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Summary  

Background and aim 

The present doctoral thesis is inserted in the neuroimaging research field, as it aims to study the brain 

connectivity through advanced magnetic resonance imaging (MRI) techniques, which allow to non-

invasively investigate brain coordination both from a functional and structural perspective. Specifically, 

diffusion weighted imaging (DWI) is used to explore white matter (WM) fiber connections by means of 

both deterministic and probabilistic tractography; functional magnetic resonance imaging, both task-driven 

and in resting condition (i.e., fMRI and rsfMRI), provides information about cortical activation patterns in 

gray matter (GM) elicited by specific brain functioning.  

Currently, growing interest is gaining the possibility to study brain connectivity as a whole, namely 

combining functional and structural information in a unique framework to shed lights onto the complexity 

of the mechanisms that governs the brain functions. However, open challenges related to methodological 

and technical aspects still remain open to intense research, such as the structural interface between WM and 

GM at their boundary, the different models describing the richer and richer DWI datasets acquired to 

reconstruct virtual fibers (alias, streamlines) and the treatment of artifacts, the scale and approach to 

functional GM parcellation, and many others.  

In this work we first dealt with WM-GM combination by integrating structural and functional information 

in two different ways: i) using deterministic tractography and task-driven functional magnetic resonance 

imaging (fMRI) (method also tested in a clinical neurorehabilitation context); ii) using probabilistic 

tractography and resting-state functional magnetic resonance imaging (rsfMRI). Then we addressed the 

issue of detecting and possibly correcting artifacts in high angular resolution diffusion images (HARDI) by 

proposing two pipelines: iii) at single subject level, to identify and remove artifacts in HARDI data-set 

relevant to punctual corruption of given slices and given diffusion directions; iv) in group studies, 



6 

 

performing a quality control over the population dataset in order to detect and exclude subjects with poor 

reconstructions of the selected tracts. 

 

Methods 

Integration of tractographic approaches and functional magnetic resonance imaging modalities  

In the first study (i) we integrated deterministic tractography and task-driven fMRI on twenty-five healthy 

subjects (HSs). 

After diffusion tensor (DT) estimate, deterministic tractography was performed with the brute-force 

approach (Conturo et al. 1999), interpolated streamline algorithm, FA < 0.20 and angle between two 

subsequent directions > 35° as stopping criteria (Preti et al. 2014). Left arcuate fascicle (AF) and left 

cingulum bundle (CB) were reconstructed with TrackVis v.0.5.1 (www.trackvis.org) as the main bundles 

involved in the considered verbal fluency task. 

Functional scans were collected asking subjects to perform a paced-overt verbal fluency task. The active 

cortical areas elicited by the categorical-fluency (versus control condition) were identified at single level by 

statistical analysis (first level, general linear model) (GLM; Friston et al. 1994), introducing movement 

parameters as covariates. A contrast of parameter estimates (COPE) image was obtained for each subject 

and then non-linearly registered to the MNI space to be merged in a group analysis (second level, one sample 

t-test) to estimate the main effect of the task. 

Before integrating these structural and functional information (namely the bundles and the active cortical 

areas) both at single and group level, two operations were performed as follows:  

• both the AF and the CB of each subject were extended into gray matter for 10 mm to reach the most 

proximal cortical regions. Both extremities of every streamline were extended by using an in-house 
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Matlab script (Matlab R2010a, MathWorks, http://www.mathworks.it/products/matlab) following 

the direction of the vector connecting the coordinates of the two last voxels. Finally, each extended 

tract was masked with a GM atlas (Hui et al., 2005) to select only those parts reaching the cortex. 

• from the center of gravity (COG) of each cluster obtained by group-fMRI analysis, 11-mm-radius 

spheres were drawn to restrict the analysis to the specific cortical areas identified by the cluster 

peaks and also to take into account the inter-subject variability (Drobyshevsky et al. 2006). 

At single level, the AF and CB projections of each subject were intersected with group fMRI activation 

spheres; the topographic location (i.e., which Brodmann areas were involved) and the extension, in terms 

of mm3, were evaluated. The median value and confidence interval at 95% (CI 95%) of the connection 

volumes between the projections of AF and CB at single level and spheres from fMRI activation were finally 

computed. 

At group level, the group projections of AF and CB were obtained by averaging the single subject 

projections among all the HSs. These averaged volumes were then thresholded at 0.6 (Mori et al., 2009; 

Aslan et al. 2009), to limit the random error due to noise and partial volume effects (Hua et al. 2009). The 

group projections were intersected with the group fMRI activations; then, the volumes of connection were 

mapped and measured, and the relative weight of each BA was also calculated and expressed both as 

absolute values and relative percentages (i.e., how much the specific Brodmann area overlapped with the 

connection). The Dice coefficient (Dice 1945) was computed to test the physiological inter-individual 

variability of GM-projected bundles, considering the tract projections of every single subject compared to 

the group projections for both AF and CB. Finally, the Dice coefficient was also calculated for the volumes 

generated by the overlap between the DTI projections and the group fMRI activations to account for their 

similarity. 

Method (i) pipeline is summarized in Figure A. 

 



8 

 

Figure A Pipeline of DW images (panel a) and fMRI images (panel b) to perform the structural-functional data 

integration– Scaccianoce et al., 2016  
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As a case study, the method was tested in a 65-year-old man who sustained an ischemic stroke (3 months 

prior) in the left middle cerebral artery territory. DTI-fMRI integration was performed at the single subject 

level, focusing on the arcuate fasciculus (AF), and was prospectively evaluated at T0 (admission), T1 

(discharge after 1 month rehabilitation), and T2 (follow-up, after further three months). 

In the second study (ii) we integrated rsfMRI and probabilistic tractography and correlated functional 

connectivity (FC) indexes and structural connectivity (SC) ones of nineteen HS datasets. 

For the functional data, single subject independent component analysis (ICA) was performed by MELODIC 

(Multivariate Exploratory Linear Optimized Decomposition into Independent Components, Filippini et al., 

2009; Beckmann et al., 2009). RSNs were identified by spatial group ICA (MELODIC, Beckmann et al., 

2005) with dimensionality set to 30 (Soddu et al., 2016, Elman et al., 2014, Meyer et al., 2013) and the 

DMN, the LLN and the RLN were visually selected according to the RSN templates provided by Smith and 

colleagues (2009). The three chosen RSNs were divided into atomically separated clusters of voxels 

(Costantini et al., 2016) that were used as regions of interest (ROIs) both for functional and structural 

connectivity analyses. Using the dual regression approach (Beckmann et al., 2009; Filippini et al., 2009) 

subject-specific spatial maps and time series associated to each ROI belonging to DMN, LLN and RLN 

were extracted. FC was assessed by two indexes between time series of each pair of ROIs belonging to the 

DMN, RLN and LLN: the full linear correlation (FCfull), as Pearson’s correlation coefficient, and the partial 

linear correlation (FCpar), computed by correlating the time series associated to A and B and regressing out 

the time series associated to all the other ROIs, were estimated at both single and group level. 

Regarding diffusion data, probabilistic tractography (Probabilistic Tracking with crossing fibres 

[PROBTRACX] –Behrens et al, 2007) was performed between the pairs of extracted ROIs in the DMN, 

LLN and RLN considered as seed and target regions. To correct the asymmetry of the method (Cao et al., 

2013), namely the different result obtained if setting either ROI A or B as seed and target region, the 

following approach was used: probabilistic tracts were created setting A as seed and B as target and 
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viceversa to produce a unique product tract between each pair of ROIs. The number of voxels above 

threshold of the product tract was defined as the SC index for each pair of ROIs (Khalsa et al.,2014) at both 

single and group level. 

For each pair of ROIs in all the considered RSNs, the relationships between FCfull and SC and between 

FCpar and SC were evaluated using Spearman’s correlations, due to the non-Gaussianity of the considered 

data samples. Method (ii) pipeline is summarized in Figure B. 

 

 

Figure B Method pipeline. Independent component analysis (ICA) performed on resting state functional MRI (rsfMRI) 

data to extrapolate resting state networks (RSNs). RSNs were split into their constitutive regions of interest (ROIs) and 

used to extract time series to evaluate functional connectivity (FC) indexes, defined as the full (FCfull) and partial 

(FCpar) correlation coefficients between them. The same ROIs were used as seed and target regions to perform 

probabilistic tractography. The number of voxels of the processed probabilistic tract volume was defined as structural 

connectivity (SC) index. The purpose of this method was to explore the relationship existing between FC and SC within 

the RSNs 
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Quality control in High Angular Resolution Diffusion Imaging (HARDI) 

In the third study (iii) HARDI data from fifteen HSs were acquired in a single shell using a 3T GE HDx 

system (General Electric, Milwaukee, WI, USA) with a b-value equal to 3000 s/mm2 and 60 diffusion-

weighted directions and 7 non-diffusion weighted volumes. By a custom written Matlab code, for each 

subject, HARDI data were fitted by spherical harmonics of order 8 (SH8) to model complex fiber 

configuration such as the crossing fibers (Decoteaux et al., 2009). Then, a binary outlier mask was created 

by identifying as outliers all slices corresponding to a specific diffusion direction with a mean residual value 

above an automatic threshold obtained for each slice across all diffusion directions. Corrupted slices were 

regenerated using new SH coefficients obtained by SH decomposition performed this time without outlier 

directions. SH at order 6 was used when regenerating slices of corrupted directions, while SH at order 8 was 

applied to the rest of the data. Finally, spherical deconvolution (SD) was run to estimate fiber orientation 

distribution (FOD) peaks. 

In the fourth study (iv) HARDI data were acquired from eleven HSs in a single shell using a 3T GE HDx 

system (General Electric, Milwaukee, WI, USA) with a b-value equal to 3000 s/mm2 and 60 diffusion-

weighted directions and 7 non-diffusion weighted volumes. DT model was then applied to process the data 

using Explore DTI (Leemans et al, 2009). The dissections of right anterior and posterior segment of the 

arcuate fasciculus (i.e., aAF and pAF) and the right inferior fronto-occipital fasciculus (IFOF) were 

performed using Trackvis (trackvis.org). aAF and pAF were selected since a visual inspection identified 

signal loss in the superior occipital part of the brain of 2 subjects, while IFOF was selected as control tract. 

The visual identification of artifacts by two expert viewers was considered the gold standard to assess the 

performance of our method. SH decomposition of order 2, 4 and 6 (hereafter indicated as SH2, SH4, and 

SH6, respectively) was obtained by a custom written Matlab code (Matlab R2010a, MathWorks, 

http://www.mathworks.it/products/matlab). The residual, defined as difference between the fitted and the 

measured signals, was computed vs. the DT and the SH4, SH6, and SH8 models (Figure C). The maximum 
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residual value was selected for each voxel through all the DW directions, to generate maximum residual 

maps for each subject. Then, fractional anisotropy (FA), mean diffusivity (MD), DT and SH maximum 

residuals (all orders) were mapped along the chosen tracts. Finally, a threshold for the identification of 

outliers was calculated across subjects for each metric. 

 

 

Figure C Maximum residual maps of a single subject with no corrupted images obtained as differences between the 

actual signal and (from top left image) diffusion tensor model (DT), spherical harmonics of order 2, 4 and 6 (SH2, 

SH4, SH6) model. Lighter color (i.e., yellow) suggests a higher residual value 

 

Results 

Integration of tractographic approaches and functional magnetic resonance imaging modalities  

The main results of integrating deterministic tractography and task-driven fMRI of study (i) are summarized 

hereunder. Focusing on the 4 regions that are typically considered part of the language network, namely BA 

6 (dorsal premotor cortex), BA 8 (prefrontal dorsolateral cortex), BA 24/32 (anterior cingulate cortex), BA 

44/45 (Broca’s area) (Lubrano et al., 2014; Valk 2011; Golistanerad et al., 2015; Friederici 2017), we found 
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that most of the connections related to CB falls into the BA 24/32, in both single and group analysis, while 

the connections related to the AF showed a different percentage distribution at single level, compared to the 

group one, even though the volume in mm3 of the dorsal premotor cortex (BA 6) has similar extension both 

at single and group level. 

The application of the above-mentioned approach to the stroke patient (Figure D) revealed an increased 

WM-GM connection in BA 6 at T1 compared to T0, which improvement persisted at T2. Furthermore, at 

both T1 and T2 a connection located in BA 44/45 that was not revealed at T0 was observed. 

The principal results concerning the integration between probabilistic tractography and rsFMRI of study (ii) 

were related to the correlation of the FC and SC indexes computed between each pair of activation areas 

obtained by clustering the RSNs (Figure E). Specifically Focusing on FCfull-SC correlation, a non-significant 

value was found within the DMN (r=0.01, p=0.916). On the other hand, a positive significant FCfull-SC 

correlation was observed within the RLN (r=0.214, p=0.022) and the LLN (r=0.489, p<0.0001). The FCpar-

SC correlation analysis led to similar values of FCfull-SC ones in the RLN (r=0.228, p=0.015) and in the 

LLN (r=0.466, p<0.0001). Within the DMN, even if still not-significant, the FCpar-SC correlation was found 

to be higher than the FCfull-SC one (r=-0.015, p=0.878).   
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Figure D Integration of diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) 

at single level in the considered stroke patient. The volumes of connections were evaluated at T0, T1 and 

T2 – Scaccianoce et al., 2016 
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Figure E Clustering of the default mode network (DMN, panel A), right lateral network (RLN, panel B) and left lateral 

network (LLN, panel C) according to the anatomical separation criterion. 

 

Quality control in High Angular Resolution Diffusion Imaging (HARDI) 

Considering the results of study (iii), in Figure F, an example of artifacts is shown in sagittal and axial view 

along with their corrections in the same view for comparison purpose.  
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Regarding the results of study (iv), outliers were found in the aAF and the pAF of those subjects whose 

dataset had been classified as corrupted by the visual inspection. As expected, no artifacts were detected in 

the control tract (i.e., the IFOF). Importantly, outliers were well identified by means of the residual vs. the 

SH6 and the DT models. 

 

Figure F Panel a) illustrates the outlier mask in which one of the outlier value is identified and its location displayed 

in sagittal and axial views before (panel b) and after (panel c) correction  

 

Discussion and Conclusion 

In this thesis we investigated some aspects related to the study of brain connectivity as whole, both relevant 

to the physiological connection represented by tracts/fascicles/bundles considered in the structural 
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connectivity and by the functional responses and activity correlations. In this study, clearly emerged that 

the progress on both sides is a core element in permitting to advance towards further integration methods, 

overcoming the “shadow line” which still separates the insight into the white matter and the gray matter 

connections. The high challenge deals also with anatomo-functional integration aspects which largely rely 

on mesoscale details of the brain circuits at the edge of current instrumentation and analysis methods.  

We proposed two methods that allowed respectively the localization and the quantification of the 

connections between WM and GM and the correlation between structural and functional metrics. Both 

approaches worked at network level addressing technical issues mainly related to the limitation of the 

neuroimaging tool used for these analysis (e.g., the impossibility to approach gray matter when using 

deterministic tractographic algorithm, the asymmetry issue raised when performing probabilistic 

tractography, etc). As a result of this integration analysis at network level, we should stress that our studies 

confirmed the idea that any functional coordination should be mediated by connecting fibers only in case of 

highly specialized networks (i.e., the language circuit and the two lateral RSNs). The DMN, indeed, showed 

no correlation between SC and FC values, suggesting the existence of associative and indirect paths, such 

as polysynaptic structures, which connect gray matter regions but are not detectable with our tractography. 

This finding led us to also work on improving tractographic techniques and ameliorate the quality of the 

diffusion data. For this reason, we further address the problem of artifacts in DW images. We first worked 

at single level proposing a new method for artifact identification and removal, then at group level developing 

a new pipeline for the quality control of tractography-derived measures. Both these approaches aim at 

providing better and better diffusion data to be integrated with the functional ones.  

It is also noteworthy that the application of the structural and functional data in clinical environment was 

demonstrated to be a very interesting instrument to assess circuitry modifications and adaptation, allowing 

for monitoring the changes due to both pathology and  therapeutic interventions (Irimia et al., 2014). This 

may eventually aid in the development of patient-specific tailored rehabilitation approaches. 
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To conclude our work suggests that many other studies will be needed on the topic of the integration of 

structural and functional data; nevertheless, we strongly believe that this kind of integration is the most 

fascinating and challenging route to pursue in neuroscience to gain more comprehension of the brain in its 

overall highly complex behavior.  
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1. Introduction 

 The interest in neuroimaging performed by magnetic resonance imaging (MRI) has constantly increased in 

the last decades as a powerful and non- invasive mean to investigate human brain connectivity in terms of 

both structure and function, with the objective to explore physiological cognitive process and 

pathophysiological mechanisms.  

The capabilities of MRI to provide with different contrasts, micro-structural features, and functional 

activation were recognized since long time and in the last decade permitted to develop methods addressing 

the overall brain organization and function (van der Kolk et al., 2013), the understanding of which is a major 

challenge open to future research with striking translational implications in neurological clinics. Studies in 

this field (also involving huge projects both in Europe and in the United States of America) are often 

indicated under the label of “brain connectome” (Sporns et al., 2005; Maier-Hein et al., 2017; Craddock et 

al., 2013; Pestilli et al., 2014; Smith et al., 2013; Glasser et al., 2013; Smith et al., 2015), to emphasize the 

core position of understanding connection patterns and integrated functions, beyond the specialization of 

brain cortical areas. 

