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The important thing is not to stop questioning.
Curiosity has its own reason for existing.

Albert Einstein





Abstract

In this thesis we present two approaches to improve automatic playtesting using player
modeling. By modeling various cohorts of players we are able to train Convolutional
Neural Network based agents that simulate human gameplay using different strategies
directly learnt from real player data. The goal is to use the developed agents to predict
useful metrics of newly created game content.

We validated our approaches using the game Candy Crush Saga, a non-deterministic
match-three puzzle game with a huge search space and more than three thousand levels
available. To the best of our knowledge this is the first time that player modeling is
applied in a match-three puzzle game. Nevertheless, the presented approaches are general
and can be extended to other games as well. The proposed methods are compared to a
baseline approach that simulates gameplay using a single strategy learnt from random
gameplay data. Results show that by simulating different strategies, our approaches
can more accurately predict the level difficulty, measured as the players’ success rate,
on new levels. Both the approaches improved the mean absolute error by 13% and
the mean squared error by approximately 23% when predicting with linear regression
models. Furthermore, the proposed approaches can provide useful insights to better
understand the players and the game.

Keywords — Player Modeling; Automatic Playtesting; Gameplay Simulation; Con-
volutional Neural Network.
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Sommario

La creazione di contenuti nei videogiochi è un compito di cruciale importanza per svilup-
pare e mantenere alta la qualità del gioco proposto. In particolare, i livelli nei videogiochi
devono creare divertimento e soddisfazione nei giocatori. Se un livello è troppo facile
rischia di annoiare il giocatore ed al contrario se è troppo difficile rischia di creare frus-
trazione. In entrambi i casi il giocatore potrebbe decidere di abbandonare il gioco. Essere
in grado di creare contenuti di gioco che soddisfino le aspettative dei giocatori è un com-
pito non semplice che richiede esperienza e professionalità. L’intelligenza artificiale è uno
strumento che può aiutare i designer di videogiochi nell’ottenere utili metriche riguardo
i contenuti creati. In questa tesi proponiamo due approcci che attraverso la creazione
di modelli dei giocatori e la simulazione di gioco permettono di ottenere metriche più
accurate riguardo i contenuti di gioco creati dai designers.

Abbiamo validato gli approcci proposti utilizzando come esempio il videogioco Candy
Crush Saga, un videogioco non deterministico di tipo puzzle match-3 con più di tremila
livelli disponibili e milioni di giocatori attivi ogni giorno. Inoltre, gli approcci proposti
sono generali ed è possibile utilizzarli anche in altri tipi di videogiochi. I risultati provano
che è possibile ottenere stime riguardanti la difficoltà di nuovi livelli in modo più accurato
rispetto al caso in cui non si consideri nessun modello dei giocatori. Infine, attraverso
l’utilizzo di questi modelli è possibile sviluppare analisi che permettono di capire in modo
più approfondito non solo i giocatori ma anche il videogioco stesso.
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Chapter 1

Introduction

Within the recent years, we have seen an incredible growth in the gaming industry. New-
zoo, a leading provider of games market intelligent, reported that “the gaming industry
is growing faster than expected, up 10.7% to $116 billion 2017” [1]. Most of the revenue
comes from the mobile industry that accounts for almost half of the global game market
and the perspectives show a continuous growth at an annual rate of 8.2% to 2020. Ev-
eryday, more and more people use their smartphone to play mobile games and a recent
report on Verto Analytics [2] showed that gamers play an average of 24 minutes each
day. Being able to continuously engage users is a key capability that game companies
need to possess. Another current trend is the shifting from the traditional Pay-to-Play
(P2P) business model to the Free-to-Play (F2P) or “freemium” business model. The F2P
business model allows users to acquire and play a game free of charge and at the same
time encourages them to pay for in-game additional content. More than that, it allows
game companies to increase the popularity of a game and to collect revenues in a second
moment. This fundamental shift is even more preeminent in the mobile game industry
as demonstrated by the success and highly profitable results of many F2P mobile titles
(see e.g. [3]–[8]).

