
i
i

“thesis” — 2018/6/4 — 20:50 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DEPARTMENT OF ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

LIQDROID: A MIDDLEWARE FOR DIRECT

INTERACTION BETWEEN MULTIPLE PROXIMAL

ANDROID DEVICES

Doctoral Dissertation of:
Anita Imani

Supervisor:
Prof. Luciano Baresi
Tutor:
Prof. Carlo Ghezzi
The Chair of the Doctoral Program:
Prof. Andrea Bonarini

2017 – XXX

i
i

“thesis” — 2018/6/4 — 20:50 — page 2 — #2 i
i

i
i

i
i

i
i

“thesis” — 2018/6/4 — 20:50 — page 1 — #3 i
i

i
i

i
i

This work has been partially funded by Telecom Italia S.p.A.,
Services Innovation Department, Joint Open Lab S-Cube,

Milano.

i
i

“thesis” — 2018/6/4 — 20:50 — page 2 — #4 i
i

i
i

i
i

Acknowledgement

Studying Ph.D. while having diabetes was one of the biggest challenges that
I faced in my life. As the nature of the Ph.D. will bring you high levels of
stress because you don’t know what will happen next in your path. This
sometimes made me be worried about my health and put me in the situation
to make a decision but what always brought me back to the path to continue
my Ph.D. was my interest in learning new things and bring hope to the life
of those people that have this disease. I would say besides all the difficulties
that it can put in our way, but, we are more powerful than it. I want to say
thank you to all those people that make me feel stronger than always to
be able to follow this path. First of all, I would like to express my special
appreciation and thanks to my advisor, professor Luciano Baresi for his
continuous support, patience and precious advices. I would like to thank
you for giving me the chance to be your Ph.D. student, encouraging my
research and for allowing me to grow as a research scientist, your immense
knowledge was always the best motivation for me to learn more.

I would also appreciate the financial and technological support of the
Telecom Italia for my Ph.D. And also all the people who are/were working in
the Joint Open Lab (S-CUBE) more specifically Cristina Frà and Massimo
Valla. I can say the collaboration with the university and industry while
is one of the really exciting and helpful experiences but can also be very
difficult, and Cristina made it easier for me by her professional behaviour
and knowledge, and I really appreciate it.

My sincere thanks also goes to Prof. Gerardo Canfora and Prof. Ivano
Malavolta for accepting to review my manuscript and giving their valuable
comments.

And the last but not least my beloved family and friends that always are
there for me and besides all their worries let me follow my dream and have
never stopped supporting me.

i
i

“thesis” — 2018/6/4 — 20:50 — page 3 — #5 i
i

i
i

i
i

To my lovely father that always remains alive in my heart and
my beloved family

i
i

“thesis” — 2018/6/4 — 20:50 — page 4 — #6 i
i

i
i

i
i

i
i

“thesis” — 2018/6/4 — 20:50 — page I — #7 i
i

i
i

i
i

Abstract

NOWADAYS, the speed of technology improvements in computing
devices is very fast. The functionality and ease that using these
different devices bring to us has influenced the way we are living and

enabled us to benefit from them carrying out various daily tasks. But despite
the improvements that have occurred in the field of mobile technology
and the connection protocols, the current situation as regards multiple-
device interaction techniques is still far behind what it could be, and these
computing devices are still mostly working in isolation. Current multi-device
interaction solutions enable the user to continue a task on another device,
but their dependency on a specific set of devices and software artifacts
(applications) on these devices limits their usage and forces the user to act
as a bridge between the devices. This entails the user having to perform
some preliminary and time-consuming steps to configure the next device
on which to resume the task. While benefiting from the direct interaction
between the multiple proximal devices, the user can interchangeably benefit
from them in the execution of the different parts of the task he desires to
carry out, exploiting the maximum potential that exists in these devices, to
achieve better results and more user satisfaction.

This dissertation covers the motivation, design, and development of a
novel paradigm to support multiple-device direct interaction through dis-
tributing the Android execution. The proposed solution to support this novel
paradigm is a middleware infrastructure that will manage the direct interac-
tion between a dynamic set of proximal devices to let the user seamlessly
distribute the execution of a task between them, while also enhancing the

I

i
i

“thesis” — 2018/6/4 — 20:50 — page II — #8 i
i

i
i

i
i

process of the interaction and integration of these devices. The proposed
middleware, which is called LIQDROID, will distribute the Android oper-
ating system between a set of proximal Android devices to create a bigger
Android ecosystem. The proposed ecosystem transforms the current pat-
tern of single-user single-device to a fully cooperative environment that will
empower a user to start a task on his device and be able to interchangeably
and collaboratively benefit from the potential that exists on the proximal
devices or other users during its execution and reach his final goal with
better results. More technically speaking, LIQDROID is an Android service
which benefits from the features available within the Android framework
to solve the challenges that already exist in multiple-device interaction to
manage the execution of a distributed task, such as finding the best capable
proximal Android device to perform a task, and synchronizing the state of
the integrated devices and the data management. This will provide the re-
quired framework for developers to easily be able to distribute the execution
of a task on proximal devices and be relieved of the underlying complexities,
and instead put their focus on designing and developing more innovative
distributed applications.

A stable prototype of LIQDROID has already been implemented in Java,
which is the main language of developing Android applications, and is ready
to use. Also, a set of use case scenarios has been designed and considered
in this thesis, based on the needs of real case scenarios. The developed
versions of these use case scenarios in the shape of LIQDROID-compatible
applications, along with LIQDROID, was tested on real devices to better
evaluate and explore their strengths and weaknesses. The results were
satisfying and also helped to apply the required changes in LIQDROID to
improve it. These experiments have shown that LIQDROID introduces an
innovative way of interacting between multiple proximal Android devices,
which has the potential to introduce new and even more comprehensive
features in the way of direct interaction between multiple proximal devices.

II

i
i

“thesis” — 2018/6/4 — 20:50 — page III — #9 i
i

i
i

i
i

Contents

1 Introduction 1
1.1 Distributed Android Execution 1
1.2 Research Problems . 7

1.2.1 Homogeneous Platform vs Cross Platform 8
1.2.2 Supporting New Devices and Technologies (transparency) 9
1.2.3 Managing the Execution of the Distributed Tasks (adapt-

ability) . 10
1.2.4 Synergistic Specificity of the Applications’ Parts . . . 11

1.3 Research Questions . 12
1.4 Research Objectives . 14
1.5 Major Contributions . 15
1.6 Thesis Structure . 16

2 Related Work 19
2.1 Models and Technologies in Distributing User Interfaces . . 21

2.1.1 Supporting Multiple Devices 22
2.1.2 Supporting Multiple Platforms 25
2.1.3 Supporting Multiple Users 25
2.1.4 Supporting Multiple Contexts of Use 26
2.1.5 Supporting Multiple Modalities (input / output) . . . 28
2.1.6 Discussion and Comparison 29

2.2 Models and Technologies in Distributing Services 31
2.2.1 Multi-channel Services 32
2.2.2 Crossmedia Services 32

III

i
i

“thesis” — 2018/6/4 — 20:50 — page IV — #10 i
i

i
i

i
i

Contents

2.2.3 Discussion and Comparison 36
2.3 Middleware Technologies 37

2.3.1 Conductor . 37
2.3.2 Panelrama . 40
2.3.3 Multi-Device Interaction with Dynamically Migrating

Engines . 41
2.3.4 AllJoyn . 43
2.3.5 Sip2Share . 46
2.3.6 Remote Service Call 47
2.3.7 Middlewares on Android Binder extension 48
2.3.8 Google Play Services 50

2.4 Conclusion . 50

3 Background About Android Framework 53
3.1 Android Application Components 53

3.1.1 Activity . 53
3.1.2 Service . 56
3.1.3 Content Provider . 58
3.1.4 Broadcast Receivers 58

3.2 Android Inter Process Communication 58
3.2.1 Intent . 58
3.2.2 Intent Filter . 59

3.3 Conclusion . 59

4 Proposed Middleware Architecture 61
4.1 Connection Layer . 63

4.1.1 Advertisement and Discovery 63
4.1.2 Group Formation 65
4.1.3 Communication Channel 66
4.1.4 Device Abstraction 67

4.2 Interaction Layer . 68
4.2.1 Intent Manager . 68
4.2.2 Task Execution Manager 69
4.2.3 Artifact Manager . 73
4.2.4 Event Manager . 76
4.2.5 Service Manager . 78
4.2.6 Communication Manager 79
4.2.7 Settings . 80

4.3 Conclusion . 81

IV

i
i

“thesis” — 2018/6/4 — 20:50 — page V — #11 i
i

i
i

i
i

Contents

5 Implementation Details and Technical Descriptions 83
5.1 Advertisement and Discovery 84
5.2 Group Formation . 86
5.3 Communication Channel 89
5.4 Device abstraction . 91

5.4.1 Device Level Discovery 91
5.4.2 Application (Components) Level Discovery 92

5.5 Intent Manager . 92
5.5.1 Task Execution Manager 95
5.5.2 Categories of devices’ interactions 97
5.5.3 Managing the devices during the interaction (State

Synchronization) . 99
5.6 Artifact Manager . 104

5.6.1 Transferring data through the cloud infrastructure . . 105
5.6.2 Transferring data Directly through the local Wi-Fi

network . 108
5.7 Event Manager . 108

5.7.1 Device Level Events 108
5.7.2 Interaction Level Events 109

5.8 Service Manager . 117
5.9 Communication Manager 120
5.10 Settings . 120
5.11 Conclusion . 121

6 Evaluation 123
6.1 Usage of LIQDROID with Available Android Applications . 126

6.1.1 Sample Scenario . 126
6.1.2 Application’s Architecture and Complexity 126

6.2 Use case scenario 1: Joint Meeting Application 127
6.2.1 Sample Scenario . 128
6.2.2 Application’s Architecture and Complexity (Presenter

Version) . 129
6.2.3 Application’s Architecture and Complexity (Partici-

pant Version) . 131
6.2.4 Application’s Architecture and Complexity 134

6.3 Use Case Scenario 2: Cameo Application 136
6.3.1 Sample Scenario . 136
6.3.2 Application’s Architecture and Complexity 137

6.4 Use Case Scenario 3:Take and Edit Image Application . . . 138
6.4.1 Sample Scenario . 139

V

i
i

“thesis” — 2018/6/4 — 20:50 — page VI — #12 i
i

i
i

i
i

Contents

6.4.2 Application’s Architecture and Complexity 140
6.5 Use Case Scenario 4: Home Video Player and Controller . . 141

6.5.1 Application’s Architecture and Complexity 143
6.6 Use Case Scenario 5: Music Player Service 144

6.6.1 Sample Scenario . 144
6.6.2 Application’s Architecture and Complexity 145

6.7 Use Case Scenario 6: Inside Shoe Store Application 145
6.7.1 Sample Scenario . 146
6.7.2 Application’s Architecture and Complexity (Insert Prod-

ucts) . 146
6.7.3 Application’s Architecture and Complexity (Search

Products) . 147
6.8 Users’ perspective about LIQDROID 150

6.8.1 Discussion of the Results: 153
6.9 Developers’ perspective about LIQDROID 155

6.9.1 Discussion of the Results: 156
6.10 LIQDROID’s Performance at runtime 157
6.11 LIQDROID’s Overhead of energy consumption at runtime . 160
6.12 LIQDROID’s Scalability 163
6.13 Other Possible Domains of Use and Comparisons 164

6.13.1 Multiplayer Games 164
6.13.2 Video Streaming Application 165
6.13.3 Distributed PDF Reader 167
6.13.4 City Guide . 167
6.13.5 Museum Guide . 168

6.14 Conclusion . 169

7 Conclusion and Future Directions 173
7.1 Answers to Research Questions 173

7.1.1 Research Question One [Q.1] 173
7.1.2 Research Question Two [Q.2] 175
7.1.3 Research Question Three [Q.3] 176
7.1.4 Research Question Four [Q.4] 177

7.2 Future Directions . 178

Bibliography 181

VI

i
i

“thesis” — 2018/6/4 — 20:50 — page VII — #13 i
i

i
i

i
i

List of Figures

1.1 Percentages of consumers using different devices - the mobile
devices have the higher usage.1 2

1.2 Multitasking view - Other devices are used simultaneously
with the smartphone. [42][p. 2] 3

1.3 Number of mobile application downloads worldwide in 2016,
2017 and 2021 (in billions). 2 4

1.4 The majority of professional developers choose Android over
other mobile platforms.3 6

1.5 An example of distributing the execution of a movie inside
an Android ecosystem which including different devices. . . 7

2.1 A sample of serial multi-device workflow of an interior de-
sign profession [64]. 27

2.2 Their proposed framework architecture. 42
2.3 Architecture of AllJoyn bus.4 45
2.4 High level operations [7] 46
2.5 Possible interactions [7] 46

3.1 A simplified illustration of the activity lifecycle. 5 55
3.2 A sample view of how the activity task stack works in a

device while the components belong to the same package or
different. 6 . 56

VII

i
i

“thesis” — 2018/6/4 — 20:50 — page VIII — #14 i
i

i
i

i
i

List of Figures

3.3 The service lifecycle. The diagram on the left shows the
lifecycle when the service is created with startService() and
the diagram on the right shows the lifecycle when the service
is created with bindService(). 7 57

4.1 A General Overview of LIQDROID Proposed Features . . . 63

5.1 Architecture of LIQDROID (Modules’ dependencies) 84
5.2 LIQDROID provided alert dialogue for group formation upon

receiving connection acceptance. 87
5.3 Advertising and Discovering proximal devices through Google

Nearby Messages 8 . 88
5.4 Finding the desired devices through available groups’ mem-

bers or list of all the available proximal devices. 89
5.5 Transferring the execution request(intent and its required

data) through the unitMessage. 91
5.6 Sequence diagram of distributing the task’s execution through

the Intent Manager Module 94
5.7 Showing the Chooser list (of capable components) and launch-

ing the desired component(s) on the destination device(s) . . 101
5.8 LIQDROID will share artifacts between different devices

through Firebase Storage. 9 106
5.9 Sequence Diagram of launching a component on the destina-

tion device while the source device’s role defined as Controller. 113
5.10 Sequence Diagram describing when the activity on the source

device goes to the pause state while the device has defined
its role as Controller. 115

5.11 Sequence Diagram describing an example of when an activity
goes to the pause state on the Client device. 116

5.12 Sequence Diagram describing when an activity has launched
by LIQDROID is resumed. 117

5.13 Binding an activity belongs to the Device 1 to a Service that
belongs to the Device 2 (an example). 119

6.1 Discovery and group formation using LIQDROID 125
6.2 (a)Set of available features on the Participant component dur-

ing an ongoing meeting, (b) The possibility to share various
files during the meeting (c)Possibility to select and share the
materials with a sub set of a group’s members 134

VIII

i
i

“thesis” — 2018/6/4 — 20:50 — page IX — #15 i
i

i
i

i
i

List of Figures

6.3 (a) Possibility to select the proper device and the proper
component on it, at the same time (b) Capturing an image
through the desired component on the destination device, (c)
Reviewing the image on the source device. 139

6.4 (a)Captured image by the device that has better Camera, (b)
List of the available applications for editing an image, (c)
The availability of the captured image on the third destination
which proposes a better application for editing it. 140

6.5 (a)Sharing a video with your friend (b) LIQDROID will show
the list of the available video players on your fiend’s device
upon it uploaded the file successfully to the cloud storage
(c)The desired video player will be launched on the destina-
tion device while playing the video that has been downloaded
successfully by LIQDROID. 142

6.6 (a)Through the Music Player activity the user chooses to
run the service using on the other proximal devices, (b) The
user selects the Music Player Service on one of the connected
devices, (c) The user on the other device receives a permission
request to let the other user runs the Music Player Service of
his device. 145

6.7 Inserting unstructured data through LIQDROID 147
6.8 (a)The user selects to launch the activity to add products on

the Sellers’ devices. (c)(d)(e) The selected sellers will add
the product info in the launched activity through their devices.
(b) The manger later is able to apply query and view all the
inserted results through LIQDROID in the database on his
device. 148

6.9 Query unstructured data through LIQDROID 149
6.10 Multi-player Games Sample - Crossword Game. [20] 165
6.11 Shared YouTube browser [80] 166
6.12 City Guide Sample - (a) is the guide version with all the

features visible and (b) is the tourist version with the hidden
features. [20] . 168

IX

i
i

“thesis” — 2018/6/4 — 20:50 — page X — #16 i
i

i
i

i
i

i
i

“thesis” — 2018/6/4 — 20:50 — page XI — #17 i
i

i
i

i
i

List of Tables

2.1 Comparison between LIQDROID and the available technolo-
gies in the field of multi-device interaction 20

5.1 Provided features by LIQDROID for managing the seamless
interactions between the devices through the Task Execution
Manager . 96

5.2 Supporting the occurrences of different events in the devices
and also during the seamless interactions between the devices
through the Event Manager Module of LIQDROID 110

6.1 Types and the number of Android devices that each partici-
pant has. 151

6.2 Reasons proposed for using multiple devices by the participants. 152
6.3 Levels of the participants’ engagement with the proposed use

case scenarios . 153
6.4 The participants’ perspective about the usability of LIQDROID 154
6.5 Performance of LIQDROID at run time (with sharing data) . 159
6.6 Performance of LIQDROID at run time (general usage) . . . 160

XI

i
i

“thesis” — 2018/6/4 — 20:50 — page XII — #18 i
i

i
i

i
i

i
i

“thesis” — 2018/6/4 — 20:50 — page 1 — #19 i
i

i
i

i
i

CHAPTER1
Introduction

“The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life until they
are indistinguishable from it.”
Mark Weiser

In this chapter, we briefly explain the concept of multi-device direct
interactions and the scope of the work.

1.1 Distributed Android Execution

Device cooperation is one of the very important subjects these days, as users
mostly benefit from different computing devices to perform their daily tasks
and duties. Due to the fast trend of improvements in mobile technologies,
we are in a transition phase from the desktop and personal computers to
the world where mobile computing is touching every aspect of our daily
lives and is accessible any time and everywhere (Figure 1.1.) Nowadays
mobile technology enabled devices are available in different forms, sizes,
capabilities, and functionalities, as smartphones, tablets, wearable devices
and car dashboards. The heterogeneity of these devices, their availabil-
ity, and the differences that exists between them related to their software

1

i
i

“thesis” — 2018/6/4 — 20:50 — page 2 — #20 i
i

i
i

i
i

Chapter 1. Introduction

Figure 1.1: Percentages of consumers using different devices - the mobile devices have the
higher usage.1

and hardware features, such as power consumption (battery life), storage,
memory, and portability, as well as the users’ preferences, means that the
user prefers to possess several of them and use them interchangeably every
day [36, 64]. Most of these devices, although they are in close proximity
to each other, are still working as standalones, and their capabilities and
potential are not fully exploited. On the one hand, it is not possible to put
all the features that this diversity of mobile devices offers in a single device
from the hardware and software complexity point of view, and also the cost;
and more importantly, users prefer to have different devices to pursue their
purposes instead of having a single all-in-one device [10]. In this study,
Dearman et al. have studied why and how people use multiple devices, and
they derive these primary findings: First, users prefer to separate their work
and personal activities. Second, users assign different roles to devices as
each user may use these devices in various forms and conditions. Third,
spanning the activities on several devices is more comfortable for the user
than handling all of them in a single device. For example, a user may start
searching a video on his cellphone, then use the TV to watch it and his tablet
to read the reviews and write his own review. Currently eighty-six percent of
users involve other technologies to listen to music, read news, watch movies
or use the internet, engaging their smartphones (Figure 1.2).

1https://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/
mobile-marketing-statistics/

2

https://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
https://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/

i
i

“thesis” — 2018/6/4 — 20:50 — page 3 — #21 i
i

i
i

i
i

1.1. Distributed Android Execution

Figure 1.2: Multitasking view - Other devices are used simultaneously with the
smartphone. [42][p. 2]

The existence of several devices in a user’s proximity and moving be-
tween them to perform different tasks makes the user feel more and more
the need to have an infrastructure that enables seamless interaction between
these devices in order to benefit from another device during the execution
of the task at hand. Although different platforms and solutions have been
developed to enhance such cooperation, by decreasing the gap between these
devices and bringing them together as a system, these devices are mostly
working in a standalone scenario. So the user needs to move between them
and perform some preliminary steps for the communication (connecting
devices together through protocols, wire or third devices), configuration
or synchronization of the devices (the new device reaching the same state)
when the user needs to use a different set of devices at the same time, such as
during formal meetings, a gathering of family/friends, availability of several
proximal personal devices etc. Without interaction between devices, a lot
of time and resources are wasted, whereas by having a good infrastructure
that handles cooperation between the devices, we could assign the time and
better manage resources to improve the work and increase productivity.

On the other hand, based on the context that the user belongs to and the
task requirements, the user’s access may be restricted to a specific device to
perform the task. The word "task" here refers to the predefined sequence of

3

i
i

“thesis” — 2018/6/4 — 20:50 — page 4 — #22 i
i

i
i

i
i

Chapter 1. Introduction

Figure 1.3: Number of mobile application downloads worldwide in 2016, 2017 and 2021
(in billions). 2

steps that the user needs to follow to achieve the final situation (or result)
which is his desired goal. To perform different steps of a task the user
benefits from the software artifacts which are installed on these devices and
commonly called mobile applications. One of the main reasons that helped
mobile technologies become pioneers are these mobile applications which
are small, loosely coupled software components which provide limited and
specific functionality. Nowadays mobile applications have entered into
different aspects of the user’s life, ranging from entertainment, shopping,
education, and business, up to new and interesting fields such as virtual and
augmented Reality. Figure 1.3 shows a forecast of the increasing trend of
mobile applications downloads worldwide in 2016, 2017 and 2021. This
has caused a huge increment in the time that people spend on interacting
with their devices and will also change the way that people will interact with
them in the near future.

Currently, because of the limited hardware resources available on mobile
devices, multitasking has been avoided. The constraints that these mobile
devices have, such as the power consumption and the nature of their porta-
bility may mean that they won’t always be accessible for the user, who
cannot have the freedom to choose on which devices to perform his desired
task, based on his preferences. These device limitations also will have an
effect on the execution of the applications that are installed on them. If
there exists some limitation in the hardware available on the device, this can

2https://www.statista.com/statistics/271644/worldwide-free-and-paid-\
mobile-app-store-downloads/

4

https://www.statista.com/statistics/271644/worldwide-free-and-paid-\mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-\mobile-app-store-downloads/

i
i

“thesis” — 2018/6/4 — 20:50 — page 5 — #23 i
i

i
i

i
i

1.1. Distributed Android Execution

cause an installed application to become completely or partly useless, for
example, if the storage on your device is full, you will not be able to use your
camera application to capture any image. In addition, as the applications
are still limited to the boundaries of a single device and are working in an
isolated environment, they can only interact and benefit from the services
that the applications installed on that device can provide during their ex-
ecution. Various studies put their main focus on improving the usability
models at the application level [28, 33, 53, 72], such as PACMAD usability
model [28]. It introduces seven attributes which are important in measuring
the usability of an application: effectiveness, efficiency, satisfaction, learn-
ability, memorability, errors and cognitive load. They believe that beside the
limitations that exists in the nature of these mobile devices, that we have
also mentioned-above, that will limit us to the design of the applications,
the context of use such as using the applications while the user is moving
also have a very important effect on the usability of the applications. So
considering the above-mentioned attributes in the design and test phase of
the application development will improve the quality of its overall design,
how the user will perceive and interact with it and finally brings higher levels
of success and user satisfaction.

But despite all the improvements that are introduced to apply in the
design phase and to the functionalities of these applications based on the
proposed models, there is still a gap between the functionality that they
offer and what can potentially be achieved. This gap is understandable,
considering the constraints and limitations that mobile devices have put
in the way of the applications’ usage, forcing users to move between the
diversity of devices to perform different tasks and pursue their goals. The
limitations that the mobile nature of these devices poses to the user could be
counted as dynamic change in the context, connectivity problems (slow and
unreliable), and different data entry types (error-prone and slow rate of data
entry in movement), which will cause a huge reduction in the usability of
the applications, as well the satisfaction of the final user [28].

We believe that by providing an infrastructure that lets these devices
become integrated and cooperative as a single unit, we can support these
two views at the same time, which will enable different components of an
application to flow between these multi-integrated devices, and have access
to a broader pool of resources. This possibility of distributing applications’
components will cause that the maximum functionalities and capabilities
of these devices will be achieved, some of the current limitations will be
removed and will result in higher levels of application usability, productivity,
and user satisfaction that currently exist.

5

i
i

“thesis” — 2018/6/4 — 20:50 — page 6 — #24 i
i

i
i

i
i

Chapter 1. Introduction

The current potential that exists in the Android framework, as an open
source framework with a wide range of different available Android devices
and the high attention that it achieved from application developers (Figure
1.4) persuaded us to think about Android as a great opportunity to benefit
from it in the design and implementation of our solution and being capable
of reaching the novel interaction paradigm in multi-device interaction that is
needed.

The proposed paradigm will create an Android ecosystem among all
the available proximal Android devices. This bigger Android ecosystem
will let the user start a task on his device, based on the availability of the
devices in his proximity and the constraints that the context of use may
impose to him be able to combine different sets of proximal Android devices
dynamically and distribute the execution of the task between them as the
figure 1.5 shows. As a sample scenario to propose better this Android
ecosystem, considering that the user selects a movie on his smartphone to
watch, he starts watching the movie, when he is at home he is able to resume
the video (distributes the execution of the video) on his tablet and TV. But
if he is inside the car, he is able to resume this movie on the car’s tablet or
share with his friends’ Android devices. Or while he is on the move he is
able to watch it through his smartwatch. So these devices are not separate
entities any more but they are all part of a general entity (which we call
it as Android ecosystem) which allows the user’s task to easily distribute

Figure 1.4: The majority of professional developers choose Android over other mobile
platforms.3

3https://scand.com/company/blog/mobile-world-turning-toward-android-\
ios-vs-android-development-statistics/ Or https://goo.gl/zJxHsS

6

https://scand.com/company/blog/mobile-world-turning-toward-android-\ios-vs-android-development-statistics/
https://scand.com/company/blog/mobile-world-turning-toward-android-\ios-vs-android-development-statistics/
https://goo.gl/zJxHsS

i
i

“thesis” — 2018/6/4 — 20:50 — page 7 — #25 i
i

i
i

i
i

1.2. Research Problems

(flow) among them. This proposed ecosystem will be a big step toward
reaching a fluid computation vision [6] in the sense of having a system
which lets information and tasks become available everywhere and anytime
to support spontaneous human usage while is appearing invisible to the user.
This solution will enable the multiple-devices to be more cooperative and
goes further than just synchronizing the devices through accessing the last
version of the data or just connecting the devices. But the components of
applications become distributed between the devices. This new seamless
interaction paradigm will have a great effect on the way that users conceive
and interact with their environment, each other and other available devices.

Android	Tablet

Android	Smart	Watch

Android	TV

Android	Car

Android	
Smart	Phone

Figure 1.5: An example of distributing the execution of a movie inside an Android
ecosystem which including different devices.

1.2 Research Problems

Although the current speed of improvements in the communication protocols
and computational capabilities of the devices are very fast, still they are not
able to help the user exceeding the boundaries of a single device and use
these advancements more adequately. This will cause that the user finds
himself with several single-purpose devices and the first consequence of this
isolated usage on a single device is that the users won’t be able to exploit the
real capabilities of devices. Lack of a proper infrastructure that can adopt
these technologies and make them cooperative based on the each task’s
requirements is one of the main reasons that causes this isolation problem

7

i
i

“thesis” — 2018/6/4 — 20:50 — page 8 — #26 i
i

i
i

i
i

Chapter 1. Introduction

which consequently will put the user far behind in properly benefiting from
these new technologies. In this section, we are going to describe this problem
and the reasons that cause it in more detail.

The first obstacle is that most of the time the user is not aware of all
the devices which are available in his proximity and the capabilities that
they have, not just in the sense of hardware features, such as whether it is a
smart phone or a watch which can, for example, include different sensors,
but also the features such as the applications which are available on them
that would be useful for the user’s intended task, as well as a prototype
that can help him to overcome the complexities that integrating these wide
range of devices may cause. While a lot of mobile technology enabled
devices are increasingly entering a user’s daily life, our current situation as
regards interaction techniques is still far behind this trend, which reveals
a series of standalone and isolated devices. Much research has been done
to advance the usability of multi-device interactions, though knowledge
about the experiential side of their work as applied to real situations is still
insufficient. The results of current experiments show that users are still
struggling with the weak performance that these solutions provide regarding
fundamental aspects such as controlling the interactions, the users and the
context of use [32], and this may cause the user to lose his interest in
benefiting from these solutions. Therefore, innovative paradigms should
still be designed and developed that comprehensively consider all aspects
of multi-device interactions which can be a different permutation of the
dimensions, including the interactions between the user and other users, the
user and devices, and between devices [18]. Below we mention some of
these fundamental problems that exist in the current solutions, the reasons
that cause them and the attempts that we need to make to eliminate them.

1.2.1 Homogeneous Platform vs Cross Platform

Different solutions such as web-based frameworks or middleware technolo-
gies such as Alljoyn [1], which we will talk about them in more details in
the section 2, have been proposed to handle the interaction between devices,
but they mostly focus on being cross-platform as the key feature in their
solution. These approaches need to offer suitable generality in order to be
adaptable by several platforms. Otherwise they will be limited to support the
high-level interactions between the devices such as sharing the final results
of the tasks, messages, and notifications. But focusing on a homogenous
platform will enable us instead of considering each of the devices as a single
entity while is imposing its own limitations and rules, can consider all the

8

i
i

“thesis” — 2018/6/4 — 20:50 — page 9 — #27 i
i

i
i

i
i

1.2. Research Problems

devices as a single entity and the framework as the shared infrastructure that
is distributed between all of them. This homogeneity between devices will
help us to better analyze the requirements, formulate the problem, and pro-
pose more comprehensive and extensible solution. As this comprehensive
solution will have wider access to the lower level details of the execution of
the tasks is capable of proposing more features such as allowing the user to
be able to fully customize the execution of a task based on his preferences
and the task’s requirements, improving the final results of the task by ex-
ploring and proposing better available resources for that task and result in
a better outcome, while it also will be easily capable of supporting those
high-level interactions mentioned above. For example, if you want to take
a photo and send it to your mother and you know that the camera of your
tablet is better than your phone, so you take the photo with the tablet and
then as your tablet is not capable of sending messages, you send back the
image to your phone and then send it to your mother through the message
application on your phone. Or you are watching a movie on an Android TV,
and when it has finished, you want to watch another related video that the
YouTube application on your phone has suggested, so you start the video on
your phone and then transfer it to the TV.

1.2.2 Supporting New Devices and Technologies (transparency)

Nowadays, the speed of improvements in mobile technologies is very fast:
every day new developments in the mobile technology field happen which
enhance the current capabilities of mobile applications and enable them
to support a new area of the user’s life, ranging from business and health
care, to art, education, etc. This trend will add extra requirements and
expectations which force the current solutions to be revised or replaced with
new solutions that are better capable of supporting these newly added values
and features.

Dealing with this aspect involves the fact that the proposed solutions
should be flexible enough to accept lately joined devices. This does not
mean how many devices from different platforms we are capable of handling
but how we are able to integrate these devices to achieve the maximum
capability that they can propose. This is completely opposed to the view of
the cross-platform solution, as the nature of a task and applications currently
in different platforms, mainly Android, Apple and Windows, has an entirely
different development infrastructure. To tackle this problem, the solution
should propose adequate levels of abstraction regarding the task’s structure,
its execution requirements and its dependencies on the platform. Focusing

9

i
i

“thesis” — 2018/6/4 — 20:50 — page 10 — #28 i
i

i
i

i
i

Chapter 1. Introduction

on a single platform will decrease the level of complexity and increase the
proposed features and potential of the solution to be more adoptable to the
incoming devices and technologies in the future.

1.2.3 Managing the Execution of the Distributed Tasks (adaptability)

A key component in maintaining multi-device environments is how we are
capable of controlling the interactions. Currently available solutions which
let the user move between different devices seamlessly, mostly focus on
centralizing the access to the underlying data used by the applications so be
able to support the task distribution and synchronizing the state that the user
had on different devices, based on letting all the applications have access
to the last copy of the data. To achieve this approach, the data was kept
in a centralized place, mostly in the cloud, and it was shared with all the
applications installed on different devices. But the first problem with these
approaches is that they are applicable only for some applications that have
been developed by specific platform vendors or device vendors. The other
very important problem is that they are personalized, as the user must enter
with the same identity on different devices. So the distribution of the task is
subject to the possibility of having access to these sources of data and sync
the data and states between those devices. But our main focus is letting the
user select devices which are in his proximity, even if it is his own device or
a colleague’s device, his wife’s device or a shared screen in a museum, and
to be able to communicate with that device(s) to benefit from its features on
the execution of the task at hand to reach his desired (mainly better) results.

As Denis and Karsenty [12] pointed out, a framework’s adaptability
can have two different sides. On the one hand, it is the capability of the
system to adapt itself to the environment that the user is in, as well the
capabilities and features of the existing devices. On the other hand, it is
the ability of the system to let the user adapt himself to the different use
situations and apply his preferences in case of need. The ability of the
system to overcome the adaptability challenge lies in how much the system
is capable of recognizing the devices (resources) that exist in the user’s
proximity, and making the most of them by the integration of these multiple
devices. As well as supporting the privacy concerns at the same time but
instead of using the credential as mentioned-above, the system can manage
it through two separated phases the first phase is related to the user which the
device belongs to and needs to provide the required permission before the
interaction starts. And the second phase is about the data that the application
wants to use and needs to be handles between these devices properly.

10

i
i

“thesis” — 2018/6/4 — 20:50 — page 11 — #29 i
i

i
i

i
i

1.2. Research Problems

1.2.4 Synergistic Specificity of the Applications’ Parts

The other problem that can arise while using this seamless interaction be-
tween multiple devices is how different parts of applications can be dis-
tributed on the different devices and interact with each other to achieve the
final user’s goal. This problem arises from the necessity of having syner-
gistic specificity in the system. The meaning of "synergistic specificity," as
Schilling [66] defined well is "the degree to which a system achieves greater
functionality by its components being specific to one another" in a specific
configuration. Systems which are high in synergistic specificity are able to
provide functionality and user experiences that isolated devices are not able
to perform and propose to their users.

Currently, this integration proposed by different systems, are not fully
aligned with the task requirements, what the devices are proposing and what
the user expects. For example, consider that there is an architecture company
where the user wants to take a good picture of the proposed building plan,
edit it on his tablet and then show it to his boss on the big screen, and
they want also to edit it together. The common trend currently to perform
this workflow is that people use another application in between to send the
data (here, the photo) to the other device using applications that have been
specifically developed for sharing the data or using available solutions such
as emailing or messaging applications.

Aside from the time that will be wasted to launch another application to
share the data, it will put more complexities and degradation into the quality
of the final result. Here just making the devices and the application installed
on them be able to interact with each other is not enough. While we need
a solution that lets these different devices and the required applications be
able to become united and work together as a single unit. So based on this
system the user can directly find and launch the other application on the
tablet with the data it needs from his smartphone, edit it and receive the
result back on his device, or send it directly to the big screen to review it
with his boss. The proposed solution sounds better because it has enough
knowledge about the task at hand, its different parts, and requirements. In
addition, the system also has a good knowledge about the availability of the
application’s components on the proximal devices and is able to distribute
the parts of the task between them, apply the changes and collect the results.

11

i
i

“thesis” — 2018/6/4 — 20:50 — page 12 — #30 i
i

i
i

i
i

Chapter 1. Introduction

1.3 Research Questions

In order to fully understand the requirements and how the proposed solu-
tion can overcome the above-mentioned problems, the following research
questions need to be answered:

Q.1 What are the currently available solutions (methods and technologies)
capable of supporting direct interaction between multiple proximal devices?
(Chapter 2)

One of the main obstacles that exists in the field of multi-device interac-
tion is that you cannot find a playing field where all people can come along,
find the existing works and improve them. Each researcher tries to provide
his own solution without considering the other related works. We have
reviewed the existing works to better understand the requirements, existing
challenges, strengths and weaknesses of the works that have been done so
far, especially those that function within the Android framework and align
with what the users expect from these systems. These steps helped us to
better formulate what the challenges are and what we need to do.

Q.2 What do we need to consider to enable multiple proximal devices
to directly interact with each other? This required answering the following
sub-questions: (Chapters 3 and 4)

• What are the requirements of the final users, and how do we manage
them to allow the users to seamlessly distribute the execution of tasks?

• What are the requirements of the developers, and how do we manage
them to allow the developers to seamlessly distribute the execution of
the components of their applications?

• What would be the immediate outcomes of the proposed solution?

The proposed solution will help us to fill the gap that currently exists
between the functionalities of the devices and what the resources available
on them (hardware and software resources) currently offer and what could
be achieved by integrating them in reality. This will at the same time address
the limitations that exist in a single device while allowing us to exploit all
the potential and resources that exist on the devices in our proximity, and
greatly improve the usability of the applications which are installed on them.
In this way, the user will need less time to benefit from another device(s) in
the execution of a task at hand.

On the other hand, one of the main aspects to be considered for the
users is that it should not only facilitate the work for them to achieve their
desired goals but also should be exciting for them to use this solution. In

12

i
i

“thesis” — 2018/6/4 — 20:50 — page 13 — #31 i
i

i
i

i
i

1.3. Research Questions

order to reach this goal, we first need to know what is currently available
and accessible that we can benefit from in the architecture of our solution.
We also need to determine what we need to propose to tackle the existing
challenges and better fulfil user expectations. More specifically, the main
focus goes to the Android framework as it will be the primary building block
of our architecture, and the other proposed blocks to put the solution into
practice will be in line with it.

Our solution aims to open a new perspective in the design of solutions
for multi-device interactions. On one hand, we will try to provide a com-
prehensive infrastructure to facilitate the developers’ work, as they will not
be restricted anymore to the physical boundary and limitations that exist
on a single device; they will also have access to a pool of resources and
potential features to use when designing their applications. This will give
them the required freedom to focus on developing more innovative and
useful applications for their users.

Q.3 What are the technical aspects considered in the implementation
of the middleware, and how have we addressed the possible barriers and
inconsistencies that we were faced with in the process? (Chapter 5)

Working inside the Android framework, however, provides a good op-
portunity for us to focus more on the task distribution aspect and not on
the execution of the task on the proximal devices. But in order to integrate
these two steps, we need to be fully compatible and obey the Android frame-
work rules. This question is related to how we have integrated and synced
our middleware infrastructure with the Android framework to handle the
distribution of the tasks and exploit the potential that already exists in the
Android OS to provide the proposed paradigm.

Q.4 How will the proposed solution validate itself in the real case situ-
ation? This is more specifically answered by the following sub-questions:
(Chapter 6)

• How can it improve the process of developing distributed applications
in both aspects of novelty and required attempt?

• What is the opinion of final users about it while they interact with it?

• What is the opinion of developers about it in the sense of usability, and
how much can it improve their attempts to develop distributed apps?

• What is the overhead of it in terms of performance and energy con-
sumption at runtime?

To better understand how successful we were in achieving the desired
results and how capable the proposed solution is of providing for the devel-

13

i
i

“thesis” — 2018/6/4 — 20:50 — page 14 — #32 i
i

i
i

i
i

Chapter 1. Introduction

oper’s and user’s needs, several realistic use case scenarios should be defined
and implemented to evaluate how the system will work on the real devices,
how much it can help the developer, and how it can persuade the final user.
To this end, we have conducted several experiments with different users and
developers, have collected their opinion and idea during the experiments as
well as we have measured the performance of LIQDROID at runtime during
each experiment.

1.4 Research Objectives

The main research goal of this thesis can be defined as follows:

Distributing Android execution between a set of proximal Android de-
vices to create a bigger Android ecosystem. This will enable the proximal
Android devices be able to directly interact with each other. This ecosystem
will enhance cooperation between the devices and will empower the user
to start a task on an Android device and be able to seamlessly distribute its
execution to the proximal Android device(s) which best suits its requirements.

Most of the current solutions focus on supporting the heterogeneity of the
devices with different platforms and synchronizing their state through the
cloud infrastructure by accessing the last version of the data. These solutions
are not capable of providing an infrastructure for the user, based on the task
requirements, to be able to interchangeably use different devices which have
better capabilities for executing that task. As these solutions do not provide
enough abstractions for users with regard to all the features and capabilities
that are available in a device, along with the requirements of a task, and the
user’s needs we still face the situation that users most of the time are only
interacting with a single device. Even if the user is aware of the availability
of the other proximal devices, as he is not able to handle the interchangeable
use of different devices for different parts of a task, sometimes he tries to
find a solution by himself to overcome the communication obstacles between
the devices, or he prefers to do the whole task on a single device because
he is not able to make them cooperate with each other. In order for a task
to seamlessly flow between different devices with as little user intervention
as possible, we have eliminated the boundaries that already exist between
proximal Android devices which force them to work in an isolated manner.
This will enable the user to distribute the execution of a task between a set
of proximal devices and reach his goal. While he has used several devices
interchangeably, he still thinks that all the execution happened in the single

14

i
i

“thesis” — 2018/6/4 — 20:50 — page 15 — #33 i
i

i
i

i
i

1.5. Major Contributions

device in his hand.
Another important aspect in achieving higher user satisfaction is that

although this multi-device cooperation can improve the task execution,
it should not cause any problems in the normal execution of the other
applications and the device (i.e. it should not decrease performance) or
disturb the user while he is not interested in multi-device usage and is using
his device normally. It should be invisible, and whenever the user needs it,
it should do the job.

The proposed solution should be general enough to be applicable for
supporting the needs of most domains of use, and easy to use for various
users (expert or non expert). Moreover, as we mentioned, there exists a
wide range of Android applications already on the market, so the proposed
solution should be able to serve these applications or at least need minor
changes to become compatible with the middleware and benefit from its
proposed services and features.

1.5 Major Contributions

The major contributions of the thesis can be defined as follows:

– A comprehensive explanation of the available solutions provided by
the researchers or the industries to integrate multiple devices and let
the user distribute the execution of a task between them. Providing
a comparison between these solutions and our proposed solution and
finally, defining the actual requirements, possible issues, strong points
and limitations that still exist in the field of multiple devices interaction.

– The proposed solution is a middleware infrastructure called "LIQDROID."
4 The LIQDROID has been developed inside the Android framework,
which enables the set of Android devices in the user’s proximity to
become united and create a bigger Android ecosystem. LIQDROID
will let a running task seamlessly flow between different devices in
this ecosystem and benefit from their possible capabilities and features
to enhance the task’s execution and its final artifacts. LIQDROID will
manage the discovery and communication between these devices and
also take care of the data availability, which will be served as the input
for the consecutive executions on the same device or other user selected
devices to reach the final user-defined goal. This data can be the output
of the previous execution (on the same or a different device) or user

4Because of the sponsorship, the source code of the stable prototype of LIQDROID can be only available
upon direct request.

15

i
i

“thesis” — 2018/6/4 — 20:50 — page 16 — #34 i
i

i
i

i
i

Chapter 1. Introduction

defined data from the device’s storage, with the possibility to store the
outcome of the executions in internal storage or in the cloud, to be
accessible during the running of the task or in the user’s new context.

– The proposed infrastructure will enable the user to discover the avail-
able resources and features (hardware and software) on the proximal
Android devices, based on the running task’s needs, and apply the
user’s preferences in distributing the execution of the task between the
set of different capable proximal devices. The user will also be able to
control the interaction between the devices at run time and apply his
preferences.

– Proposed and implemented different concrete real-use case scenar-
ios in different domains of use to test LIQDROID during its execu-
tion to demonstrate its strengths and remove the weaknesses. These
LIQDROID-compatible applications better exploit the capabilities and
features that LIQDROID offers to the end users by the emphasis on
incorporating different contexts, interaction types, and different users,
all of which impose different requirements and needs.

1.6 Thesis Structure

Chapter 2: In chapter two we will define the existing solutions and re-
searches have done in the field of integration and interaction of multiple
devices. Their current strengths and weaknesses, comparing them with the
LIQDROID’s desired approach and a short description of how we are going
to solve them by LIQDROID. In this chapter, we have provided a general
and classified overview of the aspects that play the key role in the challenges
and complexities that exist in providing users’ persuasive solutions.

Chapter 3: We will explain the main concepts about the Android framework
that has used in the implementation phase of the LIQDROID, the technical
words and the basic knowledge related to their usage which is required to
make the chapter four and five more understandable.

Chapter 4: In this chapter, a high-level explanation about the architecture
of LIQDROID has proposed. The abstraction and modules to support dif-
ferent requirements have defined follow by a general explanation about the
necessity of having them and what will be the final feature proposed by the
system to the final user.