Originally, two different and parallel neuroimaging research streams were developed: the structural 

connectivity (SC), represented by bundles of fibers (alias tracts or fasciculi), and functional connectivity 

(FC) expressed by the coordinated activity of specialized cortical areas. Specifically, SC is evaluated by 

tractographic dissection of the white matter (WM) based on diffusion weighted imaging (DWI), while FC 

is assessed by correlation analysis on cortical activity elicited either asking subjects to perform a task (fMRI) 

or in resting state condition (rsfMRI). 

More recently, a challenging research field in neuroscience is exploring the whole human brain organization 

considering the relationship between SC and FC. Although great interest has been posed in the integration 

of SC and FC information, this topic still presents several methodological challenges related on one hand to 
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the compatibility of WM and GM investigation, especially at their boundary and on the other hand to 

tractography reconstruction, often affected by artifacts. 

In this scenario, this doctoral project aims at developing novel neuroimaging techniques to combine 

structural and functional data, and improving the quality of SC data by mean of the identification and 

removal of artifacts in the DW images. In details, this thesis will focus on: 

i. Integration of deterministic tractography and task-driven functional magnetic resonance imaging 

and its application into a clinical neurorehabilitation context;  

ii. Integration of probabilistic tractography and resting-state functional magnetic resonance imaging; 

iii. Artifact identification and removal in High Angular Resolution Diffusion Imaging data; 

iv. Artifact identification in tractographic reconstruction for automatic quality controls in group 

analyses  

All the described methods, will be supported by an extensive literature review of the existing techniques for 

studying SC and FC, providing with the most crucial steps of the pipelines followed to evaluate the brain 

connectivity from row MRI images. 

Importantly, our methods were developed with the final aim to be translated in the clinical practice by the 

validation of workflows to be applied to images acquired with clinical scanner, thus introducing the 

multimodal imaging methods of “connectomics” in the clinical routine. 

 

1.1. Functional brain connectivity 

Functional brain connectivity refers to the co-activation of gray matter (GM) areas reflected by a statistical 

dependency among remote neurophysiological events (Friston, 2011). This information is obtained by the 

functional magnetic resonance imaging (fMRI) (Kwong et al., 1992; Ogawa et al., 1990), a technique based 

on the measure of the blood oxygen level dependent (BOLD) signal or contrast (Amaro and Barker 2006), 
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that provides an indirect estimate of the neural activity. Specifically, when a specific brain district is 

activated, it presents an increase in oxygenated hemoglobin and a decrease in de-oxygenated one. The latter 

has paramagnetic properties that contribute to an increase in the local microscopic magnetic field 

inhomogeneity which lengthen the T2* relaxation time and delays signal fading (Logothesis et al., 2001). 

Therefore, neural activation is indirectly translated into an increment of BOLD signal above baseline by 3-

5%. The small entity of BOLD contrast, lower in size to noise, requires specific statistics to map activated 

areas. As better detailed in the next paragraphs, correlation with externally measurable tasks (or imposed 

stimuli) is referred to as task-driven fMRI and addresses the response of specialized GM areas. Conversely, 

the search for co-activations is mainly performed in resting-state condition (i.e., with no stimuli or tasks), 

thus observing the ongoing brain activity through the BOLD signal and collecting resting state fMRI 

(rsfMRI) data, from which statistical dependencies or correlation between areas (even distant ones) can be 

extracted.  

1.1.1. Task-driven functional magnetic resonance imaging  

Task-driven fMRI aims at investigating the neural underpinnings and brain activity elicited by a task 

accomplished by the subject many times during the fMRI scan, to capture the related brain activation 

differences compared to the rest condition (i.e., the baseline) (Vidaurre et al., 2017).  

To test a biological hypothesis, an fMRI experiment must be designed within the constraints of the temporal 

characteristics of the BOLD fMRI signal and of the various confounding effects to which fMRI signal is 

susceptible). The three elements necessary to comprehensively describe a fMRI task-driven experiments 

are: experimental design, data acquisition, and data analysis (Goebel 2007; Buxton 2009; Huettel 2012; 

Poldrack 2012; Friston et al., 2007). 

The task-driven experiment can be designed as block-design or event-related design. In block-design, 

epochs (or blocks) of stimulation/activity are alternated to rest epochs, thus implying boxcar input functions. 

In event-related design, activation is concentrated at time points (events) either marked by some randomized 
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stimulus or by some subject’s response; so, the input function is a series of pulses marking the events. The 

block-design is commonly used in clinical experiments where the subject is required to perform a task (e.g., 

finger tapping or word repetition) continuously for about 30 seconds alternatively to a rest period of 

approximately 30 seconds. Activated cortex is identified by block-to block periodic BOLD signal changes 

that are correlated with the task paradigm. Advantages of block-design includes its simplicity and power for 

detection of an activation response. In particular, block paradigms summate the hemodynamic response over 

multiple neural events within each block, yielding relatively high BOLD contrast-to-noise ratios 

(Buchbinder 2016). The event-related design consists in providing the subject with activation and control 

stimuli in a randomized order. Due to the delay in the hemodynamic response, events need to be sufficiently 

separated in time (i.e., using a long inter-trial interval) (Buchbinder 2016), which may reduce the statistical 

power of the trial. However, it can be demonstrated that a correct randomization of intervals permits a 

correct data analysis even in presence of overlapped hemodynamic responses relevant to events fallen by 

chance in close time positions (Buchbinder 2016). Advantages of this strategy are avoidance of cognitive 

adaptation that may occur during extended blocks, more flexible analysis strategies, and greater power to 

measure the hemodynamic response (Buchbinder 2016). 

The continuous improvements in fMRI data acquisition are out of the scope of this work. Briefly, they 

include an increase in magnetic field strength (e.g, evolving from 1.5T to 3T in clinical applications, up to 

7T in the most recent neuroimaging research), head coils, and acquisition sequences for higher time 

resolution and noise compensation (Feinberg et al., 2010; Poser et al., 2010; Lee et al., 2010; Liu et al., 

2018). Here, it is worth recalling the basic elements of fMRI scans. The most common MRI sequence used 

for capturing cortical activation is the echo planar imaging (EPI) that allows a rapid acquisition of multiple 

brain slices, thus yielding a time sample over the (almost) entire brain volume within 2-3 seconds, namely 

at a sufficiently high temporal resolution, given the slow hemodynamic response (duration of about 12 

seconds) (Goebel 2007). Due to the need of fast scans and to the poor SNR, spatial resolution is limited (Liu 

et al., 2018); a typical voxel size is 3mm3 that is afterwards registered on a more detailed anatomical image, 
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commonly a T1-weighted image with a voxel size of 1mm3. Collected data are finally analyzed after some 

preprocessing steps to correct artifacts and geometrical distortion, considering the slice-dependent time 

shifts relative to the task paradigm (Buxton 2010) and removing high spatial frequency noise and low 

temporal frequency drifts. The statistical analysis, commonly the general linear model (GLM), is then 

applied to assess the likelihood of the activation of each voxel (Huettel 2012) whose result is a parametric 

map in which each voxel is assigned its activation significance in the usual terms of low probability of the 

null hypothesis (type I inferential error) (Buchbinder 2016). Importantly, the large number of voxels tested 

in parallel imposes to always consider correction for multiple comparisons.   

 

Figure 1.1 Simulated data for modelling the blood oxygen level-dependent (BOLD) response (x) computed by 

convolution of the hemodynamic response function (HRF) (h) with the task paradigm function (p). Being y the 

measured signal, the GLM computes the value of β that yields the best approximation of the data vector y by the model 

in the sense of minimizing the magnitude of the error e (the least-squares error) – Buckbinder et al., 2016 
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1.1.2. Resting-state functional magnetic resonance imaging  

Resting-state functional magnetic resonance imaging (rsfMRI) was started by the seminal work of Biswal 

and colleagues (1995), where a correlation between the motor area time courses and areas considered at rest 

was observed. This phenomenon suggested that also in the absence of external stimuli, the brain reveals a 

latent activity that can be ascribed to the neuronal baseline functioning of the different cortical areas. More 

interestingly, it was noticed that in this silent condition, the brain is organized in well-defined networks 

composed by sets of cortical areas which show correlated BOLD signal fluctuation at low frequencies (i.e., 

around 0.01-0.1 Hz) (Beckmann et al., 2005). These networks are currently and worldwide recognized as 

Resting State Networks (RSNs) that functionally reflect distinctive brain circuitries (Beckmann, et al. 2005; 

Damoiseaux, et al. 2006; De Luca, et al. 2006; Smith et al. 2009; Veer et al. 2010) (Figure 1.1).  

RSNs can be roughly divided into task-positive network and task-negative networks which are anti-

correlated to the former ones (Fox et al., 2005). The task-positive networks consist of regions routinely 

activated during goal-directed task They include dorsal-lateral and ventral prefrontal regions, insula, and 

SMA, activated by a variety of demanding cognitive tasks (Cabeza et al., 2000). The task-negative networks 

consist of regions commonly exhibiting activity drops during task performance (McKierman et al., 2003) 

and include a set of regions often referred to as a "default system" to connote greater activity at rest than 

during the performance of various goal-directed tasks (Gusnard et al., 2001). 

The analysis of the resting patterns can be performed in two different ways: either using seed-voxel 

approaches, namely regressing the resting data against a single voxel time course (Fox et al., 2005), or 

adopting the independent component analysis (ICA), a technique which decomposes a two-dimensional 

(time × voxel) data matrix into a set of time courses and associated spatial maps, that together describe the 

hidden signal (McKeown et al 1998). 
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Figure 1.2 Example of resting state networks (RSNs) – Beckmann et al., 2005  

 

1.2.  Structural brain connectivity 

Structural brain connectivity refers to the network of white matter axonal fiber bundles that compose the 

physical pathways, which link different gray matter regions. Diffusion-weighted imaging (DWI), is the 

magnetic resonance technique that allow to extrapolate in-vivo micro-structural information of the brain 

white matter, following the diffusion of the water molecules (Le Bihan et al., 1986; Basser and Pierpaoli, 
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1996; Basser and Özarslan, 2014). The physics of Brownian motion implies that molecules diffusing in a 

medium with diffusion coefficient D, after a time t are dispersed in the three dimensional directions with 

distribution ~ G(0, 6tD) (i.e., Gaussian with variance 6tD). In biological tissues, compared to solutions, the 

movements of the particles are hindered by macromolecules and cellular organelles and also restricted by 

the confinement created by membranes. If hindering is the prevalent mechanism appearing at the 

macroscopic voxel scale, the Gaussian distribution with variance proportional to the diffusion time holds, 

though with a decreased apparent diffusion coefficient (ADC, Basser et al., 1994). This statistical model is 

commonly considered in biological tissues, at least as a common approximation overlooking restrictions 

imposed by biological barriers (e.g., cell membranes) which would alter the distribution shape (Basser et 

al., 1995). Model refinements address both the non-isotropic features of tissues, namely those of fiber 

bundles, and deviation from Gaussianity due to restrictions (Zhang et al., 2012, Edwards et al., 2017). This 

thesis work will deal mainly with the former aspect, comparing the basic model of diffusion tensor imaging 

with the more complex one of spherical harmonics and spherical deconvolution. 

The way to detect the directions of diffusion movements is by using sharp bipolar gradient pulses, to encode 

the diffusion effect in the specific gradient direction. Briefly, according to Stejskal–Tanner equations, the 

Brownian mixing of spins (de-phased by the fist pulse and re-focused by the second) is sensed as diffusion 

weighted signal attenuation by A =S/S0 = exp(bD), where the b-value [s/mm2] characterizes the diffusion 

gradient pulse and determines the attenuation of the DWI image S compared to the reference image S0 (alias 

b=0 image, which is mainly T2 weighted due to the long echo time TE required by the insertion of the 

diffusion gradient). The basic implementation of the bipolar diffusion gradient implies two opposite pulses 

of short duration δ (order of msec), amplitude G, and time separation (i.e., diffusion time) τ. This yields b = 

γ2G2δ2(τ–⅓δ) (Beaulieu, 2002), where γ is the gyromagnetic ratio of protons. It is worth remarking that in 

this context, D represents the ADC relevant to the specific direction marked by the gradient pulse. As shown 

in the next paragraphs, anisotropic DWI data relevant to many directions with different ADC values require 
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appropriate interpretation models, which in turn will give the basic local features used to reconstruct neural 

tracts and evaluate their features. 

1.2.1. Diffusion Tensor Imaging  

In the cerebral WM, fibers are mainly myelinated axons organized in bundles. In this specific case, the 

principal diffusion direction is along the main axis of the fibers where the velocity of the molecules is from 

three to six times higher than in the orthogonal direction. To describe this feature of a prevalent direction, a 

more accurate mathematical description of the diffusion phenomenon was developed by extending the 

Gaussian diffusion model to the 3D anisotropic case. The scalar ADC parameter was substituted by the 

diffusion tensor D (see Eq.1) introduced by Basser et al. (1995), thus originating the Diffusion Tensor 

Imaging (DTI) technique.  

D= (

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧
𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑥
𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

) (1) 

Diffusion tensor D is a symmetric matrix, with six degrees of freedom, and takes into account the diffusion 

changes in the 3-dimensional space, often visualized as the diffusion ellipsoid. The direction of its principal 

axes corresponds to the direction of the eigenvectors associated to the diffusion tensor matrix while the 

length of the main axes of the ellipsoid is proportional to the corresponding eigenvalues. The terms in the 

principal diagonal represent molecular mobility along axis x, y, and z of the reference frame [x, y, z] of the 

MRI scanner gradients and the non-diagonal ones reflect correlation between these orthogonal directions. 

The principal eigenvector (e1) (corresponding to the highest eigenvalue (λ1)) in each voxel (Jackowski et al., 

2005) represents the principal diffusion direction and corresponds therefore to the prevalent fiber direction 

within the resolved voxel. The most used parameters that can be computed from the diffusion tensor are the 

main diffusivity (MD) and the fractional anisotropy (FA). The former is simply the trace of D (equal to the 

average of the eigenvalues) and represents a mean ADC over all directions. The latter indicates the 

anisotropy level (0 for isotropic, 1 for fully directional) by highlighting the eigenvalue differences. Since D 
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is a symmetric matrix, six acquisition directions (plus reference S0) could be theoretically sufficient to 

compute the 6 tensor parameters in each voxel of the image. However, the need to improve SNR suggests 

fitting the DTI model over more directions (maximally scattered over the sphere) and currently 30 directions 

is a common standard in clinical DTI (with at least one b=0 image every 10 DW images – Decoteaux, 2015).  

Although its wide-spread use in both base and clinical research, it is largely acknowledged that DTI presents 

strong limitations mainly derived from the assumption of the Gaussianity of the model that allows to depict 

one fiber configuration in each voxel ignoring the most complex configuration like the crossing and kissing 

fibers (Landman et al., 2010; Tournier et al., 2011). Considering that the common size of a voxel for DWI 

acquisition is 2mm isotropic, it was estimated that between 66% and 90% of white matter voxels presenting 

an FA values greater than 0.1 contain more than one fiber direction (Lenglet et al., 2009). To disentangle 

this complexity, the need of having more diffusion weighted directions for non-Gaussian diffusion models 

arose, thus leading to the development of high angular resolution diffusion imaging (HARDI) techniques 

(Tuch 2002; Jones et al., 2013). 

1.2.1. High Angular Resolution Diffusion Imaging and new models beyond DTI 

HARDI techniques are currently the state of the art of DWI acquisition directed to more reliable and rich 

tractographic reconstructions (i.e., more direction, more data, more virtual fibers). To be defined as a 

HARDI acquisition, the number of diffusion direction cannot be lower than 45 (and up to 200) and the b-

value used should be higher than 1000 s/mm2 (and up to 4500 s/mm2). Their introduction as typical 

acquisition schemes in brain structural studies promoted the development of new sophisticated analysis 

techniques both model-free and model-based (Decoteaux et al., 2015). Nevertheless, HARDI is generically 

related to the 3D advanced diffusion imaging (Tuch, 2002) that can be performed by techniques that sample 

the q-space (i.e., the space of empirical diffusion distribution) with different schemes (e.g., Cartesian, 

spherical both single- and multi-shell, radial, etc.) such as diffusion spectrum imaging (DSI) (Callaghan et 

al., 1988), Spherical Deconvolution (SD) (Tournier et al., 2004), q-ball imaging (Tuch et al., 2002) and the 
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Ball-and-Sticks model (Hosey et al., 2005; Behrens et al., 2007), just naming but a few. In this work, SD 

and spherical harmonics (SH) functions will be considered so a more detailed description of these techniques 

will be provided. In this perspective, the concepts of diffusion propagator and orientation distribution 

function (ODF) will be briefly recalled in the next paragraphs. 

The diffusion signal S(q,t) is often replaced by its attenuation E(q,t) derived by the diffusion signal 

normalized by the diffusion signal measured without any sensitization (i.e., with b=0 s/mm2) (Decoteaux, 

2015). Mathematically the relation is expressed as E(q,t)= S(q,t)/S(0). It was demonstrated (Callaghan et 

al., 1988) that this attenuated signal is function of the space probability distribution that describes the 

diffusion process of the water molecule, and this probability is called diffusion propagator p(r,t) (2). 