To exploit the F2P business model, game companies need to continuously release new
content (e.g. levels, characters, items to collect) or add new features to engage users and
retain them as long as possible. It is extremely important that the content generated by
game designers matches the expectations of the players [7]. In this direction, one of the
most important features is the user´s perceived difficulty of a game [9]. If a game is too
hard, the player gets frustrated and contrariwise if a game is too easy the player gets
bored. Being able to balance the difficulty of a game [10], and so its perceived quality,
is the primary challenge that game designers need to deal with every day. Sometimes,
game designer’s intuition is not enough to balance a game, especially for those features
whose impact on the difficulty is not obvious. A common approach to balance a game is
to iteratively test and adjust game content, like a level or a character, until a predefined
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2 1.1. BACKGROUND

design goal is achieved.
The focus of this research is on understanding and testing game content, leaving the

creation process to game designers. Human testing has been widely used in the past but
at the same time, it is expensive, time consuming and relies on subjective feedback [11].
To solve this problem several approaches have been proposed, leading to what is called
automatic playtesting [12].

1.1 Background

The work of this thesis can be classified under the broad category of Artificial Intelligence
(AI). AI is understood as the study and development of "intelligent agents". Agents that
mimics cognitive functions of humans, like reasoning, learning or memory. Since its foun-
dation at a workshop at Dartmouth College in 1956, AI experienced phases of interest
and funding as well as phases of critics and disappointments as demonstrated by the two
major "AI winters" in 1974–80 and 1987–93. Since then, as machines have become more
powerful, the definition of which task requires "knowledge" and as a consequence, what
makes an agent "intelligent", has changed and it still continue to change. Nowadays, AI
is widely applied in different fields and disciplines and examples of actual challenges are:
autonomous driving, executing medical diagnosis or competing with humans in games.
Since the birth of AI, games and especially board games, have been a popular domain
of research [13] due to the formal and constrained environments, yet complex decision
making problems. The combination of game and AI is demonstrated by the increasing
popularity of meetings, like the Artificial Intelligence and Interactive Digital Entertain-
ment Conference (AIIDE), the Conference on Computational Intelligence and Games
(CIG) and the Game Developers Conference (GDC), or journals, like the Transactions
on Games (ToG), that continuously presents the major results in the field. Within
the AI area, this thesis involves three major categories: automatic playtesting, player
modeling and gameplay simulation.

In the last years, automatic playtesting has become more and more popular thanks
to the increasing performances of computational resources and the notable results in
the machine learning field. Zook et al. [11] used active learning techniques to reduce
the amount of playtesting needed to adjust game parameters. They reduced the cost
of playtesting by intelligently picking the parameters to test, but they still used human
testing to evaluate various parameter configurations. Isaksen et al. [14] used automatic
playtesting and player modeling to tune game parameters to reach a predefined difficulty.
They implemented a simple AI agent that performed better than humans in an action
game that requires only motor skills but no strategy or planning. Then, they simulated
humans by adding dexterity, reaction time and accuracy errors. Finally, they used
survival analysis to explore the game space by adjusting low-level parameters of the game.
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Holmgård et al. [15] used linear perceptron and Reinforcement Learning (RL) to simulate
a priori defined styles of playing. While later, [16] they compared two different methods
of representing human decision making styles. They illustrated that a top-down approach
from expert knowledge performs equally good as a bottom-up approach from human
play-traces. However their analysis is limited to a simple dungeon exploration game and
there is no evidence that the same results apply for different or more complex games.
Isaksen et al. [17] used variants of Q-learning-based agents to simulate several types of
players with different skills. Subsequently they used the trained agents to estimate the
strategy and dexterity required on each level. Drachen et al. [18] used self-organizing
maps to construct models of players and inform game designers if players interact with
the game as intended. Hoorn et al. [19] used multiobjective evolutionary algorithms to
train an agent that not only performs good in the game but at the same time imitates
human players. They concluded that imitating humans is a hard task and as a fact, their
method performed poorly on this task. Eisen [20] used a Convolutional Neural Network
(CNN) to predict human moves in the Candy Crush Saga game. Consequently he used
the CNN-based agent to simulate gameplay and finally, using the agent performances
he estimated difficulty of new levels. However, each player has his own way of reasoning
and a game content can be perceived difficult by one player and easy by another one.
As a consequence, modeling different types of players’ behaviour can be beneficial to
understand how different people interact with the game and which difficulties they face.

