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Introduction

Standard parametric approaches requires some applicable assumptions on the exper-
iment design (random sampling) and the population model (normal distribution or ho-
moscedasticity, for example). When the application conditions of these approaches are
not respected, in particular when the data distribution law is not well fitting with the
test requirements, the outputs of the parametric tests are less reliable. In that context,
non-parametric tests can offer a more relevant alternative since they require less assump-
tions to be assessed. In that framework, we think “conditionally to the data themselves”
. An important class of non-parametric tests are the permutations test. That will be the
underlying method used in that document.

Fisher (1935) and Pitman (1937) has presented for the first time this class of non-parametric
tests. Back then, when they were created, these kind of tests were not very used, because
of the loud amount of computation time they required. But with the computation capacity
increasing, these tests became more an more democratized, and used in many different kind
of applications. We will study in this work the combination of the permutation tests with
the so-called IWTP, the interval-wise testing procedure that provide a way to compute test
p-values allowing a global control of the type-I error over the multivariate tests involved.

The goal of this work is to provide to the R package “fdatest” an extension bundling new
functions and their documentation using the IWTP. The underlying testing method that
drives this procedure in the R package are the permutation tests presented in the abstract.
The functions are implemented for both non-functional and functional data (“fda” package
required for functional data processing).
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Chapter 1

Statistical Hypothesis Testing

Hypothesis testing is a decision-making process for evaluating some claims about a
population. Basically, we are looking for evaluating some features or parameters of the
population from which an experimental sample is extracted. From this sample we will
try to get information about an intrinsic population feature, generally a mean, a standard
deviation or a proportion.

1.1 Parametric and Non-parametric frameworks

In a parametric framework, we set a statistical model (On, (Pθ)θ∈Θ) where On is the
observations space, Pθ the parametric law of the data, Θ the set of all parameters. We
denote by Θ0, Θ1 two disjoint subsets of Θ.

A test consists in the confrontation of the two following hypotheses on the real parameter
θ of the a priori data law:

H0 : θ ∈ Θ0 (null hypothesis) vs H1 : θ ∈ Θ1 (alternative hypothesis) (1.1)

In non-parametric framework, the reasoning is the same except that no assumption is given
on the data law, the generic model can be written as (On,P) where P is unknown. If we
want to perform, for example, a mean comparison, with µ (population real mean) and µ0

(reference mean), the test can be designed like:

H0 : µ = µ0 (null hypothesis) vs H1 : µ 6= µ0 (alternative hypothesis) (1.2)

But here we cannot use the data law to assess the test, so one idea is to reason con-
ditionally to the data (with the measure P(. | X ∈ On)), and find a strategy to compute,
from the data, this probability measure.

One of these strategies is the permutation method, developed in details below in this paper.

3



4 Chapter 1. Statistical Hypothesis Testing

1.2 Test assessment

Definition 1.2.1 A test statistic Φ is a decision rule that take 0 or 1 as output and a
sampled random vector as input :

Φ(x) =

{
0 H0 accepted
1 H0 rejected

(1.3)

In this case, doing a test Φ consists in determining a region of rejection, which corre-
sponds to the set: R = {x | Φ(x) = 1} .
If the observed sample x belongs to this region, we reject the null hypothesis H0. The
criteria that define the region of rejection of a test Φ are type I error or (the probability
of rejecting H0 while it is true), and the power of the test (the probability of rejecting H0

every time it is false).

We always want to control the type I error so that it does not exceed a given significance
level α and at the same time maximize the power of the test.

The following graph, for a given example of hypothesis testing H0 vs HA, allows the
visualization of the latter quantities, the type-I error and the power of the test:

Figure 1.1: Example of power graph representing type I error (α) and the power of the
test (1− β), (β) is the type II error.
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The main goal is therefore, given a significance level α0, to minimize the type-I error
denoted by α s.t :

α , P(x ∈ R | H0) (1.4)

under the constraint :

α ≤ α0

And as a second step to maximize the power of the test defined by, more formally by a
function of the rejection zone R, denoted by π:

π(R) , P(x ∈ R | H1) = 1− β(R) (1.5)

Remark This definition of the test power implicitly gives the definition of the type-II
error β for a given rejection region R :

β = β(R) , P(x 6∈ R | H1) (1.6)

Generally, a test Φ is associated with a random variable called the statistic of the test
T . And we define in an equivalent way, the rejection region by:

R = {x | Φ(x) = 1} = {x | T (x) ∈ S}.

with S a certain set of ’forbidden’ values of T that leads to the rejection of the null.

Let us fix f0 the density of x under H0. With these constraints we can define the rejecting
region R.

Definition 1.2.2
With a fixed significance level α and given set S of rejection values of the statistic T , the
rejection region can be defined as follows:

P(x ∈ R | H0) = P(T (x) ∈ S | H0) =

∫
Φ(x)f0(x)dx (1.7)

From these notations, we can retrieve the two following definitions:

Definition 1.2.3
if

if
∫

Φ(x)f0(x)dx ≤ α. (1.8)

then such a test is called conservative
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Definition 1.2.4
if

∫
Φ(x)f0(x)dx = α (1.9)

then such a test is called exact

1.3 P-value approach

In applications, a common practice is to refer to a critical threshold α∗, usually denoted
by p called the p-value of the test. This involves giving, for a fixed sample and a fixed test,
the higher level value α, for which the H0 is not rejected by the test. The given critical
threshold allows to find the set of all α such that the H0 is rejected (or not rejected) at
the α-level, without recalculating for each particular α.

Definition 1.3.1
For a given sampled vector valued x, the value : p , α∗ = α∗(x)

is called p-value if :

{
p ≤ α H0 rejected
α < p H0 accepted

(1.10)

In general, we have a statistic T0(x) computed with the observed vector x, and a reference
value depending on α, called the critical value, and denoted by Tα.
Tα is the quantile such that P(T ≥ Tα) = α (or P(T ’worst than’ Tα) = α, more generally).
It corresponds to the α-value s.t a ’worst’ value of T0(x) (i.e greater/lowest value than
T0(x) or than |T0(x)|, depends on the test design) leads to the rejection of H0 at level α.
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Figure 1.2: Two-tail test on the left, One-tail test on the right

The critical value Tα delimits the rejection region, at level α, for the computed statistic
T0(x).

The Figure 1.2 shows the location of the critical value on an H0 distribution (in para-
metric case), at a certain level α. If the computed statistic T0(x) falls in the green region
the null hypothesis is rejected at level α.

From this visualization we can give the following equivalent definition of the p-value p of
a test:

p , P(T (X) "is more extreme than" T0(x) | H0) (1.11)

i.e with the examples of the Figure 1.2:

p = P(|T (X)| ≥ T0(x) | H0) (1.12)
p = P(T (X) ≤ −T0(x) | H0) (1.13)





Chapter 2

Permutation tests

2.1 General principles

All permutations tests derive from the same fundamental principle. This is an intuitive
principle as following: Under the null hypothesis, all the permutations of the observation
sample have the same probability of being extracted. We require, that under the null
hypothesis, all the observations being exchangeable. So, a permutation test consists in a
comparison between the value of the statistic T without permutations on the dataset and
the value T ∗ of the statistic with a permuted dataset. Critical probability are computed
considering the conditional law w.r.t to the vector of the order statistic observed. And this
conditional law provides an empirical distribution from which the test observed statistic is
located.

To apply the permutation tests, the necessary and sufficient condition, under the null
hypothesis (i.e the exchangeability of the observations) must be verified. Otherwise, their
use becomes unappropriated and wrong.

In order to detail what has just been stated, we introduce some definitions and concepts,
and we start by defining variables exchangeable.

Definition 2.1.1 We define Π the set of all permutations on the integer set {1, .., n}.
A set of random variables (X1, ..., Xn) is said exchangeable if for every permutation π =

(π1, .., πn) ∈ Π we have:

(X1, .., Xn)
d
= (Xπ1 , .., Xπn) (2.1)

and we said that a density function f is likelihood invariant w.r.t permutations if for every
π = (π1, .., πn) ∈ Π we have:

f(x1, .., xn)
d
= f(xπ1 , .., xπn) (2.2)

9
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Example 2.1.1
If the random variables (X1, .., Xn) are i.i.d then they clearly are exchangeable, because:

f(x1, .., xn) =
n∏
k=1

f(xk) = f(xπ1 , .., xπn)

The problem considered is that of testing a null hypothesis H0, concerning the proba-
bility distribution features of a sample, against an H1 alternative concerning this law.

First, we start by defining the order statistic and the vector of the ranks.

Definition 2.1.2 Let be a random vector X = (X1, ..., Xn) the order k statistic, denoted
by X(k), is the kth lowest value of X. The order statistic is defined by X(.) = (X(1), .., X(n))

Definition 2.1.3 The vector of ranks, denoted by r = (r1, .., rn), is defined from the order
statistic X(.) of the vector random X, as follows:

∀i ∈ [1, .., n], Xi = X(ri) (2.3)

We present now an important theorem for non-parametric inference, and in particular
the rank test (and any test that is based on the ranks of the data).

Theorem 2.1.1. Let X = (X1, ..., Xn) a random vector, f0 a density of X under H0

that is invariant w.r.t to permutations. The rank vector r and the order statistic X(.) are
independent. And r is uniformly distributed on Π, i.e :

∀π ∈ Π, P(r = π) =
1

n!
(2.4)

According to this theorem, so thanks to the independence of the rank vector and the
order statistic, we can write:

P(X = xπ | X(.) = x(.)) = P(r = π | X(.) = x(.)) =
1

n!
(2.5)

We denote by Π(x) , {xπ | π ∈ Π}, the set that contains all the permutations of the
observed vector x. We have Card{Π(x)} = 1

n!
.

The equality (2.5) is interpreted as follows: keeping fixed the observed vector x(.) of the
order statistic, all the n! permutations of vector values x(.) have the same likelihood. We
conclude that, under H0 which supposes the exchangeability of the variable, the conditional
distribution P(. | X(.) = x(.)) is uniform on Π(x) . In other words, under H0, we can
consider that the observed x has the same probability to be chosen as any other Π(x)

element, because all Π(x) points are equiprobable.
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2.2 Formal definitions of a permutation test

The formal definition of a permutation test can be presented in two ways: in terms of
its critical function Φ, or in terms of statistics T (via the permutation principle describe
below).

Our study focuses on the second aspect with the computation of one or more statistics
for the test. But for sake of clarity we will present the two aspects, by mean of the two
following definitions:

We set N = Card{Π(x)}

Definition 2.2.1 An α-level permutation test Φ expressed as function of the order statistic
x(.) and the rank π = (π1, .., πn) i.e Φ(x) = Φ∗(x(.), π1, .., πn) and s.t∑

π Φ∗(x(.), π1, .., πn)

N
= α (2.6)

For a non-randomized test, Φ take only two discrete values 0 or 1. So we can’t always
get an α-level test. So the previous definition holds for α ∈ { k

N
| k = 1, .., N}, to guarantee

the exactness of the test.

Remark In randomized test, the test Φ can take a continuum of values and can be define
as Φ(x) = P(x 6∈ R).

Now the approach with the computation of a statistic for the test, and we define the
following permutation principle:

Definition 2.2.2 If we define the rejection region R with a statistic T (x), this statistic
must satisfy the permutation principle that is equivalent to a uniform draw under H0.
Let T = {t | t = T (xπ), xπ ∈ Π(x)}.
we must have:

∀t ∈ T , P(T (X) = t | X(.) = x(.)) =
1

n!
(2.7)

In other words, the conditional law of the statistic T is uniform on T . And then for
a given significance level α = k

N
with k ∈ [1, .., N ], the critical region R will contain k

elements of T .
For example the k greatest, or the k/2 greatest and the k/2 lowest depending on the test
type (one-tail, two-tails).



12 Chapter 2. Permutation tests

To recap all the main explicated points about permutation tests:

• Permutation tests are conditional procedures where conditioning is done with respect
to the vector of order statistic X(.) and this gives a discrete law on the permutation
space Π(x).

• Permutation tests are law-free tests because the law of the statistic does not depend
on the invariant density f0 of X under H0, which can be partially, or completely
unknown.

• The permutation tests are always exact or conservative since the probability of the
type-I error is controlled for all possible samples of the invariant density f0.

2.2.1 The steps to perform a permutation test

1. We begin with the analysis of the problem: define the null hypothesis, the alternative
hypothesis, and the suppositions of the test.

2. Thereafter, we choose the most appropriate test statistic to distinguish the two hy-
potheses, and the statistic is calculated for the observations available.

