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Abstract

Simulation of multiphase flow in reservoirs with complex heterogeneous
structure requires adopting stable numerical methods that rely on an
implicit treatment of the flux term in the conservation equation. Con-
sequently, robust and efficient techniques are needed to solve the gov-
erning non-linear system of equations. The solution of the transport
problem often requires the propagation of the displacement front to
multiple control volumes at each time step. Coping with this issue is
particularly challenging in the presence of highly heterogeneous sys-
tems such as fractured reservoirs. In this study, we present a nonlinear
solver based on a trust region technique and aimed at serving as a
general-purpose tool to solve multiphase flows in highly heterogeneous
reservoirs. The approach is designed to embed a newly introduced
Operator-Based Linearization technique and is grounded on the anal-
ysis of multi-dimensional tables related to parameterized convection
operators associated with the governing equations. We segment the
parameter-space of the nonlinear problem into a set of regions where the
convection operators maintain their second order behavior (i.e., they
remain either convex or concave). The proposed nonlinear solver locally
constraints the updating of the overall compositions across the bound-
aries of these regions. We enhance the performance of the nonlinear
solver by exploring diverse preconditioning strategies. We demonstrate
that the initial guess in the nonlinear solution process plays an impor-
tant role in the heterogeneous settings explored. The proposed strate-
gies of nonlinear solution were tested for various multiphase problems
including black-oil and compositional models and considering a vari-
ety of combinations of model parameters. In all cases, our approach
yields an improved behavior of the nonlinear solution in comparison to
state-of-the-art nonlinear solvers.
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Extended Abstract

0.1 Introduction

Simulation of multiphase flow in reservoirs with complex heterogeneous
structures requires robust nonlinear solvers. The main source of non-
linearity is related to an implicit approximation of flux term in con-
servation equations which is required for the robustness (unconditional
stability) of reservoir simulation process. In this work we discuss the
nature of nonlinearities in simulation and solution method that under-
stand them rather than simple naive newton strategy that standard
newton method will not converge and it is highly dependent to the
timestep selection. We understand how the nonlinearity evolves with
enlarging the timestep and thus newton updates overshoot and collapse
for a large timestep. Recent Simulator time-step selection is heuristic
based on Try-Adapt-Try strategy, which means an attempt to solve for
a time-step is made. If that fails within a specified finite amount of
time, the time-step is adapted heuristically, and the previous effort is
wasted. After analysis of the state of the art for overcoming this issue
we develop our implicit transport solver based on the trust region tech-
niques for incompressible two- phase flow in viscous dominate forces in
1D. We obtained unconditionally convergent nonlinear solver with two
different newton modification method so called Appleyard chop and
inflection point correction. Next, we make comparison between our
solvers by changing relative permeability parameters (eg. Mobility ra-
tio and Corey exponent) and see how the flux curve varies and thus
we understand inflection point correction works better rather than ap-
pleyard chop and appleyard chop going to crash for higher corey expo-
nents. Moreover, we represent the discontinuous relative permeability
curves since in real application, we usually measure relative permeabil-
ity and provide them as tables (standard input in any reservoir simu-
lator). Discontinuous representation of relative permeability simplify
by far the Jacobian assembly and finding the inflection point. More-
over, The nonlinear nature of complex flow and transport in porous
media requires a linearization of governing equations for the numeri-
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cal solution. We present a recently developed linearization strategy,
so called (Operator Based Linearization) capable to deal with complex
nonlinear problems. We extend our trust region newton method in
Operator Based linearization prototype for binary and ternary system.
In this case, the inflection point is both the function of Pressure and
compositions We analysis our operators for binary and ternary system
to find the inflection point(s) based on the linear interpolation of the
second derivative and our newton update is a cell-wise chopping strat-
egy guided by trust region of the operators. In our studies we also
address the issue related to the slow convergence rate of our newton
solver which is one the challenges in current reservoir simulator. We
understand that the solution of the transport problem often requires
the propagation of displacement front to multiple control volumes per
single timestep. This problem became especially serious in the limit-
ing case of heterogeneous property distributions related to fractured
reservoirs. The proposed strategies of nonlinear solution were tested
for various multiphase problems including Dead oil , Supercritical CO2
injection and compositional models and considering a variety of com-
binations of model parameters. In all cases, our approach yields an
improved behavior of the nonlinear solution in comparison to state-of-
the-art nonlinear solvers.

0.2 Methodologies

In this section, we describe how we implement our 1D simulator for
two phase immisible viscous dominated fluid.

0.2.1 discontinious representation of the relative permeabil-
ity curves

Before modifying the standard newton method, we represent the dis-
continuous relative permeability curves since in real application, we
usually measure relative permeability and provide them as tables (stan-
dard input in any reservoir simulator). In the preliminary analysis, we
use uniform mesh with specified number of entries (Nxx = 100). In this
case, we evaluate my flux term in each newton iteration as an interpo-
lation from my table and we introduce the derivative as an interpola-
tion coefficient. Next, we analyze how coarsening the table effect the
performance of our Newton solver. Here for the relative permeability
curve with corey exponent 2 and fixing the mobility ratio (M=1) we
experiment the impact of of the resolution in our result.

Table 1 demonstrates by decreasing the number of interpolation
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0.2. Methodologies

(a) For the timestep equals to 0.2
(dt=0.2) (b) For the timestep equals to 0.01

(dt=0.01)

Figure 1: coarsening

Table 1: Result Of Simulation for timestep=0.2

Number of Grids Iteration Number S inflection
500 56 0.5
100 31 0.5
50 23 0.5
25 16 0.4792
5 6 0.625

points, the number of iteration decrease although the error is get-
ting higher. Moreover, the preconditioning performance also improves
slightly. From the graph, we can see that by dropping the number of
points until 25 the saturation curve is not changing a lot until we drop
the number of points to 5. In conclusion, by coarsening we expect more
linear effect however, in the case of binary system the effect is not that
tangible.

0.2.2 Trust Region Newton Solver

Here we introduce two different methods for overcoming the problem
related to evolution of nonlinearity with time and get global conver-
gence for the newton method. First method is called Appleyard chop.
In Appleyard chop, we added the constraint on the local update not
to be bigger than 0.2. Second method is the inflection point correction
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which we did not let our newton update cross the inflection point. If
the newton update cross the inflection point, we land it back to the
vicinity of the inflection point. In other words, two successive iteration
always have the same concavity.

(a) Inflection point correction [11]

(b) Appleyard chop

Figure 2: Trust Region Algorithms

0.2.3 Comparison between Appleyad chop and Inflection
point correction

We make comparison between our trust region solvers by changing rel-
ative permeability parameters (eg. Mobility ratio and corey exponent)
and see how the flux curve varies and thus we understand inflection
point correction works better rather than appleyard chop and apple-
yard chop going to crash for higher corey exponents. The flux function
varies significantly with the mobility ratio when the exponent is low
and quite mildly when exponent is higher. The higher the mobilty ra-
tio the less favour is propagation and thus higher number of iteration
is expected.The higher the exponent the less disperse is our flux. We
understand that the appleyard chop going to diverge for high corey ex-
ponents. Basically, the reason Appleyard chop works perfectly in the
previous case is that we artificially do not let our update to be outside
of the trust region. However, by increasing the parameter in a way
the inflection point moves and by updating we are overshooting it even
outside then the Appleyard chop does not work anymore.
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0.2. Methodologies

0.2.4 Design of the better nonlinear solver and Precondi-
tioning

We understand that the solution of the transport problem often requires
the propagation of displacement front to multiple control volumes per
single timestep. This problem became especially serious in the limit-
ing case of heterogeneous property distributions related to fractured
reservoirs. In fracture reservoir, the saturation front is moving slowly
in the matrix and suddenly it reaches the fracture and it propagates.
To effectively, imitate this process in our 1D simulation code instead
of increasing the permeability we enlarge the timestep. We tackle the
problem due to the slow wave propagation by introducing precondi-
tioning strategy. We analyse linear and nonlinear relative permeability
curves and understand that if the derivative of the flux is positive, The
newton iteration yields a saturation distribution that is monotonic and
positive. Therefore, to allow for maximum propagation of the sat-
uration waves downstream, we make the saturation in two successive
control volumes as close as possible. By analysis wave speed for relative
permeability curves we understand that using the inflection point as
our initial guess since the absolute value of the derivative is maximum
we maximum the propagation of the saturation downstream. Table
2 illustrated one of the example of precond in the fracture reservoir.
We first ran simulation until particular time (t = 0.3 d ) with a small
ltimestep 0.001 d and save this solution. Next we ran for onetime step
only enlarging from 0.001 d and finishing with 0.2 d and count Newton
iterations which required for this one timestep. Here we just report the
performance for the timestep equals to 0.2d with and without precon-
ditioning.

M Different Preconditioning
Without Precond. Initial guess= Not initial cond With Precond.

0.5 198 27 10
1 204 27 12
10 229 30 11

Table 2: Performance comparison (number of iteration) between different
nonlinear solvers, with and without preconditioning, for 1D transport under
viscous forces. the exponents of the Rel.Perm is 10
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0.2.5 Trust Region newton method based on Operator Based
Linearization

This approach approximates exact physics of simulation model which
is conceptually similar to an approximate representation of space and
time discretization performed in conventional simulation. In this ap-
proach, The governing equations are introduced as a combination of
operators, dependent on spatially altered properties and operators,
fully controlled by nonlinear properties of fluid and rock. Next, a
parametrization in the physics space of the problem is introduced. The
property- based operators are approximated using direct interpolation
in the space of nonlinear unknowns. The discrete version of the gov-
erning equations is constructed as a combination of operators that ap-
proximate both nonlinear physics and discretization in time and space.
This approach is applied to the reservoir simulation of miscible and
immiscible displacement processes. Furthermore, We extend our trust
region newton method in Operator Based linearization prototype for
binary and ternary system. In this case, the inflection point is both
the function of Pressure and compositions We analysis our operators
for binary and ternary system to detect the inflection point(s) based
on the linear interpolation of the second derivative. After finding the
inflection, our newton update is a cell-wise chopping strategy guided
by trust region of the operators.

0.3 Verification for realistic examples in the 1D
simulation prototype in OBL

0.3.1 Binary System

In this case, we have two independent variables [P, Z]. To find inflection
point(s) of the convection operators, for a fix pressure we find the in-
flection point. Next, updated the pressure and find the other inflection
point in the case it exists. The analysis of finding the inflection point
is based on the linear interpolation of the second derivative.
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0.3. Verification for realistic examples in the 1D simulation prototype
in OBL

Figure 3: Flowchart of the modified newton method for one time step con-
sidering also pressure update and correction of inflection point for pressure

0.3.2 Dead Oil

Fig. 5 summarize the performance of different solvers for the fracture
model and it is clear that the trust region solver with preconditioning
works significantly better than the other solvers. Note that since the
preconditioning strategy only provides initial guesses for the saìturation
solution, when it is used in the fully-implicit method, only the initial
guesses for saturation variables are modified to be the inflection point,
the initial guesses for the pressure variables are unaffected.

Figure 4: Inflection point of our beta operator for different pressure

0.3.3 Viscosity variation with Pressure

Here for the dead oil example, we make the case where the inflection
point varies also with the pressure for the beta operator. To do so we
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Figure 5: Comparison of different solvers with Corey exponents 2 2 and
the resolution with 32 OBL resolution and the oil viscosity 1.5cp, water
viscosity 1cp.

make the viscosity a function of pressure and thus the inflection point
varies for different pressure.

Figure 6: Inflection point variation with Pressure for dead oil with variation
of viscosity with pressure example

In this case, Alpha operator linearly changing with composition
for all the pressure and thus never introduce problem for our trust
region solver. We compare the performance of different solvers in the
fracture reservoir in this case. To imitate it, i ran the simulation until
a particular time (T = 5000days) Next, only by enlarging one timestep
we compare the behavior of our different solvers. In the next step by
introducing the infection point for a preconditioning we enhance the
performance even further. Table 3 illustrates the different behavior of
our solver.
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0.3. Verification for realistic examples in the 1D simulation prototype
in OBL

Table 3: Performance behavior of the different solvers in the case of dead
oil for fractured reservoir

Gamma Global chop Trust Region solver Trust region with precond
20 3 4 4
50 6 5 5

100 10 6 5
280 15 8 5
300 16 8 5

0.3.4 Supercritical CO2 injection

(a) (b)

Figure 7: (a) Beta operator variation with composition given the fix Pres-
sure (b) Beta Operator

(a) (b)

Figure 8: (a) Alpha Operator (b) Alpha operator variation with composi-
tion given the fix Pressure
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From the operators graph, it is clear that the alpha operator is not
anymore linearly change with composition since the density is changing
but still it keeps its second order behavior. On the other hand, Beta
operator seems to be problematic due to the presence of inflection point.
Therefore, we make our trust region solver in a way it does not cross
its inflection point.

Table 4 shows the comparison between different nonlinear solvers,
trust region solver, global chopping and local chopping with dx = 0.1
for a fracture reservoir while I ran the simulation for the maximum
time 6000 days with the timestep = 10 days imitating the fluid flow
moving in the matrix.

Table 4: Performance Of Different Solvers (running the simulation until
6000 days with the small timestepeuqals to 10days )

Solver Total number of Newton iteration
Inflection point correction 838
Global chopping 1152
Local chopping (dx=0.1) Diverge

Figure 9: Inflection point variation of the operator beta with pressure in
the case of sCO2 injection

Gamma Global chop Trust Region Solver Trust Region with precond
20 17 9 8
50 27 13 10
100 33 15 10
280 33 15 10
300 33 15 9

Table 5: sCO2 injection
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0.4. Conclusion

As we can see the trust region works significantly better than the
Global chop.

Graph 9 and table 5 illuatrate the comparison of fractured reservoir
in the case of sCO2 injection. Moreover, the performance of the trust
region solver enhances further by preconditioning.

0.3.5 Three component case

Table 6 shows the comparison between different nonlinear solvers, trust
region solver, global chopping and local chopping with dx = 0.1 for
ternary system while i ran the simulation for the maximum time 10000
days with the the aggressive timestep = 500 days.