E(q,t)=∫ 𝑝(𝒓, 𝑡) exp(−2𝜋𝑖𝑞𝑇𝑟)𝑑𝑟
𝑅3

  (2) 

One of the most important characteristic of the diffusion propagator is the orientation distribution function 

(ODF) ψ (Cory, 1990) defined as the radial integral of the diffusion propagator in spherical coordinates (3). 

ψ (ϑ,φ)= ∫ 𝑝(𝒓, ϑ, φ)𝑟^2𝑑𝑟
∞

0
   (3) 

Therefore, ODF function contains all the angular information of the diffusion propagator and is represented 

as a spherical function on the unit sphere by means of the glyphs, namely a mesh in which every single 

vertex is proportional to the value of the ODF on the sphere (Decoteaux, 2015).  

At this stage, the problem of diffusion is how to reconstruct the ODF based on discrete spherical HARDI 

samples to produce angular functions whose maxima are aligned to the underlying fiber structure. However, 

the ODF is intrinsically a “blurry” phenomenon since it indicates the probability to have a diffusion along 

a certain direction. For this reason, several methods were proposed to improve the resolution of the ODF 

reconstruction (Jones et al., 2013, Tournier et al., 2004 and 2007), among which the Spherical deconvolution 

(SD) technique is a major one. 
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The main assumption of the SD model is that the ODF is a blurred object derived from the convolution 

between the real object and something that acts as a filter. Therefore, the deconvolution process is 

accomplished to have back the original object. Technically speaking, the measured diffusion signal S is the 

convolution of a single fiber response function R with the real fiber orientation distribution F, that is our 

unknow function (Tournier et al., 2004). Alternatively, this relation can be seen in the spherical harmonics 

space as a multiplication of R and F. 

Spherical harmonics (SH) are frequency-space basis functions defined as the set of infinite harmonics, ideal 

to describe a complex function with spherical symmetry, as well as Fourier series can depict complex signal 

in standard space. Diffusion weighted measurements are collected along different encoding directions end 

the more are the directions the more they cover the surface of a sphere (Frank 2002). For this reason, 

spherical harmonics basis of order l and phase m (Tournier et al., 2007; Descoteaux et al., 2009; Decoteaux 

et al., 2010) are mathematical tool well-suited for describing directional changes over the many HARDI 

directions, specifically in regions with complex WM architecture (Hess et al., 2006). To fill the conceptual 

gap between the natural system for imaging (i.e., the Cartesian one) and the spherical framework, the 

rotation in three dimensions of the diffusion coordinates are to be considered. Indeed, HARDI 

measurements, intrinsically have a spherical symmetry since they are composed by a series of 3D rotations 

(Frank 2002), therefore SH bases allow to reconstruct the angular component of the diffusion signals.  

For the nature of the diffusion signal, SH basis are real and symmetric so S is usually estimated by a 

truncated SH series of order lmax and a number of coefficients R such that R= (lmax+1)( lmax+2)/2. Odd orders 

of the SH describe asymmetric components, representing then image artifacts (Frank 2002). 
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Figure 1.3 Representation of first 15 elements of the spherical harmonic (SH) basis – Adaptation from Decoteaux et 

al., 2015 

The order l of the SHs gives the smoothness of the function, namely the higher is the order the sharper is 

the function, resulting in an improved angular resolution (zero-order, indeed, represents isotropic diffusion 

in absence of noise). However, using high l values can lead to instability (Tournier et al., 2004; Alexander 

et al., 2005) and produce negative fiber ODF values and false spurious peaks. To address this issue, 

constraints regularizations were introduced to insure stability and positivity (Decoteaux et al., 2007 and 

2009; Dell’Acqua et al., 2010; Anderson, 2005; Tournier et al., 2007; Alexander et al., 2005; Ramirez-

Manzanares et al., 2007) leading to the well-known constrained spherical deconvolution (CSD).  

1.2.2. Deterministic and Probabilistic Tractography 

Regardless the model used to characterize the diffusion signal, the most useful application of the DWI is in 

the fiber tractography.  
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It’s important to specify that fibers reconstructed through tractography techniques do not have to be 

considered real white matter tracts, but just a reflection of the axonal architecture. That is why the estimated 

curves displayed curves are commonly named ‘virtual fibers’ ore “streamlines”. This aspect has to be taken 

into account when tractography data are discussed. 

After the diffusion tensor computation, the principal direction of diffusion is computed for every voxel. 

Then, preserving the continuity in the reconstructed fibers at the voxel boundary is necessary to visualize 

the fibers like continuous lines. Several algorithms have been proposed by researchers during the last decade 

but each of them belongs to one of the two categories in which these algorithms have been classified: 

deterministic and probabilistic algorithms (Jones, 2008). 

Deterministic algorithms are a subset of line-propagation algorithms, in which the reconstruction of a 

streamline starts from a chosen seed point, often the center of an image voxel, and continues voxel-by-voxel 

following a direction parallel with the principal eigenvector (Basser et al., 2000). Termination criteria of the 

line-propagation algorithms have been introduced. The most common thresholds used are a minimum FA 

value (Jones, 2008), under which the anisotropy level becomes too low, and the maximum angle that the 

fiber can bend from one step to the next (Beherns et al., 2003; Parker et al., 2003). Although no general 

consensus is found in the literature, common threshold values are FA > 0.2 and bending angle < 30°. 

Although, the main concept is that deterministic tractography produces maximum likelihood pathways 

through the DW dataset (Anwander et al., 2006), the limitations in this kind of approach are the impossibility 

to reconstruct more than one trajectory per seed point, the univocal direction imposed inside each voxel, 

and the inability to evaluate the relative reliability of each trajectory. Probabilistic algorithms have been 

proposed to solve the limitation of the deterministic ones. In fact, a multitude of possible trajectories starting 

from each seed point are calculated and a probability value is assigned to each direction according to 

diffusion data along their whole pathway. Although many probabilistic algorithms exist, the result is always 

a probabilistic map (one map for each seed point), which contains the information about the probability to 
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connect any point in the brain, starting from the seed. In this case the termination criteria regard only the 

curvature angle (Jones, 2008), because probabilistic algorithms are not dependent on having a defined 

principal eigenvector and then they do not require a FA threshold. 

1.3. Open challenges and author’s contribution 

This doctoral thesis is inserted in the context of the investigation of the brain connectivity by means of 

advanced MRI techniques, namely the functional MRI to study functional activation of gray matter areas 

under different psycho-physical condition, and the diffusion weighted MRI to highlight the white matter 

connections which underlying specific brain circuitries. Specifically, the studies described in the next 

chapters aim at integrating these two imaging modalities to investigate the brain considered as a whole. 

There is no consensus or standard guidelines about how to combine structural and functional data, therefore 

this project has the purpose of addressing open methodological challenges and technical issues related to 

diffusion weighted imaging.  

First, we investigated the physical connection between WM bundles and GM areas and quantified the extent 

of this connection. Previous works demonstrated the correlation of the gray/white matter junction thickness 

to detect specific pathologies like the focal cortical dysplasia (Blackmon et al., 2011; Xiaoxia Qu et al., 

2014). However, no studies used the information of WM/GM connection as a marker of brain plasticity 

when investigating follow-up in patients under neurorehabilitation therapy. Moreover, our studies 

contributed to shed lights onto specific brain circuitry in both active and resting brain status, confirming the 

existence of strong links within major functional networks.  

Nevertheless, dealing with functional and structural connectivity data, we identified the latter as the weaker 

and the more limited in terms of accuracy of results and definition of quality as well as workflow standards. 

For this reason, the second part of this doctoral project aims at identifying artifacts in DW images in HARDI 

datasets. Specifically, we first developed a method for automatic detection of corrupted datasets and their 
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correction; then we proposed a fast and effective quality control on tractographic datasets, well suitable 

when performing group analysis, regardless the model used for describing the diffusion signal. 

It is noteworthy that all the developed methods were built with clinical datasets encouraging the translation 

of these research into medical routine for improving diagnosis precision and follow-up accuracy in 

rehabilitation context.     

All the studies described in this doctoral thesis were published and/or presented at International MRI 

conferences. 

 

1.3.1.  Author’s scientific publications 

Papers 

 

- Combined DTI–fMRI Analysis for a Quantitative Assessment of Connections Between WM 

Bundles and Their Peripheral Cortical Fields in Verbal Fluency - E. Scaccianoce, M.M. Lagana, 

PhD, F. Baglio, MD, M.G Preti PhD, N.P. Bergsland, P. Cecconi,MD, M. Clerici, MD, G. Baselli, 

G. Papadimitriou, N. Makris, MD – Brain Topography(2016) 

 

- Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle 

longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spaces” - N. Makris, 

A. Zhu, G. M. Papadimitriou, P. Mouradian, I. Ng, Y. Kao, E. Scaccianoce, G. Baselli, F. Baglio, 

M. E. Shenton, Y. Rathi, B. Dickerson, E. Yeterian, M. Kubicki – Brain Imaging and and 

Behaviour(2016) 

 

- Assessment of Internal Jugular Vein Size in Healthy Subjects with Magnetic Resonance and 

Semiautomatic Processing - M.M. Lagana, L. Pelizzari, E. Scaccianoce, O. Dipasquale, C. Ricci, 

F.Baglio, P.Cecconi, G. Baselli – Behavioural Neurology(2016) 

  

- Investigating functional and structural connectivity relationships within data-driven parcellated 

resting state networks – L. Pelizzari, E. Scaccianoce , M.M. Laganà, N.P. Bergsland, O. Dipasquale, 

I. Costantini, P. Cecconi, M. Clerici, F. Baglio, G. Baselli – in preparation 
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- Mapping residual along tract: a technical note on a fast and effective quality control for tract specific 

measurements - E. Scaccianoce, G. Baselli, M.M. Laganà, F. Dell’Acqua – in preparation 

 

 

CONFERENCE PROCEEDINGS 

 

- “A Fast and Effective Strategy for Artifact Identification and Signal Restoring with HARDI data” 

at International Society of Magnetic Resonance in Medicine, Singapore, May 2016  

 

- Artifact Identification and Signal Restoring in HARDI data by using spherical harmonic model” at 

Organization for Human Brain Mapping, Geneva, June 2016  

 

- A semi-automatic method for anatomical measures of the internal jugular veins” at International 

Society for Neurovascular Diseases, New York City, May 2016 

 

- A diffusion tensor imaging study of autoimmune limbic encephalitis” at XLVI Congresso nazionale 

della Società Italiana di Neurologia, Genova, October 2015 

 

- Correlation of Brain Structural and Functional Connectivity Indexes” at 37th Annual Conference of 

the IEEE Engineering in Medicine and Biology Society, Milan, August 2015 

 

- Mapping residuals along tracts: an effective quality control approach for tract specific 

measurements” at International Society of Magnetic Resonance in Medicine, Toronto, May 2015  

 

- Do the structural connections reflect the functional connectivity within specific resting state 

networks?” at Risonanza Magnetica In Medicina 2015: Dalla Ricerca Tecnologica Avanzata Alla 

Pratica Clinica, Verona, April 2015 

 

- A novel approach of fMRI-guided tractography” at International School Of Clinical Neuroanatomy, 

THE PARIETAL LOBE, Catania, May 2014 

 

- Functional and structural connectivity changes in a case study of cervical dystonia treated with 

botulinum toxin and motor re-learning techniques” at 3rd International Workshop on Synaptic 

Plasticity: from bench to bedside, Milazzo, June 2014 
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- Optimization of inverse fMRI-guided tractography technique: application to language circuit in 

typical condition” at GNB2014, Pavia, June 2014 
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2. Integration of deterministic tractography and task-driven 

functional magnetic resonance imaging  

The main results presented in this chapter were published in Scaccianoce et al., (2016) “A method for 

quantitative assessment of connections and their peripheral cortical fields using combined DTI tractography 

and fMRI in verbal fluency”. 

One of the most challenging objectives in recent neuroscience is defining the white matter connections, 

which involving the micro-scale of fiber span through the whole brain, and their organization in circuits 

within specific functional networks of specialized cortical areas (Makris et al., 2009). The elucidation of the 

specific circuitries underlying brain activations is considered a fundamental step for both understanding a 

given behavior or physiological state (Greicius et al. 2009; Raichle et al. 2001) and recognizing potential 

pathological biomarkers (Mayberg et al. 2005). Assessing brain damages at the network level, indeed, offers 

the possibility to investigate anomalous interaction between regions that alone show normal activation 

(Grefkes and Fink, 2011; Rehme and Grefke, 2013). 

In the present studies, magnetic resonance imaging (MRI) technique is used to perform a multimodal 

analysis of the brain at structural (i.e. WM fibers) and functional (i.e. GM areas) network levels. 

Specifically, diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) were 

selected since their combination was demonstrated to be suitable for the integrated exploration of neural 

circuitries (Honey et al. 2009; Aslan et al. 2011; Turken et al. 2008; van Eimeren et al. 2008; Glenn et al. 

2007; Morgan et al. 2009; Vernooij et al. 2007; Propper et al. 2010).  

The most recent literature reported different approaches aim at combining structural-functional information. 

The first strategy consists in correlating microstructural integrity indicators assessed through diffusion 

measurements (e.g., fractional anisotropy), and blood oxygenation level dependent (BOLD) signal 

evaluated by functional activity (Morgan et al. 2009; Forstmann et al. 2008; Zhang et al. 2010; Shlosser et 

al. 2007). Although this method provides with information on network complexity at high level, it does not 
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highlight direct white matter (WM)-gray matter (GM) connections in a topographical context. The second 

approach, instead, aims at integrating in the same framework DTI and fMRI data by performing tractography 

using GM functional activations as seed regions, leading to a technique named fMRI-guided (fMRI-driven) 

tractography, whose applications include virtual surgical planning (Kleiser et al. 2010), neurodegenerative 

diseases (Preti et al. 2014; Bonzano et al. 2009), and investigations in healthy subjects (Staempfli et al. 

2007; Greicius et al. 2009). Differently from fMRI-guided tractography method, Hua and colleagues (2009) 

proposed to consider the projections of well-known bundles, investigating which cortical areas were directly 

linked with the considered bundles. With this method, though, no inference could be drawn regarding 

structural-functional relationships. Following this idea, we proposed a novel combined DTI-fMRI analysis 

of the language network by assessing topographically and quantitatively the connections between the left 

arcuate fascicle (AF) and the left cingulum bundle (CB) with their peripheral cortical field recruited during 

a verbal fluency task. This method was developed on healthy subjects and tested in a neurorehabilitation 

context to demonstrate the importance of assessing brain circuitry changes longitudinally. 

2.1.1. Materials and methods 

Subject population 

Twenty-five healthy subjects (HSs) were enrolled at Don Gnocchi Foundation (Milan, Italy). A clinical 

interview determined that all subjects had no impairment in daily living functional activities and no major 

psychiatric illnesses, with attention to exclude subjects with a history of depression. 

MRI acquisition protocol 

Brain magnetic resonance imaging (MRI) scans were acquired using a 1.5 Tesla scanner (Siemens 

Magnetom Avanto, Erlangen, Germany) with the following sequences: axial dual-echo turbo spin echo 

(TR/TE1/TE2 = 2650/28/113 ms, , flip angle = 150°, 50 interleaved 2.5-mm-thick slices, matrix size = 

512×512, FOV = 250×250 mm2); coronal FLAIR (TR/TI/TE=9000/2500/121 ms, flip angle=150°, 24 4-

mmthick slices, matrix size=240x210, FOV=256×205mm2). In the same session the following axial MRI 
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sequences were also acquired. 1) 3-dimesional T1-weighted magnetization prepared rapid gradient echo 

(MPRAGE) (TR/TE/TI = 1900/3.37/1.1 ms, flip angle = 15°, 176 contiguous slices, matrix size= 192×256, 

FOV = 192×256 mm2) as anatomical reference. 2) Diffusion weighted (DW) pulsed-gradient spin-echo 

echo planar imaging (EPI) (TR = 7000 ms, TE = 94 ms, 50 2.5-mm-thick slices, matrix size = 128×96, FOV 

= 320×240 mm2), with diffusion gradients (b-value= 900 s/mm2) applied in 12 non-collinear directions and 

one image without diffusion weighting (i.e., b-value=0). Two runs were acquired. The DW sequence 

parameters were selected to optimize signal to noise ratio (Laganà et al., 2010), compatible with time-limited 

clinical protocols. 3) Single-shot gradient echo EPI sequence (38 interleaved 3 mm-thick slices, TR/TE = 

3000/50 ms, matrix size = 64×64, FOV = 250×250 mm2) using blood oxygenation level dependent (BOLD) 

contrast for functional imaging, during a paced-overt verbal fluency task. The stimuli were presented with 

an MR-compatible visual system (VisuaStim Digital system from Resonance Technology Inc.), including 

E-Prime software (E-Prime 2.0 Psychology Software tool, http://www.pstnet.com) to ensure the exact 

timing of prompts during MR acquisitions. Each session included 6 experimental blocks in which the subject 

was required to list six different objects belonging to a specific category (e.g., flowers). Each experimental 

block was alternated with 6 control blocks (30 seconds each, for a total duration of 6 minutes). Subjects 

were instructed to say the word “nothing” if they were unable to generate an exemplar when they saw an 

exclamation mark. Asking subjects to produce the word “nothing” (rather than simply remain silent) served 

to better match the articulatory components of the task and the control conditions. During the control blocks, 

instead, subjects read the word “nothing” presented on the screen every 2.5 seconds (Basho et al., 2007). 

