculate c1 ≡p gk

2. calculate s ≡p (gx)k

3. calculate c2 ≡p m · s

The encrypted message is:

c = Enckpub(m) = 〈c1, c2〉

Given c = 〈c1, c2〉 the decryption is:

m = Deckpriv(c) = c2 · (cx1)−1

where (cx1)−1 is the inverse of cx1 in the group G. Note also that cx1 = s.

18

CHAPTER 1. Background and State of the Art1.2. Asymmetric algorithms

With an Elgamal cryptosystem we can also sign messages. Givenm (such
that 0 ≤ m ≤ p− 1) the message to be sign, H the used hash function, and
an Elgamal public key, the procedure is the following:

1. generate a random number k such that 1 < k < p−1 and gcd (k , p− 1) = 1

2. compute r = gk mod p

3. compute s = (H(m)− x · r) · k−1 mod p− 1 and check s 6= 0. If false
restart the procedure.

The signature is:
S = Signkpriv(m) = 〈r, s〉

To verify a signature check that 0 < r < p and 0 < s < p− 1, and then:

CheckSignkpub(m,S)→ gH(m) = (gs)r · rs

The signature is accepted if and only if the equivalence is true.
The Elgamal signature is no more used in OpenPGP due to a vulner-

ability found in a library used by GNU Privacy Guard, that generates the
random value k without checking the “coprimality” with p-1.

1.2.3 DSA

The DSA cryptosystem is a US standard for digital signatures [14]. The
key idea is similar to Elgamal, and the public key is composed with:

• a prime q of bit length N .

• a prime p such that q|p− 1 of bit length L.
The possible values for (L,N) are: (1024, 160), (2048, 224), (2048, 256),

and (3072, 256)

• a number g such that q is the smallest positive integer that verifies
gq = 1 mod p.

• y = gs where s ∈ {1, . . . , q − 1} is the private key.

The signature with DSA algorithm is done by:

19

CHAPTER 1. Background and State of the Art1.2. Asymmetric algorithms

1. generating a random number (must be different for any messages we
want to sign) k ∈ {2, . . . , q − 1}.

2. calculating r = (gk mod p) mod q and check r 6= 0. If it is equal, reject
and restart.

3. calculating s = k−1(H(m)+x ·r) mod q and check s 6= 0. If it is equal,
reject and restart.

The signature is (r, s) and can be verified first checking that 0 < r, s < q

and then computing:

1. w = s−1 mod q

2. u1 = H(m) · w mod q

3. u2 = r mod w mod q

4. v = (gu1yu2 mod p) mod q

the signature is verified if and only if v = r.

1.2.4 ECDSA

The ECDSA cryptosystem reinterprets the DSA cryptosystem employing
the additive group of points of an elliptic curve, instead of a multiplicative
group in Zp. A curve is characterized by an equation in a specific field, a
curve base point G (generator of the curve), its order (an integer n), and a
point Qa = [da]G, with da an integer number that represent the secret key,
as specified in the ECDSA standard [14].

In OpenPGP there is no need to generate a curve because pre–generated
ones are used. An OpenPGP Public-Key Packet contains the OID (i.e. an
object identifier, that allows to recognize an object unequivocally through a
string. The list of the OIDs used in OpenPGP for the curves can be found
in [17, Section 9.2, p. 72]) of the curve and the point Qa. The signing
procedure is similar to the DSA one, given e = H(m)

1. generate a random number k ∈ {1 . . . , n− 1} with gcd(k, n) = 1

2. compute [k]G = (x1, x2)

20

CHAPTER 1. Background and State of the Art1.2. Asymmetric algorithms

3. compute r = x1 mod n and check that is different from 0. If it is equal,
reject and restart.

4. compute z that is the Ln leftmost bits of e with Ln = NumBits(n)

5. compute s = k−1(z + r · da) mod n and check that is different from 0.
If it is equal, reject and restart.

6. The signature is (r, s)

Having the public key with the used curve and Qa a valid point on it, the
signature can be checked:

1. verifying that r, s ∈ [1, n− 1]

2. computing e = H(m) and extract z (as in the signing part)

3. computing w = s−1 mod n

4. computing u1 = z · w mod n

5. computing u2 = r · w mod n

6. computing (x, y) = [u1]G+ [u2]Qa, if (x, y) = O (with O the identity
element) the signature is invalid

The signature is considered valid if and only if

r = x1 mod n

1.2.5 EdDSA

The EdDSA cryptosystem works in the edward curve theory. In EdDSA
we have a curve characterized by an equation, its generator G, a public
point A, and 32 bytes of cryptographically secure random data (that should
remain secret), from which we will generate the secret key s. EdDSA has
been added to OpenPGP with a draft proposal [17] by Werner Koch, the
developer of GNU Privacy Guard, not yep accepted.

In EdDSA the method to generate the public key changes based on which
curve we are using. Thus we will see only the methods regarding the curve
Ed25519, because is the only one used in OpenPGP.

In order to generate the public key A we have to:

21

CHAPTER 1. Background and State of the Art1.2. Asymmetric algorithms

1. compute the SHA-512 of the 32 bytes of random data, and store the
lower 32 bytes

2. clear the lower three bits of the first octet and the highest bit of the
last octet. Set also the second highest bit of the last octet.

3. interpret the 32 bytes pruned string as a little endian integer, the secret
key, s

4. The public key A is the encoding [13, Section 5.1.2, p. 10] of the scalar
multiplication [s]G

Given a messageM , the curve parameters (G generator of the curve and
L order of the curve), the secret key s, and a public key A (a point on the
curve), these are the step to compute the signature:

1. compute h as the SHA-256 hash of the 32 bytes random data, compute
s, as we have seen above, and compute prefix as the second half of h

2. compute SHA-512(prefix‖M) and interpret the 64 bytes result as a
little endian integer r

3. compute R = [r]G

4. compute SHA-512(R‖A‖M) and interpret the 64 bytes result as a
little endian integer k

5. compute S = (r + k · s) mod L

The signature is (R,S), and it is usually found as a 64 bytes string, concate-
nation of R and S.

Given a message M , a 64 bytes string representing the signature, the
curve parameters (G generator of the curve and L order of the curve), and a
public key A (a point on the curve), the correctness of the signature can be
checked decoding the first half of it as a point R, the second one as an integer
S, and decoding (see Section 1.2.7) the public key A as a point A′. If one
of the decoding fails, the signature is incorrect; otherwise, if the decoding
proceeds successfully, we have to compute SHA-256(R||A||M) and interpret
the 64 bytes result as a little endian integer k.
The final check to do is:

CheckSignkpub(m,Sign)→ [S]G = R+ [k]A′

22

CHAPTER 1. Background and State of the Art1.2. Asymmetric algorithms

1.2.6 ECDH

The Diffie-Hellman algorithm is an anonymous key agreement protocol,
between online parties. It is odd found it in a standard, used mainly for
email communication, and thus an asynchronous message exchange.

As the other curve based algorithms used in OpenPGP, also ECDH works
with a pre-computed curve, in particular with the Curve25519.

The idea behind a Diffie–Hellman cryptosystem is to exchange a sym-
metric key over an insecure channel. To do this, a user A can compute his
own public key, generating a 32 random bytes (we will call them a) and give
them to the X25519 function [18, Section 5, p. 10] together with a 32 bytes
string formed by one byte representing the number 9 (u-coordinate of G for
the curve Curve25519), followed by 31 bytes representing the number 0.
The result of the X25519 function is the public key KA.

Two users (A and B) that want to communicate, have to generate and
exchange their public key. Then A can compute the shared secret K =

X25519(a, KB) with KB = X25519(b, 9) and B can compute the same shared
secret K = X25519(b, KA), with KA = X25519(a, 9), 9 is, as above, a 32
bytes string formed by one byte representing the number 9, followed by
31 bytes representing the number 0. A and B can now exchange secret
message, using a symmetric key, derived with a key derivation function,
using K,KA,KB [17, Section 13.4, p. 88].

1.2.7 Encoding and Decoding Curve Point

A point on a curve is represented with two coordinates(x, y).
Sometimes to improve the efficiency, a point can be encoded, in order to
transmit only one coordinate and the sign of the other one, so it can be
recovered from the equation of the curve.

In OpenPGP a flag before a point indicates the way the point is trans-
mitted. There are two possible flags: 0x04 and 0x40

0x04: This flag is found only on a point used with ECDSA or ECDH. It
indicates that the point is not compressed and the first half of the string
that follows is the x coordinate and the other half is the y one.

23

CHAPTER 1. Background and State of the Art1.2. Asymmetric algorithms

0x40: This flag indicates that the point is compressed, and contains the x
coordinate with the sign of the y one.

For ECDSA or ECDH an octet string can be decoded following this steps:

1. The first octet of the string indicates the sign for y. If it is equal to
0216, the sign must be set to 0; if it is equal to 0316 the sign must be
set to 1, otherwise the decoding fails.

2. The rest of the string is the big endian representation of the coordinate
x. Verify that x ∈ [0, p − 1] with p parameter of the curve, if not the
decoding fails.

3. Compute α = x3 +a ·x+b mod p with a and b parameters of the curve.

4. Compute the square root of α, β =
√
α

5. If sign = β mod 2, β is the y-coordinate, otherwise p− β is.

For EdDSA instead, the way to retrieve the two coordinates is the fol-
lowing:

1. Verify that the number of octet of the string is 32, if not raise an error.

2. Interpret the string as a little endian representation of an integer num-
ber. The 255th bit of this number represent the least significant bit
(i.e. the sign) of the x-coordinate. The y-coordinate is found clearing
this bit.

3. From the curve equation we know x2 = (y2−1)
(d·y2+1)(modp)

, where d and p
are parameters of the curve

4. Then we define u = y2 − 1 and v = d · y2 + 1, thus x2 = u
v .

5. To compute the square root of u
v we should first define the candidate

root x = u
v

p+3
8 = u · v3(u · v7)

p−5
8 mod p

6. There are three cases:

• v · x2 = u mod p: x is a square root

• v · x2 = −u mod p: x = x · 2
p−1

4 is a square root

• otherwise: decoding fails

24

CHAPTER 1. Background and State of the Art 1.3. SKS keyserver

7. Finally we can use the sign computed at 2, if x = 0 and sign is 1
the decoding fails; otherwise we check sign = x mod 2, if true the
x-coordinate is the one computed at 6, otherwise x = p− x

In Section 6 of [13] can be found a python implementation of all the algo-
rithms regarding the EdDSA cryptosystem.

1.3 SKS keyserver

The certificates are distributed through keyservers, maintained by vol-
unteers, on which works SKS [15]. An SKS keyserver is synchronized with
the other in order to guarantee that all the certificates is available in all the
keyservers.