3. Recalculate the test statistic for all possible permutations of the initial observations;
note that it is necessary to specify how to do the permutation according to
each problem.

4. Finally, we make the decision: accept or reject the null hypothesis using the law of
the statistic as a guide. It is better to see if the statistic observed is extreme or not
compared to the empirical law of the statistic of the test generated by permutations.

Remark : Considering steps (1) and (3), there are some knotty points with permutations
test:
First, the statistic for the test under H0, particularly in multivariate situations, may have
forms that are difficult to express and calculate. Then, if the sample size is not small
enough, a direct calculation of the law by enumeration of all permutations becomes im-
practicable because of the large number of permutations to be made.
For example, even if we compare the expectations of two samples of sizes m = 7 and n = 5,
the number of possible permutations is

(
5+7

7

)
= 30240. Finally, an asymptotic approxima-

tion of the test statistic is not always appropriated, unless the number of observations is
sufficiently great.



2.2. Formal definitions of a permutation test 13

2.2.2 Monte-Carlo method

Although, in principle, it is always possible to make an exact calculation by listing ·
permutations, in practice we use approaches that are more efficient from the point of view
of calculation. The most used method is the Monte-Carlo method (MC).

This technique involves drawing a random sample of size B, B being big, among all the
possible permutations and apply the test only on this sample, instead of considering the
complete law. Indeed, with a large sample, the distribution under H0 can be well approx-
imated by the Monte Carlo technique. So, we estimate the p-value with:

p− value =
k∗(x)

B
(2.8)

where k∗(x) is the number of times that the test statistic is more extreme than the statistic
observed among the B permutations retained in the sample.

2.2.3 Concrete example: Comparison test of the means of two
populations

This example resumes the test carried out in the R-Package function, IWT2.R.

So in order to illustrate the permutation principle, we take the example of comparison
of two independent samples. We have two groups of observations {xi, i = l, .., n} and
{yi, i = l, ..,m} with sizes n and m, and we want to test H0 : µx = µy against the
alternative H1 : µx 6= µy, for example.

We choose as statistic T (X, Y ) = |Y −X|. To make a permutation test, it is necessary
to generate the conditional law of the statistic T under H0.

First, we calculate the observed value Tobs = |Yobs − Xobs|. We then take all the
(m + n) elements of the observed vectors (x1, ..., xn) and (y1, ..., ym) and we create the
vector (z(1), .., z(m+n)) of the order statistics of the (m + n) observations. Afterwards,
we mix (randomly switch) and randomly select two new groups with m and n elements
respectively. The number of distinct values of T is equal to

(
m+n
m

)
because if we switch the

observations within each group the value of T remains the same.

If the sample sizes are small, we can do all the possible permutations. Otherwise, we
obtain a good result by performing only a certain number B of permutations, for example
B = 2000, chosen randomly and without discount among all those that are possible.



14 Chapter 2. Permutation tests

After generating the values of the statistic T , the values are sorted in increasing order,
to obtained the ordered vector (T(1), .., T(M)). For a significance level α, the test rejects H0

if Tobs ≥ T(k), where T(k) is the quantile that corresponds to k = bB(1 − α)c, the integer
part of B(1 − α). This means that we reject H0 if the observed value Tobs is sufficiently
extreme that it cannot be due only to chance.

Example 2.2.3.1
Let’s do a numerical example to clarify the method.
The observed values are x = (4.3, 6.0, 3.6) and y = (7.4, 5.5, 6.2).
The order statistic vector for combined sample is z(.) = (3.6, 4.3, 5.5, 6.0, 6.2, 7.4).
The possible number of permutations is B =

(
6.0
3

)
= 20.

The Table 2.1 below, presents the different possible values x and y,
given z(.) = (3.6, 4.3, 5.5, 6.0, 6.2, 7.4), as well as the discrete law.

The observed value is Tobs = tobs = |yobs − xobs| = 6.4 − 4.63 = 1.7667 and for each t ∈ T
valued in column 8 of the Table 2.1, we have :

P( T (X, Y ) = t | H0, Z(.) = (3.6, 4.3, 5.5, 6.0, 6.2, 7.4)) =
1

20
(2.9)

Indeed, with the theorem 2.1.1, under H0 all the allocations of the values of the vector
z(.) = (3.6, 4.3, 5.5, 6.0, 6.2, 7.4) between the x and the y values, have the same likelihood:
1/20.

For a significance level α = 0.05 we have k = B(1− 0.05) = 20(1− 0.05) = 19.
Since the observed value Tobs = 1.7667 is greater than the critical value T19 = 1.733, we
can reject the H0.
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Table 2.1: Possible permutations of the two groups of size m= 3 and n= 3

x1 x2 x3 y1 y2 y3 T (x, y) Rank

1 3.6 4.3 5.5 6.0 6.2 7.4 2.067 20
2 3.6 4.3 6.0 5.5 6.2 7.4 1.733 19
3 3.6 4.3 6.2 5.5 6.0 7.4 1.6 18
4 3.6 4.3 7.4 5.5 6.0 6.2 0.8 17
5 3.6 5.5 6.0 4.3 6.2 7.4 0.933 16
6 3.6 5.5 6.2 4.3 6.0 7.4 0.800 15
7 3.6 5.5 7.4 4.3 6.0 6.2 0 14
8 3.6 6.0 6.2 4.3 5.5 7.4 0.467 13
9 3.6 6.0 7.4 4.3 5.5 6.2 −0.333 12
10 3.6 6.2 7.4 4.3 5.5 6.0 −0.333 11
11 4.3 5.5 6.0 3.6 6.2 7.4 −0.467 l0
12 4.3 5.5 6.2 3.6 6.0 7.4 0.333 9
13 4.3 5.5 7.4 3.6 6.0 6.2 −0.467 8
14 4.3 6.0 6.2 3.6 5.5 7.4 0 7
15 4.3 6.0 7.4 3.6 5.5 6.2 −0.800 6
16 4.3 6.2 7.4 3.6 5.5 6.0 −0.933 5
17 5.5 6.0 6.2 3.6 4.3 7.4 −0.800 4
18 5.5 6.0 7.4 3.6 4.3 6.2 −1.6 3
19 5.5 6.2 7.4 3.6 4.3 6.0 −1.733 2
20 6.0 6.2 7.4 3.6 4.3 5.5 −2.067 1





Chapter 3

Fundamentals of the Interval-Wise
Testing Procedure

The Interval-wise testing procedure, the so-called IWTP , is fundamentally a statistical
test, based on functional data. So the main goal is to test some features of functional data
along their definition domain. These features tested, are embedded in the hypotheses
denoted, as usual, by H0 (the null) versus H1 (the alternative).

3.1 Theoritical principles of the IWT

The IWTP is a local inferential method that consists in a domain selection (intervals
selection) of the underlying functional data to be tested, in order to know where in the
domain the null hypothesis H0 has to be rejected. This type of test relies directly on
the functional data themselves (which can have been smoothed beforehand), without any
projection of the data on any functional basis (e.g Fourier basis, B-splines basis). The
outputs of the procedure are basically what we will call:
The Unadjusted p-value and the Adjusted p-value.

So one can ask how this kind of test can be implemented? What is the cost of such a test?
With which precision the test is expected to be performed? We will consider, as it is done
in the package, tests performed on functional data.

Suppose that, based on the observation of a set of L2 random functions over the domain
T = (a, b) ⊂ R. Our goal is to test two hypotheses H0 vs H1, relative to some features, on
the whole domain, the classic:

H0 vs H1 (3.1)

17
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To do so we will considered tests on sub-intervals of the domain, i.e we will reduce the test
to many sub-tests on each interval as it is described below.

Let I =⊂ T be an interval or a complementary interval of the form:
I = (t1, t2) or I = T \ (t1, t2) respectively, with a ≤ t1 < t2 ≤ b.

And let us define HI
0 and HI

1 as being the restriction of the null and alternative hypotheses
on I, respectively.

Example 3.1.1
With a two-populations mean comparison test, the reduced test on I can be written as
follows:

HI
0 : µI1 = µI2 vs HI

1 : µI1 6= µI2 (3.2)

The corresponding p-value of this I-reduced test is denoted by, pI .

Let’s now give two fundamental definitions:

Definition 3.1.1 ∀t ∈ T we define the unadjusted p-value p(t) :

p(t) = limsup
I→t

pI (3.3)

I → t : when both extremes of I converges to t.

Definition 3.1.2 ∀t ∈ T we define the adjusted p-value ∼p(t) :
∼
p(t) = sup

I3t
pI (3.4)

So it is the supremum of all p-values pI over all I (where I can be both interval or com-
plementary interval) s.t t ∈ I .

The unadjusted p-value function p(t) and the adjusted p-value function ∼p(t) present dif-
ferent inferential properties with respect to both type-I error control and consistency.

Here we set two fundamental theorems that show that the IWTP is guaranteeing a
control on the type-I error (an interval-wise control)

Theorem 3.1.1. The unadjusted p-value function p(t) provides a control of the point-wise
error rate:

∀α ∈ (0, 1), ∀t ∈ T s.t ∃I, t ∈ I : HI
0 true⇒ P(p(t) ≤ α) ≤ α (3.5)

Theorem 3.1.2. The adjusted p-value function
∼
p(t) provides a control of the interval-wise

error rate:

∀α ∈ (0, 1), ∀t ⊆ T : HI
0 true⇒ P(∀t ∈ I, ∼p(t) ≤ α) ≤ α (3.6)
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To sum up, the first theorem is saying that when assessing the test and making a
decision by thresholding the unadjusted p-value p(t) by α for every point t of the domain,
then we have that the point-wise type-I error (H0 is rejected in t, whereas H0 is true in t)
is controlled (≤ α) for this t.

On the other side, the second theorem is saying that when assessing the test and making
a decision by thresholding the adjusted p-value ∼p(t) by α for every interval I of the domain
such that t ∈ I , then we have that the interval-wise type-I error (H0 is rejected in the
whole I, whereas H0 is true in I) is controlled (≤ α).

It is also worth noticing, that the adjusted and unadjusted p-values are consistent, it is to
say, when the sample size n→ +∞, the type-I error rate goes to 0.

3.2 Details and Implementation of the IWTP

The time domain where are defined the functional data, is discretized into p evaluation
points. Each of the data function is evaluated on this time-grid.

The goal of this section is to show up how the adjusted and unadjusted p-values of func-
tional test are computed in each function of the package.

3.2.1 Unadjusted p-values computation

Here in this subchapter we will consider, the p univariate tests (marginal tests), to be
performed on each points of the evaluation grid, denoted by : Hi, i = 1, .., p.

We define the T0 statistic computed on the original data, as the vector of each statistic of
the p univariate tests, denoted as follows:

T0 =
[
TH1 . . . . . . . . . THp

]
(3.7)

And then, the matrix T where each row i corresponds to the vector of the statistic of the
p univariate test, computed on a σi-permuted dataset.

T =



THσ1
1 . . . . . . . . . THσ1

p
... . . .

... . . .
...

... . . . THσi
j . . .

...
... . . .

... . . .
...

THσB
1 . . . . . . . . . THσB

p

 (3.8)
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For every i ∈ [p : 1] (more generally i ∈ [p : maxrows], where maxrows is a scale parameter
that determines the depth of the interval-wise testing procedure), and for every j ∈ [1 : p],
we define :

T0,comb = THj + · · ·+ THp−i+j ∈ R. (3.9)

T0,comb is computed (and updated) at each iteration, i.e for each couple (i, j) . It computes
the multivariate test on the original dataset (without any permutation).

Tcomb :=



THσ1
j + . . . + THσ1

p−i+j
...

...
...

...
...

...
...

...
...

THσB
j + . . . + THσB

p−i+j

 ∈ RB×1. (3.10)

So, as for T0,comb, a new value of Tcomb is computed (and updated) at each iteration,
i.e for each couple (i, j). For a given couple (i, j), each component (Tcomb)k of the B-
dimensional vector Tcomb, is composed by the sum of the jth statistic, THσk

j , associated to
the kth permutation σk; until the (p− i+ j)th statistic, THσk

p−i+j, for the same permutation
σk.

Remark It is relevant to note that in the Tcomb vector (T0,comb scalar) the index j char-
acterizes the starting point of the sum, so beginning with the test number j. On the
other side, the index i characterizes the size of the sum, i.e the size of the combination of
successive tests involved in the sum.

From this observation we can deduce that varying i and j we obtain all the possible
tests combinations (starting from every point and with all possible sizes). The next step is
the construction of the p-values of the tests (Hj ∩ ... ∩Hp−i+j)(i,j), so one p-value, denoted
by pl,m, for each couple (l,m) ∈ [1..p]2 and associated for a given test (Hm ∩ ... ∩Hp−l+m).