Finally, the relationship between the fMRI activation and the in-scanner performance on the task was 

evaluated through the percentage of the correctly uttered words. 

DTI data analysis  

Pre-processing of DW images included the correction for distortions induced by eddy currents and head 

motion by means of FSL package (http://www.fmrib.ox.ac.uk/fsl/), having the b=0 image of the first run as 
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the reference image and rotating the B-matrix according to the local spatial orientation correction (Leemans 

and Jones, 2009). The diffusion tensor (DT) was then estimated for each voxel, tensor decomposition was 

performed and fractional anisotropy (FA) was computed. Each subject images were normalized by non-

linear warping to the Montreal Neurological Institute (MNI) FA template, based on their FA image. The 

same warp was locally applied to the tensor of each voxel. Deterministic tractography was performed with 

the following parameters: brute-force approach (Conturo et al. 1999), interpolated streamline algorithm, FA 

< 0.20 and angle between two subsequent directions > 35° as stopping criteria (Preti et al. 2014). Left AF 

and left CB were reconstructed with TrackVis v.0.5.1 (www.trackvis.org) as the main bundles involved in 

the considered verbal fluency task (Baglio et al. 2014; Preti et al. 2014; Makris et al. 1997; Makris et al. 

2002; Catani et al. 2002; Catani and de Schotten 2008; Propper et al. 2010; Morgan et al. 2009). The above-

mentioned tracts were dissected from specific regions of interest (ROIs) as described in Catani and de 

Shotten (2008). Specifically, a single ROI composed by approximately five slices in axial view was used 

for AF tractography. A large half-moon shaped region was defined on the most dorsal part of the AF. The 

lowest region was defined around the posterior temporal stem. The lateral border of the ROI passed through 

the bottom part of the frontal, parietal and temporal sulci. The precentral sulcus demarcated the anterior 

border of the ROI (Fig. 2.1, panel a). For the CB dissection, instead, a single ROI on approximately 30 axial 

slices was chosen. A single cigar-shaped region was defined on the top three slices. When the CB separates 

into two branches, an anterior and posterior region was defined on each slice from the parahippocampal 

gyrus to terminate in the anterior part of the medial temporal lobe (Catani and de Shotten, 2008) (Fig. 2.1, 

panel b). 
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Figure 2.1 Region of interest (ROI) used for reconstructingarcuate fascicle (AF) (a) and cingulum bundle (CB) (b) – 

Scaccianoce et al., 2016 

 

fMRI data analysis 

Pre-processing of fMRI images was performed by FSL FEAT v5.98 (Smith et al. 2004) including the 

following steps: motion correction, non-brain tissue removal, spatial smoothing with a Gaussian kernel of 

5 mm full width at half maximum (FWHM) and a high pass filter cutoff of 60 s. The active cortical areas 

elicited by the categorical-fluency (versus control condition) were identified at single level by statistical 

analysis (first level, general linear model) (GLM; Friston et al. 1994), introducing movement parameters as 

covariates. A contrast of parameter estimates (COPE) image was obtained for each subject and then non-

linearly registered to the MNI space, using the transformations by estimating: 1) the transformation of the 

EPI to the high-resolution structural T1-MPRAGE using linear registration (FLIRT – Jenkinson and Smith 

2001; Jenkinson et al. 2002) with the brain-boundary registration cost function (BBR - Greve and Fishl 

2009); 2) the non-linear warping of the T1-MPRAGE to MNI standard space with FNIRT (Smith et al. 

2004). The resulted normalized COPE images of each subject were used for group analyses (second level, 

one sample t-test) to estimate the main effect of the task. A threshold of t=1.73, corresponding to a P<0.05 

significance level (according to N-1=20 degrees of freedom) was applied to the t map resulting from the 

second level analysis and each estimated cluster was determined by Z>2.3, corresponding to a corrected 
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cluster significance threshold of P=0.05 (Worsley et al. 2001). Finally, the relationship between the 

sensitivity to fMRI clusters and the in-scanner performance on the task was evaluated through the percentage 

of the correctly uttered words and resulted very close to 100% (i.e., 98,81±2.32%). 

DTI and fMRI data integration: single subject and group level 

Since the bundles reconstructed with this tractographic algorithm normally are stopped before approaching 

gray matter, due to the FA decrease in the cortex proximity (Basser et al. 2000; Conturo et al. 1999), both 

the AF and the CB of each subject were extended into gray matter for 10 mm to reach the most proximal 

cortical regions. Both extremities of every streamline were extended by using an in-house Matlab script 

(Matlab R2010a, MathWorks, http://www.mathworks.it/products/matlab) following the direction of the 

vector connecting the coordinates of the two last voxels. Finally, each extended tract was masked with a 

GM atlas (Hui et al., 2005) to select only those parts reaching the cortex. The necessary processing steps on 

diffusion data to obtain fiber extension are summarized in figure 2.2, left side, panel a.  

Regarding the functional data, from the center of gravity (COG) of each cluster obtained by group-fMRI 

analysis, 11-mm-radius spheres were drawn to restrict the analysis to the specific cortical areas identified 

by the cluster peaks and also to take into account the inter-subject variability (Drobyshevsky et al. 2006). 

The necessary processing steps on functional data to obtain cortical activations centered in the COG are 

summarized in figure 2.2, left side, panel b.  

DTI-fMRI integration was then performed both at single and group level in standard space.  

At single level, the AF and CB projections of each subject were intersected with group fMRI activation 

spheres; the topographic location (i.e., which Brodmann areas were involved) and the extension, in terms 

of mm3, were evaluated. The median value and confidence interval at 95% (CI95%) of the connection 

volumes between the projections of AF and CB at single level and spheres from fMRI activation were finally 

computed. 
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At group level, the group projections of AF and CB were obtained by averaging the single subject 

projections among all the HSs. These averaged volumes were then thresholded at 0.6 (Mori et al., 2009; 

Aslan et al. 2009), a useful step to limit the random error due to noise and partial volume effects (Hua et al. 

2009). The group projections were intersected with the group fMRI activations (Fig. 2.3); then, the volumes 

of connection were mapped and measured, and the relative weight of each BA was also calculated and 

expressed both as absolute values and relative percentages (i.e., how much the specific Brodmann area 

overlapped with the connection). The Dice coefficient and the coefficient of variability were computed to 

test the physiological inter-individual variability of GM-projected bundles, considering the tract projections 

of every single subject compared to the group projections for both AF and CB. Finally, the Dice coefficient 

was also calculated for the volumes generated by the overlap between the DTI projections and the group 

fMRI activations. 
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Figure 2.2 Pipeline of DW images (panel a) and fMRI images (panel b) to perform the structural-functional data 

integration– Scaccianoce et al., 2016 
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Figure 2.3 Integration of diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI): AF 

group projections (light blue), functional activations starting from the center of gravity (COG) of the signal 

peak (yellow) - left view – Scaccianoce et al., 2016 

 

2.1.2. Results  

As a result of the clinical interviews, none of the 25 subjects showed neurological problems. T1- and T2- 

weighted images didn’t depict any anatomical abnormalities. fMRI sequences, instead, presented movement 

artifact in 4 out of 25 subject datasets that were finally excluded. 

DTI and fMRI data analysis  

For diffusion data, fiber reconstruction of left AF and CB were successfully performed for all 21 subjects. 

Tract FA and MD values (not shown) resulted homogeneous within the 21-subject group, revealing a normal 

anatomy (Catani and de Shotten, 2008).  

Regarding the functional activations, four statistically significant activation clusters (Z>2.3) were obtained 

(Tab. 2.1).  
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Cluster 

index 

 

Voxels 

Z-

max 

x 

(mm) 

Z-

max 

y 

(mm) 

Z-

max 

z 

(mm) 

 

Z  

max 

COG 

 

x 

(mm) 

COG 

 

y 

(mm) 

COG 

 

z 

(mm) 

 

Z  

COG 

 

Cortical 

areas 

 

1 14617 -50 -13 43 4.17 -43.88 4.75 39.1 2.28 Precentral 

gyrus 

2 9698 31 -60 -31 4.28 33.8 -64.7 -27 2.62 Cerebellum 

3 8980 -54 17 -3 4.22 -55.9 4.76 0.808 -* Sup. Temp. 

gyrus 

4 8682 -2 14 50 5.2 -1.34 13 50.7 4.93 Sup. Front. 

gyrus 

Table 2.1 Standard space coordinates of COG and respective Z-intensity value of four activation clusters (clusters 1, 

3 and 4 are located in the left hemisphere, cluster 2 is located in the right hemisphere) – Scaccianoce et al., 2016 

*This Z-intensity value could not be assessed because the respective COG was not included in an activation cluster 

 

Consistently with previous findings (Baglio et al. 2014; Preti et al. 2014), the HSs exhibited a typical 

activation pattern of paced overt verbal fluency task: activated areas related to the category-driven word 

generation (e..g., left inferior and middle frontal cortex) and areas associated with the paced response and 

overt articulation (e.g., cingulate cortex, right superior parietal cortex, insular cortex, thalamus, basal 

ganglia), with some  contralateral activation in the cerebellum. 

DTI and fMRI data integration: single subject and group level 

Considering the extended tracts, the cortical areas involved at both single and group level of AF projections 

were the primary somatosensory cortex (BAs 3/1/2), premotor cortex (BA 6), prefrontal dorsolateral cortex 

(BA 9), occipital areas (BAs 19/18/17), parieto-temporal cortex (BAs 21/37, 40 - Wernike’s areas) and the 

inferior frontal gyrus (BAs 44/45 - Broca’s area).  
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The single and group CB projections, instead reached the primary somatosensory cortex (BAs 3/1/2), 

premotor (BA 6), prefrontal dorsolateral cortex (BAs 8 and 9), occipital areas (BAs 19/18/17), prefrontal 

cortex (BA 10), parietal cortex (BAs 5 and 7), anterior and posterior cingulated cortex (BAs 24/32, 29, 30 

and 31), and the orbitofrontal area (BA 11). The analysis of the physiological interindividual variability of 

GM-projected bundles showed a mean Dice coefficient of 0.637 (σ=0.134) for AF projections and 0.730 

(σ=0.105) for CB projections while the coefficient of variability was equal to 0.210 for AF and 0.144 for 

CB. 

The fMRI activation areas, were identified in left inferior and middle frontal cortex, cingulate cortex, right 

superior parietal cortex, insular cortex, thalamus and basal ganglia, in accordance with previous works 

(Baglio et al. 2014; Preti et al. 2014). 

Concerning the intersection between either the AF or the CB streamlines extended to the cortex and the 

active fMRI areas, we focused on the 4 regions that are typically considered part of the language network, 

namely BA 6 (dorsal premotor cortex), BA 8 (prefrontal dorsolateral cortex), BA 24/32 (anterior cingulate 

cortex), BA 44/45 (Broca’s area) (Lubrano et al., 2014; Valk 2011; Golistanerad et al., 2015; Friederici 

2017). Table 2.2 presents the statistics of intersection volumes [mm3] and emphasizes the interindividual 

variability by reporting the confidence interval (CI95%). Similarly, Table 2.3 displays the volumes of 

intersection between the group fMRI activation spheres and the group tract projections, also considering the 

percentages represent how much the specific Brodmann area overlap with the intersection. 

Noticeably, most of the connections related to CB falls into the BA 24/32, in both single and group analysis, 

while the connection related to the AF show a different percentage distribution at single level, compared to 

the group one, even though the volume in mm3
 of the dorsal premotor cortex (BA 6) has similar extension 

both at single and group level.  

The volumes of the connections between group fMRI activation spheres and the AF group projections were 

located in Broca’s area (left inferior frontal gyrus, BAs 44/45) and in the premotor cortex (middle frontal 
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gyrus, BA 6) (Tab. 2.3). The volumes of the connections between the CB group projections and dilated 

fMRI activation resulted in the anterior cingulate cortex (BAs 24/32) (Tab. 2.3).  

 

 

BAs 

Intersection 

 single-subject AF-

fMRI 

mm3 [CI95%] 

Intersection 

 single-subject AF-

fMRI 

%[CI95%] 

Intersection 

 single-subject CB-

fMRI 

mm3 [CI95%]  

Intersection 

 single-subject CB-

fMRI 

%[CI95%] 

6 541 [388-768] 49 [46-61] 45 [6-272] 7[1-17] 

8 0[0-0] 0[0-0] 22 [0-85] 2[0-7] 

24/32 0[0-0] 0[0-0] 299 [148-505] 45[30-55] 

44/45 59 0[0-219] 8.1[0-14] 0[0-0] 0[0-0] 

Table 2.2 Median value and confidence interval (CI95%) of the volumes of intersection between extended AF and CB 

single subject projections and dilated fMRI activations – Scaccianoce et al., 2016 

 

 

 

BAs 

Intersection 

 group AF-fMRI 

mm3 [%] 

Intersection 

group CB-fMRI 

mm3 [%] 

6 555 (10) 116 (2.1) 

8 1 (0.1) 26 (11.1) 

24/32 - 569 (47) 

44/45 127 (17.7) - 

Table 2.3 Volumes of intersection between extended AF and CB single subjects projections and dilated fMRI activation 

(the percentages represent how much the specific Brodmann area overlap with the intersection) – Scaccianoce et al., 

2016 
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Finally, to further investigate interindividual variability, Table 2.4 presents the mean of the Dice coefficients 

between the volumes generated by the union of the DTI projections to the cortex of all subjects and the 

group fMRI activated areas considering each pair of either bundle and one of the 4 Brodmann areas. 

Remarkably, in the pairs where significant connections were found, the group areas of influence of the 

bundle and the activated area display high overlaps with Dice indexes ranging from 0.83 to 0.97. This 

confirms, at least at a group statistical level, a substantial agreement for all the recognized overlaps, namely: 

AF with BA 6 and BA 44/45; CB with BA 6, BA 8, and BA 24/32. 

 

Bundle BA6  BA8  BA24/32  BA44/45 

AF 0.97 - - 0.83 

CB 0.95 0.89 0.95 - 

Table 2.4 Averaged Dice coefficient evaluated for the volumes generated by the overlap between the DTI projections 

and the group fMRI activations– Scaccianoce et al., 2016 

 

2.1.3. Discussion 

In this work, we introduced a novel approach to study in quantitative manner the topography of a specific 

brain circuitry by coupling the WM bundle cortical projections and the activated GM areas. In order to 

combine structural and functional information, we chose the language network for its specific anatomical 

definition (Mori et al, 2002; Makris et al., 2005) and because the verbal fluency has been extensively studied 

both structurally and functionally (Basho et al. 2007, Preti et al. 2014; Giménez et al.2006; McDonald et al. 

2008; Levin, 2003; Paulesu et al. 1997), therefore serving as test-bed to assess the validity of our method. 
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Our study, included diffusion and functional datasets of 21 healthy elderly subjects (68.5±5.8 years) to 

investigate the relationship between cortical regions elicited by a verbal fluency task and cortico-cortical 

fiber tracts associated with this function (i.e. AF and CB). Our results confirmed the association between 

these bundles, recognized to be involved in language processing (Makris et al. 2002; Catani and de Schotten 

2008; Propper et al. 2010; Morgan et al. 2009) and the GM areas elicited by a verbal fluency task (Baglio 

et al 2014; Basho et al.2007; Giménez et al., 2006; Paulesu et al. 1997; Binder et al. 1997). The topographical 

correspondence between the AF and CB projections and the fMRI activations corroborated previous studies 

which have attributed an important role in language processing to the above-mentioned WM tracts 

(McDonald et al. 2008; Makris et al. 1997; Makris et al. 2002; Catani et al. 2002). 

 In this work, two novel aspects were introduced compared to previous approaches, which have combined 

DTI and fMRI data (Kleiser et al. 2010; Hua et al., 2009, Preti et al., 2014). The first one concerns the 

specific localization of white and gray matter components of a specific network, i.e. the language circuit. 

The second one regards the quantitative assessment of the WM-GM interconnections. In this fashion, we 

proposed a translation from a qualitative evaluation to a quantitative one when studying the structural-

functional connectivity. Further, an interesting implication of this study is the possibility to translate our 

research into the clinical practice, since the proposed analysis pipeline is applicable on images acquired 

using clinical scanners, which in most cases are still 1.5T as the one used in our pilot study, and basic 

connectivity analysis protocols and tools; i.e. task driven fMRI, for functional responses and DTI for 

structural connectivity.  

To conclude, this analysis represents an innovative way for and integrated study of brain circuitries as it 

takes into account volumetric measures of the connections between a given fiber bundle and its peripheral 

cortical field. Therefore, the proposed technique improves our analytic capabilities in structural and 

functional connectivity investigations using multimodal neuroimaging in clinical routine. 
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2.1.4. Application to stroke patient: a longitudinal case study 

We also tested the proposed DTI-fMRI integration method in a 65-year-old man who sustained an ischemic 

stroke (3 months prior) in the left middle cerebral artery territory. The patient was referred to Neuro 

Rehabilitation Unit of Don Carlo Gnocchi Foundation to undergo a neurorehabilitation treatment. At the 

admission in the center (T0), the patient presented a self-selected gait velocity of 0.52 m/sec, used a cane 

when walking and there were no significant cognitive deficits, only a mild impairment in verbal expression. 