16

i
i

“thesis” — 2018/6/4 — 20:50 — page 17 — #35 i
i

i
i

i
i

1.6. Thesis Structure

Chapter 5: By benefiting from the technical word that explained in chapter
three, and also the required modules explained in chapter four, we will give
a more technical explanation about the implementation of each module. It
includes the logic that the middleware uses to benefit from the available
features in the Android framework to handle the distribution of the task
execution. The challenges that we considered and those that we have en-
countered during the implementation and the solutions that we have provided
to overcome them.

Chapter 6: In this section, we will discuss more the concrete use case
scenarios that we have defined and implemented to evaluate different aspects
of LIQDROID in the real situation and will highlight the features that it can
propose to the developers and end users.

Chapter 7: In the end, we will provide an over view of the obstacles that
exist in the way of distributing the execution of a task between the different
set of proximal Android devices, and conclude it with the proposed solutions
and the possible future directions and improvements.

17

i
i

“thesis” — 2018/6/4 — 20:50 — page 18 — #36 i
i

i
i

i
i

i
i

“thesis” — 2018/6/4 — 20:50 — page 19 — #37 i
i

i
i

i
i

CHAPTER2
Related Work

In this Chapter, we will provide a general overview of the current solutions
that exist in the field of multi-device interaction. As it is an extensive topic,
and has attracted much attentions these days both from the academy and
the industry, several different terms have been used by researchers to define
the platforms and systems which are concerned with the interaction and
cooperation between multiple devices, users, applications and platforms. In
human computer interaction, the terms "distributed user interfaces" (DUI)
[5, 16, 45, 48, 80], "multiple user interfaces" [12, 19, 54, 59, 71] or "multi-
device systems" [23, 46, 70, 77] have been used interchangeably. In the
following, we mention to this category generally by using the term: DUI.
While the introduction of continuity of tasks in marketing and industry used
the terms "multichanneling" and "crossmedia" [60, 69], which generally
focus on cross-platform interactions. Besides the differences that exist in the
naming schemes but their focus is on providing an infrastructure to facilitate
the multi-device interactions.

Here we have gained the most benefit of the current solutions by prior-
itizing them based on their main scope of work, the challenges that they
have concerned, which have highlighted the different design approaches to
their strengths and limitations, as well as mentioning to some of the leading

19

i
i

“thesis” — 2018/6/4 — 20:50 — page 20 — #38 i
i

i
i

i
i

Chapter 2. Related Work

solutions that are placed in those categories.
We have provided a general overview and comparison of these available

technologies to LIQDROID in the table 2.1 while for more comprehensive
explanation and comparisons you can refer to the relevant section which
those that are more competitive to our solution are explained at the end of
this chapter.

 Available
 Technologies

Supported
Features

LIQDROID
(our

proposed
middleware)

Sip2share
[7]

Alljoyn
[1]

Samsung
Flow
[2]

Multi-Device

Interaction

with

Dynamically

Migrating

Engines [21]

Remote
Service

Call [49]

Android
Binder

extension
[36, 42,

54]

Google
Play

Services

Liquid

Software

[22, 48, 74]

(Liquid.js for

DOM [75],

Liquid.js for

Polymer [21])

Apple
Continuity

[34]

Conductor
[27]

Panelrama
 [75]

Multiple
Devices

� � �

Only

Samsung

devices

� - � � �
Only Apple

devices
� �

Multiple
Platforms

Only

Android

OS

Only

 Android

OS

�

Only

Android

OS

Only

Android

OS

Only

Android

OS

Only

Android

OS

Only

Android

OS

�

Only

Apple

OS

� �

Multiple
Users

� � � �
Static

Credentials
� �

Same

Credentials
�

Same

Credentials
� �

Multiple Contexts
of Use

� � � � � - - � � - - �

Multiple
Modalities

� � � � � - � � � � � �

Data
Synchronization � - � � -

�

 (only the

data

available in

its apk)

- � � � � -

State
Synchronization

� - � � � � - � � � � �

Task distribution
(Task continuity)

� � � � -

��

(only

activities)

� � � � �

Supported
apps

Existing apps

& compatible

apps

Compatible

apps

Compatible

apps

Compatible

apps

Compatible

apps

Existing

apps

Compatible

apps

System

apps

Web based

apps

System

apps

Web based

apps

Web based

apps

Match the task
with the device’s
capabilities

� � - -

�

 (only UI

adaptation)

�

 (only UI

adaptation)

- -

�

 (only UI

adaptation)

- - -

Integrating devices
to perform a task

� � - - � - � - - - � �

Managing devices’
Integration
challenges

� - - - - - - - - - - -

Managing
Artifacts

� - - � - - - � - � - -

Table 2.1: Comparison between LIQDROID and the available technologies in the field of
multi-device interaction

Reviewing these approaches have enabled us to better understand the
challenges that already exist in this field, understanding the different design

20

i
i

“thesis” — 2018/6/4 — 20:50 — page 21 — #39 i
i

i
i

i
i

2.1. Models and Technologies in Distributing User Interfaces

approaches and the challenges associated with them to better form the
proposed architecture for LIQDROID. Then we will also provide more
details regarding the available middleware technologies that are prominent
in supporting multi-device interactions and the differences that LIQDROID
will have compared to them.

2.1 Models and Technologies in Distributing User Interfaces

With the improvements in ubiquitous computing and the increasing trend of
availability of computing devices, the user finds himself more and more in a
situation where he needs to move between different devices to carry out his
interactive tasks. In the field of HCI, distributed user interfaces received a lot
of attention from researchers with regard to the benefits from the availability
of multiple devices to provide innovative interaction solutions.

This trend is a move away from traditional centralized desktop computing
environments, where all the tasks were performed by a single device and
all the data were stored in the same device or another centralized place (a
certain device), to environments where the tasks and data can flow between
several available devices at any time. This new generation of interactive
environments makes it possible for different users to work simultaneously
and have access to several devices alongside each other. Various approaches
have been devised to tackle existing problems by enhancing the integration of
multiple devices, improving usability, decrease user’s effort and increasing
user satisfaction [16].

Based on the definition proposed for DUI, it is the concept of distributing
different elements of an interface between a different set of devices, different
platforms and a different set of users. In general, the following dimensions
can be considered: input, output, platform, the context of use, time and
user(s) [11,16,67]. Considering different combinations of these dimensions
causes the problem space to become larger by an order of magnitude. Con-
sequently, the effort required to interpret interactions and provide a novel
paradigm may increase very rapidly. The vastness and diversity of existing
methods in supporting multi-device interactions in the field of DUI made it
hard for us to be able to directly compare our work with them. Meanwhile
we have provided a proper categorization of these available solutions based
on their important factors and common features that they include to support
particular difficulties that exist in this field.

At the end of this section, based on what we have discussed through
those categorization we will give a brief discussion of the current limitations
in the field of DUI and the issues that were weighted more for us to consider

21

i
i

“thesis” — 2018/6/4 — 20:50 — page 22 — #40 i
i

i
i

i
i

Chapter 2. Related Work

them in the LIQDROID, to make it capable of exploiting higher levels of
potential that exist in these multi-device and application interactions and
achieve further user satisfaction. These categories are as follows.

2.1.1 Supporting Multiple Devices

Different types of devices with different resources may be available in the
user’s proximity. Availability of devices is the main building block in the
definition of DUI, which has an important effect on proposing the usage
patterns between the devices. There can be different reasons why the user
may prefer to hold several devices [58]; here we mention the most persuasive
one. First, a single device may not have the capabilities, functions, and data
needed for a task, aside from the fact that sometimes a device is not capable
of performing two different roles simultaneously. For example, you are not
able to write an email while you are watching a full screen video on your
smart phone, so either you choose to do them one at a time and momentarily
ignore the other one, or you are forced to use another device for watching the
video simultaneously. Second, some users prefer to separate their devices
based on their own interests such as devices for work and for personal use,
to have more privacy and freedom of use. Several experiments have been
conducted to perceive the different paradigms that exist in the way that users
integrate multiple devices and interact with them. A variety of factors are
considered in these experiments, such as which device is the best match
for doing the current task at hand [25], considering the hardware features
available [2, 62]. By interpreting the outcomes of these experiments, models
and also guidelines for better understanding and designing new paradigms
which are proper for multiple device usage scenarios were provided, along
with introducing available gaps, open questions and limitations that still
exist in this field [38, 58, 64]. So far, one of the main challenges from the
user’s point of view in this area is managing the information [31] that is
the consequence of handling the interaction between multiple devices. We
will discuss this aspect more in the section 2.1.5. From the results achieved,
three main interaction patterns may happen while using multiple devices,
which are as follows:

• Sequential Usage Patterns: where a task is transferred from one device
to another that has more suitable features for the task and the context
of use.

• Parallel Usage Patterns: where several devices (or screens) simultane-
ously are performing the same task and their state is synchronized.

22

i
i

“thesis” — 2018/6/4 — 20:50 — page 23 — #41 i
i

i
i

i
i

2.1. Models and Technologies in Distributing User Interfaces

• Complementary Usage Patterns: where several devices cooperate with
each other to perform a single task. Each consequence step of the
task will be handled by a device which has the required capability.
For example user takes a photo by his smart phone and edits it by an
application which is installed on his tablet.

Based on the patterns mentioned above, along with the requirements
they impose, different capabilities and features (hardware and software) of
the available devices in dynamic environments, different models have been
proposed to help developers as well as users to overcome the complexities
better and handle interactions between multiple devices. In the modeling
phase, the considerations do not only concern the task at hand that will
be transferred to the other device, but also the current state, predefined
parameters, and underlying content to continue the execution.

One of the main reference models among these proposed models is
called 4C dimensions [11], which provides a broad, comprehensive view of
essential aspects that will help developers to better understand the features
which are important in their target use case scenarios and design their
frameworks by counting on them. The model mentioned is expressed as
follows:

• Computation: What are the elements (UI portion) that can be dis-
tributed across different devices during the task execution?

• Communication: When the elements will be distributed means focus-
ing on the time dimension of the distribution. There are two types
of distribution: the static distribution refers to the execution of the
methods which could happen during the design, development, compi-
lation or load time, and the dynamic distribution is about the method’s
execution that occurs at runtime.

• Coordination: This is responsible for distributing the components and
is referred to as meta-user interface . It controls the UI distribution in
the integrated systems and the main building block, and the point that
causes the difference exists in the distributed user interface framework.
(We will explain this more in the following part.) This unit can be
under the control of the system, the end user, mixed (the user and the
system together will control the distribution) and in some rare cases, a
third party (an external agent) will take responsibility for controlling
the distribution.

• Configuration: how the UI will be distributed, which is related to the

23

i
i

“thesis” — 2018/6/4 — 20:50 — page 24 — #42 i
i

i
i

i
i

Chapter 2. Related Work

representation of the UI on the destination platform, which could be
the same, adapted or needs to be changed.

The proposed model will enable developers to consider different com-
binations of these dimensions to develop a framework capable of targeting
a wide range of DUI related scenarios. While it lacks considering the user
as another dimension in collaborating with the system or with other users
across the system.

Besides these proposed models for handling the interactions in a multi-
device environment, there are several novel frameworks and toolkits that
have been designed and developed in the field of DUI to mitigate and handle
the challenges that exist in building distributed user interfaces and that have
also been exposed by the models mentioned above. Here we mention a few
of them which are more powerful and interesting in the sense of proposed
functionalities and their usage in real case scenarios, and are closer to the tar-
gets that LIQDROID is going to point out as well. While we have mentioned
to some of them in more details and also a comparison with LIQDROID in
the section 2.3. Panelrama [80] is a web-based framework that lets the user
interact with a user interface through different devices. Their framework
proposes three main features for developers: breaking their UI into some
panels, automatically distributing these panels to the best-fit devices and
synchronizing the state of these panels when distributed across several de-
vices. Their proposed framework does not consider wearable devices and
displays as well as sharing the content in use. Gradual Engagement [47]
provides a pattern that represents the possibility of letting different proximal
users with or without their devices gradually connect and interact with other
device interfaces (such as a big screen) and exchange information. HydraS-
cope [30] transforms current existing web-based applications to web-based
meta-applications which they have defined it as: "a collection of application
instances with coordinated contents and views that are accessible to multiple
users via mobile interfaces." These meta-applications will make it possible
to execute and synchronize several copies of these applications on multiple
devices in parallel. Shared Substance [24] introduces a new data-oriented
programming model for application developers to separate the data and
functionality aspects. Their sharing mechanism is close to the application
programming language, which will help the developer to better understand
and apply the distribution features at implementation time. Frosini and
Paterno [20] propose a flexible framework that supports the distribution of
user interfaces between a dynamic set of devices based on their type and a
dynamic set of users based on their roles. Instead of using a fixed server that
can become a failure point, they proposed the idea of the migrating engine

24

i
i

“thesis” — 2018/6/4 — 20:50 — page 25 — #43 i
i

i
i

i
i

2.1. Models and Technologies in Distributing User Interfaces

which can be switched between the devices at any time.

2.1.2 Supporting Multiple Platforms

To support multiple platforms, the proposed solutions in the field of DUI
should have enough flexibility to support the requirements and limitations
that these devices introduce to the system. For overcoming this obstacle,
they mainly benefit from web-based applications that give them the possibil-
ity of running the applications on any kinds of platforms. These web-based
frameworks are designed and developed to support collaboration and team-
work between multiple users and cross platform devices such as the old or
new generation of web applications supporting collaborative learning and
working [3, 61], multi-player games, dividing a screen for different users
and interacting with it simultaneously or distributing a task among several
devices [55, 80]. These web-based approaches are strictly constrained by
browser support [55]. This dependency will put a limitation in their path that
restricts them in being capable of exploiting all the resources and capabilities
of the devices. The vast improvements in mobile technologies, supporting
mobility and being widely used by users, have made collaborative mobile
applications a tough competitor for web-based applications, as they are
capable of providing the services of web-based applications in much less
time regarding aspects such as discovery, performance and response time
[79].

2.1.3 Supporting Multiple Users

The other important aspect is the concept of having a single user or multiple
users in the context. Which can be considered as the notion of social interac-
tion coming up as the collaborative or independent interaction paradigm that
will add many complexities to the final system. Kray and colleagues [39]
discussed several issues that may arise in designing DUI by considering
multiple users and multiple devices at the same time, which make it a dif-
ficult task, as users may want to achieve different goals that can conflict
with each other, by considering the obvious fact that most of the current
devices have been designed to be used individually and it is the responsibility
of the underlying framework to cover the complexities that may occur by
sharing the device with a wide range of users. One or several users may
work separately or in parallel on the same task by using different types of
devices. In section 2.1.4 we will further discuss the different contexts and
types of social interactions that can happen with the presence of several
users in an environment.

25

i
i

“thesis” — 2018/6/4 — 20:50 — page 26 — #44 i
i

i
i

i
i

Chapter 2. Related Work

This aspect is more interesting while designing the frameworks to be
used for multi player games or when several users simultaneously want
to work on the same content. Notice that here our focus is not on the
content and version control aspects but how multiple users can cooperate
with each other or interact with the same device and maybe control it.
Frameworks in this category [4,32] let different users simultaneously interact
with the same device, for example, sharing a screen [47] to do different tasks
simultaneously, and mostly have considered the position of the user as the
main aspect of their design.

2.1.4 Supporting Multiple Contexts of Use

A wide range of research has been conducted in DUI to realize how differ-
ent environments such as modern working, with home and public spaces
equipped with various digital devices, ranging from desktop PCs and laptops
to various types of mobile devices, can impose new requirements in the
design and development of the DUI frameworks and toolkits. This aspect
will directly influence the usage patterns, as the availability of the devices
and users, and the adaptation of these devices by the users depends highly
on the environment that they are involved in and needs to be preciously
controlled. This is a move toward using holistic and ecological thinking for
understanding and designing multi-device systems and interactions, which
means that to provide a reliable and precise interaction paradigm, we need
to consider it as a part of a larger ecology. More precisely, this ecology
is what Nardi and O’Day defined as: "a system of people, practices, val-
ues, and technologies in a particular local environment" [52]. This whole
ecology can be considered as the context of use which defines the complex
relationships between the existing users, the devices and the goals they want
to achieve. Designing a multi-device system based on the context of use
is in contrast to the other solutions that try to serve a broad range of usage
scenarios, not so perfectly fitted but as much as is needed and accessible
to all. The importance of the context of usage is more tangible when con-
sidering the workflows that happen in most of today’s modern offices, as
different professions have their own requirements and needs in the sense
of data flow between the tasks performed on the various sets of devices,
input and output modalities, processing requirements, and the work flow.
In order to better understand the importance of the location in designing
the interaction between devices, we benefit from the example that Santosa
and Wigdor [64] provided to show the serial usage of several devices to
reach a profession dependent desired goal. This sample use case scenarios

26

i
i

“thesis” — 2018/6/4 — 20:50 — page 27 — #45 i
i

i
i

i
i

2.1. Models and Technologies in Distributing User Interfaces

showed, however, that there are different industry-related
demands that dictate the ways devices are used within
workflows. Creative workers (people in art or design indus-
tries) tended to rely on sketching. Further, handling large
image data and displaying it to clients was an important
aspect of their work. We also noted significant data storage
and processing needs with all the engineers and information
technologists in our study. However, the business and mar-
keting consultants we interviewed relied heavily on mobile
computing, since a large aspect of their workflows took
place in transit. Health workers indicated that privacy and
security impacted how they handled storage and transfer of
data, which was often collected across a distributed work-
space containing specialized equipment. Not surprisingly,
we noted that information technologists interviewed tended
to be ‘power users’, which was reflected in their device
usage. They used Linux-based operating systems, and pre-
ferred command line interfaces along with version control
tools for file synchronization.

Thus, interviewing people from a range of professions pro-
vided us with a more complete and balanced picture of
usage patterns, device-task pairings, and data management
strategies in distributed workspaces than was possible in
previous work, where only early adopters made use of mul-
tiple computing devices [6,19,20,21,22,30].

Taken together, these artifacts provide a universe of spe-
cialized tools – tools which work not only sequentially in
Fitzmaurice et al’s metaphorical workshop, but which also
work across devices [11] in parallel configurations.

Parallelism in Usage Patterns
We call out and term cross-device patterns abstracted from
participant data, based on the specialized behavioral roles
devices are assigned and how they are coordinated within a
workflow. We begin with the typical serial pattern, where a
task is transferred from one device to another with more
suitable properties for the context, as anticipated by Fitz-
maurice et al. [11]. We then discuss parallel usage patterns
that have also emerged in the distributed workspace when
extra screen real estate is desired, as well as when the
unique properties of one device are complementary to an-
other so they are used together to complete a given task. We
highlight the most commonly observed patterns, utilizing
software design terminology [12,15], where appropriate, to
characterize them. We note that some patterns, such as
producer-consumer, encapsulate several instance scenarios
previously investigated [6,22,30], which have become rich-
er with greater ubiquity. Other types: performer-informer-
helper and controller-viewer/analyzer, represent new paral-
lel usage patterns arising from newer multi-device scenarios
observed. Figures 1 and 2 highlight workflows containing
serial and parallel device use patterns. Table 3 summarizes
pattern findings across participants.

Producer-Consumer: The serial producer-consumer pattern
was strongly observed in 20 participants across all indus-
tries, where a desktop/laptop (PC) was used to find infor-
mation, which was then moved to a tablet for reading. Simi-
larly, documents were generated on a PC then transferred to
a tablet for review. In another variant of this pattern, crea-
tive industry participants transferred work produced on PCs
to tablets for showing them to clients. Figure 1 displays this

Figure 1. Serial producer-consumer patterns form the high-
lighted workflow for designing an interior renovation in the
device landscape diagram for CP5. (1) Measurements and site
photos are taken on the smartphone, (2) then used as a refer-
ence for (3) sketching designs. (4) The sketches are used as
reference for creating mockups of layouts and 3D models using
an iPad floor plan app which is (5) shown to the client at a
meeting. (6) The images are exported and self-emailed, then (7)
opened on the laptop and converted to CAD drawings with
adjustments based on client feedback. (8) These are transferred
to the iPad via USB to be (9) shown to the client.

iPhone 4S

Client

Dropbox

Gmail

Social Media

iCloud

SLR Camera

1

Working External
Hard Drives

Projector and Screen

Television

iPad Retina Tablet
with Keyboard

Drobo Network
Attached Storage

External Hard
Drives

Collaborator

show

5

3
Reference

FTP

6

Wacom

Wacom
Mac Pro
Desktop

Macbook Pro
Retina Laptop

7

8

9
Airport

Extreme

Airport
Extreme

Airport
Extreme

4

2

Figure 2. Parallel multi-device workflow for writing a tech-
nical report highlighted, with variants of producer-consumer
(1-3) and performer-informer-helper (3-8) patterns in the
device landscape diagram for EP1. (1) Documents are found
using the laptop, (2) saved to Dropbox, (3) and re-opened on
tablet. (4) Documents are read and used as reference while (5)
project information from Evernote [9] is retrieved on the
smartphone where (6) tasks are managed to support (7) doc-
ument creation on the PC. (6) Smartphone is also use as a
quick reference look-up as well as a calculator for (8) pen and
paper computation.

Android
Phone

Work Server

TV

Client

Google Drive

Dropbox

GmailPocket
Evernote

Picassa

Box.net

Collaborator

Kindle eReader

External Hard Drives

External Hard Drive

Google
Music

Corporate
Email

10" Android Tablet
Keyboard dock

Work Windows Laptop

1

2

3
4

5

6

7
8

Spouse

Friend

Social Media

Media Player

Macbook Laptop
Windows Laptop

7" Android
Tablet

SLR Camera

Session: At Work UbiComp’13, September 8–12, 2013, Zurich, Switzerland

66

Figure 2.1: A sample of serial multi-device workflow of an interior design
profession [64].

(Figure 2.1), showing that handling the execution of the subsequent tasks
relies heavily on the outcome of the previous tasks. Figure 2.1 shows a serial
execution of the tasks in a construction company among several devices. The
work flow is as follows: (1) the user takes photos of the measurements and
sites by using his smartphone, (2) he uses these photos to make sketches (3)
of them, uses a tablet (4) to create 3D mockups using an application installed
on it, as well as showing it to clients (5) in the upcoming meeting, and (6)
they use an email application on the tablet to send the files to the laptop
(7). They then apply some changes to the file using the software available
on the laptop (8), sending the file back to the tablet via USB (9) to show
to the client. The problem that arises here is that sometimes using another
application, such as the email application for sending a file to another device,
may change the extension of the file, and the other application won’t be able
to use that file as the input anymore. Also, it will be time-consuming to
open another application, attach the file and send it to the other device, and
on the other device open the email application again, save the file and then
open the target application, load the file and continue the task. This example
clearly shows the importance of multi-device interaction, in addition to the
fact of how a different context of use can put complexities in the way of the
interaction between the devices regarding the different expectations that they
have and new requirements that they impose on the system. Certainly, one
of the important aspects that needs to be effectively controlled is managing
the information or the data that will flow between the users and their devices
(which we will talk about in more detail in the section 2.1.5).

27

i
i

“thesis” — 2018/6/4 — 20:50 — page 28 — #46 i
i

i
i

i
i

Chapter 2. Related Work

Another point of view in defining the context of use is considering public
spaces, such as a museum, airports, hospitals, or exhibitions which are
suited to a lot of users holding a broad range of devices and their availability
changes continuously. Currently this high potential (availability of users
and devices) that exists in these public places is not fully exploited and
approached by the current solutions. For example in a museum, visitors may
prefer to interact with the big screen that exists in the museum to explore
more about the museum [40], while providing an interaction paradigm to
support this wide range of short access requests in a consistent way would
be a difficult challenge. Generally speaking, considering the context of use
in the places where computing and sensing devices are ubiquitous could
enhance the flexibility and completeness of the underlying infrastructure and
highly motivate the user to benefit from them and increase his satisfaction.

2.1.5 Supporting Multiple Modalities (input / output)

Supporting multiple modalities on the one hand, is the concept of methods
for entering the inputs into the available devices, and on the other hand, it is
about managing the interactions between the devices, generally called input
redirection. Input redirection is concerned with how the input entered on one
device will be transferred to the other devices in the same environment [35].
The input redirection will enable the user to manipulate the content that has
been shared and displayed on other devices with the device at hand. This is
valuable more in situations where the user is not capable of reaching the other
device or the changes that applied in a single device should be propagated
among a large number of devices, otherwise it will take a long time for
the user to apply the changes to each of them. For example, considering
the example of a classroom where many students are using their tablets
to follow the slides provided by the teacher, in this case, input redirection
can propagate the changes that happen in the tablet of the teacher to all
other students. This behavior will save a lot of time for the teacher that he
can assign to more valuable teaching activities and can highly improve the
learning procedure. Certainly, the importance of output (content, artifacts)
redirection is another aspect which in most cases is much more valuable than
the input redirection, as some of the current researchers have stated [78].
Managing and the availability of the data in general, which could be the
output of a user performed task, or any content that the user needs to share
with the other devices, is one of the main concerns in the field of DUI. This
aspect will be extremely beneficial to provide a real seamless interaction
between devices because, as we have already mentioned, while multiple

28

i
i

“thesis” — 2018/6/4 — 20:50 — page 29 — #47 i
i

i
i

i
i

2.1. Models and Technologies in Distributing User Interfaces

devices are integrated, the user needs to have access to the underlying file in
the destination device to continue the work. Different approaches have been
conducted to overcome existing limitations and obstacles to let the user share
his files between his different devices, such as cloud-based infrastructure
like Google Drive, Dropbox, and Apple iCloud. But the maximum benefit
of these devices will be achieved when the user can benefit from them, not
only from his personal devices, but also when the user uses a third-party
device to perform a task and wants to be able to share the achieved artifact
(output) on his own device. We will discuss this aspect in more detail and
how LIQDROID is capable of handling it in the section 4.2.3.

2.1.6 Discussion and Comparison

Although existing models and toolkits have been developed based on the
requirements that exist in the field of DUI, there is still no general design
or toolkit that suits several scenarios [16]. In addition, little information
is available regarding how these frameworks work in real case scenarios
and comparisons about their features and capabilities [50]. This makes it
hard for researchers to follow the existing works and improve other works
that have been done so far. What actually happens is that, based on the
use case scenarios, the requirements are defined and the frameworks have
been developed. This trend will end up with several works that provide
similar features, and fewer improvements will happen. As we have already
mentioned, one of the building blocks of the works that have been done in
the field of the DUI is providing solutions for cross platform environments,
because personal computers are one of the key devices in these environ-
ments. Our work is different regarding this aspect because our main concern
is providing an Android ecosystem which lets the Android applications
(mobile applications) distribute to several proximal Android devices. The
proposed ecosystem will enable the devices to not be restricted to only use
web applications to support the cross-platform feature but to use different
applications available on the devices and benefit from all the resources of
the devices through them. But the other factors that we mentioned above
are common between our approach and the DUI approaches. Therefore,
reviewing the research that has been conducted in the field of DUI helped
us to better understand user needs when located in and interacting with an
environment where different kinds of devices, users, and work flows exist. In
general, in the following, we mention the existing limitations in supporting
the interaction between multiple proximal devices and how our proposed
solution is capable of overcoming them.

29

i
i

“thesis” — 2018/6/4 — 20:50 — page 30 — #48 i
i

i
i

i
i

Chapter 2. Related Work

• One of the main differences between our work and the above mentioned
studies is that our main focus is on distributing the execution of a
task on the proximal devices by benefiting from the infrastructure
that application developers are already using. This solution is different
from defining a new language or framework for developing applications
but is empowering the current available infrastructure for developing
applications (mainly Android applications) by adding the missing
building block. This missed building block, in theory, is a unit that
manages the existence of multiple devices, multiple users, and multiple
contexts, as well as managing the underlying interaction’s requirements
coming in the form of input and output. In practice, this is a middleware
that uses the existing features of the underlying infrastructure, the
Android framework, and provides the services which are required to
distribute the different parts of the running applications to the other
available proximal devices and manage their execution.

• Most of the available works have been designed for earlier devices
available at that time and are not capable of adopting newer technolog-
ical enhancements that have happened in the computing capabilities of
smartphones or the widespread adoption of new devices such as tablets,
car tablets, and wearable devices, as well as being able to integrate with
cloud services [64]. From the device point of view, although these new
devices provide extra resources and better user experience, at the same
time, they increase the level of complexity that the available solutions
should be able to tackle. This means that there is an obvious need to
advance the management of multi-device interactions [27].

From the user’s point of view, one of the obstacles that this new gen-
eration of devices will put in the way of the user is that they expect
more professional and technical behaviour of the user. To support non-
technical users or users with different levels of professions as well, the
proposed system should benefit from these high-level improvements,
manage the complexities that they may put in the way of the integration
of multiple devices, and hide these complexities from the end user’s
view. The consequence of this way of designing the system is that we
can distribute the functionalities that a device is capable of performing
to the other proximal devices that may not be able to perform, and
expand their capabilities. The above mentioned feature is one of the
aspects that is undoubtedly missing in today’s technologies and modern
work spaces [27,64]. LIQDROID will be independent of the underlying
physical device by providing an abstraction for the physical device so it

30

i
i

“thesis” — 2018/6/4 — 20:50 — page 31 — #49 i
i

i
i

i
i

2.2. Models and Technologies in Distributing Services

can be used by any kind of Android supported device. We will discuss
this feature more in the section 4.1.4.

• As most of the currently conducted experiments show, one of the
main obstacles that users still put in the way of widely acquiring
the solutions proposed to support multi-device interactions is lack of
comprehensive managing of the data [64]. It is desired to improve
the proposed solutions to handle the data and the data flow between
devices. In the section 4.2.3, we will discuss more about our proposed
and implemented solution in LIQDROID for managing the final task’s
artifacts and sharing files between multiple devices.

• The other missing point in the current solution is the lack of handling
and sharing of events that happen in different integrated devices. To
fully support the synchronization between the devices, besides sharing
the last state, we also need to take care of events that may happen
in the devices during the distribution of the tasks, and that the user
could be interested in being aware of. This aspect is more crucial to
be handled when the collaboration of multiple wearable devices is
required by the user to reach the desired goal [8, 9], for example, the
different integrated wearable devices that a patient may use to control
his health status or an athlete may use to analyze his level of activity
in companion with his smartphone. We will discuss more about the
necessity of propagating the events between the integrated devices in
multi-device interaction’s use case scenarios and how LIQDROID will
handle this in the section 4.2.4.

2.2 Models and Technologies in Distributing Services

"LIQDROID computing" [26] is the best word to have used for the next
technology revolution, which is the flow of user’s tasks, not just data, be-
tween devices. It lets the user move the task at hand to the other devices
and continue it from the last state that it has. Before we start talking about
the solutions available in the industry to handle task continuity, we need to
explain the concepts which are helping us to better understand the playing
field and the challenges that these solutions are going to eliminate for the
user.

We benefit from the categorization defined by the [14] for the service
technologies which are presented to support the multi-device interactions.
This categorization includes multi-channel and cross-media services. Below,
we first provide a short explanation about each category and then the pro-

31

i
i

“thesis” — 2018/6/4 — 20:50 — page 32 — #50 i
i

i
i

i
i

Chapter 2. Related Work

posed solutions. As it was difficult for some solutions to match exactly with
one category, overlapping may have occurred.

2.2.1 Multi-channel Services

These are the services that enable the user to have access to the same
functionalities across different devices which have different platforms (i.e.,
channels). These services have provided the user access to the same data
synced through these different devices. So the user is able to simply move be-
tween the devices to benefit from the service. In multichanneled services, the
repetition of a task is in focus as the primary requirement in multichanneling,
in that the same functionality and its underlying content should be available
on different platforms to ensure achieving the user’s defined goals. Most of
the web-based services and applications are good examples of multichannel
services. As another example, we can mention the same applications that
have been developed for different platforms, such as Spotify, Foodspotting,
Endomondo, Airbnb, and Uber. These services provide a user profile for
each specific user to save his important information and content and then
share these profiles when the user is logged in to use the service, by using
different applications installed on different platforms.

2.2.2 Crossmedia Services

The term "crossmedia" was defined for the first time by Dong et al. [14],
according to the Filgueiras et al. [17] outline, which is "the collaborative
support of multiple media to delivering a single story or theme, in which the
storyline directs the receiver from one medium to the next, according to each
medium’s strength to the dialogue." His main focus is on the modularity
of the components of a system and he considers two different categories of
systems. The first category is those systems where the system’s expected
performance will be achieved only if all the components are fully combined.
An example of these systems is the Apple iPod, which depends on desktop
computers to obtain the content and the power. The other categories are
those systems that provide better functionality when they benefit from higher
levels of modularity. In this case, each component can work fine, even in
isolation, but higher levels of the system’s performance will be achieved
if more components are combined and work together. He proposes a new
definition for the crossmedia systems by considering the level of synergistic
specificity (already defined in section 1.2.4). "Crossmedia systems are
designed by establishing interoperable combinations of media around a
distinct theme (space or activity) and developed with the intent of enabling

32

i
i

“thesis” — 2018/6/4 — 20:50 — page 33 — #51 i
i

i
i

i
i

2.2. Models and Technologies in Distributing Services

and supporting the synergistic use of their components." In contrast to
multichannel services where the same functionality is needed to be available
on different devices (task redundancy) in crossmedia services, the focus is
on supporting a logical series of the task, although it would be even easier
for crossmedia services to provide the same task on all the other devices.

The best examples of crossmedia services are the services that have been
developed to support task continuity. Task continuity is the synchroniza-
tion and migration of a task at any time and anywhere between multiple
devices. Synchronization is the concept of keeping the data and its structure
consistent by storing it in a certain place (mostly the cloud) among all the
devices that have access to it. Moreover, the migration aspect lets the user
continue the task from the last state that it had on the previous device. The
best available commercial solutions for the data synchronizations are Apple
iCloud, Google Drive, and Dropbox which all are "cloud-based" storage
services. In the beginning, it was just the cloud infrastructure that made it
possible to have seamless interaction between devices, but Apple’s Hand-
off [34] has extended this possibility by also using Bluetooth and Wi-Fi
Direct connections. One of the best examples of services that Apple has
provided for its users is the possibility to answer a received call from an
apple PC, although the PC is not potentially able to receive phone calls.
In addition, the Samsung Flow [63] has also provided some level of task
continuity by using the Android platform, but it is only available for certain
versions of Samsung devices. Other developments such as Fluid computing
middleware [6] have also developed frameworks for data replication and
synchronization to let the data flow between different devices. The other
commercial product that lets the user have task migration is Apple’s AirPlay,
which lets a user stream content (video and audio) from his iOS devices
(iPhone, iPod Touch, iPad) on multiple AirPlay-compatible devices on the
same network, including TVs and stereo systems using a Wi-Fi network.
Furthermore, Google Cast lets the user stream video and audio to a TV or
sound system through different platforms (Android, iOS and Chrome apps).
So the user is able to use his mobile device as the controller of the content,
which will be shown on the large screen. In this case, each device has been
used because of the features and capabilities that they provide, and their
integration will enhance the user’s satisfaction.

In this chapter, we have designed and implemented some usage scenarios
to better test and improve LIQDROID provided features on real devices and in
real contexts. In general, we have proposed a comprehensive infrastructure
that helps the user to better identify the resources (proximal devices) that
are available in his proximity to easily benefit from them in the execution

33

i
i

“thesis” — 2018/6/4 — 20:50 — page 34 — #52 i
i

i
i

i
i

Chapter 2. Related Work

of his current task. LIQDROID can bring for the user(s) a fully cooperative
interaction between the multiple devices that can help him to perform his
desired task in much less time and with higher productivity. This productivity
will bring better-achieved results and also extra available time for him to
assign to other tasks.

The proposed infrastructure can also conceivably improve the developer’s
efforts as they can easily benefit fromLIQDROID without the need to put
forth extra effort in developing the requirements of these cooperative interac-
tions inside their applications. Instead, they can put their focus on how they
can acquire more from this new interaction paradigm to develop innovative
use case scenarios to facilitate their users’ work as well as provide a unique
experience for them to attract more attention.

Besides the fact that implementing these steps separately inside of each
particular application requires much more time and effort, it can also de-
crease the performance of the available resources and have an adverse effect
on the final results. For example, consider that several users at the same
time compete to distribute a task on the same proximal device. As each of
them first needs to run a separate service on that destination device to be
able to start the interaction, this will form two immediate problems. First
is the interruption that this parallel usage can cause on the execution of the
ongoing tasks. And second is that the execution of several services at the
same time on that destination device to answer the request of their users,
without the presence of a central unit to manage them, will highly decrease
the performance of that destination device.

During the evaluation of LIQDROID on the real devices, we encountered
some problems which made us review the architecture of LIQDROID and
apply some changes on it. We mention just some of these problems here
such as preventing the interruption that receiving the permission requests
can cause while a user is doing critical tasks and is not interested in any
collaboration. This made us think about providing a separate phase that
will allow the user to be able to completely come out of the circle of these
proximal devices by deactivating the advertisement phase. On the other
hand, the Wi-Fi instability and instant disconnections while LIQDROID was
collecting results sometimes caused an inconsistency in the system that we
needed to handle better by monitoring the connection status.

These evaluations also reminded us that the developer may also need to
have access to some of the information which is available on LIQDROID
such as the list of connected devices and the occurrences of the events
that happen in a device, for example when the screen goes off and on, or
receiving an acknowledgement that shows the execution of the distributed

34

i
i

“thesis” — 2018/6/4 — 20:50 — page 35 — #53 i
i

i
i

i
i

2.2. Models and Technologies in Distributing Services

task(s) or storing the achieved results that have been handled successfully
through LIQDROID, etc. So we put our focus on providing more accessible
features for the developers to cover their needs.

The other concern which we always had in our mind during the evaluation
phase as well as the architecture design and also the implementation was
related to the changes that happened inside the Android framework and the
updated versions of it that sometimes put some serious restrictions on the
methods of accessing some of the previously available features. For example,
accessing the Activity Manager in the previous versions was possible for
us, while in the newly released updates because of some privacy concerns
the Android framework has decided to restrict the access of third party
applications to this feature. This had a serious effect on our work, but we
solved it in another way as we have already mentioned in the chapter 5.

In general, we can say that working with LIQDROID will be very interest-
ing and easy for the users and developers as a new paradigm of interaction
between multiple devices. It introduces a beneficial way to explore the
potential that already exists on the devices, whereas with the current so-
lutions on the multi-device interactions we do not properly benefit from
them. And by introducing LIQDROID, we have implemented our idea about
the possibility of direct interaction between the multiple proximal Android
devices to distribute the execution of a task and also to attract the attention
of other researchers to this kind of cooperation between the devices.

Besides these works, more recently Mikkonen and Pautasso [22, 49, 75]
have also used the word liquid software that has previously been used in a
technical report [29] for synchronizing Java applications running on virtual
machines on different computers. In their explanation, liquid software allows
users to migrate tasks among devices while minimizing the configuration
of and synchronization among devices. They have well-identified different
dimensions that one should consider to design liquid software, and they have
used them to evaluate two web-based frameworks. These two frameworks
are: Liquid.js for DOM framework [76], which is designed to automati-
cally synchronize the contents and the state of the DOM (Document Object
Model), and Liquid.js for Polymer (LfP) framework [21], which facilitates
the development of liquid Web applications developed within the Polymer
framework. The Polymer framework has been developed by Google on top
of Web Components [65]. Again, Mikkonen and Pautasso consider data and
state synchronization to be the two pillars that enable a seamless flow, while
LIQDROID exploits Android to materialize liquidity and distribution at a
lower level of abstraction and to support more sophisticated interaction pat-
terns. This will enable us to have the possibility to integrate the capabilities

35

i
i

“thesis” — 2018/6/4 — 20:50 — page 36 — #54 i
i

i
i

i
i

Chapter 2. Related Work

and features of the available destination devices in the process of choosing
the best match for distributing the execution of the task. As in our point of
view, one of the issues that has not been covered appropriately yet, even in
their work, is that most of the time users are not aware of the capabilities
and features that are available on the other devices in their proximity, which
can profoundly improve the time and attempt for doing a task. This reminds
us that adopting the user interfaces onto the set of destination devices where
the task has been distributed is just a single dimension of the potentials (soft-
ware and hardware) that exist on those devices. So the proposed solutions
and framework should also consider this aspect as one of the main building
blocks in their design and architectures. The proposed design of LIQDROID
will be a positive move toward better managing the devices’ adaptation,
privacy concerns and seamless interactions, as Mikkonen and Pautasso have
also mentioned that these aspects need to be explored in more detail for the
future direction of their work or generally for the future research in the area
of liquid software solutions.

One of the important differences between the crossmedia systems and the
multichannel (cross-platform) systems is that in the multichannel systems,
the focus is only on making the applications run on multiple platforms or the
content become accessible to them, but the crossmedia systems try to find a
better resource match for the task at hand (functionality) in order to enhance
the device interaction. Different researchers have focused on increasing the
inter-usability of multi-device systems to increase seamless interaction and
let the user easily switch between the devices.

2.2.3 Discussion and Comparison

Among these systems, Denis and Karsenty [12] have proposed a conceptual
framework of inter-usability, which defines knowledge and task continuity
as the two most important factors in approaching the higher levels of inter-
device consistency and adaptability in multi-device systems. Knowledge
continuity is the possibility of applying the experience and the knowledge
that the user achieved while working with the service on the previous device
to the new device, while the task continuity is transferring the task, content
and its state to the new device and resuming it. This means that, besides
the aspects which are important to the task at hand, the proposed system
should also be able to take care of other dependencies between the device
and the task. As LIQDROID has put its main focus on providing an Android
ecosystem where knowledge continuity is properly supported, the user will
feel that he has access to all the functionalities in a single device, though in

36

i
i

“thesis” — 2018/6/4 — 20:50 — page 37 — #55 i
i

i
i

i
i

2.3. Middleware Technologies

reality they are located and performed on multiple proximal devices.
As already mentioned, LIQDROID has been developed inside the An-

droid framework and is only beneficial for Android-based devices. So our
focus was more on comparing LIQDROID with the solutions developed
for supporting cross media services. The primary difference between our
work and the available solutions is that LIQDROID is not going to support
the synchronization and migration of the task between multiple devices
based on providing the latest version of the data in central storage, or use
the approaches such as cloud-based services to share the resources (e.g.,
connectivity, storage, data, computation) between different devices. But
it provides a mechanism to handle the challenges that may happen during
the direct interaction and integration of multiple proximal devices, where
handling the data consistency is just a single part of it.

More precisely, besides the task continuity that these solutions provide,
there are other factors which are important and should be considered in
the multi-device interaction, as Sorensen et al. [74] presented in the 4C
Framework, which includes: communality, collaboration, continuity, and
complementarity. This emphasizes that, along with focusing on the synchro-
nization and migration aspects, it is necessary to also focus on devices being
able to properly integrate and work with each other so that their full strength
and potential are exploited. As we mentioned in the previous section 2.1,
properly handling the interaction between devices to support task continuity
is not just the coexistence of multiple devices in the proximity of each other,
but we need also to pay attention to other factors that play key roles, such as
the diversity of the available devices (in the sense of the functionalities and
resources they have) and the interaction modalities.

2.3 Middleware Technologies

In this section we have provided a comparison between our proposed so-
lution and some of the competitive middlewares that are supporting multi-
device interaction, including defining the aspects that are different from their
assumptions or provided features.

2.3.1 Conductor

The Conductor [27] is a prototype framework that enables cross-device
interactions to distribute the user interfaces. In the following we briefly
explain the services that this framework provides and also also a comparison
with LIQDROID provided services.

37

i
i

“thesis” — 2018/6/4 — 20:50 — page 38 — #56 i
i

i
i

i
i

Chapter 2. Related Work

– Inter-Device Communication through Cues (pull style):
The procedure that they are using to perform the cross device interac-
tion is that opposite to the exiting scheme that while the user chooses
the data and also the other device to apply the transition. Here they are
using the concept of the cue which is the same as what exists in the
musical notation, specifically for orchestral pieces, which is the signal
to start the music. So in an ongoing task the user applies a long press
on any item which is active in the Conductor’s context. He will receive
a menu that contains the "broadcast" feature. The broadcasted cue will
be appeared on the other device and if the user does not provide an
instant response they will be stored in a vertical list and will be hidden
until the user accessing them. If the user apply tap on the cue the most
appropriate action will be performed by the device which also depends
on the current application which is running at that moment on that
device.

– Targeting Transmissions to Devices(push style):
They also provided another mechanism that enables the user to select
the target device and transfers directly the cue to that device. In this
case the target device as soon as received the cue will perform its
desired action. It will be useful for the cases that the target device
is not accessible. In this case in order to differentiate the availability
of similar devices beside providing a name for each device they also
assign a unique color to it. To this end when the cue has been tapped
on the new device it will duplicate the session that the source device
had.

– Implicit Cues:
Beside those cues that are intended to perform a default defined ac-
tion the user is also able to use implicit cues to transfer the current
contextual information to another target device and resuming the work
there.

– Functionality Bonding with Duets:
This is the possibility to bound the user desired task to the device
that it should take place. So they need to apply a bond mechanism
between the source device and the target device which is called duets.
To this end the use can have access to the duets list while they have also
included in each cue the identity of the source device, so by adding
each cue to the duets list (through drag and drop) can perform the
bound mechanism.