Table 6: Performance of different solvers in three components case. (Run-
ning the simulation until 10000 days with the very aggressive time step 500
days)

Advanced nonlinear Solver Total number of Newton iteration
Inflection point correction 154
Global chopping 201
Local chopping (dx= 0.1) 205

0.4 Conclusion

We developed the advanced nonlinear solver for fractured reservoirs in
1D. This solver is developed based on the trust region technique to get
the global convergence and then we design our solver better by apply-
ing preconditioning strategy to get the better performance of the trust
region solver. Moreover, introducing our relative permeability in the
table and interpolate it rather than analytical formula we make our
solver more real applicable since in the industry the relative perme-
ability is estimated. Next, we analyze the coarsening and resolution
on the performance of the trust-region solver. Finally, we extend our
frame work in the simulation prototype based on OBL (Operator based
linearization). In this case, we consider more general situation by cou-
pling the transport and flow and extend it to the compositional flow
problems.

The future work can be in a way that we find the inflection point
adaptively rather than preliminary analysis. because of hyperbolic na-
ture of overall composition, the vast majority of parameter space re-
mains unused. In other words in the newton update we find the in-
flection point and check trajectory whether pass it or not. Adaptive
Parameterization with buoyancy has been shown by Voskov and Khait
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[28] rather than preprocessing and storing OBL tables. The total size of
the interpolation tables is defined by the number of dimensions N and
the number of interpolation points n as nN . Although the dimensional-
ity depends on the number of components and thermal assumptions in
a problem of interest, the number of interpolation points corresponds
to the desired accuracy of the physical representation. Therefore, pa-
rameterization at the preprocessing stage would require a substantial
amount of memory for the multicomponent systems modeled at a high
interpolation precision. Furthermore, the necessity of searching sup-
porting points (i.e., operator values) for every interpolation in a huge
array of data affects the performance of the simulation. adaptive pa-
rameterization in space with adaptively finding the inflection point is
one of our interest due to the reduce of the cost of the data storage.

Another future work will be related to extension of our precondition-
ing strategy to compositional problems unconditional to the number of
components.
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Chapter 1

Introduction

1.1 Discrete fracture model (DFM)

The presence of fractures and faults within geological formations can
have a major impact on fluid flow and mechanical behavior of the rock.
The detailed understanding of such systems is of interest in a variety
of engineering fields. In the environmental sector, for example, typical
applications are aquifer management, underground waste disposal, and
CO2 sequestration. In the energy sector, oil and gas recovery, and the
exploitation of geothermal reservoirs, often involve flow in fractured
systems.

In DFM approach each fracture is modelled explicitly using, in most
of the cases, highly resolved unstructured grids[12]. This allowed the
simulation of fine scale geological models with complex and various
fracture geometries. For these reasons, DFM is considered as the most
accurate representation of fracture networks but with the disadvantage
of high computational cost as a tremendous amount of grid cells are in-
volved. In this work, we address the cause of these high computational
cost and tackle them.

1.2 Reservoir simulation

A reservoir is a porous medium that contains hydrocarbons. The pri-
mary goal of reservoir simulation is to predict future performance of a
reservoir and find ways and means of optimizing the recovery of some
of the hydrocarbons [1].

The two important characteristic of a petroleum reservoir are the
natures of the rock and the fluids filling it. A reservoir is usually
heterogenous; its properties heavily depend on the space location. A
fracture reservoir is considered as highly heterogenous, for example it
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1. Introduction

consist of a set of blocks of porous media (the matrix) and a net of
fractures. The rock properties in such a reservoir dramatically change;
its permeability may vary from one millidacry(md) in the matrix to
thousands md in the fractures. While the governing equations for
the fractured reservoir are similar to those for an ordinary reservoir
are similar to those for an ordinary reservoir. In general, the equa-
tions governing a mathematical model of a reservoir cannot be solved
by analytical methods. Instead, a numerical model can be produced
in a form that is amenable to solution by digital computers. Since
the 1950s, when digital computers became widely available, numerical
models have been used to predict, understand, and optimize complex
physical fluid flow processes in petroleum reservoirs. The most fre-
quently used approaches for reservoir simulation are natural [4] and
molar formulations. Usually, the natural formulation in combination
with different by passing strategies for a stability test [23] performs
better in immiscible gas displacement, whereas the molar formulation
does better for miscible gas injection [26]. It was shown recently that
some specific treatment on phase appearance or disappearance may
help to imrove the nonlinear behavior of the natural formulation in the
miscible regimes. [3]

1.3 Nonlinearities

Multiphase, Multicomponent, flows through subsurface porous media
couple several physical phenomena with vastly differing characteris-
tic scales. Moreover, scale separation is not always apparent. The
fastest processes such as component phase equilibria occur instanta-
neously and subsequently they are modeled using nonlinear algebraic
constraints. Mass conservation laws govern the transport of chemical
species propagating through an underlying flow field. These transport
phenomena are near-hyperbolic. In the limit of low capillary numbers,
the transport equations are purely advective and they give rise to an
evolution with a finite domain of dependence. In the other limit, the
transport problem is diffusive. Moreover, the underlying flow field it-
self is also transient, and it evolves with parabolic character. In the
limit of no total compressibility, the flow field reaches instantaneous
equilibrium, and is governed by an elliptic equation. Constitutive re-
lations such as that for the velocity of a phase couple the variables
across governing equations in a strongly nonlinear manner. Conse-
quently, one challenge in modelling large scale flows through general
porous media is in resolving this coupling without sacrificing stability.
In the fully-coupled, fully-implicit approach, while there are no stabil-
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1.3. Nonlinearities

ity restrictions in the sense of the discrete approxiations, the resulting
algebraic nonlinear stystems are difficult to solve.

1.3.1 Implicit approach and nonlinearity in timestepping

One attractive aspect of this approach is its unconditional stability
which is obtained at the cost of tight nonlinear coupling between fun-
damentally differing phenomena; e.g. parabolic and hyperbolic compo-
nents. Two practical shortcomings of this approach continue to receive
attention from the research community (see for example [14] [9]. )

The first is that available solution methods for the discrete nonlin-
ear systems may themselves not be unconditionally convergent. The
second aspect is that regardless of the technical details of the partic-
ular solution method, the computational effort required to solve large
couple systems can be significantly larger than that for de-couped, lo-
calized computations, such as in a convergent step of a semi-implicit
method. The practical implication of these two shortcomings is the use
of time-step chops. With a try-Adapt-Try strategy, an attempt to solve
for a time-step is made. If that fails within a specified finite amount
of time, the time-step is adapted heuristically, and the previous effort
is wasted.

Current simulators rely on a fixed-point iteration, such as a variant
of Newton’s method in order to solve these problems. (See for example
[1] [7] [20]). For general problems, Newton’s method is not guaranteed
to converge, and it is known to be sensitive to the initial guess, which
must be supplied somehow. In most reservoir simulators, the initial
guess to the iteration is the old state. For small timestep sizes, this
is a good approximation to the new state, and is therefore likely to
be a good starting point for the Newton iteration. For larger time
steps, however, this is less likely to be the case, and the iteration may
converge too slowly, or even diverge. As we can see from the figure
1.1, since the concavity of the flux function is changing our newton
iteration literally oscillating around this inflection point and thus the
divergence happens.
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1. Introduction

Figure 1.1: Oscilating around inflection point

1.4 Mathematical Modelling

We consider nonlinear immiscible, incompressible, two-phase flow in
porous media. The conservation law for the two phases - referred to as
non wetting and wetting - can be written as:

φ
∂Sw
∂t

+ O.uw = qw (1.1)

φ
∂Sn
∂t

+ O.un = qn (1.2)

where φ is the porosity of the medium. We use subscript α to denote
the phases, i.e., w or n. Sα is the saturation, uα is the velocity, and qα
is the source term. The phase velocity is given by Darcys law:

uα = −KKrα

µα
(Opα + ραgOh), α = w, n (1.3)

where pα the pressure, ρα is the mass density, h is the height, Krα =
Krα(Sα) is the relative permeability, andµα is the viscosity.

We define the phase (relative) mobilities as λα = Kα
µα

The end-point
mobility ratio is defined as

M0 =
K0
rw

µw
K0
rn

µnw

(1.4)

where K0
rw = Krw(1 − Snr) and K0

rn = Krn(Swr) are the maximum
(end-point) relative permeabilities.

Substituting the phase velocities into 1.1 and 1.2, we obtain two
mass-balance equations with four unknowns: Sw, Sn, pw, and pn To
close the system, we add the following relations:

Sw + Sn = 1, (saturation constraint) (1.5)
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1.4. Mathematical Modelling

pn − pw = pc, (capillary-pressure relation) (1.6)

Where the capillary pressure pc = pc(Sw) is a nonlinear function of
the wetting saturation.

Substitution of 1.3 into 1.1 and 1.2 yield a coupled system of non-
linear parabolic equations. The system often exhibits a mixed near
elliptic-hyperbolic charecter, which becomes apparent when we sum up
1.1 and 1.2 to obtain the pressure equation. We can use the saturation
constraint in the summation of equations 1.1 and 1.2 to get:

5 .ut = qt (1.7)

where

ut = −KλtOpw − kg(λwρw + λnρn)Oh− kλnOpc (1.8)

and

qt = qw + qn (1.9)

Here, λt = λw +λn is the total mobility. Substitution of 1.8 into 1.7
gives the pressure equation, which is an elliptic PDE. In the absence of
source/sink terms, 1.7 indicated that the total-velocity Ut is divergene-
free, i.e.,

O.ut = 0. (1.10)

We can rewrite the wetting-phase velocity in terms of the total-
velocity as

uw = λw
λt
ut − kg

λwλn

λt
(ρw − ρn)Oh+ k

λwλn

λt
Opc (1.11)

In 1.11 if the total-velocity is constant, uw = uw(Sw) is then a
function of saturation only. Substituting1.11 into 1.1, the transport
(saturation) equation is obtained as:

φ
∂Sw
∂t

+ O.(λw
λt
ut − kg

λwλn
λt

(ρw − ρn)Oh+ k
λwλn
λt

Opc) = 0; (1.12)

Subject to proper initial and boundary conditions, the saturation
distribution can be obtained by solving this PDE. Combining the pres-
sure equation 1.7 with the transport equation 1.12, we obtain the flow-
transport system for immiscible, incompressible, two-phase flow.
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For flow in one dimention (1D) and assuming that the total velocity,
ut, is constant, the transport equation can be written as

φ
∂Sw
∂t

+ ut
∂Fw
∂x

= 0... (1.13)

Here, Fw = uw
ut

is the flux (fractional flow) of the wetting phase. It is
defined as

Fw = λw

λt
− kgλwλn

λt
(ρw − ρn)Oh

ut
+ k

λwλn

λt

Opc
ut

(1.14)

We introduce two dimensionless quantities:

Ng = k(ρw − ρn)gOh
µnut

, (1.15)

and

Pe = utµnL

kpc
(1.16)

Where Ng is the gravity number, which is the ratio of buoyancy
to viscous forces. Here we assume that the z coordinate is pointing
upward, and use h to denote the height. Therefore we have ∆h > 0.
We also assume that the wetting phase is heavier, i.e., ρw > ρn. Pe is
the Peclect number, which is the ratio of viscous to capillary forces.
L is a charecteristic length scale, and pc is a charecteristic capillary
pressure. With these definitions, Fw can be written as:

Fw = λw
λt
− krnλw

λt
Ng + λwkrn

λt

∆pc
pc/L

1
Pe

(1.17)

The three terms on the tight-hand side account for the viscous,
buoyancy, and capillary fluxes, In the absence of gravity and capil-
larity, F = λw

λt
and is a monotonic function of saturation. Since the

total-velocity is assumed constant, we can make the transport equation
dimensionless by defining

tD = tut
φL

(1.18)

xD = x

L
(1.19)

Then, the 1D dimensionless transport equation is

∂Sw
∂tD

+ ∂Fw
∂xD

= 0 (1.20)
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From here on, we drop the subscripts, so we can write the equation in
a more concise form:

∂S

∂t
+ ∂F

∂x
= 0 (1.21)

For multiphase flow in porous media, the flux function, F = F (S)
in the absence of gravity and capilarity is usually S-shaped [1]. The
presence of gravity, or capillarity, change the shape of the flux function.
When buoyancy is dominant, the flux function becomes non monotonic
indicating the occurance of counter-current flow for part of the satura-
tion range. Note that the convexity of the flux function changes as Ng

and Pe change. Note that the convexity of the flux function changes
as Ng and Pe change.

(a) (b)

Figure 1.2: (a) Viscous and Capillary flux (M0 = 1, Ng = −5, P e = 0.2).
(b) Viscous and buoyancy flux From Wang [30]

In fig. 1.2 (b). There are two inflection points (red dots), a sonic
point (green dot), and a unit-flux point (orange dot). The sonic point
iswhere the flux funtion is maximum; the unit-flux point is where the
flux is unity at a point S < 1. Fig 1.2 (a) shows that the presence of
strong capillary forces (e.g., Pe = 0.2) changes the shape, including
the inflection point, of the flux function. This is due to the nonlinear
diffusion term, i.e., ∆pc(Sw) in the third term of Fw introduced into
the phase flux by capillarity. This diffusion term tends to mix the two
fluid phases together if there is a saturation gradient.

In this work we just focus on the viscous dominated forces flow.

7



1. Introduction

1.5 Different model formulation considering the
implicit level range

In this case we demonstrate the explicit time integration of the Eq.
1.21. This approach allows us to simply ”march” from time tn to tn+1
by explicitly solving for the only unknown at the new time level.

Sn+1
m − Snm

∆t + f(Sm)n − f(Sm−1)n
∆x (1.22)

Explicit time integration offers accuracy a computational efficiency
as long as the limit on the stable time step size is not a major concern.
In some problems, however, the time step restriction associated with
an explicit scheme is quite severe, and the use of implicit schemes is
necessary. In reservoir simulation problems, where the evolution of
the saturation field in the geologic porous formation, as a function of
space in time is sought, it is often the case that for a given global time
step size the CFL numbers in the computational domain can vary by
orders of magnitude- In such cases the use of explicit time integration
schemes is simply not feasible, and implicit time integration is required.
In other words, the use of explicit time integration schemes often leads
to severe restrictions on the timestep size [1, 5]. When a large-scale
heterogeneous reservoir model is simulated, it is often the case that for
a given global timestep size, the CFL numbers in the computational
domain can vary by orders of magnitude.