1.2 Problem

In the literature, many variants of playtesting have been discussed and investigated.
However, some of the proposed approaches [19]–[25] consider difficulty as a single measure
while, indeed, difficulty can be perceived differently by various type of players. Instead
others [12], [14], [15], [17], [26] model different AI agents to simulate different players but
they do not consider real player data while learning the policies and rely on designers’
knowledge or RL to differentiate the agents. We believe that using player modeling
to simulate strategies of various cohorts of players while directly learning the polices
from real player data can led to both a closer to human and heterogeneous simulation.
Therefore, we can have a better estimate of the quality of a game, helping game designers
to faster and more accurately develop the desired content.

To validate our idea, in this research we use the Candy Crush Saga game as an ex-
ample. However our approach is general and can be adapted to work with other games
too. At the moment of writing, there exists an implementation of a Convolutional Neu-
ral Network (CNN)-based agent that simulates human gameplay to predict the player
success rate (SR) for the selected game [20]. Since this method reached the best perfor-
mance to date, we will use it as a baseline. However, the existing method uses only an
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average policy learnt from a random subsample of players, without considering any dif-
ference in the skills or strategies of different cohorts of players, nor any other information
concerning them. We believe that being able to incorporate these characteristics of the
players into the model allows to improve the prediction accuracy of the network as well
as providing useful insight about the behaviour of the players and the characteristics of
the levels. The measure used to evaluate the difficulty of a level in this thesis is the SR.
As a consequence, the research question examined is:

Can player modeling improve the players’ SR estimation of a CNN-based agent
simulating human gameplay?

1.3 Goals and Purpose

The thesis illustrates how player modeling techniques can be used to model strategies
and skills of different groups of players by simulating them using CNN-based agents.
The primary goal of the thesis is improving automatic playtesting using player model-
ing techniques. We illustrate how the developed agents can be useful for predicting the
human SR on new levels for the game selected as test bench in this research. Subse-
quently, we aim to provide game designers with level difficulty measures perceived by
the different groups of players to iteratively balance game content and create the best
possible player experience. Furthermore, this work illustrates how the new approach
outperforms the previous state-of-the-art [20] in the human SR estimation task. We
discuss how simulating different human gameplay can provide valuable insights about
the behaviours of the players and the content of the game. Finally, we propose a player
modeling approach to estimate the strategy requirement of different game contents.

1.3.1 Benefits, Ethics and Sustainability

Being able to model different types of players can be beneficial for all the companies in the
game industry that can use the same approach to better understand their game and their
players. Most of the benefits regard game designers that can save time by automatically
testing a game content in few minutes and obtaining accurate estimates of how a content
is perceived by different players. Nevertheless, some ethical considerations need to be
addressed.

An emerging risk we need to take into account is the excessive growth of player
profiling techniques especially in tech companies. It is a recent news [27], that Cambridge
Analytica, a British political consulting firm, harvested private information from more
than 50 million Facebook users without their permission, making it one of the largest
data leaks in the social network’s history. Profiling technologies raises not only ethical
but also privacy, security, liability and equality issues. To better understand the risks
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and implications of these technologies we refer to [28], [29]. Privacy is one of the primary
issues. Tracking and monitoring individual’s behaviour may reveal personal information
that the monitored individuals might not even be aware of themselves. Since in our
research we track data from real players, to guarantee the privacy of the players, at
King, we comply with the General Data Protection Regulation (GDPR) [30] that has
become enforceable in the European Union from 25 May 2018. For this reason, all the
data are anonymized in such a way that is not possible to go back to the real player. As
the player models get improved, we need less data about individual players to predict
their behaviours. However, the intent of this thesis is improving automatic playtesting
to advance player experience and gaming entertainment. Consequently, we respect and
promote the code of professional ethics for modeling and simulation [31] defined by T. I.
Orel. A more tragic ethical issue has been exposed by Stephen Hawking [32] at BBC in
2014. Hawking said that the increasing effort into developing thinking machines poses a
threat on humanity existence. However, he refers to a full AI that is able to think better
than humans, and it is able to recursively improve itself. On the contrary, our AI agent
is only able to perform a specific task, simulating humans while playing a puzzle game.
For this reason we do not elaborate more on the threat of AI, referring to Toby Walsh
[33] for a deeper reflection.