38

i
i

“thesis” — 2018/6/4 — 20:50 — page 39 — #57 i
i

i
i

i
i

2.3. Middleware Technologies

– Managing Sessions across Devices:
They have provided a task manager, that will include the updated screen
shots of the devices which are running the Conductor. This will enable
the user to be able to exchange and manage the sessions between the
devices.

– Adding Devices to a Symphony:
The user is able to add a device to the set of devices available to interact
(Called Symphony) through different ways such as: QR Codes, NFC,
Bumping ad proxies.

The type of the interaction that they have provided has interesting features
although the availability of the potential problems will be identifiable when it
has been used by different users through different use case scenarios. But in
the case of having a comparison with the features that they have considered
to be able to manage the interaction between the devices and those that are
also available in LIQDROID we can provide the following explanation of
LIQDROID similar services:

The main important thing that we can mention is that one of our main
focuses in LIQDROID is providing the direct interaction between the devices
between needing of having any central server that manage the interaction.
While in the Conductor there would be a central server that handles the
devices connection and routing the messages.

On the other hand, the other important capability of LIQDROID is that
the distribution of a task between the devices after that the user has selected
the set of the devices that prefers and have connected to them is that the
user is capable of having the list of the capable applications on the proximal
connected devices that are able to perform the user desired task and is able
to choose between them. This will prevent th user to distribute the task on a
device that may does not have the proper application to perform that task.

Based on the study that we had we found that in general the interaction
between the devices can be categorised in three main categories as: Device
Shifting, Complementarity and Synced Devices that we will explain each
of them with more detail in the section 4.2.2. In LIQDROID we have
considered the requirements of each category in the sense of the state, data
and interaction management and provide the required abstractions in the
architecture. Which also include the capability of let the user control the
execution of an ongoing task on the other involved devices i that interaction.

There are different ways that the user can end a session first is automati-
cally when the devices are bot proximal to each other any more, second the
user has the possibility to finish the execution of the ongoing tasks on the

39

i
i

“thesis” — 2018/6/4 — 20:50 — page 40 — #58 i
i

i
i

i
i

Chapter 2. Related Work

other devices which are involved in the execution of the ongoing task and
at last there is also the possibility to become disconnected from a device to
prevent from the distributions by receiving the request from the connected
devices any more.

LIQDROID has a separated module for taking care of connecting the
devices which make it be able to use different connection protocols available
on the devices to provide the required infrastructure to connect the devices
and make them be able to communicate with each other.

2.3.2 Panelrama

Panelrama [80] is a web-based framework to distribute user interfaces and
synchronize the state of them by applying minimum changes to the available
languages. In general, Panelrama uses an object-oriented paradigm. In the
following section, we discuss its main feature, and then we will compare its
services with LIQDROID.

Panelrama introduces the concept of dividing the user interface into
panels. A panel is a new XML element. If we consider that there exist
different functionalities that are grouped together, the panel will surround
each of these groups of related functionalities. To this end, the developer that
provides the XML file of the user interface’s view needs to consider for each
of them a panel which is extended from the default panel object. Panelrama
makes it possible to synchronize the state of these panels between the several
devices, as well as (automatically) assign the panels to the device that best
fits its needs. The state information, which is based on the application’s
logic, will be encapsulated and stored in the shared panel instead of the local
device’s storage. While the developer can assign different panels to general
views (called local panels), there would also be a shared global panel. This
global panel will not be assigned to any device, but the developer is able
to use the sync flag to update a given state variable in the local panels
with the general panel. So any changes that happen in the local panels
will be synchronized with the state of that variable on the global panel and
vice versa. These state synchronizations happen through a client server
architecture. There are four different categories, defined in the Panelrama
for device capabilities as: physical size, keyboard quality, touch quality,
and mouse quality. There is also the possibility for the developer to add
the capabilities that he needs to this list. Because of the limitations that
they faced with the web standard, both the device capabilities that had been
ranked, as well the panel’s capabilities requirements, needed to be defined
by the developer.

40

i
i

“thesis” — 2018/6/4 — 20:50 — page 41 — #59 i
i

i
i

i
i

2.3. Middleware Technologies

By benefiting from the Android framework available features, LIQDROID
is able to provide the list for the devices which are capable of executing
the distributed task both in the sense of the device’s hardware capabilities
and also the applications available on that device that can better suit the
task requirements. The user is able to select the device and the proper
application at run time without the need for the developer to perform any
extra effort to define the required task capabilities or the device capabilities.
Also, distributing the whole task will distribute the task’s logic, and, along
with the view to the other capable devices, will make it easier to be adopted
on the existing applications and also for developing completely compatible
applications. Benefiting from the Panelrama while there is strict consistency
between the application’s logic and the view would be difficult for the
developer.

In order to be able to synchronize the state of the tasks running on
different devices, we have considered the feedback and update messages.
This will enable the target device to become synced with the source device
while being able also to send back a response, which could be the result of
that updated state in case of need. Although the devices will be connected
in the peer-to-peer architecture, LIQDROID would be able to assign the
controller and client role to the devices, the source device, as the controller,
being able to manage the task’s execution state on the other devices involved
in the ongoing interaction. In addition to the state synchronization, the
data availability also plays a key role in multi-device interaction, as all the
devices should be able to have access to the required data, whereas in the
Panelrama, the data replication has not been well described and supported.

2.3.3 Multi-Device Interaction with Dynamically Migrating Engines

The proposed solution [20] is a framework for dynamic user interface distri-
bution in multi-device and multi-user environments without need of having
a fixed server. As the figure 2.2 shows there are two different main roles
in their system the Engine side and the Client side. The Engine side is in
charge of handling the distribution request and the state changes. While
the client side is in charge of sending the state updates to the engine and
applying the state changes that it receives from the engine.

They have considered three general different states as: Invisible, Disabled
and Enabled which means that a proposed part of the proposed UI will not
visible in the other devices’ UI or they are visible and not interactive or
they are visible and interactive. They categorise devices base on their main
capabilities such pc and tablet are in the same group and smartphone and

41

i
i

“thesis” — 2018/6/4 — 20:50 — page 42 — #60 i
i

i
i

i
i

Chapter 2. Related Work

Application

User Interface Application
Logic

Client Side
(library)

Distribution
Notifier

UI Manager

Engine Side

Distribution
Receiver

Devices
Manager

Rep

Engine
Core

Figure 2.2: Their proposed framework architecture.

mobile devices categorized as another group. Each device needs to provide
its credentials along with its capabilities to join a distribution to the engine.
After the engine has been calculated the credentials positively will insert
the device in the proper group and will send to it the distribution state. This
distribution state will let the device know each element of the UI should
be n which of those three general states. As long as the session is alive the
device will be able to send the updated to the engine or receive the updates
happened through the other device from the engine. Each session will have
a time-out that if no interaction updates received by that device, the device
will be excluded from that session. It is possible also to move the engine
from one device to the other one while in this case all the state distributions
happened so far will be sent to the new engine.

Here we mention to some of the important differences between LIQ-
DROID and above work. LIQDROID will be able to support the execution
of the proposed task by benefiting from another third parties applications
on the destination devices. While in the proposed framework the same
application on both sides will be executed while the different UI elements
on them has been enable/disabled. This can restrict us from being able to
fully benefit from the capabilities and resources which are available on the
devices. Despite the device capabilities that has been considered here in
LIQDROID beside the physical characteristics and features of the devices
the applications which are available on them will be considered also in
the process of the task assignment. So the user at run time will have the
possibility to choose the device that he prefers along with the application on
that device that he prefers.

42

i
i

“thesis” — 2018/6/4 — 20:50 — page 43 — #61 i
i

i
i

i
i

2.3. Middleware Technologies

On the other hand based on the context that the user belongs and the
type of the task which is going to be distributed the involved user may
decide to provide the credentials or not. And providing a static credentials
may restricts the users’ preferences. While in LIQDROID the user will
be able to accept the interaction in the beginning while at any point of
the interaction he is able to terminate it. Although the user will have the
possibility to terminate an ongoing task on the other devices and release
the resources, but the proposed solution is based on the availability of the
devices in the proximity of each other so as soon as the devices go out of
the range of the proximity of each other (which is based on the underlying
connection protocol) the communication between them will be automatically
terminated.

As well, LIQDROID is not only restricted to benefit from the UI of the
other device while it is also able to manage the service distribution. Which
means that multiple users at the same time are able to interact with a single
device and benefit from its capabilities and resources beside the one who is
using the device’s UI.

2.3.4 AllJoyn

AllJoyn [1] is an open source platform and language independent frame-
work which provides the possibility of deploying distributed applications
on heterogeneous systems. To run an AllJoyn application, the AllJoyn dae-
mon should be already installed on the device. This daemon provides the
inter-process communication system, which is based on a service oriented
architecture, so that the applications can register themselves to it as the ser-
vice provider or the service consumer. AllJoyn uses a virtual bus to connect
multiple AllJoyn daemons and also bus attachments. The bus attachment is
an application that is connected to the AllJoyn bus. Each bus has an interface
which defines a group of bus methods, bus signals, and bus properties, along
with their associated type signatures. There are some standard interfaces that
the AllJoyn framework implements, but in practice they are implemented
by client, service, or peer processes. The companion applications can be
written in different languages, such as C/C++ and Java, and through the
AllJoyn daemon are able to communicate with each other. AllJoyn provides
a mechanism to advertise and discover the available services when the de-
vices are in proximity to each other. To this end, each bus attachment will
have a unique name and a well-known name. The unique name is assigned
by the AllJoyn as soon as a bus attachment is connected to the bus. The
well-known name will be assigned to a service upon its request, which will

43

i
i

“thesis” — 2018/6/4 — 20:50 — page 44 — #62 i
i

i
i

i
i

Chapter 2. Related Work

be used for the advertisement. The service consumers are able to apply the
discovery and find the proper service through the well-known names that
have been advertised. In order to prevent the inconsistency that may happen
when there exists different implementation of an interface, to differentiate
them, additional information will be added, which is provided by an object
path. In order to have access to the services which are provided by the other
bus attachments, a bus object is required that is the implementation of the
given bus interface. If the developers have provided the bus, it would be
easy for them to implement the interface, otherwise they need to provide
an introspective request to have access to the definitions of the interface
of that bus. After the bus has successfully been created between the bus
attachments (service provider and consumer), the remote method call and
receiving signals can be accessible through a proxy bus object.

One of the main points of our proposed middleware infrastructure in
comparison to the AllJoyn is that working inside the Android framework
makes us capable of benefiting from it as much as possible, to handle the
execution of the tasks and the inter-process communication. This enabled us
to provide a more consistent system in the shape of a connected ecosystem,
and to be able to provide wider services for the developer and the end users.
This consistency between the proximal devices plays a key role in providing
a real seamless interaction between multiple devices. By using AllJoyn, the
interaction between the applications is started when the two applications
have been launched on both sides, attached to the created bus, and are able
to communicate with each other. While benefiting from LIQDROID as soon
as the two devices which have LIQDROID already installed on them are
in proximity of each other, the user can launch a LIQDROID-compatible
application on one side and initialize the interaction by distributing and
controlling the execution of the task on the other device, without the need to
follow extra steps in advance to integrate the applications.

Furthermore, developing LIQDROID inside the Android framework will
have another advantage more valuable for the developers. Working with
LIQDROID will be much easier for them, as they won’t need to learn so
much new information to provide the infrastructure to make applications
able to communicate with each other and also with LIQDROID. They will be
able to follow the usual procedure to develop an application, and by adding
a few lines of code, they will be able to make their application compatible
with LIQDROID and distribute the execution of their applications on the
proximal devices.

The other difference is that we don’t need to specifically call a LIQ-
DROID-compatible application on the other side to execute the requested

44

i
i

“thesis” — 2018/6/4 — 20:50 — page 45 — #63 i
i

i
i

i
i

2.3. Middleware Technologies

S

:1.2:1.1 :1.3

CS

D

S

:1.5:1.4 :1.6

C

D

C

Application
(Services)

Application
(Clients)

Bus Attachment

Daemon

Smartphone Linux Host

Wi-Fi or Wi-Fi Direct ConnectionBus

Figure 2.3: Architecture of AllJoyn bus.1

task. LIQDROID is able support the interaction between multiple devices
through benefiting from the available applications in the Android market.
Its maximum potential will be exploited if on both sides the applications are
compatible.

In LIQDROID, there would be two different steps for the discovery. The
first is advertisement and discovery, which happens for connecting the user
and selected proximal devices together. In this step, the devices will transfer
a message between each other, which includes the device, such as its name,
its type, and the user defined name, while it will also include the other data
which will be required to connect the devices together. We will discuss this
more in the section 5.1.

The second discovery happens when the user wants to find the devices
and the applications available to him through all the connected devices which
are capable of performing the user’s desired task. LIQDROID will retrieve
all the required information from the Android OS and the applications
which are going to be used. LIQDROID does not need to provide any extra
information for the purposes of advertisement or discovery. Moreover, the
user will always have access to the last updated list of the capable devices
(both supporting the hardware and the software availability, which are the
applications) to distribute the execution of the task on the device which better
suits their needs. LIQDROID benefits from different connection protocols
such as Bluetooth, Bluetooth Low Energy, Wi-Fi and an ultrasonic modem
for the advertisement and discovery phase, while the second phase of the

1https://allseenalliance.org/framework/documentation/learn/core/
standard-core

45

https://allseenalliance.org/framework/documentation/learn/core/standard-core
https://allseenalliance.org/framework/documentation/learn/core/standard-core

i
i

“thesis” — 2018/6/4 — 20:50 — page 46 — #64 i
i

i
i

i
i

Chapter 2. Related Work

discovery and the task distribution will be supported by Wi-Fi. It should
also be possible to add and use other connection protocols in the future.

Besides the solutions mentioned so far that are platform-independent,
there are also middlewares that have developed inside the Android platform
to support the collaboration between the devices. This category of services
enables developers and users to easily adopt the features that these middle-
wares are providing, as they are already familiar with the Android platform
and how it works. The main focus is providing the underlying features for
distributing the applications among several devices in a way that resembles
the local Android behavior for inter-application communication on a single
device.

2.3.5 Sip2Share

Sip2Share [7] is a middleware working within Android Framework. It
supports to create a peer to peer local network to provide and request services
in Android. It provides a network of mobile devices to publish, discover and
invoke the services which are available on them.

In order to publish and discover the services the peer needs to do it
through the super-peer which is a class in charge of matching the sender
request and the service provider. After the super-peer found the proper
match, it will send the address of the device to the requester peer and the
peer can start interacting with the service providers directly. The figure 2.4
shows a general view of the operations and the figure 2.5 an example of the
interactions among the peers and the super-peer to publish and subscribe for
a service.

comparing the requested and published actions.

3.3 Application Interface

For a developer, it is easy to migrate a local applica-
tions to a peer-to-peer architecture using Sip2Share.
In fact, there are very few additional actions to
be performed with respect to the local scenario.
First, the current implementation of our middleware
needs a peer for initializing the connections; we pro-
vide a super-peer implementing a syntactic match-
ing among actions, and the pattern for push notifi-
cations, all for the standard Java environment. Once
set up the super-peer, the developer has to create a
RemoteBroadcaster, using FactoryRemote. Then she
can send the Intent. An example is in the following
fragments of code, that compare the local scenario
with the remote one.
/*LOCAL*/
1. Intent intent=new Intent("org.unisannio.somethinghappens");
2. intent.putExtra("myLabel", "theValue");
3. this.sendOrderedBroadcast(intent , null, myBroadcastReceiver ,

null, Activity.RESULT_OK , null, null);

/*REMOTE*/
1. Intent intent=new Intent("org.unisannio.somethinghappens");
2. intent.putExtra("myLabel", "theValue");
3. RemoteBroadcast remoteBroadcaster=(new FactoryRemote())

.getRemoteBroadcaster(this);
4. remoteBroadcaster.sendRemoteOrderedBroadcast(intent , null,

myBroadcastReceiver , null, Activity.RESULT_OK ,
null, null);

It is evident that local and remote broadcasting of
events use the same approach, although there are lit-
tle differences between the two fragments of codes, in
line 3 and 4. Also the remote publication of a service
is very similar to the local scenario, requiring only
the definition of the actions that the device can man-
age. The following fragment of code shows how a
peer publishes its own service, which will be reach-
able in response to the particular action defined in the
descriptor.
1. RemoteBroadcast remoteBroadcaster=(new FactoryRemote())

.getRemoteBroadcaster(this);
2. ServiceInfo sinfo=new ServiceInfo();
3. sinfo.addDescriptor("org.unisannio.somethinghappens", null,

null, null);
4. remoteBroadcaster.sendToSuperPeer(sinfo , Converter.PUBLISH);

3.4 Super-peers and service discovery

In addition to the middleware, we provide a super-
peer that can handle several types of messages,
needed for discovering and publishing services. Our
super-peer is an abstract class that needs to be imple-
mented, either in Android or standard Java, to imple-
ment specific matching and discovery algorithms. A
peer that is seeking some service sends a request to the
super-peer; this returns the data needed by the peer to

Figure 3: High level operations

contact the other devices that offers services eligible
for satisfying the peer request.

Figure 3 shows an an example. A peer is looking
for a service in a new network; it sends a subscribe
request to the super-peer (1), if there are some peers
that can handle the request the super-peer returns their
addresses (2), and the peer can contact them directly
(3). Otherwise, the peer request will be stored on the
super-peer, and the peer will be notified when another
peer will have published the requested service.

A peer can publish a service by sending a message
to the super-peer with its service descriptor. A service
descriptor is a structure in which are stored the action
and tags; the action is the same as the Android actions,
the tags are possibly used by the super-peer to match-
ing requests against available services. The message
sent to the super-peer may differ, according to the pur-
pose of the communication: publishing or retracting
a service, subscribe or unsubscribe a service or a cat-
egory of services.

Figure 4: Possible interactions

As an example, Figure 4 depicts an interaction
scenario between two requesting peers, a super-peer
and a peer that offers a service that march the requests.
The main steps are: (a) peer A subscribes for a service

Figure 2.4: High level operations [7]

comparing the requested and published actions.

3.3 Application Interface

For a developer, it is easy to migrate a local applica-
tions to a peer-to-peer architecture using Sip2Share.
In fact, there are very few additional actions to
be performed with respect to the local scenario.
First, the current implementation of our middleware
needs a peer for initializing the connections; we pro-
vide a super-peer implementing a syntactic match-
ing among actions, and the pattern for push notifi-
cations, all for the standard Java environment. Once
set up the super-peer, the developer has to create a
RemoteBroadcaster, using FactoryRemote. Then she
can send the Intent. An example is in the following
fragments of code, that compare the local scenario
with the remote one.
/*LOCAL*/
1. Intent intent=new Intent("org.unisannio.somethinghappens");
2. intent.putExtra("myLabel", "theValue");
3. this.sendOrderedBroadcast(intent , null, myBroadcastReceiver ,

null, Activity.RESULT_OK , null, null);

/*REMOTE*/
1. Intent intent=new Intent("org.unisannio.somethinghappens");
2. intent.putExtra("myLabel", "theValue");
3. RemoteBroadcast remoteBroadcaster=(new FactoryRemote())

.getRemoteBroadcaster(this);
4. remoteBroadcaster.sendRemoteOrderedBroadcast(intent , null,

myBroadcastReceiver , null, Activity.RESULT_OK ,
null, null);

It is evident that local and remote broadcasting of
events use the same approach, although there are lit-
tle differences between the two fragments of codes, in
line 3 and 4. Also the remote publication of a service
is very similar to the local scenario, requiring only
the definition of the actions that the device can man-
age. The following fragment of code shows how a
peer publishes its own service, which will be reach-
able in response to the particular action defined in the
descriptor.
1. RemoteBroadcast remoteBroadcaster=(new FactoryRemote())

.getRemoteBroadcaster(this);
2. ServiceInfo sinfo=new ServiceInfo();
3. sinfo.addDescriptor("org.unisannio.somethinghappens", null,

null, null);
4. remoteBroadcaster.sendToSuperPeer(sinfo , Converter.PUBLISH);

3.4 Super-peers and service discovery

In addition to the middleware, we provide a super-
peer that can handle several types of messages,
needed for discovering and publishing services. Our
super-peer is an abstract class that needs to be imple-
mented, either in Android or standard Java, to imple-
ment specific matching and discovery algorithms. A
peer that is seeking some service sends a request to the
super-peer; this returns the data needed by the peer to

Figure 3: High level operations

contact the other devices that offers services eligible
for satisfying the peer request.

Figure 3 shows an an example. A peer is looking
for a service in a new network; it sends a subscribe
request to the super-peer (1), if there are some peers
that can handle the request the super-peer returns their
addresses (2), and the peer can contact them directly
(3). Otherwise, the peer request will be stored on the
super-peer, and the peer will be notified when another
peer will have published the requested service.

A peer can publish a service by sending a message
to the super-peer with its service descriptor. A service
descriptor is a structure in which are stored the action
and tags; the action is the same as the Android actions,
the tags are possibly used by the super-peer to match-
ing requests against available services. The message
sent to the super-peer may differ, according to the pur-
pose of the communication: publishing or retracting
a service, subscribe or unsubscribe a service or a cat-
egory of services.

Figure 4: Possible interactions

As an example, Figure 4 depicts an interaction
scenario between two requesting peers, a super-peer
and a peer that offers a service that march the requests.
The main steps are: (a) peer A subscribes for a service

Figure 2.5: Possible interactions [7]

46

i
i

“thesis” — 2018/6/4 — 20:50 — page 47 — #65 i
i

i
i

i
i

2.3. Middleware Technologies

But the difference between the Sip2Shsare and our work is that LIQ-
DROID uses the Android OS available features to provide the list of the
capable installed applications that can handle the user’s request. For this
purpose LIQDROID benefits from the procedure that the Android OS fol-
lows to provide the Chooser list. The Chooser list is the list of applications
that the Android OS shows to the user when there are several applications
installed on the device that are capable of performing the same action for
the user. Considering this example that you want to open a desired URL and
you have already installed different browsers on your device such as Chrome
and Firefox. As soon as you click on the URL link, the Android OS will
show you a list which contains the Chrome and Firefox and lets you choose
the one you prefer, the mentioned list is called Chooser list. LIQDROID will
follow the same procedure to handle the user desired action, it will send the
user’s request to all the connected devices and receives back the list of the
capable applications (the appropriate applications’ components) installed
on the other devices. After receiving back all the responses, LIQDROID
will prepare a list from these responses and show this list to the user. The
user is able to pick one (or several) of the application (s) available on the
connected proximal device (s) that he prefers to perform his desired task. In
this procedure all the connected devices have the same role and we don’t
need to have a super peer which is in charge of matching the requests to find
the provider. We will provide more technical description of this feature in
the section 5.5. The other difference between our work and sip2share is that
it is not capable of sending a large size of data to the several devices as well
managing the artifacts that are achieved from the execution of the service on
the other devices. On the other hand LIQDROID lets the user be able to call
any android activity or service at run time without the need for registering
these components in advance. Besides LIQDROID is able to handle the
synchronization between the applications’ components distributed on the
other devices (the state of the executed activities or services on the other
devices) and accessibility to the results (artifacts) that the execution of these
components may provide for the original user and independent of the device
that the task execution has took place.

2.3.6 Remote Service Call

The Nakao and Nakamoto proposed a middleware [51] for handling the
remote service call to provide cooperative work environments. By the
proposed work they aimed to find out the feasibility of extending the inter-
process communication mechanism in Android to do the remote service

47

i
i

“thesis” — 2018/6/4 — 20:50 — page 48 — #66 i
i

i
i

i
i

Chapter 2. Related Work

invocations without applying any modifications to the Android applications.
The proposed work provides the following features: launching a component
of the application which is called Activity in Android (we will explain it
in more details in the section 3), sharing screen system and sharing the
data. In order to share the screen, they have provided a prototype which
uses the Drawable class, Surfaceview class, and VNC (virtual network
computing, deprecated from Android 1.5 because of security problem).
Sharing the screen by using the VNC approachis based on sending only the
differences between the image that is showing on the two devices but the
other two approaches send the image along with an array of the coordination
information and the position of that piece of the image on the screen. By
the resource sharing they are focusing on those data that the Android apk
file includes and are stored on the storage of the device at install time. Their
approach to sharing these stored data between the devices is that instead
of loading these data from the application file they download it from a
server and use them while launching an application on the other device.
The difference between their work and LIQDROID is that we are not only
launching an application component on the several devices, more than just
two devices that they used, but also we handle the synchronization and status
changes that may happen during the execution and distribution of those
components. At last, LIQDROID is also capable of sharing the resources not
just those that already are included in the apk file of the application but also
those data that are the results of the execution of the components between
the connected devices. For example, the user may want to take a picture by
using the camera of Android device B and continue the task by using device
C for editing the picture received from device B (The editing application is
not available on device B). At the end receives back the final result from
device C on his own device. In this case the image is not already available
in the apk file of the editing application on device C but is the result of the
execution of the user desired task on device B and is fundamentally needed
to be available on device C to let the user continue the task at hand to reach
his desired goal.

2.3.7 Middlewares on Android Binder extension

Another category of the works that implement the multi device applications
interactions are those that are based on extending the existing Android
Binder [37, 44, 56]. The Android Binder lets the applications which are
running in two different processes can interact with each other to call each
others functionalities (remote method call) and pass arguments between

48

i
i

“thesis” — 2018/6/4 — 20:50 — page 49 — #67 i
i

i
i

i
i

2.3. Middleware Technologies

each other. We need to mention that in Android each application is running
in its own process sandbox that is assigned to it at install time which is
for supporting the security, stability, and memory management reasons. If
two different applications want to benefit from each other’s functionalities,
the Android kernel is in charge of binding these applications together and
let them to inter to each other processes. The communication in Binder
framework is a client server model. For the security reasons, the client
does not know exactly the address of the Binder, so each binder needs to
register itself as a service in the Service Manager of the Android. So when
the client wants the service, it will ask the Binder address of the requested
service by only knowing the name of the service from the Service Manager.
Extending the binder mechanism to enable the execution of the client and
the server processes on two different devices requires to handle the added
complexity overhead related to the application registration mechanism and
also application permissions to access to the device resources [56].

Besides the solution as mentioned above to handle the interprocess com-
munication, there is another mechanism which we will explain it in the
following. Another way of enabling the applications which are running in
different processes in Android frame work is using intents (we will explain
it more in details in section 3) which provide a point-to-point as well as
publish/subscribe messaging mechanism. LIQDROID uses this mechanism
of providing the interaction between the applications’ components that are
distributed and running on different devices. Because first, we don’t want
to change the current behavior of the Android operating system through
extending the binder which will put extra power consumption and perfor-
mance overhead. The second reason is that the binder mechanism requires
providing an AIDL file in the client and the server side (remote service
app) during the apk creation and must be shared between them. The AIDL
(Android interface definition language) file includes an interface with the
methods signatures of the remote service which is defined by the developer
and is used for two purposes [67]. The first reason is that it creates a proxy
class that lets the client app has access to the service and its methods, and
second it creates a proxy class which will be used by the service to redirect
the method calls to their implementations. While in the intent mechanism
the other component that we want to call and use only needs to provide the
required intent filter (we will explain it more in details in section 3) to be
accessible from the other components that may require its provided func-
tionalities and it is not needed to provide any files or application registration
in advance. On the other hand, LIQDROID takes care of the artifacts that
the execution of the application’s components will create on the destination

49

i
i

“thesis” — 2018/6/4 — 20:50 — page 50 — #68 i
i

i
i

i
i

Chapter 2. Related Work

devices as well as it manages the synchronization required between the
distributed application’s components are running on different devices.

2.3.8 Google Play Services

The Google has provided different services that enables the devices and
applications installed on them be able to interact with each other. But still
these services are not capable of exploiting the maximum capabilities that
the multi-device interaction can propose to the user. These services such as
the Google Nearby Message API 2 that we will explain it in more detail in
the section 5.1, will enable the proximal devices be able to discover each
other and interact with each other through sending messages. Or the Google
Cast Android API 3 provides the experience of the multi screen for the user,
so the user can select a content on his smart phone and view it through the
big screen. While the user needs to have the Chromecast device attached
to the big screen. Or the possibility to share the content provided by the
applications installed on different devices through the Cloud Storage 4 that
we will explain it in more detail in the section 5.6.

But what is lacking among the available services is that we need to have
an comprehensive infrastructure that multiple-users and multiple-devices
(any type of Android devices) be able to directly become integrated and
interact with each other (without need to have any device in between).
To this end, LIQDROID is the proper infrastructure that will facilitate the
multi-device integration and also solve the complexity that may occur to
synchronize and manage the state of these devices during the interactions.

LIQDROID will provide the possibility to add these services in case of
need to improve the handling of the required features such discovery of the
proximal devices through using the Google Nearby Message or handling the
data management by using the Google Cloud Storage while at the same time
it will provide the building blocks to distribute the Android OS between a
set of proximal Android devices to let the user distribute the execution of a
task on them.

2.4 Conclusion

We found several research contributions in the field of multi-device interac-
tions, which shows the increasing interest in this topic. However, despite this
interest, still, there is a big concern from the developer’s and designer’s point

2https://developers.google.com/nearby/messages/overview
3http://www.androiddocs.com/google/play-services/cast.html
4https://firebase.google.com/docs/storage/

50

https://developers.google.com/nearby/messages/overview
http://www.androiddocs.com/google/play-services/cast.html
https://firebase.google.com/docs/storage/

i
i

“thesis” — 2018/6/4 — 20:50 — page 51 — #69 i
i

i
i

i
i

2.4. Conclusion

of view, as they want to distribute a task (may be handled by different parts
of an application) to other devices and let users have access to them [59].
To facilitate this concern, we proposed LIQDROID, which let them iden-
tify the different possibilities and distribute them by using the features that
LIQDROID proposed to them. LIQDROID will facilitate the discovery and
communication of several proximal Android devices, enable interactions
between multiple users, cross-device applications and manage their interac-
tions at runtime. Although the other works put their main focus on the cross
platform aspect, our main focus is on supporting the heterogeneous types
of only Android supported devices, as we believe that this will enable us
to provide more comprehensive solutions by benefiting from the powerful
infrastructure that Android OS has as the building block, and put our attempt
on improving and managing the interactions, instead of extending the cur-
rent functionalities or redesigning them. Furthermore, providing distributed
applications should not need extra effort from developers. Also, it should
be able to support the already available applications (with or without minor
changes required) with fewer changes.

In the end, what is more important to notice is that the users do not
really care if the application is a mobile application, web application, or
hybrid. What they do care about is being able to reach their desired goal in
a fast, smooth, efficient, and delightful user experience that helps them in
their activities. So our first attempt in developing LIQDROID was not just
proposing a new way of interacting between multiple devices but offering the
user the ability to easily move between the nearby devices to perform a task
and reach his desired goal with more quality in much less time and attempt,
which, in the end, would make him have a better experience handling the
tasks. To the best of our knowledge, LIQDROID is the first middleware that
had specifically been designed for proximal Android devices and is able to
support the distribution of the task execution between devices with a close
focus on concepts such as managing interaction and synchronization at run
time, and design a more robust, seamless flow between devices. In the end,
this will enable the user to consider multiple devices as a single unit (an
Android ecosystem). Contrary to the existing models (such as cloud-based
services), the devices involved in the interaction can have roles both to
offer a service and use a service [15], without the need for registration in
advance. In this way, LIQDROID goes further and lets the user, instead of
just requesting a service (executing part of an application on the proximal
devices), integrate them, and manage their artifacts and execution, which
means that they are able to use the output of a service as the input of
another service. LIQDROID will be running in the background and all the

51

i
i

“thesis” — 2018/6/4 — 20:50 — page 52 — #70 i
i

i
i

i
i

Chapter 2. Related Work

installed applications will be able to benefit from the services that it provides,
simultaneously, without blocking each other’s or another user’s ongoing
task.

52

i
i

“thesis” — 2018/6/4 — 20:50 — page 53 — #71 i
i

i
i

i
i

CHAPTER3
Background About Android Framework

As LIQDROID has been implemented inside the Android framework and
is going to use the features and functions that are already available in it,
we need t first provide some definition about them. By considering these
definition first it would be easier to get what of the Android features have
been playing the key roles in our design and implementation phase. Second
it would be easier to understand and follow the technical details explanation
which is provided in the next chapters 4 and 5.

3.1 Android Application Components

In Android, an application is a package of components, and components
are the entry point of the application. There are four different categories of
components, and each category has its own scope and lifecycle.

3.1.1 Activity

Almost all activities are responsible for creating the user interface or window
to interact with the user and receive the inputs from him.

53

i
i

“thesis” — 2018/6/4 — 20:50 — page 54 — #72 i
i

i
i

i
i

Chapter 3. Background About Android Framework

Activity’s lifecycle

Each activity has its own lifecycle and the activity’s state changes by the
user’s interactions. In general among the available states in the lifecycle of
an activity that the figure 3.1 shows, there exists four different states which
is in our interest as follows:

• Start: When the activity enters to this state the Android OS will invoke
the onStart callback. This is the state of the activity when it is in the
foreground and has the user’s focus. So the user is able to interact with
the device and provides inputs for the activity.

• Pause: If the user launches another activity, or use the home button
or high priority events happens on a device will cause that an activity
goes to the background and loose the user’s focus. At this state the
activity is still able to receive the broadcasts but not the inputs of the
user. But in the cases that there is not the necessity that the activity be-
comes responsive it is better to release all the resources that it acquires
i=during his execution as well the broadcast receivers.

• Resume: This is the state that the activity that was previously in the
pause state acquires when it comes back to the foreground and takes
the user’s focus. So instead of launching a new instance of that activity
the Android OS will bring back the previous instance for the user.

• Destroy: The activity will goes to this state when it has been directly
through the user or the activity component itself(finish()) is killed or
the Android OS has been killed it to release the resources and to save
space.

LIQDROID as a third part application is not able to have access to this
state changes of the application that it has been launched on the other devices
directly through the activity but we will explain more in the section 5.7.2
how LIQDROID is able to be informed and use these state changes in his
architecture.

Android Task and Back Stack

Each application can have none (a service) or several activities and the
user can move between these activities by using intents. The sequence
of activities that the user launches and move between them to achieve a
demanding goal is considered as a general unit which is called task. The
sequence of the activities that have been launched by the user will be stored
in a stack which is called back stack. In this stack the current activity which

54

i
i

“thesis” — 2018/6/4 — 20:50 — page 55 — #73 i
i

i
i

i
i

3.1. Android Application Components

User navigates
to the activity

User navigates
to the activity

The activity is
no longer visible

Another activity comes
into the foreground

User returns
to the activity

Apps with higher priority
need memory

The activity is finishing or
being destroyed by the system

onCreate()

onStart()

onResume()

onPause()

onStop()

onDestroy()

onRestart()

Figure 3.1: A simplified illustration of the activity lifecycle. 1

is in the foreground will be the first item. This order helps you to be able
to use the return hard key on your device or the one that is available inside
the device to go back to the previous activity. when the user or the Android
Os kills an activity that activity will be removed from the stack. On the
other hand, if you launch an activity through the home screen, which is
currently in the background so in this stack, depending on the component’s
configuration a the instance that already exists in the background will be
resumed or that instance will be killed and a new instance of it will be
created again.

Considering that you are writing a message to your friend through the
1https://developer.android.com/guide/components/activities/

activity-lifecycle.html

55

https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html

i
i

“thesis” — 2018/6/4 — 20:50 — page 56 — #74 i
i

i
i

i
i

Chapter 3. Background About Android Framework

back stack

Message activity
(in foreground)

back stack

Message activity
(in background)

Contact activity
(in foreground)

Phone activity
(in foreground)

Message activity
(in background)

Contact activity
(in background)

back stack

launching
Message
Activity

launching
Contact Activity

1 2
launching
Phone Activity

3 launching
Message Activity
(Through home app)

4

Message activity
(in foreground)

Contact activity
(in background)

back stack

Navigate back

5

Contact activity
(in background)

back stack

Phone activity

Phone activity
Will be destroyed

Message activity
(in background)

Figure 3.2: A sample view of how the activity task stack works in a device while the
components belong to the same package or different. 2

message activity. Then you decide to call him instead, so you launch the
phone application, which first shows you the list of the contacts through the
Contact activity. Then you select your friend’s contact and by clicking on
that the Phone activity is launched which shows you the contact info of your
friend. As it includes the old number of your friend’s you decide to go back
to the contact activity and choose another contact name of her. As you can
not find her new number so you go back to the message activity to take her
number from there. As the figure 3.2 shows these different steps through the
changes that happens in the back stack.

3.1.2 Service

The component which is running in the background and remain active even
if the application is not under the focus of the user. It may also offer its
functionalities for third parties applications. Service does not have any user
interface, and in the case of need, an activity will be bounded to it to let the
user interact with it.

Service’s lifecycle

Although the lifecycle of the service is simpler than the activity but it is
much more important because it is not in the focus of the user and if it does
not handled properly will decrease the performance of the device.

2https://developer.android.com/guide/components/activities/
tasks-and-back-stack.html

56

https://developer.android.com/guide/components/activities/tasks-and-back-stack.html
https://developer.android.com/guide/components/activities/tasks-and-back-stack.html

i
i

“thesis” — 2018/6/4 — 20:50 — page 57 — #75 i
i

i
i

i
i

3.1. Android Application Components

onCreate() onCreate()

onStartCommand()

onDestroy()

The service is stopped
by itself or a client

Active
Lifetime

onDestroy()

Unbounded
service

Bounded
service

onBind()

onUnbind()

All clients unbind by calling
unbindService()

Figure 3.3: The service lifecycle. The diagram on the left shows the lifecycle when the
service is created with startService() and the diagram on the right shows the lifecycle

when the service is created with bindService(). 3

The figure 3.3 shows the life cycle of the service in two different situa-
tions:
- Unbound Service: While an application component has been started the
service through using the startService() method. In this case the service
would continue to run in the background, even if the original component
that has been started it is destroyed.
- Bound Service: While an application component bind itself to a Service
through using the bindService() method to perform interactivity and inter
process communication. In this case, the service will be stopped as soon as
the component binding to the bound service is destroyed. When a compo-
nent binds to a Service it retrieves a communication interface that can use
it for sending requests and receiving responses within the process or even
across processes.

The difference between the bound and unbound services is that: An
application component starts the service, and it would continue to run in the
background, even if the original component that started it is destroyed. You
will use the startService() method to start an unbound service.

3https://developer.android.com/guide/components/services.html

57

https://developer.android.com/guide/components/services.html

i
i

“thesis” — 2018/6/4 — 20:50 — page 58 — #76 i
i

i
i

i
i

Chapter 3. Background About Android Framework

3.1.3 Content Provider

Each application is able to store its data in the file system through Android
OS or create an SQLite database, on the web, or any other persistent storage
location. If the owner of the application wants to share its data with other
applications, will provide a content provider and let other applications to
use it to query or even modify its data. If the data is stored on the storage of
the device (public access), the application does not need to create a content
provider to load the data in the application but the general content provider
inside Android framework will do it on behalf of the application.

3.1.4 Broadcast Receivers

This component is responsible to receive the broadcast announcements
that the application is interested in them. There are two different types of
broadcasts: first, called system-wide broadcasts, which are general purpose
broadcasts such as announcing that the screen has turned off, the battery
is low, system boots up, the device starts charging, etc. Second, those
broadcasts that are created by other applications, in this case, Android OS
will capture and will again broadcast them, those applications that have been
registered for them in advance will catch them.

3.2 Android Inter Process Communication

3.2.1 Intent

Each application can be launched directly or instantiated through another
application. Whenever a new application is launched or its component
is started a new process will be assigned to that application. Because of
privacy concerns, Android runs each application in a separate sandbox to
protect its process and data. If an application wants to use a functionality
which is provided by the other application’s components, it cannot directly
activate that component and need to acquire permissions that have been
defined by the other application in advance. These permissions let the
Android operating system enter to the application’s process and activates the
component which is requested by this application.

For better managing these inter-process communications among appli-
cations, Android introduces the INTENT, which is a passive data structure
holding an abstract description of an action to be performed. Intents are
asynchronous messages and a universal mechanism for calling another com-
ponent inside an application or outside, along with the required data. Each

58

i
i

“thesis” — 2018/6/4 — 20:50 — page 59 — #77 i
i

i
i

i
i

3.3. Conclusion

intent has a field which is called "Action" and make intents distinct from
each other. Intents are used for starting the activities and services and also
delivering a broadcast.

There are two types of intents: Explicit and Implicit intents. Explicit
intents are used when you exactly know the name of the component (the
fully-qualified class name) that you want to send the intent. But in the
Implicit intent instead of defining the name of the component, you define
the generic action to be performed for two reasons: first, you don’t know the
exact class name of that component (as third parties may have developed the
component that you require). Second, when you are interested in calling all
the components which are able to do a certain action, for example, to view
an image and you want to choose one among the applications that are able
to do it. Which in this case Android OS will show a dialog under the name
"Chooser", includes a list of installed applications capable of performing
that user desired action and let the user pick the application that prefers.

3.2.2 Intent Filter

Is a short description of the capabilities that an application is able to perform.
On the other word, what an activity or service can perform and which are
the type of the broadcasts that the application is interested in receiving.
When an application creates an implicit intent, the Android OS will compare
the action of the intent to the intent filters which are declared (inside a
component or in the manifest file) in each application, if there is only one
application that supports that action, the OS will launch it, otherwise will
pop up the Chooser dialogue.

3.3 Conclusion

We need to mention also that from now on we will use the term component
or directly the name of the components such as activity or service to mention
to the application’s part as currently we are completely familiar what exactly
they mean. The component includes also the content provider and the broad
cast receiver as we mentioned above but in the concept of distributing an
ongoing task is mainly concerned about execution of the activity and the
service which the user is able to interact with them and execute them to
reach his desired goal.

59

i
i

“thesis” — 2018/6/4 — 20:50 — page 60 — #78 i
i

i
i

i
i

i
i

“thesis” — 2018/6/4 — 20:50 — page 61 — #79 i
i

i
i

i
i

CHAPTER4
Proposed Middleware Architecture

This chapter, we present the idea of the multi-device direct interaction
through presenting the architecture of LIQDROID, which is a middleware
infrastructure that will enable the user to seamlessly distribute the execution
of a task on a set of proximal Android devices. In order to better understand
how this direct multi-device interactions can enhance the users’ achieve-
ments and satisfaction in performing their daily tasks, we have provided
a concrete sample use case scenario of distributing the execution of tasks
while there exists various sets of devices, users, contexts and interaction
types that we will explain each part of it in the relevant sections (4.1.1, 4.1.4,
4.2.3 and 4.2.4.)

The fully cooperative multi-device interaction proposed by LIQDROID
will capable the user to seamlessly distribute the execution of a task based
on the capabilities that this task requires to the capable devices while he will
be able also to manage its execution. To this end, the figure 4.1 shows the
architecture of LIQDROID to propose the above-mentioned features and the
procedure of handling the execution of a distributed task. We proposed a
layer-based architecture to enhance the procedure of managing the requests
and the interaction between the multiple devices and solving the challenges
that may occur during the task distribution. So by benefiting LIQDROID

61

i
i

“thesis” — 2018/6/4 — 20:50 — page 62 — #80 i
i

i
i

i
i

Chapter 4. Proposed Middleware Architecture

the user will have the possibility to discover devices in his proximity, put
them in different groups, and distribute the execution of his desired task
on the members of his desired group. While during the interaction still he
will be informed about the occurrences of the events, manage them and at
the end of the execution have access to the achieved results. LIQDROID
is implemented as an Android service which will continuously run in the
background and its execution will not cause any interruption in the normal
execution of the other applications’ components on the device that are not
going to use LIQDROID or, generally speaking, are not compatible with
LIQDROID. Therefore, the user can let LIQDROID run in the background
without the need of quitting it while he wants to use other applications.
On the other hand, several LIQDROID-compatible applications are able to
send requests in parallel to the LIQDROID, and LIQDROID is capable of
serving all of them while this multi-tasking will not cause any interference
in delivering the responses back to the components which have sent the
requests. We will discuss this aspect and how LIQDROID can handle this
situation more in depth in the section 5.5.

LIQDROID will be a service which is running in the background and
will benefit from the Android framework to provide some services for the
running application. LIQDROID will receive the requests for handling the
distribution of the execution of a task through a LIQDROID-compatible
components. To this end, whenever a user wants to execute a new task (such
as launching a new component) through a running LIQDROID-compatible
component, this task execution request will be received by the LIQDROID
instead of the Android operating system of that device. The LIQDROID will
first ask the user that in which device he prefers to execute or resume the
task, through providing him a list of capable proximal connected devices.
After the user has selected the proper device, the LIQDROID will ask the
Android OS on the selected device to take the responsibility of executing the
user’s desired task or handling the rest of the execution of the task that has
been handled previously by the Android OS of the previous device. If we
can point to it more precisely, from the step number 8 the Android OS of the
destination device will become responsible to take care of the execution of
the distributed task. In this way, LIQDROID, by distributing the Android OS
between a set of proximal connected devices, will form a bigger Android
ecosystem that a task can easily move among its elements. This ecosystem
will change the current behaviour of single-user single-device interaction to
fully cooperative environments in the sense that in the proposed environment
a single user is able to seamlessly distribute the execution of a task to the
proximal devices, or different users can actively participate in the execution

62

i
i

“thesis” — 2018/6/4 — 20:50 — page 63 — #81 i
i

i
i

i
i

4.1. Connection Layer

of a task on a single device through using their own personal devices or the
device at their hands.