The rehabilitation goals were to increase walking speed and endurance, to improve speech abilities and to 

promote his overall quality of life and well-being. Post-stroke management for this individual involved both 

conventional speech activities and a task oriented biofeedback approach (for details on protocol see 

Jonsdottir et al., 2010). The patient was treated for one month and at the hospital discharge (T1) self-selected 

gait velocity of the patient had increased by 16% to 0.61 m/sec and speech production had improved. To 

test the speech abilities structural MRI data were also acquired at the admission time, after 1 month at 

hospital and finally at 3-month follow-up (T2). Data was collected using the protocol described in the section 

‘MRI acquisition protocol’ and analyzed as described in the paragraph ‘DTI data analysis’, while DTI and 

fMRI integration was performed at the single subject level, focusing on the arcuate fasciculus (AF), and 

was prospectively evaluated at T0 (admission), T1 (discharge after 1 months rehabilitation), and T2 

(followup, after further three months).  

As a result, at T1 we observed an increased WM-GM connection in BA 6, compared to T0, which 

improvement persisted at T2. Furthermore, at both T1 and T2 we registered a connection located in BA 

44/45 that was not revealed at T0. All the results are summarized in Table 2.5 and Figure 2.4. 

The need of understanding cognitive deficits at brain network level rather than studying cortical activities 

or structural anatomy separately, is currently an issue that cannot be neglected when treating focal 

pathologies such as stroke. Previous studies (Grefkes et al., 2011; Rehme et al., 2013) have demonstrated 

that the structural connectivity sometimes reflects an anomalous interaction between two regions in patients 

with residual functional impairments in spite of normal functional activations. In stroke patients, indeed, the 
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presence of WM structural damages (Ciccarelli et al. 2008; Newton et al. 2006) makes the characterization 

of functional recruitment very challenging. Further, the importance of evaluating the damage at network 

level leads to the possibility of investigating whether collateral pathways are enrolled to accomplish 

functions commonly assigned to specific and well-known networks, such as the language circuit. In 

neurodegenerative pathologies such as Alzheimer’s disease (AD), instead, our method may be useful to 

evaluate the damage progression. A combined investigation of WM and GM may indeed provide further 

insight into the study of residual and/or collateral connections which allow the remapping of a specific 

functionality (Wittenberg 2010; Reuter-Lorenz and Park, 2014). 

Further analysis on this topic may include the possibility to mask the WM tracts with the patient own 

parcellated brain instead of using a standard GM atlas. Comparing the results obtained by masking the tracts 

with the GM atlases with the ones revealed by masking with the subject’s parcellation may provide more 

precise information about the language network of the specific patient. 

Finally, these findings suggest that our method could well be useful as a quantitative instrument to assess 

circuitry modifications and adaptation, allowing for the monitoring the changes due to both pathology and 

those induced by therapeutic interventions (Irimia et al., 2014). This may eventually aid in the development 

of patient-specific tailored rehabilitation approaches. 

 

 

 

Connection 

 group AF-fMRI 

mm3  

Connection 

 group AF-fMRI 

mm3  

Connection 

 group AF-fMRI 

mm3  

BAs T0 T1 T2 

6 236 677 617 

8 - - - 

24/32 - - - 

44/45 - 22 9 

Table 2.5 Volumes of connection between extended AF projections and dilated fMRI activation of the considered 

stroke patient – Scaccianoce et al., 2016 
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Figure. 2.4 Integration of diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) at single 

level in the considered stroke patient. The volumes of connections were evaluated at T0, T1 and T2 – Scaccianoce et 

al., 2016 
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3.  Integration of probabilistic tractography and resting-state 

functional magnetic resonance imaging 

In this chapter, a summary of the following works is presented: i) “Investigating functional and structural 

connectivity relationships within data-driven parcellated resting state networks” – Pelizzari, Scaccianoce et 

al., 2017; “Correlation of Brain Structural and Functional Connectivity Indexes” presented at at 37th Annual 

Conference of the IEEE Engineering in Medicine and Biology Society (2015); ii) “Do the structural 

connections reflect the functional connectivity within specific resting state networks?” at Risonanza 

Magnetica In Medicina 2015: Dalla Ricerca Tecnologica Avanzata Alla Pratica Clinica (2015). 

In the study presented in Chapter 2, deterministic tractography was used to derive diffusion metrics and 

therefore perform the integration of structural data with the functional ones. However, deterministic 

algorithms are mainly governed by two parameters: the bending angle and the fractional anisotropy (FA) 

that determine the stopping of the fiber reconstruction when reaching above threshold values if fiber 

direction is highly uncertain, as it happens in deep gray matter, in proximity of the cortex and in presence 

of complex fiber configuration (Stieltjes et al., 2001; Behrens et al., 2003; Behrens et al., 2007; Hagmann 

et al., 2007, 2008; Honey et al., 2009; Yo et al., 2009). To solve this issue, probabilistic algorithms have 

been developed to get the streamlines continued even in those areas presenting high uncertainty, with the 

additional advantage to be more robust against noise than the deterministic ones (Behrens et al., 2003) and 

to allow fiber reconstruction (at least probabilistically) between a starting ad an ending ROI. In this context, 

structural connectivity uncertainty is represented by probability density functions (PDFs) of diffusion model 

parameters, whose definition in a Bayesian framework is performed by the posterior distribution on the 

parameters given the data (1):   

𝑃(𝜔|𝑌,𝑀) =
𝑃(𝜔|𝑌,𝑀)𝑃(𝜔|𝑀)

𝑃(𝜔|𝑀)
                       (1) 

being ω the set of chosen parameters, Y the measured data and M the model.   
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The issue with this representation is that the denominator of the equation (1) is an integral often not 

analytically solvable. Moreover, the addressed joint posterior distribution between unknown and observed 

data, usually includes a single parameter or a subset of parameters (Behrens et al., 2003). One possibility to 

simplify the problem is using the Markov Chain Monte Carlo (MCMC) sampling scheme that, in relatively 

short computational times, draws samples in areas with high probability (Gilks et al., 1996; Gamerman, 

1997). Specifically, the basis for this approach is to construct a Markov chain which has, as its invariant 

distribution, the (posterior) distribution of interest. Importantly, the probabilistic tractography can take full 

advantage of the HARDI scan schemes since the MCMC approach can exploit a richer signal by random 

extractions without the need of an explicit model. 

In the present work, we exploit this computational approach performing probabilistic tractography by means 

of BEDPOSTX i.e., Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques 

(Beherens et al., 2003), where our set of parameters ω is represented by the different directions that a fiber 

can follow voxel after voxel. The probabilistic approach was adopted since we were interested in correlating 

the functional connectivity (FC) between two ROIs with the structural connectivity (SC). Hence, the latter 

was best aimed at by a probabilistic and robust approach also permitting to connect a start point (or seed) 

ROI with an end point ROI. This definition, however, implied a slight asymmetry in results depending on 

which of the two ROIs is given the role of seed or of end-point. As better explained in the methods, this 

problem was overcome by combining the SC evaluated in both directions. 

Coming to the addressed ROIs, we applied this algorithm to evaluate SC in parallel to correlation algorithms 

for FC among ROIs obtained by splitting specific resting state networks (RSNs) into spatially segregated 

clusters (Costantini et al., 2016). The clustering approach was first introduced by our group in the context 

of FC alone thus addressing correlations internal to the of RSNs to better understand the anatomo-functional 

structure of these circuits. Indeed, RSNs can be blindly separated by independent component analysis (ICA) 

thanks to the high degree of temporal dynamics coherence among their voxels and to the maximization of 
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spatial independence. This process is highly informative and reproducible relevant to the separation of the 

RSNs which were recognized by the literature (De Martino et al. 2007; Perlbarg et al. 2007; Tohka, Foerde 

et al. 2008; Kundu et al. 2012; Storti et al. 2013; Salimi-Khorshidi et al. 2014). However, it gives no 

information about the interactions inside each RSN. A separation into clusters and the derivation of the 

cluster ensemble signal through the first (i.e. the temporal one) step of the dual regression relevant to each 

subject for each extracted cluster is hypothesized to shed new light about the functional activity and possible 

damages of the RSNs.  

Subsequently, it was recognized that the separation of clusters within the RSNs was suited to evaluate both 

FC by the correlation of ROI signals and also the SC by the probabilistic tractography. Therefore, the 

analysis was conducted at both structural and functional level to correlate the network SC information with 

its internal FC.  In this pilot study, we selected the Default Mode Network (DMN) and the Left and Right 

Lateral Network (LLN and RLN) because these networks are considered robust demonstration of functional 

connectivity: specifically, the DMN is highly connected at rest and remains always active as background 

when performing tasks (Greicius et al. 2003); the two lateralized fronto-parietal networks, instead, overlap 

to brain areas that underlie specific cognitive paradigms such as memory, language and perception (Pievani 

et al., 2014).  

 

3.1.1. Materials and methods 

Subject population 

In this analysis, nineteen healthy subjects (HSs) were enrolled in the Don Gnocchi Foundation (Milan, Italy), 

after Ethics Committee approval.  

The study population included right-handed subjects who had no neurological disorders and gave their 

informed consent according to the principles of Helsinki Declaration.  
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MRI acquisition protocol 

Brain magnetic resonance imaging (MRI) was performed using a 1.5 Tesla scanner (Siemens Magnetom 

Avanto, Erlangen, Germany). For anatomical reference, a 3D T1-weighted Magnetization Prepared Rapid 

Acquisition Gradient Echo (MPRAGE) image was acquired for each subject using the follow parameters: 

repetition time [TR]=1900 ms, echo time [TE]=3.37 ms, inversion time [TI]=1100 ms, flip angle=15◦, voxel 

size=1×1×1mm3, matrix size = 192×256, number of axial slices=176. The structural images were recorded 

using a pulsed-gradient spin-echo planar imaging (EPI) (TR = 6700 ms, TE = 99 ms, voxel size = 

1.9×1.9×2.5 mm3, matrix size = 128×128, number of axial slices = 40) with two runs of diffusion gradients 

(b-value= 900 s/mm2) applied in 30 diffusion non-collinear directions and one unweighted image (i.e., b-

value=0).  In the same session subjects were asked to relax, keep closed eyes and not sleeping to acquire an 

8-minutes rsfMRI by an EPI sequence with the following parameters: TR = 2500 ms, TE = 30ms, flip angle 

= 70°, voxel size = 3.1×3.1×2.5 mm3, matrix size = 64×64, number of axial slices = 39,190 volumes. 

rsfMRI data analysis and FC indexes calculation 

The processing of the MPRAGE images included the removal of the skull and all the other non-brain tissues 

and therefore a visual inspection of each slice to verify that no brain portions were automatically excluded. 

The pre-processing of the rsfMRI consisted of: motion correction (Motion Correction FMRIB's Linear 

Image Registration Tool [MCFLIRT]–Jenkinson et al., 2002), spatial smoothing (FWHM=5 mm) and high-

pass temporal filtering (cut off frequency=0.01 Hz). Single subject independent component analysis (ICA) 

was performed by MELODIC (Multivariate Exploratory Linear Optimized Decomposition into Independent 

Components, Filippini et al., 2009; Beckmann et al., 2004) while de-noising from motion artifacts and noisy 

components was obtained by FIX (Salimi-Khorshidi et al., 2014, Griffanti et al., 2014). Then, for each 4D 

single subject dataset, a two-step of registration was accomplished: a linear registration on the subject’s 

MPRAGE using FLIRT (FMRIB's Linear Image Registration Tool [FLIRT]–Jenkinson and Smith, 2001; 

Jenkinson et al., 2002) followed by a non-linear registration on the MNI152 standard space done by FNIRT 
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(FMRIB's Non Linear Image Registration Tool [FNIRT]– Jenkinson et al., 2012). Finally, a resampling to 

2×2×2 mm3 resolution of the registered images was executed.  

RSNs were identified by spatial group ICA (MELODIC, Beckmann et al., 2005) with dimensionality set to 

30 (Soddu et al., 2016, Elman et al., 2014, Meyer et al., 2013). Among them, the DMN, the LLN and the 

RLN were visually selected according to the RSN templates provided by Smith and colleagues (2009). The 

three chosen RSNs were divided into atomically separated clusters of voxels (Costantini et al., 2016) that 

were used as regions of interest (ROIs) both for functional and structural connectivity analyses. 

Using the dual regression approach (Beckmann et al., 2009; Filippini et al., 2009) subject-specific spatial 

maps and time series associated to each ROI belonging to DMN, LLN and RLN were extracted. All 

components classified as non-noise (i.e. part of a RSN) were kept for being used as covariates in subsequent 

analysis. Subsequently, FC was assessed by two indexes between time series of each pair of ROIs belonging 

to the DMN, RLN and LLN: the full linear correlation (FCfull) and the partial linear correlation (FCpar) 

expressed both by Z-scores.  Specifically, FCfull was estimated by Pearson’s correlation coefficient to 

estimate the global functional relationship between each pair of ROIs; FCpar, instead, was evaluated to 

quantify the direct functional relationship between two ROIs not mediated through the other areas, namely 

considering two ROIs A and B, the FCpar was computed by correlating the time series associated to A and 

B, regressing out the time series associated to all the other ROIs.  

Finally, first subject-specific FCfull and FCpar matrices were constructed for the DMN, the RLN and the LLN; 

then, group FCfull matrix and group FCpar matrix were built for each RSN evaluating the median FC values 

across the 19 subjects for each pair of ROIs. 

DWI data analysis and SC index calculation 

For all subjects, DW images were corrected for eddy current-induced distortions and head motion using the 

FSL package (http://www.fmrib.ox.ac.uk/fsl/), with the b=0 image of the first run as the reference image 

and the B-matrix rotated accordingly (Leemans and Jones, 2009). The distribution of the diffusion directions 
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(i.e. θ,Φ angles in spherical polar coordinates) including two principal directions to model crossing fibers, 

was obtained by a Bayesian estimation (Bayesian Estimation of Diffusion Parameters Obtained using 

Sampling Techniques [BEDPOSTX]–Behrens et al, 2003). Probabilistic tractography (Probabilistic 

Tracking with crossing fibres [PROBTRACX] –Behrens et al, 2007) was performed between the pairs of 

extracted ROIs in the DMN, LLN and RLN considered as seed and target regions. The following parameters 

were set: number of samples within each voxel=5000, curvature threshold=0.2, step length=0.5 mm, 

maximum number of steps allowed=2000. To correct the asymmetry of the method (Cao et al., 2013), 

namely the different result obtained if setting either ROI A or B as seed and target region, the following 

approach was used: probabilistic tracts were created setting A as seed and B as target and viceversa. These 

tracts were then registered to MNI standard space (2×2×2 mm3 resolution) with the two-step registration 

process described above (i.e., linear first and non-linear in the end). Then, the two registered tracts were 

normalized to the respective maximum intensity and multiplied to obtain the joint probability map of the 

tract, namely a “product tract”. In order to avoid false positive results, a threshold at 15% of the maximum 

connectivity value is usually applied (Khalsa et al., 2014), so a threshold of 2,25 % (i.e., 0.15×0.15) was 

applied to our “product tract”. The number of voxels above threshold of the product tract was defined as the 

SC index for each pair of ROIs (Khalsa et al.,2014). Single subject SC matrix was constructed for each 

RSN, considering the SC indices obtained by all the pairs of ROIs; then, group SC matrix was computed as 

the median values across subjects for each RSN. Further, at group level, a group probabilistic atlas of the 

tracts was generated and labelled with the JHU-ICBM white-matter atlas by averaging the individual 

thresholded product tracts across subjects, after their binarization. Then, the probabilistic atlases were 

thresholded at 0.2 (i.e. only the voxels of the atlas in which at least the 20% of the subjects presented the 

tract were considered) and mapped with the JHU-ICBM white-matter atlas to identify well-known 

anatomical bundles. 

 

http://fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/fdt/fdt_images/fdt_spherical_polars.gif
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FC and SC correlations 

For each pair of ROIs in all the considered RSNs, the relationships between FCfull and SC and between FCpar 

and SC were evaluated using Spearman’s correlations, due to the non-Gaussianity of the considered data 

samples. 

The pipeline that led to this analysis is summarized in figure 3.1. 

 

 

Figure 3.1 Method pipeline. Independent component analysis (ICA) to extrapolate resting state networks (RSNs). RSNs 

were split into their constitutive regions of interest (ROIs) and used to extract time series to evaluate functional 

connectivity (FC) indexes, defined as the full (FCfull) and partial (FCpar) correlation coefficients between them. The 

same ROIs were used as seed and target regions to perform probabilistic tractography. The number of voxels of the 

processed probabilistic tract volume was defined as structural connectivity (SC) index. The purpose of this method 

was to explore the relationship existing between FC and SC within the RSNs 
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3.1.2. Results 

FC indexes  

The splitting of DMN into anatomically separated clusters of voxels resulted in the medial prefrontal cortex 

(DMN1), posterior cingulate cortex (DMN2), right inferior parietal cortex (DMN3) and left inferior parietal 

cortex (DMN4) (Figure 3.2, panel A).  