For compositional models, the implicit level (number of implicit
variables per gridblock) ranges from one in IMPES (Implicit pressure
explicit saturation) to nc in fully implicity model (FIM) [2]. The IM-
PES formulation treats the interblock flowrates implicitly in pressure,
but explicitly in saturations and compositions. Stability increase by
increasing the implicit level of the model. However, the computational
cost per newton iteration also increase dramatically. To make a sim-
ulation run fast, we need to reduce the number of unknowns per grid
block from nc. This number is minimum for IMPES and maximum for
FIM . Cao [2] proposed IMPSAT model, where only pressure and sat-
uration are treated implicitly, and all of the component mole fractions
are treated explicitly. Since one of the saturations can be removed
using the saturation constraint explicitly, we only have np unknowns
per gridblock. In reservoir simulation typically we have two or three
phases, so the number of unknowns per gridblock for the IMPSAT
model is three or less. Therefore IMPSAT model has the potential to
yield big savings in computational cost per linear solver, especially for
problems with large number of components.

8



1.6. Thesis Outline

AIM: The adaptive implicit method [25] uses different levels of im-
plicitness in different blocks. In each gridblock, each of the n variables
may be chosen explicit or implicit independent of the choices in other
grid blocks. The choices may change from one timestep to the next.
AIM offers a balance between FIM and IMPES by employing implicit
treatment only when and where necessary.

Furthermore, Cao [2] proposed IMPSAT Based AIMModel for large
and difficult problems. Especially for problems with a large number of
components. This model basically add the IMPSAT model into the
traditional AIM model [8]. In conclusion, FIM models are the most
stable, and they can use large timestep sizes, but the cost of each
newton iteration is also high, especially for problems with large number
of components. IMPES models are least stable, because only pressure is
treated implicitly, but their cost is the lowest for each Newton iteration.
The IMPSAT model is much more stable than the IMPES model, due
to the implicit treatment of saturation. AIM models are more efficient
than the FIM model, since high flow rates are generally restricted to a
small portion of the reservoir and the FIM model is only needed in the
regions of high flow rates.

1.6 Thesis Outline

This thesis is organized as follows. In chapter 2, we review the litera-
ture on nonlinear solvers of multiphase flow in porous media. In chapter
three we develop our advanced nonlinear solvers for fractured reservoir
based on trust region technique and discontinuos representation of rel-
ative permeability and make comparison between the performance of
different solvers. In chapter 4, we propose a preconditioning strat-
egy to overcome convergence difficulties in the nonlinear solver that
are associated with the propagation of saturation fronts into the frac-
ture reservoir and make comparison between the performance of the
solver with different preconditioning strategy. In chapter 5, we adapt
our trust region nonlinear solver in the simulation prototype based on
Operator based linearization (OBL) [27].
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Chapter 2

State of the art

We are dealing with the nonlinearty stems from dicretization of the
governing equation in a fully implicit method (FIM). Due to the in-
trinsic nonlinearity nature of the equation, Newton’s method is not
guaranteed to converge, and it is known to be sensitive to the intial
guess [1, 19, 7]

In reservoir simulators, the intial guess is the old state(i.e., the
pressure and saturation distributions from the previous timestep). For
small timestep sizes it is a good approximation and the newton solver
is likely to converge. However, by increasing the timestep and thus
nonlineairty we see that our standard newton method blows out.

What is usually done to overcome this convergence difficulties, em-
prical techniques for timestep control are utilized in reservoir simulator
[1, 2] and do the timestep chops. With a try-adapt-try strategy, an at-
tempt to solve for a time-step is made. If that fails within a specified
finite amount of nonlinear iteration, the time-step is adapted heuristi-
cally, and the previous effort is wasted. Current simulators rely on a
fixed-point iteration, such as a variant of Newton’s method in order to
solve these problems.

In this chapter, we review the state-of-the-art in reservoir simulation
practice.

2.1 Modified newton method

To get the global convergent which is unconditional to our intial guess
and the timestep, Jenny et al [11] proposed a modified Newton method
for hyperbolic conservation laws in the absence of gravity and capil-
larity. They proposed a simple chopping scheme within the Newton
loop results in a nonlinear solver that is convergent for arbitrarily large
timestep sizes, and hence allowing one to choose the timestep size based
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on accuracy considerations only. A brief description of the Jenny et
al [11] method follows that we also use for developing our own solver
priliminary:

The degree of nonlinearity of the residual for the transport problem,
Eqn. 1.21, is strongly related to the shape of the flux function, expe-
cially when the timestep is large. For viscous-dominated multiphase
flow, the nonlinear flux function is usually S-shaped Fig. 1.1. The in-
flection point is the saturation where the flux function has the largest
slope. As expected, if the solution (saturation) resides on one side of
the inflection point, whereas the initial guess is on the other side, it
can be hard for the Newton iterative process to converge. What Jenny
proposed [11] is the following: If the Newton update would cross the
inflection point, it is scaled back to the inflection point, and the New-
ton process is continued based on the scaled back (chopped) update.
Note that the Newton update is not scaled back exactly to the inflec-
tion point. Instead, it is scaled back to one side of the inflection point,
i.e., Sinflec ± ε, to make sure that the two successive updates reside on
the same side of the inflection point. The flow chart of this modified
Newton method is presented in the following diagram:

Figure 2.1: Flow chart of the modified Newton method of Jenny et al [11]
for one timestep. Solution of the linearized transport equation is represented
by the operator T

This flux-based Newton method has proved to be quite powerful
for the simulation of immiscible viscous-dominated displacements in
large-scale heterogeneous models. Its applicability and efficiency for
general-purpose compositional simulation was demonstrated by Voskov
and Tchelepi in [29] ,who extended the approach to solve compositional
problems that employ the molar (or mass) variables. They showed that
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the flux functions associated with the key tie-lines play a dominant role
in the evolution of the solution. For a four-component gas injection
problem in the top eight layers of the SPE 10 model without gravity,
the modified flux-based Newton scheme is shown to be always more sta-
ble and converges faster than the safeguarded Newton method, which
employs heuristics on maximum changes in the variables. The gas sat-
uration at the end of the simulation for immiscible gas displacement is
shown in fig 2.2

Figure 2.2: FGas saturation for immiscible gas displacement (from Voskov
and Tchelepi

2.2 Modified newton method taking into account
capillary and gravity

Wang [30] described a nonlinear solution algorithm for coupled flow
and transport in heterogeneous porous media where both the viscous
and buoyancy forces are significant. The solver employs trust regions
of the flux function to guide the Newton iteration. The delineation
of the trust-region boundaries was detected by the unit-flux and in-
flection points of the flux function. the unit-flux and inflection points
are available before solving the transport problem, since for any given
total velocity, the flux function depends on the mobility ratio and the
gravity number.

The trust-region nonlinear solver is essentially a multi-point chop-
ping strategy. That is, at the end of each Newton iteration, we do not
allow two successive updates to cross any of these critical points.
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Figure 2.3: The Flow chart of the trust-region Newton scheme in the
presence of viscous, gravitational and capillary forces, for one timestep.

2.3 Continuation-Newton method

Continuation (homotopy, or embedding) methods [13] are nonlinear
solvers that associate a timestep with each iteration. These approaches
converge when the residual drops below a certain threshold and the
associated timestep reaches the target timestep.

Younis et al. [32] developed a Continuation-Newton (CN) method
that solves the implicit residual system using a combination of the
Newton method and continuation on the timestep size. n [32], a
continuation-based solution process that associates a timestep size with
each iteration is formulated, i.e., the time step size is a parameter which
is continuously changing. The CN method of Younis et al. follows the
solution path loosely. A more detailed description of CN follows: In
the nonlinear problem

R(Sn+1,∆t;Sn) = 0 (2.1)

R is the vector of discrete residual equations and S is the saturation.
The solution path can be written as:

Sn+1 = Sn+1(∆t), (2.2)

which is continuous and emanating from the condition at the pre-
vious timestep Sn.
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For the solution path, we have

dSv

d∆t = −J(Sv,∆t;Sn)−1∂R(Sv,∆t;Sn)
∂∆t (2.3)

i.e., the tangent of the solution path is known.
An illustration of solution path with only one unknown is shown

in Fig. 2.4. In Fig. 2.4, the solution path emanates from the initial
condition (S = Sn,∆t = 0), and continues to the target time step, ∆t,
augmented with its solution, Sn+1.

Figure 2.4: Illustration of solution path and iterative solutions for Newton
method (from Younis [32]). Note the iterative solutions are evaluated at the
target timestep.

The proposed algorithm in[26] and [31] defines a convergence neigh-
borhood around the solution path (illustrated in Fig. 2.5). Any point
inside the neighbor- hood is considered to be a good estimate of the
solution.

In Fig. 2.5, it is shown that for each iteration in CN, the solution
is obtained either by a tangent prediction (e.g., from p0 to p1, or from
p1 to p2) or by a (Newton) correction (e.g., from p2 to p3).

For each tangent step, the step length is chosen, such that the next
solution remains within the convergence neighborhood. A correction
step is triggered in order to bring the solution closer to the solution
path, if the next tangent step-length would be too small, or zero.
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2. State of the art

The algorithm guarantees convergence for any timestep size. If the
iteration process is stopped before the target timestep is reached, the
last iterate is a solution to a smaller and known timestep.

Figure 2.5: Illustration of iterative solutions using the continuation-
Newton approach (from [31]). In the illustration, two tangent steps are
followed by a correction step.

2.4 Ordinary trust-region method: NLEQ-RES al-
gorithm

The standard Newton method can be algebraically derived by lineariza-
tion of the nonlinear equation around the solution point Sn+1 . This
kind of derivation supports the interpretation that the Newton correc-
tion is useful only in a close neighborhood of Sn+1. Far away from Sn+1

, such a linearizationmight still be trustedin some ’trust region’ around
the current iterate Sv. there are several models defining such a region.
one of them is Levenberg-Marquardt [17] method have been worked
out, e.g., by M.D. Hebden [10]. An affinecontravariantreformulationof
the Levenberg-Marquardtmodel leads us to study the damped Newton
iteration:

J(Sv)∆Sv = −R(Sv), (2.4)

Sv+1 = Sv + λv∆Sv, λv ∈ [0, 1] (2.5)

Under the requirement of residual contraction

||R(Sv+1)|| < ||R(Sv)||, (2.6)
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Which is certainly the most popular and the most widely used global
convergence measure. There are theoretical analysis, which are charac-
terized by means of affine contravariantLipschitz conditions, to derive
the theoretically optimal iterative damping factors and prove global
convergence within some range around these optimal factors.[7] How-
ever, in the theoretical analysis, there are parameters needed for the
calculation of damping factors, e.g., Lipschitz constant, that are com-
putationally unavailable. Thus, theoretically optimal damping factors
generally cannot be obtained in numerical computation. to getan al-
gorithmic estimation of the damping factors, residual based on trust-
region strategies has been developed based on the theoretical analyses
and computational estimates. Here, we focus onthe global Newton
method with residual based convergene criterion and adaptive trust-
region strategy,so-called NLEQ-RES algorithm. Note that the trust-
region strategies in the NLEQ-REQ are defined based on the local
descent of residual, ie., ||R(Sv+1)|| < ||R(Sv)||. without considering
the global structure and nonlinearity of the residual function in any
specific nonlinear problem. In the NLEQ-RES, the trust regions for
current iteration, v + 1, is derived based on the residual norm in the
previous iteration, ||R(Sv||, and the current iteration. Hence the defi-
nition of trust regions is history-based. Also, since R(Sv) is unavailable
a priori, an attempt of try-adapt-try is necessary to obtain the solution
for the current iteration. Compared to the NLEQ-RES and other algo-
rithmic trust-region strategies based on Levenberg-Marquardt model
in, our trust region Newton method in next chapter is basen on the
structure and nonlinearity of residual function (i.e., the flux function),
specially, forimmiscible two-phase flow and transport in porous media,
in which the trust regions are delineatedbefore solving the nonlinear
problem. The algorithm NLEQ-RES is described as follows:

Figure 2.6
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2. State of the art

2.5 Reduced-Newton method

Kwok and Tchelepi proposed a potential based ordering of the equa-
tions and unknowns that allows one tosolve for the saturations one
cell at a time. The proposed ordering is valid for both two-phase
and three-phase flow and for viscous, buoyancy, and capillary forces.
For a two-phase system where the transport equations are discretized
by a standard, implicit, upstream mobility-weighted scheme (standard
FIM), the nonlinear system can be arranged in the following form

Figure 2.7

where pi ≥ pj whenever i < j. The monotonicity of the pressure
field guarantees that the transport equations for cell j depend only on
the saturations Si with i ≥ j. the triangular structure carries over the
Jacobian, which now has the form

J =

Jww Jwp

Jow Jop

 (2.7)

where Jww is lower triangular. Based on the above potential-based
ordering, a reduced-Newtion method is proposed in . Within each
iteration, pressure is first updated by solving the following reduced
Jacobian:

Jreduced = Jop − JowJ−1
wwJwp (2.8)
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Since Jwwis lower triangular, the reduced Jacobian can be constructed
effciently. Note that the pressure solution obtained here is identical
to the one obtained from the fully-implicit method. Then, for the
updated pressure field, the saturations are updated cell by cell. that
is, we solve for the saturations of the cells with the highest potential
(e.g., thecells perforated by injectors) first, and then proceed to solve
for saturations at the downstream of these cells according to the phase
potential. This process continues until the saturations at the cells with
the lowest potential (e.g., the cells perforated by producers) have been
updated. The reduced-Newton algorithm is summarized in 2.8

Figure 2.8: Flow chart for thr reduced-Newton method

Numerical evidence in [16] shows that the potential-based reduced-
Newton solver is able to converge for time steps that are much larger
than what the standard Newton method can handle. In addition, when
both methods can converge, the nonlinear solver in [16] converges faster
than the standard Newton strategy. The phase-based potential order-
ing strategy in [16] provides us with the opportunity to resolve the
nonlinearity for single-cell problems first, and then extend the method-
ology derived for single-cell problems to large scale simulation.
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Chapter 3

Trust-Region Newton Solver

3.1 Descritized transport problem

We need to solve the following transport equation:
∂s

∂t
+ Ut

φ

∂f

∂x
= 0 (3.1)

Eq. 3.1 is a hyperbolic conservation law. In discretizing the flow term
in this equation, we cannot use a centered first order difference, as this
results in numerical errors. Rather, we must apply an upwinded differ-
ence. For accumulation term we use backward Euler approximation:

∂s

∂t
= sn+1

m − snm
∆t + o(∆t), (3.2)

where n and n + 1 corresponds to the current and next timestep re-
spectively, and m corresponds to the current gridblock. For flux term
we use implicit forward Euler approximation:

∂f

∂x
= fn+1

m − fn+1
m−1

∆x + o(∆x) (3.3)

The flux function f is an explicit function of s which makes the
Eq. 3.4 equal to given that ut : is positive. Since, in our work we
neglect gravity forces then change in the velocity direction and occuring
of counter current flow is not consider.