Here intervene the Monte-Carlo procedure over B (permutations number) as the intrinsic
method for the approximate computation of these p-values.

To do so, we compare for each couple (i, j) the two quantities:

Tcomb ≥ T0,comb (3.11)
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i.e 

THσ1
j + . . . + THσ1

p−i+j
...

...
...

...
...

...
...

...
...

THσB
j + . . . + THσB

p−i+j

 ≥ THj + ...+ THp−i+j (3.12)

Remark This encloses the basic comparison of the two statistics on the permuted data
TB and on the original dataset T0 : TB ≥ T0

To create the p-values, i.e the probability that the permuted statistic exceeds the orig-
inal statistic, we will compute an empirical probability.

To do such computation it is necessary to count out the number of the occurrences:

(Tcomb)k ≥ T0,comb(k ∈ [1..B]) (3.13)

We encode this occurrence by 1 and by 0 for the opposite, and retrieve an B-dimensional
vector of 0 and 1 :

V :=



1

0

0

1
...
0


(3.14)

Finally we get all the p-values :

pi,j =
1

B

B∑
k=1

Vk (3.15)

These p-values are stored into a combination matrix P := [pi,j](i,j) ∈ Rp×p

P :=

p1,1 . . . . . . p1,p

... . . . . . .
...

pp,1 . . . . . . pp,p

The last row in gray corresponds to p-values of marginal tests (or univariate tests) i.e
every test: Hj (last row jth column). We can establish the following definitions:

Definition 3.2.1.1 We call the set {pp,1, . . . , pp,p}, the set of unadjusted p-values.
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3.2.2 Adjusted p-values computation

Now we will undertake the computation of the adjusted p-values, that guarantees the
interval-wise control on the type-I error provided the IWT procedure.

Once we get P, we create a concatenate version of this p-values matrix, denoted by:

P2× :=
[
P | P

]
∈ Rp×2p (3.16)

P2× :=

p1,1 . . . . . . p1,p p1,1 . . . . . . p1,p

... . . . . . .
...

... . . . . . .
...

pp,1 . . . . . . pp,p pp,1 . . . . . . pp,p

Marginal p-values are coloured in gray. Then we re-affect a row-reverted version to P2×:

P2x ← P2x[, 2p : 1]

That is:

P2× :=

p1,p . . . . . . . . . p1,1 p1,p . . . . . . . . . p1,1

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

pp,p . . . . . . . . . pp,1 pp,p . . . . . . . . . pp,1

The cause of this row-reverting is just to have the right tests combinations, for every column
k, i.e for every kth evaluated point of our functional data.

We define the matrix Padj, visually, as follows:

(Padj)i,j := max[Blue cells]

P2× :=

p1,p . . . . . . . . . p1,1 p1,p . . . . . . . . . p1,1

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . (i, j) . . .
...

... . . . (i, p− i+ j) . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

pp,p . . . (p, j) . . . pp,1 pp,p . . . . . . . . . pp,1
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Explanation : Let k be an evaluation point index, of the grid. Then we define here
the so-called m-variate test for the point k.

• univariate test : Hk
0

• bivariate tests :Hk−1
0 ∩Hk

0 , H
k
0 ∩Hk+1

0

• 3-variate tests :Hk−2
0 ∩Hk−1

0 ∩Hk
0 , H

k−1
0 ∩Hk

0 ∩Hk+1
0 , Hk

0 ∩Hk+1
0 ∩Hk+2

0
...

• p-variate test (global test): ∩
i=1..p

H i
0

So for a row i, we compute for each column j the maximum of the p-values, for univariate
tests (row p), bivariate tests (row p− 1),.., (p− i+ 1)-variate tests (row i), that all contain
the evaluation point j.

A practical example is given below, to explain this procedure phase, when it comes
to the last row computation. The last row (until maxrows, in reality) assessment, in the
computation of Padj, will provide the adjusted p-values.

And so at the end, the algorithm that computes the p-value adjusted matrix is composed
of p steps. At each step the blue triangle is moving to the right side, with path 1, on the
gray rail (i.e starting from pp,p until pp,1).
Furthermore, at each step the algorithm, moving up on the blue lines, computes the ad-
justed p-value corresponding to the blue block or more precisely to the corresponding
evaluation point j. And at each step, this adjusted p-value is stored in the top left-hand
corner of the blue triangle (in the right angle).

P2× :=

p1,p . . . . . . . . . p1,1 p1,p . . . . . . . . . p1,1

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

pp,p . . . . . . . . . pp,1 pp,p . . . . . . . . . pp,1

Figure 3.1: First step of the algorithm.
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P2× :=

p1,p . . . . . . . . . p1,1 p1,p . . . . . . . . . p1,1

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

pp,p . . . . . . . . . pp,1 pp,p . . . . . . . . . pp,1

Figure 3.2: Second step of the algorithm.

P2× :=

p1,p . . . . . . . . . p1,1 p1,p . . . . . . . . . p1,1

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

pp,p . . . . . . . . . pp,1 pp,p . . . . . . . . . pp,1

Figure 3.3: Last step of the algorithm.

Remark The last column is redundant and is not used in the procedure. It can be cut
when encoding the matrix.

Example : First step of the algorithm Figure 3.1
For each i we compute the maximum p-value of the corresponding tests written below
(blue cells). For i+ 1, the maximum p-value found in i is compared with the new p-values
of the tests computed in i+ 1.

i=p : (univariate test)

• Hp

i=p-1 : (univariate test) ∪ (bivariate tests)

• Hp

• Hp ∩H1 and Hp−1 ∩Hp

...

i=1 : (univariate test) ∪ (bivariate tests) ∪ ... ∪ (p-variate tests)

• Hp
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• Hp ∩H1 and Hp−1 ∩Hp

• ...

• Hp ∩H1,..,∩Hp−1 ; Hp−1 ∩Hp ∩H1,..,∩Hp−2 ... until H1∩,..,∩Hp

So here we see that the first blue triangle on the right side produces the adjusted p-value
of the pth evaluation point (with interval-wise control of type-I error), on the 1st row, 1st
column.

The algorithm gives the Padj matrix of adjusted p-values:

Padj :=

adjpval(p) . . . . . . . . . adjpval(1)

... . . . . . . . . .
...

... . . . . . . . . .
...

... . . . . . . . . .
...

pp,p . . . . . . . . . pp,1

Figure 3.4: Adjusted p-values matrix.

From which we can retrieve our vector of the p adjusted p-values for each evaluation point:

Definition 3.2.1.2
We called the vector: adjusted_pval := [adjpval(1), ..., adjpval(p)],
vector of the adjusted p-values.

3.2.3 Recycling and Non Recycling Procedure

As we will see in the next chapter, every functions of the package is passing an argu-
ments called recycle. By default it is TRUE. It indicates the way the IWTP is performed,
i.e with recycles or without.

The whole version of the IWTP explained in the previous section was the recycling one.

The basic difference between the two versions is that the recycle=TRUE version considered
intervals and also complementary intervals, whereas the recycle=FALSE focuses only on
intervals, excluding the complementary.

Illustration
We consider here, for sake of simplicity, a grid with just three points, i.e p = 3.

The following figures presented the hypotheses tested in the two versions of the IWTP:
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Figure 3.5: Hypotheses tested in the IWTP without recycle, presented with its typical
pyramidal mesh.

Figure 3.6: Hypotheses tested in the IWTP with recycles, presented with its typical
rectangular cyclic mesh.

We remark that in the non recycling procedure, in Figure (3.5), H2 is involved in four
tests (H2, H12, H23, H123) whereas H1 and H3 are each one involved in just three tests. So
this strategy favours clearly points that are located in the middle of the domain. Extreme
points are less tested, and so the extremal hypotheses associated are more inclined to be
rejected.

But the improved version of the IWTP with recycles, in Figure (3.6),can solve this problem.
With the recycling version, for a given grid with p points, each point is tested the same
number of times: p(p+1)

2
.

Furthermore, the interval-wise error rate is controlled not only on the intervals but also on
the complementary intervals.
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Package Functions Description

4.1 One- and Two-populations testing

The goal of the functions IWT1.R and IWT2.R, is to compare the means of a func-
tional population with a reference mean (IWT1.R) or with the mean of another functional
population (IWT2.R).

In formal form, given a reference mean µ0, we test:

IWT1.R : H0 : µ = µ0 vs H1 : µ
<

6=
>
µ0 (4.1)

IWT2.R : H0 : µ1 − µ2 = µ0 vs H1 : µ1 − µ2

<

6=
>
µ0 (4.2)

The principle of the method applied here, is described in detail, in section (2.2.3).

Then the IWTP and permutation tests, described above, can be applied for the interval
selection of the functional domain.

Application:
We launch the following instance of the IWT2.R:

IWT2(functional_data1 ,functional_data2 ,mu=0,
B=1000, paired=FALSE ,recycle=FALSE ,IW_scale =100)

where functional_data1 and functional_data2 are the functional data, as fd object,
every day, during 22 years, in Milan and Paris, respectively.The argument µ corresponds
to the mean difference to be tested.

The results can be summarized with the plots obtained with the IWTimage.R function:

27
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Figure 4.1: Functional data, adjusted and heatmap p-values, rejection of H0 in gray
(IWT2).

Figure 4.2: Zoom on the heatmap of p-values, p-value heat-level indicated on the right
scale (IWT2).
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4.2 Permutations method on Linear Models/ANOVA

The functions IWTlm.R, IWTlm_FoF.R and IWTaov.R aim at computing an adjusted
p-value to select significant intervals where the null hypothesis can be rejected at a certain
significance level, and this, for two different types of tests.

These tests are designed to test the significance of the coefficients (the effects) of the linear
model, they are called global test and partial test (cf. sub-chapter below).

Functions IWTlm.R, IWTlm_FoF.R and IWTaov.R are also passing an argument called
method that provides the way to assess the permutations on the data.

Two arguments can be chosen, ’responses’ (Manly’s method) and ’residuals’ (Freed-
man and Lane method).

Example 4.2.1

IWTlm(formula ,B = 1000, method = ’residuals ’)

4.2.1 Global test and Partial test in regression

The general linear model used here, and in the rest of the document, is the following:

Yi = β0 +
L∑
l=1

βl.Xl,i + εi (4.3)

Ordinary, parametric assumptions would have considered that the errors were dis-
tributed according to a given law, generally the normal law. Here in the non-parametric
framework, the environment is different. We will, further, consider a semi-parametric form
of the linear regression, i.e expressed in terms of the parameters βl, but with the distribu-
tion of the errors ε, which is not expressed.

The only assumption of the semi-parametric model is the following:

• The errors are independent and identically distributed from a zero-mean random
variable.

So let’s first talk about the global test. It is designed with the confrontation of the two
following hypotheses:

H0 : β1 = β2 = ... = βL = 0 vs H1 : ∃l ∈ [1, .., n], βl 6= 0 (4.4)
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In other words, we want to test the hypothesis that the response variable Y is independent
of the Xi variables against the assumption that Y is (linearly) linked to almost one of the
Xi variables.

To assess such a test we can use the F-test statistic (Johnson, 1992):

TF (Y ) =

n∑
i=1

(ŷi − Y )2/(L− 1)

n∑
i=1

(ŷi − Yi)2/(n− L)
(4.5)

Researchers are often interested in specific assumptions about partial regression coeffi-
cients, for example, for a given k ∈ [1, ...L].:

H0,k : βk = 0 vs H1,k : βk 6= 0 (4.6)

In fact, we want to know whether the variable Xk explains a part of the Y variability,
taking into account the effect of the concomitant other variables Xi, i 6= k, which can be
related to Xk.

In that case, if the classic parametric assumptions of the model are verified and if we
condition with respect to the Xi, i ∈ [1, ..., n] , the statistical familiar parametric t-test
takes the usual form described by the following equation:

tβk =
β̂k

σ(β̂k)
∼ T (n− L− 1) (4.7)

where β̂k is the least squares estimator of the regression coefficient βk, σ(β̂k) is the estimator
of its standard deviation and T (n−L− 1) represents the law of the t-Student distribution
with (n− L− 1) degrees of freedom.

But when the conditions of the multiple linear regression models are not respected,
parametric tests are not reliable.
Here and in the next part intervenes the permutation test. And so to remedy this situation,
several researchers have proposed approximate the tests with permutation techniques that
requires few assumptions on the linear model features.