The split of the RLN resulted in the right superior frontal gyrus (RLN1), right frontal cortex (RLN2), right 

parietal cortex together with right temporal cortex (RLN3) and right cingulate gyrus (RLN4) (Figure 3.2, 

panel B). The LLN was divided in the left superior frontal gyrus (LLN1), left frontal cortex (LLN2), left 

parietal cortex together with left cingulate gyrus (LLN3) and left temporal cortex (LLN4) (Figure 3.2, panel 

C). 
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Figure 3.2 Clustering of the default mode network (DMN, panel A), right lateral network (RLN, panel B) and left 

lateral network (LLN, panel C) according to the anatomical separation criterion 

Considering the full correlation at group level, FCfull, the DMN ROIs showed FCfull values (Z-scores) higher 

than 6 (Figure 3.3, panel A) with the highest value between the DMN1 and the DMN2. Within the RLN, and 

the LLN, instead, the highest FCfull index was found between the RLN2 and the RLN3 (Figure 3.3, panel B) 

and, similarly, between the LLN2 and the LLN3 (Figure 3.3, panel C). 
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Figure 3.3 Functional connectivity matrices. Group median full functional connectivity (FCfull) matrices expressed as 

Pearson correlation coefficient transformed into z-score, evaluated within the default mode network (DMN, panel A), 

right lateral network (RLN, panel B) and left lateral network (LLN, panel C) 

 

Considering group partial coreelation, FCpar, the highest value within the DMN was obtained between the 

DMN2 and the DMN4 (Figure 3.4, panel A). FCpar estimate within the two frontoparietal RSNs showed the 

link between the frontal ROIs (RLN2 and LLN2 respectively) with the parietal ones (RLN3 and LLN3 

respectively) as the strongest one (Figure 3.4, panels B and C).  

FCpar index values resulted lower than FCfull ones for all the pairs of ROIs. 

 



64 

 

 

Figure 3.4 Functional connectivity matrices. Group median partial functional connectivity (FCpar) matrices expressed 

as the linear partial correlation coefficient transformed into z-score, evaluated within the default mode network (DMN, 

panel A), right lateral network (RLN, panel B) and left lateral network (LLN, panel C) 

 

SC Index  

Structural links between the considered RSNs were found between all the ROIs except for the connection 

between left superior frontal gyrus (LLN1) and the left temporal cortex (LLN4), which was not showed in 5 

subjects, and the connection between the left inferior parietal cortex (DMN4) and the right inferior parietal 

cortex (DMN3), not found another subject. 

At the group level, the highest SC value was found in the DMN between medial prefrontal cortex (DMN1) 

and left inferior parietal cortex (DMN4) (Figure 3.5, panel A) with a thresholded volume of the probabilistic 

tract equal to 524 voxels. In the RLN, the highest SC were observed between the right frontal cortex (RLN2) 

and right parietal-temporal cortex (RLN3) (i.e., 496), and between the right frontal cortex (RLN2) and the 

right cingulate gyrus (RLN4) (i.e., 425 voxels) (Figure 3.5, panel B). In LLN, the highest SC index (i.e., 491 

voxels) was found between the left frontal cortex (LLN2) and the left parietal cortex (LLN3) (Figure 3.5, 

panel C). The SC indices were lower than 350 voxels for all the remaining pairs of ROIs. 
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Figure 3.5 Structural connectivity matrices. Group median structural connectivity (SC) matrices expressed as number 

of voxels above threshold, evaluated within the default mode network (DMN, panel A), right lateral network (RLN, 

panel B) and left lateral network (LLN, panel C) 

 

The mapping of the probabilistic tracts onto the JHU-ICBM white matter atlas (Table 3.1), both 

interhemispheric association and projection bundles were observed to connect the ROIs belonging to the 

DMN, the RLN and the LLN. Moreover, a mixture of well-known fiber bundles was found in 

correspondence of the probabilistic reconstructed tracts. Specifically, the left and the right cingulum were 

found to be the most relevant fascicles that connected DMN1 and DMN2. The Splenium of the corpus 

callosum and superior longitudinal fasciculus (SLF) were involved instead in DMN3 and DMN4 structural 

link. The ipsilateral SLF and inferior fronto-occipital fasciculus (IFOF) were found to be the bundles that 

mostly connected DMN1 with DMN3 and DMN1 with DMN4. RLN2 and RLN3 were found to be connected 

by almost only (93%) the right SLF. Similarly, the left SLF and IFOF linked the LLN2 and LLN3. Moreover, 

the left SLF was observed to be the most relevant fascicle involved in LLN2-LLN4 and LLN3-LLN4 

connections.  
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Pairs of ROIs 

Bundles belonging to the group atlas tract [% of V] 

 

V  

[# of voxels] 

ATR CIN CC IFOF  ILF SLF 

l r l r g b s l r l r l r 

DMN1 ↔ DMN2 - - 54 36 <10 - <5 - - - - - - 576 

DMN1 ↔ DMN3 - - - - - - - - 19 - <5 - 69 309 

DMN1 ↔ DMN4 11 - - - <5 - - 37 - 15 - 26 - 827 

DMN2 ↔ DMN3 - - - - - - <5 - 11 - <10 - 65 303 

DMN2 ↔ DMN4 <10 - <5 - - - 37 <5 - 17 - 18 - 690 

DMN3 ↔ DMN4 <10 <5 - - - <5 42 - <5 <5 <5 14 14 696 

RLN1 ↔ RLN2 - 13 - 19 <5 <5 - - - - - - - 292 

RLN1 ↔ RLN3 - <10 - 44 - - - - - - - - 24 374 

RLN1 ↔ RLN4 - - - 89 <5 - - - - - - - - 421 

RLN2 ↔ RLN3 - - - - - - - - <10 - - - 93 784 

RLN2 ↔ RLN4 - 19 - 13 - - 16 - 48 - - - <5 728 

RLN3 ↔ RLN4 - <5 <10 37 - - 40 - - - - - - 425 

LLN1 ↔ LLN2 13 - - - - - - - - - - 24 - 172 

LLN1 ↔ LLN3 - - 69 - - - - - - - - <10 - 398 

LLN1 ↔ LLN4 <5 - - - - - - - - -  60 - 60 

LLN2 ↔ LLN3 <5 - - - - - - 23 - - - 72 - 662 

LLN2 ↔ LLN4 - - - - - - - - - - - 98 - 527 

LLN3 ↔ LLN4 - - - - - - - - - <5 - 94 - 675 

 

Table 3.1 For each pair of regions of interest (ROIs) of the default mode network (DMN), right lateral network (RLN) 

and left lateral network (LLN) a group probabilistic atlas was constructed as the group average probabilistic tract. 

Then, the white matter bundles constituting each atlas tract were mapped using the JHU-ICBM white-matter atlas. 

The fascicles associated to the group probabilistic atlas tracts obtained between all the pair of ROIs and the percentage 

of the volume of the involved bundles with respect to the group atlas tract volume (V, expressed as number of voxels) 

are reported 

ATR = anterior thalamic radiation; CC = corpus callosum (g = genu, b = body, s = splenium); IFOF = inferior frontal-occipital 

fasciculus; ILF = inferior longitudinal fasciculus; SLF = superior longitudinal fasciculus; l= left; r= right. 
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FC and SC correlations 

Focusing on FCfull-SC correlation results, a non-significant correlation was found within the DMN (r=0.01, 

p=0.916). On the other hand, a positive significant FCfull-SC correlation was observed within the RLN 

(r=0.214, p=0.022) and the LLN (r=0.489, p<0.0001). 

The FCpar-SC correlation analysis led to similar values of FCfull-SC ones in the RLN (r=0.228, p=0.015) 

and in the LLN (r=0.466, p<0.0001). Within the DMN, even if still not-significant, the FCpar-SC 

correlation was found to be higher than the FCfull-SC one (r=-0.015, p=0.878). 

3.1.3. Discussion  

The present work shows a detailed analysis of brain connectivity, by considering both FC and SC within 

three specific RSNs which are commonly investigated in rsfMRI group studies (van den Heuvel et al., 2009; 

Damoiseaux et al., 2006; Beckmann et al., 2005), namely the DMN, the RLN and the LLN.  For different 

reasons, these networks are considered robust demonstration of functional connectivity: specifically, the 

DMN is highly connected at rest and remains always active as background when performing tasks (Greicius 

et al. 2003). The two lateralized fronto-parietal networks, instead, overlap to brain areas involved in specific 

cognitive paradigms such as memory, language and perception (Pievani et al., 2014). 

From a methodological perspective, the novelty of this work includes two aspects: firstly, the approach used 

for overcoming the issue of the asymmetry when computing probabilistic tracts differently according to the 

seed point considered. Secondly the idea of correlating the two functional metrics with the structural one. 

Furthermore, the problem of a parcellation of the RSNs extracted by low-dimensional spatial ICA has been 

addressed by several authors; e.g., by incrementing the number of extracted independent components in 

high-dimensional ICA (Abou-Elseoud et al. 2010 and 2011; Tohka et al. 2008; Cole et al. 2010). 

In this study, RSNs were extracted by the standard low-dimensional ICA and then split into ROIs by 

exploiting their anatomical segregation (Costantini et al., 2016), with the advantage to obtain a parcellation 

of the RSNs with a direct readability in terms of functionally specialized and anatomically segregated areas, 
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diversely from the blind parcellation furnished by high-dimensional ICA (Dipasquale et al., 2015). For the 

clustering of the RSNs a data-driven approach was used, and this was demonstrated by the asymmetry 

showed in the two lateral networks. In fact, within the LLN the temporal cortex was separated from the 

parietal one (LLN4 and LLN3 respectively) while for the RLN both these areas were included in the RLN3 

ROI. This result may reflect the well-known differences between left and right hemisphere functioning and 

roles: right fronto-parietal regions underlie visuospatial orienting attention (Rushworth et al., 2007; Shulman 

et al., 2010; Rossi et al., 2014), while left fronto-parietal areas are dominant in language comprehension and 

involuntary orienting, namely attention in relation to limb movements (Rushworth et al., 2007; Rossi et al., 

2014; Zhou et al.,2014). This difference was also shown in the FC patterns and SC group matrices. 

For each pair of ROIs, the FCpar values resulted lower than the FCfull ones since, by the partial correlation 

between two generic ROIs A and B furnished by multivariate analysis, we regressed out the contribution of 

the all remaining ROIs from the computation of the functional relationship between them. Therefore, FCpar 

better fits a parallelism with the SC index, which account for direct anatomical A to B connections. 

Differently from FCfull, the highest FCpar value within the DMN was observed between DMN2 and DMN4, 

rather than between DMN1 and DMN2. This result highlights that the functional communication between 

DMN1 and DMN2 is likely mediated by other structures, further supporting the hypothesis of the highly 

integrative nature of the DMN. On the other hand, for both the frontoparietal networks, the highest FCfull 

and FCpar values were observed between the frontal ROIs and the parietal ones (RLN2-RLN3 and LLN2-

LLN3 respectively), underlying the strong direct functional connection between these areas.  

Concerning structural connections, the probabilistic tractography detected remarkable bundles between all 

the pairs of the considered RSN ROIs. Left and right cingulum were found to be the most important 

pathways linking the medial prefrontal cortex (DMN1) and the posterior cingulate cortex (DMN2), while in 

both the fronto-parietal networks the important role of the SLF in connecting the frontal and parietal cortex 

was observed. These findings agree with a previous study that investigated structural connectivity within 
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the RSNs with DTI (Van den Heuvel et al., 2009) and support the suitability of probabilistic tractography 

to investigate the structural connections within the RSNs. The group SC analyses led to high index values 

either when a predominant fasciculus connected the considered ROIs (e.g. DMN1-DMN2 connected by left 

and right cingulum, RLN2-RLN3 connected by right SLF) or when a wide ensemble of tracts was involved 

(e.g. RLN2-RLN4 connection). Low SC values, instead, may be ascribed to the small ROI dimensions. It is 

intuitive to infer that, since fiber tracking imposes the seed and target regions as waypoints, if a ROI is 

small, the reconstructed probabilistic tract will be thin, even if the associated bundle is anatomically thick. 

This would explain why RLN1 and LLN1 did not seem strongly linked to the other ROIs belonging to the 

same RSN, even if remarkable fascicles were involved (Table 1). Notably, clearly different SC values were 

observed between the contralateral pairs DMN1-DMN3 and DMN1-DMN4, (higher for DMN1-DMN4), in 

accordance with the left-right asymmetry of the SLF volume (Wang et al., 2016). 

Despite the intuitive notion that any functional coordination should be mediated by connecting fibers, the 

correlation analysis underlined that high FCfull between different gray matter regions does not necessarily 

imply high SC (Honey et al. 2009; van den Heuvel 2009), since pathways out of the focus of our SC analyses 

may be involved. Specifically, our findings confirmed the highly integrative nature of the DMN due to high 

FCfull and SC values, but, contrary to what could be intuitively expected, no significant correlation was 

found between FCfull and SC within it. This result could be justified by the existence of associative and 

indirect paths, such as polysynaptic structures, which connect gray matter regions but are not detectable 

with tractography, thus, contributing to FCfull but not to SC values (Honey et al. 2009). Indeed, considering 

the FCpar-SC rho and p values within the DMN and comparing them with the respective FCfull-SC correlation 

results, we observed that even if a non-significant correlation was found in both cases, the correlation values 

improved when FCpar was considered. This may be in keeping with the hypothesis that the ROIs of the DMN 

do not communicate only directly between each other but that the communication between them is also 

mediated by different regions (Bucker et al., 2008). This suggests that the DMN is a highly integrative RSN, 

interfering with whole brain activity. The remarkable bundles involved in the connections of the DMN ROI 
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pairs underlined in fact that this functionally robust RSN is also highly structurally connected. Therefore, 

the absence of a significant correlation between the FC and the SC indices cannot be considered alone a 

condition that determine the absence of a relationship between the functional and structural connections. 

On the other hand, a positive significant correlation between FCfull and SC and between FCpar and SC was 

obtained within the two fronto-parietal RSNs. The lower dispersion of the data within the RLN with respect 

to LLN may be justified by the tiny size of two out of four identified ROIs that influence the probabilistic 

tractography output. In contrast to the LLN that was split in three large clusters of voxels of comparable 

size (LLN2, LLN3, LLN4) and in just one smaller one (LLN1), the RLN was divided into two large (RLN2 

and RLN3) and two small clusters (RLN1 and RLN4). This resulted in only one pair of ROIs that was 

characterized by both a high FC and a high SC (RLN2-RLN3) and in a remaining group of ROI pairs that 

showed lower FC and SC values. The robust positive significant correlations between FCfull and SC and 

between FCpar and SC observed within the LLN suggest that LLN is a highly function-specific network and, 

hence, direct structural links between its ROIs may reflect the functional communication between them. 

Since the relationship existing between function and structure is not always straightforward, the FCfull-SC 

and FCpar-SC correlation investigation can provide further information about the RSNs. 

We would like to point out that this work shows an example of coexistence of segregation and integration 

process within the human brain (Deco et al., 2015). The extracted RSNs, indeed, are per se a demonstration 

of segregation in terms of differentiation within RSN specific spatial patterns of different time dynamics. 

On the other hand, considering the structural connections and the functional correlations highlighted within 

each RSN, are related to the integration of separated areas. Moreover, considering the partial correlation 

among the nodes of each RSN implies investigating the segregation of two single nodes regardless the 

contribution of the others; on the other hand, looking at the full correlation among the nodes of each RSN 

leads to consider the integration between different cortical areas that need to interact for accomplishing a 

specific task. With our work of integration between structural and functional measurements we aimed at 
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understanding how much the white matter structures can reflect the functional interactions. However, this 

was limited by two main factors: firstly, the dynamic nature of the functional activity obviously clash the 

static nature of the structural analysis, leading to difficulties in understanding the real support of structure 

to function; secondly, the open challenge of isolating the external (or internal) stimuli to understand the real 

cause of the activation of specific brain regions supported by specific white matter architecture. 

Nevertheless, the proposed method presented some limitations mostly related to the diffusion data analysis.  

First, probabilistic tractography requires a seed and a target region definition. Considering two ROIs (ROI 

A and ROI B), the reconstructed probabilistic tract obtained imposing A as seed and B as target slightly 

differs from the probabilistic tract obtained setting B as seed and A as target. However, there is no 

physiological reason to privilege one way with respect to the other one and hence, in order to overcome this 

mismatch, in this exploratory study the probabilistic tracts were generated in both directions and processed 

in order to obtain a single SC value for each pair of ROIs.  

Then, quantifying the strength of a WM link is not trivial. Defining the probabilistic score as SC index is 

tempting but the probability of connection does not exactly represent the strength of connection (Jbabdi et 

al., 2011). On the other hand, the number of voxels above threshold that we adopted in this study represents 

the probabilistic tract volume expressed in voxels. Although it does not always mirror the strength of the 

connection due to its dependence on the distance, it is linked to the probabilistic tract thickness (Khalsa et 

al., 2014). Furthermore, by considering the thresholded probabilistic tract, false positives are excluded, or 

at least reduced, before the SC computation. 