Figure 1.3: How two SKS keyserver works

SKS DB

SKS DB

SKS
RECON

SKS
RECON

CERT
DB

CERT
DB

TREE
DB

TREE
DB

USERS

The SKS keyserver is divided in two main processes, sks db and sks recon,

25

CHAPTER 1. Background and State of the Art 1.3. SKS keyserver

that communicate with two Berkeley DB; for a sketch see Figure 1.3. The
first one is a daemon that deals with the normal process that typifies a key-
server. It answers to all the web requests, handling the upload of certificate
by the users, and providing the stored keys. The other one, deals with the
reconciliation between keyservers, and the synchronization between the tree
and the database of the certificates. The sks recon doesn’t synchronize di-
rectly the certificates, but their MD5 hash. Finished this synchronization, it
fetches the certificates querying the sks db with the recovered MD5 values.

1.3.1 Synchronization algorithm

In this section will be shown the main idea behind the synchronization
algorithm.

The synchronization algorithm is designed to ensure the best communi-
cation performance with the minimum bandwidth consumption. The main
idea is based on the set reconciliation problem [20]. Given two sets SA and
SB, their differences ∆A = SA \SB and ∆B = SB \SA, and the dimension of
the differences mA and mB, we can define m = mA +mB as the maximum
number of differences between the two sets.

Each set is represented with a checksum that can be used to determine
the differences between the sets. Given a set S = {x1, x2, . . . , xn}, where xi
is an element of the set, we can define the characteristic polynomial (i.e. the
checksum) as

χS(Z) = (Z − x1)(Z − x2) . . . (Z − xn)

As we can see the zeros of the characteristic polynomial, are the elements of
the set.

Each element of the set is mapped into a field Fq with q ≥ 2b and b length
of the bitstring representing the mapped elements.

Considering the ratio between the characteristic polynomial of the two
sets:

χSA
(Z)

χSB
(Z)

=
χSA

⋂
SB

(Z) · χ∆A
(Z)

χSA
⋂
SB

(Z) · χ∆B
(Z)

=
χ∆A

(Z)

χ∆B
(Z)

we can use directly the ratio χ∆A
(Z)

χ∆B
(Z) to recover the differences. The idea to

efficiently compute the ratio (i.e. to avoid the computation of the polynomial
division), is to divide the results of the evaluation of the polynomials χSA

(Z)

26

CHAPTER 1. Background and State of the Art 1.3. SKS keyserver

and χSB
(Z) on a set of points in Fq, and use the result of the division, to

interpolate the required rational function.
Given d1 and d2 degrees of the numerator P (Z) =

∑
i piZ

i and denom-
inator Q(Z) =

∑
i qiZ

i of the rational function, and a set V of d1 + d2 + 1

pairs (ki, fi) ∈ F2, there is a unique rational function such that f(ki) = fi

for each (ki, fi). Each pair (ki, fi) implies thus a linear constraint of the
coefficient of numerator and denominator:

kd1
i + pd1−1k

d1−1
i + . . .+ p0 = fi · (kd2

i + qd2−1k
d2−1 + . . .+ q0)

The interpolation is accomplished by solving a system with all the equations
implied by the elements of V .

Before starting the reconciliation, the two hosts have to agree on a set of
evaluation points, on which the ratio χSA

(Z)

χSB
(Z) will be computed.

Once computed the interpolation, we have the coefficient and we can
recover the missing elements computing the zeros of the numerator and de-
nominator.

Summing up, to perform the reconciliation, an host A send its checksum
to an host B, that computes the two differences (∆A,∆B) and sends ∆B to
A.
The reconciliation fails, if the maximum number of differences m is too high.
To avoid this we can define:

• m̄ as the maximum allow value for m. Above this value the reconcili-
ation fails.

• k the probability of detecting that the reconciliation is not possible, as
(|SA|+|SB |

2b
)k if m > m̄

The computational complexity of the function that, given the checksum
csA, csB of the two sets SA, SB, compute their differences, is O(b·m̄3+b·m̄·k).
As you can see is cubic in m̄; to avoid this we can choose a fixed value for m̄
and split the set in p (called partitioning factor) as equal as possible subsets.
If the reconciliation algorithm seen above fails due to m > m̄, we have to
execute it on all the partition of the original set. If it fails also on a partition
we can split that partition in p subpartitions and continue recursively until
the reconciliation succeeds in all partitions.

27

CHAPTER 1. Background and State of the Art 1.3. SKS keyserver

To avoid the continuous computing of the checksum, for each host that
wants to reconcile we can further improve the efficiency, representing the
split in partitions as a tree.

csP

csP1

P1,1 csP1,2

P1,2,1 P1,2,2 P1,2,3

P1,3

csP2

P2,1 P2,2

P3

Figure 1.4: Sketch of the partition tree. The green nodes represent the leafs

In Figure 1.4 there is an example of the partition tree. The leafs of the
tree contain the elements of the partition; the nodes instead, the checksum
of the set composed by the union of all the elements of each leaf found,
descending from that node (e.g csP1 contains the checksum of the set S =

P1,1 ∪ P1,2,1 ∪ P1,2,2 ∪ P1,2,3 ∪ P1,3), and the number of the elements of this
set. The union of the sets in the leafs composes the complete set P. In this
way we can avoid the computation of the checksum for each invocation of
the reconciliation function, but we need to edit it accordingly every time an
element is added or removed to and from the tree. We also have to be sure
that any node in the tree, has a unique index, equals in the tree of each other
hosts, so that we can put the elements in the same partition on every host,
to avoid duplicates.

1.3.2 Synchronization of SKS keyserver

In an SKS keyserver the tree is composed as follows:

• every node contains the checksum computed as is shown in Section 1.3.1,
and the number of the elements of the set on which the checksum is
calculated.

• every leaf represents a partition of the set composed by the MD5 di-

28

CHAPTER 1. Background and State of the Art 1.3. SKS keyserver

gests of the binary representation of the certificates. To avoid that
the same key, represented with a different packet order, generates two
different hash, this one is calculated on the binary representation of
the packets, ordered by their tag and content.

The MD5 digests are mapped in a field Fq with
q = 30512889551602322505127520352579437339. The partitioning factor p
is equal to 2bitquantum , where bitquantum is a value that can be manually set.
The default value for bitquantum is 2.
Before starting the reconciliation, two SKS hosts, exchange some of their
settings to ensure that they are equal. The settings in question are:

• filters: each server has some filters that shows how the server handles
the incoming certificates. The default value is: yminsky.dedup; yminsky.merge.
The first value indicates that a server Delete and then UPload a new
key: this is needed because the keyserver works with a key-value stor-
age, thus the merged certificates are not updated but deleted and then
re-inserted. The second one means that the server performs the merge
between two certificates represented by the same primary key, to com-
bine the different packets.

• bitquantum: the value of the bitquantum variable, to ensure that the
two hosts use the same tree structure.

• mbar: the value of m̄. The default value is 5.

If these values are not equal, the servers don’t start the reconciliation.
The reconciliation algorithm recovers only the missing hashes and store them
to a file. After that, another function deals with the recover of the certifi-
cates.

Every node is recognized by an index that has to be calculated in the
same way in all the hosts. Given a node, the algorithm 1.3.1 is the one used
to compute the indexes of its child nodes in an SKS keyserver. The key idea
is to incrementally compute the indexes, starting by the one of the parent
node and extend its length by bitquantum bits, following a certain pattern.
The algorithm takes in input the extended index of the original node (not
yet updated), called bs, the bit from which the update of bs should starts,
and the final length of the new index.

29

CHAPTER 1. Background and State of the Art 1.3. SKS keyserver

Algorithm 1.3.1: Algorithm used in sks to compute the indexes
for the children of a node
input : bs: at the first call is the bistring representing the

index of the starting node (i.e. the one for which
we need the index of the children) with the length
extended by bitquantum, at the other calls is the
updated index
bit: actual considered bit, starts from the latest bit
(the most significant) of the bistring representing the
index of the starting node + 1
len: len + bitquantum– Final length of each new index

output : Set of index for all the children of the starting node
parameter: set (string, bit): function explained in the text

unset (string, bit): function explained in the text
1 Function child_keys(bs, bit, len):
2 if bit ≥ len then
3 return {bs }
4 else
5 set(bs, bit)
6 keys1 = child_keys(bs, bit + 1, len)
7 unset(bs, bit)
8 keys2 = child_keys(bs, bit + 1, len)
9 return keys1 ∪ keys2

10 End Function

The algorithm computes the indexes of all the child nodes, filling the new
bits of it, using the set and unset function. Finally, it returns a set with all
the indexes of the child nodes.

The set and unset functions, given a bitstring (ba) and the position in bit
that has to be updated in input, return the modified bitstring. They calculate
first the byte_pos with the remaining bit_pos of the interested position,
and then the ASCII code of the char in the previously computed byte_pos

position of the string ba. Then in the set function the new character is
the one corresponding to the ASCII code found calculating the bitwise or

between 1 shifted by 7 - bit_pos position, and the ASCII code of the old
character. The unset function instead, computes the bitwise and instead of
the or, between the bitwise negation of 1 shifted by 7- bit_pos, and the
ASCII code of the old character. Once computed the new character, the two

30

CHAPTER 1. Background and State of the Art 1.3. SKS keyserver

functions return the ba string with the new character in place of the old one.