Interaction Layer

Communication Manager

Artifact Manager

Intent
Manager

Event Manager

Android Framework

Running Application

Connection Layer

Device Abstraction
(Device Type)

Capabilities
(Hardware)

Features
(Software)Advertisement &

Discovery

Communication
Channel

Task Execution Manager

Setting
Service Manager

LIQDROID

Advertising this
device’s features

Discovering other
devices’s features

Connecting to
preferred devices

(Permission request)

Creating Groups of
connected devices

Find capable devices
of executing the
distributed task

Managing the execution
of the distributed tasks
(Synchronizing states)

Managing the
occurrences of the
concurrent events

Distribute the task along
with its requirements

Managing the achieved
artifacts (results)

1

2

4

3

5

6

7

8

9

10

11

From this step the
Android OS of the
destination device(s)
will become
responsible to take
care of the execution
of the distributed task.

 LIQDROID-compatible
component, Sending the task

distribution requests to
LIQDROID

Controlling and personalising
the execution of LIQDROID

while is running in the
background

Receiving the user’s
request and manages the

task distribution

Figure 4.1: A General Overview of LIQDROID Proposed Features

4.1 Connection Layer

This layer is in charge of providing the primary infrastructure to connect the
proximal devices to each other in order to enable them to communicate with
each other later. This layer aims to provide some preliminary steps before
connecting the devices and starting the communication in order to, also,
engage the user’s preferences in the connection procedure. In the following,
we will discuss more these different steps and the importance of considering
them.

4.1.1 Advertisement and Discovery

Considering that you arranged to meet your friend after working time in a
certain location that you received through a message. Before leaving the
office, you launch the map on your smartphone with the received location.
While you are checking the path, you reach your car, and you transfer this

63

i
i

“thesis” — 2018/6/4 — 20:50 — page 64 — #82 i
i

i
i

i
i

Chapter 4. Proposed Middleware Architecture

map to the tablet on the dashboard. You navigate through the path using your
car, and you reach your friend. While you were up to say goodbye, suddenly
you realized that you did not show him the video related to your last demo
of the current project. So you start the video player on your smartphone, but
he says that he needed to leave but before that, he asks you to send the video
to him so that he can watch it in his path to home. Therefore you start to
discovery his device through your smartphone and while you found it you
select it and resume the video there.

As soon as the user enters a new environment such as his home, office or
a public place, he needs to discover the available proximal Android devices.
This will let the user have a chance to be informed about the device avail-
ability and select those devices that he prefers to connect to. By the user’s
preference we mean that, based on the task at hand and considering his
assumption about the appropriate device (the resources which are available
on the device) and the context where he is located in, he may prefer or trust
on a different set of devices to connect to. For example, in a public place,
the user who wants to receive information regarding the place may prefer
to connect to a big screen provided by the place, that is more probable to
have the information that he requires, instead of a foreigner’s smart phone.
The LIQDROID is able to discover the Android devices ranging between
smart watches, smart phones, tablets, Android Car or TV which LIQDROID
have been already installed on them. As long as LIQDROID is running
in the background, the device features will be advertised to the proximal
devices through an advertising message. The content of this message is the
information about the device capabilities (Software), resources (Hardware),
and information which will be used later for the connection purpose. When
a user joins this context and starts discovering the proximal devices, he will
receive the list of all the proximal Android devices which are advertising
themselves; each item of this list includes the name of the device as well
some information about it such as the type of the device, its battery state,
and the brand (manufacturer company) of the device. This information helps
the user to select the device(s) that he prefers to establish a connection with.
When the user has selected the device(s) to connect to, an authentication
message will be sent to those devices; upon receiving the acceptance re-
sponse from them, devices will become connected and the user is able to
start the communication and use them to distribute the execution of the task
at hand. From now on, we will call the device that has sent the connection
request as the source device and the other devices that the user is connected
to them as the destination device(s). The communication between the source
and the destination devices is one-way which means that, although devices

64

i
i

“thesis” — 2018/6/4 — 20:50 — page 65 — #83 i
i

i
i

i
i

4.1. Connection Layer

are connected, the destination device is only capable of answering to the
requests received from the source device and is not able to send any request
to use the source device for executing any task on it. This will enhance the
privacy to prevent the execution of unwanted tasks on the source device and,
also, the inconsistency that may happen if the source and the destination
device want to distribute a task simultaneously and, more precisely, when
the task is regarding launching activities. Because if at the same time the
destination device attempts to launch an activity on the source device, the
activity that the user on the source device was interacting will go to the back
ground. On the other hand, if the user does not want to receive a connection
request which sometimes in the public places would be annoying instead of
quitting the service which could stop the execution of the ongoing tasks, he
is able to stop the advertising feature that we will discuss more about it in
the section 4.2.7. Accordingly, the device will not appear in the list of the
discovered devices.

4.1.2 Group Formation

Up to here, the user is able to send a connection request to the nearby devices
and connect to them. But to have a better overview of the connected devices
and also the possibility to select the proper set of devices to distribute a task
on them, it is possible to filter out the list of the connected devices in the
source device as a group. Thus, the user is able to create a new group or add
members to his previously created groups. This will be useful when the user
wants to have a different set of connected devices based on his own interest
points such as a group of his personal devices, in-home available devices
and another group for the office devices.

For example, as the next phase of the scenario mentioned above (in
section 4.1.1) considering that you have arrived home and you also decided
to show the proposed video to your family. So you discover the set of devices
available at your home including your family member’s devices to find the
best set of devices to use to play the video. So you select the devices that
you prefer, and you create a group between them. So you start the video
player on your device while you decide to transfer the view part of it to
the Big Android screen. Also, you send the controller part to your wife’s
smartphone so she can pause it through her device when she needs that you
provide some explanation to understand it better. Suddenly you receive a
phone call, and you leave to answer it while your family continues to watch
the video.

The user created groups, by default, are private only for the user who

65

i
i

“thesis” — 2018/6/4 — 20:50 — page 66 — #84 i
i

i
i

i
i

Chapter 4. Proposed Middleware Architecture

has created them but if he prefers he can also advertise them. Advertising a
group will let the newly joined members find the device that they want to
connect to by searching among the members of an available group instead
of going through the list of all the available devices. This approach will be
very practical if there exists high numbers of Android devices available or
if the user has familiarity with the place that he just joined and the devices
or people available there. So, instead of searching long lists and selecting
the desired devices the user can select the proper group(s) and it is more
probable for him to find the devices which are in his interest through the
members of that group instead of checking the list of available devices one
by one to find the proper devices.

These are not the only usage of the group formation, as in the next steps
while he wants to distribute the execution of a task, he has the chance to
only execute it on the members of an existing group instead of all connected
devices. In this way, all the ongoing propagation of the requests that the
source device provides and LIQDROID will be only limited to those con-
nected devices which are members of that group. As a result, if you want to
execute a task on your personal devices along with some data, you are able
to ask LIQDROID to only execute the ongoing tasks on that subset of the
connected devices by selecting the personal devices’ group. Which could
also provide some level of privacy. While still the user has the possibility to
regret the group selection and execute the task on all the connected devices.

4.1.3 Communication Channel

Plainly, connecting the devices is one of the main steps in enabling the
multiple proximal devices to be able to interact with each other but the main
responsibility of LIQDROID as a middleware infrastructure to handle the
execution of the distributed tasks will start after, when the devices become
connected. To this end, LIQDROID is entirely independent of the way
that devices are going to be connected to each other as a consequence it
is possible to consider different connection protocols to distribute the task
at hand. Currently, due to time constraints we have only used Wi-Fi to
connect the devices and to test LIQDROID but it is possible to add and use
different connection protocols for pursuing the communication purposes
such as Bluetooth, BLE, Wi-Fi Direct, etc. in the future.

Regarding the official documentation of the Android for implementing
the Bluetooth connection 1 we need to perform the Bluetooth discovery and
then apply the connection mechanism. As we have already implemented

1https://developer.android.com/guide/topics/connectivity/Bluetooth.html

66

i
i

“thesis” — 2018/6/4 — 20:50 — page 67 — #85 i
i

i
i

i
i

4.1. Connection Layer

our own mechanism for advertising and discovery, there is not the necessity
to implement the Bluetooth discovery. To this end, the only thing which is
required to be added to the proposed message we will explain it in more
details in the section 5.1 is the device’s address (MAC address). Based on
the Official Android document, to connecting devices we will need to set
up a server socket and accept a connection which needs around 26 lines of
code and then for initiating a connection with a remote device as a client
we need around 27 lines of code. The rest of the process of sending and
receiving the message from the socket will be similar to the one that has
been already implemented in LIQDROID. For the Wi-Fi Direct just changing
a few lines of the code will be enough to support it. Supporting different
connection protocols can empower the user to the benefit of them in different
contexts based on his preferences to save energy consumption, preserve his
security or remove constraints that may exist in the availability of them on
the proximal devices. As it would sometimes become challenging for the
user to find different possible connection protocols and select among those
which better suits the needs of the undergoing interactions, it would also
be nice to consider a mechanism that can help the user to offer the existing
possibilities and let him choose the one he prefers.

The connection step happens after the advertising and discovery to pursue
the communication between the devices. After the user has selected the
devices, a connection request will be sent to them and if they accept they will
become connected and the user is able to communicate and then distribute
the execution of the tasks among them. To send and receive the advertising
message and the connection request/response we have used the Google
Nearby Message API 2 that we will discuss about it in the section 5.1.

4.1.4 Device Abstraction

To handle a wide range of possible scenarios instead of considering the An-
droid device type, we have provided an abstraction of the devices including
the definition of the devices based on the capabilities (hardware) and features
(software) that are available in each of the devices. By the capabilities we
mean the availability of the hardware resources on the device such as the
camera, different available sensors, the screen size, etc. and by the features
we are targeting the installed applications’ components on these devices.
When the user asks to distribute a task to the proximal devices LIQDROID
will find the list of the application’s components on the connected devices
which are capable of performing the user desired task so the user can choose

2https://developers.google.com/nearby/messages/overview

67

https://developers.google.com/nearby/messages/overview

i
i

“thesis” — 2018/6/4 — 20:50 — page 68 — #86 i
i

i
i

i
i

Chapter 4. Proposed Middleware Architecture

them to resume the task’s execution there. Comparing the task requirements
with the device capabilities and features will have two benefits for the system
and the user: First, there could be several components on a device which
are able to handle the user desired request and all of them will appear in the
list beside the name of that device so the user has the chance also select the
component that he prefers more on a device. Second, there could be a device
which is already connected but does not have any component to support the
execution of the distributed task so it will not appear in the list.

The other advantage of this design approach is that it also enables to
tackle the existing issue in connecting several types of Android devices at
the same time together as there is already the limitation between connecting
the wearable devices at the same time to both a smart phone and a tablet.
However, by using LIQDROID we do not consider a wearable device as a
separated category of the Android devices while it will be a part of a bigger
Android ecosystem that it has created with the other connected devices and
is able to interact through LIQDROID to the tablet and the smart phone at the
same time. For supporting this aspect, it is only needed that the two devices
have the possibility to connect to each other through Wi-Fi and LIQDROID
will handle the rest of the communication process and the distribution of the
task between them. More generally speaking, it will also enable LIQDROID
to be effective for the new incoming Android devices in the future as they
will not be considered as a new device type while the only thing that matters
about devices in LIQDROID is the device’s capabilities and features.

4.2 Interaction Layer

As soon as devices get connected the user can start the interaction between
the devices and distribute the execution of a task. This layer oversees han-
dling the interaction between the connected devices to be able to distribute
the execution of the tasks and manage them during the execution. In the
following sections, we will explain the modules that are considered in this
layer and their usage more in detail.

4.2.1 Intent Manager

As we explained in the section 3.2.1 one of the ways to interact with the
other Android components as a third-party application and enter to their
processes execution is through sending intents. And this would be the way
that LIQDROID as a third-party application is able to interact with other
components. So, all the interactions between the installed components and
LIQDROID will be handled just through exchanging intents. The intent

68

i
i

“thesis” — 2018/6/4 — 20:50 — page 69 — #87 i
i

i
i

i
i

4.2. Interaction Layer

that the LIQDROID-compatible components send to LIQDROID should
include the data that which is required to handle the task distribution. The
provided data should obey the rules and format provided by LIQDROID.
The LIQDROID will benefit from this information to interpret the requested
features, properly distribute the task based on them and finally be able to
manage it during the execution. As soon as LIQDROID receives an intent, it
will interpret it to find out what is the user’s request and will call the module
which oversees handling the request or providing the results.

The execution of the intents will be still under the control of the Android
OS and LIQDROID will only transfer the intent and assign the execution
task to the Android OS of the device that the user has chosen to distribute
the execution of the task.

4.2.2 Task Execution Manager

This section makes the actual difference between LIQDROID and the works
that we have mentioned them in the sections 2.2.2. The user is able to send
a distributed task execution request to the connected devices and receive
the list of capable components available on them, then he can choose those
that he prefers and execute the task on them. This step is a kind of runtime
service registration that happens also on the other solutions as they first
register all the services and then, when the user sends a service request, they
handle it if the service exists. While in LIQDROID the user will have always
access to the last updated list of the available services based on the changes
that may happened on the devices’ availability or the applications installed
on them. Nevertheless, after executing the task on the destination device(s),
we need also to take care of the execution during the interaction and it is
done.

More precisely, an important part of our work is concerning about the
mobile devices (except Android TV), which causes that they join and leave
the system at any point of the time. The underlying system should be
prepared to end the execution of the task when the requester device is not
available any more or vice versa, if the destination device has left. The
proposed issue was only a brief mention to the contents of what we will
talk comprehensively in this section. In order to better understand how
the interaction between the devices can go on, we have considered three
main different categories; the interaction between the devices enter to three
different phases: Activation phase, during the interaction which we will
consider it as synchronization phase, and the termination phase.

Activation Phase: The user is connected to some proximal devices and

69

i
i

“thesis” — 2018/6/4 — 20:50 — page 70 — #88 i
i

i
i

i
i

Chapter 4. Proposed Middleware Architecture

want to distribute a task to them. The LIQDROID will first ask the user if
he prefers a certain group or he wants to have the list of the components
on all the available devices. As soon as LIQDROID receives the request for
launching an activity or starting a service, it will provide a list of the capable
components available on the connected proximal devices as well as those
components available on the user’s device. The user selects one or several
of the components and LIQDROID will execute the task on them. From now
on based on the application logic the user is able to use the device at hand
to manage the execution of the ongoing task on the destination device(s)
or is able to directly interact with task on the destination device(s). The
LIQDROID has provided the infrastructure required for the both use cases
and we will explain these possibilities in the following sections.

Synchronisation Phase: Based on the user’s desired goal and availability
of the proximal Android devices, interaction between the user and these
devices can have different forms. The user may want to distribute a task
to several devices and works in parallel or may use the devices one after
the other to complete the task and reach his desired goal. So applying the
synchronization between the devices mostly depends on the type of the
interaction which is going on and is application’s scenario dependent. The
LIQDROID can support the following categories of the interactions between
multiple-devices:

• Device Shifting:
Occurs when the user decides to resume the current activity on the
other available proximal device for any reason such as it has some
required resources which are not available on the device at hand, the
battery of the current device is dying, or wants to leave the current
context. As the user currently is holding different types of devices
with himself the device shifting is one of the main concerns from the
solutions propose by the industries as we mentioned in the section
2.2.1.

• Complementarity:
Occurs when the user prefers to share a component between all the
other devices in the proximity. The type of the interaction between
devices will be changed from the default one which is peer to peer
to the Controller (master) and Client (slave) nodes; it means that the
device that has been started the interaction will become the Controller
and is responsible for sending different parts of the activity to the other
devices (Clients) and controlling them.
Complementarity is mostly important in doing the tasks that are not

70

i
i

“thesis” — 2018/6/4 — 20:50 — page 71 — #89 i
i

i
i

i
i

4.2. Interaction Layer

possible to be performed by using a single device or at least the perfor-
mance of the user will decrease. For example, consider that you have
attended to a Skype call meeting through your smart phone and you
receive an email, so you should whether discard the email to check it
later or check the email while the other attendance will lose your video
or you will lose the presentation totally for the time that you put the
call in the background.
The other example can consider the fact about the performance degra-
dation; consider that you receive an email with an attachment and
you want to reply back to the email by considering the information
available in that file, so every time you need to open the attachment
and memorize piece of the information, then open the email and write
them down.
Yet, by using multiple devices you can have the Skype call or the
attachment of the email in one device and through distributing and
resuming the task to the other device you can check your email or reply
the email more easily.

• Synced Devices:
Occurs when the user prefers to open the same or the consequences
activities on different devices and update the state of all the activities
right after it happens on the source device (the one which user is directly
interacting). The difference between the Synced devices and Device
Shifting lies more on the use case scenarios. In fact, in the case of
Device Shifting the same activity would be shifted to the other device
so more probably the user is not interested in keeping the activity alive
in the source device while in the synced devices, the same/different
activity is running on all devices at the same time they will be updated
together.
One of the best examples to exploit the good opportunities and benefit
from multiple devices is that considering that your friends and you
have gathered together and want to organize a trip, instead of opening
the desired places in different tabs of the browser you can launch them
in your friends’ devices and let them check different things related to
that place such as hotels, best places to visit and the prices and in a few
minutes you can synchronously check all the interested places, collect
the result and make your choice. The other example is useful when
there are several connected devices that the user needs to synch their
states; for example in the shops or the public places that they advertise
the same product so the user is able to control the execution of the

71

i
i

“thesis” — 2018/6/4 — 20:50 — page 72 — #90 i
i

i
i

i
i

Chapter 4. Proposed Middleware Architecture

ongoing task on the other devices through the one which is accessible
or is in his proximity.

Managing the execution of the activities on the several devices lets
the user be able to interact with different activities at the same time (in
parallel). This feature is not currently supported in the stand-alone usage of
Android devices as the activity that the user wants to interact should be in
the foreground and no more than one activity can be in the foreground of a
device at any moment.

Termination Phase: Introducing the mobile technology completely changed
the way that the user interacts with the devices. Because he is not forced
any more to stay in a static place to follow the execution of a task and he is
able to move between the environments and use different sets of devices to
continue the ongoing task and reach his desired goal. However, this feature
will introduce other challenges to the system and solving them requires the
continuous monitoring of the user’s status and more precisely the availability
of the devices.

Consider that you enter a museum and you want to interact with the big
screen that is available there. The big screen already supports the multi-
devices interaction (LIQDROID has already installed there) so you are able
to control it through your smart phone and find the place of art work that
you want to see. You find its location and you leave the screen without going
back to the home page. The other visitor comes to the museum and wants to
interact with the big screen; at this point, the big screen should be capable
of accepting the new interaction and the new visitor should feel that he has
the possibility to interact with the big screen by reading the instructions
provided in the home page. The LIQDROID is capable of handling these
kinds of situations which is needed to release the resources first, by updating
the list of the connected devices or second, by providing the alert to the
user to terminate the task. In the second case, LIQDROID provides the
required abstractions that as soon as the user puts the current activity in the
background and starts interacting with another activity, is possible to notify
the user about the ongoing activity execution on the destination devices
and receives his preferences to either terminate the activity there or let it
continue.

Because of the limitations that exist in the Android framework for the
third parties’ applications about the lifecycle of the components, this feature
is only available for LIQDROID-compatible applications. As the privacy
of the Android does not let LIQDROID finish the execution of any other
components which do not originally belong to its application package. The
termination phase will help the connected devices release the resources

72

i
i

“thesis” — 2018/6/4 — 20:50 — page 73 — #91 i
i

i
i

i
i

4.2. Interaction Layer

which are not used by the user any more. This will improve their battery
and performance as well as preventing any interference that executions of
different components may cause to each other. Also, will make the device
be ready and fully operative for the next users.

4.2.3 Artifact Manager

We continue the scenario mentioned above from the point reached in the
section 4.1.2, considering that you suddenly receive a phone call and you
leave to answer it while your family continues to watch the video. When
you came back your son says that you made a mistake in spelling your name
at the end of the video. So he asks you to send the video to him so he can
edit it immediately through one of the powerful edit applications that he has
on his tablet. So you select the previously created group to have the list of
the available applications to edit video on the connected devices which are
members of this group. You select the one that your son prefers and launch
the video editor on his device with the current video through your device.
He starts editing it and applies the required changes. Tomorrow at the office
you remember that you did not check the corrected version of the video last
night. So you open the video player, download the version that your son has
provided, and you see everything is perfectly fine.

We have provided the Artifact Manager Module in LIQDROID to facil-
itate two obstacles that exist in the multi-devices interaction. The first is
providing the possibility to share a storage between all the integrated devices
to facilitate the task distribution. This storage will be used for providing the
underlying data to be used by the distributed task as well the results that will
be achieved by the execution of the task. On the other hand, it will remove
an obstacle that exists in distributing the Android OS on a set of proximal
devices. In the following parts, we will discuss more these two obstacles
and our proposed solution.

Most of the time the storage limitation may cause the user not be able to
execute his desired task although everything else is working perfectly fine.
Considering the following use case scenario that you are going to a vacation
with your friends and in the middle of the day, you notice that your smart
phone’s storage is full and you are not capable of storing any picture or
video anymore. This situation motivated us to develop a mechanism that let
the user exchange data between mobile devices and external storage systems
in a transparent way. This mechanism will enable the user to be able to share
the storage between the devices which means that if there is not enough free
storage space available on the user’s device and he is not able to capture any

73

i
i

“thesis” — 2018/6/4 — 20:50 — page 74 — #92 i
i

i
i

i
i

Chapter 4. Proposed Middleware Architecture

image anymore as he already received a notification which says the storage
is full. Thanks to LIQDROID the user can use his tablet to distribute the
capture image task while LIQDROID will store the result of the task and the
user can receive it whenever he arrived at the hotel and could manage to
have free space on his device. This will be useful when the user is travelling
and does not have access to any nearby external storage, but there exist other
proximal Android devices.

LIQDROID will provide the possibilities for the user to either receive the
result back on the source device instantly or later or use it as the input data
in the next request. The big obstacle that exists in the available solutions
which let the user share the data between several devices is that the user
needs to use the same credentials on all the involved devices. But as we
mentioned currently, LIQDROID will enable the user to also benefit from
the devices which do not belong to him to execute a task with the required
data. Thus, instead of letting each LIQDROID-compatible component to
handle its data, LIQDROID is responsible to manage the data involved in
the execution of the distributed tasks. So, when the updated data mentioned
recently is needed by the third device, LIQDROID on the third device is
in charge of loading the data that has already been uploaded to the central
storage by LIQDROID on the second device. We will discuss more about
the privacy concerns and the concurrency handling in the section 5.6. The
proposed mechanism will also support the homogeneity of the data provided
by one component which will be used by the other one(s), and LIQDROID
will not make any changes in the file extension or the content while storing
or loading the data. The following example will better demonstrate the
advantage of sharing the storage between the connected devices; assume
that you want to take an image and send it to your friend, but your device
does not have enough memory, thanks to LIQDROID you are able to use the
other proximal Android device to take the image, send it to the other device
which has better application to edit the images and then send it to your friend.

The other obstacle that we needed to solve in distributing the Android
OS was providing the required data for the execution of the distributed task
on the destination device. As we mentioned in the section 3.2.1 it is possible
to send the required data along with the intent to the other components. The
current mechanism that the Android OS uses to enhance the execution of
the components is that instead of sending directly the whole data from the
source component to the destination component, it uses the address of that
data acquired in the storage. Therefore, the destination component is in
charge of, firstly, loading the data from the storage and then executing the

74

i
i

“thesis” — 2018/6/4 — 20:50 — page 75 — #93 i
i

i
i

i
i

4.2. Interaction Layer

intent. Loading the data happens through using the content providers that we
have explained in the chapter 3. To better understand the procedure consider
this example that you want to open an image through a newly installed
application to show images which support enhanced features; the gallery
application sends the URI of the image along with an intent to the mentioned
component and that component will load the image first and then shows
it inside the activity to you. The LIQDROID follows the same procedure
to handle the execution of the data on the destination devices as we will
explain in the following. When the user wants to launch a component on
the destination device with the required data which will be loaded in the
component from the source device’s storage, LIQDROID will take care of
transferring this data to the destination device and will launch the component
along with this data. For this purpose, we need to provide a mechanism in
LIQDROID to load the required data before the execution of the intent. On
the other hand, when the execution on the destination device is happened,
it may have changed the state of the data or have produced a new version
of that data. This updated data by default will be stored on the destination
device’s storage while the user may need it in another place (the source
device or another connected device).

Since the context that we are considering is highly volatile and the de-
vices can join or leave at any time the data storage should not depend on the
existence of any particular device. Otherwise, it will cause that user loses his
interest because, in one hand, before he wants to leave a context, he needs to
calculate the time required by a task execution to provide his desired artifact
and then leaves the context. On the other hand, it may happen that the user is
forced to leave the context before the task provides the artifact while he does
not want to interrupt the task execution and wants to receive the final results
later or maybe from another place. As an example consider that you were
in a meeting with your colleagues to edit a map, shared on the big Android
screen, at the end of the meeting you needed to leave the office immediately
to pick up your child from the school; so you did not have enough time to
wait until the changes were applied successfully and downloaded the last
version of the data on your device. Thanks to LIQDROID at night you are
able to run the LIQDROID-compatible component that you were using in
the meeting, the last version of the underlying data that has been stored
by LIQDROID will be loaded inside the component, and you can continue
working on it.

The other advantage of managing the data through LIQDROID is related
to the time that multiple devices need to have access to the same data

75

i
i

“thesis” — 2018/6/4 — 20:50 — page 76 — #94 i
i

i
i

i
i

Chapter 4. Proposed Middleware Architecture

simultaneously. In this case the device that owns the data, transfers it to
the other devices (sequentially); the source device will ask LIQDROID to
execute the task using the required data. The LIQDROID will store the
underlying data in the cloud and the other involved devices will load the
data for that device (in parallel) and execute the task simultaneously. This
mechanism will significantly decrease the time required for preparation of
the multiple devices to perform a synchronous task. So all the devices have
the possibility to have access to the underlying data at the same time and the
execution of the tasks on them can happen simultaneously.

4.2.4 Event Manager

In the concrete use case scenario that we have proposed so far, we mentioned
that you suddenly receive a phone call and you leave to answer it. The
question that may appear here is that is there the possibility to use the
proximal devices to answer the phone call? And how the user can manage
these types of concurrent events that may happen during a task distribution?
In this section, we provide more detail about how LIQDROID is capable of
managing these events concurrencies.

The proposed Android ecosystem will let the user experience a consistent
interaction between the multiple proximal devices. One of the requirements
of this consistent interaction is that the system should be able to support
the occurrence of the concurrent events that happen in each of the involved
devices that have been shaped the custom Android ecosystem for a user.
Based on the effect of the ongoing event LIQDROID sometimes needs to
enter to the execution of the task or apply some changes to the provided
features to better control the system. In LIQDROID we have considered two
different categories for the events, the first is device related events which
are those that are related to the hardware features of the device such as the
Android input events or system events which we will call them as "Device
Level Events"; the other category is related to the changes that may happen
during the execution of the components installed on the devices such as the
state changes that happen in the life cycle of a component which we will
call them as "Interaction Level Events".

Device Level Events: The LIQDROID enables the propagation of the
events between the devices involved in an interaction to better manage
the execution of the ongoing distributed tasks. Sharing these events can
make the definition of the bigger Android ecosystem, that we explained
in the beginning, more sensible. Because as the occurrence of an event in
a single device will enable the user to perform proper actions to prevent

76

i
i

“thesis” — 2018/6/4 — 20:50 — page 77 — #95 i
i

i
i

i
i

4.2. Interaction Layer

unwanted interruptions that may happen on the execution of the ongoing
tasks, knowing these events that happen on the integrated devices to perform
an already distributed task will have an important effect on the coherence
and seamless integration of the ultimate Android ecosystem and will cause
valuable contributions. In one hand LIQDROID will benefit from these
events in the process of making decisions or executing the task such as a
low battery event.

To better clarify the usage of event propagation we provide a usage
scenario already implemented in the LIQDROID. Considering that a low
battery event happens in one of the user connected devices, in this case
when the user wants to launch an activity on one of the connected proximal
devices, for sure he will not choose the device that has low battery because
it is more probable that in the middle of the interaction the device will
be turned off. Thus, when LIQDROID receives this event from a device,
although devices are still connected, LIQDROID will exclude this device
from the list of the available proximal devices to distribute the execution
of the next task. On the other hand, the device level events are important
for the application developers to activate or deactivate some functionalities.
For example, events such as the screen goes OFF or ON, may cause some
changes in the behaviour" of the application.

The other aspect we may consider in this category is the input event
redirection where the input events will be received in the source device can
be transferred and handled by the destination device(s). So when you are
interacting with your device the consequence effect of this interaction will
be appeared on the connected devices. Considering that you are controlling
a video which is played in an Android big screen through your smart phone.
When you click on the play button on your device, this touch event will
be transferred to the big screen and will be interpreted by the video player
activity there, and the video will start playing.

Interaction Level Events: Devices can have different states at starting or
during an interaction with the other proximal devices in the sense that they
are already busy by executing an activity or they are free. We emphasize
on the activity component because at each moment it is not possible to
have more than one activity in the foreground while there can be several
services running on the device at the same time. It may happen while a task
is executed on the proximal device, a concurrent event happens inside one
of the source or the destination devices, same as receiving a message, a call,
a notification, etc., that LIQDROID needs to enter to the task execution and
manage the situation to prevent the conflicts that may arise. In this case, to
better understand the user’s needs and apply his preferences, when a new

77

i
i

“thesis” — 2018/6/4 — 20:50 — page 78 — #96 i
i

i
i

i
i

Chapter 4. Proposed Middleware Architecture

event arrives LIQDROID will notify the user about the current execution state
of the task on the connected devices and provides some suggestions for him
to handle the situation. After receiving the user’s preferences, LIQDROID
will apply the required changes based on them.

There could be some situations that the user is not able to provide any
choice or the device is not accessible by the user, so we have defined a
time threshold in which LIQDROID will wait for the user’s choice and the
suggestions will be accessible for the user. If the user does not provide any
response at the proper time, LIQDROID will discard the event as it may not
cause any conflict and leave the execution of the task to be continued as it
was.

To better clarify LIQDROID proposes procedure, consider the use case
scenario that you are using an activity on an Android TV to play a video
while using your smart phone to control it. Meanwhile, you receive a phone
call. The following situation may happen based on your preferences:

• You may want to pause the video, answer the call (through your device
or another proximal device) and resume it again when the call has been
finished.

• You may want to pause the video because you prefer to answer the call
through using the big screen, If there exists the possibility to distribute
the call activity to the Android TV.

• Or you may want to let the video continue without interrupting it while
you are answering the phone through your smart phone.

To handle the possible situations mentioned above, LIQDROID will provide
a suggestion menu on the source device and will ask the user to choose the
one that he prefers. After receiving the user’s choice, LIQDROID will treat
with the distributed tasks based on it.

4.2.5 Service Manager

Here, by the service we mean the service component that is available in the
Android framework and we have talked about it in the section 3. Although
in the previous parts we have more focused on distributing the execution of
the activities between the proximal devices, in this section we have put more
our focus on considering the distribution of the execution of the services to
the proximal devices. The importance of the services is that they are capable
of running for a long time in the background without interrupting the user
or occupying the user interface which will cause their execution have much

78

i
i

“thesis” — 2018/6/4 — 20:50 — page 79 — #97 i
i

i
i

i
i

4.2. Interaction Layer

lower power consumption. This will enable the user to run multiple services
in the background together using different sources and providing different
features for the user.

As we mentioned before, in order the user to be able to interact with a
service an activity should be bound to it. The LIQDROID makes it possible
for the user to use an activity on his device to interact with a service which
is running on another proximal connected device. This means that the user
of the source device can launch an activity on his device and bind it to a
service existing on a connected proximal device to start the service, execute
its methods and receive the execution results. As an example, consider a
music player service which is available on a proximal Android TV, the user
is able to discover it through LIQDROID, connect to it, send a music from
the storage of his smart phone and start playing it on the TV while he is able
to control it through the controller activity launched on his smart phone.

So, different devices at the same time can bind activities to different
services which are running on a single device and benefit from the results
that the execution of the services provides. This is opposite to the way which
works for the distributing of the activities because when the user distributes
the execution of an activity to a destination device, other proximal devices
are not able to run another activity on that destination device simultaneously
unless the previous activity has been terminated or gone to the background.

4.2.6 Communication Manager

The architecture that we have used for handling the connection between the
devices is peer-to-peer which means that all the devices are able to directly
communicate with each other. As the context is highly volatile, this will
help the system to prevent from depending on a single device that would
become a failure point for the system. While, by the roles that we can assign
to the devices during the interaction, we can make a device be capable of
controlling the execution of a task on the other connected devices involved
in an interaction in case of need. We will discuss more how LIQDROID can
handle this aspect in the section 5.5.1.

This module will also oversee applying the authentication step and check
the connection status of the devices and update the list of the connected
devices in the source device. Thus, when the user applies the discovery he
will have access to the last updated list of the available devices, groups lists
and groups’ members list excluding those that are not in the proximity of
the user any more. And the user will have the possibility to have the devices
that recently joined to the context in the list of available members and be

79

i
i

“thesis” — 2018/6/4 — 20:50 — page 80 — #98 i
i

i
i

i
i

Chapter 4. Proposed Middleware Architecture

able to connect to them.

4.2.7 Settings

As LIQDROID is an Android service which is running in the background,
it may happen that the user wants to interact with it to change something
while he participates in different situations or contexts of use. The proposed
setting will enable the user to quickly have access to the important features
in LIQDROID and be able to control them instead of requiring to totally
stopping the LIQDROID’s execution. These accessible features will be as
follow:

• Stop Advertising:
Because of the dynamic nature of the mobile devices and the possibility
that they offer to the user to be able to interact with the ongoing task
while he is moving between different places, a user may join different
contexts at any moment. As we said the advertising mechanism that
LIQDROID is supporting lets the devices advertise themselves contin-
uously and become discoverable by the proximal devices. But there
could be situations that this mechanism will cause some inconsistency
and inappropriate experiences for the user. For example, in a public
place with the existence of a wide range of Android devices the user
may become bombard by connection requests which may disturb the
user and prevent him from using his device appropriately. So the user is
able to stop the advertising mechanism whenever he prefers by access-
ing the setting menu of LIQDROID and activate it again later instead of
completely terminating the LIQDROID’s execution on the device.

• Start Discovery:
The user can start discovering the proximal Android devices whenever
he wants to become connected to them to distribute the execution of
a task or to connect to the newly joined device(s). Whenever the user
starts the discovery, an updated list of the available devices will be
shown to the user. Besides this list, the user also will have access to the
groups’ list that he has created them previously or the list of the groups
that are advertised by the other proximal devices. More precisely
devices are advertising themselves continuously, so the user is able to
discover them whenever he desires. Manually starting the discovery
will have several advantages, first, to trigger the list of the proximal
devices and show it to the user only when the user is interested in,
this will cause in less user distraction. Second, as we are working in
a dynamic situation that many devices can join and leave frequently,

80

i
i

“thesis” — 2018/6/4 — 20:50 — page 81 — #99 i
i

i
i

i
i

4.3. Conclusion

performing continuously discovering should happen in short time slots
and this behaviour will put a lot of unnecessary overhead on the device
and consume a lot of energy.

• Change Device Name:
As the user may be placed in different contexts and acquires different
roles based on them so he is able to change his name. This will enable
the users of the other proximal devices to better recognize him and
connect to him in case of need. For example, you have invited one of
your colleges to join a meeting in your office; as soon as he enters your
office he starts the discovery and finds the proximal devices through
LIQDROID. As soon as he finds your family name in the list of the
available devices, he sends a connection request to you; upon your
acceptance he is able to connect to your device and have access to the
service which is running on your device to download the presentation’s
resource. While in the evening you may join a family party and you
change your device name to your first name to be easily discoverable by
your family and friends. Later, you receive a connection request from
your cousin who wants to receive the images that you have recently
taken. You accept his connection request and let him run the activity
to view the images and select those that he wants to have them. The
proposed name will come along with the other information of the
device that we have mentioned before.

These settings options will be accessible by the user through the notifi-
cation bar (which based on the device could be on the top or bottom of the
device’s screen) and the user is able to interact with the LIQDROID even
while the other components are running in the user’s device and occupied its
screen.

4.3 Conclusion

In this section we have explained the reasons for the different modules that
we have considered in the architecture of the LIQDROID. These modules
will enhance the creation of the multi-devices interaction by solving some
of the challenges that already exists in this field. Working inside the An-
droid framework also had some effect on the proposed architecture and the
considered modules that we will focus more on those aspects in the next
chapter.

81

i
i

“thesis” — 2018/6/4 — 20:50 — page 82 — #100 i
i

i
i

i
i

i
i

“thesis” — 2018/6/4 — 20:50 — page 83 — #101 i
i

i
i

i
i

CHAPTER5
Implementation Details and Technical

Descriptions

In this chapter, we will talk more about the technical details of LIQDROID
and how different modules that we have discussed in the section 4 have been
implemented to propose the desired features and how they are working with
each other. LIQDROID is implemented in Java, which is the language that is
widely used to implement Android applications. The first expectation in im-
plementing the LIQDROID through the proposed modules was to benefit as
much as possible from the features that are already available in the Android
framework to distribute the execution of a component, more precisely the
activity or service, on the connected proximal devices. Working inside the
Android platform was beneficial for us from two points of view: first, the
LIQDROID is able to utilize the components of the currently available An-
droid applications in the market in the process of distributing the execution
of the user desired task; and second, the applications will only need very
simple changes to become fully compatible with the LIQDROID-to be able
to both send requests to the LIQDROID and accept the execution of the user
desired task. So, the developers will not need to gain much additional knowl-
edge to make their old or newly developed applications compatible with the

83

i
i

“thesis” — 2018/6/4 — 20:50 — page 84 — #102 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

LIQDROID. They only need to obey the rules in providing the required data
for the LIQDROID to manage the task execution. In the following section,
we will discuss more precisely these LIQDROID-defined rules.

Interaction Layer

Communication Manager

Artifact Manager

Intent
Manager Event

Manager

 Android Framework

Content Provider IntentWiFi Interface Package Manager

 <<use>>

<<use>>

Connection Layer
Device Abstraction

Device Capability
(Services &
Features)

Services

Features

Advertisement

<<use>><<use>> <<use>>

 Send intent Receive intent

DeviceList Device Info

Running Application

Discovery Communication
Channel

Google Nearby Message

<<use>>

 CommunicationChannel
 (Send & Receive)

Task Execution Manager

 <<use>>

Setting

Service Manager

LIQDROID

Figure 5.1: Architecture of LIQDROID (Modules’ dependencies)

Undoubtedly, one of the important aspects of LIQDROID is its ability to
properly support the connection step between the devices. After properly
connecting the devices, LIQDROID is capable of offering a consistent An-
droid ecosystem to the user, and the user will be able to exploit the features
brought to him by this ecosystem to have a better experience in executing a
task.

5.1 Advertisement and Discovery

The LIQDROID will be entirely independent from the connection protocol
for sending the intent to the other proximal devices; therefore, we need to
provide our own mechanism to support the discovery and advertisement of
the device capabilities and the information which is required to connect the
devices. In the advertisement phase, devices will advertise a message that
includes the device name, device type, the Wi-Fi network name under which
the device is currently connected, the IP address and the socket port number
(we will explain its usage in the next section, 5.3). The device name and

84

i
i

“thesis” — 2018/6/4 — 20:50 — page 85 — #103 i
i

i
i

i
i

5.1. Advertisement and Discovery

type will be used to inform the user about the existence of available devices
in his proximity so that he can connect to those that he prefers and deems
as safe. For transferring this message to the proximal devices, we used the
Google Nearby Message API. The Android devices will typically advertise
their features, and the other devices are able to discover them upon applying
discovery.

In order to connect to the devices that are available and preferred in
the user’s proximity, he needs to apply the discovery. When a user starts
the discovery by accessing the setting menu of the LIQDROID, a list of
the nearby devices will be available to the user. This list contains some of
the information extracted from the message that has been sent to the other
devices by using Google Nearby. Currently each element of the list contains
the name of the device, the type of device and the battery level. Therefore,
the user is able to choose whichever device that he prefers that suits his
needs based on this information. When the user has selected the preferred
devices to connect to, a connection request message will be sent to those
devices through Google Nearby. This will enable the users of those devices
to decide whether they agree to let the other proximal devices use their
devices or not. Sometimes the user needs his device, or he is in a public
place and does not trust foreign devices, or the device is already interacting
with other devices. In such cases, by rejecting the connection request the
user is able to prevent these interruptions. The source device will receive
the connection responses from the selected devices through Google Nearby
and the following scenarios may happen:

• Reject: If the other device does not accept the connection request, upon
receiving the reject response, the LIQDROID will notify the user that
they will need to select another device(s) to connect to.

• if the destination device has accepted the connection request, the two
devices will become connected through the Wi-Fi that we will discuss
in the section 5.3.

The figure 5.3 shows how the Google Nearby Messages work, which
involves five steps. Take, for example, that two smart phones are in close
proximity of each other. The process would be as follows: (Step 1) Device
A registers online with the Google Cloud and stores the message that it
wants to advertise there; then it will receive a token (key) to advertise with a
predefined tag, which here is "LIQDROID". We have put this message in the
above-mentioned information that will be advertised by the Android devices.

85

i
i

“thesis” — 2018/6/4 — 20:50 — page 86 — #104 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

(Step 2) In order to receive the advertised data, the other device needs to
subscribe to that data by providing its tag as "LIQDROID". (Step 3) In order
to recognize that the devices are in proximity to each other, Google Nearby
will use a wide variety of connection protocols which may be available
on the devices, such as Bluetooth, Bluetooth Low Energy, Wi-Fi and an
ultrasonic modem to transfer the token from Device A to Device B. (Step 4)
Device B will use this token as a key to get access to the match data, which
is the original message stored in the cloud. (Step 5) The Google Cloud will
deliver the message sent by Device A to Device B. So, the exchange of
all the data transferred between the proximal devices will go through the
cloud and the data will not actually be sent peer-to-peer. For this reason, the
Google developers have strongly suggested that to be able to transfer the
message faster and to be sure that the other device will receive it, you should
keep the size of the message less than 3KB; whereas the maximum message
size that it can currently support is up to 100KB. So, in order to properly
manage the synchronization as well as manage the data exchange between
the proximal devices, we were forced to implement another layer to support
the communication and the data management between the devices, which
we will explain more in the section 5.3.

Through LIQDROID, all the devices will be continuously connected
to Google and will advertise themselves so that the newly joined devices
can be easily discoverable by the other devices without the user having to
activate the advertisement procedure manually, unless they have disabled it
previously.

5.2 Group Formation

After that LIQDROID on the source device has received the acceptance
response of the connection request, it will provide the possibility for the user
to put them in a group. The user will have a dialog box which will provide
the following options for him to choose from:

• Create a new group with this newly connected device and define a
group name.

• Or add it as a new member to available groups. In this case the group
will be advertised with the updated information (the new member).

• Or to continue the communication without creating any groups.

The user created groups are defined inside each device, which will pro-
vide following advantages:

86

i
i

“thesis” — 2018/6/4 — 20:50 — page 87 — #105 i
i

i
i

i
i

5.2. Group Formation

Figure 5.2: LIQDROID provided alert dialogue for group formation upon receiving
connection acceptance.

• Categorizing the devices that the user has decided to connect to. Then
LIQDROID will use this categorization to give the user the possibility
to perform the distribution of the task on the set of devices that he
prefers but not all of the connected devices. This will improve the
performance of LIQDROID by decreasing the required time to send the
distributed task execution requirements and receive the responses that
we will explain more in the section 5.5.

• The possibility to remove a device involved in an ongoing interaction
or remove it if he does not prefer to be connected with that device
anymore. In this case, he will be able to reach the members of the
group that the device belongs to, and after applying a long click on
the device’s name, a dialogue will be opened by LIQDROID which lets
him remove that device. Then he will become disconnected from those
devices although they are still in his proximity. However, if the user
does not create any group, the devices will only become disconnected
when they are out of the proximity range of each other. The proximity
range of the devices depends on the connection protocol that the devices
use to become connected (in the current version of LIQDROID, this is

1http://blog.p2pkit.io/how-google-nearby-really-works-and-what-else-it-does

87

http://blog.p2pkit.io/how-google-nearby-really-works-and-what-else-it-does

i
i

“thesis” — 2018/6/4 — 20:50 — page 88 — #106 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

Found
Token

Broadcast token
(Bluetooth, Bluetooth Low

Energy, Wi-Fi and an
ultrasonic modem)

Listen/Scan
(Bluetooth, Bluetooth Low

Energy, Wi-Fi and an
ultrasonic modem)

Register token & Publish
(Message Tag: “LIQDROID”,

Message Body: “Device
name, build, type, Ip, name of

the connected network,
socket port”)

Subscribe
(Message Tag: “LIQDROID”)

Device A Device B

Google Cloud

1 2

3

4

5
Message

 (“Device name, build,
type, Ip, name of the
connected network,

socket port”)

Figure 5.3: Advertising and Discovering proximal devices through Google Nearby
Messages 1

the Wi-Fi protocol).