∂f

∂x
= f(sn+1

m )− f(sn+1
m−1)

∆x + o(∆x) (3.4)

which translates the original transport equation to the following non-
linear equation:

rm(sn+1
m , sn+1

m−1) = sn+1
m − snm

∆t + Ut
φ

f(sn+1
m )− f(sn+1

m−1)
∆x = 0 (3.5)
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3. Trust-Region Newton Solver

with corresponding boundary and initial conditions sn1 = sinj and s0
m =

sini.
We apply Newton-Raphson method for the solution of this equation,

using the following formula:

J∆s = −r. (3.6)

Here s is a vector of saturations, ∆s = sn+1,k+1−sn+1,k, k is the Newton
iteration, J is Jacobial:

J = [Jij] =
[
∂ri
∂sj

]
. (3.7)

Our Jacobian matrix would be like

J(m,m) = 1
∆t + Ut

Φ∆x

[(
∂f

∂s

)
m

]
(3.8)

J(m,m− 1) = −UtΦ∆x

(
∂f

∂s

)
m−1

(3.9)

In our iterations for every timestep, we are starting from the initial
guess sn+1,0 = sn. We find the solution:

∆s = −J−1r (3.10)

We update the solution:

sn+1,k+1 = sn+1,k + ∆s (3.11)

where k is the number of Newton’s iteration. For every timestep, we re-
peat Newton’s iterations until the convergence, which can be identified
when ||r|| < εr and ||∆s|| < εs.

3.2 The concept of Trust-Region in the context
of nonlinear solvers

If the entire range of the unknown can be divided into several subre-
gions, such that the convergence of the nonlinear solver is guaranteed
once the iterative solutions are confined in the same subregion as the
true solution, these sub regions are called ’Trust regions’ [7], Here trust-
region Newton methods refer to a specific type of Newton update in
order to improve the convergence behavior. For two phase immiscible
fluid by neglecting the gravitational and capillary forces, our flux func-
tion has the S- Shape. We divided the flux function into saturation
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3.2. The concept of Trust-Region in the context of nonlinear solvers

trust regions. The delineation of these regions are dictated by the in-
flection of the flux term. If a crossing is detected, we ’chop back’ the
saturation value at the appropriate trust-region boundary.

Consider a single-cell problem in the presence of viscous forces only.
The boundary condition is set as SL = 1 and SR = 0. The relative
permeabilities and viscosities are : Krw = S2, krn = (1 − S)2, and
µw = µn = 1. The inflection point of the flux function is S = 0.5. The
derivative of the residual with repsect to the scalar saturation, R′, and
the convergence ratio |RR

′′ |
|R′ |2 , respectively, are plotted versus saturation

for different timestep sizes in Fig. Note that c = ∆t
∆x , which is the total

throughput( express in cell pore volumes), denotes the dimensionless
timestep size. In fig 3.1, all the R′ are the smooth large timestep sizes
(e.g., c=10) correspond to strong nonlinearity. and from 3.1, it is clear
that for different timestep sizes, the maxima of R′ all occur at S = 0.5.,
the inflection point of the flux function.

(a) (b)

Figure 3.1: Derivative of the residual and the convergence ratio for single
( From Wang [30])-cell incompressible two-phase in the absence of gravity
and capillarity (a) R

′ = dR
dS (b) |RR

′′ |
|R′ |2

c = ∆t
∆x M0 = 1. The inflection point of the flux function is Sinflec = 0.5

We can see that when the timstep is very small, e.g., c = 0.1, the
convergence ratio is beloew unity for all saturation values. According
to the Kantorovich theorem [19], convergence is guaranteed when the
timestep is small enough. On the other hand, as the timestep size
increases, the range of saturation values for which the convergence
ratio is below unity gets smaller, and that implies potential convergence
difficulties of Newton methods when the timestep size is large. Note
that at S = 0.5 the convergence ratios are all zero, and there is a
saturation region around S = 0.5, such that |RR

′′ |
|R′ |2 is smaller than unity
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3. Trust-Region Newton Solver

for all timesteps. Consequently, based on Kantorovich theorem, the
nonlinear solution is guaranteed to converge once the iterative solution
resides in the neighborhood of the inflection point (S = 0.5). That is,
the inflection point is crucial to guarantee Newton convergence, which
is consistent with the finding of Jenny et al [11].

3.3 Discontinues representation of Relative per-
meability

In real applications, we usually measure relative permeability and pro-
vide them as tables (standard input in any reservoir simulator). In
the preliminary analysis, I use uniform mesh with specified number of
entries (Nxx = 100). In this case, I evaluate my flux term in each
newton iteration as an interpolation from my table and I introduce
my derivative as an interpolation coefficient, the second derivative- a
combination of two (become directional and require 3 points). One of
the biggest advantage of discontinues representation is that we can find
inflection point numerically.

Here we show by linear interpolation we find the value of our flux
function and its derivate:

f(S) = fj + fj+1 − fj
h

(S − Sj) (3.12)

with corresponding gradients

∂F

∂S
(S) = Fj+1 − Fj

h
(3.13)

The relation 3.13 provides direct derivatives with respect to nonlin-
ear unknown, which significantly simplifies the evaluation and assembly
of jacobians. In the proposed approach the number of points in the in-
terpolation control the accuracy of the approximation nonlinear flux.
Next we analyze the resolution of our table and see how the solution
varies.

3.3.1 Coarsening

Here for the relative permeability curve with corey exponent 2 and
fixing the mobility ratio (M=1) i experiment the impact of of the res-
olution in our result.

Table 3.1 demonstrates by decreasing the number of interpolation
points, the number of iteration decrease although the error is get-
ting higher. Moreover, the preconditioning performance also improves
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3.4. Appleyard chop

(a) For the timestep equals to 0.2
(dt=0.2) (b) For the timestep equals to 0.01

(dt=0.01)

Figure 3.2: coarsening

Table 3.1: Result Of Simulation for timestep=0.2

Number of Grids Iteration Number S inflection

500 56 0.5

100 31 0.5

50 23 0.5

25 16 0.4792

5 6 0.625

slightly. From the graph, we can see that by dropping the number of
points until 25 the saturation curve is not changing a lot until we drop
the number of points to 5. In conclusion, by coarsening we expect more
linear effect however, in the case of binary system) the effect is not that
tangible.

3.4 Appleyard chop

Here we try to modify my NR to be able to reach the higher time
steps. We just added the constraint on local update dS not to be
bigger than 0.2, We get very interesting result. By doing so We ran the
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3. Trust-Region Newton Solver

code until the particular time t = 0.3 and save the result. Then, We
restart increase the timestep for one step to imitate the flow in fracture
reservoir. As we can see by increasing the timestep size, the number
of iteration increase linearly for the first time step. In this case the
saturation updates are corrected locally according to the end points of
a Relative permeability function.

Figure 3.3: Flow diagram of Appleyard chop scheme

Finally, we get the global convergence for our implicit transport for
the corey exponent 2 with the mobility ratio equals to 0.5. The number
of Iteration increase by the following table by increasing the timestep.

Here we analyze how the number of iteration grows linearly by in-
creasing the timestep. To experiment it we ran the simulation until a
particular time (T=0.3) and fromthere we (Re)start and see how the
number of iteration increase by enlarging the timestep.
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3.5. Inflection point correction

Figure 3.4: Increase in the number of iteration by increasing the timestep
with analytical relative permeability curve corey exponent 2

3.5 Inflection point correction

In this case, We developed the solver based on what is already intro-
duced regarding the Trust-region Newton solver by modifed newton
update [11]. If the newton update cross the inflection point, we land
it back to the (±ε) vicinity of the inflection point. In other words, the
update is directional depending whether we cross from left to right or
from right to left the inflection point.

In this case, we need to know the inflection point. Inflection point in
general is the function of both pressure and saturation. The advantage
of introducing Relative permeabilty as a table is that we can easily
find the inflection point from our table by linear representation of our
second derivative.

3.6 Comparison between Appleyard chop and In-
flection point

In the table 3.2 we first ran simulation until particular time (say 0.3)
with timestep 0.001 and save this solution. Next we ran for one timestep
only starting from 0.001 and finishing with 0.2. We count Newton iter-
ations which required for this one timestep by elarging it and see how
number of iteration evolves for our two different solvers. As we can see
the number of iteration increase linearly with enlarging the timestep
for both appleyard chop and Inflection point correction.

For the lower number of exponent when mobility ratio is 1 Apple-
yard chop works almost as well as inflection point 3.2. However, by
increasing the exponent (no =nw= 8) Appleyard chop does not work
anymore and it diverges. Basically, the reason Appleyard chop works
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Table 3.2: Corey exponent 2 and mobility ratio equals to one.

dt(NXX= 500) #Iteration for AYC solver #iteratation for IC solver

0.002 5 5

0.003 6 6

0.004 7 7

0.005 8 8

0.009 11 11

0.01 12 12

0.03 21 21

0.05 28 28

0.1 39 38

0.12 41 42

0.14 44 45

0.16 47 48

0.18 49 49

0.2 49 49

perfectly in the previous case is that we artificially do not let our up-
date to be outside of the trust region. However, by increasing the
parameter in a way the inflection point moves and by updating we are
overshooting it even outside then the Appleyard chop does not work
anymore. To illustrate it better we tried Appleyard chop for different
Corey exponents and different mobility ratio and see how Appleyard
chop going to crush afterward.

3.6.1 Effect of the Mobility ratio and the corey correlation
on the flux function

Here we try to understand how does our flux function varies by chang-
ing the mobility ratio and the exponents.
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dt (NXX=500) n= 2 n=3 n=10

0.002 5 6 7

0.003 6 7 8

0.004 6 8 8

0.005 7 9 10

0.006 8 9 11

0.007 9 10 12

0.008 10 11 13

0.009 10 12 15

0.01 11 13 16

0.02 16 24 27

0.03 21 34 35

0.04 24 44 46

0.05 28 54 56

0.06 31 61 65

0.07 34 67 75

0.08 35 73 85

0.09 37 80 95

0.1 40 86 106

0.12 45 99 125

0.14 47 113 145

0.16 51 125 165

0.18 54 137 186

0.2 56 149 204

Table 3.3: Increase of number of iteration with increase of time step size
experimenting with different corey exponent Nxx is the number of entries
in uniformly mesh relative permeability table
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(a) our flux for different exponent from
1 to 10 as we can see by increasing the
exponent the inflection point moves to-
ward the right.

(b) flux function of S for different Mo-
bility ratio. The lower the mobility ra-
tio, the higher is the inflection point
number.

Figure 3.5: How inflection point moves for different physics

(a) (a) flux function for different mobil-
ity when no=nw=2

(b) (b) Flux function for different mo-
bility when no=nw=10

Figure 3.6: How inflection point moves for different physics

From above figures we understand that the flux functions vary sig-
nificantly with the mobility ratio when the exponent is low and quite
mildly when exponent is higher. Then comparing the flux function for
M = 10 with M = 0.1, it is observe that when M = 10, and the slope
of the flux function is big for S ∈ [0, Sinflec]. If S = 0is the initial
condition and S = 1 is the injection condition, a shock forms starting
from S = 0 followed by a spreading wave to S = 1.

We expect more nonlinear iterations needed when mobility ratio
is higher for the same exponent since the shock speed is relatively
high, resulting in early breakthrough, and the spread wave moves
slowly. Correspondingly, the solution front will propagate for a longer
distance until it reaches the solution front. Therefore, for the same
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3.7. Comparison between Analytical solution and discontinuos
representation of Relative permeability

timestep size, we expect more nonlinear iteration needed by the case
M is higher(unfavorable). Finally, our Appleyard chop does not work
when the mobility ratio is high enough or the exponent increase.

3.7 Comparison between Analytical solution and
discontinuos representation of Relative per-
meability

Here we compare the performance of the Trust-region when considering
the analytical solution and the numerical solution for different relative
permeability curves by running the simulation until particulat time
(t= 0.3). Next restarting from there for one timestep comparing how
number of iteration evolves with enlarging the timestep.