Algorithm 1.3.2: Algorithm used to compute the index starting
from an MD5 hash of the certificate (interpreted as a number), to
know where to store it
input : depth Depth of the actual node

hash Data to be inserted
output : index
constant: bitquantum (defined during the settings of the tree)

rmask (i) = 0xFF � (8 - i)
lmask (i) = 0xFF � (8 - i)
chartoint (c): return the ASCII code of the
character c
land: bitwise AND operator
lor: bitwise OR operator

1 Function string_index(depth, hash):
2 lowbit ← depth · bitquantum
3 highbit ← lowbit · bitquantum- 1
4 lowbyte ← lowbit/ 8
5 lowbit ← lowbit mod 8
6 highbyte ← highbit/ 8
7 highbit ← highbit mod 8
8 if lowbyte = highbyte then
9 byte ← chartoint(hash

[
lowbyte

]
)

10 return (byte � (7 - highbit)) land (lmask(highbit- lowbit +
1))

11 else
12 byte1 ← chartoint(hash

[
lowbyte

]
)

13 byte2 ← chartoint(hash
[
highbyte

]
)

14 key1 ← (byte1 land (lmask(8 - lowbit))) � (highbit + 1)
15 key2 ← (byte2 land (rmask(highbit + 1))) � (7 - highbit)
16 return key1 lor key2

17 End Function

The hashes of the key has to be put in the same node in all the SKS
keyserver. Given an hash, to know where to store it, we can start from the
root of the tree and use the algorithm 1.3.2 to know the index of the children
in which the subtree, where the hash has to be put, starts. Once found the
children the algorithm should be re-used for the same reason, recursively,
until a leaf is detected.
Having the depth of the node that we are considering, the algorithm com-

31

CHAPTER 1. Background and State of the Art 1.3. SKS keyserver

putes the index of the next child node needed. In the first 2 lines, it computes
the variables lowbit and highbit, and then splits them in bytes and remain-
ing bit (lines 4–7); now if the highbyte and the lowbyte values are the same,
the algorithm fetches the ASCII code of the lowbyte character of the hash

string, and returns a logical shift to the right by 7 - highbyte positions of
that code, in a bitwise and with the left mask of highbit - lowbit - 1

(lines 9–10); otherwise it fetches the two characters in position lowbyte and
highbyte, and computes:

key1 as the logical left shift of the bitwise and of the ASCII code of the first
character with the left mask of 8 - lowbit, by highbit + 1 positions
(lines 12,14).

key2 as the logical right shift of the bitwise and of the ASCII code of the
second character with the right mask of highbit + 1 by 7 - highbit

positions (lines 13,15).

then returns the bitwise or between key1 and key2

The algorithm starts to reconcile from the root of the tree and if needed,
it continues on its children. When the reconciliation on a node (or a leaf)
ends, the recovered hash values are not inserted in the tree but stored in a
file. Afterwards another function deals with the recovering of their respective
certificates.

Client requests:

• ReconRqst_Full

• ReconRqst_Poly

• Elements

• Done

• Flush

Server response:

• SyncFail

• Elements

• FullElements

• Error

Figure 1.5: Type of requests that an SKS client or server can perform

Given a node of a tree, a client, can perform two type of requests:

ReconRqst_Full: containing the number of the elements in it and the
elements. It is performed if the considered node is a leaf or if the size

32

CHAPTER 1. Background and State of the Art 1.3. SKS keyserver

of the set on which the checksum is computed is less than the upper
bound m̄. This request contains all the elements of the leaf or the
elements of the set on which the checksum of the node is computed.

ReconRqst_Poly: performed if the previous condition is not verified. This
request contains the index of the node, the number of elements of the
considered node (i.e. the ones on which the checksum is computed),
and the checksum.

Client Server

ReconRqst_Full(hashes)

alt

Node not found

Node found Find Δclient and Δser

Store Δserver

Elements(Δclient)

Error()

Store Δclient

Figure 1.6: Flow of the requests starting from a ReconRqst_Full

A server that receives a ReconRqst_Full request, computes the two differ-
ences (∆client,∆server), where ∆client is the set of hashes missing from the
client and ∆server is the set of hashes missing from the server, directly on
the set (i.e. as a differece between two sets, without using the interpolation).
The second one is stored, while the first one is sent back to the client. At
this point also the client can store the differences, and the reconciliation of
that node of the tree is finished (and thus also on its children).
In Figure 1.6 is shown the sequence diagram for the ReconRqst_Full request.

33

CHAPTER 1. Background and State of the Art 1.3. SKS keyserver

Client Server

ReconRqst_Poly(checksum)

alt

If node found

Node not found

Error()

Try interpolation

alt

If interpolation fails

If interpolation succedes

Compute Δclient and Δs

Store Δserver

Elements(Δclient)

Store Δclient

alt

If node is not leaf

If node is leaf

FullElements(hashes)

Compute Δclient and Δserver

Store Δclient

Elements(Δserver)

Store Δserver

SyncFail()

Procede the synchronization with
the cildren of the current node

Figure 1.7: Flow of the requests starting from a ReconRqst_Poly

If a server receives a ReconRqst_Poly instead, computes the differences
using the interpolation function; if it gives a result, the server stores the
∆server differences and sends back the ∆client one, otherwise (if the interpo-

34

CHAPTER 1. Background and State of the Art 1.3. SKS keyserver

lation is impossible) answer with:

• a FullElements reply, if the considered node is a leaf or if the size
of the set on which the checksum is computed is less than the upper
bound m̄. This request contains all the elements of the leaf or the
elements of the set on which the checksum of the node is computed.

• a SyncFail request, if the previous condition is not verified.

If the client receives a FullElements response, it sends back all the server
missing elements, otherwise it continues the synchronization with the chil-
dren of the considered node. In Figure 1.7 you can find a sequence diagram
for a ReconRqst_Poly request.

The server doesn’t close the connection until it receives a Done request
by the client, but it is suddenly close if an Error response is generated by
the server. The Error response is not sent immediately but the server wait
for a Flush request from the client.

A Flush request is sent by the client if it doesn’t receive an answer by
the server and the number of unanswered sent requests is over a certain
predefined limit. If a server receives a flush, it sends the Error responses
accumulated, and continues to fetch the other requests.

When the reconciliation algorithm ends, a function handle the recover of
the key from the server. It sends a POST request to the other sks db daemon,
composed by the number of the recovered hashes and, for each of them, both
the size of the hash and the actual hash. The server answers with the number
of the returned keys, followed by, for each of these, both the size and the
certificate.

When a key is added to the server, the tree is not automatically updated:
there is a daemon that handle the synchronization between the certification
database and the tree. If a key is merged, the hash could change: to deal
with this modification, the old hash should be removed from the tree, and
the new one inserted.

35

Chapter 2

PEAKS – A reenginered
OpenPGP Keyserver

In this chapter will be shown how the new implemented keyserver works,
showing how the database is structured, how the implementations of the
various software are done and the choice that has been made.

2.1 PEAKS

The basic idea was to create an SKS keyserver that could handle bet-
ter the amount of data using a relational database, be better updated and
maintained, and verifies that the certificates have not security issues.

Table 2.1: List of the peaks software, divided into daemons and single launch applications

Daemon Application

PKS

reconciliation
daemon

unpacker

analyzer

dump import

The certificates are stored and unpacked in a MySQL database. The
software composing the study are shown in Table 2.1

36

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

2.1.1 Database

Figure 2.1: ER schema of the used database

The ER schema of the database is in Figure 2.1. The tables used are:

37

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

gpg_keyserver: contains all the certificates. Each certificate is identified
by the version and the fingerprint of the primary key. Other information in
the table are:

• The key ID. It could used to query the certificate by the users.

• The hash used for the synchronization between keyservers.

• The flag is_unpacked. It can be:

– -1: if the unpacking of the certificate has generated an irreparable
error

– 0: if the certificate has not been unpacked yet.

– 1: if the unpacking ends without errors.

– 2: if not all the packets of the certificate has been exported. The
reason can be found in the Unpacker_Errors table.

• The flag is_synchronized. It is used by the recon daemon to maintain
the tree updated.

• The error_code related to the parsing of the certificate. The list of
the error code can be found in Table 2.2.

Pubkey: contains information about keys and subkeys. The field in the
table are:

• Key ID, version and fingerprint: used to recognize the key.

• priFingerprint: NULL if the key is primary, otherwise contain the
fingerprint of the primary key of the certificate.

• pubAlgorithm: the code representing the asymmetric algorithm of the
key.

• creationTime, expirationTime, revocationTime: Three fields that
contain the creation, the expiration (if any) and the revocation (if any)
time of the key. The first field is the only one contained in a public key
packet, the other two are taken from the signature table.

• The values of the public key (n, e, p, q, g, y, curveOID). If a value is
not a part of the public key its field if NULL.

38

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

• is_analyzed: this field is 1 if the key has been analyzed, 0 otherwise.

Signatures: contains information about the signatures. The field in the
table are:

• id: an auto–increment values that identifies each signature in the table.

• type: the type of the signature represented with an integer value.

• pubAlgorithm: the code representing the asymmetric algorithm used
to perform the signature.

• hashAlgorithm: the code representing the hash algorithm used to com-
pute the hash.

• version: the version of the signature.

• issuingKeyId, issuingFingerprint, issuingUsername: the values of
key ID, fingerprint, and user ID of the key that has issued the signature.

• signedKeyId, signedFingerprint, signedUsername: the values of key
ID, fingerprint and user ID of the key on which the signature is com-
puted.

• sign_Uatt_id the ID of the user attribute that represents a field in
the UserAttribute table. NULL if the signature is not computer over
a user attribute.

• regex, flags: value of the regex and flags subpackets (if any).

• creationTime, expirationTime: Three fields that contain the creation
and the expiration (if any) time of the signatures.

• r, s: the values of the signature, for the RSA algorithm r is empty.

• hashHeader: the value of the header of the hash.

• signedHash: the value of the hash that has been signed. This value is
not in the signature packet but is computed by the unpacker.

• hashMismatch this value is equal to 1 if the hash header doesn’t match
with the one of the hash computed following the rules in the RFC 4880,
0 otherwise.

39

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

• keyExpirationTime: this value is found only on a self signature. In-
dicates the expiration time of the key on which the signature is per-
formed.

• revocationCode, revocationReason, revocationSigID: the first two
indicate the code and the reason of the revocation, the third one is
related to the id of the signature that has compute the revocation.

• isRevocable: 1 if the signature can be revoked, 0 otherwise.

• isExportable: 1 if the signature can be exported from a local keyring,
0 otherwise.

• isExpired: 1 if the signature is expired, 0 otherwise.

• isValid: 1 if isExpired is 1 or there is a revocation on that signature,
0 otherwise.

• isRevocation: 1 if the type of the signature is a revocation one, 0

otherwise.

• is_analyzed: 1 is the signature has been already analyzed, 0 other-
wise.

User ID: contains information about the user ID. The field of the table
are:

• ownerkeyID, fingerprint: used to identifies the certificate on which
the user ID packet belongs.

• name, email: the first one is the content of the packet, the second one
only the email (if any).

• is_analyzed: flag equals to 1 if the email has been analyzed, 0 other-
wise.

• bindingAuthentic: the response of the analysis done over the email
(not performed by this study).

40

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

User Attribute: contains information about the user attribute. The field
of the table are:

• id: an auto–increment value that represent the user attribute.

• fingerprint, name: used to identifies the bind between the user ID
and the user attribute.

• encoding: the encoding of the image, until now only the jpeg encoding
(tag 1) is defined.

• image: the binary string of the image.

SelfSignatureMetadata: Contains the self signatures performed by a key
over a user ID in the same certificate. The columns are different from the
Signature, because this table is used to fetch the most important user ID
packet among the ones in a certificate. The signatures in this table are
placed also in the Signatures table. The field of the table are:

• id: an auto–increment value used to identifies each self signature.

• type, pubAlgorithm, hashAlgorithmIndex, version: same as the
Signatures table.

• issuingKey, issuingFingerprint: the key ID and fingerprint of the
issuing key (in this table it coincide with the signed key).