If we expand the scope, another ethical issue regards jobs that can become obsolete
with the outcome of this work. As automatic playtesting become more popular, jobs
that consist of testing game content could be damaged. However, automatic playtesting
regards only those jobs that consist of repetitively performing the same task many times
and measuring it. These monotonous jobs can be shifted to others more suitable for
humans such as developing, improving and maintaining the testing infrastructure or
analyzing the test results. Furthermore, in our opinion, human testing is still the best
approach when it concerns subjective or qualitative measurements like fun or player
experience and it should be used in conjunction with our approach. Finally, for a more
exhaustive reflection on ethics of AI we refer to Bostrom and Yudkowsky [34].

The last consideration regards sustainability that is becoming a central aspect in our
decisions and our lifestyles. In 2015, governments, companies and civil society defined
the 17 sustainable and development goals with targets for the next 15 years. Our work
is beneficial for both the goal number 8 “decent work and economic growth” because it
removes the repetitive component in the human testing work and for the goal number 12
“responsible consumption and production” because it reduces the number of iterations
needed to adjust and test a game content, diminishing the computational resources used
and therefore the consumed energy.
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1.4 Methodology and Method

Our work is inspired by previous researches in the automatic playtesting field as described
in Section 1.1. In this research we use an inductive [35] and data-driven approach
because we base our decisions on analysis of player data and we try to generalize from
these examples. We use a quantitative method [36] since we statistically test our results
and because we want our outcomes to be comparable with previous researches. We
attempt to create a framework that extracts the player strategies from gameplay data
and simulates them. Data is collected by tracking some of the real players while playing
the Candy Crush Saga game for a period of three months. We use player modeling
together with a CNN-based approach to model and simulate gameplay of various groups
of players. Subsequently, simulating different strategies, we estimate the human SR on
new levels and we compare our approach with the previous state-of-the-art [20]. Finally,
we use the defined player models to characterize levels.

From a philosophical point of view, we aim to develop agents that are able to "act
intelligently", or more concretely, to play a specific game "intelligently". In our case, we
define intelligence as the capability of the agent to simulate a human strategy and as a
consequence to imitate human thinking. We do not aim to develop super-human agents
but we are interested modeling various types of real players, including players with low
performances or players that use non-optimal strategies. Our work can be considered as
an example of "weak AI" since the scope of our agents is limited to a specific and narrow
task. In contrast, the "strong AI" concept refers to the development of machines with
the ability of apply intelligence to any problem and they are not limited to one specific
task.

1.5 Delimitations

Within the scope of this thesis, player modeling is limited to the study of the players’
behaviour in terms of strategies used, defined by different policies to select actions in
the game, and skills possessed by each player that allow them to solve the levels. At this
moment, we do not consider the affective and psychological perception of the players
that often requires specific and intrusive systems to be measured and modeled. In spite
of that, a measure of the perceived entertainment could be worth when designing the
game.

Despite the generic nature of the question posted in the thesis, we focus solely on
the game Candy Crush Saga, a match-three puzzle game developed by King in 2012,
as a test case to answer our research question. However, the methods and analysis of
this work are general and can be easily extended to similar games e.g. Farm Heroes
Saga or Bejeweled, and they might be valuable even for other kinds of games. Candy
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Crush Saga can be considered as a casual match-three puzzle game. In a match-three
puzzle game the player has to manipulate tiles in order to create a sequence of three or
more adjacent elements of the same type. Furthermore, Candy Crush Saga is a non-
deterministic game because game content is randomly generated during the game. It
mainly consists of a series of levels to be fulfilled in sequence. On each level, the player
has different objectives to reach. Almost all the levels are limited by a maximum number
of available moves to reach the objectives. However, there are few levels (4.73% of total
levels) that are limited by time. This type of levels are not considered in this research
since a different approach to model them would be necessary. Moreover, in the game
there are few levels (2.83% of the total levels) that contain a special item called "Candy
Frog". Differently from any other element, the "Candy Frog" can be moved to any cell
in the game board. Since a large number of additional actions would be necessary only
to model this element, we decide to not consider levels that contain the "Candy Frog" in
our research. Finally, the levels in Candy Crush Saga are non-deterministic polynomial-
time hard (np-hard) problems as demonstrated by Toby Walsh in [37], meaning that in
the worst case, solving them requires exponential time. Additionally, this type of game,
compared to other types e.g. shooting, adventure or managerial games, introduces more
complexity in the player modeling stage due to the fact that a strategy cannot be easily
described by words or using a high-level abstraction. In fact, in this thesis, the word
"strategy" refers to a policy represented by a model, in our case a CNN. In a sense, the
policy function approximated by the CNN is latent since it cannot be observed directly.
Following the taxonomy defined in [38], the intent of player modeling in this research is
on prediction and reproduction without necessary answering why players exhibit certain
behaviours. As a consequence we do not directly focus on description or interpretation
of the generated player models.