Figure 3.7: How the number of iteration increase with enlarging the
timestep for different Corey exponent (a) Discontinuous relative permeabil-
ity (b) Analytical solution for relative permeability

From graphs 3.7, the number of iteration decrease generally compar-
ing to the analytical solution. Ironically, by increasing the exponent the
iteration number increase for the same timestep which is not something
that we expect since by increasing the exponent dispersion decrease.
In conclusion, in both cases we get the global convergence for all the
time steps and the number of iteration grows linearly with increasing
the time step but in the table-base case, the performance is slightly
better than the analytical solution especially for the lower exponent of
relative permeability.
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Chapter 4

Design of the better
nonlinear solver and
Preconditioning strategy for
transport

Here we try to tackle the convergence difficulties in the nonlinear solver
that are associated with the propagation of saturation front at resid-
ual saturation. We assume a simple 1d two-phase transport problem
with only viscous forces. The initial condition in the domain is S =
0 (the non-wetting phase (oil) fully saturates the medium). The wet-
ting phase (S=1) is injected from the left boundary and we produce
at constant total rate from the right boundary. As is discussed later
in this chapter, only the (strictly) single-phase initial and boundary
conditions (i.e., propagation of saturation fronts into regions at the
residual saturation) will cause the above described convergence diffi-
culties, whereas other initial and boundary conditions will not have
such slow convergence. Note that the Newton updates yield satura-
tion distributions that are non-monotonic and then they ultimately
converge to a discrete approximation that is monotone and accurate
within a specified tolerance. The non-monotonic ‘spikes’ in the satura-
tion distribution start off being quite large, it is noticed that the ‘spikes’
have very high saturation values, which are beyond the physical range
and hence correspond to non-physical mass accumulation. The ‘spikes’
are propagating downstream as the Newton iterations proceed. The
propagation at the leading edge, where the injected fluid is invading a
cell fully saturated with the resident fluid (S=0), is constrained by the
small (zero or near-zero) mobility of the invading phase in that cell. In
fact, if the derivative of the relative permeability at S=0 is zero, then

33



4. Design of the better nonlinear solver and Preconditioning strategy
for transport

the propagation proceeds one grid block per iteration. Ultimately, the
saturation distribution becomes monotonic, and from that point on,
the newton updates converge quickly. Thus, the non-monotonicity of
the saturation solution is the reason for the slow convergence. We can
see Fig. 5.1 at S=0, the slope of the flux function is zero. Recall
that the slope of the flux function is the speed of the saturation wave.
With S=0 everywhere as the initial guess for the Newton solver, it
is not possible to invade two successive cells in a single Newton up-
date. This is because for each grid block, the influx comes from its
upwind neighbor. If this immediate upwind cell has not been invaded
by the injected wetting phase, the influx of the current grid block is
zero and mass is transported one block per iteration. If the injected
wetting phase for the current timestep cannot be transported beyond
a single cell, the mass associated with the timestep is placed in that
cell. This explains the ‘spikes in the saturation solution during Newton
iterations. For a given balance of forces (i.e, viscous, buoyancy, and
capillary), the shape of the flux function is determined primarily by
the relative permeability curves. Next, we analyze the wave speeds for
linear relative permeability curves and then we consider more general
nonlinear function.

Figure 4.1: S-shape flux term for two-phase flow for viscous forces

Wang [30] demonstrated preconditioning strategy by analyzing the
relative permeability curve as following section assuming initial satu-
ration zero. Here we extend this approach to fracture reservoir in 1D
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and next chapter we apply this approach in OBL for binary system.

4.1 Linear relative permeability curve

Consider a one-dimensional horizontal model and assume that linear
relative permeability curves are used, i.e.,

krw = S, (4.1)

and
Kro = 1− S (4.2)

We denote the viscosity ratio as

M = µo
µw

(4.3)

If only viscous forces are present ( e.f., water flooding in a horizontal
domain), the wetting-phase flux can be written as

f =
krw
µw

krw
µw

+ kro
µo

= MS

1 + (M − 1)S (4.4)

for this simple 1D setting, the residual equation for cell i in discretized
form can be written as

R = Sn+1
i − Sni + c(fn+1

(i+ 1
2 ) − f

n+1
i− 1

2
) (4.5)

where c is a dimensionless timestep

c = ut∆t
∆x (4.6)

Since only viscous forces are present,the flux at the tight and left
interfaces are

fn+1
i+1/2 = MSn+1

i

1 + (M − 1)Sn+1
i

(4.7)

and
fn+1
i−1/2 = MSn+1

i−1

1 + (M − 1)Sn+1
i−1

(4.8)

Hence, the residual can be expressed as

R = Sn+1
i − Sni + c(fn+1

i+1/2 − f
n+1
i−1/2) =

= (Sn+1
i − Sni ) + cM

Sn+1
i − Sn+1

i−1

(1 + (M − 1)Sn+1
i )(1 + (M − 1)Sn+1

i−1 )
(4.9)
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We obtain
∂R

∂Sn+1
i

= 1 + cM, (4.10)

and
∂R

∂Sn+1
i−1

= −cM
(1 + (M − 1)Sn+1

i )(1 + (M − 1)Sn+1
i−1 )

(4.11)

If the initial condition is Sn = 0.0 and we take it as intial guess for
solution at n+ 1, then

∂R

∂Sn+1
i

= 1 + cM (4.12)

and
∂R

∂Sn+1
i−1

= −cM (4.13)

For Newton method,the Jacobian for the first iteration is

1 + cM

−cM 1 + cM

−cM 1 + cM

. .

. .


(4.14)

Hence the timestep size c is reflected in th wave speed. See [24].
Assuming that the left-boundary condition is S = S0, the residual
(righthand side) for the first iteration is:

−cM S0
1+(M−1)S0

0

.

.

0


(4.15)

Other boundary condition result in different value for the residual
term of the left most cell, whereas the residual terms of other cells will
remain zero at the first iteration, regardless of the form of the boundary
condition. Thus, starting from the initial guess, S = 0, the non-zero
term in the residual is propagated downstream and the saturation is
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dispersive throughout the domain, since there is a non-zero element in
every row of the lower off-diagonal part of the Jacobian.

Specially, when M = 1, the Jacobian has the following form

1 + c

−c 1 + c

−c 1 + c

. .

. .


(4.16)

In fact, for M = 1 the residual equation, R, becomes a linear func-
tion of the solution,

R = Sn+1
i − Sni + c(Sn+1

i − Sn+1
i−1 ) (4.17)

and this case, the Newton method will converge in one iteration
regardless of the timestep size.

4.2 Nonlinear relative permeability curves

Assume the relative permeability curves are given by

Krw = Sα (4.18)
Kro = (1− S)β (4.19)

Where α >= 1 and β >= 1. Then the flux function can be writen
as:

f =
(Sα
µw

)
Sα

µw
+ (1−S)β

µo

(4.20)

Hence the derivative is:

df

dS
=
αS

α

µw
(Sα
µw

)− Sα

µw
(αSα−1

muw
− β (1−S)β−1

µ0
)

(Sα
µw

+ (1−S)β
µ0

)2
=

= αSα−1(1− S)β + βSα(1− S)β−1

M(Sα + (1−S)β
M

)

(4.21)

for α > 1, df
ds

= 0 for S = 0.0.
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The residual is expressed as

R = Sn+1
i − Sni + c(f(i+ 1

2 ) − fn+1
i− 1

2
) (4.22)

Hence
∂R

∂Sn+1
i

= 1 + c
dfn+1
i+ 1

2

dSn+1
i

(4.23)

and
∂R

∂Sn+1
i−1

= −c
dfn+1
i− 1

2

dSn+1
i−1

(4.24)

Assume α > 1 It follows that when Sn = 0 everywhere and is taken
as the initial guess for the next timestepn + 1, then ∂R

∂Sn+1
i−1

= 0 and
∂R

∂Sn+1
i

= 1 So, the jacobian matrix for the first Newton iteration is the
identity matrix. 

1

01

01

..

..


(4.25)

The timestep size c does not appear in the first Jacobian Matrix.
Assume that f = 1 at the left boundary, corresponding residual for the
first iteration is 

c

0

.

.

.

0


(4.26)

Since the Jacobean matrix is the identity, we can see that non-zero
terminate residual cannot propagate more than one block after the
first iteration. On the other hand, even though Sn = 0 is the initial
condition, if we take the initial guess of the solution for the current
timestep, Sn + 1, 0, as S∗is not zero, we then have

∂R

∂Sn+1
i

= 1 + cf
′∗ (4.27)
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and

∂R

∂Sn+1
i−1

= −cf ′∗ (4.28)

Hence the jacobian matrix for the first iteration is:



1 + cf ′∗

−cf ′∗ 1 + cf ′∗

−cf ′∗ 1 + cf ′∗

−cf ′∗ ...

...


(4.29)

Where f ′∗ is df/dS evaluated at S∗. the timestep size c appears in
the jacobian matrix if f ′∗ is not zero. Assuming that the left bound-
ary condition isf = 1, the corresponding residual vector for the first
iteration is



S∗ + c(f ∗ − 1)

S∗

.

.

S∗


(4.30)

The solution update, δS, is obtained by solving the linear system JS =
−R, and thenS∗+S serves as the starting point for the second Newton
iteration.

Now we prove that for the first Newton iteration if f ′∗ > 0, the
resulting S ∗+Sof our 1D problem is decreases monotonically as i in-
crease from 1 to N, where N is the number of blocks. Proof. Since
the Jacobian matrix 4.29 is lower triangular, we can solve the elements

39



4. Design of the better nonlinear solver and Preconditioning strategy
for transport

inS = [S1, S2, . . . , SN ]T one by one.

1 + cf ′∗

−cf ′∗ 1 + cf ′∗

−cf ′∗ 1 + cf ′∗

−cf ′∗ ...

...





δS1

δS2

.

.

.

δSN


= −



S∗ + c(f ∗ − 1)

S∗

.

.

.

S∗


(4.31)

First, we obtain the solution update for the first block. Namely,

δS1 = −S
∗ + c(F ∗ − 1)

1 + cf ′∗
(4.32)

Hence:

S∗ + δS1 = S∗ − S∗ + c(f ∗ − 1)
1 + cf ′∗

= c(S∗f ′∗ − f ∗ + 1)
1 + cf ′∗

> 0 (4.33)

For i ≥ 2
− cf ′∗δSi−1 + (1 + cf

′∗δSi) = −S∗ (4.34)

Therefore,

δSi + S∗ = cf
′∗

1 + cf ′∗
(δSi−1 + S∗) (4.35)

and since f ′∗ > 0

0 < cf
′∗

1 + cf ′∗
< 1 (4.36)

It follows that

δSi + S∗ < δSi−1 + S∗ (4.37)

Then, we have proved that S∗ + δS decreases monotonically as i
increase. The solution can be written as

δSi + S∗ = ( cf
′∗

1 + cf ′∗
)i−1(δS1 + S∗) (4.38)

and since S∗ + δS1 > 0, then

δSi + S∗ > 0 ∀i ≥ 2, (4.39)
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That is, the saturation solution from the first iteration is positive
(and less than unity) in every block of the 1D domain. Form Eqn
4.35 above, we can see that for any initial guess,S∗, iff ′∗ > 0, the first
Newton iteration yields a saturation distribution that is monotonic
and positive. And to allow for maximum propagation of the saturation
waves downstream, we makeSi + S∗ as close to Si−1 + S∗ as possible.
Thus, we maximize cf ′∗. Specifically, we use the maximumf ′∗, i.e., we
use the inflection point. Next, we propose a preconditioning strategy
for nonlinear transport solvers based on this analysis.

4.3 Preconditioning Strategy

What we did we put inflection point as the initial guess for the first
newton iteration. The number of iteration decrease significantly as we
expected. However, the number of iteration does not anymore mono-
tonically increasing with respect to the time step increase. Here we an-
alyze preconditioning in a case that the initial condition is monophase
and is fully saturated with oil for the different magnitude of the first
timestep for the exponent 2 of my relative permeability and the mobil-
ity ratio equals to one:

(a) . How number of iteration varies in
the case of precondition assuming the
initial water saturation is zero

(b) only for one timestep assuming the
initial water saturation is zero

Figure 4.2: How inflection point moves for different physics

Next for a DFM, we ran simulation up to the well resolved condition
and then we (re)start from this distribution with different size of time
step for one step only and we obtained the following result:
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(a) Solution of trust-region Newton
method for different one timestep after
the particular time (t=0.3)

(b) Number of iteration for different one
timestep after a particular t (t = 0.3)

Therefore, the preconditiong strategy can work also in the case when
my initial water saturation is not zero as well. Note that when the
buoyancy is dominant, the flux function becomes non-monotonic and
physically indicate the occurrence of counter-current flow for part of
the saturation range. In such cases, we use the smaller inflection point,
as the initial guess for the grid blocks in the imbibition region (wetting
phase displacing non-wetting phase), and we use the larger inflection
point as the initial guess for the grid blocks in the drainage region
(non-wetting phase displacing wetting phase).

4.4 Performance Comparison between the trust
region nonlinear solver with and without pre-
conditioning

We test the transport problems for four types of the relative perme-
ability curves.

Krw = S2;Krn = (1− S)2 (4.40)

Krw = S3;Krn = (1− S)3 (4.41)
Krw = S10;Krn = (1− S)2 (4.42)

Krw = S10;Krn = (1− S)10 (4.43)

4.4.1 Pure oil in place

Here for the Viscous dominate flows in 1D (500 gridblocks) where the
initial condition is S= 0 and wetting phase (S=1) is injected from the
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left boundary. We experiment the result with three different initial
guess. Firstly, initial condition as the initial guess. Secondly, intial
guess equals to last update of S when running our code until t=0.3
with dt = 0.001 and lastly, initial guess equals to the inflection point.

M
Different Preconditioning

Without Precond. Initial guess= Not initial cond With Precond.

0.5 142 31 9

1 155 21 9

10 196 11 9

Table 4.1: When the no=nw=3. In the column without Precond the initial
Guess is the same as initial condition

M
Different Preconditioning

Without Precond. Initial guess= Not initial cond With Precond.

0.5 188 12 10

1 209 11 10

10 235 12 10

Table 4.2: no=nw=10. In the first column without preconditioning the
initial guess equals the initial condition; the second column the initial guess
is the last update of S when running our code until t = 0.3 with dt=0.001,
Last column initial guess = inflection point
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M
Different Preconditioning

Without Precond. Initial guess= Not initial cond With Precond.

0.5 126 11 10

1 142 11 10

10 148 11 10

Table 4.3: no=2 nw=10,In the first column without preconditioning the
initial guess equals the initial condition; the second column the initial guess
is the last update of S when running our code until t = 0.3 with dt=0.001,
Last column initial guess = inflection point

M
Different Preconditioning

Without Precond. Initial guess= Not initial cond With Precond.

0.5 62 11 8

1 59 22 8

10 22 32 8

Table 4.4: no=nw=2, In the first column without preconditioning the
initial guess equals the initial condition; the second column the initial guess
is the last update of S when running our code until t = 0.3 with dt=0.001,
Last column initial guess = inflection point

It is noticed that:
(i) With preconditioning strategy, we accelerate the convergence for

all the cases. As we expected, choosing the inflection point as an initial
guess is the best preconditiong we can consider since we maximize the
derivatice and thus maximize the propagation of the saturation wave
downstream.