• preferredHash, preferredCompression, preferredSymmetric: three
fields found in a subpacket of a signature, that give some info about
the preferences of the owner of the signed key.

• trustLevel: level of trust of the signatures as specified in 1.1.2.

• keyExpiration: same as the Signatures table.

• isPrimaryUserId: a flag that indicates if the signed user ID is the
most important in the certificate.

• signedUserId: the user ID on which the signature is computed.

• userRole: a string that explain the role of the user.

41

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

Unpacker_errors: Contains all the errors occurred during the unpacking
of a key. The list of the errors can be found in 2.2.

KeyStatus, SignatureStatus: Contains the vulnerabilities found during
the analysis of keys and signatures. The list of vulnerabilities can be found
in 2.4 and 2.5.

removed_hash: Contains the hashes that are been removed from the gpg_keyserver
table. This table is used by the recon daemon, to maintain updated the tree.

broken_keys: Contains all the certificate that are impossible to read and/or
decode.

The database has also two views (key_primary_userID and
Signature_no_issuing_fp) and one trigger. The first view contains a pro-
jection of the SelfSignatureMetadata table in order to have the primary
User ID for each primary key.
The other one is used by the unpacker daemon, to update the fingerprint of
the issuing in the Signatures table (not always the issuing fingerprints are
in the Signature packets, so we have to fetch it using the issuing key id). The
trigger instead is used to fill the removed_hash table when a key is updated
in the gpg_keyserver table; it saves the old hash in the removed_hash table
and stores the new one in gpg_keyserver.

2.1.2 PKS
The new sks db daemon

The PKS represent the sks db daemon in an SKS keyserver. As is shown
in Section 1.3 the sks db daemon, handles the upload of the new certificates,
performing the merge (if needed), and it provides them to the users and the
other servers.

42

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

PKS

PacketReader

DBManager

Content

Utils

Figure 2.2: Sketch of the classes of the PKS daemon

The classes that compose the PKS are shown in Figure 2.2

PKS

The main class is the PKS, it uses the content and the utils class to
provide organized contents in the web pages; it is also appointed to handle
the requests of the certificates coming from the sks recon daemon with a list
of the MD5 hashes. The useful URLs are:

• host/pks: that respresents the homepage. From here is possible search
and upload the certificate.

• host/lookup?search=SEARCHSTRING&op=index: the search page. The
SEARCHSTRING is the name of the searched user.

• host/pks/lookup?op=vindex&search=ID: the page that shows the con-
tent of the certificate. The ID string can be the key ID or the fingerprint
of the certificate requested.

• host/pks/lookup?op=get&search=ID: the certificate page. It shows
the certificate encoded with the armored method.

43

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

content

The content contains all the HTTP objects represented as structs includ-
ing the dynamic content of the web pages (e.g. the homepage, the submit_-
form, the list of found key).

utils

The utils class contains the functions to elaborate and encode the
HTML code, before displaying the page to the users. It also includes some
structs that are used to handle the certificate during the elaboration of the
code.

PacketReader

The PacketReader is the part that manages the parsing of the the certifi-
cate, uploaded in an armored encoding, and deal with the possible generated
errors. The error handling is explained in Section 2.1.2. During the parsing
it fetches the fingerprint and the version from the primary key, and asks to
the DBManager if there already is a certificate with the same version and
fingerprint to (eventually) perform the merge, that is examined in Sec-
tion 2.1.2. After that it uses two structs, situated in the utils class, to
virtually represent the tables gpg_keyserver and UserID of the database,
filling them with all the information needed, and pass them to the DBManager
for the upload in the database. The information inserted can be found in
detail in Section 2.1.2

DBManager

The DBManager class manages the communication with the MySQL database
for both the packetReader and the PKS classes. It contains all the performed
queries and the structs used to represent the tables of the database.

Error handling

The possible errors are divided in two part. The key error category, that
represents the error caused by a non–meaningful key (i.e. if a key doesn’t
follow the rules in the RFC 4880, or if a packet doesn’t represent a public key)

44

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

and the parsing error category, that represents an error during the creation
of the object key. The key errors are shown in Table 2.2:

Table 2.2: Possible errors generated during the verification of the meaningfulness of a
key, excepto for the last one that is generated during the merge function

Name Code Prevent the
upload

NotExistingVersion 1 YES
BadKey 2 YES
NotEnoughPackets 3 MAY
FirstPacketWrong 4 MAY
SignAfterPrimary 5 NO
AtLeastOneUID 6 NO
WrongSignature 7 NO
NoSubkeyFound 8 NO
Ver3Subkey 9 NO
NoSubkeyBinding 10 NO
NotAllPacketsAnalyzed 11 NO
NotAPublicKey 12 YES
DifferentKeys 14 NO

NotExistingVersion: caused when the certificate has a version different
than 2, 3 or 4. The version of a certificate is the one of its primary key.

BadKey: caused when the armored representation of the binary stream
doesn’t represent an OpenPGP certificate.

NotEnoughPackets: caused when there is only one packet in a certificate (a
certificate should have at least two packets: a primary key and a user ID).
If the only packet found is a primary key packet, the certificate is uploaded,
otherwise it is rejected and inserted in the broken_keys table.

FirstPacketWrong: caused when the first packet of a certificate is not a
primary key packet. The daemon upload the certificate, only if a primary
key is found; otherwise it is rejected and inserted in the broken_keys table.

SignAfterPrimary: caused where there is a Signature Packet after the first
one that is not a revocation or a direct signature.

45

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

AtLeastOneUID: caused when no User ID packets are found.

WrongSignature: caused when a signature after a User ID (or a user at-
tribute) is not a certification or a certification revocation signature.

NoSubkeyFound: caused when (in version 4) no subkeys is found.

Ver3Subkey: caused when (in version 3) there is a subkey.

NoSubkeyBinding: caused when a signature after a subkey is not a subkey
binding, primary key binding, key revocation or a subkey revocation.

NotAllPacketsAnalyzed: caused when, during the parsing, not all the
packets have been read.

NotAPublicKey: caused when the armored representation of the binary
stream doesn’t represent doesn’t represent a certificate.

DifferentKeys: caused when you try to merge two certificates that doesn’t
have the same primary key.

Each error is bound with an error code. In table 2.2 there is a list of the
error codes. In case of a NonExistingVersion, badKey or NotAPublicKey

error, the key is rejected and uploaded in the broken_keys table, with the
description of the error that causes the problem. In the other case the error
is deal with, and the key is uploaded in the gpg_keyserver table with the
corresponding error code. In case of a DifferentKeys error, the merge is
avoided and the upload continues.

The parsing errors are instead shown in Table 2.3:

PubkeyAlgorithmNotValid: caused when the algorithm code found in a
public key is not valid.

PubkeyVersionNotValid: caused when a version found in a public key is
not valid.

46

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

Table 2.3: Errors generated during the parsing of the binary stream of a certificate

Name Code Prevent the
upload

PubkeyAlgorithmNotValid 32 YES
PubkeyVersionNotValid 33 YES
LengthLEQZero 34 YES
SignaturePKANotValid 35 YES
SignatureHashNotValid 36 YES
SignatureVersionNotValid 37 YES
SignatureLengthWrong 38 YES

LengthLEQZero: caused when it is found a packet with a length (specified
in the header) equal to zero.

SignaturePKANotValid: caused when the algorithm code found in a sig-
nature is not valid.

SignatureHashNotValid: caused when the hash found in a signature is not
valid.

SignatureVersionNotValid: caused when a version found in a signature
is not valid.

SignatureLengthWrong: caused when the second octet of the signature is
different than 5. That octet represent the length of the hashed material and,
following the rules of the RFC 4880, has to be 5.

All the parsing errors break the creation of the object key and then the
armored key is automatically stored in the broken_keys table, with the
reason that caused the error.

Merge

Two certificates can be merged if and only if their primary key packets
correspond. The idea for the merging algorithm is the one used in the sks
db. Basically all the packets of a key are stored in a structure:

47

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

• The first element of the structure is the primary key that represents
the certificate.

• The second element is a set of signatures made on the primary key.

• The third element is a set of tuples 〈user ID, list of signatures〉. Each
tuple represents the user ID packets with its signatures. The user
attribute packets are treated as user ID ones and inserted in this set.

• The last element is a set of tuple 〈public subkey, list of signatures〉 that
represents all the subkeys with theirs signatures.

Except for the primary key, all this items are merged each one with the
corresponding element of the other certificate, avoiding repetitions. The
primary key is the same and thus there is no need to merge it.
Once the new structure is ready, the new packet list is reconstructed, and
the merging is completed.

The merge function in the PKS server is slightly modified to adapt it to
the needs. The second item of the structure is a set of tuples 〈primary key,
list of signatures〉, but is handled as in the sks db (i.e. the first item of each
tuple is not considered). There are, instead, three new items:

• a list of pair 〈user ID, user attribute〉 representing the connection be-
tween user ID and user attribute.

• a list of user ID, to ensure that all the user ID packets have been
inserted in the merged key.

• a list of packets that should not belong to a key (e.g. a message packet,
a marker packet). These packets are inserted at the end of the packet
list of the merged key.

The procedure for the merging is the same of the SKS keyserver. The
first two element of the new items list are used during the combination of
the 〈user ID, list of signatures〉 tuples, to avoid lost of information (e.g. to
maintain the binding between a user ID and a user attribute); and the third
one is used to collect all the inappropriate packets in order to handle all the
inappropriate packets.

48

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

Insertion

One the certificate has been parsed, the PKS daemon insert it in the
gpg_keyserver table. The fields of the table are filled with:

• version: the version of the primary key.

• keyID: the key ID of the primary key.

• fingerprint: the fingerprint of the primary key.

• certificate: the binary stream of the certificate.

• hash: used in the synchronization, computed as we have seen in 1.3.2.

• is_unpacked: flag set to 0.

• is_synchronized: set to 0.

• error_code: the code of the generated error (if any).

After the certificate, also the information about the user ID packets are
inserted:

• ownerkeyID and fingerprint: the same of the primary key.

• name: the content of the packet.

• email: the email extracted from the name (if any).

• is_analyzed: set to 0.

• bindingAuthentic: set to 0.

2.1.3 Unpacker

The unpacked daemon deals with the unpacking of the key. It extracts
the packets of the certificate having the is_unpacked field set to 0 in the
gpg_keyserver table. The daemon uses the same structure seen in the merge
function. In case of error it follows the same idea of PKS: if the structure
can be recovered, it does, otherwise it generates an error and continues with
the next key. In the second case the flag is_unpacked in the gpg_keyserver
table is set to −1.

49

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

Once the structure is created, it is parsed to verify that there are no
packets out of place (for example a signature that should be after a user ID,
found after a subkey). If an improper packet is found, it is simply removed
and the alteration is registered in the Unpacker_errors table. The altered
certificates are marked is_unpacked field within the gpg_keyserver table.