1.6 Outline

The rest of this thesis is structured as follows: Chapter 2 presents the background and
illustrates the related work in the area of this thesis. Chapter 3 describes the method and
methodologies used during this research. Chapter 4 describes the results of our attempts
to improve automatic playtesting using player modeling. Chapter 5 discusses interpre-
tation, implications, consequences for the field and future work. Finally, conclusions are
reported in Chapter 6.



Chapter 2

Background and Related Work

2.1 Automatic Playtesting

In the last decade, automatic playtesting has become a very active field of research,
mainly due to the promising results and the increase of available data. Many approaches
and various way of helping game designers testing their work and better understanding
players’ behaviour or game mechanisms have been proposed. Automatic playtesting
allows to obtain fast and low-cost feedback regarding the generated game content without
requiring humans to play the game.

2.1.1 Related Work

We present here a summary of the most relevant approaches related to automatic
playtesting. Zook et al. [11] used active learning to reduce the number of playtesting
required to balance the low level parameters in a shoot-‘em-up game. Even if effective,
their method still requires human testers to evaluate different combinations of param-
eters and it is not completely automatic. Holmgård et al. [15], first used Q-learning
while later [16] used linear perceptrons to model archetypical decision making styles
representing the behaviour of different classes of players. Subsequently, they used the
developed gameplay agents to automatically test the generated game content. However,
both of their work rely on handcrafted playing strategies, defined by different reward
functions, used by the agents to learn the corresponding behaviour. A different approach
was used by Isaksen et al. [17] to evaluate the impact of strategy and dexterity in two
popular puzzle games: Tetris and Puzzle Bobble. Their approach consists of applying
variants of Q-learning algorithms to simulate various types of human gameplay. They
defined strategy as the ability to select the best move and they modeled it with vari-
ous handcrafted heuristics. At the same time, they defined dexterity as the capability
of correctly executing a predefined move and they estimated it by performing a small

8
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pilot study with real players. They developed several agents by adding human errors
in different quantities to a previously developed artificial agent. Finally, they used the
resultant agents to measure the strategy and dexterity requirements for each level and
the effects of the scoring system in the game.

Focusing on the Candy Crush Saga game, Poromaa [21] developed an AI agent
trained with Monte Carlo tree search (MCTS) to estimate level difficulty. The algorithm
considers both the final result (win or loss) and partial objectives fulfillment during the
roll-out phase to compensate the extremely large search space and the limited number
of simulations per move. More recently, Purmonen [24] used a CNN-based agent trained
with the previous MCTS simulated gameplay data to estimate level difficulty. This
method only simulates the MCTS bot and not a human player. However, Purmonen
showed how his approach is useful to estimate the average human SR in substantially
shorter time compared to the MCTS-based agent, while being equally good in prediction
accuracy. Later, Eisen [20] developed a similar CNN-based agent but trained on player
gameplay data. Then, he used the agent to simulate human gameplay and estimate
difficulty of new levels. The new approach decreased the mean absolute error (MAE) in
the SR prediction compared to the previous MCTS-based agent developed by Poromaa
[21]. However, Eisen’s implementation does not consider any player feature, e.g. player’s
skill, and as a consequence it is only able to simulate the average strategy between all
the players.

To the best of our knowledge, no one in the research area is using player modeling
to simulate human gameplay of different cohorts of players while directly learning the
policies from real player data. In the next section we describe what player modeling is
and how it is applied in automatic playtesting.