(ii) By increasing the Mobility ratio, the number of iteration in-
crease for the same time step and the same exponent. It can be ex-
plained in the sense that by increasing the M (unfavorable displace-
ment), the shock speed is relative high, resulting in early breakthrough,
and the spread wave moves slowly. Correspondingly, the solution front
will propagate for a longer distance and hence the spread wave also
needs to propagate for a longer distance until it reaches the solution
front. Therefore, for the same timestep size, we expect more nonlinear
iteration needed by the case with M=10 than with M=0.5.

(iii) In general, by increasing the exponent relative permeability
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curves are less dispersed and the number of iteration needed also de-
crease. Moreover, the effect of mobility ratio also less tangible by in-
creasing the exponent.

(iv) For the case with different exponent for wetting and nonwetting
relative permeability curves we observe that the converged solution
fronts is less dispersive (sharper) than those with quadratic, or cubic,
relative permeability curves.

4.4.2 Preconditioning for the Fracture Reservoir

In fracture reservoir, the saturation front is moving slowly in the matrix
and suddenly it reaches the fracture and it propagates. To effectively
imitate this process instead of increasing the permeability we enlarge
the timeste. Therefore, i first ran simulation until particular time (t =
0.3 d ) with a small ltimestep 0.001 d and save this solution. Next i
ran for onetime step only enlarging from 0.001 d and finishing with 0.2
d and count Newton iterations which required for this one timestep.
Here we just report the performance for the timestep equals to 0.2d
with and without preconditioning.

M
Different Preconditioning

Without Precond. Initial guess= Not initial cond With Precond.

0.5 60 13 9

1 56 14 9

10 11 4 10

Table 4.5: Performance comparison (number of iteration) between different
nonlinear solvers, with and without preconditioning, for 1D transport under
viscous forces. the exponents of the Rel.Perm is 2

45



4. Design of the better nonlinear solver and Preconditioning strategy
for transport

M
Different Preconditioning

Without Precond. Initial guess= Not initial cond With Precond.

0.5 142 22 11

1 149 25 10

10 111 5 10

Table 4.6: Performance comparison (number of iteration) between different
nonlinear solvers, with and without preconditioning, for 1D transport under
viscous forces. the exponents of the Rel.Perm is 3

M
Different Preconditioning

Without Precond. Initial guess= Not initial cond With Precond.

0.5 198 27 10

1 204 27 12

10 229 30 11

Table 4.7: Performance comparison (number of iteration) between different
nonlinear solvers, with and without preconditioning, for 1D transport under
viscous forces. the exponents of the Rel.Perm is 10

M
Different Preconditioning

Without Precond. Initial guess= Not initial cond With Precond.

0.5 142 20 11

1 149 21 10

10 111 22 10

Table 4.8: Performance comparison (number of iteration) between different
nonlinear solvers, with and without preconditioning, for 1D transport under
viscous forces. No=2 and nw=10
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Chapter 5

Developed trust region
nonlinear solver in the
simulation prototype based
on Operator Based
Linearization

5.1 What is Operator Based Linearization

It is a new approach introduced by Voskov [27], for the linearization of
governing equations that describe flow and transport in porous media
is proposed in this work. It is based on an approximate representation
of the exact physics of the problem, which is similar to an approximate
representation of space and time discretization performed in conven-
tional simulation. The governing equations are introduced as a com-
bination of operators, dependent on spatially altered properties and
operators, fully controlled by nonlinear properties of fluid and rock.
Next, a parametrization in the physics space of the problem is intro-
duced. The property- based operators are approximated using direct
interpolation in the space of nonlinear unknowns. The discrete version
of the governing equations is constructed as a combination of operators
that approximate both nonlinear physics and discretization in time and
space. This approach is applied to the reservoir simulation of miscible
and immiscible displacement processes. Later, due to the hyperbolic
nature of some variables(e.g., overall compositions), the vast major-
ity of parameter space remains unused. The adaptive approach avoids
these disadvantages by removing the need for the entire pre-processing
stage (Zaydullin et al., 2013). Khait and Voskov [15] demonstrated
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the adaptive operator based linearization approach. In this approach,
base points are computed only when they are required by the current
physical state of a control volume. The obtained operator values are
then employed in the interpolation process and stored for future use.
Consequently, the method adds a new base point and computes appro-
priate operators, if the base point was not computed before. In the
end of the simulation, the resulting sparse multi-dimensional table of
stored operators represents an actual subspace of physical parameters
used in the process [15]. Once the linear system with the Jacobian and
residual is constructed, it needs to be solved. Because the dimension-
ality of a typical reservoir-simulation problem is rather high, iterative
linear solvers are usually used with effective preconditioning (e.g., two-
stage preconditioning using constrained pressure residual) (Wallis et al.
1985). Once the linear system with the Jacobian and residual is con-
structed, it needs to be solved. Because the dimensionality of a typical
reservoir-simulation problem is rather high, iterative linear solvers are
usually used with effective preconditioning (e.g., two-stage precondi-
tioning using constrained pressure residual) (Wallis et al. 1985). Once
the solution to the linear system with predefined tolerance is found, we
need to update the nonlinear unknowns and repeat the nonlinear iter-
ation. The nonlinear solution may require several nonlinear iterations
to converge, depending on the nonlinearity of a problem. The number
of nonlinear iterations can be sufficiently reduced by using advanced
nonlinear solvers as we demonstrated in the chapter three. The exten-
sion of the natural formulation can help to avoid variable substitution
and apply correction to discontinuos changes in the derivative usually
related to phase appearance and disappearance. (voskov2012)

5.2 Modelling approach

In this section, we describe the governing equations and nonlinear for-
mulation for a reservoir simulation problem.

The transport equations for an isothermal system containing nc
components and np phases can be written as:

∂

∂t
(φ

np∑
j=1

xcjρjvj) + div
np∑
j=1

xcjρjqj +
np∑
j=1

xcjρj q̃j = 0, c = 1, ..., nc (5.1)

Here, we typically define the coefficients of the equations as func-
tions of spatial coordinate ξ and physical state ω :

φ(ξ, ω)- porosity
xcj(w)- the mole fraction of component c in phase j,
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sj(ω) - phase saturations,
ρj(ω)- phase molar density,
vj(ξ, ω)- phase velocity,
qj(ξ, ω)- phase rate per unit volume.
To describe the flow of each phase, we use Darcy’s law:

vj = −(Kkrj
µj

(Opj − γjOd)), j = 1, ..., np (5.2)

where
K(ξ) - Permeability tensor, krj(ω)- Relative permeability,
µj(ω) - Phase viscosity,
pj(ω)- vector of pressure in phase j,
γjω- gravity term,
d(ξ) - vector of depths (positive downwards).
By applying a finite-volume discretization on a general unstructured

mesh and backward Euler approximation in time, we can transform the
conservation equations into

V ((φ
∑
j

xlcjρjsj)n+1 − (φ
∑
j

xcjρjsj)n)−∆t
∑
l∈L

(
∑
j

xlcjρ
l
jT

l
j∆Ψl)+

+∆t
∑
j

ρpxcjqj = 0

(5.3)
where V is the volume of a control volume and qj = j̃jV the source

of a phase. Here we neglected capillarity, gravity and used a Two-Point
Flux Approximation (TPFA) with upstream weighting introducing the
summation over all interfaces L connecting the control volume with
another grid blocks. Based on these simplifications, ∆ψl becomes a
simple difference in pressures between blocks a and b, where T lj is
a phase transmissibility. These assumptions are not required by the
method, but help to simplify the further description.

Nonlinear unknowns
The system of equations 5.3 is the discretized form of flow and

transport equations for general multi-component fluid. Here, we used
a Fully Implicit Method (FIM) time approximation. It requires the
(xcjlρjlTjlδψl) flux term to be defined based on nonlinear unknowns
at a new timestep (n+1) and introduces nonlinearity to the system of
governing equations. Another source of nonlinearities comes from the
additional assumption on instantaneous thermodynamic equilibrium,
which is required to close the system.

Several different strategies exists for the nonlinear solution of the
resulting system, see [1], and [26] for an extensive description and ex-
amples. Here, we used the overall molar formulation suggested by
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Collins et al. [6]. In this formulation, thermodynamic equilibrium is
assumed at every nonlinear iteration of solution of 5.3 . For the control
volume at multiphase conditions with np -phases, the following system
of equations needs to be solved:

Fc = zc − Σvjxcj = 0 (5.4)

Fc+nc = fc1(p, T, x1)− fcj(p, T, xj) = 0, (5.5)

Fj+nc∗np = Σ(xc1 − xcj) = 0 (5.6)

Fnp+nc∗np = Σvj − 1 = 0 (5.7)

Here zc = Σxcjρjsj/ρjsj is overall composition and fcj(p, T, xcj) is
the fugacity of component c in phase j. This procedure is called a
multiphase flash [18]

For a given overall composition zc , the solution of 5.4 - 5.7 provides
molar fractions for each component xcj and phase fractions Vj.

In the overall molar formulation, the unknowns are p andzc. They
fully define the physical state ω for a given control volume:
ω : [P, z1, ..., znc−1]. Once, multiphase flash is solved, it can provide
derivatives of all properties in 5.3 with respect to nonlinear unknowns
using the inverse theorem, see [26] for more details.

OBL Approach
We can rewrite Equation 5.3 as the component of a residual vector

in an algebraic form, In this case each term is represented as a product
of state-dependent and space-dependent operators. The resulting mass
conservation equation, written for a control volume i, is

rc(ξ, ω, u) = a(ξ)(αc(ω)− αc(ωn))−
∑
l

βlc(ω)bl(ξ, ω) + θc(ξ, ω, u) = 0,

(5.8)
Here, we defined

αc(ω) = (1 + cr(p− pref ))
np∑
j=1

xcjρjsj, (5.9)

a(ξ) = V (ξ)φ0(ξ) (5.10)

βc(ω) =
∑
j

xcjλp,jρj (5.11)
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b(ξ, ω) = ∆tT ab(ξ)(pb − pa) (5.12)

θc(ξ, ω, u) = ∆t
∑
j

ρjxcjqj(ξ, ω, u) (5.13)

In addition, cr is the rock compressibility, T ab is the geometric part
of transmissibility (which involves permeability and the geometry of
the control volume), ω and ωn are nonlinear unknowns at the current
and the previous timestep respectively, and u is a vector of well control
variables. θc(ξ, ω, u) is the influx/outflux term. in addition, φ0, Vi, and
p, are the initial porosity, volume, and pressure.

The operator αc is dependent on the properties of rock and fluid,
and independent of spatially distributed properties (initial porosity)
as in the case of the operator a. Similarly, the divergence operator
is present as a fluid-related operator βc independent of spatial dis-
tributed properties (permeability) and the discretization-related oper-
ator b. The same approach can be applied for the well source/sink
operator θc, but for simplicity we did not apply it here.

5.3 Linearization method

In this section, we describe different types of linearization using the
general algebraic form of governing equation [33]

Standard linearization approach
To solve nonlinear system 5.8, we need to linearize it. The con-

ventional approach in reservoir simulation is based on the application
of the Newton-Raphson method. In each iteration of this method, we
need to solve a linear system of equations of the following form

J(ωk)(ωk+1 − ωk) = −r(ωk) (5.14)

Where J is the Jacobian defined at nonlinear iteration step k. The
typical approach requires a sequential assembly of the residual and the
Jacobian based on numerical approximation of the analytic relations
in 5.9- 5.13 This may demand an interpolation in tables ( for stan-
dard PVT correlations or relative permeabilities), or a solution of the
highly nonlinear equations (for EoS-based properties). Each property
evaluation requires a storage space for both values of the property and
its derivatives with respect to the nonlinear unknowns. Most reservoir
simulation software performs numerical [21] or hand diffferentiation [21]
of each property with respect to nonlinear unknowns. In this work, we
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utilized the ADGPRS framework [26] for the implementation of con-
ventional and newly proposed linearization procedures.

Operator-based linearization
It is a new strategy for the linearization of the reservoir simulation

problem described by Eq. 5.8. As can be seen from the structure of each
operator in 5.9- 5.13, this system is based on a complex combination of
different nonlinear properties and relations. Since we fixed our space
and time approximation, the discretization error can be controlled only
by the variation of the timestep size ∆T and the characteristic size of
the mesh embedded in the T ab term. Both of these errors are controlled
by the operators ψ and θc.

The operatos αc and βcrepresent the physics-based terms. The ac-
curacy of the nonlinear physics representation is controlled by these
two operators (and a part of θc). In conventional simulation, we intro-
duce all the nonlinear properties into the conservation equation as is.
Next, the nonlinear solver tries to resolve all the detals of the nonlinear
description, struggling sometimes with unimportant features due to the
numerical nature of the property representations.

The Operator-Based Linearization (OBL) strategy, proposed in this
work is based on the simplified representation of the nonlinear op-
erators αc and βc in the parameter-space of the simulation problem.
We uniformly discretize the parameter space with a fixed number of
points N. The interpolation intervals are defined as [P1, P2, ..., PN ] and
[Z1, Z2, ..., ZN ]. Next for p ∈ [Pi, Pi+1] and z ∈ [Zj, Zj+1]we define

pi = p− Pi
Pi+1 − Pi

, zj = z − Zj
Zj+1 − Zj

(5.15)

and the auxiliary relation fi,j = f(Pi, Zj)- Based on pi, zj and fi,j,
the interpolant of function Ff can be defined as

Ff (p, z) = (1− zj)[(1−pi)fi,j +pi(fi+1,j)] + zj[(1−pi)fi,j+1 +pifi+1,j+1]
(5.16)

with correspond gradients

∂Ff
∂p

= (1− zj)(fi+1,j − fi,j) + zj(fi+1,j+1 − fi,j+1)
pi+1 − pi

(5.17)

with correspond gradients

∂Ff
∂p

= (1− zj)(fi+1,j − fi,j) + zj(fi+1,j+1 − fi,j+1)
pi+1 − pi

(5.18)
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The error between an interpolant and function can be evaluated
based on the following relation

|f − Ff | 6
V 2
w

4 sup

∣∣∣∣∣∂2f

∂ω2

∣∣∣∣∣ (5.19)

To evaluate α̂c(p, z) and β̂c(p, z)in the course of the simulation, we
apply an interpolation

α̂c(p, z) = Fαc(p, z), β̂c(p, z) = Fβc(p, z) (5.20)

This representation helps to provide a continuous description of the
physics based operators in the proposed approach. The number of
points in the interpolation controls the accuracy of the approximation
of the nonlinear physics, similar to the accuracy of the approximation
in space and time being controlled by the grid size. The error described
by Eq. 5.19 is similar to the truncation error in the discretization of
equation 5.8. The nonlinear solver deals here with a simplified represen-
tation directly expressed as a piece-wise linear combination of nonlin-
ear unknowns. Also; the relation (21) - (22) provides direct derivatives
with respect to nonlinear unknowns, which significantly simplifies the
evaluation and assembly of Jacobians.