Having a structure that seems correct, the daemon continues with the
unpacking and stores all the info about the packets in the database. During
this phase, is also computed the hash of the packets that has been signed,
so that the Analyzer can verify them.
In order to speed up the checking of a signature, in a signature packet there
is a field that contains the first two bytes of the signed hash. This value has
to be compared with the first two bytes of the computed hash and if it is
different the signature is automatically invalid.
The hash is computed following the procedure in the RFC 4880. We call
any hash calculated following this rules right calculated hash. During
the develop of the analyzer has been found many right calculated hash

that doesn’t have a right hash header. This hashes is divided in two cate-
gories, the key hashes and the user attribute hashes. The first one refers to
the hashes computed for a signature over a key or a subkey packet.
Examine in depth this problem, it turned out that, some hashes were com-
puted inverting the two keys (i.e. the issuing and the signed ones), before
the hash computation, thus the right calculated hash’s header doesn’t
correspond with the one in the signature packet. To avoid this problem, and
verify the signature with the same hash used to made it, the hash, when
the headers compared doesn’t result equal, is computed inverting the keys.
If not even in this way the comparing result correct, the stored hash is the
right calculated hash.
The second category is referred to hashes computed for a signature over a
user attribute packet. the hash for signing a user attribute is computed over
the content of the packet. The content for a user attribute packet is a set
of the content of the subpackets (until today only one is defined) each one
preceded by its header, where is specified the length of the content. This
length could be represented in three ways:

• one bytes if the length of the subpacket is equal or less than 191 bytes.
In this case the only byte represent directly the length

50

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

• two bytes if the length of the subpacket is include in [192, 8383]. In this
case the length of the content is the hex value of (((bytesize(content)�
8) + 192)� 8) + (bytesize(content)&0xFF)− 192

• five bytes if the other situations are not verified. In this cases the
length is 0xFF followed by four bytes representing the hex value of the
length

Has been found out that not always the length representation follows the
right rule, thus we have the same problem as above, the hash header in
the signature packet doesn’t correspond with the one of the computed hash.
The mitigation strategy used is the same used above, in case of a non cor-
responding hash, this is computed three times, ones for each possible length
representation, until a corresponding header is found. If it is not found, the
right calculated hash is stored in the database.
With this implementation we lost a small number of a right calculated

hash with a wrong hash header in the signature packet. This because there
is a small number of signatures packets having an hash header computed
in one way and the values (r, s) of the signature computed over the hash
calculated in another way.
This “strange” choice is justified because in a small testing environment has
been found more wrong calculated hashes (i.e. the one computed without
following the rules written in the RFC 4880) with a right header that bring
to a successfully verified signature, than right calculated hashes (i.e. the ones
computed following the rules of the RFC 4880) with a wrong header that
bring to a successfully verified signature.
The field hashMismatch in the table, is then set to 1 if the inserted hash
doesn’t correspond with the right calculated hash.

After the unpacking the daemon completes the info about the signatures,
writing in the database the fingerprint of the key that has performed the
signature, and sets the expired and valid flags. The first one is set if the
signature is expired and the second one if the first one is set or if there is a
revocation on that signature.

51

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

2.1.4 Analyzer

The analyzer daemon performs verifications about the security of keys
and signatures. Each vulnerability found is inserted respectively in the
KeyStatus and SignatureStatus tables. For the key analysis the daemon
takes directly the values of the parameters of the public key from the Pubkey
table and perform various checks based on which is the used algorithm.

Table 2.4: List of all the possible key vulnerabilities

Vulnerability Name Vulnerability Prevent the Algorithm
Code Signature Check Checked

OutdatedKeySize 1 NO RSA/Elgamal/DSA
PrimeModulus 2 NO RSA
CommonFactor 3 NO RSA
LowExponent 4 NO RSA
LowFactor 5 NO RSA
Roca 6 NO RSA
pNotPrime 7 YES Elgamal/DSA
qNotPrime 8 YES DSA
gLessEq1 9 YES Elgamal/DSA
gSubgroup 10 NO Elgamal/DSA
p&q 11 YES DSA
CurveWrong 12 YES ECDSA/EdDSA
PointNotOnCurve 13 YES ECDSA/EdDSA

The key vulnerabilities are placed in Table 2.4

RSA

For RSA cryptosystem the vulnerabilities are:

OutdatedKeySize: The length of n should be bigger than 2048 bits, other-
wise a bruteforce attack can be performed.

PrimeModulus: The modulus (n) shouldn’t be prime. If it is prime is trivial
to compute the ϕ(n) parameter, and then recover the secret key d.

CommonFactor: The modulus should not have common factor with another
key. Given two modulus n = p · q and n′ = p′ · q′ with p = p′, is possible

52

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

to recover the common factor p, computing the greatest common divisor,
through the Extended Euclidian Algorithm [16]. Once found p, computing q
and q′ is a trivial division. This vulnerability is not checked if the LowFactor
one is found.

LowExponent: Given the same message m encrypted 3 times with a public
exponent e = 3, and 3 public modulus (n1, n2, n3), we can compose a system

c1 = m3modn1

c2 = m3modn2

c3 = m3modn3

and solve it using the Chinese Reminder Theorem [16], find X ≡ m3mod(n1 ·
n2 · n3). Now we can trivially compute m as m = 3

√
X, because m3 < n1 ·

n2 ·n3, and thus the modular has no effect. This method can be extended on
any possible e, having a sufficiently large number of different public modulus.
The key is considered vulnerable if e > 17.

LowFactor: The modulus should not have lower factor. Given a modulus
n = p · q with p a sufficiently small prime, is trival compute q. The first 3000

primes have been checked checked as factor of n.

Roca: The key should not be vulnerable to ROCA [22]. A vulnerability
found in a software library used by Infineon Technologies AG, to generate
the RSA modulus.

Elgamal

For Elgamal cryptosystem the vulnerabilities are:

OutdatedKeySize: The length of p should be at least 2048 bits.

pNotPrime following the rules of the Elgamal cryptosystem, p should be
prime.

53

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

gLessEq1: g should be greater than 1, otherwise the groupG = 〈g〉 (i.e. the
one generated by g) is the identity group. In this case, given two signatures
(r1, s1) and (r2, s2), r1 = r2 because gk = 1∀k, is possible to find the secret
key x.

gSubgroup: g should be in the right subgroup (the condition checked is
gp = 1 mod p).

DSA

For DSA cryptosystem are verified the same vulnerabilities of Elgamal,
plus:

OutdatedKeySize: The length of p and q are checked following the NIST
directive [14]. The tuples 〈p, q〉 checked are:

• 〈1024, 160〉

• 〈2048, 224〉

• 〈2048, 256〉

• 〈3072, 256〉

qNotPrime: in addition to the one of p, also the primality of q is verified,
for the same problem.

gSubgroup To verify the correctness of the subgroup we check that gq =

1 mod p and that g doesn’t belong to the subgroup of dimension different
than q (i.e. that gn! = 1 mod p with n! = q the order of the oder subgroup
of Zp).

p&q p− 1 should be a multiple of q.

Curve algorithms

For ECDSA, EdDSA the possible vulnerabilities are:

54

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

CurveWrong: The curve used is not compatible with the algorithm (e.g.
Curve25519 used with a ECDSA algorithm)

PointNotOnCurve: The point should be on the curve. This vulnerability
happens also if the point A is encoded and the decoding fails (i.e. if the
decoding of a point fails, the point is not on the curve).

Signature

For each signature, the daemon takes the parameters (r, s), the hash
computed by the unpacker, and the values of the issuing public key, to verify
its vulnerabilities.

Table 2.5: List of all the possible signature vulnerabilities

Vulnerability Name Vulnerability Code

MD5Used 21
WrongAlgorithm 22
RepeatedR 23
WrongCheck 24
UnusablePublicKey 25
NotExportable 26

The list of signature vulnerabilities can be found in 2.5.

MD5Used: A signature should not use the MD5 algorithm to compute the
hash to be signed. The algorithm doesn’t resist to the collision problem.

WrongAlgorithm: The algorithm that should be used to perform the sig-
nature are: RSA (with the EMSA-PKCS1-v1_5), DSA, ECDSA and EdDSA.
Elgamal should not be used, as we have seen in 1.2.2. ECDH is a key agree-
ment and thus is not used to perform a signature.

RepeatedR: for Elgamal, DSA and ECDSA, if the same user generates two
signatures, having the same r value, means that the user has used the same
value k for the computation of each signature. Thus we can write this system:s1 = k−1(H(m1) + x · r) mod q

s2 = k−1(H(m2) + x · r) mod q

55

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

where s1, s2, r are the parameter of the two signatures, H(mi) is the hash
of the message mi, and x is the secret key. Is trivial solve the system, and
extract x.

WrongCheck: This vulnerability identifies the invalidity of a signature. The
check is done using the formulas seen in 1.2. If the check doesn’t came true
the signature is invalid.

UnusablePublicKey: the signature cannot be checked due to a vulnerabil-
ity found on the issuing key. The list of problematic vulnerabilities can be
found in Table 2.4

NotExportable: A signature having the NotExportable flag set, should
remain in the local keyring and thus should not appear in a keyserver.

Any possible vulnerability has a code and a description which are both
inserted in the database. When a step in the analyzer generates an error,
this is stored with a code that is 100 plus the code of the vulnerability whose
verification has generated the error (for example if an error has generated
during the check of the OutdatedKeySize vulnerability, which has code = 1,
the error has code = 101). The error code is stored in the same table of the
other vulnerabilities, to avoid the creation of another table. All the errors
can be recognized, having a vulnerabilityCode greater than 100.

2.1.5 Reconciliation daemon

The reconciliation daemon is the original one, seen in 1.3, slightly modi-
fied to adapt it to the used database.

The tree is still stored in a Berkeley DB, but all the certificates are
inserted and taken to and from the MySQL database. As we have seen
above, inside the database we have:

• The hash of the certificate in the gpg_keyserver table.

• The flag is_synchronized, in the same table, that indicates if a key
hash has been added to the tree or not.

56

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

• The table removed_hash instead contains the hash removed from the
gpg_keyserver table (i.e. the ones that belong to the certificates that
have been merged, before the joining).

In the reconciliation daemon there is a function that deals with the inser-
tion of the new hash in the tree. It recovers the hash which has the is_-

synchronized flag equal to 0 (i.e. those just added), adds them to the tree
(following the right pattern) and sets the flag to 1. The same function han-
dles also the removed hash. When a key is updated, the hash changes and
the old one is inserted in the removed_hash table. This function recovers all
the removed hash and deletes them from the tree. The hash is removed also
from the MySQL table as soon as it is deleted from the tree.