2.2 Player Modeling

Player modeling is a wide concept that can involve different research areas and tech-
niques from modeling body alterations during gameplay to predicting human behaviour
in strategy games. We define player modeling as the process of understanding, describing
and analyzing the dynamic interactions between a game and the players, to distinguish
it from player profiling that refers to categorizing players based on static information,
e.g. age, gender or personality. Even if not strictly necessary, nowadays player modeling
mainly refers to the use of AI and computational resources to create models of the play-
ers. Despite the fact that several papers and researches use a different terminology when
talking about player modeling, Smith et al. [39] and Yannakakis et al. [40] defined a
useful high level taxonomy of player modeling that we will use during the writing of this
thesis. A distinction that is worth mentioning is between direct modeling or model-free
approach and indirect modeling or model-based approach, where the earlier refers to



10 2.2. PLAYER MODELING

the use of Supervised Learning (SL) techniques and human player data while the latter
refers to the use of Unsupervised Learning (UL) techniques, mainly RL, to create AI
agents that simulate human gameplay. Although these two approaches represent the
extreme cases, the large majority of researches can be described as hybrid between the
two. For a better understanding we will refer to human players with the term players
while we will use the term agents to refer to computer-based players.

2.2.1 Player Modeling Metrics

Player metrics are an invaluable resource for understanding players and games. Ty-
chsen and Canossa [41] identified, monitored and discussed several player metrics, like
frequency of death or choice of weapon, in the game Hitman: Bloody Money to dis-
cover patterns of play and building modeled representations of player styles. Similarly,
Holmgård et al. [15] identified five different potential sources of positive or negative re-
ward (moving, hitting a monster, collecting treasures, dying and reaching the exit) in
the MiniDungeons game and used them to model different types of playing. The five
sources were directly defined by the researchers after an analysis of the game mechanics.
Finally, using the defined metrics they modeled five distinct personas: the Exit persona
who mainly cares about reaching the exit of the level, the Runner persona who tries to
reach the exit as fast as possible, the Survivalist persona who tries to avoid damage to
the largest extent possible, the Killer persona who tries to hit every monster in the level
and the Treasure collector persona who cares about collecting all the possible treasures
before reaching the exit.

2.2.2 Related Work

The success and the continuous research in the player modeling field is due to the promis-
ing and wide range of applications that benefit from its results and it is not only limited
to the game industry but affects many disciplines like economics, sociology and psy-
chology. In the last years, the primary use of player modeling techniques has been to
classify players based on their interactions with the game. The fundamental idea is to
collect data from the players, reduce the dimensionality retaining only the relevant fea-
tures and then define different behavioural profiles that can be used to test or to better
understand a game. One of the first attempt was done by Bartle [42] that classified
players into four categories relying on his own intuition to define the clusters. Others
[43], [44] relied on behavioural theory to partition the players. Drachen et al. [18] used
self-organizing maps trained on high-level player data to identify models of players for
the game Tomb Rider: Underworld. First, they used k-means to determine the number
of existing clusters and then used unsupervised learning to identify and visualize clusters
of player styles. Drachen et al. [45] illustrated a first attempt to identify behavioural
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profiles by clustering large scale and high dimensional data from two major commercial
computer games. They showed how the selection of the clustering algorithm can lead
to fundamentally different insights and investigations of the player population. While
k-means is useful to extract the general distribution of player behaviours, another clus-
tering algorithm called Simplex Volume Maximization is more useful to discover players
with extreme behaviour. Holmgård et al. [16] showed that a bottom-up approach built
from game designers’ knowledge performs equally well to a top-down approach built on
player data at representing player decision making styles. Furthermore, Holmgård et
al. [38], demonstrated that generative agents built on expert knowledge are useful for
characterizing and classifying human players and can be used as a playtesting tool in
the game design process to interpret human decision making. Nevertheless, they evalu-
ated the two researches on a relative small game compared to most commercial games,
called MiniDungeons. We believe that a bottom-up approach can better capture player
behaviours and explore strategies that are not easily detected by designers’ intuition.

The large amount of research in the game of Go domain also contributed in different
ways to the player modeling field. Sutskever and Nair [46] tried to predict moves made
by expert Go players in order to narrow down the search space for a computer player.
Similarly, Stern et al. [47] used Bayesian learning algorithm to learn a probability dis-
tribution of expert players’ moves given a board position. The idea of distinguishing
between expert and non expert players can be considered as a broad type of player mod-
eling. A more accurate approach that considers the skills of the players, was used by
Maddison et al. [48] to develop a Deep Convolutional Neural Network (DCNN) able to
play the game of Go. Maddison et al. provided the network with an input parameter
indicating the rank of the player. This created a dynamic bias to the network depending
on the players’ skill.