Solution method
Once each operator in Eq. 5.8 is linearized, the residual vector r

and the Jacobian J can be assembled. The overall- molar formulation
does not require a secondary set of equations [26] and we can apply the
linear solver directly to system. in this work we emplyed GMRES with
the two-stage Constrained Pressure Residual (CPR) preconditioner [22]
as a linear solver

Consistency of numerical solution
In this section, we demonstrate the consisteny of the prposed lin-

earization method assuming that the original problem described by
[1] has a numerical solution. To simplify analysis,we assumethat the
model is limited by a 1D reservoir with Cauchy boundary conditions
on left and right side. This simplifies the spacial discretization, which
yields to the following equationin vector form ( The length of vector
corresponds to the number of components nc) for the block i:

ri(ωi−1, ωi, ωi+1, ω
n
i ) = (α(ωi)− α(ωni ))− β(ωi)bi+(ωi, ωi+1)+

+β(ωi−1)bi−(ωi, ωi−1) = 0, (5.21)

where
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ai = φ0iVi, (5.22)

bi+(ωi, ωi+1) = ∆tTi,i+1(Pi+1 − Pi) (5.23)

bi−(ωi, ωi−1) = ∆tTi−1,i(Pi − Pi−1) (5.24)
In the case of total velocity formulation

bi+(ωi, ωi+1) = ∆tTi,i+1(Pi+1 − Pi)Λ(ωi) (5.25)

bi−(ωi, ωi−1) = ∆tTi−1,i(Pi − Pi−1)Λ(ωi−1) (5.26)
Next we assume that there is a homogeneous reservoir with V , φ0i

and T constants. The internal Jacobian row of the equation can be
written as: 

γBi−1bi− − γβi−1 × b′i−,i−1

Aiai − γBibi+ + γ(βi × b′i+,i + βi−1 × b′i−,i)

γβi × b′i+,i+1


T

(5.27)

where

Ai =
[
∂αi
∂ωi

]
=
[
∂αi
∂pi

∂αc
∂zi,1

... ∂αc
∂zi,nc−1

]
, c = 1, ..., nc (5.28)

Bi =
[
∂βi
∂ωi

]
=
[
∂βc
∂pi

∂βc
∂zi,1

... ∂βc
∂zi,nc−1

]
, c = 1, ..., nc (5.29)

b′i−,i =
[
∂βi−
∂ωi

]T
, b′i+,i =

[
∂βi+
∂ωi

]T
(5.30)

γ = ∆t T
ab

φ0V
(5.31)

5.4 Nonlinear preconditioning in OBL

For binary system, the OBL formulation would be almost the same as
our natural formulation introducing by saturation in the previous case.
Looking into our Beta Operator Fig 5.1, it has an inflection point very
similar to the flux term f in the previous chapter.

Analogously, to the natural formulation in the previous chapter,
we use the absolute maximum value of the first derivative to allow for
maximum propagation of the waves downstream. Therefore, we use
the inflection point as the initial guess for Newton solver.
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5.5. Trust Region Newton Solver in Simulation Prototype OBL

Figure 5.1: S-shape beta operator for two-phase flow for viscous forces

5.5 Trust Region Newton Solver in Simulation Pro-
totype OBL

Although different advanced nonlinear solvers were developed for the
natural formulation, there is a lack of advanced strategies for the mo-
lar formulation. A version of a trust-region correction was developed
for molar formulation [26] but it still lacks robustness compared with
the natural formulation. this can be explained by more-complicated
nonlinear update procedure, which requires performing an exact flash
for every block at a two-phase state in each nonlinear iteration. This
problem can be solved by using OBL approach. In the OBL approach,
all properties involved in the governing equations are lumped in a few
operators, which are parameterized in the parameter space of the sim-
ulation problem wither in advance or adaptively during the simulation
process. The conrol on the size of the parameterization hypervolume
helps to preserve the balance between thr accuracy of approximation
and the performance of the nonlinear solver. In the current version
of the OBL approach, we do not reduce the number of unknowns and
only use the fact that the physical description (i.e., fluid properties)
is represented using piecewise linear interpolation. We segment the
parameter-space of the nonlinear problem into a set of regions where
our hyperbolic unknowns maintain their second order behavior (i.e.,
they remain either convex or concave). The proposed nonlinear solver
locally constraints the updating of the overall compositions across the
boundaries of these regions. Essentially, it is a cell-wise chopping strat-
egy guided by trust regions of the operators. Our trust-region Newton
method ensures that two successive iteration cannot cross any trust-
region boundary. In other words, we chop after crossing each inflection
point

55



5. Developed trust region nonlinear solver in the simulation prototype
based on Operator Based Linearization

5.6 Numerical example

5.6.1 Binary System

In this case, we have two independent variables [P, Z]. To find inflection
point(s) of the convection operators, for a fix pressure we find the in-
flection point. Next, updated the pressure and find the other inflection
point in the case it exists. The analysis of finding the inflection point
is based on the linear interpolation of the second derivative.

Figure 5.2: Flowchart of the modified newton method for one time step
considering also pressure update and correction of inflection point for pres-
sure

5.6.2 Dead Oil

In this case, we do not expect to see the dependency of the inflection
point of our beta operator with pressure; therefore, we have only one
inflection point for which we have to be careful not to pass in our new-
ton update. Fig. 5.4 summarize the performance of different solvers
for the fracture model and it is clear that the trust region solver with
preconditioning works significantly better than the other solvers. Note
that since the preconditioning strategy only provides initial guesses for
the saturation solution, when it is used in the fully-implicit method,
only the initial guesses for saturation variables are modified to be the
inflection point, the initial guesses for the pressure variables are unaf-
fected.
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5.6. Numerical example

Figure 5.3: Inflection point of our beta operator for different pressure

Figure 5.4: Comparison of different solvers with Corey exponents 2 2 and
the resolution with 32 OBL resolution and the oil viscosity 1.5cp, water
viscosity 1cp.

Water-Wet Sandstone

Krw_max Nw(water corey exponent) No(Oil exponent) Water_viscosity Oil_Viscosity

0.5 4 2 1 5

Table 5.1: Water-wet sandstone table
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Figure 5.5: Propagation of the solution in fracture for one timestep
[240days] in water-wet sandstone

Another example here, in a water wet system comparing the differ-
ent solvers performance table. 5.2

Table 5.2: Different Solvers behavior in the water-wet sandstone example

Timestep[days] without pre localchop=0.1 without pre with pre inflection point

240 52 14 7 0.5

5.6.3 Viscosity variation with Pressure

Here for the dead oil example, we make the case where the inflection
point varies also with the pressure for the beta operator. To do so we
make the viscosity a function of pressure and thus the inflection point
varies for different pressure.
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5.6. Numerical example

(a) (b)

Figure 5.6: (a) Beta operator variation with composition given the fix
Pressure Beta Operator (b) Beta Operator for the dead oil variation of
viscosity with pressure

Figure 5.7: Inflection point variation with Pressure for dead oil with vari-
ation of viscosity with pressure example

(a) (b)

Figure 5.8: (a) Alpha operator variation with composition given the fix
Pressure (b) Alpha operator for the dead oil
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Table 5.3: Performance behavior of the different solvers in the case of dead
oil for fractured reservoir

Gamma Global chop Trust Region solver Trust region with precond

20 3 4 4

50 6 5 5

100 10 6 5

280 15 8 5

300 16 8 5

In this case, Alpha operator linearly changing with composition
for all the pressure and thus never introduce problem for our trust
region solver. We compare the performance of different solvers in the
fracture reservoir in this case. To imitate it, i ran the simulation until
a particular time (T = 5000days) Next, only by enlarging one timestep
we compare the behavior of our different solvers. In the next step by
introducing the infection point for a preconditioning we enhance the
performance even further. Table 5.3 illustrates the different behavior
of our solver.

5.6.4 Supercritical CO2 injection

(a) (b)

Figure 5.9: (a) Beta operator variation with composition given the fix
Pressure (b) Beta Operator

From the operators graph, it is clear that the alpha operator is not
anymore linearly change with composition since the density is changing
but still it keeps its second order behavior. On the other hand, Beta
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5.6. Numerical example

(a) (b)

Figure 5.10: (a) Alpha Operator (b) Alpha operator variation with com-
position given the fix Pressure

operator seems to be problematic due to the presence of inflection point.
Therefore, we make our trust region solver in a way it does not cross
its inflection point.

Table 5.4 shows the comparison between different nonlinear solvers,
trust region solver, global chopping and local chopping with dx = 0.1
for a fracture reservoir while i ran the simulation for the maximum
time 6000 days with the timestep = 10 days imitating the fluid flow
moving in the matrix.

Table 5.4: Performance Of Different Solvers (running the simulation until
6000 days with the small timestepeuqals to 10days )

Solver Total number of Newton iteration

Inflection point correction 838

Global chopping 1152

Local chopping (dx=0.1) Diverge

As we can see the trust region works significantly better than the
Global chop.

Graph 5.11 and table 5.5 illuatrate the comparison of fractured
reservoir in the case of sCO2 injection. Moreover, the performance of
the trust region solver enhances further by preconditioning.
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Figure 5.11: Inflection point variation of the operator beta with pressure
in the case of sCO2 injection

Gamma Global chop Trust Region Solver Trust Region with precond

20 17 9 8

50 27 13 10

100 33 15 10

280 33 15 10

300 33 15 9

Table 5.5: sCO2 injection

5.7 Three component case

5.7.1 Operators analysis

To analyze the operators in this case and visualization we fix the pres-
sure and plot the 3D graph of our operators for both the first and
second composition.

By also fixing the second composition, we can see how beta varies
in 1D with first composition.
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5.7. Three component case

(a) (b)

Figure 5.12: (a) Beta operator for the first composition (b) Beta Operator
for the first composition from different angle

(a) (b)

Figure 5.13: Beta variation as a function of first component given that
all other unknowns are fix. Different graph correspond to different value of
second composition

(a) (b)

Figure 5.14: (a) Beta operator for the first composition (b) Beta Operator
for the first composition from different angle
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(a) (b)

Figure 5.15: (a) Zoom into the graph(b) where the second inflection exist
(b) Beta variation as a function of first component given that all other
unknowns are fix. Different graphs correspond to different value of second
composition

In the graphs 5.15 , for the second composition by fixing other un-
knowns and visualize how our operator varies with second composition.
Zooming into the operator we can notice that another inflection point
exists almost near to the zero that correspond to the discontinuity of
density at bubble point

5.7.2 Detecting the inflection point

In the preliminary analysis, based on the analysis of our operators
behavior , i found the inflection point of our operator by linear inter-
polation of the second derivative for all the points in my parameter
space. In this case, i have the matrix of inflection for the first compo-
sition in which each element of my matrix correspond to the inflection
point for the fix value of pressure and second composition. Graphs 5.16
illustrate our inflection matrix for the first composition.
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5.7. Three component case

(a) (b)

Figure 5.16: (a) Inflection variation of the first composition with the sec-
ond composition given the fix pressure (b) Inflection curve of the first com-
position

(a) (b)

Figure 5.17: (a) Inflection variation of the second composition with the
first composition given the fix pressure (b) inflection curve of the second
composition

From the inflection graphs of the second compostion 5.17 we can see
that it seems we have two families of inflection points which correspond
to the inflection point due to the discontinuity of the density at bubble
point. Finally, In ternary system it can exist more than one inflection
for each composition given the fix other compositions.

Table 5.6 shows the comparison between different nonlinear solvers,
trust region solver, global chopping and local chopping with dx = 0.1
while i ran the simulation for the maximum time 10000 days with the
the aggressive timestep = 500 days.
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Table 5.6: Performance of different solvers in three components case. (Run-
ning the simulation until 10000 days with the very aggressive time step 500
days)

Advanced nonlinear Solver Total number of Newton iteration

Inflection point correction 154

Global chopping 201

Local chopping (dx= 0.1) 205
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Chapter 6

Conclusion and future work

Simulation of multiphase flow in reservoirs with complex heterogeneous
structures requires robust nonlinear solvers. The main source of non-
linearity is related to an implicit approximation of flux term in con-
servation equations which is required for the robustness (unconditional
stability) of reservoir simulation process. In the absence of gravity and
capillary, the flow problems dont usually introduce significant di culties
to nonlinear solver. However, the solution of the transport problem of-
ten requires the propagation of displacement front to multiple control
volumes per single timestep. This problem became especially serious
in the limiting case of heterogeneous property distributions related to
fractured reservoirs.

We developed the Advance nonlinear solver for fractured reservoirs
in 1D. This solver is developed based on the trust region technique
to get the global convergence and then we design our solver better by
applying preconditioning strategy to get the better performance of the
trust region solver. Moreover, introducing our relative permeability in
the table and interpolate it rather than analytical formula we make
our solver more real applicable since in the industry the relative per-
meability is estimated. Next, analyze the coarsening and resolution
on the performance of the trust-region solver. Finally, we extend our
frame work in the simulation prototype based on OBL (Operator based
linearization). In this case, we consider more general situation by cou-
pling the transport and flow and extend it to the compositional flow
problems.