That’s the case with Freedman and Lane (1983), Manly (1997) who developed different
permutation methods to assess test on linear model in non-parametric or semi-parametric
framework. We will study these methods in the following. But let us focus on the particular
interest of the permutation test in regression.
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4.2.2 Interest of the permutation test in regression

Let’s take a simplified multiple regression model with two predictors, without loss of
generality.

Suppose we have measured three variables (X1, X2, Y ) for n individuals and we observed
(x1,i, x2,i, yi), i = 1, .., n. For simplicity and without loss of generality, suppose that these
variables have null expectations, µX1 = µX2 = µY = 0. The regression model multiple of
Y on X1 and X2 is then defined by the following equation:

Y = β0 + β1X1 + β2X2 + ε (4.8)

where Y is a random variable to be explained, X1 and X2 are explanatory variables, β1 and
β2 are the partial regression coefficients and ε is the random error. The usual assumptions
for the use of the multiple linear regression model are:

• Random errors εi, i = 1, ..n are i.i.d variables distributed according to N (0, σε2)

• The errors εi are independent of the vectors of explanatory variables (X1, X2), i =

1, .., n.

On the other hand, in inference, we condition with respect to X1 and X2, and assume X1,i

and X2,i fixed, i = 1, .., n. Note that we can consider a little more general assumptions as
following:

• Random errors ε are identically distributed variables of symmetric law with respect
to 0 and such that cov(εi, εj) = 0, i 6= j

• cov(X1,i, εi) = cov(X2,i, εi) = 0, ∀i

But when these assumptions are not verified, the former parametric tests enunciated
above (F-test, t-tests) cannot hold in their usual standard parametric forms. The permu-
tation tests can overcome that problem. Here is the main idea:

We must first, know which variables are exchangeable under the null hypothesis.

For example, in the global test, the model, under H0 : β1 = β2 = 0, becomes:

Yi = εi (4.9)

And then, the necessary assumption and sufficient to make the permutation test (the
exchangeability of Yi) is verified. So, under H0, the variables X1 and X2 are not connected
linearly and any pairing of the values of X1 and X2 is equiprobable.
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So, by permuting the yi values, we get n! permutations possible, keeping fixed the x1,i and
x2,i of the couples {(xj,1, y1), ..., (xj,n, yn) | j = 1, 2} which are all equiprobable, under the
null hypothesis.

So, under the null hypothesis, Y has no relation with X1 and X2 taken together. That
means, that for fixed values X1,i = x1,i and X2,i = x2,i, one can obtain any values of Yi.
In other words, if we take any permutations π ∈ Π, all the triples (yπi , x1,i, x2,i) where (yπi
corresponds to the π-permuted yi, are equiprobable (conditionally to the order statistics
of yi, i = 1, ..n).

After generating and sorting in increasing order the B (B < n!) values of the F-statistic,
H0 is rejected if Fobs ≥ F(k) where F(k) is the quantile that corresponds to k = bB(1−α)c,
the integer part of B(1− α).

But in addition, we see that for the global test (F-test), according to the equation (4.7)
the permutation, under the null hypothesis, can be assessed either on the response Y or
on the residuals ε.

But to carry out partial tests, the permutation approach must be specify. This is the
object of the next paragraph.

4.2.3 Manly’s method: permutation on the responses

The following instances corresponds to Manly’s methods:

IWTlm(formula ,B = 1000, method = ’responses ’)
IWTlm_FoF(formula ,B = 1000, method = ’responses ’)
IWTlmaov(formula ,B = 1000, method = ’responses ’)

We suppose here , for sake of simplicity, to study the linear model (4.6), with the semi-
parametric assumptions, here it is:

Y = β0 + β1X1 + β2X2 + ε

We suppose also to want to assess the partial test :

H0 : β2 = 0 vs H1 : β2 = 0 (4.10)

that corresponds to the reduced model:

Y = β0 + β1X1 + ε (4.11)
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The following five steps, give the details of the Manly permuting method:

1. The Variable Y is regressed on X1 and X2 together (using least squares) to obtain
an estimate β̂2 of β2 and a value of the usual t-statistic, tref for testing β2 = 0 for
the real data. We hereafter refer to this as the reference value of t.

2. The Y values are permuted randomly to obtain permuted values Y π.

3. The Y π values are regressed on X1 and X2 (unpermuted) together to obtain an
estimate β̂2

π
of βπ2 and a value of t∗ for the permuted data.

4. Steps 2-3 are repeated a large number of times, yielding a distribution of values of
tπ under permutation.

5. The absolute value of the reference value tref is placed in the distribution of absolute
values of tπ obtained under permutation (for a two-tailed t-test). The probability is
calculated as the proportion of values in this distribution greater than or equal, in
absolute value, to the absolute value of tref .

4.2.4 Freedman and Lane: permutation on the residuals

The following instances corresponds to Freedman and Lane methods:

IWTlm(formula ,B = 1000, method = ’residuals ’)
IWTlm_FoF(formula ,B = 1000, method = ’residuals ’)
IWTlmaov(formula ,B = 1000, method = ’residuals ’)

We start with the same assumptions as the previous part, on Manly’s method.
We suppose here, for sake of simplicity, to study the linear model (4.6), with the semi-
parametric assumptions, here it is:

Y = β0 + β1X1 + β2X2 + ε

We suppose,one more time, to want to assess the partial test :

H0 : β2 = 0 vs H1 : β2 = 0 (4.12)

that corresponds to the reduced model:

Y = β0 + β1X1 + ε (4.13)

But we see that here, under the null hypothesis, the data Y are no longer exchangeable,
due to the presence of the other covariates X1. The errors ε of the reduced regression
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model (4.11) are the only exchangeable quantities. The main problem is that the εi are
theoretical quantities, and so are unknown.

A common solution is based on exchanging the residuals êi estimated from the model
(4.11) instead of the errors εi. This solution leads to an asymptotically correct permutation
test, as the residuals are asymptotically exchangeable quantities.
Here is the following steps.

1. Estimate the full model (4.6)

2. Calculate the t-tests statistics for the effect of the covariate considered in the partial
test, i.e β̂2, its value is denoted by t0

3. Estimate the reduced model (4.11), and save the residuals êi

4. We repeat the following B times:

• Permute the residuals of the reduced model (4.11)

• Calculate the permuted responses, by adding the permuted residuals êπi to the
fitted value of the model (4.11) as follows:

Y π = β̂0 + β̂1X1 + êπi (4.14)

where the βk,π correspond to the OLS estimation obtain in the step 3.

• Estimate the full model (4.6) with the permuted responses Y π.

• And then, evaluate the t-test statistic for the effect, β̂2, of the covariate of
interest X2, its value is denoted by tπ.

5. Evaluation of the p-value of the test as the proportion of permuted scenarios in which
the test statistic tπ exceeds t0: Let B a subset of B permutations.

p− value =
Card{tπ ≥ t0 | π ∈ B}

B
(4.15)

4.3 Linear Models

A General Linear Model, can be written as follows:

Let the responses are denoted by the variable Y and the observations (yi,j)i,j, i = 1, .., n

and j = 1, .., J . With n the number of individuals in the experience, and J the number of
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classes or groups in the experiment design. Then, all the data obtained from Y variable,
are pooled in the same pooled vector denoted from now Y , s.t :

Y :=



y1,1

y2,1
...
yn,1
y1,2
...

yn,J


∈ R(n∗J)×1 (4.16)

We decide, for example, to explain Y with p explanatory variables Xk, k = 1, .., p.
In indices-form the model is expressed as follow:

Yi = β0 + β1Xi,1 + ...+ βpXi,p + εi (4.17)

In matrix-form:

Y = Z.β + ε (4.18)

Where :

Z =


1 x1,1 . . . x1,p
...

...
...

...
...

...
...

...
1 xn,1 . . . xn,p

 ∈ Rn×(p+1) (4.19)

The matrix Z, is called design matrix of the model.

In R, it is obtained as output of model.matrix(formula). The functions working
on regression model (IWTlm.R, IWTlm_FoF.R and IWTaov.R) all compute, beforehand, the
design matrix of the model, to handle more easily the different computations (model fitting)
linked to the permutations tests.

In ANOVA framework, covariates are factors of different levels, we will use the so called
dummy variables, and end up with a special design matrix. The details will be given in
the corresponding section ANOVA.

4.3.1 Linear Model: Functional-on-Scalar

We start by defining the model:

Y = Zscal.β + ε (4.20)
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In this case, Zscal refer to a design matrix made with scalar covariates, i.e n-dimensional
vectors.

And the response Y is a functional variable, and therefore can be either represented by a
n× p matrix (n: individuals , p: times scale discretization) or an fd object.

Then from this model, IWTP and permutation tests, described above, can be applied for
the intervals selection of the functional domain.

Application:
We launch the following instance of the IWTlm

IWTlm(formula= data ~ lab1 + lab2 ,
B = 1000,
method = ’residuals ’,
dx=NULL ,
recycle=TRUE ,
statistic=’std’,
IW_scale= 100)

where data is functional matrix or an fd object, gathering the temperature every day,
during 22 years, in Milan and Paris. lab1 and lab2 are two scalar variables created as
follows:

lab <- c(rep(0,22),rep (1 ,22))
lab1 <- lab
lab2 <- factor(rep (1:3 ,15)[ -45])

The variable lab2 is interpreted as factor, with three levels (1, 2 and 3). The three
factor levels appear as dummy variables in the design matrix. To bring precision on the
levels, as it happens with the first level 1, is taken as a reference level and doesn’t appear
in the design matrix.

Indeed, this to keep the design Z matrix being of rank p (regularity condition to allow ZtZ

being invertible).That’s why the t-test are performed on the levels 2 and 3 of the textttlab2
(lab22, lab23 in the graphics).

This important role plays by dummy variables will be specified in more details in the
section ANOVA.

The results and their interpretation can be visualized with the plots:
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Figure 4.3: Functional data plot and the global F-test, rejection of H0 in gray (IWTlm).

Figure 4.4: Adjusted and unadjusted (dotted) p-values for the global F-test, rejection of
H0 in gray (IWTlm).
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Figure 4.5: Partial t-test on lab1, rejection of H0 in gray (IWTlm).

Figure 4.6: Adjusted and unadjusted (dotted) p-values for the partial t-test of lab1,
rejection of H0 in gray (IWTlm).
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Figure 4.7: Partial t-test on lab22 factor level, rejection of H0 in gray (no rejection here)
(IWTlm).

Figure 4.8: Adjusted and unadjusted (dotted) p-values for the partial t-test of lab22
factor level, rejection of H0 in gray (no rejection here) (IWTlm).
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4.3.2 Linear Model: Functional-on-Functional

As in the previous, section we start by defining the model:

Y = Zfunc.β + ε (4.21)

In this case, Zfunc refers to a design matrix of functional variables (and that can be
mixed with scalar), can be either represented by a n× p matrix or fd object if functional,
or n-dimensional vector if scalar.

And the response Y is a functional variable, and therefore can be either represented by a
n× p matrix (n: individuals, p: times discretization points) or an fd object.

Then from this model IWTP and permutation tests, described above, can be applied for
the intervals selection of the functional domain.

Application:
We launch the following instance of the IWTlm_FoF
IWTlm_FoF(formula= data1 ~ years + data2 , IW_scale= 100)

where the data are represented as follows:
years <- 1:22
data1 <- NASAtemp\$milan
data2 <- NASAtemp\$paris

Figure 4.9: Functional data plot and the global F-test, rejection of H0 in gray
(IWTlm_FoF).
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Figure 4.10: Adjusted and unadjusted (dotted) p-values for the global F-test, rejection of
H0 in gray (IWTlm_FoF).

Figure 4.11: Partial t-test on data1, rejection of H0 in gray (IWTlm_FoF).
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Figure 4.12: Adjusted and unadjusted (dotted) p-values for the partial t-test of data1,
rejection of H0 in gray (IWTlm_FoF).

We add the following example: the test of data1 ∼ years, to highlight the effects of
the variables years, and be sure that it has not been masked by the other covariate data2:
IWTlm_FoF(formula= data1 ∼ years, IW_scale= 365)

Figure 4.13: Partial t-test of years, rejection of H0 in gray (IWTlm_FoF).
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Figure 4.14: Adjusted and unadjusted (dotted) p-values for the partial t-test of years,
rejection of H0 in gray (IWTlm_FoF).

As we see on the last graph, there is no rejection zone (in gray) plotted. So the hypothesis
H0 : βyears = 0, is interval-wise accepted on the functional domain.
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4.4 ANOVA

The implemented function IWaov.R implements the IWTP in the framework of an ANOVA
regression, which is named MANOVA when the analysis of variance deals with models
where the dependent variables are multivariate. In our study, we are also very interested
in the case where the data are functional (fd object in the package fda), we talk about
FANOVA.