For initializing a new keyserver, the reconciliation daemon contains also
a function that takes all the hashes from the database and inserts them in a
new tree. The flag is_synchronized is not verified and thus not updated.

2.1.6 Dump Import

The dump import handles the import of a key dump. It is useful when
we want to initialize a new database. The software is a union between the
PKS server and the Unpacker daemon. It reads the certificates, following
the rules seen in 2.1.2 to handle the error, and unpacks them, following
the procedure seen in 2.1.3. The certificates are read them from a folder.
Obviously the flag is_unpacked is set consequently, as we have seen in 2.1.3.
The is_synchronized flag is set to 1, so to import the hash in a tree, has
to be used the specific function in the reconciliation daemon.

2.1.7 Libraries

The libraries used in these implementation are:

• CppCMS – High Performance C++ Web Framework [3]: a framework
designed for developing both Web Sites and Web Services. It is used
in the PKS daemon.

• A C++ Implementation of RFC 4880 [5]: it is used in all the software
but the Reconciliation daemon, to parse and create the keys. It has
been modified to adapt it to the needs of this study.

57

CHAPTER 2. PEAKS – A reenginered OpenPGP Keyserver 2.1. PEAKS

• FastGCD [10]: efficient algorithm used to speed up the computation of
the greatest common divisor between the RSA modulus in the analyzer
daemon.

• NTL – A Library for doing Number Theory [25]: used to implement the
computation of the formulas of the signature checking in the analyzer.

• GMP – The GNU Multiple Precision Arithmetic Library [23]: not used
directly. It is used in all the previous library for support in mathemat-
ical operation

58

Chapter 3

Experimental Results

In this chapter will be shown all the problems and the results found
during of the analysis. They are divided into key dimension categories, key
revoked and created, key expired and created, signatures expired, and vul-
nerabilities found. At the end the most used domains in the emails and the
are shown.

3.1 Problems found

During this study have came out a lot of problems. First of all there are
a lot of packets which content has been slightly modified (not on purpose),
creating broken packet. Given that in OpenPGP two packets are considered
equal, if and only if their content is the same, in case of broken packets
in a certificate, these are seen different (w.r.t. the original one) and thus
maintained in the packets list during a merge; for this reason there are a lot
of certificates that contain duplicate packets.

Moreover another critical issue is the wrong handling of the packets list
by some keyrings, that have incorrectly changed their position. In fact could
be found certificates with a certification signature (i.e. the one that should
be situated after a user ID), after a subkey, or worse a message signature
after a primary-key. In this case (i.e. if the moved packet is a signature),
the check on the signature does not result true, because the checked hash is
computed over the wrong packets.

59

CHAPTER 3. Experimental Results 3.1. Problems found

The signature packet has also a two octet string (called header), repre-
senting the first two octets of the signed hash, used to boost the checking
of the signature (if the two octets don’t coincide, the signature should be
directly discarded). This property should be valid for all the signatures, but
has been found out that is not; in fact some signatures result correct also if
the header doesn’t correspond.
In this study have been also found some problem related to the computa-
tion of the hash; as is shown in Section 2.1.3 the hashes computed without
following the RFC 4880 have been tracked in the database.

Another problem related to the user attribute packet is again connected
to the wrong implementation of the RFC 4880. The Image Attribute Sub-
packet (i.e. the one that contains the image) has, before the image, an image
header formed with:

• two bytes containing the length of the image, encoded as a little-endian
number.

• one byte for the image header version (only version 1 is defined, which
represents a 16 bytes image header)

• one byte representing the format of the image (only the value 1 si
defined, that represent a JPEG image)

• 12 reserved bytes that must be set to 0

These last 12 bytes not always are set to 0. To avoid possible lost of infor-
mation (if a single bit changes, the signature doesn’t result correct) the 12

bytes have been left as they were found in the certificates. Being marked as
reserved and equal to 0, these bytes must not be used due to possible future
update of the RFC 4880.

In addition to these, there are also a lot of security issues.
Many keys have been generated with bad values (e.g. with an RSA modulus
prime, or with a p value for DSA not prime) and so they could be compro-
mised; some other, still valid and used, have values with a length that cannot
guarantee a good security margin.
During the years have been found vulnerabilities over the implementation of
offline keyrings and software used to handle the certificates. Also these ones
can be used to to break a public key.

60

CHAPTER 3. Experimental Results 3.2. Charts

Another security issue is related to the user ID: they could have an email
address that is no more existing, or worse that has a free domain, and thus
it can be bought, to recreate the same email address, impersonating another
user. The list of all the security issues checked can be found in Section 2.1.4.
All this problems are summarised in the following charts.

3.2 Charts

During the writing of this study have been found many keys and signa-
tures having a strange creation year, such as 1970 or 2106. Unless otherwise
specified, in the next charts are shown only the keys and signatures cre-
ated/expired between 1995 and 2018. Moreover the data about 2018 are
incomplete and regard only the first three months of the year.

3.2.1 Dimension of the key created over the years

In this section is shown how the dimension of the parameters of the public
keys have changed over the years of their creation. The total number of keys
is 9810963.

RSA

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

2

4

6

8

·105

Year of keys’ creation

512 bits
1024 bits
2048 bits
4096 bits
beyond 4096 bits

Figure 3.1: Bit length of RSA modulo

61

CHAPTER 3. Experimental Results 3.2. Charts

This chart represents the length of the public modulus n of the RSA pub-
lic keys. Below the 2048 bits size the modulus is not more secure. Until 2020
the modulus can be considered secure from a length of 2048 bits onwards.
It is estimated that a modulus with a length greater than 3072 bits can be
considered secure until 2030.
The two most utilized dimensions are 2048 and 4096 bits. The RSA keys are
the 45, 11% of the total keys.

Elgamal

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

1

2

3

4

·105

Year of keys’ creation

1024 bits
2048 bits
3072 bits
beyond 3072 bits

Figure 3.2: Bit length of Elgamal p value

This chart represents the length of the parameters p of the Elgamal public
keys. A 1024 bits length for p is no more secure and should not be used.
Until 2020/2030 a length of 2048 bits can still be considered secure, but after
2030 should be used p with a length of at least 3072.
The key lengths employed are quite good, but the number of Elgamal keys
created is decreasing, probably due to the vulnerability found in GPG (see
Section 1.2.2). The Elgamal keys are the 27, 44% of the total keys.

62

CHAPTER 3. Experimental Results 3.2. Charts

DSA

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

1

2

3

4

·105

Year of keys’ creation

1024-160 bits
2048-224 bits
2048-256 bits
3072-256 bits

Figure 3.3: Bit length of DSA p and q values

This graph represents the length of the parameters p and q of the DSA
keys. The length of p and q is fixed, and is shown in the legend. The security
level is the same as Elgamal, with a length of 1024 bits no more secure and a
recommended size of at least 2048 bits. This graph is similar to the Elgamal
one, because, when you want to use a discrete logarithm algorithm, GPG
creates a certificate with both DSA and Elgamal keys, the first one for signing
and the other one for encrypting. Around 2013 GnuPG changes its default
value for the algorithm of the new key (that was DSA for the signing and
Elgamal for the encryption) to RSA for both operations. Thus the number
of new DSA keys has decreased together with the number of the Elgamal
ones, in favor of RSA keys. The number of the DSA keys are 27, 36% of the
total.

Elliptic Curve

The elliptic curve algorithms in OpenPGP use some fixed curves, thus
there is no need for plotting and check their size. The number of the keys
that use these algorithms is 0.09% of the total keys.

63

CHAPTER 3. Experimental Results 3.2. Charts

3.2.2 Key revoked over the years

These charts show how much the revocation signature is used.
19

95
19

96
19

97
19

98
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18

0

1

2

3

4

·105

Year of keys’ creation

New
Revoked

Figure 3.4: Comparison between revoked and created primary keys

This graph represents the number of the new primary key created each
year, compared with the revocation signatures performed on primary keys
in the same year. The total number of primary keys is 4957134, while the
revocation is performed only over the 8.7% of them.

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

100

101

102

103

104

105

106

Year of keys’ creation

New
Revoked

Figure 3.5: Comparison between revoked and created subkeys. The y-axes uses a loga-
rithmic scale

64

CHAPTER 3. Experimental Results 3.2. Charts

This graph represents the number of the new subkey created each year,
compared with the revocation signatures performed on subkeys in the same
year. The y-axes uses a logarithmic scale, because the number of revoked
subkeys is small and thus it would not be visible. The revoked subkeys are
few, probably because a certificate is considered invalid when its primary
key is revoked, and thus all the subkeys of that certificate are invalid too,
without performing any revocation signature. In fact the number of subkeys
is 4832256 and only 47 of them are revoked.

3.2.3 Key expired over the years

These charts show of how much the expiration property of a key packet
is used.

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0

1

2

3

4

·105

Year of keys’ creation/expiration

New
Expired

Figure 3.6: Comparison between expired and created primary keys

This graph represents the number of the new primary key created each
year, compared with the ones expired in the same year. The expired keys line
is slightly shifted to the right, proof that the expiration property of the keys
is used, but, unfortunately, not too much, having only the 30% of expired
primary keys over a total of 4957134.

65

CHAPTER 3. Experimental Results 3.2. Charts

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0

1

2

3

4

·105

Year of keys’ creation/expiration

New
Expired

Figure 3.7: Comparison between expired and created subkeys

This graph represents the number of the new subkey created each year,
compared with the ones expired in the same year. This chart is quite similar
to the one above, because many software used to manage the keys, create
the certificates directly with the primary key, a user ID and a subkey; thus
the expiration time of the two keys coincides.

3.2.4 Signatures expired over the years

This graph points out how much the expiration property of a signature
packet is used among the users, showing how many signatures expire and
born over the years. The expiration property for a signature is not used as
much, only the 11, 3% of the signatures has an expiration time set.

66

CHAPTER 3. Experimental Results 3.2. Charts

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

0.5

1

1.5

·106

Year of signatures’ creation/expiration

Not revoked
Expired

Figure 3.8: Comparison between expired and non-revoked signatures

3.2.5 Hash mismatches over the years

This graph shows the number of hash that are not computed following
the RFC 4880.

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

100

101

102

103

104

105

106

Year of signatures’ creation

Created
Hash mismatches

Figure 3.9: Comparison between right and wrong computed hashes. The y-axes uses a
logarithmic scale

There are not many signatures with the hash wrongly computed, thus
the y-axes uses a logarithmic scale. Luckily they correspond only to the 0.2%

of the total.

67

CHAPTER 3. Experimental Results 3.2. Charts

3.2.6 Vulnerable keys

The following graphs show how many keys are vulnerable over their cre-
ation year. The vulnerabilities tested are listed in Table 2.4. A key can
result vulnerable to more than just one vulnerability.