• After creating a group the user is able to decide whether he prefers
to advertise this group to the other members or not. If he decides to
advertise the group, a new message will be created that includes the
group’s name and its members along with other information about the
device (as mentioned above).Instead of the previous message, this new
message will be advertised through Google Nearby.

When the other device receives a message that includes the group
name, it will add this group to the list of groups that are available
on the device. To differentiate these two categories of groups, the
groups that belong to that device will appear as the group’s name along
with the keyword "My Group." This list will be used as a filtering
mechanism and will help the user to only recognize the groups that
he has already created along with their members. He can also see the
other groups and members that are available to connect. In the case of
distributing the task, only the user-created groups will be shown to him
so that he can select from among them.

88

i
i

“thesis” — 2018/6/4 — 20:50 — page 89 — #107 i
i

i
i

i
i

5.3. Communication Channel

Whenever a new user joins or the next time that the existing users
perform the discovery, they are able to select a group and find the
devices that they prefer to connect to among its members while there
still exists the possibility to select the devices to connect to through the
list of all the available proximal devices.

Figure 5.4: Finding the desired devices through available groups’ members or list of all
the available proximal devices.

5.3 Communication Channel

Based on the above mentioned limitation that exists regarding the size of
the message that can be transferred by Google Nearby, we are obliged to
use another connection mechanism to handle the exchange of larger sized
data between the connected devices in case of need. In the recent version of
LIQDROID, we have used the local Wi-Fi network to connect the devices
together, which will enhance the speed of transferring data (specifically
larger amounts) between the devices. However, it is possible to add and use
other connection protocols in the future for transferring the data based on
the availability of the connection protocols on the devices.

The Wi-Fi Network Name, IP address and socket port number that are
included in the discovery message will be used to connect the devices
through the Wi-Fi network. If several networks are available and devices
are on two different networks, LIQDROID will notify the user about the

89

i
i

“thesis” — 2018/6/4 — 20:50 — page 90 — #108 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

destination devices that can be used to connect to the other possible Wi-Fi
networks so that the devices will be able to start the communication. The
source device which has initialized the discovery will create several client
sockets and connect to each device using a separate client-server channel.
We assume that each device has already created a server socket and is ready
to accept the client requests for connection.

Although the devices are connected and are able to both send and receive
the data through the channel, the communication related to executing the
tasks will happen in one way. This means that only the source device which
has sent the connection request is able to ask to distribute a task on the
destination device(s), and the destination device(s) is only able to answer
the requests sent by the source device through the channel. If the destination
device also wants to distribute a task to the source device, it should first send
a connection request. This one-way communication to request to distribute
a task will have two benefits. First, it will prevent the destination device(s)
from executing tasks on the source device unless it has acquired its user’s
permission. Second, it will prevent the concurrency that may happen on
the execution of the tasks on the connected devices, because the source
device has a higher priority to execute a task and the destination device is
able to execute a task on the source device if the user gives the permission.
However, the user is able to reject the connection if he still wants to benefit
from all the resources available on the destination device or if he thinks
that the connection will cause an interruption in the execution of the current
distributed task by him.

After the devices become connected, for sending the user’s task distribu-
tion request (the intent), we have used the Android Message API. We have
created an abstraction for the message that is being exchanged between the
proximal devices; this class is called "unitMessage". The LIQDROID will
use this class to perform the serialization and deserialization mechanism on
the message, more precisely to the intent and its fields which may contain
different types of the data, to be able to transfer it through the Wi-Fi channel
and recreate it on the other side (destination devices).

The figure 5.5 shows the procedure of transferring the "unitMessage"
to distribute the user-defined task on the destination device(s). The user
provides a task execution request through a LIQDROID-compatible com-
ponent(1); LIQDROID receives this request as an intent delivered by the
Android framework (2). Then, LIQDROID will put this request as a data ob-
ject along with all the other data objects that it may require on the destination
device(s) to handle the task execution, inside a new "unitMessage", serialize
it (3) and send it to the destination device(s) (4). When LIQDROID on the

90

i
i

“thesis” — 2018/6/4 — 20:50 — page 91 — #109 i
i

i
i

i
i

5.4. Device abstraction

destination device (device 2) receives this message through the network
channel it will deserialize the message, store the data part that it includes
in the storage, and recreate the intent. The new address of the stored data
(which belongs to this destination device) will be replaced inside the recre-
ated intent instead of the previous address (which belongs to the source
device), and the intent will become ready to be executed. This will provide
all the requirements to execute the distributed task on the destination device.
The data objects which are to be transferred along with the intent and the
execution of the intent on the new device will be handled by the Intent
Manager module that we will explain in the section 5.5.

Device 1 Device 2

LIQDROID-Compatible
App

Activity 1
LIQDROID Android

Framework

Send task
distribution

request
(Launch Intent)

Deliver task
distribution

request
(Launch Intent)

LIQDROID Android
Framework

unitMessage
(includes
Original
Intent)

Execute
 Original

Intent

Figure 5.5: Transferring the execution request(intent and its required data) through the
unitMessage.

5.4 Device abstraction

There are two different phases that LIQDROID may need in order to do the
discovery for the user for the proximal devices that we explain them here
separately.

5.4.1 Device Level Discovery

This phase of discovery happens when the user wants to connect to the
proximal devices to distribute a task. In this phase LIQDROID will use

91

i
i

“thesis” — 2018/6/4 — 20:50 — page 92 — #110 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

the physical characteristic of the devices to give an overview about the
availability of the devices in his proximity, such as smartphone, tablet, etc.,
which will also remind the user about their physical characteristics such as
the screen size or their functional capabilities.

5.4.2 Application (Components) Level Discovery

This phase of discovery happens when the user wants to select among the
connected devices to find the best match or his desired device to distribute the
task. On this phase LIQDROID will benefit from the features and capabilities
that the device is supporting such as by filtering those devices that have
a camera and can take photos. The mechanism that LIQDROID uses is
beyond the physical device, but it will search among the components of
the installed applications on the proximal devices to find those components
that are able to perform the user’s desired task. The idea of this mechanism
has been adopted from the Android framework. So there is not any relation
between the whole device and the requirements of the task that is going to
be distributed except the features and the capabilities of that device. This
will allow the user to not be restricted to a single device but to benefit from
several devices in combination to perform different parts of a single task.

5.5 Intent Manager

The communication between the installed applications’ components and
LIQDROID happens through exchanging intents. As we have explained
in the section 3, in order to call other components in the Android, the
developer needs to create an intent and execute it. So in order to send the
request for distributing the execution of a task, the developer needs to put
the request inside the intent which he will use to call LIQDROID-service.
The structure of the task execution request is in the form of an intent. This
means that the developer should provide an intent in the same way that
he creates when he wants to call other components inside the same device.
However, instead of executing it through the Android OS, he will give it to
LIQDROID to execute it. So, the developer does not need to apply major
changes to benefit from the features which are available in LIQDROID to
distribute the task; he just needs to provide additional data objects in the
form of extra fields to this intent for LIQDROID. The developer should also
remove the part which is in charge of starting the intent, as LIQDROID will
handle this part properly (by considering the provided extra fields) on the
destination device on behalf of the source component. The provided data in
the extra fields will make LIQDROID capable of distributing the execution

92

i
i

“thesis” — 2018/6/4 — 20:50 — page 93 — #111 i
i

i
i

i
i

5.5. Intent Manager

of the task. These LIQDROID-defined extra fields include the name of
the feature that the developer needs from LIQDROID to perform along
with the extra data which is needed by LIQDROID such as the requester’s
component name, its package name, etc. As we mentioned earlier, different
components in parallel can send requests to LIQDROID. LIQDROID will
use this extra data as an ID of the requester to deliver the services to it and
keep the communication between the source and the destination components
consistent for the ongoing interactions such as sending updates, feedback or
the task results. In fact, it will be a mechanism to be sure that the component
which is receiving the responses is the one who asked for it.

In the following, you can find a sample code snippet of providing an
intent to execute an activity to make a call. From now on we will call the
intent that the developer created to launch a component the Original Intent
and the intent that he used to communicate with LIQDROID-service the
Launch Intent. The user is using the Sample LIQDROID App, which is a
LIQDROID-compatible application, and sends the "callIntent" to LIQDROID
to find the list of the components on the proximal devices that are capable of
performing the call. Along with this request, he also puts the extra informa-
tion requested by LIQDROID such as the "SourceAppComponentName" and
the "SourceAppPackageName". The name of the action which is defined by
LIQDROID and has been filled by the developer will enable LIQDROID to
know which feature has been requested by the developer.

/ / The O r i g i n a l I n t e n t f o r l a u n c h i n g t h e c o n t a c t a c t i v i t y t o d i a l t h e
ment ioned number .

1− I n t e n t c a l l I n t e n t = new I n t e n t (I n t e n t . ACTION_DIAL) ;
2− c a l l I n t e n t . s e t D a t a (Ur i . p a r s e (" t e l : " + 391234567)) ;

/ / The I n t e n t which w i l l be used t o communicate wi th \ t e x t s c { LiqDro id}−
s e r v i c e and t o d e l i v e r t h e O r i g i n a l I n t e n t

3− I n t e n t s t a r t L i q D r o i d = new I n t e n t () ;
4− s t a r t L i q D r o i d . se tComponent (new ComponentName ((" com . a n d r o i d . iman i .

l i q d r o i d " , " com . a n d r o i d . iman i . l i q d r o i d . MyService ")) ;
5− s t a r t L i q D r o i d . p u t E x t r a (" o r i g i n a l I n t e n t " , c a l l I n t e n t) ;
6− s t a r t L i q D r o i d . p u t E x t r a (" SourceAppComponentName " , "com . example .

sampleLiqDroidApp . M a i n A c t i v i t y ") ;
7− s t a r t L i q D r o i d . p u t E x t r a (" SourceAppPackageName " , "com . example .

sampleLiqDroidApp ") ;
8− s t a r t L i q D r o i d . s e t A c t i o n (" C h o o s e r L i s t ") ;
9− s t a r t S e r v i c e (s t a r t L i q D r o i d) ;

We will discuss these LIQDROID-defined features defined in the form of
intent-actions in the upcoming sections. Here the ChooserList means that
the developer, by using LIQDROID, enables the user to select one among the
available capable components on the proximal devices and make a phone
call by using that component on that device.

93

i
i

“thesis” — 2018/6/4 — 20:50 — page 94 — #112 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

The Action that has been defined in the Original Intent will be used by
LIQDROID to find the list of capable components on the proximal devices.
After receiving this list from all the devices that are connected to the source
device, LIQDROID will provide a list of the available components on the
proximal devices. This list includes the name of the device followed by the
component name on it that is available to perform the user’s desired task
along with an icon of the application on which the component belongs. At
the end of this list, LIQDROID also adds the list of the capable components
that are available on the source device. Because it may happen that, although
the possibility to execute the task exists, the user, based on a certain situation,
prefers to use his own device to follow the task, these components will
appear on the list by the keyword "My device" followed by the name of
the component. The name of the component has been extracted from the
application package that it includes; therefore, the user can better decide on
the component of the application he prefers to use. As you see the Original
Intent should not have the execution method because the developer will give
this intent to LIQDROID to execute it. And the Original Intent should be
executed on the device that the user prefers to distribute the task execution
to. After the user has selected his preferred device from the chooser list,
LIQDROID will send the Original Intent along with the data that it needs to
the destination device using the unitMessage.

Device 1 Device 2

LiQDROID-Compatible
App

Activity 1
LIQDROID Android

Framework

Send task
distribution

request
(Launch Intent)

Deliver task
distribution

request
(Launch Intent)

LIQDROID Android
Framework

Activity 2
Google Chrome

unitMessage
(includes

Original Intent)

Launch
Activity 2

Execute
 Original Intent

Figure 5.6: Sequence diagram of distributing the task’s execution through the Intent
Manager Module

94

i
i

“thesis” — 2018/6/4 — 20:50 — page 95 — #113 i
i

i
i

i
i

5.5. Intent Manager

Generally, the Intent Manager will interpret the intents at two phases;
first, when it receives the intents through a Launch Intent, and the second
when the intent has been received through the unitMessages. As you can
see in the figure 5.6, the user sends the Original Intent through LIQDROID-
compatible Activity 1 to LIQDROID (1). As soon as LIQDROID receives the
Launch Intent, (2) has extracted the Original Intent, and the Intent Manager
module is in charge of interpreting it and performing the task distribution
by considering the desired features (3). Then LIQDROID will send this
Original Intent through a unitMessage to the destination device (4). The
Intent Manager module in LIQDROID on the destination device (device 2) is
in charge of interpreting the Original Intent, providing all the requirements
including the data, and executing it on behalf of the Activity 1 (5). The
Android OS captures this intent and launches the Activity 2.

In the following sections, we will define the features which are proposed
by LIQDROID and the extra fields required by it, and we also provide a short
and simple document that will better guide the developers with samples for
creating LIQDROID-compatible intents to request LIQDROID’s available
features.

5.5.1 Task Execution Manager

To provide a seamless interaction between the source and destination devices,
to control the execution of the distributed task through receiving the user’s
inputs and preferences and applying them, LIQDROID needs to know in
advance which type of interaction is going to happen between the devices
and what the requirements are to handle this type of seamless interaction. We
have provided a general overview of all these LIQDROID-provided features
to support the seamless interactions between the devices in the table 5.1
while for the more technical and comprehensive explanations you can refer
to the relevant section.

To better understand the necessity of these features, considering this
example that if the user prefers to resume a task on the other device, instead
of simply launching a new activity, we will need to transfer the current state
and resume the activity on the destination device from that state instead
of LIQDROID just launching it. This is a simple situation, but other more
complicated interaction types exist where the user needs to control the
execution of a distributed task through using the source device without
reaching the destination device. This means that LIQDROID is in charge of
distributing the input or the user’s command is applied on the source device
to the destination devices. For this purpose, LIQDROID represents a new

95

i
i

“thesis” — 2018/6/4 — 20:50 — page 96 — #114 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

field inside the Launch Intent, which is called "Device Role", to define the
role of each connected device involved in an interaction.

Name of
Feature Category Description App To

LIQDROID LIQDROID To App Module

Launch
Action

Distribute a task
(Launch a
component)

● Is used for requesting to
Launch a component on
the destination device(s)

�

On the source
device

 �
 On the destination device(s)

● LIQDROID will execute the
Original intent on behalf of
the source component.
● The target app can be the
already existing apps in the
Android market or a
LIQDROID-Compatible app.

Task
Execution
Manager

Device
Role

Managing
devices'
integration

● Is used for distributing
the tasks of the categories
Complementarity and
Synched Devices.

�

On the source
device

 _
Task
Execution
Manager

Bundle
State
Synchronization

● Is used for distributing
the tasks of category Device
Shifting
● The data which is
required to resume a
component on the
deestination device(s) from
the state that it has on the
source device.

�

On the source
device

 �
 On the destination device(s)

● LIQDROID will execute the
Original intent including the
Bundle on behalf of source
component
● The target app should be
LIQDROID-Compatible.

Task
Execution
Manager

Update
Action

State
Synchronization

● Is used for sending
regular updates to the
device(s) regarding to the
state changes that happen
on the running source
component.

�

On the source
device

 �
 On the destination device(s)

● LIQDROID will broadcast
the Update intent in the system
● The target app should be
LIQDROID-Compatible.

Task
Execution
Manager

Feedback
Action

State
Synchronization

● Is used on the destination
device(s) to provide
responses to the received
updates in case of need.

�

On the
destination

device(s)

 �
 On the source device(s)

● LIQDROID will broadcast
the Feedback intent in the
system
● The target app should be
LIQDROID-Compatible.

Task
Execution
Manager

Termination
Action

Managing
devices'
integration

● Is used to kill the activity
or services on the
destination device(s) that
the user is not interested in
using it (them) any more.
● Will make the destination
device(s) free and will
release their resources.
● Will remove the activity
from the Activity back
stack of Android.

�

On the source
device

 �
 On the destination device(s)

● LIQDROID will broadcast
the Termination intent in the
system.
● The target app should be
LIQDROID-Compatible.

Task
Execution
Manager

Table 5.1: Provided features by LIQDROID for managing the seamless interactions
between the devices through the Task Execution Manager

96

i
i

“thesis” — 2018/6/4 — 20:50 — page 97 — #115 i
i

i
i

i
i

5.5. Intent Manager

This extra field will enable the source device to acquire the role of the
controller of the destination devices and manage them properly to collaborate
with each other to achieve the user’s desired goal. For example, consider
that you have a video player activity running on your smartphone consisting
of a panel that shows the video, a panel to control the video, and a panel
for the set of existing reviews. You transfer the panel of video view to the
big Android TV and the panel of the review to your tablet. Then, you use
your smartphone to control the video or scroll down/up the reviews. In this
scenario, the source device is playing the role of the controller of the two
other devices, and LIQDROID needs to forward its provided commands to
the right destination device.

There are two different types of roles in LIQDROID:

• Controller : which will be defined by the developer,

• Client: which will be assigned to the connected devices by LIQDROID
which will also keep track of them.

LIQDROID handles the coordination between the devices through check-
ing the "Device Role" field in the received Launch Intent. More precisely,
the Device Role will be useful for the usage scenarios that go under the
category of complementary or synched tasks.

5.5.2 Categories of devices’ interactions

The synchronization between the devices not only happens during the inter-
actions but also it considers the initialization and termination states, which
means launching and terminating an activity or service through LIQDROID.
Here we will further explain the requirements that need to be handled by LIQ-
DROID to support the synchronization in each type of interaction between
the devices:

1. Device Shifting:
To handle this situation, LIQDROID checks if there is the possibility
and interest in resuming a component on the other proximal devices by
receiving the user’s choice and interpreting it. After showing the list of
the capable components to perform the task on the proximal devices,
LIQDROID will receive the user’s choice and handle it as follows:

• Resume: If the user has selected the same component to be exe-
cuted on the other proximal device(s), LIQDROID will transfer the
current state of the component along with the intent to the other

97

i
i

“thesis” — 2018/6/4 — 20:50 — page 98 — #116 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

device, and the component will be resumed with the same state it
had on the source device.

• Other: If the user selects a different component, the state will not
be required and transferred.

In device shifting, the data that we need to handle for the synchroniza-
tion purpose is the current state of the component. The state which we
are going to use to resume an activity on the other device(s) is the same
bundle that the Android OS is using to keep the state of an activity
when it goes into pause mode. To this end, if the developer wants to
relaunch the activity with its last state, he needs to save this bundle.
The LIQDROID will use this same bundle to resume the activity with
the last state that it has on the source device while it is launching it on
the destination device.

In order to improve LIQDROID’s performance and to prevent unneces-
sary interactions with the source component, LIQDROID will ask the
bundle from the source activity only when the user wants to resume the
same activity on the destination device. By the same activity, we mean
that the activity on the source device and the activity on the destination
device(s) all belong to the same application package.

Although through the inter-process communication in one device we
can send the bundle along with the intent to another component, this
does not work properly when it is going to call a component on the
other devices, so LIQDROID needs to apply another approach. Because
the current mechanism that the Android framework is using to serialize
the intent (Android Parcelable mechanism) does not support its bundle
as well, LIQDROID needs to take care of serializing the bundle and
sending it along with the Original Intent to the destination devices. It
will deserialize it there and use it to resume the activity from the last
state that it had on the source device.

2. Complementarity:
If there is an activity that will be executed in parts on different proximal
devices and will be controlled by the source device, the activity needs
to also set the device role field in the Launch Intent. Assigning a
role, besides letting the "Controller" device control the other proximal
devices, will give LIQDROID the possibility to manage the execution
states of the assigned tasks on the destinations devices (Clients) or the
ability to terminate them in case of need to release the resources. We
will further explain the possibility to terminate a task in the section 5.7.

98

i
i

“thesis” — 2018/6/4 — 20:50 — page 99 — #117 i
i

i
i

i
i

5.5. Intent Manager

3. Synched Devices:
To keep the state of the distributed tasks synced in all the devices which
are running LIQDROID-launched components, LIQDROID needs to
send intents on a regular basis as soon as a state change happens in
the source component. State changes can be applied by considering
different types of data received by LIQDROID on the destination de-
vices. The LIQDROID will make it possible to support the exchange of
various types of data (serialize/deserialize). The state changes may be
required through the Wi-Fi channel, but the interpretation of these data
and updating the component’s state on the destination devices will be
under the responsibility of the developer along with the frequency of
sending the updates. For example, a user may need to open different
pages of a book on several connected devices, and when he goes to
the five next pages, the page number of all the connected devices will
be shifted to the next five pages based on the current page on each
device. Here, the data is as simple as a page number that should be
transferred by LIQDROID to the destination devices, while it could
be a more complex case including several types of data; for example,
when the user wants to fill a form by entering the text and image on
his device and at the same time update the state of the form also on the
other connected devices.

5.5.3 Managing the devices during the interaction (State Synchro-
nization)

LIQDROID enables the developer to be able to not only launch components
on the destination devices but also send updates and receive feedback (ac-
knowledgements) related to them regularly. It is capable of either perfectly
supporting the usage scenarios that different components are receiving ser-
vices from LIQDROID in parallel without interrupting each other or having
access to the data of each other (prevents data leaking among the various
components). In the following section, we will explain in detail these up-
date and feedback actions defined by LIQDROID and how LIQDROID will
manage their execution. To request different LIQDROID-supported features,
the developer should create Launch Intent with the following action names
along with the required data by LIQDROID for that action.

• Launch Action:
This is the initial point for the process of distributing the execution of a
task. So, whenever LIQDROID receives an intent with this action name,
it will provide a list of the available components capable of performing

99

i
i

“thesis” — 2018/6/4 — 20:50 — page 100 — #118 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

the action defined in the Original Intent, on the destination devices as
well as the user’s device at hand. If the user chooses his own device,
the intent will only be executed there, but if he decides to (also) choose
the other device(s), the intent will be sent to the other devices as well.
In case of the scenario that the user wants to resume an activity on the
other device, the developer needs to also put the bundle as an extra
field in the Launch Intent.

To provide the list of the capable components (activities or services),
LIQDROID follows the same procedure that Android OS already uses
to provide the chooser list when it receives an implicit intent. The
chooser list is the one that shows all the installed applications capable
of performing the user’s desired action. For example, when you want
to open a URL, if you did not define the default browser yet, Android
will show you the list of the installed browsers on your device and you
can choose one to open the URL.

Here LIQDROID of the source device will extract the action name of
the Original Intent and send it to LIQDROID of all the other connected
devices. They will create a list of all the components which have the
proper intent filter by using the PackageManager and the ResolveInfo
classes inside the Android framework and return this list to LIQDROID
on the source device. As soon as the source device has collected all the
responses from the connected devices, it will put them in a list along
with its own list of capable components (received from the Android
OS in the same way) and show the final list to the user to choose the
ones that he prefers.

Figure 5.7 shows how this procedure occurs inside two Android devices.
The "Take Image Activity" executes a Launch Intent to start LIQDROID-
service (1). Android OS catches this Launch Intent and delivers it to
LIQDROID as it is the only component that has the proper intent filter
(2). LIQDROID extracts the action name of the Original Intent, puts
it inside a "unitMessage" and sends it to the other device through the
network channel(3). On the destination device (device 2), LIQDROID’s
Intent Manager module will receive the request and send it to the task
execution manager module (4). It creates the chooser list by resolving
the intent’s action against the available components (5).The chooser
list, which includes the components "Activity2" and "Activity3", will
be transferred back to the Intent Manager Module (6) and then through
the "unitMessage" to LIQDROID on device 1 (7).

The Intent Manager Module on device 1 will receive the component list

100

i
i

“thesis” — 2018/6/4 — 20:50 — page 101 — #119 i
i

i
i

i
i

5.5. Intent Manager

of destination devices (8) and will find and add the component "Activ-
ity4" that is available on its own device (9) and will show the final list
to the user and let him pick the one preferred. As we explained before,
after the user has selected the preferred components(10), LIQDROID
will handle the execution of the selected components on the desired
devices(11).

Device 1 Device 2

LIQDROID-Compatible
App

Take Image Activity
LIQDROID Android

Framework

Send task
distribution

request
(Launch Intent)

Deliver task
distribution

request
(Launch Intent)

Android
Framework

Activity 3
Camera Activity

unitMessage
(includes

Action name
of the Original

Intent)

ResolveInfo Result
(list of capable
components

including Activity 2
and Activity 3)

unitMessage
(list of capable
components

including
Activity 2 and

Activity 3)

ResolveInfo
Request

ResolveInfo Result
(list of capable
component(s)

including Activity 4

Preparing the final
Chooser list

(list of capable
component including
Activity 2, Activity 3

and Activity 4)

Showing the chooser
list to the user

Receive user’s
selected choice

(which is Activity 3) unitMessage
(includes

Original Intent
which contains
info of selected

component)

Execute
 Original Intent

Launch
Activity 3

User LIQDROID

ResolveInfo
Request

Figure 5.7: Showing the Chooser list (of capable components) and launching the desired
component(s) on the destination device(s)

• Update Action:
For those interactions that go under the categories of complementary
or synched devices, it is more probable that the developer wants to
send several updates to change the state of the components which are
running on the destination devices. The Update intent can include
the data related to the new received user’s input or the state changes
that happened during the execution of the component. As soon as
LIQDROID receives the Launch Intent with the action name "Update," it
will broadcast it inside the device, and the running component in charge
(by comparing its package name and component name with those
provided in the intent) can catch it. To overcome the privacy concerns

101

i
i

“thesis” — 2018/6/4 — 20:50 — page 102 — #120 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

and prevent information leakage, it is better that developers define
unique names for the fields inside this intent, encrypt the sensitive data,
put it in the Update Intent and then send it through LIQDROID. So, in
this way even if other components capture these Update intents, they
are not able to steal the data.
As the interaction between LIQDROID and other components happens
through exchanging the intents, this is also the case for updating the
state of the other components. If the developer provides data inside
the Update Intent which has a large size, there could be a delay in the
execution of the intents in the destination devices and also in applying
the updates on them. LIQDROID will use the same procedure as the
Android framework to handle the execution of the intents, which is
through considering a queue and processing them one by one. If while
LIQDROID is sending an Update Intent, the user of the source device
changes his mind and prefers to launch another component on that
destination device, then LIQDROID receives a Launch Intent to launch
a new component on that destination device, which has a higher priority
than the Update Intent. However, if it is still busy with sending the
Update Intents that it previously received with a large size of data, this
new Launch intent will wait until its turn arrives.
In order to avoid this inconsistency when LIQDROID receives an Up-
date Intent, it checks the data size. If the size of the data is higher than
a certain threshold, it will transfer the data between the source device
and the destination devices through the cloud infrastructure, which will
highly decrease the time required to send updates with a large data size
included. We will talk more about handling the data through the cloud
infrastructure in the section 5.6. In this way, LIQDROID is able to
better manage the execution of these queues of the intents and improve
its performance.

• Feedback Action:
In some use case scenarios, it is necessary to receive an acknowledge-
ment or a response back in order to be able to continue the execution
of the distributed task and go on to the next steps. In this way, the
developer is able to provide milestones, control the task execution at
runtime and be sure that the previous part of the task has been handled
successfully by receiving the acknowledgements from the destination
devices and then moving forward. For this purpose, LIQDROID has
been considered an action name which is called "Feedback."
As we currently mentioned, multi-device context is highly dynamic,

102

i
i

“thesis” — 2018/6/4 — 20:50 — page 103 — #121 i
i

i
i

i
i

5.5. Intent Manager

and devices may leave the context at any point in time, so acknowl-
edgements are highly necessary for saving the time to know how much
of the task has been done correctly before a specific event has occurred,
such as the connected device dying or leaving the context.
The important point that we need to mention here is that, as we said,
the communication between the devices for distributing the execution
of a task is one-way. But this restriction is only concerned about
distributing the execution of a task on the source device through the
destination device, while the destination device is capable of benefiting
from the Wi-Fi connection to send the Feedback intent to the source
device without the need to ask for any permission in advance.

• Termination Action:
As we are launching a component on the destination devices, we are
using their resources, and this can cause some issues on the execution
of the next tasks, such as decreasing the performance because there
would be other executed tasks left in the background, or decreasing the
battery, etc. To this end, LIQDROID has considered a mechanism to
terminate the execution of the distributed task by finishing the running
component on the destination device(s) to free up the resources.
In general, LIQDROID as a third-party application is not able to kill
any activity which does not belong to its own application package, so
we need to call the kill method which has been implemented for this
purpose by the developer inside that component to finish its execution.
This is more important when the running component is an activity as it
will acquire the screen of the device and will stay on the activity’s back
stack if a new activity is launched on the device. Therefore, in order to
manage the execution of the components on the other devices, more
precisely managing the activity back stack on the destination devices,
LIQDROID reserved an action name which is called "Termination."
The Termination intent will enable LIQDROID to manage the back
stack of the Android framework existing on the destination device(s)
and will remove the activity that has been launched by it there while
the user is not interested in it anymore.
To better understand the importance of this feature, assume that the
user has selected device B to play a video. While it is playing the video,
it receives a new launch activity intent and launches the new activity
for taking a picture. As soon as the current task has been finished,
the activity should be destroyed and the previous activity that was
responsible for playing the video should come up to the foreground

103

i
i

“thesis” — 2018/6/4 — 20:50 — page 104 — #122 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

again. So, to handle this scenario, we consider that when LIQDROID
realizes that the taking picture task has been handled successfully (by
receiving a Feedback intent on the source device), it will broadcast the
terminate intent received by the source device and the camera activity
will be killed on the destination device. This results in the previous
activity being resumed, and the user can continue to watch the video
without the need to reach that device to relaunch the activity. In the
following section 5.7, we will further discuss this feature, especially
considering cases in which different users may compete to distribute
the execution of a task on the same destination device.

For sure, managing the execution of a service is much easier than
managing that of an activity. The first reason is because several services
at the same time can be running in the background, while there could
only be one activity actively running on the device (if the activity goes
to the background, all its ongoing tasks will be paused). The second
reason is that the lifecycle of an activity is much more complex than the
service, as we explained in the chapter 3. And this is the main reason
why here we focus more on managing the execution of the activities,
although in the section 5.8 we will also mention how LIQDROID will
manage the execution of the services.

As we discussed more in detail here, handling the interaction between
the devices and distributing the execution of the tasks is more complex than
just finding the best capable device to launch a component there, which is
provided by the service-based solutions currently available. In a way, it
is not just a one-time communication to make a request to the connected
device but the user can continuously send the required changes as an update
to the other device(s), synchronize the state of all the connected devices,
control their execution by receiving feedbacks, and be able to terminate an
interaction.

5.6 Artifact Manager

LIQDROID can transfer the data between the connected devices through
two different mechanisms: through the cloud infrastructure and directly
through the local Wi-Fi network. By the data, we mean the files (images,
audio, video, .txt files, etc.) and values which will be used as an input by a
component.

104

i
i

“thesis” — 2018/6/4 — 20:50 — page 105 — #123 i
i

i
i

i
i

5.6. Artifact Manager

5.6.1 Transferring data through the cloud infrastructure

As the devices may join or leave the context at any point in time, storing
the final results of the distributed task can enable the user to have access to
it on the move or later in time in other contexts with new sets of proximal
devices.

Currently, we are using the Firebase for storing the data and loading it
into the other device(s). It gives the user the possibility to load the results
provided by the other components of the destination devices to be accessible
even if those devices are not in the proximity of the source device or in
general are not connected to the source device anymore.

The other way around, if the source device has been sharing content
which is being used by the other users on the destination devices, even if
the source device leaves the context, the other devices are able to continue
the execution of the components until the task is finished, as well as being
able to store the final results in such a way that they will be accessible to the
source device from anywhere and at any time.

Another advantage of using this approach is the possibility to support the
asynchronous execution of the consequence tasks. LIQDROID lets the user
store the data (which was achieved from the execution of another part of
a distributed task) and postpone the execution of the rest of the distributed
task to the time that the proper device joins or is available in the context.

As the figure 5.8 shows, Firebase storage allows an application installed
on a different set of Android devices to share their data with each other to
have access to them to change and update them. As LIQDROID is a service
which is running on each of the Android devices, the Firebase storage
enables all LIQDROID instances installed on different devices to have access
to a shared storage to upload or download the data of/for a component. In
this way, even if there is not any storage available on the source device to
store the results of a distributed task, the user is still able to distribute a
task and have access to its result. This mechanism will also provide the
possibility to directly move the data from the current destination device to
the next destination devices selected by the user; so the data can easily flow
between the devices without the source device being involved.

There are two types of data that are going to be transferred to the other
device: structured and unstructured. Unstructured data includes various file
types such as video, images, text files, etc., and Structured data is the values
that will be kept in a database. For the unstructured data, LIQDROID will
follow the current policies of the Android framework. This policy says that
the files of an application will only be accessible through the components

105

i
i

“thesis” — 2018/6/4 — 20:50 — page 106 — #124 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

Figure 5.8: LIQDROID will share artifacts between different devices through Firebase
Storage. 2

which are in the application’s package, unless it provides a content provider
that lets the components of the other applications also have access to these
files. LIQDROID will have a general content provider to share the data
if the original owner of the file lets the other components have access to
it; otherwise, it will keep the files private and will share them only upon
the owner’s request. The owner of the data will be the component on the
source device that the task distribution has been requested through or the
one that is controlling the execution of the distributed tasks on the connected
destination device(s).

The mechanism of managing the results related to each distributed com-
ponent through LIQDROID is as follows: The component on the source
device should provide the extra information in the Original Intent such as
the type of data and the defined name for the data that will be achieved as the
result of the distributed task. LIQDROID will create a folder in the Firebase
storage under the name of the source device followed by the package name
of that component. Inside this folder, there will be a file under the name
of that component which includes the achieved results. As we mentioned
previously, the developer is obligated to provide the package name and the
component name in each of the Original Intent. Consequently, in order to
use the results of an already distributed task in another selected destination
device, the developer just needs to add the file name. Then, LIQDROID on
that selected destination device is in charge of downloading the data with
the provided file name.

2https://firebase.google.com/products/storage/

106

https://firebase.google.com/products/storage/

i
i

“thesis” — 2018/6/4 — 20:50 — page 107 — #125 i
i

i
i

i
i

5.6. Artifact Manager

A concurrency may happen if several destination devices attempt to store
their achieved results through LIQDROID at the same time. To this end,
LIQDROID will use a version control mechanism to support this concurrency
as follows; in the first step when the developer makes a request for storing
the data in this way, it is also in charge of providing the name of the file and
is highly recommended to provide a unique name for each request that the
user may make. In the second phase at runtime, LIQDROID will check the
available files inside the storage that are assigned to that component; if the
proposed file name already exists inside it, LIQDROID will incrementally
add a number to that file name which shows the availability of different
versions of that file. Whenever it receives a request from the user for a file
that has the same name as the file name that already exists, it will show the
list of the available versions of that file and will ask the user to choose the
version that he prefers to download and work on. The most recent one will
have the higher number.

To manage the storage of the files in the Firebase and to remove those
files that are not required by the user anymore, after a predefined threshold,
LIQDROID will check the availability of the components on the devices and
the file will be removed when the original component is not available on the
source device anymore (which means it has been uninstalled).

Beside the Structured data, LIQDROID is also able to support the storage
of unstructured data. For the unstructured data, LIQDROID is capable of
transferring the values and inserting them into the database on the source
devices on behalf of the destination components (or vice versa). By using
LIQDROID, the user has the possibility to have access to an ad-hoc database
on a single device and will be able to insert data and make queries on its
data through other proximal devices.

To implement this feature inside the components, the developer needs
to make the request through creating the Original Intent by mentioning the
name of the function (includes Insert and Query) and providing the values
(through adding extra fields to the Original Intent). LIQDROID stores and
retrieves the data by keeping the values in a text file, uploading it to the
Firebase storage, downloading it in the source device that has the required
database, and inserting the values. The mechanism for making a query on
the source device and inserting the data into the database on the destination
device is the same as the mechanism used to make a query and insert the
data in a single Android device.

107

i
i

“thesis” — 2018/6/4 — 20:50 — page 108 — #126 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

5.6.2 Transferring data Directly through the local Wi-Fi network

In general, using the cloud based infrastructure to store the results is the
main data management mechanism of LIQDROID. If the user, for any reason,
prefers to transfer the data without using the internet data or keeping it in
the cloud, a direct data transfer mechanism can be used to send the data to
the destination devices.

Although sending a file directly to the other device is more secure than
storing it in the cloud, it would be time-consuming, especially when it is
necessary send a large amount of data to several devices at the same time.
So, it should only be used if there is a necessity. For sending the data directly,
LIQDROID will combine it with the Original Intent and send it to the other
device(s) through the "unitMessage."

As we already mentioned, one of the available policies of the Android
framework is that a component is not able to send a large file directly through
an intent to the other component. Alternatively, for sending the data, the
intent will only contain the reference address of the content (URI), and the
content provider is responsible for providing that content for that component.
To extend this feature among involved devices, as it is not applicable to
use this reference address on the destination device(s), LIQDROID will take
care of transferring the required data through one of the above-mentioned
ways and will store the data in a folder that is only accessible by LIQDROID.
Then, it will execute the intent by using its new URI on the destination
device(s). If the original component prefers to let other components have
access to this data, it will be accessible by the other components through
LIQDROID’s general content provider.

5.7 Event Manager

We have provided a general overview of how LIQDROID is handling different
categories of events that may happen in a device or during the seamless
interactions between the devices in the table 5.2 while for the more technical
and comprehensive explanations you can refer to the relevant section.

5.7.1 Device Level Events

Inside the Android framework, there is a general broadcast receiver that
notifies the user about the different system level events happening inside
a device to perform proper actions in case of need. For example, if the
battery status goes under a certain threshold (generally this is defined as
under 20%), it will notify the user to connect the device to the power source.

108

i
i

“thesis” — 2018/6/4 — 20:50 — page 109 — #127 i
i

i
i

i
i

5.7. Event Manager

In order to provide this mechanism while we are proposing the bigger
Android ecosystem concept, these events should be shared between the
connected devices involved in an interaction to be able to better control
the situation for the user and prevent the unwanted interruptions. For this
purpose, LIQDROID has a general broadcast receiver that captures a subset
of the system events that happen in a device, and it uses them while making
decisions or lets the developer have access to them. This subset of the
considered events in LIQDROID are events related to the battery status,
storage status, screen goes off and on, and the wireless state.

Sharing these events between the connected devices will empower LIQ-
DROID to make better decisions while they can interrupt the normal execu-
tion of the distributed tasks. LIQDROID benefits from the events related to
the battery status of the devices to organize the list of the capable compo-
nents. To this end, LIQDROID will remove those devices from this list while
it will also notify the user if he already is interacting with them.

LIQDROID also lets the developer define his own event class and transfer
it to the other devices. This feature will be more useful for transferring the
input events such as touch events. In this case, the developer is able to define
his own class to capture the input events, transfer it through LIQDROID
on the destination device, receive it, and apply the event on the destination
device. Take, for example, there is a PDF reader application installed on
the source device and also on the destination devices and you are in the
classroom and you open a PDF file. Of course you want to teach on your
tablet and also the students’ tablets. You scroll up and go to the next 4
pages to show a figure; at this time, this scroll event on your device will be
captured and transferred to the other devices and will be applied there as
well. So, the students will see the page that you are on currently without
needing to perform the scroll up action on their tablets.

5.7.2 Interaction Level Events

This category of events is more important when the distributed task is about
executing a component that is an activity because at each point in time it
is only possible to have one activity in the foreground on a device. As we
mentioned already, it may happen that while an activity is using LIQDROID,
another activity sends a new request to it or the foreground activity that has
been launched by LIQDROID changes (a higher priority event happens such
as receiving a call or the user launches a new activity). LIQDROID will
benefit from the task stack that Android is using to keep the order of the
launched activities that took the user interface’s focus in order to manage

109

i
i

“thesis” — 2018/6/4 — 20:50 — page 110 — #128 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

these state changes.

Name of Feature Category Description
App To

LIQDROI
D

LIQDROID To User LIQDROID To App

System
events

Device
Level Events

● Devices are able to
register to receive
certain system events
that happen on the
other connected
devices.

✔

On the
source
device

_

 ✔
 On the destination device(s)
● LIQDROID will use these events to
manage the devices interactions.
● LIQDROID will broadcast the event
inside the device(s)
● The target apps should be LIQDROID-
Compatible to be able to receive the events.

Components
events

Device
Level

Events

● The developer can
define his own event
class such as input
(touch events) and
transfer it to the other
devices.

✔

On the
source
device

_

 ✔
 On the destination device(s)
● LIQDROID will broadcast the event
inside the device(s).
● The target app should be LIQDROID-
Compatible to be able to receive the events.

Activity in the
Launch State
(onStart)

Interaction
Level

Events

● Lets LIQDROID to
be informed about the
status of the running
component(s) on the
destination device(s).

✔

On the
destination

device(s)

 ✔
 On the source device
● LIQDROID will notify the user if the
currently selected destination device is
busy to give him the possibility to choose
another device
● LIQDROID will prioritize the
Chooser list accordingly

_

✔

On the
source
device

 ✔
 On the source device
● LIQDROID will receive the user's
preferences about how to proceed with
the currently distributed tasks on the
destination device(s) including following
choices:
 ▷ Terminating the distributed task
 ▷ Putting it on pause
 ▷ Optional methods
 ▷ Accept (no changes will be aplied)

 ✔
 On the destination device(s)
● LIQDROID will behave according the
user's choice.
● The target app should be LIQDROID-
Compatible to be able to terminate it or
apply the optional method.
● Putting a component on the pause state
can be applied both to the existing apps in
the Android market or LIQDROID-
Compatible apps.

✔

On the
destination

device(s)

 ✔
 On the source device
● LIQDROID will teceive the user's
preferences about how to proceed with
the currently paused tasks on the
destination devices that could be:
 ▷ Terminaing the distributede task
 ▷ Discarding the notification

 ✔
 On the destination device(s)
● LIQDROID will behave according the
user's choice.
● The target app should be LIQDROID-
Compatible to be able to terminate it by
LIQDROID.

✔

On the
source device

_

 ✔
 On the destination device(s)
● LIQDROID will behave according the
user's provided choice on the pause state
which could be:
 ▷ Will resume the paused task
 ▷ Or will apply the developer defined
 method to resume the task.

✔

On the
destination

device(s)

 ✔
 On the source device
● LIQDROID will notify the user that
the distributed task has been resumed.

_

✔

On the
source
device

_

 ✔
 On the destination device(s)
● LIQDROID will broadcast the
Termination intent in the system.
● The target app should be LIQDROID-
Compatible.

✔

On the
destination

device(s)

 ✔
 On the source device
● LIQDROID will notify the user that
the distributed task has been
terminated.

_

● Lets LIQDROID to
be informed about the
status of the running
component(s) on the
source and
destination device(s).

Interaction
Level

Events

Activity on the
Destroy State
(onDestroy)

● Lets LIQDROID to
be informed about the
status of the running
component(s) on the
source and
destination device(s).

Interaction
Level

Events

Activityon the
Pause State
(onPause)

● Lets LIQDROID to
be informed about the
status of the running
component(s) on the
source and
destination device(s).

Interaction
Level

Events

Activity on the
Resume State
(onResume)

Table 5.2: Supporting the occurrences of different events in the devices and also during
the seamless interactions between the devices through the Event Manager Module of

LIQDROID

110

i
i

“thesis” — 2018/6/4 — 20:50 — page 111 — #129 i
i

i
i

i
i

5.7. Event Manager

As we do not have full access to this stack to extract the information
we require, to handle these concurrent events that may happen in a device,
LIQDROID needs to be directly informed when the activity’s lifecycle has
been changed. For this purpose, the activity needs to inform LIQDROID by
sending an intent while the following state changes happen: "Start", "Pause",
"Resume" and "Destroy."

In order to separate the normal execution of an activity when the user
has directly launched it from the instances that the execution of the activity
is under the control of LIQDROID and LIQDROID has launched it, the
developer needs to set a flag inside the activity. In this way, the activity’s
lifecycle changes will only be reported to LIQDROID when the underlying
activity has been launched by LIQDROID, so it will be able to manage the
interaction between the devices and control the execution of the distributed
tasks.