Finally, we have to consider that the study was performed with data obtained from a 1.5T scanner while 

recent researches predominantly use 3T scanners due to the higher signal to noise ratio. However, given 

that1.5T scanners are still widely used in clinical settings and that the final aim of clinical research is 

translation into clinical practice, it is important to test methods for investigating functional and structural 

connectivity also with these data.  
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Our combined analysis demonstrated the need of studying the brain as a complex but unique entity 

exploiting both functional and structural information not only for better understanding the healthy brain but 

also to shed light on pathological conditions. Specifically, in the clinical context of neurological 

rehabilitation, in which progresses rely on neuronal plasticity, FC and SC combined analysis may be useful 

for the patient follow up, in order to assess the efficacy of the treatment whose aim is preventing the 

worsening of symptoms, allowing to preserve the patient abilities (Cramer et al., 2011; Scaccianoce et al., 

2016). Indeed, monitoring the clinical condition with quantitative approaches can have substantial 

translational impact, especially when used in conjunction with measures of neuropsychological function 

(Irimia et al., 2014).  

In conclusion, although the absence of FC-SC correlation should not be necessarily interpreted as a lack of 

relationship between functional synergies and structural connections, its evaluation can provide additional 

information about the RSN connectivity. Furthermore, the evaluation of both FCfull-SC and FCpar-SC 

correlations allows to highlight the degree to which indirect pathways may influence the RSN connectivity. 

Potentially, the proposed method could be extended also to other RSNs, according to the clinical question 

we are interested in. The high complexity of human brain requires, indeed, an approach as wide as possible 

in its functioning investigations, since considering only an aspect would be restrictive. 
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4. Artifact identification and removal to improve tractography 

reconstruction 

In this chapter the following works are summarized: “A Fast and Effective Strategy for Artifact 

Identification and Signal Restoring with HARDI data” presented at the International Society of Magnetic 

Resonance in Medicine, Singapore, Scaccianoce et al., 2016; “Mapping residual along tract: a technical note 

on a fast and effective quality control for tract specific measurements” – Scaccianoce et al., 2018; “Mapping 

residuals along tracts: an effective quality control approach for tract specific measurements” presented at 

International Society of Magnetic Resonance in Medicine, Toronto, Scaccianoce et al., 2015.  

 

4.1.  The issue of artifacts and their identification based on signal outlier 

detection approach Quality control pipeline to identify corrupted fiber 

bundles 

This thesis already stressed the fast grow of tractography based on diffusion-weighted imaging (DWI) form 

the first seminal works (Le Bihan et al., 1986; Turner et al., 1990; Basser et al., 1994; Catani et al., 2002), 

next extending to the clinical environment to assess the integrity of the cerebral bundles by means of 

diffusion-derived indexes, contributing to the diagnosis of several neurological pathologies which involve 

WM architecture in a non-invasive way (MCGrath et al., 2013; Catani et al., 2008; Doricchi et al., 2008).  

For this reason, the amount of DWI data acquired for both research and clinical purpose is constantly 

growing, making more and more difficult (if not impossible) a visual inspection of all the produced DWI 

datasets. Furthermore, the sake for higher quality tractography reconstructions and the need to disambiguate 

fiber direction where non-univocal (the well-known “fiber-crossing” problem) has pushed towards 

acquisition of more and more directions, under the general paradigm of high angular resolution diffusion 

imaging (HARDI) (Tuch et al., 2002). Consequently, artifact detection on all DWI images relevant to the 

many HARDI directions is often a challenge, even for the more expert researchers or physicians. Such 

artifacts are caused most times by head movements recorded during the scan session (Alhamud et al., 2015; 
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Zwiers, 2010; Pannek et al., 2012). Moreover, the DWI sensitivity to microscopic changes makes the 

diffusion images particularly sensitive also to tiny movements, related both to scanner issues (e..g., 

instrumental vibration, Gallichan et al., 2010) and physiological movements (e.g., cardiac pulsation and 

breathing, Nunes et al., 2005, Chung et al., 2010; Chang et al., 2005). Procedures for artifact detection and 

correction during DWI pre-processing (e.g. eddy current corrections, Andersson and Sotiropoulos, 2015) 

already exist, but sometimes they are not sufficient to identify and remove all of them. Consequently, within 

diffusion images often survive artifacts displayed as localized signal dropouts (Benner et al., 2011; 

Andresson and Sotiropoulos, 2014), especially in those brain regions affected by cardiac pulsation, such as 

the cerebellum as well as genu and splenium of the corpus callosum (Walker et al, 2011). This leads to 

biased estimations of the diffusion parameters, which obviously negatively affects the relevant 

measurements (Pannek et al., 2011; Walker et al., 2011) and ultimately limits the diagnostic value of 

tractography. Hence, accurate artifact detection techniques are needed even after the pre-processing stage 

to detect those artifacts that standard procedures fail to identify.  

One of these techniques was proposed in 2005 by Chang and colleagues, who developed a voxel-wise 

method for a robust estimation of the diffusion tensor, trying to eliminate the physiological noise that always 

affects the DWI scans. The main idea is identifying the potential outliers by reiterating the weighted least-

squares (LS) regression while excluding them, thus converging to an outlier-free fitting. The LS regression 

model, indeed, considers only a very specific signal variability that is caused by thermal noise that has 

Gaussian distribution. Signal variability produced by physiologic noise (e.g., cardiac pulsation), instead, 

does not follow any parametric distribution. One of the possibility to address this problem is using robust 

estimators (Mangin et al., 2002), were considered by Chang et al. (2005). Their algorithm is called 

RESTORE (Robust Estimation of Tensor by Outlier Detection) and its flow diagram is shown in Figure 4.1.  
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Figure 4.1 Flow diagram of RESTORE algorithm – Chang et al., 2005 

 

Although RESTORE was demonstrated to be an effective solution in reducing physiological noise (Chang 

et al., 2012), it was shown that it leads to incorrect solutions when it excludes too many data points and 
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leads to the calculation of “ill-defined” B-matrices. To address this issue, Chang and colleagues (2012) 

improved RESTORE algorithm adding two constraints to avoid the non-convergence of the problem: 1) the 

exclusion only of negative maximum residuals, since physiological noise leads to signal drops rather than 

increases; 2) the check at each iteration of the goodness of fit criterion (Figure 4.2). This new method was 

called informed RESTORE and currently is a frequently applied tool to remove physiological artifacts in 

datasets acquired with low redundancy (less than 30-40 DWI directions) (Chang et al., 2012). 

 

 

Figure 4.2 Flow diagram of informed RESTORE algorithm – Chang et al., 2012 
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This successful idea was later extended by Pannek and colleagues (2012) and ameliorated to address DW 

HARDI and high b-values datasets. They developed a new voxel-wise algorithm called HOMOR (Higher 

Order Model Outlier Rejection) based on the residual of the spherical harmonic (SH) fit at a maximum 

harmonic degree of 4. The main assumption is that, even in the presence of artifacts, DW signal experiences 

smooth variation as a function of orientation and does not show angular frequencies that would lead to a SH 

residual higher than 3 times the signal standard deviation (Pannek et al., 2012). Compared to RESTORE 

and informed RESTORE, this method was demonstrated to be particularly effective in brain areas with 

crossing, bending and fanning fibers. 

More recently, another solution was proposed for diffusion artifacts by Andersson and colleagues (2016) 

who suggest replacing an affected slice (i.e., slices showing a lower intensity with respect to adjacent ones) 

by a non-parametric prediction. Specifically, they model diffusion signal distortions by explicitly estimating 

the eddy currents (ECs), the susceptibility variation map, and head movements. This part of a physical model 

of the expected values goes beyond the focus of this presentation. Conversely, of interest to us is the 

approach used in eliminating outliers by model interpolation, as shown in the pseudo-code of Figure 4.3. 

The algorithm considers data as a Gaussian process (Rasmussen and Williams, 2006), which should be 

smooth with changes in the diffusion direction and the b-value (in case more than one b-shall was 

considered). The Gaussian process covariance function can be either defined by marginal likelihood 

maximization (Rasmussen and Williams, 2006) or by leave-one-out methods (Sundararajan and Sathiya 

Keerthi, 2001) over a set of observation (i.e., the training data or the trains set). As shown in Figure 4.3, the 

iterative EC, susceptibility, and movement estimate and correction is refined by constructing a slice-by-slice 

library of outliers falling outside the current model confidence interval, fixed by the Gaussian process. 

Model updates are performed leaving out the outliers (i.e., out or range slices, for a given direction and a 

given b-value); nonetheless, outliers can be readmitted if within range after the model corrections in a 

subsequent iteration. Being a slice-wise approach, Andersson and colleagues denoted the dropout as a 

summary statistic upon the entire slice. Notably, this method is implemented in a unique correction process 
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that takes into consideration both the eddy current-induced (EC) distortions and the movement artifacts, to 

avoid that one correction badly influences the other.    

 

 

Figure 4.3 Pseudo-code for implementing the algorithm for slice-wise outlier detection, data replacement and eddy 

current-induced distortion correction performed in the same framework– Andersson et al., 2016 

 

Based on the above-mentioned algorithms, in the next paragraph we propose a novel pipeline for outlier 

identification and correction of HARDI datasets where the corrupted data is first identified as outlier and 
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then regenerated in framework based on signal decomposition using spherical harmonics, whose detailed 

presentation was provided in the paragraph “High Angular Resolution Diffusion Imaging and new models 

beyond DTI” of Chapter 1. Right after, we show a fast and effective quality control (QC) of tract specific 

measurements by mapping residuals along tracts in group DW data analyses.  

 

4.2. Artifact Identification and Signal Restoring in HARDI data 

4.2.1. Materials and methods 

Subject population 

In this analysis, fifteen healthy voluntary subjects (HSs) were enrolled at NATBRAINLAB of King’s 

College London (London, UK).  

MRI acquisition protocol and DW analysis 

HARDI data were acquired in a single shell using a 3T GE HDx system (General Electric, Milwaukee, WI, 

USA) with the following parameters: voxel size 2.4x2.4x2.4 mm, slices 60, b-value 3000 s/mm2, 60 

diffusion-weighted directions and 7 non-diffusion weighted volumes. DW images of all subjects were 

corrected for eddy current distortion using the EDDY packet of FSL software 

(fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY). A brain mask was created for each subject to exclude non-brain 

tissues from the further analysis. 

Artifact identification and removal 

The steps described in this paragraph were performed using a home-written Matlab code (R2013a, 

www.mathworks.com). 

http://www.mathworks.com/
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For each subject, HARDI data were fitted by spherical harmonics of order 8 (SH8) to model complex fiber 

configuration such as the crossing fibers (Decoteaux et al., 2009). Then the following steps were applied for 

for creating mean residual map and outlier mask: 

1)  Residuals were calculated slice-wise (i.e., considering different z values for the same x-y plane) as the 

absolute value of the difference between the actual HARDI signal and SH8 fitting; 

2) the mean value among the residuals was calculated for the considered slice; 

3)  a residual map was obtained for considering all the computed mean residual values of the slices in each 

single direction (Figure 4.4, plot on the left side of the panel); 

4) a threshold for detecting outliers considering the same slice across the different diffusion directions was 

computed as: threshold=Q3+1.5*IQR (adapted from Leemans et al., 2008), where Q3 is the 75th percentile 

and IQR is the interquartile range computed on the residuals; 

5) if the mean residual was > then the threshold, the slice in that particular direction was considered outliers 

(Figure 4.4, plot on the right side of the panel). 

  

 

 

 

 

Figure 4.4 Mean Residual maps (left side) of a single subjet and binary outlier mask (right side) after the application 

of the threshold. White dots indicate the corrupted slice.  

 

Threshold across 
 directions 
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Finally, corrupted signals were regenerated using new SH coefficients obtained by SH decomposition 

performed this time without outlier directions. While the identification of outliers was done, as said above, 

through an 8th order SH fitting, an SH at order 6 was used when regenerating slices of corrupted direction, 

in order to improve regularization in corrupted regions.  

Visual inspection of the datasets was done slice by slice in z-direction by two operators, twice, starting from 

the top to the bottom of the brain and viceversa.  

Simulation on an artifact-free dataset was performed to verify the efficacy of the method. Specifically, an 

uncorrupted slice (i.e., a piece of data at given z position and given diffusion direction) was randomly 

selected and set to 0 as signal intensity (i.e., deleted). Then the above-mentioned pipeline was applied to the 

corrupted dataset to regenerate the missing slices. Spherical deconvolution (SD) was run to estimate fiber 

orientation distribution (FOD) peaks using StarTrack (www.mr-startrack.com) with the following 

parameters: alpha=1.5, number of iterations=200; damped Richardson Lucy algorithm; absolute 

threshold=0.04; damping curve profile=8).  

 

4.2.2. Results 

As a result, the visual inspection after preprocessing of the diffusion dataset identified 2 subjects with 

obvious and significant artefacts along different DW directions.  

In Figures 4.5 and 4.6, the two examples of artifacts are shown in sagittal and axial view along with their 

corrections in the same view for comparison purpose. Figure 4.5a illustrates the outlier mask in which one 

of the outlier value is identified and its location displayed in sagittal and axial views before (Fig. 4.5b) and 

after (Fig. 4.5c) correction. Similar results are show in figure 4.6 a, b and c.  

In Figure 4.7, the deleted slice is shown as original (i.e., “expected correction”) and replaced (i.e., 

“corrected”) with our pipeline. 

http://www.mr-startrack.com/
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Few seconds were required to correct each subject on normal laptop. 

Through FOD estimate we verified that the regenerated slice had the same peak amplitude and fiber 

orientation as the actual slice (Fig 4.8).   

 

 

 

 

Figure 4.5 Panel a) illustrates the outlier mask in which one of the outlier value is identified and its location displayed 

in sagittal and axial views before (panel b) and after (panel c) correction  
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Figure 4.5 Panel a) illustrates the outlier mask in which one of the outlier value is identified and its location displayed 

in sagittal and axial views before (panel b) and after (panel c) correction  
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Figure 4.7 Panel a) shows the corrupted dataset in the sagittal view while panel b) displays the actual (left) and the 

regenerated (right) data 
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Figure 4.8 Fiber Orientation Distribution (FOD) of the original slice (left) and after data regeneration (right)  

 

4.2.1. Discussion  

In this work we proposed a slice-wise approach for artifact identification by using the concept of signal 

outlier detection (Chang et al., 2005; Chang et al., 2012; Pannek et al., 2012; Andresson et al., 2016), and a 

procedure for regenerate the corrupted slices by fitting the signal by SH model without the artifact slices. 

The artifact identification issue in the DW images is becoming a crucial topic because of the huge amount 

of data acquired for both research and clinical purposes (Catani et al., 2005, 2007; Makris et al., 2005; 

Cloutman et al., 2012; MCGrath et al., 2013; Catani et al., 2008; Doricchi et al., 2008). In order to conduct 

reliable tractography studies, the diffusion-derived metrics have to be robust and not affected by artifacts. 

The final goal, indeed, is not only to provide a reliable depiction of fiber microstructure underlying the 

diffusion signal but also to evaluate the degree of confidence by an objective quantification of errors. For 

this reason, advanced techniques, beyond the standard pre-processing procedures for artifact identification, 

ORIGINAL CORRECTED 
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were developed in the last decade. Chang and colleagues (2005) first suggested to identify corrupted data-

points as outliers of residuals between DW signal and the fitted DT model either for exclusion of for a 

further correction by interpolation. This “cleaning” procedure was then adopted also by Pannek and 

colleagues in 2012 who replaced the DT model with the SH decomposition one.  

Our procedure was demonstrated to be effective in HARDI images where the artifact was caused by a signal 

drop. However, being the residual defined as absolute value of the difference between the real data and the 

model, it would be able to identify anomalous signal values either signal drops or signal increases. with both 

all the slices identified as outliers and in the simulated artifact produced on a dataset of healthy volunteers. 

HARDI data were selected because are now the gold standard in both clinical and research study due to 

their possibility to solve complex fiber configurations like crossing and kissing fibers.  

The choice of using a slice-wise approach was adopted to reduce some intrinsic problems of the voxel-wise 

approach such as the balance between sensitivity and specificity due to the low SRN of a single voxel 

(Andersson et al., 2016), and the choice of the model used for diffusion signal (Chang et al., 2005; Chang 

et al., 2012; Zwiers, 2010; Collier et al., 2015; Tax et al., 2015). Moreover, it should be considered that the 

voxels contained in a single slice and in a particular diffusion direction are acquired in a short time lapse 

under the same excitation pulse, e.g. of an EPI sequence (Andersson et al., 2016), then it is reasonably 

expected to have uniform data quality within the same slice for a given directions.  

Since for the real data there was no “ground truth”, the result of the correction process in the corrupted slice 

(i.e., the regeneration on the entire slice diffusion signal) was visually evaluated. A more precise estimate 

of the proposed correction procedure was done using the simulated artifact.  

Choosing SH6 to fit the signal in the regenerated slice and the SH8 for non-corrupted ones was done to 

avoid a signal instability that would have originated by overfitting the signal (Decoteaux et al., 2015) (Figure 

4.9). More simulations need be done to identify the best fitting without the artifact data (e.g., introducing 

smoothing parameters as in Hess et al., 2006). 



87 

 

 

Figure 4.9 Example of overfitting: original slice (a) and regenerated one with SH order 8 (b) 

 

Importantly, this method can be an effective solution to artifact identification and correction at both single 

and group level since it is possible to identify errors in single subjects and, before correction, compare this 

results with other subjects acquired in the same session. This would allow to verify if systematic errors occur 

due to problems with the acquisition sequence and/or parameters. 