RSA

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

2

4

6

8

·105

Year of keys’ creation

Healthy RSA
OutdatedKeySize
PrimeModulus
CommonFactor
LowFactor
Exponent
Roca

Comparison between vulnerable and non-vulnerable RSA keys

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

0.2

0.4

0.6

0.8

1

·105

Year of keys’ creation

Focus on vulnerable RSA keys

Figure 3.10: Vulnerabilities found on RSA keys

68

CHAPTER 3. Experimental Results 3.2. Charts

The first graph represents the number of vulnerability of RSA, compared
with the keys without any vulnerability (among those tested). The second
one is a focus over the vulnerabilities only. The number of healthy RSA keys
grow up with the decreasing of the OutdatedKeySize and the Exponent

vulnerabilities, that diminish over the years. The other vulnerabilities are
more or less stable a part for the CommonFactor, that has a peak in 2014.

Elgamal

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

1

2

3

4

·105

Year of keys’ creation

Healthy Elgamal
OutdatedKeySize
pNotPrime

Figure 3.11: Comparison between vulnerable and non-vulnerable Elgamal keys

This graph represents the number of vulnerabilities of Elgamal, compared
with the healthy Elgamal keys. Also with this algorithm the main issue is
the dimension of p, considered too small. No Elgamal keys were found to be
vulnerable to gLessEq1 and gSubgroup, while a few number is vulnerable to
pNotPrime.

69

CHAPTER 3. Experimental Results 3.2. Charts

DSA

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

1

2

3

4

·105

Year of keys’ creation

Healthy DSA
OutdatedKeySize
pNotPrime
qNotPrime
gLessEq1
gSubgroup
p&q

Comparison between vulnerable and non-vulnerable DSA keys

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

50

100

150

200

250

Year of keys’ creation

Focus on the vulnerabilities, without the OutdatedKeySize one

Figure 3.12: Vulnerabilities found on DSA keys

The first graph represents the number of vulnerabilities of DSA, com-
pared with the number of healthy DSA. Unfortunately most of the DSA
keys are considered vulnerable due to the too small dimension of the length
of p and q (i.e. 1024 bits) that was the only one largely supported. The
number of not-vulnerable keys grow with the decrease of the low-size keys.
The other vulnerabilities found are not so much, but in the second graph

70

there is a comparison between the vulnerabilities found over DSA without
the OutdatedKeySize one.

Curve Algorithms

For ECDSA and EdDSA no vulnerabilities (among the ones checked)
have been found. Unfortunately these algorithms are used only in the 0.06%

of the keys. They should be used more, especially EdDSA, because they are
safer and faster than the non-curve algorithms.

Result summary

RSA Elgamal DSA ECDSA
EdDSA

Total keys 4425447 2692453 2684052 5555

Healthy keys 4089804 2311869 60355 5518

OutdatedKeySize 248024
(118099)

380420
(380302)

2623684
(2623425) NONE

PrimeModulus 1 (0) NONE NONE NONE

CommonFactor 51304
(13547) NONE NONE NONE

LowExponent 4 (1) NONE NONE NONE

LowFactor 162542
(70071) NONE NONE NONE

Roca 3964 (3962) NONE NONE NONE
pNotPrime NONE 261 (143) 238 (0) NONE
qNotPrime NONE NONE 217 (0) NONE
gLessEq1 NONE 0 (0) 0 (0) NONE
gSubgroup NONE 0 (0) 158 (2) NONE

p&q NONE NONE 240 NONE
CurveWrong NONE NONE NONE NONE
PointNotOn-

Curve NONE NONE NONE 1 (1)

Error during
analysis 9 25 114 36

Vulnerable keys
without errors 335634 380563 2623695 1

Vulnerable keys
including errors 335643 380584 2623697 37

Table 3.1: Results of the analysis over the keys

CHAPTER 3. Experimental Results 3.2. Charts

In Table 3.1 there are the results of the analysis performed on all the pub-
lic keys (i.e. also the ones with a strange creation time). A key can be vul-
nerable to one or more vulnerabilities. In the table the number in the paren-
thesis indicates the keys having that vulnerability only. The Vulnerable

keys lines instead, avoid duplicates, counting a key only one time. Moreover
the number of vulnerable keys is stated two times, one including and one
excluding the errors raised during the analysis.

3.2.7 Vulnerable signatures

The following graphs show how many signatures are vulnerable or not
valid over their creation year. The vulnerabilities tested are listed in Ta-
ble 2.5

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

0.2

0.4

0.6

0.8

1

·106

Year of keys’ creation

Healthy Signatures
MD5Used
WrongAlgorithm
RepeatedR
WrongCheck
UnusablePublicKey
NotExportable

Comparison between vulnerable and non-vulnerable signatures

Vulnerabilities found on signatures

72

CHAPTER 3. Experimental Results 3.2. Charts

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

1

2

3

4
·104

Year of keys’ creation

Focus on vulnerable signatures

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

5

10

15

20

25

Year of keys’ creation

Focus on less found vulnerabilities

Figure 3.13: Vulnerabilities found on signatures (cont.)

The most widespread vulnerability is the one that regards the usage of
the MD5 algorithm for the hashing part. This is decreasing but is still
used in some signatures created in the last few years. The results of the
check of the signatures are stable around one thousand of wrongly checked
signatures per year, and slightly grow with the increasing of the number of
the signatures.

73

CHAPTER 3. Experimental Results 3.2. Charts

Table 3.2: Results of the analysis over the signatures

Total signatures (analyzed) 11873679

Healthy signatures 11578519

MD5Used 219731 (212909)

WrongAlgorithm 1 (1)

RepeatedR 2 (2)

WrongCheck 81680 (74834)

UnusablePublicKey 24 (21)

NotExportable 40 (17)

Error during analysis 532

Vulnerable signatures
without errors

294631

Vulnerable signatures
including errors

295160

In Table 3.2 there are the results of the analysis performed on all the sig-
natures (i.e. also the ones with a strange creation time). A signature can be
vulnerable to one or more vulnerabilities, thus the idea is the same as the key
vulnerabilities in Table 3.1: the vulnerability lines contains both the num-
ber of signatures having that vulnerability and, in parenthesis, the number
ok signatures having only that vulnerability. The Vulnerable signatures

lines instead, count a signature only one time. Moreover the number of all
the vulnerable signatures is stated two times, one including and one exclud-
ing the errors raised during the analysis.
Contrary to the analysis of the keys, not all the signatures have been ana-
lyzed due to the lack of some issuing keys in the database.

3.2.8 Email domain used

This graph shows the usage of the email domains in the OpenPGP world,
divided in five-years periods, based on the creation of the corresponding
user ID. All the domains having a usage less than the 10% of the maximum
occurrence of each graph, have been included in the other field

74

CHAPTER 3. Experimental Results 3.2. Charts

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

pacbell.net
flash.net
csi.com

bellsouth.net
juno.com

nym.alias.net
gte.net

pobox.com
home.com
erols.com
msn.com

geocities.com
iname.com

gmx.de
compuserve.com

yahoo.com
ibm.net

ix.netcom.com
worldnet.att.net
mindspring.com

gmx.net
earthlink.net
bigfoot.com
t-online.de

aol.com
usa.net

hotmail.com
other

1 379

1 441

1 502

1 671

1 750

1 768

2 022

2 091

2 610

2 647

3 092

3 485

3 532

3 910

3 946

3 965

4 248

4 263

4 394

5 205

5 273

5 591

6 378

7 375

9 444

9 623

13 668

134 536

Figure 3.14: List of domain with their usage between 1994 and 1998

In the first five years the variety of domain usage was very high, just think
that the number of domain with an occurrence less than 5 is ≈ 120000, 9

times the most utilized domain, hotmail.com; it is the leader of the domains,
with 13668 occurrences, and has maintained the leadership also in the fol-
lowing five years.

75

CHAPTER 3. Experimental Results 3.2. Charts

0 1 2 3 4

·105

usa.net
wanadoo.fr
bigfoot.com
earthlink.net

home.com
aol.com
web.de

gmx.net
t-online.de

gmx.de
yahoo.com

hotmail.com
other

6 680

8 052

9 470

9 752

15 562

17 151

17 655

19 852

22 482

31 499

31 535

64 880

375 632

(a) List of domain with their usage
between 1999 and 2003

0 1 2

·105

gmx.net
hotmail.com

web.de
gmx.de

gmail.com
other

12 616

14 793

21 340

24 744

96 404

224 221

(b) List of domain with their usage
between 2004 and 2008

0 1 2

·105

other
gmail.com

216 893

241 016

(c) List of domain with their usage
between 2009 and 2013

0 2 4

·105

other
gmail.com

293 316

411 896

(d) List of domain with their usage
between 2014 and 2018

Figure 3.15

Before 2003, the number of domain with less than 5 occurrences was 5

times the most utilized domain (hotmail.com again), versus the 9 times of
the previous years.
Between 2004 and 2008 Gmail was in beta but it has immediately reach
the top of the ranking, thanks also to the less usage of hotmail. In this
years also the variety of the used domain has decreased, the number of little
used domain reached ≈ 220000, 2.3 times of gmail.com. That, from 2009,
boomed, overtaking the throne, having a usage bigger than the sum of the
occurrence of all the other domains.

76

CHAPTER 3. Experimental Results 3.2. Charts

Table 3.3: Composition of the field other

Less used domain Total domain Ratio

1994 – 1998 118325 134536 87.95%

1999 – 2003 338191 375632 90.04%

2004 – 2008 207974 224221 92.75%

2009 – 2013 202793 216893 93.50%

2014 – 2018 273282 293316 93.17%

In Table 3.3 is shown how the other bars are composed. They have, more
or less, always the same ratio between the number of few utilized domains
(i.e. the ones with less than 5 occurrences) and the total.

77

Conclusion

The users in the OpenPGP world should be careful about the importance
of the security behind keys and signatures, that should have always an expi-
ration date, and they must be revoked when compromised. Every time a key
is fetched from a keyserver, it should be verified if it could be compromised
or not; in the first case, obviously, the key must not be used, and the data
encrypted and signed with that key should not be trusted.

There should be also a transition to the elliptic curve algorithms, that
use smaller keys (w.r.t. the non-curve algorithms) ensuring the same security
margin. In this way the encryption, decryption and signing operations are
speeded up.

Future developments

Some further developments that can be done starting from this study
are:

• The analysis of the emails

• The reordering of the packets

• To repair (where possible) the inconsistency with RFC 4880

• The extending of the support over OpenPGP version 5

Email Analysis Check that the emails and their domains exist and thus
that cannot be created a new email like to the one non existing, for imper-
sonating other users.