The formal model of a FANOVA is:

Yi,j(t) = µ(t) + αj(t) + εi,j(t) (4.22)

where Yi,j(t) is the responses data corresponding to the individuals i in group j at time
t, µ(t) is the intercept at time t and corresponds to the great mean (over all individuals
and groups), αj(t) to the mean (the effect over Y ) of the group j at time t, and finally the
unexplained variability is gathered into the errors εi,j.

For sake of simplicity we will take the example of 3 levels for the factors αj
(i.e j = 1, ..., 3), so denoted at time t by : α1(t), α2(t), α3(t). And considered n = 6

individuals, with two individuals by groups, i.e in the following pooled vector:

Y :=



y1,1

y2,1

y3,2

y4,2

y5,3

y6,3

 ∈ R6×1 (4.23)

We recall the usual regression design matrix-form equation:

Y = Z.β + ε (4.24)

In our case we can write it as follows:

Y =



1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

 .

µ(t)

α1(t)

α2(t)

α3(t)

+ ε (4.25)

In this design the covariates are encoded for each levels with 0 and 1, they are called
dummmy variables. And so we see that this model can be put in standard matrix form
(equation 4.22), with:

β0(t) = µ(t), β1(t) = α1(t), β2(t) = α2(t), β3 = α3(t) (4.26)
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But a problem can arise from that design form:

In that case the design matrix has the property that the sum of columns 2,3,4 will
equal the first column for the intercept. So therefore the linear model is no more regular
(i.e with Z no more injective).
As consequence, the coefficients β(t) cannot be identified uniquely when performing the
least square minimization:

argmin
β

LMSSE(β) = ||Y − Z.β||2 (4.27)

The solution is to perform such a minimization under a colinearity constraint, as follows:

argmin
β

LMSSE(β) = ||Y − Z.β||2 s.t
3∑
j=1

βj = 0 (4.28)

Note that the constraint is equivalent to
3∑
j=1

βj = 0.

In practice, the design returned is regular, i.e one factor level is omitted from the coding.
It does not matter which one we eliminate, although some refer, in certain cases, to the
eliminated level as a ‘reference’ level. Then from this model IWTP and permutation tests,
described above, can be applied for the interval selection of the functional domain.

Application:
We launch the following instance of the IWTaov:
IWTaov.result<-IWTaov(formula= data∼lab1 + lab2, IW_scale=365)

where data is functional matrix or an fd object, gathering the temperature every day,
during 22 years, in Milan and Paris. lab1 and lab2 are two factors of respectively two
and three levels created as follows:

lab <- c(rep(0,22),rep (1 ,22))
lab1 <- lab
lab2 <- factor(rep (1:3 ,15)[ -45])

The results and their interpretation can be visualized with the plots obtained with the
IWTimage.R function:
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Figure 4.15: Functional data, adjusted and heatmap p-values, rejection of H0 in gray
(IWTaov).

Figure 4.16: Zoom on the heatmap of p-values for the global test, p-value heat-level
indicated on the right scale (IWTaov).
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Figure 4.17: Zoom on the heatmap of p-values the partial tests on the 1st factor, p-value
heat-level indicated on the right scale (IWTaov).

Figure 4.18: Zoom on the heatmap of p-values the partial tests on the 2nd factor, p-value
heat-level indicated on the right scale (IWTaov).
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The function produces also the following design matrix obtained with:
IWTaov.result$design_matrix

Table 4.1: ANOVA design_matrix

(Intercept) lab1 lab22 lab23

1 1 0 0 0

2 1 0 1 0

3 1 0 0 1

4 1 0 0 0

5 1 0 1 0

6 1 0 0 1

7 1 0 0 0

8 1 0 1 0

9 1 0 0 1

10 1 0 0 0

11 1 0 1 0

12 1 0 0 1

13 1 0 0 0

14 1 0 1 0

15 1 0 0 1

16 1 0 0 0

17 1 0 1 0

18 1 0 0 1

19 1 0 0 0

20 1 0 1 0

21 1 0 0 1

22 1 0 0 0

23 1 1 1 0

24 1 1 0 1
...

...
...

...
...

44 1 1 1 0

So as we said before, it is interesting to remark that the second column corresponds to
the first covariate lab1 defined as a standard scalar variables, and that the two following
columns correspond to the 2 and 3 level of the variable lab2, encoded as dummy variables
(with 0 and 1).
The level 1 does not appear to preserve the regularity condition of the model, and can be
interpreted as a ’reference’ variable.
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IWT1 One population Interval-Wise Testing Procedure

Description

The function implements the Interval-Wise Testing Procedure for testing the center of symmetry
of a functional population evaluated on a uniform grid. Data are functional represented by means
of matrix or object of class fd (package "fda") and the significance of each evaluation point of
the functional population with respect to the center of symmetry, is tested with a control of the
interval-wise error rate.

Usage

IWT1(data, mu = 0, B = 1000, dx = NULL, recycle = TRUE, IW_scale = 2)

Arguments

data Pointwise evaluations of the functional data set on a uniform grid, in the form
of matrices (1) or functional data objects (2). (1). Matrix of dimension c(n,p)
containing the evaluations of functional data on the grid, where n is the sample
sizes and p is the number of grid points. (2).Object of class fd (package "fda")

mu The center of symmetry under the null hypothesis: either a constant (in this case,
a constant function is used) or a p-dimensional vector containing the evaluations
on the same grid where data are evaluated. The default is mu=0.

B The number of iterations of the MC algorithm to evaluate the p-values of the
permutation tests. The default is B=1000.

dx Uniform discretization grid step size, for objects of class fd. The default is
dx=NULL.

recycle Flag indicating whether a recycled version of IWT has to be performed. The
default is recycle=TRUE.

IW_scale Scale parameter that determines the depth of the interval-wise testing procedure:
maxrows. maxrows= p-IW_scale+1 defines the maximum size of the permuta-
tion intervals use in the testing procedure.

Value

IWT1 returns an object of class "IWT1". An object of class "IWT1" is a list containing at least the
following components:

test String vector indicating the type of test performed. In this case equal to "1pop".

mu Center of symmetry under the null hypothesis (as entered by the user).

adjusted_pval Vector of adjusted p-values evaluated on the same grid as functional data.
unadjusted_pval

Vector of unadjusted p-values evaluated on the same grid as functional data.

pval_matrix Matrix of dimensions c(p,p) of the p-values of the multivariate tests. The ele-
ment (i,j) of matrix pval_matrix, contains the p-value of the joint NPC test
of the evaluation points (j,j+1,...,j+(p-i)).

data.eval Evaluation of functional data.
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Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2016). The Interval Testing Procedure: A General Framework for Inference
for Functional Data Analysis. MOX-report 2016, Politecnico di Milano

A. Pini and S. Vantini (2017). Interval-wise Testing for Functional Data, Journal of Non-parametric
Statistics,DOI:10.1080/10485252.2017.1306627

See Also

See also ITW2, IWTimage

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

# Data as 'fd' object
library("fda")
m <- 4
p <- dim(data1)[2]
abscissa <- 1:p
bspl_basis <- create.bspline.basis(range(abscissa), norder = m, nbasis = p)
functional_temp <- Data2fd(argvals = abscissa, y = t(NASAtemp$milan), bspl_basis)

# Performing the IWTP for one populations
IWT.result <-IWT1(NASAtemp$paris, mu=4, recycle=TRUE, IW_scale=30)

IWT.result <-IWT1(functional_temp, mu=2, recycle=FALSE, IW_scale=10)

# Plotting the results of the IWT
plot(IWT.result, main='Milan temperatures')

# Plotting the p-value heatmap
IWTimage(IWT.result)

# Selecting the significant points for the radius at 5% level
which(IWT.result$adjusted_pval < 0.05)

IWT2 Two population Interval-Wise Testing Procedure

Description

The function implements the Interval-Wise Testing Procedure for testing the difference between
two functional populations evaluated on a uniform grid. Data are either functional represented by
means of matrix or object of class fd (package "fda") and the significance of each evaluation point
of each functional population with respect to to the other population to be compared, is tested with
a control of the interval-wise error rate.
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Usage

IWT2(data1,data2,mu=0,B=1000,paired=FALSE,dx=NULL,recycle=TRUE,
alternative="two.sided",IW_scale=2)

Arguments

data1 Pointwise evaluations of the first population’s functional data set on a uniform
grid, in the form of matrices (1) or functional data objects (2). (1). Matrix of
dimension c(n1,p) containing the evaluations of functional data on the grid,
where n1 is the sample sizes and p is the number of grid points. (2). Object of
class fd (package "fda")

data2 Pointwise evaluations of the second population’s functional data set on a uni-
form grid, in the form of matrices (1) or functional data objects (2). (1). Matrice
of dimension c(n2,p) containing the evaluations of functional data on the grid,
where n2 is the sample sizes and p is the number of grid points. (2).Object of
class fd (package "fda")

mu The difference between the first functional population and the second functional
population under the null hypothesis. Either a constant (in this case, a constant
function is used) or a p-dimensional vector containing the evaluations on the
same grid which data are evaluated.The default is mu=0.

B The number of iterations of the MC algorithm to evaluate the p-values of the
permutation tests. The default is B=1000.

dx Uniform discretization grid step size, for functional data of class fd. The default
is dx=NULL.

recycle Flag indicating whether a recycled version of IWT has to be performed. The
default is recycle=TRUE.

alternative Set the type of the test alternative hypothese. Possible values are "two.sided",
"less", "greater". The default is alternative="two.sided".

IW_scale Scale parameter that determines the depth of the interval-wise testing procedure:
maxrows. maxrows= p-IW_scale+1 defines the maximum size of the permuta-
tion intervals use in the testing procedure.

Value

IWT2 returns an object of class "IWT2". An object of class "IWT2" is a list containing at least the
following components:

test String vector indicating the type of test performed. In this case equal to "2pop".

mu Center of symmetry under the null hypothesis (as entered by the user).

adjusted_pval Adjusted p-values for each evaluation point.
unadjusted_pval

Unadjusted p-values for each evaluation point.

pval_matrix Matrix of dimensions c(p,p) of the p-values of the multivariate tests. The ele-
ment (i,j) of matrix pval_matrix, contains the p-value of the joint NPC test
of the evaluation points (j,j+1,...,j+(p-i)).

data_eval Matrix of the centered data evaluated on the uniform grid.

ord_labels Vector of labels indicating the group membership of data_eval.
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Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2016). The Interval Testing Procedure: A General Framework for Inference
for Functional Data Analysis. MOX-report 2016, Politecnico di Milano

A. Pini and S. Vantini (2017). Interval-wise Testing for Functional Data, Journal of Non-parametric
Statistics,DOI:10.1080/10485252.2017.1306627

See Also

See also ITW1, IWTimage

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

# Data as 'fd' object
library("fda")
m <- 4
p <- dim(data1)[2]
abscissa <- 1:p
bspl_basis <- create.bspline.basis(range(abscissa), norder = m, nbasis = p)
functional_temp1 <- Data2fd(argvals = abscissa, y = t(NASAtemp$paris), bspl_basis)
functional_temp2 <- Data2fd(argvals = abscissa, y = t(NASAtemp$geneva), bspl_basis)

# Performing the IWTP for two-populations
IWT.result <-IWT2(NASAtemp$paris,NASAtemp$geneva,mu=0,IW_scale=10)

IWT.result <-IWT2(functional_temp1, functional_temp2, mu=0, IW_scale=10)

# Plotting the results of the IWT
plot(IWT.result, main='Paris vs Geneva temperatures')

# Plotting the p-value heatmap
IWTimage(IWT.result, plot_unadjusted=TRUE)

# Selecting the significant points for the radius at 5% level
which(IWT.result$adjusted_pval < 0.05)

IWTaov Interval-Wise Testing Procedure for testing Functional analysis of
variance
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Description

IWTaov is used to fit and test functional analysis of variance. The function implements the Interval-
Wise Testing Procedure for testing for significant differences between several functional population
evaluated on a uniform grid. Data are represented by means of class fd object or embedded in a
matrix of dimensions c(n,p). The significance of each functional evaluation point is tested with a
control of the interval-wise error rate.

Usage

IWTaov(formula,B=1000,method='residuals',dx=NULL,recycle=TRUE,IW_scale=2)

Arguments

formula An object of class "formula" specifying the model to fit. Example: y ~ A + B
where y is a matrix of dimension c(n,p) containing the point-wise evaluations
of the n functional data on p points or an object of class fd (package "fda")
containing the functional data set. A, B are n-dimensional factors.