In this Android ecosystem, several Android devices are involved, and
each of them has its own task stack that LIQDROID should also keep a
close watch on to manage the activities that have been launched on them.
The importance of managing the task stack of the other devices is more
detectable when two different users compete to distribute two activities on
the same device. This is important to be managed; to clarify, consider the
example of an Android big screen in a museum that many users in a day will
visit. These visitors may use the screen to extract different information such
as the location of the art pieces, and they also may use it to view images or
videos of the art pieces, etc., and each of these tasks may launch a different
activity on the big Android screen. So at the end of the day, there would be
several launched activities on the big screen that have occupied its memory
and will decrease its performance. Nevertheless, by using the event handling
mechanism implemented in LIQDROID, which we will discuss in more
detail in the following, the unwanted activities will be removed from the task
stack of the big screen whenever the new activities are going to be launched.

One of the main benefits of defining the "Device Role" is being able to
handle these concurrent events that would happen in each of the participated
devices. In this case, as soon as LIQDROID receives a Launch Intent, it
will change the current value of the "Device Role" field on the destination
device(s) and set it to "Client". It will then notify the other user to select
another device, and if the user selects the same device again, LIQDROID
will launch the new activity and notify the "Controller" of the previous
activity that his activity went to the "onPause" state. If it does not receive
any response in a predefined threshold, it will search for that device in the
list of the connected devices, and if the device does not appear in that list,

111

i
i

“thesis” — 2018/6/4 — 20:50 — page 112 — #130 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

this means that the device has left the context or is not in the proximity
of the big screen anymore, so LIQDROID will call the "onDestroy". If
the developer provided the proper method to be called by LIQDROID to
finish that activity, LIQDROID will be able to finish the execution of the
activity, so the activity will be removed from the task stack of the Android
big screen. This proposed scenario is one of the existing potentials that may
cause conflicts in the execution of the distributed task inside the proposed
Android ecosystem. In the following, we will explain other possible conflicts
that may happen during the execution of a distributed task on the proximal
devices and how LIQDROID will manage them.

• Activity in the Launch State:
In the Figure 5.9, we have defined the different states that may happen
to a Launch Intent based on the user preferences at the runtime. In the
first part that the LIQDROID-compatible application is not involved,
the concern lies in discovering the proximal Android devices and
connecting to them as we explained in the sections 5.1 and 5.3. After
the user has connected to the devices that he preferred, he is able to
distribute the task on them. So, the user launches the Video Controller
application, which is a LIQDROID-compatible application, to play
a video on one of the proximal devices while he wants to control it
through his cell phone. In the first step, the user clicks on a button
inside the Video Controller’s activity, which sends a Launch Intent
to LIQDROID. LIQDROID receives the intent and provides the list of
available components on the proximal devices that are able to play the
video. The user selects a component that he prefers.

We need to mention that here the user has selected again a LIQDROID-
compatible component that belongs to the same application package
that the component on the source device also belongs to; in this way
the source component has more access to manage the execution of the
destination components as it knows their structure. This will enable
the user in the next step to push the play button that is proposed by the
Video Controller activity already running on his device and make the
video player component that has launched on the destination device
start playing the video. This procedure will be handled by sending
an Update Intent that the developer has defined under the play button
to the launched component on the destination device through using
LIQDROID. As the role of the Video Controller activity has been
defined as the Controller on the source device by the developer, the
video control options such as play, pause and stop will be sent to the

112

i
i

“thesis” — 2018/6/4 — 20:50 — page 113 — #131 i
i

i
i

i
i

5.7. Event Manager

destination device(s) through the Update Intent by using LIQDROID.

alt

User LIQDROID LIQDROID-Compatible App
Video Controller

Acknowledgement

Original Intent
(includes
information to
perform the Play
method)

Proposing video
controller menu

(Play, Pause, Stop buttons)

Clicking on the Play
button

Sending original Intent

Source Device

List of Available Devices

User Selected Device
Authentication message

alt Response
[Accept]

Devices are connected,
Create a Group

Group Name and request
to advertise the group

[Reject]
List of Available Devices

User Selected Device Authentication message

Launch Intent
(Contains App defined its role) LIQDROID Checks the updated

list of connected devices

[There exists
at least one
connected
device]

 List of Available devices
(along with desired

components)

User Selected device
(and component)

Sending Launch Intent
to destination device
(Contains LIQDROID
defined device role field)

Acknowledgement
(Component has been
launched properly)

[There is not
any connected
device]

List of Available Devices

User Selected Device

Creating socket-based
communication channel

Authentication message

Figure 5.9: Sequence Diagram of launching a component on the destination device while
the source device’s role defined as Controller.

This is a normal behaviour of launching a component on the destina-
tion device when the destination device is not currently busy due to its
own user or the other users which are able to interact with it through
LIQDROID to distribute a task. If the destination device is busy, LIQ-
DROID will ask the user of the source device to choose another device
to distribute the task, but if the user still prefers that destination device,

113

i
i

“thesis” — 2018/6/4 — 20:50 — page 114 — #132 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

LIQDROID will launch the component on the destination device. In the
next item, we will explain what will happen to the previous running
activity on the destination device that goes to the Pause state.

We need to mention also that the interaction between the user and
LIQDROID happens through a pop-up dialog on top of the running
components on the device. The pop-up will be removed automatically
if the user does not provide any choice in a predefined threshold. This
will be more useful when a device is not accessible by a user, or when
the device is busy and cannot interact with the device to provide any
choice.

• Activity on the Pause State:
When the activity goes to the background and loses the focus, the
Android system calls the onPause method on the activity, which stops
all its ongoing actions. As soon as LIQDROID receives an intent which
notifies this state, it will check the "Device role" field available in
LIQDROID. If the current device has the "Controller" role, LIQDROID
will show a pop-up to its user to ask for his preferences. This pop-up
gives different possibilities to the user to manage the possible situations,
which can be as follows:

– Termination: terminate the activities that have been launched by
LIQDROID on the destination devices (Clients).

– Pause: LIQDROID will also put on the pause state the activity
(or activities) which has been launched on the destination devices
(Clients) by LIQDROID. For this purpose, as LIQDROID is not
able to call the onPause method of the third party’s activities, it
will launch a simple activity which only includes a line of text
notifying the Client device’s user about the current status of the
device. This simple activity will force the previous LIQDROID-
launched activity to go to the background, and its onPause method
will be automatically called by the Android framework.

– Optional methods: The developer is also able to provide a method
which is available in the activity that he prefers to be called by LIQ-
DROID on the destination devices instead of putting the activities
in the pause state; for example, these methods can be: decrease the
voice or to pause the video which is playing on the other device.
The difference between applying a method and putting an activity
on the pause state is that in the first case the activity will remain
in the foreground and has the focus, but in the second case putting

114

i
i

“thesis” — 2018/6/4 — 20:50 — page 115 — #133 i
i

i
i

i
i

5.7. Event Manager

the activity on the pause state will cause that activity to go to the
background.

– Accept: Which means that the user did not provide any input and
no change will be applied. For example, if the video is playing on
the client device, it will continue to play without any interruption.

Figure 5.10 shows the order of the actions that LIQDROID takes as
soon as the launched activity goes to the pause state.

alt

User LIQDROID
LIQDROID-Compatible

App
Video Controller

Sends onPause Intent
Checks current device
role field available in
LIQDROID

getUserPreference()[Terminate]

[Available
Methods]

showsListOfMethods

getUserPreference()

Received list of methods

[Put onPause]

Ask User preference

userSelectedMethod
Saves User preference &
Sends requested method

getUserPreference()

Saves User preference &
Terminates Client

Requests list of methods

Saves User preference &
puts the activity on pause

Figure 5.10: Sequence Diagram describing when the activity on the source device goes to
the pause state while the device has defined its role as Controller.

On the other hand, if an activity running on the "Client" goes to the
pause state, LIQDROID will notify its "Controller" device, and he can
terminate the activity if he prefers or discard the notification. This
situation mostly happens when the destination device is currently busy
running an activity and LIQDROID receives a new launch request for a
new activity on that destination device. Figure 5.11 shows the order
of the actions that LIQDROID takes as soon as the launched activity
on the destination device, which has the role Client, goes to the pause
state.

• Activity on the Resume State:

115

i
i

“thesis” — 2018/6/4 — 20:50 — page 116 — #134 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

alt

User LIQDROID
LIQDROID-Compatible

App
Video Controller

onPause intent Received
from Client

[Terminate]
Ask User preference
getUserPreference()

[Accept]

Saves User preference &
Terminates Client

Figure 5.11: Sequence Diagram describing an example of when an activity goes to the
pause state on the Client device.

When the user resumes an activity and it comes into the foreground,
the onResume method is called by the Android system. If LIQDROID
receives the onResume intent, based on what the user has preferred in
the pause state and what has been saved by LIQDROID, it will make
the proper decisions as follows:

– For the case that the source device has the role of "Controller": if
the developer has also considered a method to be applied on the
resume state, LIQDROID will send it to the destination device that
has the role of client and it will be executed there. Otherwise, the
activity will be resumed by LIQDROID. To resume the activity
that LIQDROID has put in the pause state, it will simply finish the
activity’s execution that has been launched previously to make the
activity go to the onPause state.

– In the case that the destination device has the role of "Client":
LIQDROID will notify the user of its source device which has the
role of "Controller."

The Figure 5.12 shows these two different possibilities.

• Activity on the Destroy State:
Will be called when an activity is completely covered by another
activity and is no longer visible to the user, so its window is hidden.
This activity will be killed by the system when it wants more space
and wants to release the memory or when the user manually closes the
activity. Destroying an activity will cause it to be removed from the
task stack of the Android operating system. When LIQDROID receives

116

i
i

“thesis” — 2018/6/4 — 20:50 — page 117 — #135 i
i

i
i

i
i

5.8. Service Manager

alt
[Optional Methods]

User LIQDROID
LIQDROID-Compatible

App
Video Controller

onResume Intent Checks What User
Preferred in onPause

[Put onPause]
Resume the Activity on the
destination device (Client)

showsOptionalmethod(s)

received optional method(s)

userSelectedMethod

requests optional method(s)

Sends the requested
method to the destination
device (Client)

Figure 5.12: Sequence Diagram describing when an activity has launched by LIQDROID
is resumed.

an intent which notified that the onDestroy method of the activity has
been called if the activity belongs to the:

– Source device that has the role of Controller: this means that the
user is not interested in executing the distributed tasks anymore, so
it will call the termination methods implemented by the developers
on the activities that have been launched on the destination devices
having the role Clients.

– Destination device that has the role of Client: LIQDROID will
notify its Controller device.

5.8 Service Manager

The current binding mechanism that exists in the Android framework is for
the services and the activities which belong to the same device, so we are not
able to use it while the activity and the service are placed into two different
devices. For this purpose, LIQDROID has provided its own mechanism to
handle this situation. So, this module will enable the activity that exists
on the source device to start a service that is on the destination device to
perform its desired task, and if there are any results, it receives them back.

117

i
i

“thesis” — 2018/6/4 — 20:50 — page 118 — #136 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

For this purpose, the user first needs to have a list of the connected
proximal devices that have the user desired service already installed. Second,
LIQDROID needs to enable the activity and the service to communicate with
each other by sending messages forward and backward. In the end, the
service should be stopped when the LIQDROID-bound activity has been
closed. This last step is very important because the service is a component
that is running in the background, so the user is not able to easily close it
except by accessing it through the settings menu of the device.

In the same way that the user is able to send a request to get the list of
the capable activities on the proximal devices, he is also able to ask for
the list of services and use the Update and Feedback Intents to interact
with the launched service on the destination device(s). One of the main
advantages of having the service manager is that, as the service does not
have any interface, it is possible that several users can use the same device
for running different services in parallel unless these services do not use the
same hardware resource (microphone, camera, etc.) on the device.

In order to let the user know that a service is going to be started on his
device, LIQDROID will provide a permission pop-up dialog before it starts
the service on the user’s device (users of the destination devices). If the user
gives the permission, the service will be started. Otherwise, LIQDROID on
the source device will receive the reject response and notify its user, and
then it will show him the list of the other proximal devices that have the
service in order to let the user choose another device.

In order to better explain how LIQDROID manages the binding procedure
between the activity and the service belonging to two different devices,
consider the following figure 5.13. The proposed sample scenarios used in
this figure is one of the concrete use case scenarios that we have developed
to evaluate the service management module in LIQDROID, and we will
completely explain it in the chapter 6. Consider that the user wants to play
a song using a music player service which exists on device 2; he already
has discovered device 2 and is connected to it. The user launches the music
player activity on device 1 and asks LIQDROID to get the list of the services
which are capable of playing a song (1). LIQDROID prepares the list of
the capable components by sending an intent including the user’s desired
action to the connected devices and collects the results, which here is only
device 2 (2,3). LIQDROID on device 2 provides the list by benefiting from
the Android framework (4,5) and sends the result back to device 1 (6,7).
LIQDROID prepares the list of the available components on the proximal
connected devices and adds the list of the capable components existing on
device 1 and shows it to the user. The user selects the music player service

118

i
i

“thesis” — 2018/6/4 — 20:50 — page 119 — #137 i
i

i
i

i
i

5.8. Service Manager

existing on device 2, and LIQDROID sends the Launch Intent along with
the developer’s provided Original Intent that has been received previously
from the music player activity to device 2 (8). When LIQDROID on device
2 receives this intent (9), it will execute it, which will start the music player
service. From now on, the activity is able to interact with the service by
sending the Update Intents and receiving back the results from the service
through the Feedback Intents. Whenever the user kills the music player
activity on device 1, the OnDestroy intent provided by its developer will
be sent to LIQDROID (11), and LIQDROID on device 1 will ask from
LIQDROID on device 2 to stop the service (12,13). So, the service will be
stopped if the bounded activity is not running anymore.

Device 1 Device 2

LIQDROID-Compatible
App

Music Player Activity
LIQDROID Android

Framework

Request list of
available services
(Launch Intent) Deliver request

(Launch Intent)

LIQDROID Android
Framework

LIQDROID-Compatible
App

Music Player Service

unitMessage
(includes

Action name
of the Original

Intent)

ResolveInfo
Result

unitMessage
(list of capable
components)

ResolveInfo
Result

Preparing the final
Chooser list

Showing the chooser
list to the user

Receive user’s
selected service unitMessage

(includes
Original Intent
contains info

of the service)

Execute
 Original Intent
(Start Service

Intent)
Start Service

User

ResolveInfo
Request

Activity
onDestroy Intent

unitMessage
(Stop Service

Intent)

Execute
Stop Service

Intent
Stop Service

ResolveInfo
Request

Figure 5.13: Binding an activity belongs to the Device 1 to a Service that belongs to the
Device 2 (an example).

One of the main features that LIQDROID proposes by the service manager
module to the user is the simplicity of transferring the data between the
Activity and the bounded Service. For example, in the above sample scenario,
the user can transfer the song by using LIQDROID through Google Storage or
by directly sending it through the unitMessage. One of the other interesting
use case scenarios which LIQDROID can support is about using the sensor
measurements that are available on one Android device so that users on the

119

i
i

“thesis” — 2018/6/4 — 20:50 — page 120 — #138 i
i

i
i

i
i

Chapter 5. Implementation Details and Technical Descriptions

other devices can benefit from its measurements inside different activities
existing in their devices to perform different kinds of analysis or usage of
that data.

In the currently available solutions, in order to bind the activity to the
service, the activity and the service need to provide the required interfaces
at the implementation time, and then the two components are available to
interact with each other. Yet, in the above-mentioned solution, the activity
is able to bound itself to any third party services available on the current
device or on the other connected proximal devices at runtime.

5.9 Communication Manager

When the user wants to connect to the available proximal devices, this
module is in charge of sending the permission requests to the devices and
also collecting the responses. In case of acceptance, it will connect the
devices through the Wi-Fi. If it receives a reject response, it will first
notify the user and then provide him again with the updated list of devices
excluding the device(s) that has(have) rejected the connection request.

The communication manager module is also in charge of providing the
updated list of the connected devices for LIQDROID. There could be two
reasons that the already connected devices may become disconnected. The
first one comes from the volatile nature of the mobile devices as the device
may leave the context at any point in time; the second reason is concerning
the Wi-Fi connection interruptions that may cause the devices to become
disconnected.

As the devices may leave the interaction without notifying LIQDROID
and moreover because the Wi-Fi connection is not always stable, LIQDROID
will let the developer send a request to LIQDROID to get the list of all
the connected devices at any point in time. This list will be updated by
LIQDROID and will only include those devices that are already connected to
the source device. So, it is necessary to monitor, at the time of the request,
the last status of the Wi-Fi connectivity between the devices.

5.10 Settings

As we previously mentioned, LIQDROID is a service which continuously
keeps running in the background and lets the user’s device advertise itself.
Although the execution of this service (LIQDROID) will not cause any
interference with the normal execution of the other Android components,
it can become annoying for the user if he is not interested in receiving any

120

i
i

“thesis” — 2018/6/4 — 20:50 — page 121 — #139 i
i

i
i

i
i

5.11. Conclusion

connection requests from the other proximal devices. To solve this issue, the
user is able to disable the advertising feature temporarily and reactivate it
when he wants.

Contrary to the advertising mechanism which is continuous as long as it
is active, the discovery mechanism is under the control of the user and needs
to be completed when he wants to connect to the other devices and send a
task distribution request. Performing the discovery right before executing
a task will enable the user to have access to the latest updated list of the
available proximal devices (which may have newly joined the context) as
well as the updated groups list that will include the list of those currently
available and exclude those that are disconnected or left the context.

The other feature that is accessible through the settings is the possibility
to change the device name. As in some of the Android devices the user is not
able to change the name of his device or provide more information for the
other user which performs the discovery, we have provided the possibility
to assign a name to his device so that the user is able to access the setting
menu and the change name option. LIQDROID will show a dialog box to the
user to enter the name that he prefers to advertise. After receiving this name,
LIQDROID will add it to the advertising message and the other users will be
able to see this name along with the other information about the device.

These three methods are widely accessible to the user through the notifi-
cation bar as long as LIQDROID is running in the background. These settings
include features that are useful for the end user and are not accessible by the
developers to make any changes.

5.11 Conclusion

In this chapter, our aim was to provide a technical overview of the available
features in LIQDROID and the challenges that we have faced in making
LIQDROID work properly inside the Android framework. Our first goal
was to benefit as much as we can from the Android framework without
causing any inconsistency in the normal behaviour of the Android OS or
decreasing its performance. In fact, this also enabled us to provide an easy-
to-use solution for the developers to develop innovative applications and an
infrastructure for the users to interact that is easy to understand and use. In
the next chapter, we will discuss how LIQDROID will behave and improve
the interaction between the users and the devices by providing some sample
realistic use case scenarios.

121

i
i

“thesis” — 2018/6/4 — 20:50 — page 122 — #140 i
i

i
i

i
i

i
i

“thesis” — 2018/6/4 — 20:50 — page 123 — #141 i
i

i
i

i
i

CHAPTER6
Evaluation

In this chapter, we will talk about our experience of using LIQDROID in
real case scenarios. Although it is possible to use LIQDROID to call the
components of the applications that are already available on the Android
market, in order to fully evaluate different features of LIQDROID and its
strengths, we have developed and implemented some LIQDROID-compatible
applications from scratch 1 As we already mentioned, in the designing phase
of this middleware we had two simultaneous perspectives. The first was
from the point of view of a developer; we saw that he could easily benefit
from the provided features of LIQDROID to distribute the execution of his
developed application’s components without needing to learn new concepts
and without experiencing difficulty in implementing the required features
of LIQDROID. The second view, which is even more important, was that
of the final user that will benefit from LIQDROID. The user should be
satisfied, which can be achieved based on two factors derived from the
existing experiences in the field of multi-device interaction as follows:

• First, the execution of the provided software on the device should not
be annoying for the user while he is not interacting with it, and the

1Because of the sponsorship, the source codes of the stable prototype of LIQDROID and its companion
applications are only available upon direct request.

123

i
i

“thesis” — 2018/6/4 — 20:50 — page 124 — #142 i
i

i
i

i
i

Chapter 6. Evaluation

normal execution of the tasks on the device must be guaranteed. And
while he is interacting with it, the provided features should not degrade
device performance or distract the user’s focus.

• Second, it should be easy to use and interact with so that the user does
not need to spend much time learning how to use it or configure it.

As LIQDROID has been developed inside the Android framework and is
using the existing classes inside it, we can say that providing LIQDROID-
compatible application components will be so easy for the developers. Since
LIQDROID is completely following the Android OS and at the end will
benefit from it to execute a task, we can say that the user will not have any
difficulty working with LIQDROID. We have provided the proper titles and
notifications for the user during the runtime and distribution of a task.

In the following sections, we will introduce the six motivating concrete
use case scenarios in different domains that inspired this work. We will
explain more in detail the general usage scenarios, their requirements, and
the design parameters. Each of these use case scenarios includes some of
the proposed features by LIQDROID to better visualize the aspects that we
explained in the section 4.

First we need to ensure that LIQDROID, which is an Android application,
has already been installed in all the devices involved in the interaction and is
running in the background. Second, we need to mention as the preliminary
step in advertisement that discovery, connecting the devices and creating
groups, will be the same in all the use case scenarios. We assume that
discovery has already been completed by the user, so in order to keep from
repeating this step in every scenario, we will not directly mention it in each
scenario. The only difference in following this step in different scenarios
would be the way that the user prefers to define the group name or the user’s
policy on adding members to groups specifically, which depends on the
needs and requirements of the underlying use case scenario. The figure 6.1
shows different steps in discovering the proximal Android devices, selecting
those devices that the user prefers and forming the group with the desired
name.

In each of these sample developed use cases, we have provided a part
which explains the complexity behind developing these applications by
defining the number of required components, the lines of codes and the
required attempt to learn new things. But what we need to also mention
here as a general comment is that one of the main features of LIQDROID is
letting devices become properly integrated so that they can communicate
(under a user’s attention and his preferences). So besides the complexities

124

i
i

“thesis” — 2018/6/4 — 20:50 — page 125 — #143 i
i

i
i

i
i

(a) Android Devices (b) Device Discovery

(c) Group Formation (d) Aavailable Groups (e) Group’s members

Figure 6.1: Discovery and group formation using LIQDROID

that we have mentioned in each part, always bear in mind that those efforts
should be added to the effort which is required to make two devices become
connected if a device wants to interact with the other proximal devices and
use their capabilities.

These sample scenarios will show how much distribution of the execution
of a task can improve the interactions between the people and improve the
usage of different devices while enhancing the features provided by the
different components belonging to different applications on different devices,
the quality of the achieved results, and finally the satisfaction of the user. We
also attempted to provide new innovative paradigms of interaction between
devices, which can provide solutions that were impossible without having
these sets of integrated devices. These test case scenarios also motivated
us to better understand the extra needed features that LIQDROID needs to
support, and we will explain them in the related scenarios.

125

i
i

“thesis” — 2018/6/4 — 20:50 — page 126 — #144 i
i

i
i

i
i

Chapter 6. Evaluation

We need to mention that to better understand the industry needs and the
users’ needs, we also agreed with and applied the opinions of the Telecom
Italia researchers at Joint Open Lab S-Cube, who are working more specifi-
cally on the innovative solutions to better support the interactions between
people and also between people and their surrounding environment. The
final applications were also tested and developed on the real case devices
available in this lab.

In the end, we also provided some related use case scenarios considered
by the other developers in this field to see how LIQDROID is able to support
those domains of use and provide the same features.

6.1 Usage of LIQDROID with Available Android Applications

Â Before starting to explain the complete and well-defined use case sce-
narios that we have considered to test different aspects of LIQDROID, let
us consider the most general and simple use case scenario that we can have
by benefiting from LIQDROID. It can show you how LIQDROID can make
works simple for the developer while at the same time bringing more levels
of satisfaction for the users.

6.1.1 Sample Scenario

Consider that you have developed an email application. The user receives
an email with an attachment that can be any type of file such as a video
file, a document, etc. The user wants to open the file, but there is not any
application already installed on his device that lets him view a video, or
he may prefer to have a better application which provides more features
for him to interact with the video. Here is the place that LIQDROID can
facilitate your work a lot. You as the developer of the email application
can easily provide a button inside your application that sends a request to
the LIQDROID. LIQDROID will provide for your user a list of the capable
components to play video on the proximal devices. As soon as the user
selects his desired Media Player application, the file will be transferred to
the other device and the user is able to view the file through his preferred
component.

6.1.2 Application’s Architecture and Complexity

In this case, the developer only needs to provide a few lines of code (9 lines),
as we mentioned, to a sample Launch Intent in the section 5.5 to enable the

126

i
i

“thesis” — 2018/6/4 — 20:50 — page 127 — #145 i
i

i
i

i
i

6.2. Use case scenario 1: Joint Meeting Application

user to view a video that does not have a proper application already available
on the device.

If you want to properly support your users’ needs and attract more users
to install your application, you may decide to provide a proper component
inside your email application to support more features. Note that it will take
much more effort to provide a separate component to support different kinds
of files than to just create a usual intent.

For example, consider that you want to support playing video files
through a video player component. To this end, beside the XML files
that you need to define in a time-consuming process in order for videos to be
viewed, you will also need to create an activity to define its logic. According
to the codes that have been proposed by the Android developer website 2,
for a very simple Media Player you need at least 62 lines of code (added
to at least 56 lines of code for its view = 118) to develop its component,
besides the time required to research and learn how to implement each part.
On the other hand, you can benefit from LIQDROID by calling the best
available applications that are installed on the proximal devices to provide
the required services for your application with much less effort (an Intent
with 9 lines of code).

One of the main reasons why each application needs to provide this
button to request the list of capable devices and why we did not provide
this general button inside LIQDROID is that most of the time the underlying
content used by different applications is stored in a private file under the
direct control of that application, and it does not allow any content provider
that provides other applications such as LIQDROID to have access to its
data.

6.2 Use case scenario 1: Joint Meeting Application

The main focus here is on the presence of the multiple users and devices
in the proximity of each other. They need to have a fully cooperative in-
frastructure that empowers them to easily and quickly collaborate with each
other to achieve more productivity, so the concern is: How can we benefit
from the proximity of the users and devices to increase the productivity and
enhance the cooperation among them to achieve better results?

More precisely, we can mention that the following aspects were our main
focus to answer the above concern and to support the design phase of this
use case scenario:

2https://developer.android.com/guide/topics/media/mediaplayer.html

127

https://developer.android.com/guide/topics/media/mediaplayer.html

i
i

“thesis” — 2018/6/4 — 20:50 — page 128 — #146 i
i

i
i

i
i

Chapter 6. Evaluation

• Supporting the availability of different users (with different roles) that
may join and leave the context more often

• Supporting the availability of different types of devices and configura-
tions required to make them cooperate

• Supporting the distribution of different types of tasks (Device Shifting,
Complementarity, Synced Devices)

• Supporting the exchange and availability of different types of data for
different tasks

6.2.1 Sample Scenario

Today’s life is more social, and teamwork is highly appreciated as it can have
a significant effect on the outcomes and the accomplished responsibilities.
But if the meetings are not conducted properly, they could bring negative
results along with the waste of time and resources. Although different
platforms and technology-enabled devices have been introduced to support
interaction between people, still there is a place to improve them more.
And this is the place where direct interaction between multiple devices
can be highly effective. To better clarify the usage, let’s focus on the
meetings, which is a good example of teamwork. Also, meetings are more
probable to happen in different contexts, including those related to business,
education, or more informal purposes such as among friends or colleagues
for brainstorming. In analyzing the currently available platforms such as 3

that are widely used for handling conference meetings, it was determined
that one of the big drawbacks of using these platforms is that even if two
proximal members join to a meeting while the other members have been
joined from long distances, these two proximal members will be treated the
same as those remote members. And each of the members needs to have
their own account to have access to the platform. Besides the expensive
membership prices of these platforms, they will cause other issues, some of
which we will explain further. These issues can restrict the users’ activity
while will also wasting resources, which in the end will result in most of the
employees feeling as if they are wasting time during these meetings.

• Separated Accounts: Each participant needs to enter the platform
environment as a separated member, so each of the employees even in
the same office needs to have several accounts to be able to join to the
meeting and have access to the meeting’s resources.

3https://WebEXhttps://www.webex.com/products/web-conferencing.html

128

https://WebEXhttps://www.webex.com/products/web-conferencing.html

i
i

“thesis” — 2018/6/4 — 20:50 — page 129 — #147 i
i

i
i

i
i

6.2. Use case scenario 1: Joint Meeting Application

• Devices occupied: As the user has been joined to the meeting through
his private account, he needs to keep the meeting application running
on his device even if he is not going to present anything.

• Restricted access: While the user is attending the meeting, he is not
able to interact with his personal devices that may exist in his proximity.

• If a new member wants to join the meeting, he needs to have been
invited in advance to have access to the link (or the pass code) of the
ongoing meeting.

• The Internet bandwidth usage during the meeting can be problematic.

• The interferences that these devices can cause to each other can be
disruptive.

Some of the features which should be considered to increase the quality of
the meetings are those that allow easy collaboration, easy configuration, and
freedom for the participants. The presence of multiple users with multiple
devices in a context that can form various types of interactions between them
was a good motivation for us to develop this app and better test LIQDROID
in a highly collaborative situation. This helped us to provide comprehensive
support for these multi-device interactions which can increase the user’s
enthusiasm to join the meetings and significantly improve their productivity.

To overcome these limitations as well as provide a better experience that
the multi-devices interaction can bring to the user, we have developed a meet-
ing application integrated with LIQDROID in our lab which is called "Joint
Meeting Application." This application includes the features which can be
found in the current meeting applications and also innovative solutions to
overcome the existing issues. We have provided the Joint Meeting Applica-
tion with the possibility to integrate with the available meeting platforms
to better support remote participants. So the provided application is able to
handle the meetings that have participants ranging from the remote members
to the local employees/staff. This LIQDROID-compatible application has
two separated parts based on the role of the person that wants to join the
meeting, which could be the presenter or the participants.

6.2.2 Application’s Architecture and Complexity (Presenter Version)

The version that will be used by the presenter of the meeting will include
the following capabilities to support each of the meeting requirements.

One of the advantages of the group formation here is that when the
presenter connects to the proximal devices, he can create a group with the

129

i
i

“thesis” — 2018/6/4 — 20:50 — page 130 — #148 i
i

i
i

i
i

Chapter 6. Evaluation

name of the place that the meeting will be held or the subject of the meeting
and it will advertise it. It will be more efficient for the new incoming
members that are not formally invited but want to participate in the meeting.
They can discover the groups’ list and be informed about the ongoing
meeting and quickly join the meeting. The other invited participants can
also take advantage of it to easily find the list of the participants’ devices
that are attending the meeting instead of going through the whole list of all
the available proximal devices.

The presenter will receive the connection request and can accept those
members that he prefers to actively participate during his presentation. To
eliminate the interruptions, at any moment the presenter is able to stop the
advertising so that he will not receive any connection requests during his
presentation.

In the local meetings, the presenter’s device will only be connected to the
projector to support the ongoing meeting. While in general meetings that
remote members are attending, the presenter’s device will use a companion
application of an integrated meeting platform-here we have used WebEx. So
the presenter will use his account credentials to enter the WebEx application
to share his screen with the remote members. We kept the presenter’s view
as simple as possible with only the necessary features. The version of the
application that he uses includes only the following parts:

• List of the participants: This is the list of the local participants that the
presenter’s device is connected to through Wi-Fi.

• Shared Interface: This part that will be used to show the presenter’s
view (camera).

• Role Exchange: The presenter is able to perform a long click on the
participant’s name and exchange the role of the presenter with them
for a short time.

• Assign New Presenter: For any reason such as the presenter’s device
has a low battery or the presenter wants to leave the meeting, the
presenter is able to share the meeting link with one of the connected
members that he prefers to take his place. The new members will use
the same credentials to enter the WebEx and share his screen with
others as the new presenter.

We have integrated our meeting application with the WebEx meeting
platform to support the remote members. In this way only the presenter
needs to join the WebEx platform through using a dedicated general account.

130

i
i

“thesis” — 2018/6/4 — 20:50 — page 131 — #149 i
i

i
i

i
i

6.2. Use case scenario 1: Joint Meeting Application

The participants will use our developed application to join the meeting.
In the following section, we will discuss how LIQDROID can handle the
meeting without the need for each participant to have a private WebEx
account. The user is also able to more actively participate in the presentation
and benefits from his device at hand to interact and share his related ideas
and materials with the others. As the presenter has full access to the big
screen and direct access to the WebEx platform, the application is simpler.
We will discuss the main features that have been included in the participant’s
version in the next section.

6.2.3 Application’s Architecture and Complexity (Participant Version)

The version that will be used by the participants of the meeting is an Android
activity component which will include the following capabilities to support
each of the meeting requirements:

• Share Files:
One of the time-consuming parts of the meetings happens when a
participant wants to convey his opinion by sharing a document. In this
situation, he will need to connect his device to the big screen in the local
meeting or change his role to the presenter in the remote meetings to be
able to share the files with others while he is providing his explanation
about them. By benefiting from LIQDROID, the participants can share
files simultaneously between each other or by accessing the presenter’s
device through their device and executing the task there. To this end,
each of the participants that are connected to the presenter’s device can
distribute the execution of the task there. Consider this simple scenario:
in an ongoing meeting you have a PDF file which is highly related to
the subject of the discussion and you want to mention some parts of it
during a formal meeting. Currently, there is no way other than using
another application to send the data to the presenter’s device, launching
the proper application there, selecting the PDF file, opening it, and
then you can start explaining it. These set ups usually require long
configurations and waste a lot of time during the meetings, so most
of the time people prefer to bring the printed version of the required
documents to give to all the other participants.
Instead, by using LIQDROID, each of the connected participants can
use the "Share File" to use the presenter’s device to share the material
and their opinions in a few quick steps as follows: the user will select
the PDF file from his device and send the execution request to LIQ-
DROID. The LIQDROID receives the request and shows a list of the

131

i
i

“thesis” — 2018/6/4 — 20:50 — page 132 — #150 i
i

i
i

i
i

Chapter 6. Evaluation

capable components to show PDF files on the proximal connected de-
vices. The user selects one of the (preferably LIQDROID-compatible)
components which are available on the presenter’s device and dis-
tributes the execution of the task to that device. The LIQDROID on
the user’s device uploads the PDF to the Google cloud storage and
sends the execution request to the presenter’s device. The LIQDROID
on the presenter’s device downloads the file then executes the request.
The user starts to discuss his idea while he has also opened the file on
his device. The user is able to control the execution of the PDF file
executed on the presenter’s device through his device. So as soon he
goes to the other pages, the state of the PDF file on the presenter’s
device (and also on the big screen) will be updated and will shift to
that same page. Here we have explained the PDF file, but the user is
able to select any type of file and send it and control its execution.

At the end of the task, the user will finish the video player activity
on the presenter’s device. Another possible concurrency of the usage
that may happen here is that another user will want to also provide his
opinion and needs to use the presenter’s device. In this situation he will
send the execution request to the presenter’s device and LIQDROID will
handle the new request as we have explained in the section 5.7.2. Either
this participant will wait until the previous participant has finished the
presentation of his opinion or he will persist on executing his task.
These two choices will be available in the dialogue box provided by
LIQDROID.

• List of the Members:
Besides connecting to the presenter’s device, each participant is able to
connect to all or a certain set of the other participants that he wants to
collaborate with during the meeting. The list of the available members
will be accessible through the application, which includes the connected
devices to the participant’s device through Wi-Fi.

• Private Chat:
The user can select the preferred members from the list of the members
and send them messages during the meeting without the need to directly
talk to them and cause disruptions during the meeting. These messages
would be considered as regular Update Intents and will be sent to all the
connected devices, but only those members that the user has selected
can see the messages in the view box.

• Camera Streaming:

132

i
i

“thesis” — 2018/6/4 — 20:50 — page 133 — #151 i
i

i
i

i
i

6.2. Use case scenario 1: Joint Meeting Application

As we mentioned earlier, the participant is able to use the presenter’s
device to share the file needed to better explain his opinion to others.
Sometimes it may happen that the presenter wants only to discuss
something. In this case, he is able to start the camera and share his
view with the presenter’s device without the need to reach it. So
the members will see the participant’s view in the presenter’s Shared
Interface while he is presenting something. It will use the regular
Update Intents defined in LIQDROID for streaming the video on the
presenter’s device.

• Acquire Presenter Role:
On the other hand, if for any reason the presenter’s device becomes
unavailable, such as when the battery of the presenter’s device gets low
or the presenter wants to leave the context, one of the members can
easily share his device to take the presenter’s role. In this case, clicking
on "Take Presenter Role" will notify the presenter about his choice and
the potential to take his role. The presenter is able to make the most
appropriate choice from among the received requests. As soon as he
has chosen one, the other reached requests will be discarded.

• Download Meeting Material:
At the end of the meeting, participants can download all the materials
that have been used by the presenter or shared by the other participants.
To this end, the meeting’s participants will have access to the files used
by the presenter’s device (Source Component).

• Schedule Meeting:
Based on the subject of the meeting, different types of collaboration
between the members may be required. For example, it may happen
that the users need to vote to select a choice which is in the interest
of all the participants. To this end, it is required that the same task
should be started on all the devices to receive the user’s choice. Here
we have provided a general use case which is more probable to be
used by different meeting categories, which is voting to select a proper
time slot to arrange the next meeting. "Schedule meeting" is a service
included in the joint meeting application that lets the members share
their preferred date and time among each other to conclude arranging
the next meeting. For this purpose, one of the members clicks on the
schedule meeting button, selects his preferred date and time, adds them
to a list and sends the service execution request to LIQDROID. The
LIQDROID provides the list of the connected devices that have this

133

i
i

“thesis” — 2018/6/4 — 20:50 — page 134 — #152 i
i

i
i

i
i

Chapter 6. Evaluation

(a) Participant version (b) Material To share (c) Device selection

Figure 6.2: (a)Set of available features on the Participant component during an ongoing
meeting, (b) The possibility to share various files during the meeting (c)Possibility to

select and share the materials with a sub set of a group’s members

service component, the user selects those members that need to attend
the next meeting, and LIQDROID runs the service on that set of devices.

Upon the users’ acceptance on the selected devices, the service will
start running and will open a dialogue box. The users define their
proper time slots and send the responses back (Feedback Intents) to the
requester device (source device). When the user on the source device
has received all the responses, they will define the final date and time
and send it as an Update Intent to all the members, which will notify
them of the time of the next scheduled meeting.

As the participants are not directly connected to the WebEx, they can use
their devices and only launch the joint meeting application when they want
to present something or want to interact with the proximal members.

6.2.4 Application’s Architecture and Complexity

Most of the complexity of this application was related to defining it by
collecting the current status of the meeting applications and defining the
participants’ requirements during a meeting. While developing it, we have
used three main activities: (a) Entering into the application based on the

134

i
i

“thesis” — 2018/6/4 — 20:50 — page 135 — #153 i
i

i
i

i
i

6.2. Use case scenario 1: Joint Meeting Application

participants’ role; (b) Presenter activity; and (c) Participant activity. Here we
just mention the complexity in the development of the Participant activity as
the two others are not very complex.

As you can see in the figure 6.2, there are different buttons to send
requests to LIQDROID. The user will have the possibility to view different
contents through the available components on the same device or the other
proximal devices. We provided three other activities for viewing different
files such as PDF, video, and PPT, which enables the user to interact with
them while running on the proximal devices.

As an example, if a developer wants to implement an application to open
a PDF document on the other proximal device(s) and control it through
the source device, he needs to connect the devices, transfer the PDF file,
launch the proper application there, open the PDF file and then update the
states of the two devices. Let’s make it so simple and just consider the last
part. Sending the state updates as the other parts to seamlessly resume a
task was one of the main concerns of LIQDROID to solve. In order to send
regular updates to synchronize the state of the proximal devices, the easiest
method is for the developer to benefit from the Google Nearby Message
as mentioned on their website 4. It needs at least 55 lines of code solely
for implementing this part to use for sending the state messages, besides
learning how to use it. He also needs each device to implement a service on
both sides to send and receive the state message and to communicate with
the PDF activity on the other device (at least 40 lines of code 5). Whereas
by benefiting from LIQDROID the developer just needs to provide an Update
Intent as follows, which requires only 11 lines of code to update the state of
the PDF file on all the other proximal devices (in comparison to 95 lines for
each device). Additionally, he does not need to put forth more effort to learn
new things.

/ / The O r i g i n a l I n t e n t f o r u p d a t i n g t h e s t a t e o f a pdf on t h e p r o x i m a l
d e v i c e s .

1− I n t e n t pageNoToSend = new I n t e n t () ;
2−pageNoToSend . p u t E x t r a (" upda teType " , " S t r i n g ") ;
3−pageNoToSend . p u t E x t r a (" PageNumber " , pageNumber) ;
4−pageNoToSend . s e t A c t i o n (" Update ") ;

/ / The I n t e n t which w i l l be used t o communicate wi th t h e \ t e x t s c { LiqDro id
}− s e r v i c e and t o d e l i v e r t h e O r i g i n a l I n t e n t

5− I n t e n t s t a r t L i q D r o i d = new I n t e n t () ;
6− s t a r t L i q D r o i d . se tComponent (new ComponentName ((" com . a n d r o i d . iman i .

l i q d r o i d " , " com . a n d r o i d . iman i . l i q d r o i d . MyService ")) ;
7− s t a r t L i q D r o i d . p u t E x t r a (" o r i g i n a l I n t e n t " , pageNoToSend) ;
8− s t a r t L i q D r o i d . p u t E x t r a (" SourceAppComponentName " , "com . example . a p p l e .

4https://developers.google.com/nearby/messages/overview
5https://developer.android.com/guide/components/services.html

135

https://developers.google.com/nearby/messages/overview
https://developer.android.com/guide/components/services.html

i
i

“thesis” — 2018/6/4 — 20:50 — page 136 — #154 i
i

i
i

i
i

Chapter 6. Evaluation

j o i n t m e e t i n g a p p l i c a t i o n . P d f C o n t r o l l e r A c t i v i t y ") ;
9− s t a r t L i q D r o i d . p u t E x t r a (" SourceAppPackageName " ,
"com . example . a p p l e . j o i n t m e e t i n g a p p l i c a t i o n ") ;
10− s t a r t L i q D r o i d . s e t A c t i o n (" appI sRunn ing ") ;
11− s t a r t S e r v i c e (s t a r t L i q D r o i d) ;

This was only one of the simplest comparisons for the attempts that the
developer needs to assign to provide the same feature with and without
LIQDROID to update the state of an activity on the proximal devices.

6.3 Use Case Scenario 2: Cameo Application

One of the main characteristics of the mobile technology enabled devices
is that the user can benefit from them on the move while entering into
different contexts. This feature will considerably affect the usability of the
applications as mentioned, and most of the time the user needs to perform
some preliminary steps to initialize and resume the task on the other device.
Here the main concern is: How we can facilitate the task distribution between
the devices that exist in different contexts? More precisely, we can mention
that the following aspects were our main focus to answer the above concern
and to support the design phase of this use case scenario:

• Supporting the task distribution while the user is moving

• Supporting the seamless interaction between the devices

• Supporting the synchronization and collaboration between the different
sets of devices

6.3.1 Sample Scenario

The second use case scenario is an application for Android Auto which was
developed in our lab called "Cameo Application." The application offers the
passengers inside a car connectivity on board and access to the entertainment
content, travel information, services, and context-based messages. One of
the main features of the application is the possibility of planning a trip,
which allows the passengers inside the car to be able to suggest their points
of interest and collaboratively create a trip. Each user can add their desired
destination, and the application will calculate the route by using the Google
Map API.

Consider this use case scenario: Maria and her colleague, Tom, have
a meeting with one of their customers. She will join Tom in a predefined
location, and then they will go to the meeting’s location together. Maria
launches the Cameo application on her smartphone and inserts the final

136

i
i

“thesis” — 2018/6/4 — 20:50 — page 137 — #155 i
i

i
i

i
i

6.3. Use Case Scenario 2: Cameo Application

destination as well as the middle point, which is the place that she will
meet Tom. The application calculates the path; she leaves the lab while she
navigates toward the destination. In the middle of the path, she reaches Tom
and enters to his car, and they follow the path. As soon as Maria enters
Tom’s car, the discovery starts and connects to the Android tablet available
in his car. Tom accepts the authentication request on the tablet. Maria selects
the transfer path button on the Cameo application. The LIQDROID on her
device shows a list of the available capable components on the tablet and
her own device. She selects the Cameo application’s component on the
tablet from the list. Then the application’s map component is launched there
with the information that is in the launch intent (current location and the
destination). They start navigating to the destination by using the car’s tablet
without configuring anything manually. Maria continues interacting with
the Cameo application on her own device to find a place to eat lunch on
their path. As soon as she finds the proper place, she sends an Update Intent
to the tablet device through LIQDROID and the Cameo application, which
includes an added middle point that is the location of the restaurant. The
component on the tablet updates the path with the new information that has
been received through Update Intent.