78

CHAPTER 3. Experimental Results 3.2. Charts

Packets Reordering Examine the packets of the keys, to find out which
are not in the correct position and, eventually move them. This operation
should be done modifying the merging function in both the synchronization
and the PKS daemon, to avoid that during a merge, the wrong positioned
packets are restored.

Meaningfulness check Try to restore the meaningfulness in the certifi-
cate whose packets doesn’t comply with the RFC 4880. This operation is
thorny because first of all the broken packets should be found (not always is
clear which packet is broken and which not), then they should be removed
without breaking the synchronization (i.e. we have to filter the certificates
received from the other keyserver during the synchronization and serve the
original one).

Version 5 In the latest draft of the RFC 4880 [17], there is an idea about
a new version of OpenPGP. When (and if) this new version will be officially
released, it should be included in this server in order to support the new
standard.

The OpenPGP world is in continuous evolving, and the progress should be
followed, thus this study have to be kept active and updated.

79

Bibliography

[1] Derek Atkins, William Stallings, and Philip Zimmermann. Pgp message
exchange formats. RFC 1991, RFC Editor, August 1996. http://www.
rfc-editor.org/rfc/rfc1991.txt.

[2] Alessandro Barenghi, Alessandro Di Federico, Gerardo Pelosi, and Ste-
fano Sanfilippo. Challenging the trustworthiness of pgp: Is the web-of-
trust tear-proof? Technical report, Department of Electronics, Infor-
mation and Bioengineering âĂŞ DEIB, Politecnico di Milano, Milano,
Italy, 2015.

[3] Artyom Beilis. Cppcms – high performance c++ web framework.

[4] Daniel R. L. Brown. Sec 1: Elliptic curve cryptography. Technical
Report 2.0, Standards for Efficient Cryptography Group, May 2009.
https://www.secg.org/sec1-v2.pdf.

[5] calccrypto. Openpgp c++. https://github.com/calccrypto/

OpenPGP.

[6] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. Openpgp
message format. RFC 4880, RFC Editor, November 2007. http://www.
rfc-editor.org/rfc/rfc4880.txt.

[7] Jon Callas, Lutz Donnerhacke, Hal Finney, and Rodney Thayer.
Openpgp message format. RFC 2440, RFC Editor, November 1998.
http://www.rfc-editor.org/rfc/rfc2440.txt.

[8] CheapSSLSecurity. Understanding the role of certificate
authority in pki. https://cheapsslsecurity.com/blog/

80

http://www.rfc-editor.org/rfc/rfc1991.txt
http://www.rfc-editor.org/rfc/rfc1991.txt
https://www.secg.org/sec1-v2.pdf
https://github.com/calccrypto/OpenPGP
https://github.com/calccrypto/OpenPGP
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc2440.txt
https://cheapsslsecurity.com/blog/understanding-the-role-of-certificate-authorities-in-pki
https://cheapsslsecurity.com/blog/understanding-the-role-of-certificate-authorities-in-pki
https://cheapsslsecurity.com/blog/understanding-the-role-of-certificate-authorities-in-pki

BIBLIOGRAPHY BIBLIOGRAPHY

understanding-the-role-of-certificate-authorities-in-pki.
[Online; accessed 18-March-2018].

[9] diaryFolio. Certification authority and applying certificate to your do-
main. [Online; accessed 18-March-2018].

[10] Nadia Heninger and J. Alex Halderman. Fastgcd. https://github.

com/sagi/fastgcd.

[11] A. Jivsov. Elliptic curve cryptography (ecc) in openpgp. RFC 6637,
RFC Editor, June 2012. http://www.rfc-editor.org/rfc/rfc6637.

txt.

[12] Andrey Jivsov. Compact representation of an elliptic curve
point. Internet-Draft draft-jivsov-ecc-compact-05, IETF Secre-
tariat, March 2014. http://www.ietf.org/internet-drafts/

draft-jivsov-ecc-compact-05.txt.

[13] S. Josefsson and I. Liusvaara. Edwards-curve digital signature al-
gorithm (eddsa). RFC 8032, RFC Editor, January 2017. https:

//www.rfc-editor.org/rfc/rfc8032.txt.

[14] Cameron F. Kerry, Acting Secretary, and Charles Romine Director.
Fips pub 186-4 federal information processing standards publication
digital signature standard (dss), 2013. https://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.186-4.pdf.

[15] SKS Keyserver. Sks keyserver. https://bitbucket.org/

skskeyserver/sks-keyserver/overview.

[16] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd
Ed.): Seminumerical Algorithms. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1997.

[17] Werner Koch. Openpgp message format. Internet-Draft draft-ietf-
openpgp-rfc4880bis-03, IETF Secretariat, December 2017. http://www.
ietf.org/internet-drafts/draft-ietf-openpgp-rfc4880bis-03.

txt.

81

https://cheapsslsecurity.com/blog/understanding-the-role-of-certificate-authorities-in-pki
https://cheapsslsecurity.com/blog/understanding-the-role-of-certificate-authorities-in-pki
https://cheapsslsecurity.com/blog/understanding-the-role-of-certificate-authorities-in-pki
https://github.com/sagi/fastgcd
https://github.com/sagi/fastgcd
http://www.rfc-editor.org/rfc/rfc6637.txt
http://www.rfc-editor.org/rfc/rfc6637.txt
http://www.ietf.org/internet-drafts/draft-jivsov-ecc-compact-05.txt
http://www.ietf.org/internet-drafts/draft-jivsov-ecc-compact-05.txt
https://www.rfc-editor.org/rfc/rfc8032.txt
https://www.rfc-editor.org/rfc/rfc8032.txt
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://bitbucket.org/skskeyserver/sks-keyserver/overview
https://bitbucket.org/skskeyserver/sks-keyserver/overview
http://www.ietf.org/internet-drafts/draft-ietf-openpgp-rfc4880bis-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-openpgp-rfc4880bis-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-openpgp-rfc4880bis-03.txt

BIBLIOGRAPHY BIBLIOGRAPHY

[18] A. Langley, M. Hamburg, and S. Turner. Elliptic curves for security.
RFC 7748, RFC Editor, January 2016. https://www.rfc-editor.org/
rfc/rfc7748.txt.

[19] M. Lochter and J. Merkle. Elliptic curve cryptography (ecc) brainpool
standard curves and curve generation. RFC 5639, RFC Editor, March
2010. https://www.rfc-editor.org/rfc/rfc5639.txt.

[20] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconciliation with
nearly optimal communication complexity. IEEE Transactions on In-
formation Theory, April 2004.

[21] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. Pkcs #1: Rsa cryp-
tography specifications version 2.2. RFC 8017, RFC Editor, November
2016. https://www.rfc-editor.org/rfc/rfc8017.txt.

[22] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and Vashek
Matyas. The Return of Coppersmith’s Attack: Practical Factorization
of Widely Used RSAModuli. In 24th ACM Conference on Computer and
Communications Security (CCS’2017), pages 1631–1648. ACM, 2017.

[23] GNU Project. The gnu multiple precision arithmetic library. https:

//gmplib.org/. Arithmetic without limitations.

[24] D. Shaw. The camellia cipher in openpgp. RFC 5581, RFC Editor, June
2009.

[25] Victor Shoup. Ntl - a library for doing number theory. http://www.

shoup.net/ntl/.

82

https://www.rfc-editor.org/rfc/rfc7748.txt
https://www.rfc-editor.org/rfc/rfc7748.txt
https://www.rfc-editor.org/rfc/rfc5639.txt
https://www.rfc-editor.org/rfc/rfc8017.txt
https://gmplib.org/
https://gmplib.org/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

	Introduction
	Background and State of the Art
	OpenPGP
	Brief history
	RFC 4880
	Key Packets Category
	Public-Key Encrypted Session Key Packet
	Symmetric-Key Encrypted Session Key Packet
	Key Material Packet

	Signature Packets Category
	Signature Packet
	One-Pass Signature Packet

	Data Packets Category
	Compressed Data Packet
	Symmetrically Encrypted Data Packet
	Marker Packet
	Literal Data Packet
	Trust Packet
	User ID Packet
	User Attribute Packet
	Symmetrically Encrypted and Integrity Protected Data Packet
	Modification Detection Code Packet
	Private/Reserved Packet

	Asymmetric algorithms
	RSA Cryptosystem
	Elgamal
	DSA
	ECDSA
	EdDSA
	ECDH
	Encoding and Decoding Curve Point
	0x04:
	0x40:

	SKS keyserver
	Synchronization algorithm
	Synchronization of SKS keyserver

	PEAKS – A reenginered OpenPGP Keyserver
	PEAKS
	Database
	gpg_keyserver:
	Pubkey:
	Signatures:
	User ID:
	User Attribute:
	SelfSignatureMetadata:
	Unpacker_errors:
	KeyStatus, SignatureStatus:
	removed_hash:
	broken_keys:

	PKS The new sks db daemon
	PKS
	content
	utils
	PacketReader
	DBManager
	Error handling
	NotExistingVersion:
	BadKey:
	NotEnoughPackets:
	FirstPacketWrong:
	SignAfterPrimary:
	AtLeastOneUID:
	WrongSignature:
	NoSubkeyFound:
	Ver3Subkey:
	NoSubkeyBinding:
	NotAllPacketsAnalyzed:
	NotAPublicKey:
	DifferentKeys:
	PubkeyAlgorithmNotValid:
	PubkeyVersionNotValid:
	LengthLEQZero:
	SignaturePKANotValid:
	SignatureHashNotValid:
	SignatureVersionNotValid:
	SignatureLengthWrong:

	Merge
	Insertion

	Unpacker
	Analyzer
	RSA
	OutdatedKeySize:
	PrimeModulus:
	CommonFactor:
	LowExponent:
	LowFactor:
	Roca:

	Elgamal
	OutdatedKeySize:
	pNotPrime
	gLessEq1:
	gSubgroup:

	DSA
	OutdatedKeySize:
	qNotPrime:
	gSubgroup
	p&q

	Curve algorithms
	CurveWrong:
	PointNotOnCurve:

	Signature
	MD5Used:
	WrongAlgorithm:
	RepeatedR:
	WrongCheck:
	UnusablePublicKey:
	NotExportable:

	Reconciliation daemon
	Dump Import
	Libraries

	Experimental Results
	Problems found
	Charts
	Key dimension
	RSA
	Elgamal
	DSA
	Elliptic Curve

	Revocated key
	Expired key
	Expired signatures
	Hash mismatch graph
	Vulnerable keys
	RSA
	Elgamal
	DSA
	Curve Algorithms
	Result summary

	Vulnerable signatures
	Domain used

	Conclusion
	Email Analysis
	Packets Reordering
	Meaningfulness check
	Version 5

	Bibliography