B The number of iterations of the MC algorithm to evaluate the p-values of the
permutation tests. The default is B=1000.

method Permutation method used to calculate the p-value of permutation tests. Choose
"residuals" for the permutations of residuals under the reduced model, accord-
ing to the Freedman and Lane scheme, and "responses" for the permutation of
the responses, according to the Manly scheme.

dx Uniform discretization grid step size, for objects of class fd. The default is
dx=NULL.

recycle Flag specifying whether the recycled version of IWT has to be used. The default
is recycle=TRUE.

IW_scale Scale parameter that determines the depth of the interval-wise testing procedure:
maxrows. maxrows= p-IW_scale+1 defines the maximum size of the permuta-
tion intervals use in the testing procedure.

Value

IWTaov returns an object of class "IWTaov".

The function summary is used to obtain and print a summary of the results.

An object of class "IWTaov" is a list containing at least the following components:

call The matched call.

design_matrix The design matrix of the linear model.
unadjusted_pval_F

Unadjusted p-values of the F-test.

unadjusted_pval_factors

Unadjusted p-values of the functional t-tests on each factor, separately (rows)
on each domain point (columns).

pval_matrix_F Matrix of dimensions c(p,p) of the p-values of the multivariate F-tests. The
element (i,j) of matrix pval_matrix, contains the p-value of the joint NPC
test of the evaluation points (j,j+1,...,j+(p-i)).
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pval_matrix_factors

Array of dimensions c(nvar+1,p,p) of the p-values of the multivariate t-tests.
Where nvar+1 corresponds to the number of factors nvar plus the intercept. The
element (n,i,j) of array pval_matrix contains the p-value of the joint NPC
test on factor number n of the evaluation points (j,j+1,...,j+(p-i)).

adjusted_pval_F

Adjusted p-values of the functional F-test for each evaluation point.
adjusted_pval_factors

Adjusted p-values of the functional t-tests on each factor (rows) on each domain
point (columns).

data.eval Evaluation of functional data.
coeff.regr.eval

Evaluation of the regression coefficients.

fitted.eval Evaluation of the fitted values.

residuals.eval Evaluation of the residuals.

R2.eval Evaluation of the functional R-squared

Author(s)

Alessia Pini, Simone Vantini

References

D. Freedman and D. Lane (1983). A Nonstochastic Interpretation of Reported Significance Levels.
Journal of Business & Economic Statistics 1.4, 292-298.

B. F. J. Manly (2006). Randomization, Bootstrap and Monte Carlo Methods in Biology. Vol. 70.
CRC Press.

A. Pini and S. Vantini (2016). The Interval Testing Procedure: A General Framework for Inference
for Functional Data Analysis. MOX-report 2016, Politecnico di Milano

A. Pini and S. Vantini (2017). Interval-wise Testing for Functional Data, Journal of Non-parametric
Statistics,DOI:10.1080/10485252.2017.1306627

See Also

See summary.IWTaov for summaries and plot.IWTaov for plotting the results.

See also IWTlm to fit and test a functional-on-scalar linear model applying the IWT, and IWT1, IWT2,
for one-population and two-populations tests.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

# Data definition as matrix
temperature <- rbind(NASAtemp$milan,NASAtemp$paris)

# Data definition as 'fd' object
functional_temp <- Data2fd(argvals = abscissa, y = t(temperature), bspl_basis)

# Defining factors
groups <- c(rep(0,22),rep(1,22))
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group1 <- groups
group2 <- factor( rep(1:3,15)[-45] )

# Performing the IWT
IWT.result <- IWTaov(functional_temp ~ groups, B=1000,method='residuals',

dx=NULL,recycle=TRUE,IW_scale=10)

IWT.result <- IWTaov(temperature ~ group1 + group2, B=1000,method='responses',
dx=NULL,recycle=TRUE,IW_scale=10)

IWT.result <- IWTaov(temperature ~ group1 * group2, B=1000,method='residuals',
dx=NULL,recycle=TRUE,IW_scale=10)

# Summary of the IWT results
summary(IWT.result)

# Plot of the IWT results
plot(IWT.result, plot_adjpval = TRUE, plot_unadjpval = TRUE)

IWTimage Plot of the Interval-Wise Testing Procedure results

Description

Plotting function creating a graphical output of the IWTP: the p-value heat-map, the plot of the
adjusted p-values, and the plot of the functional data.

Usage

IWTimage(IWT.result, alpha = 0.05, abscissa.range = c(0, 1), nlevel = 20, plot_unadjusted=FALSE)

Arguments

IWT.result Results of the IWTP, as created by IWT1, IWT2, IWTaov.

alpha Level of the hypothesis test. The default is alpha=0.05.

abscissa.range Range of the plot abscissa. The default is c(0,1).

nlevel Number of desired color levels for the p-value heat-map. The default is nlevel=20.
plot_unadjusted

A logical indicating whether the plots of unadjusted p-values have to be done.
Default is plot_adjpval = FALSE.

Value

No value returned. The function produces a graphical output of the IWT results: the p-value
heatmap, a plot of the adjusted and unadjusted p-values and the plot of the functional data. The
intervals selected as significant by the test at level alpha are highlighted in the plot of the adjsuted
p-values by a gray area.

Author(s)

Alessia pini, Simone Vantini
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References

A. Pini and S. Vantini (2016). The Interval Testing Procedure: A General Framework for Inference
for Functional Data Analysis. MOX-report 2016, Politecnico di Milano

A. Pini and S. Vantini (2017). Interval-wise Testing for Functional Data, Journal of Non-parametric
Statistics,DOI:10.1080/10485252.2017.1306627

See Also

See plot.IWT1, plot.IWT2, plot.IWTlm, and plot.IWTaov for the plot method applied to the
IWT results of one- and two-populations tests, linear models, and ANOVA, respectively.

See also IWT1, IWT2, IWTlm and IWTlm_FoF for applying the IWTP.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

# Performing the IWT2 for two-populations
IWT.result <- IWT2(NASAtemp$milan,NASAtemp$paris, IW_scale=10)

# Plotting the results of the IWT
IWTimage(IWT.result)

# Selecting the significant components for the radius at 5% level
which(IWT.result$adjusted_pval < 0.05)

IWTlm Interval-Wise Testing Procedure for testing Functional-on-Scalar Lin-
ear Models

Description

IWTlm is used to fit and test functional-on-scalar linear models. It can be used to carry out regression,
and analysis of variance. The function implements the Interval-Wise Testing Procedure for testing
the significance of the effects of scalar covariates on a functional population evaluated on a uniform
grid. Data are represented by means of class fd object or embedded in a matrix of dimensions
c(n,p). The significance of each functional evaluation point is tested with a control of the interval-
wise error rate.

Usage

IWTlm(formula, B=1000, method='residuals', dx=NULL, recycle=TRUE, statistic='std', IW_scale=2)

Arguments

formula An object of class "formula" specifying the model to fit. Example: y ~ x1 + x2
where y is a matrix of dimension c(n,p) containing the point-wise evalua-
tions of the n functional data on p points or an object of class fd (see "fda"
package) containing the functional data set. The scalar covariates x1, x2 are
n-dimensional vectors.
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B The number of iterations of the MC algorithm to evaluate the p-values of the
permutation tests. The default is B=1000.

method Permutation method used to calculate the p-value of permutation tests. Choose
"residuals" for the permutations of residuals under the reduced model, accord-
ing to the Freedman and Lane scheme, and "responses" for the permutation of
the responses, according to the Manly scheme.

dx Uniform discretization grid step size, for objects of class fd. The default is
dx=NULL.

recycle Flag specifying whether the recycled version of IWT has to be used.The default
is recycle=TRUE.

statistic Calculation mode of the statistic used for the covariates partial tests (t-test). The
mention 'nstd' refers to non-standardized statistics, 'std' refers to standard-
ized statistics, i.e divided by the standard-error.

IW_scale Scale parameter that determines the depth of the interval-wise testing procedure:
maxrows. maxrows= p-IW_scale+1 defines the maximum size of the permuta-
tion intervals use in the testing procedure. The default is IW_scale=2.

Value

IWTlm returns an object of class "IWTlm".

The function summary is used to obtain and print a summary of the results.

An object of class "IWTlm" is a list containing at least the following components:

call The matched call.

design_matrix The design matrix of the functional-on-functional linear model.
unadjusted_pval_F

Unadjusted p-values of the functional F-test for each evaluation point.
unadjusted_pval_part

Unadjusted p-values of the functional t-tests for each partial regression coeffi-
cients.

pval_matrix_F Matrix of dimensions c(p,p) of the p-values of the multivariate F-tests. The
element (i,j) of matrix pval_matrix contains the p-value of the joint NPC
test of the evaluation points (j,j+1,...,j+(p-i)).

pval_matrix_part

Array of dimensions c(nvar+1,p,p) of the p-values of the multivariate t-tests.
Where nvar+1 corresponds to the number nvar of covariates plus the intercept.
The element (n,i,j) of array pval_matrix contains the p-value of the joint
NPC test on covariate number n of the evaluation points (j,j+1,...,j+(p-i)).

adjusted_pval_F

Adjusted p-values of the functional F-test for each evaluation point.
adjusted_pval_part

Adjusted p-values of the functional t-tests for each partial regression coefficient.

data.eval Matrix of dimensions c(n,p) of the p evaluation points of the functional data.
Rows are associated to units and columns to the evaluation grid.

coeff.regr.eval

Matrix of dimensions c(nvar+1,p) of the p evaluation points of the intercept
(first row) and the nvar effects of the covariates specified in formula. Columns
are associated to the evaluation points indices.
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fitted.eval Evaluation on a fine uniform grid of the fitted values of the functional regression.

residuals.eval Evaluation on a fine uniform grid of the residuals of the functional regression.

R2.eval Evaluation on a fine uniform grid of the functional R-squared of the regression.
heatmap.matrix.F

Heatmap matrix of p-values of functional F-test (used only for plots).
heatmap.matrix.t

Heatmap matrix of p-values of functional t-tests (used only for plots).

Author(s)

Alessia Pini, Simone Vantini

References

D. Freedman and D. Lane (1983). A Nonstochastic Interpretation of Reported Significance Levels.
Journal of Business & Economic Statistics 1.4, 292-298.

B. F. J. Manly (2006). Randomization, Bootstrap and Monte Carlo Methods in Biology. Vol. 70.
CRC Press.

A. Pini and S. Vantini (2016). The Interval Testing Procedure: A General Framework for Inference
for Functional Data Analysis. MOX-report 2016, Politecnico di Milano

A. Pini and S. Vantini (2017). Interval-wise Testing for Functional Data, Journal of Non-parametric
Statistics,DOI:10.1080/10485252.2017.1306627

See Also

See summary.IWTlm for summaries and plot.IWTlm for plotting the results.

See also IWTlm_FoF to fit and test functional-on-functional linear models applying the IWTP, and
IWT1, IWT2 for one-population and two-population tests.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)
data <- rbind(temperature1,temperature2)

# Defining the covariates
temperature1 <- NASAtemp$milan
temperature2 <- NASAtemp$geneva

labels <- c(rep(0,22),rep(1,22))
lab1 <- labels
lab2 <- factor(rep(1:3,15)[-45])

# Defining responses as 'fd' object
library("fda")
m <- 4
p <- dim(data1)[2]
abscissa <- 1:p
bspl_basis <- create.bspline.basis(range(abscissa), norder = m, nbasis = p)
functional_temp <- Data2fd(argvals = abscissa, y = t(temperature2), bspl_basis)

# Performing the IWTP
IWTlm.result <- IWTlm(formula= data ~ lab1 + lab2, B = 1000, method = 'responses',dx=NULL,
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recycle=TRUE,statistic='std',IW_scale=10)

IWTlm.result <- IWTlm(functional_temp ~ lab1 + lab2, B=1000, method='residuals',dx=NULL,
recycle=TRUE, statistic='std',IW_scale=10)

# Summary of the IWTP results
summary(IWTP.result)

# Plot of the IWTP results
plot(IWTlm.result, plot_adjpval = TRUE, plot_unadjpval = TRUE)

IWTlm_FoF Interval-Wise Testing Procedure for testing Functional-on-Functional
Linear Models

Description

IWTlm_FoF is used to fit and test functional-on-functional linear models. It can be used to carry out
regression, and analysis of variance. The function implements the Interval-Wise Testing Procedure
for testing the significance of the effects of functional covariates on a functional population evalu-
ated on a uniform grid. Data are represented by means of class fd object or embedded in a matrix
of dimensions c(n,p). The significance of each functional evaluation point is tested with a control
of the interval-wise error rate.