Furthermore, other researchers used player modeling for different purposes. Some in-
teresting examples of these applications are: customized game content generation where
the narrative and the game content are personalized to match each player’s preferences
and expectations [49]–[53], game balancing to adapt the difficulty of a game based on
the skills of the players [10], [54], [55], monetization to predict which player is more will-
ing to pay for in-game content using massive amounts of player data [5], game outcome
prediction in multiplayer games [56]–[59] and player behaviour prediction, e.g. when a
player will stop playing a game or how much time he will take to finish it [60]. Recently,
a horror-themed game called Nevermind [61] was developed to adapt the game content
accordingly with the player’s physiological state that was tracked by biological feedback.
Pirovano et al. [62] developed a rehabilitation station that integrates video games to
support rehabilitation at home. The station performs real-time and automatic adapta-
tion of the gameplay based on the patient’s conditions. Moreover, player modeling has
been used to create agents that not only play well, but also play believably or human-
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like [22], [63], [64]. Hoorn et al. [19] used multiobjective evolutionary optimization to
produce agents that imitate players and concurrently maximize the performances in the
game. Results demonstrated that, in the specific case of a racing game, performing well
is a relative easy task, while imitating humans is very hard with the suggested approach.
In 2008, a new version of the Turing Test was proposed [65]. Participants needed to sub-
mit AI agents that behave as human in a game and a number of judges must distinguish
if a player is a human or a bot. Results showed that the submitted bots do not behave
as human at that moment. Nevertheless, in 2012 two AI agents [66], [67] passed the test
in the Unreal Tournament 2004 game.

2.3 Gameplay Simulation

Since the early 50s, pioneers of computers wrote programs to play games. In 1950, Shan-
non [68] published a paper describing how to program a computer to play Chess using
move selection and position scoring. His work is considered one of the first attempt to
program a computer for playing Chess. Similarly, in 1953, Turing [69] used a Minimax
algorithm to play Chess, trying to demonstrate that computers can execute tasks that
require "intelligence". In 1952 A. S. Douglas wrote an algorithm to play the Tic-Tac-Toe
game, while in 1959, Samuel [70] wrote an algorithm to play Checkers, learning to play
against itself and inventing what is now called reinforcement learning. More recently,
the focus shifted on more complex games with a huge search space, like backgammon
or Chess. The intent is to develop algorithms that are better than any human in that
specific game. In 1994, Schaeffer et al. [71] wrote Chinook, a computer program that
plays checkers and that is the first program that won a world champion title competing
against humans. In 1995, Tesauro [72] developed TD-Gammon, a temporal difference
learning algorithm that reached top-human capabilities in the backgammon game. In
1997, Logistello, a computer program developed by Michael Buro that plays the Othello
game, beat the human world champion Takeshi Murakami six games to none [73]. Fa-
mously in the same year, IBM [74] developed Deep Blue, the first algorithm that reached
super-human performance in Chess, defeating the then-reigning World Chess Champion,
Garry Kasparov. Currently, the focus of gameplay simulation is on even more complex
board games, like Go, and on video games different from board games, like first-person
shooter (FPS) games or real-time strategy games. The benchmark for the near future
might be StarCraft II (Blizzard Entertainment, 2010), as demonstrated by the recently
research on it [75] and the interest of big companies like Google, Facebook [76], [77] and
Alibaba [78]. StarCraft II is a real-time strategy game with a search space of approx-
imately 101685 [77] (game of Go has about 10170 states) and at this moment, the best
StarCraft II computer program only reaches an amateur level [13].
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2.3.1 Candy Crush Saga