6.3.2 Application’s Architecture and Complexity

This is one of the sample scenarios that have been implemented in our lab by
the Telecom employees, and I had the chance to collaborate with them. One
of the obstacles that exists in the Cameo application that made us integrate it
with LIQDROID was about launching the Cameo application on the tablet as
soon as the user enters to the car. So the execution of the running task on the
user’s device will be seamlessly distributed to the car’s tablet without the
need to reach the tablet. The cameo application is launched and configured
there. So in this case as soon as the driver enters the car or a passenger enters,
they are able to resume an ongoing task from their cell phone to the car’s
tablet. This is one of the very important features provided with LIQDROID,
and other provided middleware technologies -specifically the AllJoyn [1]
that has also been used by the Cameo application- are not capable to handle
it. In order to start the interaction, the user first needs to start the Cameo
application on the car tablet and then is able to synch their state or start their
interactions through the AllJoyn middleware.

The cameo application has two different versions-one for the passen-
gers and the other for the dashboard tablet. The user is able to provide
the information of the destination and also the middle points through the

137

i
i

“thesis” — 2018/6/4 — 20:50 — page 138 — #156 i
i

i
i

i
i

Chapter 6. Evaluation

Android activity on his own device. To use LIQDROID to resume the path
on the dashboard tablet as soon as the passenger reaches the car, they need
to provide the Launch Intent for LIQDROID. As soon as the user launches
the Cameo application on the dashboard tablet, he will also have the possi-
bility to update its states. To this end, they have also considered using the
Update Intent from LIQDROID to synchronize the state of the devices of the
passengers and also the dashboard tablet.

It was also interesting for them that LIQDROID would give them two
possibilities to handle the task distribution at launch time as they could
benefit from their own Cameo application (through using an explicit intent)
on the distribution of the task or they can also let the passenger have the
possibility to choose another component available on the dashboard tablet
(through using an implicit intent) to resume the path. They decided to
provide both possibilities for their end users.

This sample shows just how easy integrating any application with LIQ-
DROID is. It can happen in a few minutes and just minor changes need to be
applied.

6.4 Use Case Scenario 3:Take and Edit Image Application

Most of the time it happens that the user is forced to use different devices
during the execution of a task. The reason could be because of the device
limitations or his preferences to achieve better results. In this case, first the
user needs to know what the available devices are and needs to be able to
compare the task requirements and the devices’ capabilities. On the other
hand, he also needs to be able to easily move the task and its artifacts between
them. The real problem arises when the number of devices increases in the
interaction. So here the main concern is: How can the user get a general
view about his possibilities to perform a task? And how is he able to manage
the distribution of a task while using several devices interchangeably? More
specifically, we can mention that the following aspects were our main focus
to answer the above concerns and to support the design phase of this use
case scenario:

• Supporting the task distribution and redirection based on the device’s
capabilities

• Supporting the storage and management of artifacts

• Supporting the data availability for the third parties in the interaction
before the execution of the dependent task happens

138

i
i

“thesis” — 2018/6/4 — 20:50 — page 139 — #157 i
i

i
i

i
i

6.4. Use Case Scenario 3:Take and Edit Image Application

(a) Capable components (b) Captured image (c) Revie the captures image

Figure 6.3: (a) Possibility to select the proper device and the proper component on it, at
the same time (b) Capturing an image through the desired component on the

destination device, (c) Reviewing the image on the source device.

• Supporting the synchronization and collaboration between the different
sets of the devices

6.4.1 Sample Scenario

Considering that Tom is working in an architecture company. He needs
to take a picture from the Politecnico di Milano’s main building, and after
editing it, he will show the updated image to his boss and other colleagues
while he is giving his presentation.

First, in order to see how good the cameras of the other devices are,
he takes sample images and review them on his device. To this end, Tom
launches the Take and Edit Image Application (a LIQDROID-compatible
application) on his device and asks LIQDROID to bring him the list of the
devices that are able to capture an image. Each time, Tom selects one of the
Camera Applications already installed on the proximal connected devices
and tests the quality of their camera and the provided images. So LIQDROID
saves the images that Tom has taken on the other devices and shows them
to him on his device. The figure 6.3 shows these interactions between the
devices.

After that Tom selects the device that he thinks has a better camera. He
decides to take the image from the building with that device and send it
to his colleague for edits. So he repeats the procedure to take the image
through selecting the camera application on his desired proximal connected

139

i
i

“thesis” — 2018/6/4 — 20:50 — page 140 — #158 i
i

i
i

i
i

Chapter 6. Evaluation

(a) Device with a good
Camera

(b) List of Edit applications (c) launched edit
application by the

image

Figure 6.4: (a)Captured image by the device that has better Camera, (b) List of the
available applications for editing an image, (c) The availability of the captured image

on the third destination which proposes a better application for editing it.

device. Then he receives a message which shows that the image has been
taken properly and has been stored in the Google cloud storage success-
fully through LIQDROID. At this time he clicks on the Edit button in the
application, which sends a request to LIQDROID to show him the list of the
applications capable of editing an image on the proximal connected devices.
As the figure 6.4 shows, Tom selects the edit application that he prefers on
his colleague’s device, Stefano (a different device than the one that he has
used to take the image). The LIQDROID on Stefano’s device downloads the
image and then launches Tom’s selected edit application by using that image.
Stefano starts editing the image and saves it through LIQDROID. As soon
as the boss arrives, Tom is able to ask LIQDROID to provide him with the
edited image on his own device, or he can simply can use the big Android
screen to show the final edited image to his boss and other colleagues, who
can then give their opinion about that nice building.

6.4.2 Application’s Architecture and Complexity

There would be two activities; one of them will include three buttons running
on Tom’s device which sends the requests to LIQDROID. The other one
will be used to view the final edited image. The first button will send a
Launch Intent to LIQDROID to show to Tom the list of capable components
to capture an image. The proposed list will also include the general camera

140

i
i

“thesis” — 2018/6/4 — 20:50 — page 141 — #159 i
i

i
i

i
i

6.5. Use Case Scenario 4: Home Video Player and Controller

applications which are available on the other connected devices. After Tom
has selected the proper component (which is one of the general applications),
LIQDROID will store the result of the execution of that activity (the captured
image) through its Artifact Manager Module for Tom (the running activity
on Tom’s device). And he will be able to ask LIQDROID to use it as an input
for the other components that he chooses and will be running on the other
devices.

This sample shows that in order to benefit from LIQDROID we don’t need
to have a LIQDROID-compatible component to distribute the execution of
the task on the destination devices, but LIQDROID will also work fine with
the available components in the Android market and can benefit from them to
execute tasks and store the final results achieved from their execution. On the
other hand, the consistency between using the output of an executed task as
an input for the other task is fully supported, and there is no need to perform
extra tasks (other applications’ components) to manage the availability of
the data on the other devices to continue the task.

6.5 Use Case Scenario 4: Home Video Player and Controller

While the user moves between different contexts, it may happen that a
different set of devices are available in his proximity. This will enable the
user to have the possibility to shape different interaction types and assign
the execution of each part of a task to a specific device. So here the main
concern is: How capable is the user of distributing the execution of a task
based on the device availability as well as the interaction requirements?

More specifically, we can mention that the following aspects were our
main focus to answer the above concern and to support the design phase of
this use case scenario:

• Supporting different combinations of the devices in handling the exe-
cution of a distributed task

• Supporting the availability of different devices in the user’s proximity
and sharing the task based on them

The user may be placed in different contexts where a diverse set of
devices would be available in his proximity. The possibility to be able to
resume a task on the other device is important, but the possibility to make
devices collaborate with each other to perform a task is another nice feature
provided by LIQDROID. You may be sitting on a train with a friend, and you
want to share with him the video that you are watching on your smartphone.
So you connect to the tablet of your friend and launch the video component

141

i
i

“thesis” — 2018/6/4 — 20:50 — page 142 — #160 i
i

i
i

i
i

Chapter 6. Evaluation

(a) Connected to friend’s
device

(b) Selecting a video player (c) Video player on tablet

Figure 6.5: (a)Sharing a video with your friend (b) LIQDROID will show the list of the
available video players on your fiend’s device upon it uploaded the file successfully to
the cloud storage (c)The desired video player will be launched on the destination device

while playing the video that has been downloaded successfully by LIQDROID.

by selecting the video through your device. You reach the destination, and
you stop the video until you reach home and watch it with your family on
the big screen.

The home video controller lets you distribute the execution of the video
that you are watching, and you will be able to resume it on different devices.
You will also have the possibility to distribute different parts of a video
player to the set of devices which are in your proximity. All these pieces
will come together in your device at hand when the other devices are not
accessible anymore. In this case, you are able to watch the video on the big
screen while you are also able to control its execution through the controller
options that are available on your smartphone.

After the video view has been launched properly on the big screen,
LIQDROID on the user’s device will receive an acknowledgement. The
LIQDROID will inform the running activity that the distributed task has been
handled properly, so the activity provides the list of available options to
control the execution of the video on the big screen. Whenever the user
performs a click, the effect of it will appear on the big screen instead of the
method executed in his device.

If the user selects another task to be executed on the big screen, which

142

i
i

“thesis” — 2018/6/4 — 20:50 — page 143 — #161 i
i

i
i

i
i

6.5. Use Case Scenario 4: Home Video Player and Controller

could be another video or another content, the previous activity will be
finished there, and then the new one will be launched. So the user does
not need to reach the big screen later to close the activities which rest in
the background. In the video controller, the options to handle concurrent
activities such as receiving a call while he is watching the video also have
been considered.

6.5.1 Application’s Architecture and Complexity

For this scenario, we have developed an activity which has a part to view and
control the video and two buttons to share a task and to transfer a task. The
share button lets us share the video that we are watching with a friend who
is nearby. In this case, the video player on our friend’s device is a general
one. We transfer the video and execute it with one of the applications which
are available there.

Let’s focus on the transfer button, which lets us assign different parts of a
running activity to different available devices in our proximity. To this end,
we have only developed an extra activity (it can even be a dialog box) which
includes some button to control the video which will be played on the big
screen. These are just simple buttons with the name of the methods that we
want to be performed on the big screen such as play, pause, stop.

When the user clicks on the transfer button, an intent will be created
which also includes the "Device Role" field as we mentioned in the section
5.5.1. The running video’s name along with the other fields are required
to put in a Launch Intent. As soon as the Launch Intent is received by the
big screen, the main activity will be launched while the two buttons will
disappear. As we have defined in the logic of the main activity, if it receives
an intent which has the role of Controller inside it, these two buttons should
be visible on the screen.

On the other hand, LIQDROID also will consider the role of the big screen
as the Client. So as soon as the user decides to close the current Controller
activity on his device or launch another activity, it will ask the user to choose
the proper action for the main activity which is running on the big screen. If
the user decides to finish it, the main activity will be resumed with the last
state of the video on his device.

Here we had the same application on both sides, but by benefiting from
LIQDROID, we could show two different experiences and views of it to the
user without the need to put more effort on designing and implementing
extra activities to handle these cases.

143

i
i

“thesis” — 2018/6/4 — 20:50 — page 144 — #162 i
i

i
i

i
i

Chapter 6. Evaluation

6.6 Use Case Scenario 5: Music Player Service

As we mentioned already, LIQDROID gives us the possibility to benefit from
the services which are available on the other devices and control and interact
with them through the activities which are available on our device. So here
the main concern is: How capable is the user of binding an activity to a
service and controlling it while they are executing in separated devices?

More specifically, we can mention that the following aspects were our
main focus to answer the above concern and to support the design phase of
this use case scenario:

• Supporting the interaction between an activity and a service in sepa-
rated devices

• Supporting the availability of the data which will be required by the
service

6.6.1 Sample Scenario

One of the limitations that already exists in the accessories which are en-
hancing the available hardware features of a device is that you can only
connect them to a single device at a time. For example, if you want to listen
to music through an external speaker which is currently connected to your
tablet, you first need to disconnect it from the tablet and then connect it to
your smartphone. Then you are all set to play the song by using it. These
configuration sets sometimes take longer than usual if the devices are not
able to properly find or connect to each other. But by using LIQDROID, you
can easily discard these extra configuration sets as you can open a music
player on your device, bind it to a service on your tablet, and start to play
the music. In the version that we have developed, the user is able to select
music from his smartphone and send it along with the service execution
request to the tablet. The LIQDROID on the smartphone uploads the song to
the Google cloud storage while LIQDROID on the tablet downloads it and
starts the music service to play it as soon as the download finishes. While
the song is playing, the user is able to control it through his smartphone or
can go to the next song that is available in the storage of the tablet. Or vice
versa-if a music player service is available on your smartphone, you will be
able to transfer music from a tablet to the smartphone, and you are able to
listen to it after you leave home.

The next time that the user wants to send the same song to play on the
tablet, LIQDROID will notify him that this song has already been sent as it
is available in the file assigned to the component in the source device.

144

i
i

“thesis” — 2018/6/4 — 20:50 — page 145 — #163 i
i

i
i

i
i

6.7. Use Case Scenario 6: Inside Shoe Store Application

(a) Music Player Activity (b) Music Service on other
devices

(c) Permission to run
service

Figure 6.6: (a)Through the Music Player activity the user chooses to run the service using
on the other proximal devices, (b) The user selects the Music Player Service on one of
the connected devices, (c) The user on the other device receives a permission request to

let the other user runs the Music Player Service of his device.

6.6.2 Application’s Architecture and Complexity

We have developed a LIQDROID-compatible activity which contains some
mp3 songs as well as the buttons to control the execution of the song on
Device A. And on the other hand, we developed a LIQDROID-compatible
service which is in charge of playing an mp3 song and installing it on Device
B. The activity will send his requests to launch the service as well as control
it through the Launch Intent and the Update Intent.

Designing the view of an activity and providing a good logic behind them
is always a hard task for developers. With LIQDROID you can benefit from
any third party’s activity to bind it to your service and benefit from its fea-
tures. For example, there could be an activity that shows more information
about a song or it can perform some statistics and provide you with a list
of songs you might be interested in. So you can easily find and select the
proper song while benefiting from your service to execute it without the
need to develop another activity with these new features.

6.7 Use Case Scenario 6: Inside Shoe Store Application

One of the main problems in the multi-device contexts is that sometimes
we need to execute a single task in parallel or to synchronize the state of
several devices at the same time. This could be even harder if those devices

145

i
i

“thesis” — 2018/6/4 — 20:50 — page 146 — #164 i
i

i
i

i
i

Chapter 6. Evaluation

are not easily accessible. So here the main concern is: How is the user able
to initialize a task on several devices at the same time, synchronize them,
and also retrieve and manage their results?

More specifically, we can mention that the following aspects were our
main focus to answer the above concern and to support the design phase of
this use case scenario:

• Supporting the initialization and synchronous execution of a distributed
task on several devices

• Managing the results achieved by the parallel execution of several
distributed tasks

6.7.1 Sample Scenario

Consider a shoe store that has different sellers which are responsible to add
the newly arrived products after they put them in their places in the shop. To
this purpose, they will use a LIQDROID-compatible application to add the
product items. Additionally, if a customer asks about the availability of a
pair of shoes, they are able to check its availability through the application.
As we have mentioned earlier, LIQDROID is capable of storing the structured
data as well as unstructured data. In order to handle this situation, we want
to use only one of the devices which is more reliable (We call it Storage
Device). We have placed the required database to keep the values. While
the other proximal devices are able to insert the information of the newly
arrived products or even make a query upon the customer’s request on that
adhoc database, in this way all the products’ information will be saved on
a single device which is always available in the store while all the sellers
are able to have access to it and update its data. In the following sections,
we will explain more about how the user is able to apply, insert and make a
query through LIQDROID on a remote database.

6.7.2 Application’s Architecture and Complexity (Insert Products)

In the middle of the day, the manager of the shop decides to have an overview
of the availability of the clothes in the shop. So he starts the Cloth Shop
application developed by us. He starts the discovery and connects to the
devices of the sellers that he wants to add available products to. As you
can see, the figure 6.7 shows the Activity 2 on device 2. The user will add
the product information and save the values in the cloud storage by using
LIQDROID. The LIQDROID will treat the results based on the rules that
we explained in the section 5.6 to manage the result of an activity. Later,

146

i
i

“thesis” — 2018/6/4 — 20:50 — page 147 — #165 i
i

i
i

i
i

6.7. Use Case Scenario 6: Inside Shoe Store Application

the manager on the Storage Device sends a query request to LIQDROID to
update the results of the database. The LIQDROID downloads these values
that have been uploaded by different devices and inserts them in the database.
The manager applies the show results and query on all values available in
the database to check the products that he needs to order.

Insert Values through Unity
(Unity supports mobility)

1

Values

Network interface

Android Framework

Activity 2:
Add Products info

(Insert)

Network interface

Android Framework

Activity 1:
Manage Results

Insert
(Values)

Query

Upload
(Values)

Download
(Values)

Database 1
(ContentProvider)

Google Drive
Google Drive

Device 2Device 1

Query Intent

3

2

Insert

6

8

4

5

7

Insert Intent
(Values)

Original Intent
(Launch Activity 2)

1

unitMessage

LIQDROID
LIQDROID

Figure 6.7: Inserting unstructured data through LIQDROID

This will enable the user on a device to periodically save the values in
the Google cloud storage and, with the user’s permission, on the device
which has the required database. So the user does not need to provide the
same instance of the database on several devices, but it is enough to store
the results on one device.

6.7.3 Application’s Architecture and Complexity (Search Products)

The second use case scenario is related to the sellers that want to check the
availability of the products. Although the database is on the Storage Device
which is in their proximity, the sellers are able to apply a query on it through
LIQDROID and view the results of the activity on their own device.

The figure 6.9 shows how the user is able to make a remote query call
on the data available on the database on Device 1. In the following, we will
explain more about how the procedure will work in a Shoe Shop that we
have considered previously. The Seller, Elena, who has Device 2, applies
the discovery and connects to Device 1. She launches Activity 3 to check
the availability of the products. To this end, she needs to apply a query on

147

i
i

“thesis” — 2018/6/4 — 20:50 — page 148 — #166 i
i

i
i

i
i

Chapter 6. Evaluation

(a) Distribution of the task (b) Show results

(c) Sller1 adds product inof (d) Sller2 adds product
inof

(e) Sller3 adds product inof

Figure 6.8: (a)The user selects to launch the activity to add products on the Sellers’
devices. (c)(d)(e) The selected sellers will add the product info in the launched activity

through their devices. (b) The manger later is able to apply query and view all the
inserted results through LIQDROID in the database on his device.

the data available in the database that exists on Device 1 (Storage Device).
As she needs to have access to the updated values in the database which
will contain the latest available products, he first launches Activity 1 there.
So she first sends a launch request (Original Intent) to launch Activity 1 on
Device 1. In order to make the diagram simpler and easier to understand, we
removed the preliminary steps to launch Activity 1 through LIQDROID that
we have explained in more detail previously. As soon as Activity 1 has been
launched on Device 1, it first will update Database 1. Updating the database
also includes receiving the latest values from the Google cloud storage by
LIQDROID (Query Intent), which we have explained in the previous section
6.7.2. Then Elena will receive an acknowledgement from LIQDROID on
Device 1 that shows that Activity 1 has been launched properly there, which

148

i
i

“thesis” — 2018/6/4 — 20:50 — page 149 — #167 i
i

i
i

i
i

6.7. Use Case Scenario 6: Inside Shoe Store Application

means that the database is updated now. Elena clicks on the button "search
results," which will send a Query Intent to the LIQDROID. The LIQDROID
will send this request to LIQDROID on Device 1, which has the database, to
perform the query method on its data on behalf of Activity 3. The received
results by LIQDROID on Device 1 will be stored on the Google cloud storage.
Whenever Elena clicks on the button "Show results", LIQDROID on Device
2 will download the results and Activity 3 will show them to her.

Besides giving the feasibility to have an ad-hoc database, this mechanism
also enables the user to use the data as an input of the different activities
(or services) available on the other devices. For example, the marketing
manager of the shop is able to use another activity to analyze the data for
making the next orders. So instead of Activity 3, there could be another
activity which uses the updated data with the previous data that it stored
to check how many products have been sold or to perform other types of
statistics.

Query Values through Unity
(Unity supports mobility)

Network interface

Android Framework

Query Intent
(Request)

Sends
(Request)

Activity 3:
Show Results

Network interface

Android Framework

LIQDROID

Database 1
(ContentProvider)

Query
(Request)

Updates

Receives
(Request)

Receives
(Results)

Activity 1:
Manage Results

Upload
(Results)

Download
(Results) Sends

(Results)

Google Drive Google Drive

9

15

7
689

Device 1 Device 2

Query Results

2
Original Intent
(Launch Activity1)

13

11

unitMessage

3
Acknowledge

4
Acknowledge

Acknowledge 5

1

10

12

14

LIQDROID

Figure 6.9: Query unstructured data through LIQDROID

The proposed use case scenario was only one of the potential examples
of using LIQDROID to store or retrieve the unstructured data from an ad-hoc
database. Another domain that can highly benefit from this feature is to
work with the data provided by the sensors. Today we encounter more
often than before that the user is able to have access to the data provided by
different sensors available on different types of devices that he holds. These
data values are mostly available on his smartphone which is connected to

149

i
i

“thesis” — 2018/6/4 — 20:50 — page 150 — #168 i
i

i
i

i
i

Chapter 6. Evaluation

those devices, but the other devices are not able to have access and use
those data values. By using LIQDROID other proximal devices are also
able to have access to those data values that have been stored on the user’s
smartphone without the need to directly connect to the sensor or install other
applications to interact with the sensors. In order to save the data received
from the sensor, the user needs to provide a database on a preferred device
(such as his smartphone) and store the values based on the defined roles.
The LIQDROID makes it possible for the proximal connected devices to
have access to this database to insert values or make queries.

6.8 Users’ perspective about LIQDROID

We have conducted an experiment including ten different users ranging
from 18 to 65 years old with different levels of expertise in using new
technologies and engaging in different occupations. The participants include
a combination of expert users-both in the sense of being more familiar with
the Android OS and those that have been following new technologies on
smart devices-and also some participants that were older and only use their
devices for performing simple tasks.

In the first step before introducing LIQDROID to the participants, we
interviewed them through a questionnaire to acquire some preliminary infor-
mation about their daily activities and their needs such as:

• what devices they have and what activities users carry out in their daily
life?

• which devices they have access to at home, at work or other places?

• how often they exchange their devices (move to another device in their
proximity) and why?

• whether they have used a combination of devices to pursue their needs,
and if so how they did it and what their requirements were?

• whether they have encountered a situation where they wanted to con-
tinue a task on other devices, and if so which kinds of tasks, what the
reason was for the device exchanges, and what they had to overcome
to do it?

• how much information they have about the capabilities supported on
their devices?

• how often they use the applications installed on their different proximal
devices interchangeably in the process of executing a task?

150

i
i

“thesis” — 2018/6/4 — 20:50 — page 151 — #169 i
i

i
i

i
i

6.8. Users’ perspective about LIQDROID

The following table 6.1 shows the number and variety of devices that each
user has. We have also asked them to include the devices that are not too old
(preferably SDK version higher than 16) that they don’t use currently. This
would help us to have more included devices for the experiment also be able
to evaluate the performance of LIQDROID considering different ranges of
devices and technologies. While in the table 6.2 you can find the important
reasons that makes participants prefer to have different types of devices. As
you can see 70% of the participants prefer to have different devices for work
and for personal usages because they think that they have more privacy in
this way.

																					NO.	of	
																				devices
Types	of	
devices

None One Two

Android	
Smartphone 0 6 4

Android	
Tablet 2 5 3

Android	
Smart	Watch 3 4 3

Android	
Auto 8 2 0

Android	
Television 7 3 0

Table 6.1: Types and the number of Android devices that each participant has.

After the participants completed the questionnaire, we have explained
the above-mentioned scenarios to them, and asked them to propose their
solutions for performing those scenarios. Based on their level of expertise
in new technologies or their experiences, they proposed different solutions
which mainly were focusing on transferring data while they needed to
reconfigure the other device and resume their work manually by reaching
that destination device. This trend was more common with participants that
were older because they often were not aware of the existing applications
in the Android market that could help them in better performing different

151

i
i

“thesis” — 2018/6/4 — 20:50 — page 152 — #170 i
i

i
i

i
i

Chapter 6. Evaluation

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Separating	Devices,	are	
used	for	personal	usage	

and	work

Device	Capabilities	
(Hardware)

Device	Capabilities	
(Software	 - Installed	

applications)

Usage	preferences	
(Task	requirements)

Other

Poposed	Usage	Reasons

Table 6.2: Reasons proposed for using multiple devices by the participants.

activities. When we proposed some questions about the capabilities that
their devices support, most of the participants (even young and expert users)
did not remember how many different applications they had installed on their
devices that could benefit them in the execution of their currently running
tasks. We noticed also that 60% of their applications were commonly
installed on all of the devices they owned. Based on the collected results,
we have depicted the table 6.3, which shows how often they encountered the
same situation and found the scenario practical. Here we need to mention
that we did not consider the exact scenario but the features that were provided
for users. For example, maybe none of the users worked in a shoe shop,
but it happened more often that they needed to save their information in a
database and wanted to apply some queries on its data later.

Then we have explained LIQDROID, its features and have installed it
on their devices and assigned different scenarios to different participants.
While later we also let them choose those that they were interested in, to
have their own experience and provide their feedbacks. We used the results
achieved from the activity logs, surveys, and interviews to evaluate differ-
ent characteristics of LIQDROID. These characteristics include the user’s
acceptance, LIQDROID’s performance at runtime, overhead and scalability.
In the following, we have presented and reported the evaluation results
achieved from the users’ experiences and their opinions about LIQDROID
while the other mentioned aspects along with a comprehensive analysis will
be explained accordingly in the sections 6.10, 6.11 and 6.12.

152

i
i

“thesis” — 2018/6/4 — 20:50 — page 153 — #171 i
i

i
i

i
i

6.8. Users’ perspective about LIQDROID

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Inside	Shoe	Store	Application	

Music	Player	Service

Home	Video	Player	and	Controller	

Take	and	Edit	Image	 Application	

Cameo	Application

Joint	Meeting	Application

General	usage

Never Often Always

Table 6.3: Levels of the participants’ engagement with the proposed use case scenarios

6.8.1 Discussion of the Results:

In the following table you can find the general opinions of the participants
of using LIQDROID through considering different factors. As it shows
they found LIQDROID very innovative and simple to use which are very
important for us. Because in our point of view and based on our experiences,
one of the important aspects that is needed to be considered in the design
and usability of applications is that different users-even those who are not
experts-should be able to easily conceive and be able to benefit from all the
features that the proposed application is providing.

Although most of them commonly agreed about the simplicity in usage
and effectiveness of LIQDROID and its innovation, their main concerns were
related to privacy. They also pointed out their concerns by proposing some
suggestions as follows:

• One of the suggestions received from the users was to provide the
possibility to give external users access to a subset of applications
instead of all of them. While it sound also interesting for use and we
can add this feature to the next version of LIQDROID. In this case, we
add a new feature to the setting menu of LIQDROID that will allow
the user to provide a list of the applications that he is interested in
giving the external users access to. So later in the process of providing
the chooser list, LIQDROID will remove those items that the user is
not interested in sharing with other members.Â The user will be able
to change the list of these applications in the setting whenever his
preferences change maybe according to the context of use, proximal

153

i
i

“thesis” — 2018/6/4 — 20:50 — page 154 — #172 i
i

i
i

i
i

Chapter 6. Evaluation

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Easy	to	learn Easy	to	use

Reliable Innovative

Optimized Overall	 interest	 in	using	LIQDROID	in	future

Table 6.4: The participants’ perspective about the usability of LIQDROID

users or other factors.

• The suggestion was, giving priority to the instructions that are sent
to LIQDROID. For example, the execution of a request a user sends
to his other personal device has a higher priority than the request of
an external user even if his request has been sent later. Although the
current performance of LIQDROID is fast enough that will not make
the user to experience long delays, but we can add another item in the
setting that let the user register his personal devices. This will enable
the user to also connect automatically to his personal devices when
they are in his proximity without needing to send permission requests.
On the other hand, we can benefit from this list of personal connected
devices in the process of prioritizing the tasks in the Task Execution
manager module and the event manager module.

We need to note that the optimization aspect considers both the perfor-
mance and energy consumption of LIQDROID during the tasks executions,
which highly depends on the device type and its battery state. For this exper-
iment, we also asked the participants to bring the old devices that they don’t
typically use, and we integrated them in the experiments. On these devices,
the energy consumption will certainly be higher than the newly released
devices. This has little effect on how the performance of LIQDROID which
has been conceived by the participants, while at the same time they referred

154

i
i

“thesis” — 2018/6/4 — 20:50 — page 155 — #173 i
i

i
i

i
i

6.9. Developers’ perspective about LIQDROID

to it as a great aspect of LIQDROID. Because maybe you do not prefer to
use your old smartphone for watching a video as it does not provide good
quality, but still you can use it as a controller.

6.9 Developers’ perspective about LIQDROID

Among the use case scenarios that were mentioned above-although, as we
said, all the scenarios agreed with Telecom Italia-two of them, the Cameo
app and the taken image, were developed by their Android developers.
While the others have been developed by us. To better evaluate LIQDROID,
we have benefited from external Android developers, ranging from experts
to those that have recently started developing Android applications, who
developed the four other scenarios that have been developed by us. To
this end, first we gave them an explanation of each scenario as presented
above, and then we asked them about the possible solutions and the required
time that they can offer us to implement those features. We collected this
information, and then we started explaining LIQDROID and how it works.
After a short presentation, we showed them the document that we have
prepared for the developers to develop LIQDROID-compatible applications
and asked them to choose one of the above use case scenarios and implement
them. We have excluded the implementations of the layouts for the user
interfaces as they were able to benefit from our previously written codes.
During the experiment, we collected their questions, which some of them
are as follows:

• How can we guarantee that the other components will not receive our
intents?

• Do we need to execute the intents? And if no how does LIQDROID
handle the execution of different intents?

• How can different developers that have developed LIQDROID-compatible
apps can collaborate with each other?

Although we have answered these questions in sections 5.5.3 and 5.6.2,
we will provide brief answers here.

• We can guarantee this by providing unique names for the extra fields
and encrypt the sensitive data. In this case, even if even if other
applications filter and receive the intents, they are not able to extract
and use their data.

155

i
i

“thesis” — 2018/6/4 — 20:50 — page 156 — #174 i
i

i
i

i
i

Chapter 6. Evaluation

• The developer should not start the intent because in this case the
Android OS of the current device will manage it, while this procedure
should be handled by the OS of the destination device(s) that the
user has selected through the Chooser List. To prevent this situation,
LIQDROID will transfer the original intent to the destination device and
LIQDROID on the destination device is in charge of executing the intent
properly. By properly we mean being able to adopting the different
types of executing the intents 6 based on the developer’s request.

• To answer this last question we have conducted an experiment to
evaluate the developers collaborations that we explain it in detail in the
following.

Besides the above-mentioned use case scenarios, we have also conducted
a new scenario to better evaluate if there is the need to add other features to
LIQDROID. The proposed application was an application for a restaurant to
automate the procedure of receiving orders inside the restaurant.

In this experiment, in order to evaluate the possibility of using different
LIQDROID-compatible apps that has been developed by different developers,
we asked two different developers to design and propose the two LIQDROID-
compatible applications. The two applications are: an application that will
be used by the restaurant owners and another one that will be used by the
customers. The Owner version is for sending the request the customers
enter to the restaurant to receive their orders. For proposing these orders
the customer will use the Customer version that is installed on their devices.
The interaction between the restaurant Owner and the customers will be
handled through these apps. Generally, the customers will be able to receive
the menu of the restaurant, ask for extra information about the proposed
foods, submit their orders, and receive their bills through the app. And on
the other side the restaurant Owner is in charge of providing the responses
to the customer’s needs through his app.

6.9.1 Discussion of the Results:

We have evaluated their effort, and the time it took them to propose the solu-
tion using the provided features of LIQDROID. At each step, they considered
and implemented different features and evaluated whether LIQDROID was
capable of handling the cases. The analysis of their required effort and time
for developing different features showed us that both expert and non-expert
developers assigned the same effort and time. This proves the simplicity of

6For more information you can find the different types of executing an intent in the official documentation of
Android:https://developer.android.com/guide/components/intents-filters.html

156

i
i

“thesis” — 2018/6/4 — 20:50 — page 157 — #175 i
i

i
i

i
i

6.10. LIQDROID’s Performance at runtime

LIQDROID in learning and developing compatible apps. While proposing
and discussing other possible and innovative use case scenarios and bene-
fiting LIQDROID to handle the situation showed us that they are looking
forward to exploring more by using LIQDROID in their upcoming projects.

Developers were interested in using LIQDROID as a shared infrastructure
to benefit from the other existing applications installed on the proximal
devices to pursue the running task’s needs. Decreasing the effort that is
needed to provide an application compatible with a device was one of
the main points that they mentioned. In this case, they assumed that by
benefiting from LIQDROID, they would not need to develop compatible
applications for different devices while they will be able to use the third
parties developed compatible applications. In this case, a developer can
develop an app compatible with the smartphone while can benefit from
another similar app that is compatible with the tablets to propose his desired
features there.

The possibility of using LIQDROID in different fields and places (public
and private) such as games, restaurants (as mentioned above), and train
stations was one of the other motivations for them to use LIQDROID to
distribute their applications’ components and tasks.

During our final discussions with them, the part which they were most
concerned about was the privacy concerns. They were also interested in
having the features inside LIQDROID to enable the user to separate his
personal devices from other proximal devices. In which they thought that
this would highly improve the current privacy concerns not only regarding
the data but also to the accessibility of the devices. So, for example, a user
may want to discover his devices and execute a task on them (when is a bit
far from them) while at the same time he is not interested in letting other
proximal users discover their devices.

6.10 LIQDROID’s Performance at runtime

To evaluate the performance of LIQDROID at runtime, we conducted an
experiment to measure the time that is required to perform different steps of
transferring and controlling a video player on proximal devices. The reason
for choosing this task is that it includes most of LIQDROID provided features.
To this end, we used a 3.61MB video and a group of four proximal devices.
We measured the time between when LIQDROID receives the user’s request,
when the proper component is selected, and the launch of the component
on the destination device. We also distinguished between the time spent on

157

i
i

“thesis” — 2018/6/4 — 20:50 — page 158 — #176 i
i

i
i

i
i

Chapter 6. Evaluation

the source and target devices. Class TimingLogger 7 provided the means to
carry out the experiment. The different parts of this task that are handled by
LIQDROID are as follows:

1. Preparing the Chooser List, which includes: the steps that have already
been explained in section 5.5.3

2. Sharing the data, which includes: loading the video file from the
storage of the source device, uploading it to the cloud and sending
the acknowledgement (after the file has successfully uploaded) to the
source component.

3. Sending the original intent to the destination device(s), which includes:
adding the required fields which will be used by LIQDROID on the
destination device(s) to manage the intent and serializing the intent to
send it through the network.

4. Receiving the content on the destination device, which includes: dese-
rializing the intent, downloading the file to the destination device, and
saving the file on the storage of the destination device(s).

5. Executing the intent to launch the user desired component with the new
address (URI) of the data on the destination device.

The table 6.5 shows the results for ten times execution of LIQDROID
and its performances by considering different factors such as Network
fluctuations, Multitasking, and Scalability. In the following we have briefly
explained these factors that have influenced each experiment.

• In the first execution, we have followed the experiments with four
devices while the users have only launched LIQDROID on their devices,
and we have collected the log files provided by the TimingLogger along
with the information of the CPU usage overhead of their devices.

• In the second execution, we kept the settings of the experiment the
same as the first experiment, while the log files and the results, as seen
in figure 6.5, show that network fluctuations occurred, which resulted
in an increment in the time of preparing the chooser list and also in
uploading and downloading the data.

• In the third execution, a disconnection occurred on one of the destina-
tion devices as it took a large amount of time from LIQDROID on the
source device to prepare the Chooser List.

7https://developer.android.com/reference/android/util/TimingLogger.html

158

i
i

“thesis” — 2018/6/4 — 20:50 — page 159 — #177 i
i

i
i

i
i

6.10. LIQDROID’s Performance at runtime

0
2
4
6
8

10
12
14
16
18
20

Ti
m
e	
(S
ec
on
ds
)

Step	1	(Chooser	List) Step	2	(Load	&	Upload	Data)
Step	3	(Send	intent) Step	4	(Extract	&	Download	Data)
Step	5	(Execute	 intent)

Table 6.5: Performance of LIQDROID at run time (with sharing data)

• In the fourth experiment, we had more or less the same results as the
first experiment without any network fluctuations appearing on the log
files.

• For the fifth experiment, we asked the participants to launch other ser-
vices and activities on their devices. This increased the CPU overhead
on their devices. In this case, the achieved results show little difference
between the first and last steps as LIQDROID is used the Android OS
to follow the processes.

• In the sixth experiment, we also launched other services and activities
on the source device. The achieved results also show an increase in
step 3 in addition to steps 1 and 5.

• The next four experiments concerned the scalability feature, which we
integrated each time one more device to see how the scalability factor
will affect the performance of LIQDROID. We need to mention that
the CPU usage of the devices was the same as it was in experiment
6 on the source and destination devices because most of the time the
participants left some launched application in the background of their
devices, which is normal behavior for most users. The results have
shown that the scalability just had a minor effect on the first step.

As we can see in the figure 6.5, the network interruptions had the biggest
effect on the performance of LIQDROID. The reason is that we expected that

159

i
i

“thesis” — 2018/6/4 — 20:50 — page 160 — #178 i
i

i
i

i
i

Chapter 6. Evaluation

LIQDROID should wait until it receives all the responses (list of available
components) from all the connected devices before proceeding to provide
the chooser list. In this case, any network fluctuations that happen in
the destination devices will have a direct effect on the performance of
LIQDROID. In order to solve this problem, based on the above-mentioned
experiment, we have considered a threshold time which is the maximum time
LIQDROID needs to wait to receive the responses from the other device(s)
before proceeding to provide the Chooser List.

On the other hand as a consideration for improving the performance
time we can mention that if the developer uses the URL (for larger size
data) or sends the data along with the Original intent (for small size data),
it can highly improve the time of the performances. As you can see it also
in the figure 6.6 which shows the subsequent effect of using URLs. We
can also use this table as a presentation of the LIQDROID’s performance in
launching components (the existing components in the Android market or
the LIQDROID-compatible apps) on the proximal devices.

0

2

4

6

8

10

12

14

16

18

20

Ti
m
e	
(S
ec
on
ds
)

Step	1	(Chooser	List) Step	3	(Send	intent)

Step	5	(Execute	 intent)

Table 6.6: Performance of LIQDROID at run time (general usage)

6.11 LIQDROID’s Overhead of energy consumption at runtime

During the design and implementation of LIQDROID, we have considered
the energy consumption as a great deal that we mention to them to explain

160

i
i

“thesis” — 2018/6/4 — 20:50 — page 161 — #179 i
i

i
i

i
i

6.11. LIQDROID’s Overhead of energy consumption at runtime

the overhead that the execution of LIQDROID at runtime when it receives a
request or even its long execution in the background can cause in the device.

Recent empirical studies on the energy consumption of the Android
application [43] have pointed out that most of the applications use 61% of
their energy in the idle states when the user is not interacting directly with
the applications. As LIQDROID is a service that is running in the background
and as it does not occupy the user interface, its energy consumption even
in long executions is much lower than activities. As well, to lessen energy
consumption during the idle time, we have determined that all the executions
will start when the user is interested in distributing a task. On the other hand,
instead of bounding activities which are using a lot of energy, we have used
pop-ups to receive user’s preferences as well as to notify him and provide
relevant information. All these pop-ups have a threshold time, and if the
user does not interact with it during the defined time slot, it will be closed
automatically.

Generally, we can consider three different phases of energy consumption
for LIQDROID at runtime as follows:

• Discovery and Advertisement, which is handled by the Google Nearby
API. - Although devices will continuously advertise themselves, the
discovery will happen manually under the user’s direct intention, and
this has highly improved the energy consumption of LIQDROID. The
reason is that, as we have already mentioned, Google Nearby uses a
combination of Bluetooth, Bluetooth Low Energy, Wi-Fi and an ultra-
sonic modem to detect the proximity of the devices, which causes a lot
of energy consumption. So we have restricted this energy consumption
only to the time that the user desires to distribute a task. On the other
hand, as Google has already started to improve the energy consumption
of this API by providing the possibility to choose only a particular
protocol to detect the proximity of the devices such as Bluetooth Low
Energy, which consumes much less energy, we expect that we will be
able to even improve more the energy consumption of this step.

• Each LIQDROID process, which is handled by the Intent Manager
Module: this process starts when the user launches a LIQDROID-
compatible component to send a request to LIQDROID and continues
up to the time that the user terminates it. In the process of implementing
LIQDROID, we have used two different methods. The first category of
the methods were based on implementing compatible methods that can
benefit the most from Android OS to provide required features. The
modules that these methods have been used on their implementations

161

i
i

“thesis” — 2018/6/4 — 20:50 — page 162 — #180 i
i

i
i

i
i

Chapter 6. Evaluation

are: the Task Execution Manager Module for the Chooser List as
well as the intent queue for managing the requests and also the Event
Manager Module. This resulted in two benefits: first, we are sure that
the execution of these procedures are optimized and, second, we can
benefit from the parallel execution of several Android OS to handle
different LIQDROID provided features.For example, in the process of
providing the Chooser List while four devices are integrated, instead
of implementing our own mechanism to collect the list of installed
applications on all the devices, finding the capable components and
then proposing the Chooser List on the source device, we used an
existing mechanism inside the Android OS. In this case, the Android
OS of all the integrated devices will work simultaneously and provide
the list of their capable components for LIQDROID on the source device.
While for optimizing the rest of the methods that have implemented
by us, we benefited from Traceview 8 to profile their performances and
improve them in sense of decreasing the resource usages and energy
consumptions.

• network connection and managing the artifacts through the Firebase
API - The above-mentioned study [43] also shows that the network and
particularly making an HTTP request is the most energy consuming
component in Android applications. Although benefiting from the
Firebase storage allowed us to manage the artifacts better and give
the user the possibility to postpone the procedure of uploading and
downloading the data to a later time, it consumes a lot of energy. So by
distributing the task to the proximal devices, especially those that are
connected to a power source, we have been able to highly improve the
energy consumption of LIQDROID at runtime on a device. This also
is very helpful in improving the performance of the wearable devices
because of their limited resources and battery capacity.

In general, in the conducted experiment that have mentioned above (in
section 6.10) which in the worst case that has used the longest time of the
execution (about 19 seconds) on the source device for sharing a video which
also includes all the above mentioned three steps, LIQDROID has consumed
around 2% of the battery of the source device. More in detail, LIQDROID
has used around 26% of the overall energy consumed during this time in the
discovery and advertisement, 11% for the processes managed by LIQDROID
and 63% for the network connection (including the network fluctuation)
and also managing the artifacts. In the other experiment, where instead of

8https://developer.android.com/studio/profile/traceview.html

162

i
i

“thesis” — 2018/6/4 — 20:50 — page 163 — #181 i
i

i
i

i
i

6.12. LIQDROID’s Scalability

transferring the video we used a URL for that video, we were able to save
up to 56% of this overhead in energy consumption on the source device.

6.12 LIQDROID’s Scalability

LIQDROID is capable of receiving several requests at the same time even
from different components on a single device or from multiple proximal
devices. In order to handle multiple requests simultaneously, LIQDROID
creates a new thread for each request and runs them immediately instead of
waiting for the previous request to finish. So in this case while it is providing
the Chooser List, if the user launches another component (on the same
device) and sends a request for receiving another Chooser List, these two
requests will be processed by LIQDROID separately. Based on the available
components (along with their application’s icon and their name) in the list,
the user is able to recognize which Chooser List belongs to which task and
can choose the appropriate component and distribute the task.

On the other hand, in crowded places such as train stations, restaurants,
and museums, it may happen that a device receives several requests from the
other devices when it is free or while it is executing a currently distributed
task. To better evaluate the consistency that may happen in this situation,
we have conducted an experiment with 8 Android devices ranging from
tablets to phones to monitor the performance of LIQDROID. One of the main
characteristics of these places is that many short access and interactions
may happen that should be properly managed. During this experiment, the
Communication and Event Manager Modules ware playing the key roles.
The Communication Module made users capable of restricting the access
of the unwanted users to their devices as well as preventing them to run
tasks while they were using their devices or were interacting with an already
distributed task. On the other hand, the Event Manager helped them to
select devices that are not currently busy. Killing the running activities on
the destination devices that their users were not interested in anymore was
helpful in the sense that it frees up resources and saves their energy while
other users were able to distribute a new task on them.

Although LIQDROID is capable of connecting all these devices together
and making them collaborate, users mostly prefer to only connect and
interact with a subset of them. Their reason was that they think that in this
way they are better able to manage the situation even from the privacy point
of view, and they can also concentrate better on the task at hand. Because,
as we said, LIQDROID will provide the list of all capable components on
a device, and this multiplied by the number of devices will provide a long

163

i
i

“thesis” — 2018/6/4 — 20:50 — page 164 — #182 i
i

i
i

i
i

Chapter 6. Evaluation

Chooser List, some of the users find it difficult to choose the component
they prefer.