To conclude, our methods was demonstrated to be a valid solution for automatic artifact identification and 

correction in HARDI data. Our model-independent approach represents a useful instrument in large studies 

when visual quality check may be not practical or when data artifacts are not obvious at visual inspection. 

 

4.3. Quality control pipeline to identify corrupted fiber bundles 

In this further study we also adopted the concept of diffusion signal residuals on HARDI data and proposed 

it as a novel metric to be mapped along reconstructed WM bundles, in addition to standard tract specific 

measurements like fractional anisotropy (FA) and mean diffusivity (MD).  Namely, we look for subjects 

bearing artifacts within group studies, considering the worst cases within a specific tract of the chosen 

a) b) 
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population. In this way the quality control (QC) can address a specific tract in fiber configuration and detect 

outliers relevant to tract specific features including the ones addressed by HARDI approaches (e.g., crossing, 

kissing, benching).  

Importantly, the screening approach, based on SHs, can address the QC even of DTI derived tracts, as in 

the pilot test described in the next paragraph. This could appear as a contradiction, since the tract QC is 

based on a more complex model (SHs) than that used for the tract reconstruction (i.e., the tensor). Yet, the 

rationale is that the tract volume and its streamline content, whatever the adopted method to derive it, 

represents the structure in which we want to test the data quality with a description richness adequate to 

HARDI scan richness. 

Final aim of this method, in fact, is including or not a bundle in a further group analysis. In this fashion, our 

pipeline might produce various practical outcome; eg.: 1) corrupted datasets which are considered 

completely unusable might be partially recovered if the tracts chosen for the further analysis pass the QC 

pipeline; 2) datasets which are initially evaluated as “good” may be discarded when looking at individual 

tracts if they present tract specific signal outliers. Further, this method allows analyzing datasets with a 

remarkable number of subjects, avoiding a visual slice-by-slice and direction-by-direction quality check. 

This approach represents a new way to perform data QC for tract specific measurements and can potentially 

improve the precision of these measurements in group analysis studies. 

 

4.3.1. Materials and methods 

Subject population 

A sample of 11 healthy subjects, mean age 32 ± 5 years, was selected from a pre-existing diffusion imaging 

dataset acquired at NATBRAINLAB of King’s College London (London, UK). By a visual inspection of 

the entire dataset, signal loss artifacts in the superior occipital/parietal regions of the brain were identified 

in two subjects. Also, these subjects were used as test-bed for the proposed method. 
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MRI acquisition protocol and DWI analysis 

DW images were acquired in a single shell using a 3T GE HDx system (General Electric, Milwaukee, WI, 

USA) with the following parameters: voxel size 2.4x2.4x2.4 mm, slices 60, b-value 3000 s/mm2, 60 

diffusion-weighted directions and 7 non-diffusion weighted volumes.  

DW images were firstly corrected for eddy current distortion using the EDDY packet of FSL software 

(fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY). DT model was then applied to process the data using Explore DTI 

(Leemans et al, 2009). 

Since a first visual inspection of our dataset showed that 2 subjects presented signal loss in the superior 

occipital part of the brain, we chose to manually dissect the right anterior and posterior segment of the 

arcuate fasciculus (i.e., aAF and pAF) as test tract for our QC algorithm. In addition, the right inferior fronto-

occipital fasciculus (IFOF) was selected as control tract. Tractography was performed using Trackvis 

(trackvis.org). Region of interest (ROIs) were selected with the two-ROIs approach. Specifically, we used 

spherical ROIs for aAF and pAF, and flat ROIs to dissect the IFOF fibers (Catani and de Schotten 2008). A 

representative example is shown in Figure Figure 4.10.  

 

 

Figure 4.10 From left to right, single subject fiber tractography of anterior segment of the arcuate fasciculus (aAF, 

sagittal view), posterior segment of the arcuate fasciculus (pAF, coronal view), inferior fronto-occipital fasciculus 

(IFOF, axial wiew). 
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Artifact identification   

The visual identification of artifacts by two expert viewers was considered the gold standard to assess the 

performance of our method. 

SH decomposition of order 2, 4 and 6 (hereafter indicated as SH2, SH4, and SH6, respectively) was obtained 

by a custom written Matlab code.  

The residual, defined as difference between the fitted and the measured signals, was computed vs. the DT 

and the SH4, SH6, and SH8 models. The maximum residual value was selected for each voxel through all 

the DW directions, to generate maximum residual maps for each subject, as shown in Figure 4.11. Then, 

fractional anisotropy (FA), mean diffusivity (MD), DT and SH maximum residuals (all orders) were mapped 

along the chosen tracts. Finally, for each subject, the average values of FA and MD and the maximum 

residual of DT and SH residuals were identified for each tract.  

The threshold for the identification of outliers was calculated across subjects for each metric, namely mean 

FA, mean MD and maximum DT and SH residual and set at: mean±2*standard_deviation,  

 

Figure 4.11 Maximum residual maps of a single subject with no corrupted images obtained as differences between 

the actual signal and (from top left image) diffusion tensor model (DT), spherical harmonics of order 2, 4 and 6 

(SH2, SH4, SH6) model. Lighter color (i.e., yellow) suggests a higher residual value 
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4.3.2. Results 

Within the considered subject sample, tractography of the right anterior and posterior segment, and right 

inferior fronto-occipital fasciculus was successfully performed for all subjects, as in the example of Figure 

4.10. The computation of standard diffusion metrics FA and MD did not highlight any anomalous value. 

For the tracts listed above we looked for those subjects (if any) whose mapped values (i.e., mean FA and 

MD, and maximum DT and SH residuals) exceeded the threshold as described in the previous section. Table 

4.1 shows that outliers were found in the aAF of subject 5 and the pAF of subject 11 whose dataset had been 

classified as corrupted by the visual gold-standard. As expected, no artifacts were detected in the control 

tract (i.e., the IFOF).  

 
aAF pAF IFOF 

Sbj FA MD SH6 DT FA MD SH6 DT FA MD SH6 DT 

1 0,44 0,00052 64,677 128,765 0,39 0,00055 53,403 91,991 0,47 0,0006 70,2 129,037 

2 0,41 0,00053 65,277 124,584 0,4 0,00053 56,036 100,233 0,45 0,00058 57,566 109,317 

3 0,46 0,00053 88,915 142,648 0,41 0,00052 76,892 121,005 0,47 0,00056 84,981 147,427 

4 0,42 0,00054 95,258 179,329 0,43 0,00054 101,166 204,433 0,49 0,00059 118,29 201,695 

5 0,46 0,00052 293,224 420,375 0,43 0,00054 126,158 196,151 0,47 0,00058 148,207 261,093 

6 0,45 0,0005 130,79 167,198 0,45 0,00053 88,105 138,916 0,44 0,00056 112,254 180,01 

7 0,46 0,00052 83,098 183,048 0,47 0,00055 76,259 155,432 0,48 0,00059 109,263 192,747 

8 0,42 0,00053 113,256 186,833 0,42 0,00056 76,119 157,933 0,48 0,00057 100,111 184,345 

9 0,5 0,00048 100,601 198,391 0,43 0,0005 92,21 181,38 0,47 0,00054 98,636 216,067 

10 0,44 0,00052 81,377 173,607 0,38 0,00052 62,563 94,496 0,46 0,00059 83,281 186,223 

11 0,47 0,00051 98,994 160,791 0,38 0,00053 199,041 311,854 0,48 0,00057 167,448 240,397 

Threshold 0,50 0,00055 237,744 349,239 0,47 0,00056 174,336 287,926 0,49 0,000611 169,095 276,646 
 

Table 4.1 Fractional anisotropy (FA), mean diffusivity (MD), residual obtained with spherical harmonics of order 6 (SH6) and 

diffusion tensor model (DT) for each subject. Last green row contains the threshold value (i.e. mean+2*standard_deviation) for 

each matric computed across subjects. Yellow cells include above threshold values.  

 

Importantly, outliers were well identified by means of the residual vs. the SH6 and the DT models. 

Conversely, SH2 and SH4 (not shown) revealed to be not sensitive to artifacts, most likely due to too a poor 
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parameterization. Remarkably, MD and FA, the main parameters commonly mapped after DTI, did not 

display discriminant capability against artifacts. 

 

4.3.1. Discussion  

In this work we propose a fast and effective routine for the QC of tract specific measurements by mapping 

residuals along tracts, which represents a simple and useful tool for artifact detection in group DW data 

analyses. This method aims at detecting artifacts not corrected by pre-processing procedures. Our results 

demonstrated that this procedure allows the detection of outliers, wherein the standard metrics such as FA 

and MD do not. 

In this work we inherited the concept of residuals and suggested to apply it for the QC of diffusion dataset 

when conducting group level analysis in which a visual inspection of all DW volumes would be very time 

consuming and operator-dependent. Specifically, we propose a routine in which residuals values are mapped 

along the reconstructed tract and then evaluated along with the standard diffusion-derived metrics such as 

FA and MD. Moreover, compared to previous literature, we proposed residuals of SH fitting of the 

appropriate order, aiming at properly describing HARDI data richness, even if the adopted tractography was 

based on the simpler DTI model. The method was applied on a dataset of 11 healthy subjects, 2 of them 

presenting artifacts in the superior-occipital region of the brain, which evidence guided us in the selection 

of the WM bundles to include in this study. Indeed, tractography reconstruction of right anterior and 

posterior segment of the arcuate fascicle was performed in order to cross the regions involved by the 

artifacts, while the inferior fronto-occipital fascicle was selected as control tract. As a result, by using the 

residuals computed considering the signal fitted by SH6 and DT models we were able to automatically 

recognize the subjects who presented corrupted dataset because identified as outliers among all subjects of 

our sample. This confirms that residuals based on SH decomposition of higher order can be more sensitive 

to actual artifacts and less affected by the presence of complex microstructural organization of the tissue 

(Figure 4.12).  
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Figure 4.12 Maximum residual maps of a single subject with corrupted images obtained as differences between the 

actual signal and (from top left image) diffusion tensor model (DT), spherical harmonics of order 2 (SH2) model, 

spherical harmonics of order 4 (SH4) model, spherical harmonics of order 6 (SH6) model. Lighter color (i.e., yellow) 

suggests a higher residual value 

 

Standard diffusion-derived measurements (i.e., FA and MD) and residuals obtained by SH2 and SH4 fitting, 

instead, were not able to detect anomalies in those same subjects. It is noteworthy that outlier regions may 

appear in different tracts of different subjects, which opens the pathway to more selective QC in the future. 

In fact, subjects presenting visible artifacts currently suggesting to discard their whole data-set might be 

partially recovered if the tracts chosen for the further analysis pass the QC pipeline. Conversely, subjects 

which are initially considered “good quality” samples due to successful tractography and reliable FA and 

MD values may be discarded when looking at individual tracts if they present signal outliers. 

The main features or the presented strategy are: i) it is a cunning automatic solution to avoid operator failures 

in detecting artifact, since they are not always visible even by expert users: ii) the method is time-saving, 

especially when analyzing datasets with a remarkable number of subjects to be inspected slice-by-slice in 

each of the many DW directions; iii) the proposed pipeline guarantees the detection of repeated artifacts due 
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to scan sequence/acquisition parameters, allowing the possibility to identify machine aberrations; iv) it 

represent an easily adaptable tool because the residual calculation can be performed regardless the 

processing used to obtain the tract reconstruction. 

4.4. General conclusions on outlier correction and detection in HARDI 

datasets 

Both the presented studies have shown the sensitivity of SH fitting in QC of HARDI data. Considering 

current direction sampling standards (around 60) and signal quality of 3T scanners, order 8 SH models 

appeared as most appropriate to punctual detection of out-of-range directional sampling, while order 6 

appeared sufficient and more robust to regularization and also sufficient to detect outliers mediated ex-post 

on the volumes of reconstructed tracts. Conversely, order 4 or less appeared to poor in describing the 

richness of HARDI datasets, with no significant improvement compared to the simpler tensor model. 

The two methods here presented share the same data driven modeling, i.e. SHs, which renders them simpler 

than true physical models of artifacts sources like EC, susceptibility, and movements. This empirical 

approach, though limited in artifact description, permits a high flexibility as to the insertion into standard 

processing pipelines as additional QC and artifact removal/correction step, besides the EC, susceptibility, 

movement correction steps, which usually are also implemented via empirical (i.e., data-driven) approaches. 

Namely, if QC and outlier detection is aimed to correction of corrupted data, we adopted a slice-wise 

approach (i.e., at a given z and a given diffusion direction), in keeping with the previous literature. This is 

well explained by the short period of a single SE plus EPI sequence in which this piece of data is acquired, 

which may imply a punctual corruption, due to random events. Conversely, subject QC in group studies, 

with no restoring attempt, was proposed by the second approach as analyses of SHs mediated over the end-

point structures, i.e. tracts.  

To conclude, in this chapter, two fast and effective strategies for the QC of HARDI datasets were proposed. 

These methods, based on the identification of SH residuals mapped along either slices or target tracts, 
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represents useful instruments for artifact identification when performing analysis on large datasets at group 

level. In this way, a more reliable diffusion-derived metrics might be extracted, increasing the robustness 

and the precision of the tractography results either by correcting punctual (i.e., slice) corruption or by 

excluding outliers relevant to the endpoint structures.  
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5. Discussion and Conclusion 

In the last decades the rapid advancements in neuroimaging techniques developed exploiting the magnetic 

resonance imaging (MRI) have encouraged he neuroscientists at investigating the human brain in terms of 

both structure and function, with the objective to explore physiological cognitive process and 

pathophysiological mechanism.  

In fact, the capabilities of MRI to provide non-invasively and in vivo with different information at different 

level of detail (i.e., from the study of synaptic connections to the investigation of whole bundle that connect 

segregated cortical areas) permitted to develop methods addressing the overall brain network organization 

associated under the label of “brain connectome” (Sporns et al., 2005; Maier-Hein et al., 2017; Craddock et 

al., 2013; Pestilli et al., 2014; Smith et al., 2013; Glasser et al., 2013; Smith et al., 2015), to emphasize the 

core position of understanding connection patterns and integrated functions, beyond the specialization of 

brain cortical areas. 

Among the several neuroimaging techniques available for studying brain functions, task-driven fMRI and 

resting-state functional magnetic resonance imaging (rsfMRI) have revealed to be extremely useful tool to 

describe the neuronal activation patterns involving anatomically separated brain regions and reflecting the 

level of functional communication between them. Regarding brain structures, deterministic and probabilistic 

tractography have shown to be suitable for extracting white matter pathways that link distant cortical 

regions. 

In this thesis we investigated some aspects related to the study of brain connectivity as whole, both relevant 

to the physiological connection represented by tracts/fascicles/bundles considered in the structural 

connectivity and also by the functional responses and activity correlations considered in the functional 

connectivity. In this study, clearly emerged that the progress on both sides is a core element in permitting 

to advance to further integration overcoming the “shadow line” which is still separates the insight into the 

white matter and the gray matter function. The high challenge deals also with anatomo-functional 
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integration aspects which largely rely on mesoscale details of the brain circuits at the edge of current 

instrumentation and analysis methods.  

We proposed two methods that allowed respectively the localization and the quantification of the 

connections between WM and GM and the correlation between structural and functional metrics. Both 

approaches worked at network level addressing technical issues mainly related to the limitation of the 

neuroimaging tool used for these analysis (e.g., the impossibility to approach gray matter when using 

deterministic tractographic algorithm, the asymmetry issue raised when performing probabilistic 

tractography, etc). As a result of this integration analysis at network level, we should stress that our studies 

confirmed the idea that any functional coordination should be mediated by connecting fibers only in case of 

highly specialized networks (i.e., the language circuit and the two lateral RSNs). The DMN, indeed, showed 

no correlation between SC and FC values, suggesting the existence of associative and indirect paths, such 

as polysynaptic structures, which connect gray matter regions but are not detectable with our tractography. 

This finding led us to also work on improving tractographic techniques and ameliorate the quality control 

of diffusion data. For this reason, we further address the problem of artifacts in DW images. We first worked 

at single level proposing a new method for artifact identification and removal, then at group level developing 

a new pipeline for the quality control of tractography-derived measures. These approaches permit a high 

flexibility as to the insertion into standard processing pipelines as additional quality control and artifact 

removal/correction step, besides the EC, susceptibility, movement correction steps, which usually are also 

implemented via empirical (i.e., data-driven) approaches. It would be interesting in future works quantifying  

the extent of each peak of FOD to establish the precision of the reconstruction in order to better and better 

integrate diffusion data with the functional ones. 

It is also noteworthy that the application of the structural and functional data in clinical environment was 

demonstrated to be a very interesting instrument to assess circuitry modifications and adaptation, allowing 

for the monitoring the changes due to both pathology and those induced by therapeutic interventions (Irimia 
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et al., 2014). This may eventually aid in the development of patient-specific tailored rehabilitation 

approaches. It would be very interesting applying the method described in Chapter 2 to other stroke patients 

and for longer follow-up periods to enforce the validity of our method. Furthermore evaluation of other 

brain circuitries in different pathologies can also stress the importance to obtain information from different 

areas of the brain to understand which method can better shed light onto the specific circuitry. 

To conclude our work suggests that many other studies will be needed on the topic of the integration of 

structural and functional data; nevertheless, we strongly believe that this kind of integration is the most 

fascinating and challenging route to pursue in neuroscience to gain more comprehension of the brain in its 

overall highly complex behavior. 
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