The future work can be in a way that we find the inflection point
adaptively rather than preliminary analysis. because of hyperbolic na-
ture of overall composition, the vast majority of parameter space re-
mains unused. In other words in the newton update we find the in-
flection point and check trajectory whether pass it or not. Adaptive
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6. Conclusion and future work

Parameterization with buoyancy has been shown by Voskov and Khait
[28] rather than preprocessing and storing OBL tables. The total size of
the interpolation tables is defined by the number of dimensions N and
the number of interpolation points n as nN . Although the dimensional-
ity depends on the number of components and thermal assumptions in
a problem of interest, the number of interpolation points corresponds
to the desired accuracy of the physical representation. Therefore, pa-
rameterization at the preprocessing stage would require a substantial
amount of memory for the multicomponent systems modeled at a high
interpolation precision. Furthermore, the necessity of searching sup-
porting points (i.e., operator values) for every interpolation in a huge
array of data affects the performance of the simulation. adaptive pa-
rameterization in space with adaptively finding the inflection point is
one of our interest due to the reduce of the cost of the data storage.

Another future work will be related to extension of our precondition-
ing strategy to compositional problems unconditional to the number of
components.
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Appendix A

Matlab code of 1D implicit
transport trust-region
nonlinear solver

Matlab Code

1 close all
2 clear all
3 clc
4

5 %global Ut Phi dx Nxx
6

7 %% Constant definitions:
8 no = %input('Set a value for Corey exponent no ? ');
9 nw = %input('Set a value f or Corey exponent nw ? ');

10 M = %input('What is the viscosity ratio ? ');
11 KRW= %input('What is the end point relative Permeability of ...

water? ');
12 KRO= %input('What is the end point relative Permeability of ...

oil ? ');
13 swi= %input(' What is the initial water Saturation? ');
14 sor= %input(' What is the residual oil Saturation? ');
15 Ut = 1;
16 Phi = 1;
17 %% time and spatial vectors definition:
18 dt = [0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 ...

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.12 ...
0.14 0.16 0.18 0.2];

19 tf = 0.3;
20 t = 0:dt:tf;
21 Nt = length(t);
22 Nx = 500;
23 x = linspace(0,1,Nx);
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A. Matlab code of 1D implicit transport trust-region nonlinear solver

24 dx = x(2) - x(1);
25 %% function definition
26 krw = @(S) KRW*S^nw;
27 kro = @(S) KRO*(1-S)^no;
28 S_ef = @(S) (S-swi)/(1-swi-sor);
29 %% Relative permeability Table
30 Nxx= 500;
31 krw_table = zeros(Nxx,1);
32 kro_table = zeros(Nxx,1);
33

34 S_table = (linspace(0,1,Nxx))';
35 h = S_table(2);
36 for i=1:length(S_table)
37 krw_table(i) = krw(S_table(i)) ; % arbitrary ...

analytic function
38 kro_table(i) = kro(S_table(i));
39 end
40 f_table = krw_table./(krw_table+kro_table/M); %i have to ...

check after liunch
41

42 %% find inflection point
43 dff_table = zeros(Nxx,1);
44 for n =1:Nxx-2
45 dff_table(n,1) = ...

(f_table(n+2)-2*f_table(n+1)+f_table(n))/h^2;
46 end
47 idx = min(find(dff_table <0)) % more than one dimention ...

its okay but a lot of problem
48 S_inf =(S_table(idx)+S_table(idx+1))/2 ...

%(S_table(idx)*S_table(idx+1))^0.5 0.3870 ;
49 Rel_table= table(S_table, krw_table,kro_table,f_table, ...

dff_table);%
50 %% Boundary conditions and initial conditions:
51 S = zeros(Nx,2);
52 Sw= zeros(Nx,1);
53 dS = zeros(Nx,1);
54 S(:,1) = 0;
55 S(1,:) =(1-sor-swi)/(1-sor-swi);
56 f = zeros(Nx,1);
57 df = zeros(Nx,1);
58 f(:,1) = 1;
59 df(:,1) = 0;
60 r = zeros(Nx,1);
61 J = zeros(Nx,Nx);
62 J(1,1) = 1;
63

64 %% Newton Iteration:
65 tol = 1e-6;
66 for n = 1:Nt-1 % n=1 is initial condition, but at each ...

step n+1 is calculated --> start from n=1 (n+1=2) ...
untiln = Nt-1

67 S(:,2) = S(:,1);
68 for n_iter = 1:50 % choose the max number of ...

iterations (=50)
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69 [dS(:,1),J,r] = Newoton_Raphson(S,tol,S_table,f_table, dt(1));
70 % Global Convergence using inflection Point
71 for i = 1:Nx
72 if (S(i,2) < S_inf && S(i,2)+dS(i,1) > S_inf)
73 S(i,2) = S_inf + tol*10;
74 elseif S(i,2) > S_inf && S(i,2)+dS(i,1) < S_inf
75 S(i,2) = S_inf - tol*10;
76 else
77 S(i,2) = S(i,2) + dS(i,1);
78 end
79 end
80 if (norm(dS(:,1)) < tol)
81 break
82 end
83

84 end
85 Sw(:,1) = swi + (1-swi-sor)*S(:,2);
86 figure(1)
87 plot(x,Sw(:,1))
88

89 axis([0 1 0 1]);
90 pause(0.001)
91 S(:,1) = S(:,2);
92 end
93 norm(dS(:,1))
94

95 %% only evaluate at one time step after t1
96 %S(:,1) = 0;
97

98 %S(1,:) = (1-sor-swi)/(1-sor-swi);
99 niter =zeros(length(dt),1);

100 for n=1
101 for t=1:length(dt)
102 % Initial guess selection (three choices that has to be ...

chosen manually)
103 % Preconditioning (using inflection point as an ...

initial guess)
104 S(2:end,n+1) = S_inf;
105 % Using initial condition as an initial guess
106 %S(:,n+1) = S(:,n);
107 % Using the last update for S(where dt=0.001 and ...

t=0.3) as an initial guess
108 %S(:,n+1) = S(:,end);
109 for n_iter = 1:600
110 [dS(:,1),J,r] = ...

Newoton_Raphson(S,tol,S_table,f_table, dt(t));
111 % Inflection Point
112 for i = 1:Nx
113 if (S(i,2) < S_inf && S(i,2)+dS(i,1) > S_inf)
114 S(i,2) = S_inf + tol*10;
115 elseif S(i,2) > S_inf && S(i,2)+dS(i,1) < S_inf
116 S(i,2) = S_inf - tol*10;
117 else
118 S(i,2) = S(i,2) + dS(i,1);
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A. Matlab code of 1D implicit transport trust-region nonlinear solver

119 end
120 end
121

122 if (norm(dS(:,1)) < tol)
123 break
124 end
125 end
126 Sw(:,1) = swi + (1-swi-sor)*S(:,2);
127 niter(t,1) = n_iter;
128 figure(2)
129 %plot(x,S2(:,1),'b'),
130 plot(x,Sw(:,1),'c') , hold on
131 end
132 figure(3)
133 plot(dt,niter)
134 end
135 norm(dS(:,1))
136 %
137 %% Appleyard chop
138 S(:,1) = 0; %swi;
139 S(1,:) = (1-sor-swi)/(1-sor-swi);
140

141 for n = 1:Nt-1
142 S(:,2) = S(:,1);
143 for n_iter = 1:500
144 [dS(:,1),J,r] = Newoton_Raphson(S,tol,S_table,f_table, dt(1));
145 %modifying the solver appleyard chop
146 for i =1: Nx
147 if dS(i,1)>0.2
148 dS(i,1) = 0.2;
149 end
150 end
151 if (norm(dS(:,1)) < tol)
152 break
153 end
154 S(:,2) = dS(:,1) + S(:,2);
155 end
156 Sw(:,1) = swi + (1-swi-sor)*S(:,2);
157 figure(4)
158 plot(x,Sw(:,1))
159 axis([0 1 0 1]);
160 pause(0.001)
161 S(:,1) = S(:,2);
162 end
163

164

165 %% function def
166

167 function [dS, J, r] = Newoton_Raphson(S,tol,S_table,f_table,dt)
168 %global Ut Phi dx Nxx
169 Nx = length(S);
170 f = zeros(Nx,1);
171 df = zeros(Nx,1);
172 h = S_table(2) - S_table(1);
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173 f(:,1) = 1;
174 df(:,1) = 0;
175 r = zeros(Nx,1);
176 J = zeros(Nx,Nx);
177 J(1,1) = 1;
178 for m = 2:Nx % pay attention that m-1 is alos used ...

--> start from m = 2, and m = 1 is BC
179 % !!pay attention to introduce the f at m = 1
180 % !! pay attention to introduce df at m = 1
181 j = ceil(S(m,2)/S_table(2));
182 if j == 0 || j<0
183 j =1;
184 elseif j≥ Nxx
185 j= Nxx-1;
186 else
187 j=j;
188 end
189 % !! pay attention to introduce df at m = 1
190

191 f(m,1) = f_table(j) + (f_table(j+1)-f_table(j))/h * ...
(S(m,2)-S_table(j)) ;

192 df(m,1) = (f_table(j+1)-f_table(j))/h ;
193 % if f(m,1) < 10*tol %this constraint makes our solver ...

perform similar as analytical solution
194 % f(m,1) = 0;
195 % df(m,1) =0;
196 % end
197 r(m) = (S(m,2) - S(m,1))/dt + Ut/Phi * (f(m,1) - ...

f(m-1,1))/dx; %!! pay attention to evaluate r at m = 1
198

199 J(m,m) = 1/dt + Ut/(Phi*dx)*(df(m,1)); %!! pay ...
attention to introduce the J at m = 1

200 J(m,m-1) = -Ut/(Phi*dx)*(df(m-1,1));
201 end
202 dS(:,1) = - J\r;
203 end
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Appendix B

AD-GPRS

The Automatic Differentiation General Purpose Research Simulator
(AD-GPRS) is a flexible and extensible multiphysics simulation plat-
form. It employs automatic differentiation to construct the Jacobian
allowing for an easy extension to new physics and constitutive relations,
as well as for complete flexibility in the specification of independent
variables, which leads to a unified simulator for different formulations
and solution strategies. There are no assumptions about the underly-
ing grid structure thus unstructured grids are supported for accurate
representation of the complex structure and heterogeneity of subsurface
formations. Fully implicit or sequentially implicit time-discretization
schemes are available. The latter is designed for handling different
physical sub-problems with flexible coupling strategies.

AD-GPRS can be used, for example, to simulate enhanced oil recov-
ery (EOR) processes, CO2 sequestration in saline aquifers and depleted
oil reservoirs, shale gas/oil production, and enhanced steam injection.

Currently, AD-GPRS consists of the following modules:
Flow General component-based reservoir simulation tool. Several

widely used variable formulations (natural and molar) and solution
strategies are incorporated, including Black Oil, fully EoS (two- and
three-phase, as well as support for external libraries), and K-value for-
mulation.

Thermal Adds support for thermal-compositional flows, for exam-
ple, for simulation of steam injection or geothermal reservoirs.

Geomechanics Simulates complex mechanical behavior including
plastic deformation and thermal effects. Helps to understand physi-
cal processes for fractured and faulted reservoirs. Incorporates poro-
elastic, thermo-elastic, and general poro-thermo-plastic models with
complete flexibility in adding new constitutive relations. Can be used,
for instance, for coupled simulations of gas production from a naturally
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fractured reservoir, steam-assisted gravity drainage (SAGD).
Chemical reactions Capable of modeling kinetic and equilibrium

reactions. Supports both natural and overall-composition variable for-
mulations. Adds a key component for simulation of in-situ upgrading
of oil-shale or CO2 sequestration in saline aquifers.

Wells The wellbore flow and the near-well flow behavior have an
important impact on well performance. Different techniques have been
developed to model multiphase flow through the wellbore. We account
for thermal and compositional effects. Currently supported well models
include standard well, multi-segment well, and heater model.
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Appendix C

Inflection point detection
from OBL table code

Here is my code for finding the inflection point numerically by second
derivative analysis of my operators. The code is written in a way
it can be extended easily to compositional problems unconditional to
the number of the components. However, we shoud be carefull by
increasing the number of composition we should add the corresponding
outer loop as well.

Matlab Code

1 function [z_inf, ddBB, BB, dBB_inf] = ...
inflection_general(tbl, p, zz, z_vec, ind_comp, use_der )

2 % INPUTS:
3 % tbl: Table
4 % p: Pressure
5 % zz: Vector with value for components
6 % z_vec: Vector with values for the changing component
7 % ind_comp: Index for the changing component
8 % use_der: (optional, default false) If true, computes ...

the second
9 % derivatives using the first derivatives ...

from the table.
10

11 dz = max(diff(z_vec));
12 npoints = length(z_vec);
13 ncomp = length(zz);
14

15 XX = zeros( npoints, ncomp+1 );
16 XX(:,1) = p;
17 for i=1:ncomp
18 if i==ind_comp
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C. Inflection point detection from OBL table code

19 XX(:,i+1) = z_vec;
20 else
21 XX(:,i+1) = zz(i);
22 end
23 end
24

25 % If the optional input use_der is not used when calling ...
the function, it

26 % default to false
27 if nargin<6
28 use_der = false;
29 end
30

31 if use_der
32 [ ¬, dBB ] = tbl.interpolate_v2(XX);
33 dBB = dBB( (1+ind_comp):(1+ncomp):npoints*(1+ncomp) );
34 ddBB = ( dBB(3:end) - dBB(1:end-2) )/(2*dz);
35 else
36 [ BB, ¬ ] = tbl.interpolate_v2(XX);
37 ddBB = ( BB(3:end) - 2*BB(2:end-1) + BB(1:end-2) )/(dz*dz);
38 dBB = ( BB(3:end) - BB(1:end-2) )/(2*dz);
39 end
40

41

42

43 %inf_indx = find( ddBB(1)*ddBB<0, 1, 'first' ); % ...
adapptively do it (1d doesnt make sense) go by ...
trajectory second derivative for every intervalinthe ...
update, for the given pressure i look to the update of ...
z , i need to check im not crossing the inflection point.

44 inf_indx = find( ddBB(1:end-1).*ddBB(2:end) < 0 );
45

46 if isempty(inf_indx)
47 z_inf = NaN;
48 dBB_inf = NaN;
49 else
50 z_inf = (z_vec(inf_indx+1)+z_vec(inf_indx))/2;
51 dBB_inf = dBB(inf_indx);
52 end
53

54 end
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