6.13 Other Possible Domains of Use and Comparisons

In the previous section we have discussed the use case scenarios that have
been implemented by us to evaluate different features of LIQDROID. Letting
different users interact with these applications and discuss their experiences
and feedback could even better help us to improve LIQDROID, but the time
limitation did not permit us to cover this step. There are also other domains
where LIQDROID can be useful, but as we did not have enough time, we
could not touch on them. While reviewing the existing middlewares and
frameworks, we have also encountered use case scenarios that have been
used for evaluation purposes which we have also considered in the process
of designing LIQDROID. Here we provide comparisons between LIQDROID
and these works and will explain how LIQDROID is capable of proposing
the same features.

6.13.1 Multiplayer Games

One of the interesting domains in which LIQDROID can enhance interactions
is multi-player games where we can find multiple users with multiple devices
that need to collaborate with each other to reach a final goal. What is more
important in this domain is allowing several devices to be able to fluidly
interact with each other and also keep their states synched.

In the [20] they have provided a Crossword Game. The users subscribe
to the session by using their mobile devices and are able to participate in
the game and enter the words. The user entered word will be shown on all
the devices. The LIQDROID is able to support the same features as follows:
the first member is able to create a group and connect to the other proximal
devices that he wants to play with. He will advertise the group and the other
participants will receive his connection request. If they are interested to
play, they will accept it. The user starts the game component on his device
and requests LIQDROID to synchronously launch the component on all the
members of the "Crossword Game" group. The users of the other connected
devices also apply the discovery and find the game’s group and they connect
to its members. Now everything is set and they are able to provide the words.
Whenever a player provides a word, an Update Intent will be sent to all the
other connected devices. The state of the game component will be updated
on them and the word will become visible there.

164

i
i

“thesis” — 2018/6/4 — 20:50 — page 165 — #183 i
i

i
i

i
i

6.13. Other Possible Domains of Use and Comparisons

Figure 6.10: Multi-player Games Sample - Crossword Game. [20]

If a new member wants to join the game, after the connection phase the
game initializer is able to resume the game component with its last state
on the newly joined member, and he can see the game component with all
the words that the other players have already predicted. On the other hand,
he is able to discard the connection requests that want to use his device to
distribute the execution of another task.

6.13.2 Video Streaming Application

In the [80] they have provided a YouTube browser which includes four
panels. By their definition, a panel is an XML element, which will be used
to categorize the controls of the multiple-device interactions. These four
panels are defined in their use case scenarios as follows:

• A video stream panel

• A playback control panel

• A search panel and

• A related videos panel

The process of assigning each of these items to a panel is based on taking
advantage of the Panelrama’s automatic panel allocation feature. To this
end, the developer needs to define the strong capability required by each
panel at the implementation time, such as the video needs a big screen size
or mobility is required by the controller. At runtime, the Panelrama will be
capable of assigning these panels to the user’s device.

165

i
i

“thesis” — 2018/6/4 — 20:50 — page 166 — #184 i
i

i
i

i
i

Chapter 6. Evaluation

Figure 6.11: Shared YouTube browser [80]

The proposed scenario can easily be handled by LIQDROID as the user is
able to choose the proper component to be launched on each of the proximal
connected devices. He is free to choose any kind of device to assign the task
to. For example, he may prefer to open the video on a tablet which is closer
to him and send the suggested videos to the big screen to be able to further
review the numbers of the videos in a single page. Meanwhile, he is able to
use the controller on his smartphone which supports more mobility, and he
is able to control the execution of the video on the tablet while also selecting
the next video among the list of suggested videos on the big screen. The
user can select the big screen to play the next suggested video or can select
the tablet to play the video while the required information or content of the
video as well will be sent there.

Having the possibility to launch different components on different de-
vices based on user preferences at runtime is one of the very important
features provided by LIQDROID. Because, as we mentioned in the section
2.1, there could be different factors which can affect the interaction between
the multiple-devices such as the availability of the devices, the users or
the context of use. So considering the device features is one of the impor-
tant factors in assigning a task to a device, the other factors such as the
availability, accessibility, and other existing constraints related to the user’s
preferences are the things that should be supported by the runtime. If the
developer wants to consider all of them at the implementation time, it can
be very challenging. By increasing the number of devices, the users and the
context’s features, the complexity will be much wider than he would be able
to overcome.

166

i
i

“thesis” — 2018/6/4 — 20:50 — page 167 — #185 i
i

i
i

i
i

6.13. Other Possible Domains of Use and Comparisons

6.13.3 Distributed PDF Reader

In the [80] several tablets have been used to show the consequence pages
of a PDF file and that any added device will show the next page of the PDF
file. We also had this same scenario in the Joint Meeting Application. One
of the nice features that they also added to their framework is that the user
can lock the screen of a device to a certain page. This will assign the page
permanently to a device, which will be useful when the page includes a
figures or references list that the user may need to focus more on.

To support this feature by using the LIQDROID, we can benefit from the
possibility of the group formation provided by LIQDROID. These groups
will be used in the process of distributing the execution of a task. If in the
middle of an interaction a user wants to remove a device from the ongoing
interaction, they are able to reach the members of the group that the devices
belong to, and by applying a long click on the device name, he is able to
choose to remove that device. This means that the devices will become
disconnected and the state of that device will not be updated anymore until
the user connects to it again. Here the user can also temporarily disconnect
the devices so the Update Intent which will change the current page of the
PDF will not be received by that device.

Excluding a device from a group list will also be useful when something
such as a low battery event from one of the destination devices notifies the
source device that in any moment the device will not be available. In this
case, he can resume the task on the other proximal connected device before
losing that device and also the results of the task.

6.13.4 City Guide

Another Android application that has been developed by the [20] for the
tour leaders and tourists. The version which is under the control of the tour
leader has some extra features that give him the possibility to enable or
disable them on the tourist’s version. The proposed feature is achieved in
their framework through providing certificates that depend on the user’s role,
and it enables the leader to apply different rights in the environment. On the
other hand, the leader will have a part which includes different images, and
he can select among the available images to be shown to the tourists. But
this feature is hidden in the tourist’s version.

LIQDROID is also capable of supporting the role feature as we explained
in the section 5.5.1, and this feature is able to control the execution of a
distributed task on the proximal connected devices. This control mechanism
can appear the same here in the shape of enabling or disabling some of the

167

i
i

“thesis” — 2018/6/4 — 20:50 — page 168 — #186 i
i

i
i

i
i

Chapter 6. Evaluation

(a) (b)

Figure 6.12: City Guide Sample - (a) is the guide version with all the features visible and
(b) is the tourist version with the hidden features. [20]

available features on the same components that are executed on the proximal
device(s) by using the Update Intent.

This is also another interesting domain to apply the multi-devices inter-
action and uses of LIQDROID because there is a broad range of applications
available that benefit from the user’s current location to provide some sugges-
tions for the tourists to guide them to make better use of their time while also
better promoting the place’s attractions, for example, museums, restaurants,
or ongoing events that are close to the tourist’s current location. So the user
of these applications is able to open each of these categories of the provided
suggestions on his own proximal devices, or he can send them to his friends’
devices to let them review them. This will highly improve the collaboration
between several proximal people while significantly decreasing the time that
is required to reach a conclusion between them on where the next destination
will be.

6.13.5 Museum Guide

One of the widely used sample scenarios in the field of multi-device in-
teraction is related to the Museum (or exhibition) Guides. A broad set of
works [41, 57] has been developed to improve museum visits when there
is no kiosk or responsible people available to help the visitors. Some of
these works such as [13, 68, 73] also have benefited from games to enhance
the cooperation among museum visitors and make the museum visits more
attractive.

A museum visit could happen as an individual experience where the

168

i
i

“thesis” — 2018/6/4 — 20:50 — page 169 — #187 i
i

i
i

i
i

6.14. Conclusion

user can have the possibility of having access to the information and the
resources (devices) that are provided to help the visitors. Or it can be a group
experience with a leader that will provide the visitors with extra information
and materials besides those available in the museum.

In this context, the multi-devices interaction can extremely enrich the
visitors’ interaction with the leader and also the provided resources inside
the museums. To this end, by benefiting from the infrastructure that LIQ-
DROID provides to integrate the devices and distribute the execution of the
tasks among them, the available systems and applications will be able to
provide wider features and more organized services for the user instead of
overloading them with information. For example, when the user is near to a
big screen assigned to each art piece, they are able to distribute and control
the execution of a task on that so that other visitors can also benefit from
the provided information. This will enable the visitors to have a unique
experience of active and relevant discussions to share their information and
resources during their visits, which will end up being an overall interesting
experience where they will learn so many new things.

6.14 Conclusion

In this chapter, we aimed to provide some usage scenarios to better test and
improve LIQDROID provided features on real devices and in real contexts.
In general, the proposed comprehensive infrastructure helps the user to better
identify the resources (proximal devices) that are available in his proximity
to easily benefit from them in the execution of his current task. LIQDROID
can bring for the user(s) a fully cooperative interaction between the multiple
devices that can help him to perform his desired task in much less time and
with higher productivity. This productivity will bring better-achieved results
and also extra available time for him to assign to other tasks.

The proposed infrastructure can also conceivably improve the developer’s
efforts as they can easily benefit fromLIQDROID without the need to put
forth extra effort in developing the requirements of these cooperative interac-
tions inside their applications. Instead, they can put their focus on how they
can acquire more from this new interaction paradigm to develop innovative
use case scenarios to facilitate their users’ work as well as provide a unique
experience for them to attract more attention.

Besides the fact that implementing these steps separately inside of each
particular application requires much more time and effort, it can also de-
crease the performance of the available resources and have an adverse effect
on the final results. For example, consider that several users at the same

169

i
i

“thesis” — 2018/6/4 — 20:50 — page 170 — #188 i
i

i
i

i
i

Chapter 6. Evaluation

time compete to distribute a task on the same proximal device. As each of
them first needs to run a separate service on that destination device to be
able to start the interaction, this will form two immediate problems. First
is the interruption that this parallel usage can cause on the execution of the
ongoing tasks. And second is that the execution of several services at the
same time on that destination device to answer the request of their users,
without the presence of a central unit to manage them, will highly decrease
the performance of that destination device.

During the evaluation of LIQDROID on the real devices, we encountered
some problems which made us review the architecture of LIQDROID and
apply some changes on it. We mention just some of these problems here
such as preventing the interruption that receiving the permission requests
can cause while a user is doing critical tasks and is not interested in any
collaboration. This made us think about providing a separate phase that
will allow the user to be able to completely come out of the circle of these
proximal devices by deactivating the advertisement phase. On the other
hand, the Wi-Fi instability and instant disconnections while LIQDROID was
collecting results sometimes caused an inconsistency in the system that we
needed to handle better by monitoring the connection status.

These evaluations also reminded us that the developer may also need to
have access to some of the information which is available on LIQDROID
such as the list of connected devices and the occurrences of the events
that happen in a device, for example when the screen goes off and on, or
receiving an acknowledgement that shows the execution of the distributed
task(s) or storing the achieved results that have been handled successfully
through LIQDROID, etc.

The other concern which we always had in our mind during the evaluation
phase as well as the architecture design and also the implementation was
related to the changes that happened inside the Android framework and the
updated versions of it that sometimes put some serious restrictions on the
methods of accessing some of the previously available features. For example,
accessing the Activity Manager in the previous versions was possible for
us, while in the newly released updates because of some privacy concerns
the Android framework has decided to restrict the access of third party
applications to this feature. This had a serious effect on our work, but we
solved it in another way as we have already mentioned in the chapter 5.

In general, we can say that working with LIQDROID will be very interest-
ing and easy for the users and developers as a new paradigm of interaction
between multiple devices. It introduces a beneficial way to explore the
potential that already exists on the devices, whereas with the current so-

170

i
i

“thesis” — 2018/6/4 — 20:50 — page 171 — #189 i
i

i
i

i
i

6.14. Conclusion

lutions on the multi-device interactions we do not properly benefit from
them. And by introducing LIQDROID, we have implemented our idea about
the possibility of direct interaction between the multiple proximal Android
devices to distribute the execution of a task and also to attract the attention
of other researchers to this kind of cooperation between the devices.

171

i
i

“thesis” — 2018/6/4 — 20:50 — page 172 — #190 i
i

i
i

i
i

i
i

“thesis” — 2018/6/4 — 20:50 — page 173 — #191 i
i

i
i

i
i

CHAPTER7
Conclusion and Future Directions

In this work, we have proposed a middleware infrastructure that enables
the user to seamlessly distribute the execution of a task between a set of
proximal Android devices. The proposed solution will provide the required
infrastructure to make the multiple-devices directly interact and cooper-
ate with each other to achieve better results, or results that without this
integration were not possible to achieve.

7.1 Answers to Research Questions

7.1.1 Research Question One [Q.1]

The question: What are the currently available solutions (methods and
technologies) capable of supporting direct interaction between multiple
proximal devices? (Chapter 2)

The answer: By reviewing the current available works which enable
multiple proximal devices to interact with each other, we can mention
the following important aspects and issues that still exists in the available
solutions:

• The current solutions mostly focus on cross-platform aspect in order

173

i
i

“thesis” — 2018/6/4 — 20:50 — page 174 — #192 i
i

i
i

i
i

Chapter 7. Conclusion and Future Directions

to meet the needs of a wide range of devices. However, the solutions
proposed are still affected by responding to some of the challenges
that already exist in this field, such as data management and also
synchronization between these devices. In addition, this generalization
as regards the consideration of the type of devices will prevent us from
proposing a solution that can benefit from the competitive features and
potential that exist in each of these devices and platforms. So we ended
up providing a solution, applicable for all the devices but is limited in
the features that can provide for the final user.

• The other category of solutions tried to put their main focus on increas-
ing the usability of the applications installed on this mobile technology
enabled devices. But still the proposed models to design more us-
able application and the applications that have been developed based
on them are not satisfactory. This is understandable, considering the
limitations that each of these mobile devices put in the way of design-
ing these applications, as well as the obstacles and restrictions that
developers may face.

• Recent advancements in connection protocols and data storage tech-
nologies have also improved some degree of task continuity and state
synchronisation between multiple devices. But the problem that exists
with this category of solutions is that they are vendors’ dependent.
So it is possible to use them only through a set of specific devices or
applications.

Moreover, in order to obtain some level of privacy, they ask the user
to provide credentials in advance, which restricts the user to only be
able to use those devices that belong to him or that have his proper
credentials already entered on them. The other approach is benefiting
from a third external device in between to enable different devices
to interact with each other. Besides the high price and the problem
of portability regarding these devices, the user needs some level of
expertise, as well to assign a lot of time to the configuration.

Despite the high attention that multiple device interactions have recently
attracted and the advances that have happened in managing the interaction
between devices, common usage trends still show that they were not success-
ful enough to be adopted by users and provide their satisfaction. This led us
to provide a novel paradigm which can enable multiple devices to directly
interact with each other. The proposed solution will help users benefit from
the maximum potential that exists in the devices during the execution of an

174

i
i

“thesis” — 2018/6/4 — 20:50 — page 175 — #193 i
i

i
i

i
i

7.1. Answers to Research Questions

ongoing task.
Because of the potential that exists on the Android platform, we have

based our solution on the Android platform. While there exist solutions that
have been used on this platform, they are limited, which means that there
still exist unsolved challenges in this field. The presented solution will solve
some of these challenges, such as task distribution on multiple proximal
Android devices, and managing the state synchronization, and also the data
availability during these interactions.

In addition, we were also concerned about considering other factors such
as multiple users, context of use and the input/output modalities that can
have an effect on these multiple device interactions. This novel paradigm
will help us to better exploit the potential capabilities and features available
on these devices and change the state of single-user single-device usages to
multiple-user multiple-device scenarios.

7.1.2 Research Question Two [Q.2]

The question: What do we need to consider to enable multiple proximal
devices to directly interact with each other? This required answering the
following sub-questions: (Chapters 3 and 4)

• What are the requirements of the final users, and how do we manage
them to allow the users to seamlessly distribute the execution of tasks?

• What are the requirements of the developers, and how do we manage
them to allow the developers to seamlessly distribute the execution of
the components of their applications?

• What would be the immediate outcomes of the proposed solution?

The answer: In order to support the direct interaction between multiple
devices and make them become cooperative, we need to support the follow-
ing steps. The first step is having enough information about the available
devices and their capabilities. The second step is having enough information
about the execution of the distributed task, its requirements and the users’
preferences. The last step is the ability to integrate the devices, properly
distribute the task between them, and manage its execution and the artifacts
achieved.

To this end, we proposed LIQDROID, which is a middleware infrastruc-
ture that lets a set of proximal Android devices become fully cooperative
and create a bigger Android ecosystem. LIQDROID has a modular archi-
tecture and will benefit from some of the available potentials inside the

175

i
i

“thesis” — 2018/6/4 — 20:50 — page 176 — #194 i
i

i
i

i
i

Chapter 7. Conclusion and Future Directions

Android framework to provide the required services for running the applica-
tion. Moreover, this modular architecture makes it easier for future changes
and improvements. We did not restrict ourselves to the currently available
features on the devices or in the Android framework, so it is easy to add and
use upcoming APIs, devices and also technologies that support the Android
OS for the currently developed middleware infrastructure.

The proposed solution will provide an infrastructure to integrate multiple
devices and make them be fully cooperative. This will enhance the user’s
experience by providing him with the appropriate structure to better perform
his desired task, through benefiting from the maximum potential and capa-
bilities that the underlying context (including the devices or users available
in it) can offer him in order to achieve better results. At the same time, it will
decrease the effort required to change the devices and configure them, so he
can assign his time to more important tasks and become more productive.

7.1.3 Research Question Three [Q.3]

The question: What are the technical aspects considered in the implemen-
tation of the middleware, and how have we addressed the possible barriers
and inconsistencies that we were faced with in the process? (Chapter 5)

The answer: The Android framework has provided a complete and
organized definition about the available features and how it is possible to
benefit from the existing capabilities and technologies. But since we have
said LIQDROID is an Android service, as a third-party application, privacy
concerns sometimes put obstacles in our way to access some features and
to implement our ideas. For example, although Android keeps track of the
components running on the device, this information is not available for the
third-party components. So we have obeyed all the concerns that Android
had already provided, and in the case where the feature was completely safe,
we have asked the application developer to provide the required data, such
as the state of the activity’s lifecycle for LIQDROID.

Finally, we need to mention that the continuous execution of LIQDROID
in the background will not cause any interruption to the normal execution of
the other applications’ components on the device or affect the user’s focus.
The user has the possibility to control its execution (activate/deactivate)
easily.

One of the main problems with some of the available middleware tech-
nologies to support multiple device interactions is that the developer needs
to put in too much effort to learn how he can benefit from them in his appli-
cation or make them compatible. In LIQDROID, all the complexities are on

176

i
i

“thesis” — 2018/6/4 — 20:50 — page 177 — #195 i
i

i
i

i
i

7.1. Answers to Research Questions

the side of the middleware which this will facilitate the developer’s work, so
he does not need to learn new things to be able to benefit from the features
that LIQDROID provides, and his current knowledge in developing Android
applications is enough to be able to develop LIQDROID-compatible applica-
tions. By providing a unique infrastructure that all the installed applications
on a device can benefit from it (even in parallel), developers do not need to
make an extra attempt to separately manage these aspects on their individual
applications to be able to distribute their execution.

7.1.4 Research Question Four [Q.4]

The question: How will the proposed solution validate itself in the real case
situation? This is more specifically answered by the following sub-questions:
(Chapter 6)

• How can it improve the process of developing distributed applications
in both aspects of novelty and required attempt?

• What is the opinion of final users about it while they interact with it?

• What is the opinion of developers about it in the sense of usability, and
how much can it improve their attempts to develop distributed apps?

• What is the overhead of it in terms of performance and energy con-
sumption at runtime?

The answer: Although LIQDROID is capable of benefiting from the
existing applications’ components in the Android market in the process
of distributing the execution of a task, we have also developed some LIQ-
DROID-compatible applications with the purpose of testing different features
of LIQDROID. These real use case scenarios have been defined by the collab-
oration of the Telecom researchers and us, and will be used later by them in
their research laboratory. The proposed LIQDROID-compatible applications
have been developed and tested on real devices, and the issues that were
encountered have been solved. The comparison between the time assigned
to developing the compatible applications and the results achieved during
the interaction with LIQDROID were satisfying and interesting. We think
that the potential that exists in LIQDROID in managing users’ requests and
handling interactions can make it a good candidate to attract developers and
users to use it.

177

i
i

“thesis” — 2018/6/4 — 20:50 — page 178 — #196 i
i

i
i

i
i

Chapter 7. Conclusion and Future Directions

7.2 Future Directions

As one of our primary focuses was on the seamless interaction between
devices, this will cause less user awareness about what is happening on the
devices, and LIQDROID needs to entirely monitor the interactions in order
to propose safer decisions. So privacy concerns are still an open issue in
LIQDROID that should be thoroughly considered and evaluated. One of the
possible directions is asking for permission on the destination devices when
the distributed task wants to have access to the resources (such as camera,
microphone, sensors, etc.) of the device. The other way to provide a secure
access to the applications and their components is what has already been
suggested by the participants of the experiment: to provide a subset of the
user-permitted applications to share between other proximal users. In this
case, for example, if the user does not give access to the Gallery application,
other users that will connect to his device will not see the Gallery application
and its components on the chooser list. So they will not be able to launch it
or gain access to its data. This feature can be added in the setting module
of LIQDROID so that the user will be able to change the list of permitted
applications at any point of time.

The other aspect that we can consider about the privacy is letting the user
have a list of his personal devices so that these devices will have a higher
level of priority in distributing the tasks on them than those devices that have
temporarily paired.

The other concern is related to the data replication mechanism that
exists in LIQDROID. The complexity of the data replication mechanism
directly depends on the usage of LIQDROID in the scenarios where several
destinations devices are working in parallel on the same data. In this case,
we need to handle the conflicts and data consistency more specifically. We
have already provided a mechanism to store the different versions of the
data and manage the access of the user to them. But the other aspect that
needs to also be considered is how long it is necessary to keep these different
versions of the same data and manage their replication or elimination based
on the component’s logic or the user’s preferences. For example, if the user
distributed a task on three destination devices to edit the same image on them,
these different versions of the same image will be stored by LIQDROID,
but the user may only select one of them and proceed to use it while it
is not required to keep the two other versions. In this it is necessary to
receive the user’s preference and, based on that, go on to either keep them
or delete the other versions. We have already made the developer capable of
controlling the data replication based on his needs, but by providing other

178

i
i

“thesis” — 2018/6/4 — 20:50 — page 179 — #197 i
i

i
i

i
i

7.2. Future Directions

specific rules and constraints, we can improve the mechanism of the data
replication and storage management supported by LIQDROID. These rules
can address concerns about the data privacy (which components and who
can have access to this data), version controls or the time which they may
need to be stored in the storage of LIQDROID.

In addition, managing the data streaming feature can also be considered
as another direction to improve the data availability and transfer between
the devices. This will enable LIQDROID to transfer only the pieces of
data which are required by the distributed task instead of transferring and
loading all the data at once in the destination device(s) and then starting the
execution of the distributed task. For example, the user would be able to
send the data related to the last five minutes of a video instead of sending
all the content of the video, which is around 30 minutes. Data streaming
will greatly improve the time needed to distribute the execution of tasks that
contain larger amounts of data.

179

i
i

“thesis” — 2018/6/4 — 20:50 — page 180 — #198 i
i

i
i

i
i

i
i

“thesis” — 2018/6/4 — 20:50 — page 181 — #199 i
i

i
i

i
i

Bibliography

[1] AllSeen Alliance. Alljoyn - a peer-to-peer software development framework for ad-hoc proxim-
ity based d2d communication., 2013.

[2] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. Rio: a system solution for
sharing i/o between mobile systems. In Proceedings of the 12th annual international conference
on Mobile systems, applications, and services, pages 259–272. ACM, 2014.

[3] Wolfgang Appelt. Www based collaboration with the bscw system. In International Conference
on Current Trends in Theory and Practice of Computer Science, pages 66–78. Springer, 1999.

[4] Till Ballendat, Nicolai Marquardt, and Saul Greenberg. Proxemic interaction: designing for a
proximity and orientation-aware environment. In ACM International Conference on Interactive
Tabletops and Surfaces, pages 121–130. ACM, 2010.

[5] Magnus Bång, Anders Larsson, Erik Berglund, and Henrik Eriksson. Distributed user interfaces
for clinical ubiquitous computing applications. International journal of medical informatics,
74(7):545–551, 2005.

[6] Daniela Bourges-Waldegg, Yann Duponchel, Marcel Graf, and Michael Moser. The fluid
computing middleware: bringing application fluidity to the mobile internet. In The 2005
Symposium on Applications and the Internet, pages 54–63. IEEE, 2005.

[7] Gerardo Canfora and Fabio Melillo. Sip2share-a middleware for mobile peer-to-peer computing.
ICSOFT, 12:445–450, 2012.

[8] Xiang’Anthony’ Chen, Tovi Grossman, Daniel J Wigdor, and George Fitzmaurice. Duet:
exploring joint interactions on a smart phone and a smart watch. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 159–168. ACM, 2014.

[9] Pei-Yu Peggy Chi and Yang Li. Weave: Scripting cross-device wearable interaction. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems,
pages 3923–3932. ACM, 2015.

[10] David Dearman and Jeffery S Pierce. It’s on my other computer!: computing with multiple
devices. In Proceedings of the SIGCHI Conference on Human factors in Computing Systems,
pages 767–776. ACM, 2008.

181

i
i

“thesis” — 2018/6/4 — 20:50 — page 182 — #200 i
i

i
i

i
i

Bibliography

[11] Alexandre Demeure, Jean-Sébastien Sottet, Gaëlle Calvary, Joëlle Coutaz, Vincent Ganneau,
and Jean Vanderdonckt. The 4c reference model for distributed user interfaces. In Autonomic
and Autonomous Systems, 2008. ICAS 2008. Fourth International Conference on, pages 61–69.
IEEE, 2008.

[12] Charles Denis and Laurent Karsenty. Inter-usability of multi-device systems–a conceptual
framework. Multiple user interfaces: Cross-platform applications and context-aware interfaces,
pages 373–385, 2004.

[13] Riccardo Dini, Fabio Paternò, and Carmen Santoro. An environment to support multi-user
interaction and cooperation for improving museum visits through games. In Proceedings of the
9th international conference on Human computer interaction with mobile devices and services,
pages 515–521. ACM, 2007.

[14] Tao Dong, Elizabeth F Churchill, and Jeffrey Nichols. Understanding the challenges of designing
and developing multi-device experiences. In Proceedings of the 2016 ACM Conference on
Designing Interactive Systems, pages 62–72. ACM, 2016.

[15] Daniel J Dubois, Yosuke Bando, Konosuke Watanabe, and Henry Holtzman. Shair: Extensible
middleware for mobile peer-to-peer resource sharing. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, pages 687–690. ACM, 2013.

[16] Niklas Elmqvist. Distributed user interfaces: State of the art. In Distributed User Interfaces,
pages 1–12. Springer, 2011.

[17] Lucia VL Filgueiras, Danilo O Correa, Joao S Oliveira Neto, and Renato P Facis. X-gov
planning: how to apply cross media to government services. In Digital Society, 2008 Second
International Conference on the, pages 140–145. IEEE, 2008.

[18] George W Fitzmaurice, Azam Khan, William Buxton, Gordon Kurtenbach, and Ravin Balakr-
ishnan. Sentient data access via a diverse society of devices. Queue, 1(8):52–62, 2003.

[19] Murielle Florins and Jean Vanderdonckt. Graceful degradation of user interfaces as a design
method for multiplatform systems. In IUI, volume 4, pages 140–147, 2004.

[20] Luca Frosini and Fabio Paternò. User interface distribution in multi-device and multi-user
environments with dynamically migrating engines. In Proceedings of the 2014 ACM SIGCHI
symposium on Engineering interactive computing systems, pages 55–64. ACM, 2014.

[21] Andrea Gallidabino and Cesare Pautasso. Deploying stateful web components on multiple
devices with liquid. js for polymer. In Component-Based Software Engineering (CBSE), 2016
19th International ACM SIGSOFT Symposium on, pages 85–90. IEEE, 2016.

[22] Andrea Gallidabino, Cesare Pautasso, V Ilvonen, T Mikkonen, K Systä, JP Voutilainen, and
A Taivalsaari. Architecting liquid software. Journal of Web Engineering, 16(5&6):433–470,
2017.

[23] Giuseppe Ghiani, Fabio Paternò, and Carmen Santoro. On-demand cross-device interface
components migration. In Proceedings of the 12th international conference on Human computer
interaction with mobile devices and services, pages 299–308. ACM, 2010.

[24] Tony Gjerlufsen, Clemens Nylandsted Klokmose, James Eagan, Clément Pillias, and Michel
Beaudouin-Lafon. Shared substance: developing flexible multi-surface applications. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, pages 3383–3392.
ACM, 2011.

[25] Dagmawi L Gobena, Gonçalo NP Amador, Abel JP Gomes, and Dejene Ejigu. Delegation theory
in the design of cross-platform user interfaces. In International Conference on Human-Computer
Interaction, pages 519–530. Springer, 2015.

[26] G. Gruman. Welcome to the next tech revolution: Liquid computing., 2014.

182

i
i

“thesis” — 2018/6/4 — 20:50 — page 183 — #201 i
i

i
i

i
i

Bibliography

[27] Peter Hamilton and Daniel J Wigdor. Conductor: enabling and understanding cross-device
interaction. In Proceedings of the 32nd annual ACM conference on Human factors in computing
systems, pages 2773–2782. ACM, 2014.

[28] Rachel Harrison, Derek Flood, and David Duce. Usability of mobile applications: literature
review and rationale for a new usability model. Journal of Interaction Science, 1(1):1, 2013.

[29] John Hartman, Udi Manber, Larry Peterson, and Todd Proebsting. Liquid software: A new
paradigm for networked systems. Technical report, Technical Report 96, 1996.

[30] Björn Hartmann, Michel Beaudouin-Lafon, and Wendy E Mackay. Hydrascope: creating multi-
surface meta-applications through view synchronization and input multiplexing. In Proceedings
of the 2nd ACM International Symposium on Pervasive Displays, pages 43–48. ACM, 2013.

[31] Ken Hinckley, Robert JK Jacob, Colin Ware, Jacob O Wobbrock, and Daniel Wigdor. Input/out-
put devices and interaction techniques., 2014.

[32] Steven Houben, Paolo Tell, and Jakob E Bardram. Activityspace: managing device ecologies
in an activity-centric configuration space. In Proceedings of the Ninth ACM International
Conference on Interactive Tabletops and Surfaces, pages 119–128. ACM, 2014.

[33] Azham Bin Hussain, Sharaf Aldeen Abdulkadhum Abbas, Mustafa Sabah Abdulwaheed,
Rammah Ghanim Mohammed, and Adil abdullah Abdulhussein. Usability evaluation of
mobile game applications: A systematic review. environment, 2:5, 2015.

[34] Apple Inc. Handoff, 2014.

[35] Brad Johanson, Greg Hutchins, Terry Winograd, and Maureen Stone. Pointright: experience
with flexible input redirection in interactive workspaces. In Proceedings of the 15th annual
ACM symposium on User interface software and technology, pages 227–234. ACM, 2002.

[36] Tero Jokela, Jarno Ojala, and Thomas Olsson. A diary study on combining multiple information
devices in everyday activities and tasks. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages 3903–3912. ACM, 2015.

[37] HeeEun Kang, Kihyun Jeong, Kwonyong Lee, Sungyong Park, and Youngjae Kim. Android
rmi: a user-level remote method invocation mechanism between android devices. The Journal
of Supercomputing, 72(7):2471–2487, 2016.

[38] Amy Karlson, Brian Meyers, Andy Jacobs, Paul Johns, and Shaun Kane. Working overtime:
Patterns of smartphone and pc usage in the day of an information worker. Pervasive computing,
pages 398–405, 2009.

[39] Christian Kray, Gerd Kortuem, and Rainer Wasinger. Concepts and issues in interfaces for
multiple users and multiple devices. In Workshop on Multi-User and Ubiquitous User Interfaces
(MU3I) at IUI 2004, 2004.

[40] Michael Kruppa and Antonio Krüger. Concepts for a comined use of personal digital assistants
and large remote displays. In SimVis, pages 349–362, 2003.

[41] Tsvi Kuflik, Oliviero Stock, Massimo Zancanaro, Ariel Gorfinkel, Sadek Jbara, Shahar Kats,
Julia Sheidin, and Nadav Kashtan. A visitor’s guide in an active museum: Presentations,
communications, and reflection. Journal on Computing and Cultural Heritage (JOCCH),
3(3):11, 2011.

[42] Michal Levin. Designing Multi-device Experiences: An Ecosystem Approach to User Experi-
ences Across Devices. " O’Reilly Media, Inc.", 2014.

[43] Ding Li, Shuai Hao, Jiaping Gui, and William GJ Halfond. An empirical study of the energy
consumption of android applications. In Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on, pages 121–130. IEEE, 2014.

183

i
i

“thesis” — 2018/6/4 — 20:50 — page 184 — #202 i
i

i
i

i
i

Bibliography

[44] Tin-Yen Lin, Jing Chen, and Jian-Hong Liu. Enabling cooperative computing for android-based
mobile platforms. In Computer, Consumer and Control (IS3C), 2016 International Symposium
on, pages 763–766. IEEE, 2016.

[45] Kris Luyten and Karin Coninx. Distributed user interface elements to support smart interaction
spaces. In Multimedia, Seventh IEEE International Symposium on, pages 8–pp. IEEE, 2005.

[46] Kris Luyten, Jan Van den Bergh, Chris Vandervelpen, and Karin Coninx. Designing distributed
user interfaces for ambient intelligent environments using models and simulations. Computers
& Graphics, 30(5):702–713, 2006.

[47] Nicolai Marquardt, Till Ballendat, Sebastian Boring, Saul Greenberg, and Ken Hinckley. Grad-
ual engagement: facilitating information exchange between digital devices as a function of
proximity. In Proceedings of the 2012 ACM international conference on Interactive tabletops
and surfaces, pages 31–40. ACM, 2012.

[48] Jérémie Melchior, Donatien Grolaux, Jean Vanderdonckt, and Peter Van Roy. A toolkit for peer-
to-peer distributed user interfaces: concepts, implementation, and applications. In Proceedings
of the 1st ACM SIGCHI symposium on Engineering interactive computing systems, pages 69–78.
ACM, 2009.

[49] Tommi Mikkonen, Kari Systä, and Cesare Pautasso. Towards liquid web applications. In
International Conference on Web Engineering, pages 134–143. Springer, 2015.

[50] Miguel A Nacenta, Dzmitry Aliakseyeu, Sriram Subramanian, and Carl Gutwin. A comparison
of techniques for multi-display reaching. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 371–380. ACM, 2005.

[51] Kazuhiro Nakao and Yukikazu Nakamoto. Toward remote service invocation in android. In
Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic & Trusted
Computing (UIC/ATC), 2012 9th International Conference on, pages 612–617. IEEE, 2012.

[52] Bonnie A Nardi and Vicki O’Day. Information ecologies: Using technology with heart. 1999.

[53] Ingrid Nascimento, Williamson Silva, Bruno Gadelha, and Tayana Conte. Userbility: A
technique for the evaluation of user experience and usability on mobile applications. In
International Conference on Human-Computer Interaction, pages 372–383. Springer, 2016.

[54] Michael Nebeling, Theano Mintsi, Maria Husmann, and Moira Norrie. Interactive development
of cross-device user interfaces. In Proceedings of the 32nd annual ACM conference on Human
factors in computing systems, pages 2793–2802. ACM, 2014.

[55] Michael Nebeling, Christoph Zimmerli, Maria Husmann, David E Simmen, and Moira C Norrie.
Information concepts for cross-device applications. In DUI@ EICS, pages 14–17, 2013.

[56] Sangeun Oh, Hyuck Yoo, Dae R Jeong, Duc Hoang Bui, and Insik Shin. Mobile plus: Multi-
device mobile platform for cross-device functionality sharing. 2017.

[57] Reinhard Oppermann and Marcus Specht. A context-sensitive nomadic exhibition guide. In
International Symposium on Handheld and Ubiquitous Computing, pages 127–142. Springer,
2000.

[58] Antti Oulasvirta and Lauri Sumari. Mobile kits and laptop trays: managing multiple devices
in mobile information work. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 1127–1136. ACM, 2007.

[59] Fabio Paternò and Carmen Santoro. A logical framework for multi-device user interfaces. In
Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive computing systems,
pages 45–50. ACM, 2012.

184

i
i

“thesis” — 2018/6/4 — 20:50 — page 185 — #203 i
i

i
i

i
i

Bibliography

[60] Pardha S Pyla, Manas Tungare, and M Pérez-Quinones. Multiple user interfaces: Why consis-
tency is not everything, and seamless task migration is key. In Proceedings of the CHI 2006
workshop on the many faces of consistency in cross-platform design, 2006.

[61] David Randall and Pascal Salembier. From cscw to web 2.0: European developments in
collaborative design. de. From CSCW to Web 2.0: European Developments in Collaborative
Design, Computer Supported Cooperative Work, 1, 2010.

[62] Ahmed Salem and Tamer Nadeem. Colphone: A smartphone is just a piece of the puzzle. In
Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct Publication, pages 263–266. ACM, 2014.

[63] Samsung. Samsung flow., 2014.

[64] Stephanie Santosa and Daniel Wigdor. A field study of multi-device workflows in distributed
workspaces. In Proceedings of the 2013 ACM international joint conference on Pervasive and
ubiquitous computing, pages 63–72. ACM, 2013.

[65] Taylor Savage. Componentizing the web. Queue, 13(8):60, 2015.

[66] Melissa A Schilling. Toward a general modular systems theory and its application to interfirm
product modularity. Academy of management review, 25(2):312–334, 2000.

[67] Thorsten Schreiber. Android binder. A shorter, more general work, but good for an overview of
Binder. http://www. nds. rub. de/media/attachments/files/2012/03/binder. pdf, 2011.

[68] Jolien Schroyen, Kris Gabriëls, Kris Luyten, Daniël Teunkens, Karel Robert, Karin Coninx,
Eddy Flerackers, and Elke Manshoven. Training social learning skills by collaborative mobile
gaming in museums. In Proceedings of the 2008 International Conference on Advances in
Computer Entertainment Technology, pages 46–49. ACM, 2008.

[69] Katarina Segerståhl. Utilization of pervasive it compromised?: understanding the adoption and
use of a cross media system. In Proceedings of the 7th International Conference on Mobile and
Ubiquitous Multimedia, pages 168–175. ACM, 2008.

[70] Katarina Segerståhl and Harri Oinas-Kukkonen. Distributed user experience in persuasive
technology environments. Persuasive Technology, pages 80–91, 2007.

[71] Dong-Hee Shin. Cross-platform users’ experiences toward designing interusable systems.
International Journal of Human-Computer Interaction, 32(7):503–514, 2016.

[72] Maria Shitkova, Justus Holler, Tobias Heide, Nico Clever, and Jörg Becker. Towards usability
guidelines for mobile websites and applications. In Wirtschaftsinformatik, pages 1603–1617,
2015.

[73] Christos Sintoris, Adrian Stoica, Ioanna Papadimitriou, Nikoleta Yiannoutsou, Vassilis Komis,
and Nikolaos Avouris. Museumscrabble: Design of a mobile game for children’s interaction
with a digitally augmented cultural space. In Social and Organizational Impacts of Emerging
Mobile Devices: Evaluating Use, pages 124–142. IGI Global, 2012.

[74] Henrik Sørensen, Dimitrios Raptis, Jesper Kjeldskov, and Mikael B Skov. The 4c framework:
principles of interaction in digital ecosystems. In Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, pages 87–97. ACM, 2014.

[75] Antero Taivalsaari, Tommi Mikkonen, and Kari Systä. Liquid software manifesto: the era of
multiple device ownership and its implications for software architecture. In Computer Software
and Applications Conference (COMPSAC), 2014 IEEE 38th Annual, pages 338–343. IEEE,
2014.

[76] Jari-Pekka Voutilainen, Tommi Mikkonen, and Kari Systä. Synchronizing application state
using virtual dom trees. In International Conference on Web Engineering, pages 142–154.
Springer, 2016.

185

i
i

“thesis” — 2018/6/4 — 20:50 — page 186 — #204 i
i

i
i

i
i

Bibliography

[77] Minna Wäljas, Katarina Segerståhl, Kaisa Väänänen-Vainio-Mattila, and Harri Oinas-Kukkonen.
Cross-platform service user experience: a field study and an initial framework. In Proceedings
of the 12th international conference on Human computer interaction with mobile devices and
services, pages 219–228. ACM, 2010.

[78] James R Wallace, Regan L Mandryk, and Kori M Inkpen. Comparing content and input
redirection in mdes. In Proceedings of the 2008 ACM conference on Computer supported
cooperative work, pages 157–166. ACM, 2008.

[79] Fatos Xhafa, Daniel Palou, Santi Caballè, Keita Matsuo, and Leonard Barolli. Mobilepeerdroid:
A platform for sharing, controlling and coordination in mobile android teams. In International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pages 961–972. Springer,
2016.

[80] Jishuo Yang and Daniel Wigdor. Panelrama: enabling easy specification of cross-device
web applications. In Proceedings of the 32nd annual ACM conference on Human factors in
computing systems, pages 2783–2792. ACM, 2014.

186

	Introduction
	Distributed Android Execution
	Research Problems
	Homogeneous Platform vs Cross Platform
	Supporting New Devices and Technologies (transparency)
	Managing the Execution of the Distributed Tasks (adaptability)
	Synergistic Specificity of the Applications' Parts

	Research Questions
	Research Objectives
	Major Contributions
	Thesis Structure

	Related Work
	Models and Technologies in Distributing User Interfaces
	Supporting Multiple Devices
	Supporting Multiple Platforms
	Supporting Multiple Users
	Supporting Multiple Contexts of Use
	Supporting Multiple Modalities (input / output)
	Discussion and Comparison

	Models and Technologies in Distributing Services
	Multi-channel Services
	Crossmedia Services
	Discussion and Comparison

	Middleware Technologies
	Conductor
	Panelrama
	Multi-Device Interaction with Dynamically Migrating Engines
	AllJoyn
	Sip2Share
	Remote Service Call
	Middlewares on Android Binder extension
	Google Play Services

	Conclusion

	Background About Android Framework
	Android Application Components
	Activity
	Service
	Content Provider
	Broadcast Receivers

	Android Inter Process Communication
	Intent
	Intent Filter

	Conclusion

	Proposed Middleware Architecture
	Connection Layer
	Advertisement and Discovery
	Group Formation
	Communication Channel
	Device Abstraction

	Interaction Layer
	Intent Manager
	Task Execution Manager
	Artifact Manager
	Event Manager
	Service Manager
	Communication Manager
	Settings

	Conclusion

	Implementation Details and Technical Descriptions
	Advertisement and Discovery
	Group Formation
	Communication Channel
	Device abstraction
	Device Level Discovery
	Application (Components) Level Discovery

	Intent Manager
	Task Execution Manager
	Categories of devices' interactions
	Managing the devices during the interaction (State Synchronization)

	Artifact Manager
	Transferring data through the cloud infrastructure
	Transferring data Directly through the local Wi-Fi network

	Event Manager
	Device Level Events
	Interaction Level Events

	Service Manager
	Communication Manager
	Settings
	Conclusion

	Evaluation
	Usage of LiqDroid with Available Android Applications
	Sample Scenario
	Application's Architecture and Complexity

	Use case scenario 1: Joint Meeting Application
	Sample Scenario
	Application's Architecture and Complexity (Presenter Version)
	Application's Architecture and Complexity (Participant Version)
	Application's Architecture and Complexity

	Use Case Scenario 2: Cameo Application
	Sample Scenario
	Application's Architecture and Complexity

	Use Case Scenario 3:Take and Edit Image Application
	Sample Scenario
	Application's Architecture and Complexity

	Use Case Scenario 4: Home Video Player and Controller
	Application's Architecture and Complexity

	Use Case Scenario 5: Music Player Service
	Sample Scenario
	Application's Architecture and Complexity

	Use Case Scenario 6: Inside Shoe Store Application
	Sample Scenario
	Application's Architecture and Complexity (Insert Products)
	Application's Architecture and Complexity (Search Products)

	Users' perspective about LiqDroid
	Discussion of the Results:

	Developers' perspective about LiqDroid
	Discussion of the Results:

	LiqDroid's Performance at runtime
	LiqDroid's Overhead of energy consumption at runtime
	LiqDroid's Scalability
	Other Possible Domains of Use and Comparisons
	Multiplayer Games
	Video Streaming Application
	Distributed PDF Reader
	City Guide
	Museum Guide

	Conclusion

	Conclusion and Future Directions
	Answers to Research Questions
	Research Question One [Q.1]
	Research Question Two [Q.2]
	Research Question Three [Q.3]
	Research Question Four [Q.4]

	Future Directions

	Bibliography