Usage

IWTlm_FoF(formula, B=1000, method='residuals', dx=NULL, recycle=TRUE,
statistic='std', IW_scale=2)

Arguments

formula An object of class "formula" specifying the model to fit. Example: y ~ x1 + x2
where y is a matrix of dimension c(n,p) containing the point-wise evaluations
of the n functional data on p points or an object of class fd (see fda package)
containing the functional data set. The covariates x1, x2 can be either functional
as matrix of dimensions c(n,p) or scalar as n-dimensional vectors.

B The number of iterations of the MC algorithm to evaluate the p-values of the
permutation tests. The default is B=1000.

method Permutation method used to calculate the p-value of permutation tests. Choose
"residuals" for the permutations of residuals under the reduced model, accord-
ing to the Freedman and Lane scheme, and "responses" for the permutation of
the responses, according to the Manly scheme.

dx Uniform discretization grid step size, for objects of class fd. The default is
dx=NULL.

recycle Flag specifying whether the recycled version of IWT has to be used. The default
is recycle=TRUE.

statistic Calculation mode of the statistic used for the covariates partial tests (t-test).The
mention 'nstd' refers to non-standardized statistics, 'std' refers to standard-
ized statistics, i.e divided by the standard-error.
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IW_scale Scale parameter that determine the depth of the interval-wise testing procedure:
maxrows. maxrows= p-IW_scale+1 defines the maximum size of the permuta-
tion intervals use in the testing procedure.The default is IW_scale=2.

Value

IWTlm_FoF returns an object of class "IWTlm".

The function summary is used to obtain and print a summary of the results.

An object of class "IWTlm" is a list containing at least the following components:

call The matched call.

design_matrix The design matrix of the functional-on-functional linear model.

unadjusted_pval_F

Unadjusted p-values of the functional F-test for each evaluation point.

unadjusted_pval_part

Unadjusted p-values of the functional t-tests for each partial regression coeffi-
cients.

pval_matrix_F Matrix of dimensions c(p,p) of the p-values of the multivariate F-tests. The
element (i,j) of matrix pval_matrix contains the p-value of the joint NPC
test of the evaluation points (j,j+1,...,j+(p-i)).

pval_matrix_part

Array of dimensions c(nvar+1,p,p) of the p-values of the multivariate t-tests.
Where nvar+1 corresponds to the number of covariates nvar plus the intercept.
The element (n,i,j) of array pval_matrix contains the p-value of the joint
NPC test on covariate number n of the evaluation points (j,j+1,...,j+(p-i)).

adjusted_pval_F

Adjusted p-values of the functional F-test for each evaluation point.

adjusted_pval_part

Adjusted p-values of the functional t-tests for each partial regression coefficient.

data.eval Matrix of dimensions c(n,p) of the p evaluation point of the functional data.
Rows are associated to units and columns to the evaluation grid.

coeff.regr.eval

Matrix of dimensions c(nvar+1,p) of the p evaluation points of the intercept
(first row) and the nvar effects of the covariates specified in formula. Columns
are associated to the evaluation points indices.

fitted.eval Evaluation on a fine uniform grid of the fitted values of the functional regression.

residuals.eval Evaluation on a fine uniform grid of the residuals of the functional regression.

R2.eval Evaluation on a fine uniform grid of the functional R-squared of the regression.

heatmap.matrix.F

Heatmap matrix of p-values of functional F-test (used only for plots).

heatmap.matrix.t

Heatmap matrix of p-values of functional t-tests (used only for plots).

Author(s)

Alessia Pini, Simone Vantini
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References

D. Freedman and D. Lane (1983). A Nonstochastic Interpretation of Reported Significance Levels.
Journal of Business & Economic Statistics 1.4, 292-298.

B. F. J. Manly (2006). Randomization, Bootstrap and Monte Carlo Methods in Biology. Vol. 70.
CRC Press.

A. Pini and S. Vantini (2016). The Interval Testing Procedure: A General Framework for Inference
for Functional Data Analysis. MOX-report 2016, Politecnico di Milano

A. Pini and S. Vantini (2017). Interval-wise Testing for Functional Data, Journal of Non-parametric
Statistics,DOI:10.1080/10485252.2017.1306627

See Also

See summary.IWTlm for summaries and plot.IWTlm for plotting the results.

See also IWTlm to fit and test functional-on-scalar linear models applying the IWTP, and IWT1, IWT2
for one-population and two-population tests.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

# Defining the covariates
years <- 1:22
temperature1 <- NASAtemp$milan
temperature2 <- NASAtemp$geneva

# Defining responses as 'fd' object
library("fda")
m <- 4
p <- dim(data1)[2]
abscissa <- 1:p
bspl_basis <- create.bspline.basis(range(abscissa), norder = m, nbasis = p)
functional_temp <- Data2fd(argvals = abscissa, y = t(temperature2), bspl_basis)

# Performing the IWTP
IWTlm.result <- IWTlm_FoF(temperature2 ~ years + temperature1, B=1000,

method='residuals',dx=NULL, recycle=TRUE, statistic='std',IW_scale=30)

IWTlm.result <- IWTlm_FoF(functional_temp ~ years, B=1000, method='responses',dx=NULL,
recycle=TRUE, statistic='std',IW_scale=35)

# Summary of the IWTP results
summary(IWTP.result)

# Plot of the IWTP results
plot(IWTlm.result, plot_adjpval = TRUE, plot_unadjpval = TRUE)
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NASAtemp NASA daily temperatures data set

Description

It contains the daily mean temperatures registered from July 1983 to June 2005 and stored in the
NASA database Earth Surface Meteorology for Solar Energy of three different geographical loca-
tions: the region (45-46 North, 9-10 East), including the city of Milan (Italy), the region (48-49
North, 2-3 East), including the city of Paris (France), and the region (46-47 North, 6-7 East), in-
cluding the city of Geneva (Switzerland).

Usage

data(NASAtemp)

Format

List of 3 elements:

• milanMatrix of dimensions c(22,365) containing the daily mean temperatures of the region
(45-46 North, 9-10 East), including the city of Milan (Italy) registered from July 1983 to June
2005 (22 years).

• paris Matrix of dimensions c(22,365) containing the daily mean temperatures of the region
(48-49 North, 2-3 East), including the city of Paris (France) registered from July 1983 to June
2005 (22 years).

• geneva Matrix of dimensions c(22,365) containing the daily mean temperatures of the region
(46-47 North, 6-7 East), including the city of Geneva (Switzerland) registered from July 1983
to June 2005 (22 years).

Source

These data were obtained from the NASA Langley Research Center Atmospheric Science Data
Center Surface meteorological and Solar Energy (SSE) web portal supported by the NASA LaRC
POWER Project. Data are freely available at: NASA Surface Meteorology and Solar Energy, A
Renewable Energy Resource web site (release 6.0): http://eosweb.larc.nasa.gov

Examples

data(NASAtemp)
## Not run:

matplot(t(NASAtemp$milan),type='l')
matplot(t(NASAtemp$paris),type='l')
matplot(t(NASAtemp$geneva),type='l')

## End(Not run)
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plot.IWT1 Plotting IWTP results for one-population tests

Description

plot method for class "IWT1". Plotting function creating a graphical output of the IWTP for the test
of the mean of one population: functional data and interval-wise adjusted p-values are plotted.

Usage

## S3 method for class 'IWT1'
plot(x, xrange = c(0, 1), alpha1 = 0.05, alpha2 = 0.01,

ylab = "Functional Data", main = NULL, lwd = 1, col = 1,
ylim = NULL, type='l', ...)

Arguments

x The object to be plotted. An object of class "IWT1", that is, a result of an IWT
for comparison between two populations. Usually a call to IWT1.

xrange Range of the x axis.

alpha1 First level of significance used to select and display significant differences. De-
fault is alpha1 = 0.05.

alpha2 Second level of significance used to select and display significant differences.
Default is alpha1 = 0.01. alpha1 and alpha2 are s.t. alpha2 < alpha1.
Otherwise the two values are switched.

ylab Label of y axis of the plot of functional data. Default is "Functional Data".

main An overall title for the plots (it will be pasted to "Functional Data" for the first
plot and "adjusted p-values" for the second plot).

lwd Line width for the plot of functional data.

col Color used to plot the functional data.

ylim Range of the y axis.

type Type of plotted lines.

... Additional plotting arguments that can be used with function plot, such as
graphical parameters (see par).

Value

No value returned. The function produces a graphical output of the IWT results: the plot of the
functional data and the one of the adjusted p-values. The intervals selected as significant by the test
at level alpha1 and alpha2 are highlighted in the plot of the interval-wise adjusted p-values and in
the one of functional data by gray areas (light and dark gray, respectively).

Author(s)

Alessia Pini, Simone Vantini
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References

A. Pini and S. Vantini (2016). The Interval Testing Procedure: A General Framework for Inference
for Functional Data Analysis. MOX-report 2016, Politecnico di Milano

A. Pini and S. Vantini (2017). Interval-wise Testing for Functional Data, Journal of Non-parametric
Statistics,DOI:10.1080/10485252.2017.1306627

See Also

IWTimage for the plot of p-values heatmaps.

See also IWT1 to perform the IWTP to test for the mean of a functional populations. See plot.IWT2
and plot.IWTlm for the plot method applied to the IWTP results of two-population tests and linear
models, respectively.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

# Performing the IWT for one population
IWT.result<- IWT1(NASAtemp$paris,mu=4,IW_scale=30)

# Plotting the results of the IWT
plot(IWT.result,xlab='Day',xrange=c(0,365),main='Paris temperatures')

# Selecting the significant domain part for the radius at 5% level
which(IWT.result$adjusted_pval < 0.05)

plot.IWT2 Plotting IWTP results for two-populations tests

Description

plot method for class "IWT2". Plotting function creating a graphical output of the IWT for the test
of comparison between two populations: functional data and IWT-adjusted p-values are plotted.

Usage

## S3 method for class 'IWT2'
plot(x, xrange = c(0, 1), alpha1 = 0.05, alpha2 = 0.01,

ylab = "Functional Data", main = NULL, lwd = 1,
col = c(1, 2), ylim = NULL, type='l' , ...)

Arguments

x The object to be plotted. An object of class "IWT2", that is, a result of an IWT
for comparison between two populations. Usually a call to IWT2.

xrange Range of the x axis.
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alpha1 First level of significance used to select and display significant differences. De-
fault is alpha1 = 0.05.

alpha2 Second level of significance used to select and display significant differences.
Default is alpha1 = 0.01. alpha1 and alpha2 are s.t. alpha2 < alpha1.
Otherwise the two values are switched.

ylab Label of y axis of the plot of functional data. Default is "Functional Data".

main An overall title for the plots (it will be pasted to "Functional Data" for the first
plot and "adjusted p-values" for the second plot).

lwd Line width for the plot of functional data.

col Color used to plot the functional data.

ylim Range of the y axis.

type Type of plotted lines.

... Additional plotting arguments that can be used with function plot, such as
graphical parameters (see par).

Value

No value returned. The function produces a graphical output of the IWTP results: the plot of the
functional data and the one of the adjusted p-values. The intervals selected as significant by the test
at level alpha1 and alpha2 are highlighted in the plot of the adjusted p-values and in the one of
functional data by gray areas (light and dark gray, respectively).

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2016). The Interval Testing Procedure: A General Framework for Inference
for Functional Data Analysis. MOX-report 2016, Politecnico di Milano

A. Pini and S. Vantini (2017). Interval-wise Testing for Functional Data, Journal of Non-parametric
Statistics,DOI:10.1080/10485252.2017.1306627

See Also

IWTimage for the plot of p-values heatmaps.

See also IWT2 to perform the IWT to test for differences between two populations. See plot.IWT1
and plot.IWTlm for the plot method applied to the IWTP results of one-population tests and a linear
models, respectively.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

# Performing the IWT for one population
IWT.result<- IWT2(NASAtemp$paris,NASAtemp$milan,mu=4,IW_scale=30)

# Plotting the results of the IWT
plot(IWT.result,xlab='Day',xrange=c(0,365),main='Paris vs Milan temperatures')
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# Selecting the significant domain part for the radius at 5% level
which(IWT.result$adjusted_pval < 0.05)

plot.IWTaov Plotting IWT results for functional analysis of variance testing

Description

plot method for class "IWTaov". Plotting function creating a graphical output of the IWTP for the
test on a functional analysis of variance: functional data, and interval-wise adjusted p-values of the
F-tests on the whole model and on each factor are plotted.

Usage

## S3 method for class 'IWTaov'
plot(x,xrange=c(0,1), alpha1=0.05, alpha2=0.01,

plot_adjpval=TRUE, plot_unadjpval = FALSE, ylim= NULL,col=1,
ylab='Functional Data',main=NULL,lwd=1,type='l',...)

Arguments

x The object to be plotted. An object of class "IWTaov", usually, a result of a call
to IWTaov.

xrange Range of the x axis.

alpha1 First level of significance used to select and display significant effects. Default
is alpha1 = 0.05.

alpha2 Second level of significance used to select and display significant effects. De-
fault is alpha1 = 0.01. alpha1 and alpha2 are s.t. alpha2 < alpha1. Other-
wise the two values are switched.

plot_adjpval A logical indicating whether the plots of adjusted p-values have to be done.
Default is plot_adjpval = TRUE.

plot_unadjpval A logical indicating whether the plots of unadjusted p-values have to be done.
Default is plot_unadjpval = FALSE.

col Colors for the plot of functional data. Default is col = 1.

ylim Range of the y axis. Default is ylim = NULL.

ylab Label of y axis of the plot of functional data. Default is "Functional Data".

main An overall title for the plots (it will be pasted to "Functional Data and F-test"
for the first plot and "factor" for the other plots).

lwd Line width for the plot of functional data. Default is lwd=1.

type Type of plotted lines.

... Additional plotting arguments that can be used with function plot, such as
graphical parameters (see par).
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Value

No value returned. The function produces a graphical output of the IWTP results: the plot of the
functional data, functional regression coefficients, and interval-wise adjusted p-values of the F-tests
on the whole model and on each factor. The intervals selected as significant by the tests at level
alpha1 and alpha2 are highlighted in the plot of the interval-wise adjusted p-values and in the one
of functional data, by gray areas (light and dark gray, respectively). The first plot reports the gray
areas corresponding to a significant F-test on the whole model. The remaining plots report the gray
areas corresponding to significant F-tests on each factor (with colors corresponding to the levels of
the factor).

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2016). The Interval Testing Procedure: A General Framework for Inference
for Functional Data Analysis. MOX-report 2016, Politecnico di Milano

A. Pini and S. Vantini (2017). Interval-wise Testing for Functional Data, Journal of Non-parametric
Statistics,DOI:10.1080/10485252.2017.1306627

K. Abramowicz, S. De Luna, C. Häger, A. Pini, L. Schelin, and S. Vantini (2015). Distribution-Free
Interval-Wise Inference for Functional-on-Scalar Linear Models. MOX-report 3/2015, Politecnico
di Milano.

See Also

See also IWTaov to fit and test a functional analysis of variance applying the IWTP, and summary.IWTaov
for summaries. See plot.IWTlm, plot.IWT1, and plot.IWT2 for the plot method applied to the
IWTP results of functional-on-scalar or functional-on-functional linear models, one-population and
two-population, respectively.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)

temperature <- rbind(NASAtemp$milan,NASAtemp$paris)
groups <- c(rep(0,22),rep(1,22))

# Performing the IWTP
IWT.result <- IWTaov(temperature ~ groups)

# Plot of the IWT results
plot(IWT.result, main='NASA data temperature', plot.adjpval = TRUE,

plot_unadjpval = TRUE, xlab='Day',xrange=c(1,365))
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plot.IWTlm Plotting IWTP results for functional-on-scalar and functional-on-
functional linear model testing

Description

plot method for class "IWTlm". Plotting function creating a graphical output of the IWT for the test
on a functional-on-scalar and functional-on-functional linear models: functional data and interval-
wise adjusted p-values for the F-test and t-tests are plotted.

Usage

## S3 method for class 'IWTlm'
plot(x, xrange = c(0, 1), alpha1 = 0.05, alpha2 = 0.01,

plot_adjpval = TRUE, plot_unadjpval = FALSE,
col = c(1,rainbow(dim(x$adjusted_pval_part)[1])),
ylim = NULL, ylab = "Functional Data", main = NULL,
lwd = 1,type='l' ...)

Arguments

x The object to be plotted. An object of class "IWTlm", usually, a result of a call to
IWTlm or IWTlm_FoF.

xrange Range of the x axis.

alpha1 First level of significance used to select and display significant effects. Default
is alpha1 = 0.05.

alpha2 Second level of significance used to select and display significant effects. De-
fault is alpha1 = 0.01. alpha1 and alpha2 are s.t. alpha2 < alpha1. Other-
wise the two values are switched.

plot_adjpval A logical indicating whether the plots of adjusted p-values have to be done.
Default is plot_adjpval = TRUE.

plot_unadjpval A logical indicating whether the plots of unadjusted p-values have to be done.
Default is plot_unadjpval = FALSE.

col Vector of colors for the plot of functional data (first element), and covariates (fol-
lowing elements). Default is col = c(1,rainbow(dim(x$adjusted_pval_part)[1])).

ylim Range of the y axis. Default is ylim = NULL.

ylab Label of y axis of the plot of functional data. Default is "Functional Data".

main An overall title for the plots (it will be pasted to "Functional Data and F-test"
for the first plot and "t-test" for the other plots).

lwd Line width for the plot of functional data. Default is lwd=1.

type Type of plotted lines.

... Additional plotting arguments that can be used with function plot, such as
graphical parameters (see par).
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Value

No value returned. The function produces a graphical output of the IWTP results: the plot of the
functional data, functional regression coefficients, and interval-wise adjusted p-values for the F-
test and t-tests. The intervals selected as significant by the tests at level alpha1 and alpha2 are
highlighted in the plot of the adjusted p-values and in the one of functional data, by gray areas (light
and dark gray, respectively). The plot of functional data reports the gray areas corresponding to a
significant F-test. The plots of functional regression coefficients report the gray areas corresponding
to significant t-tests for the corresponding covariate.

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2016). The Interval Testing Procedure: A General Framework for Inference
for Functional Data Analysis. MOX-report 2016, Politecnico di Milano

A. Pini and S. Vantini (2017). Interval-wise Testing for Functional Data, Journal of Non-parametric
Statistics,DOI:10.1080/10485252.2017.1306627

K. Abramowicz, S. De Luna, C. Häger, A. Pini, L. Schelin, and S. Vantini (2015). Distribution-Free
Interval-Wise Inference for Functional-on-Scalar Linear Models. MOX-report 3/2015, Politecnico
di Milano.

See Also

See also IWTlm or IWTlm_FoF to fit and test a functional-on-scalar or functional-on-functional linear
models applying the IWT, and summary.IWTlm for summaries. See plot.IWTaov, plot.IWT1 and
plot.IWT2 for the plot method applied to the IWT results of functional analysis of variance, one-
population and two-population, respectively.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)
data <- rbind(NASAtemp$milan,NASAtemp$paris)

# Defining covariate
lab <- c(rep(0,22),rep(1,22))

# Performing the IWTlm
IWT.result <- IWTlm(data ~ lab, IW_scale=10)

IWT.result <- IWTlm_FoF(data ~ lab, IW_scale=10)

# Plot of the IWT results
plot(IWT.result, plot_adjpval = TRUE, plot_unadjpval = TRUE,

col = c(1, rainbow(dim(IWT.result$adjusted_pval_part)[1])),
main='NASA data',xlab='Day',xrange=c(1,365))
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summary.IWTaov Summarizing Functional Analysis of Variance Fits

Description

summary method for class "IWTaov".

Usage

## S3 method for class 'IWTaov'
summary(object, ...)

Arguments

object An object of class "IWTaov", usually, a result of a call to IWTaov.

... Further arguments passed to or from other methods.

Value

The function summary.IWTaov computes and returns a list of summary statistics of the fitted func-
tional analysis of variance given in object, using the component "call" from its arguments, plus:

factors A matrix of dimensions c(nvar,1) displaying for each nvar factors of the
ANOVA, the corresponding (two-sided) interval-wise adjusted minimum p-values
of the corresponding tests of significance (i.e., the minimum p-value over all p
evaluation points of the functional data).

R2 Range of the functional R-squared.

ftest Interval-wise adjusted minimum p-value of functional F-test.

Author(s)

Alessia Pini, Simone Vantini

References

A. Pini and S. Vantini (2013). The Interval Testing Procedure: Inference for Functional Data A.
Pini and S. Vantini (2016). The Interval Testing Procedure: A General Framework for Inference for
Functional Data Analysis. MOX-report 2016, Politecnico di Milano

A. Pini and S. Vantini (2017). Interval-wise Testing for Functional Data, Journal of Non-parametric
Statistics,DOI:10.1080/10485252.2017.1306627

K. Abramowicz, S. De Luna, C. Häger, A. Pini, L. Schelin, and S. Vantini (2015). Distribution-Free
Interval-Wise Inference for Functional-on-Scalar Linear Models. MOX-report 3/2015, Politecnico
di Milano.

See Also

See IWTaov for fitting and testing the functional ANOVA and plot.IWTaov for plots. See also
IWTlm, IWTlm_FoF, IWT1 and IWT2.
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Examples

# Importing the NASA temperatures data set
data(NASAtemp)
temperature <- rbind(NASAtemp$milan,NASAtemp$paris)

# Defining covariates
groups <- c(rep(0,22),rep(1,22))

# Performing the IWT
IWT.result <- IWTaov(temperature ~ groups)

# Summary of the IWT results
summary(IWT.result)

summary.IWTlm Summarizing Functional-on-Scalar and Functional-on-Functional
Linear Models Fits

Description

summary method for class "IWTlm".

Usage

## S3 method for class 'IWTlm'
summary(object, ...)

Arguments

object An object of class "IWTlm", usually, a result of a call to IWTlm or IWTlm_FoF.

... Further arguments passed to or from other methods.

Value

The function summary.IWTlm computes and returns a list of summary statistics of the fitted functional-
on-scalar or functional-on-functional linear models given in object, using the component "call"
from its arguments, plus:

ttest A matrix of dimensions c(nvar+1,1) displaying for each nvar +1 covariates
plus intercept the corresponding (two-sided) interval-wise adjusted minimum p-
values of t-tests (i.e., the minimum p-value over all p evaluation points of the
functional data).

R2 Range of the functional R-squared.

ftest Interval_wise adjusted minimum p-value of functional F-test.

Author(s)

Alessia Pini, Simone Vantini
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References

A. Pini and S. Vantini (2016). The Interval Testing Procedure: A General Framework for Inference
for Functional Data Analysis. MOX-report 2016, Politecnico di Milano

A. Pini and S. Vantini (2017). Interval-wise Testing for Functional Data, Journal of Non-parametric
Statistics,DOI:10.1080/10485252.2017.1306627

K. Abramowicz, S. De Luna, C. Häger, A. Pini, L. Schelin, and S. Vantini (2015). Distribution-Free
Interval-Wise Inference for Functional-on-Scalar Linear Models. MOX-report 3/2015, Politecnico
di Milano.

See Also

See IWTlm and IWTlm_FoF for fitting and testing the functional linear models and plot.IWTlm for
plots. See also IWTaov, IWT1 and IWT2.

Examples

# Importing the NASA temperatures data set
data(NASAtemp)
temperature <- rbind(NASAtemp$milan,NASAtemp$paris)

# Defining covariates
groups <- c(rep(0,22),rep(1,22))

# Performing the IWT
IWT.result <- IWTlm(temperature ~ groups,IW_scale=10)

# Summary of the IWT results
summary(IWT.result)
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Conclusion

In Pini and Vantini (2016), the issue of testing functional data in order to assess test
of domain interval selection have already been studied. It has been studied by the bias of
the decomposition of the functional data on functional local basis (e.g B-splines), and then
univariate and multivariate tests on the coefficients of the basis expansion are performed.

But a real domain selection, where the null hypothesis is violated, cannot be assessed with
Fourier basis expansion or other non-parametric smoothing methods (e.g Kernel’s method).
But the interval-wise test proposed here focuses directly on functional data, which can be
obtained beforehand, from any smoothing methods.

This package provides an implementation of the innovative IWT procedure, associated with
the non-parametric permutation test, to evaluate the test significance, with an interval-wise
control of type-I error, of each evaluation points of the discrete grid.

To conclude, this procedure achieves to enlarge the scope of inference in functional data
framework, focusing directly, decomposing, remixing the domain of the curves instead
of handling the whole domain as only one static block. This inferential perspective is
embedded in the concepts of unadjusted and adjusted p-value that are the true innovative
quantities provided by the method, and will very useful and accessible tools for researchers
and statisticians.
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