Candy Crush Saga is a free-to-play game released by King on April 2012 that in five
years has been downloaded 2.73 billions of times [79]. It can be considered as a casual
match-three puzzle game where the core activity is to swipe two adjacent candies on
the board of the game to make a row or a column of three or more matching-colored
candies. A match of less than three candies is allowed when it involves special candies
or items. When a match is performed, the matched candies disappear and the candies
above them fall into the empty spaces while new candies are randomly generated at the
top of the board. Moreover, making matches of more than three candies creates one of
the 6 types of special candies that can be used to clear entire columns, rows or section of
the board. The board consists of a 9x9 grid that can contains candies, special candies,
special items, blockers or empty spaces that are filled by blocks of various colors. There
exist 13 different types of blockers, each one with specific characteristics that obstacle
the player in performing the swaps and several special items each one with specific effects
on the game. The player earns points for each match of candies performed. The game is
presented as a series of levels that need to be completed in sequence. The game contains
more than 3, 000 levels and new ones are released every week. To be considered finished
and allow the player to progress in the sequence, each level has one or more objectives
to be fulfilled. The objectives, that also categorize the levels, can be: reach a predefined
number of points (score levels), remove jellies at certain positions (jelly levels), move
items, called ingredients, to specific positions on the board (ingredients levels), remove
a predefined number of certain items (candy order levels), reach a predefined number
of points within time limit (timed levels) or a combination of the mentioned objectives
(mixed levels). Jellies are items that cover other candies and are removed if the candy
they cover is involved in a match or if it is destroyed by a special effect. Ingredients are
special items that cannot be part of a match but they can be swapped if the other candy
involved in the swap lead to a legal match. Furthermore, each level contains three score
thresholds and for each threshold reached, the player obtains a star. Obtaining at least
one star is a requirement on all the levels. Except for timed levels, all the other objectives
need to be fulfilled within a specific number of moves. Even if with a large variance, on
average, a level has a depth of 32 moves and each board state has, on average, a branching
factor of 10.28 actions. This lead to a search space of approximately 1032. However, we
are not taking into account the randomness in the game. Considering that most of the
levels replace the removed candies with random candies selected between 4 or 5 different
colours, that cascade effects increase the number of states traversed between actions and
that some levels randomly generate not only coloured candies but also items or special
candies, the actual search space is extremely bigger. This motivates the difficulty of
evaluating the action to perform at each given state. Another core characteristic of the
game is accessibility. From the human perspective is not always easy to notice all the
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(a) (b)

(c) (d)

Figure 2.1. Examples of legal moves in the game and examples of items. White
boxes illustrate examples of possible swaps while white circles illustrate special
candies or items.

possible moves in each state, due to the colorful, animated and quite large game board.
It is also worth to mention that several players play the game just for fun or to relax
without considering all the possible moves or evaluating them and this can be considered
as a source of noise in our data when we try to model different player strategies.

Figure 2.1 shows four different game states and various types of candies and items
of four different game levels. In Figure 2.1a the white box shows a possible swap that,
if executed, creates a special candy called "Colour Bomb" that when switched with a
regular candy, it deletes all the candies of that colour from the board. In Figure 2.1b the
white box illustrates a swap that creates a "Striped Candy". When a "Striped Candy"
is matched, it deletes all the candies in its row or column. In Figure 2.1c the white box
shows a regular swap while the circle illustrates a "Horizontal Striped Candy". In Figure
2.1d the white circle shows a "Candy Bomb" with a timer of 18 available moves before
it explodes and the player loses the game. Also, the white box shows a regular swap on
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a "Conveyor Belt" that is an item that moves the candies on it by one position in the
direction of the belt every turn. Moreover, the examples in Figures 2.1 contain a lot of
others special items, each one with its own characteristics and effects. The images in
Figure 2.1 show different level objectives. The level in Figure 2.1a is a candy order level,
the level in Figure 2.1c is a jelly level while levels in Figure 2.1b and 2.1d are examples
of ingredients levels. This illustrates the diversity between the levels in the game.

The game allows players to use boosters (sometimes known as power-up). A booster
is an item that can be used to facilitate the gameplay and solving a level more easily.
In Candy Crush Saga there are 15 different boosters each one with different properties.
They can be grouped into three main categories:

1. Pre-level boosters. Activated before the game starts.

2. In-level boosters. Activated during the gameplay if the conditions of the game
board create any effect when the booster is used. As an example, a player cannot
use a "Bomb Cooler" booster if there are no "Bombs" on the game board.

3. Consolation boosters. Activated at the end of the attempt to prevent failure
and retrying.

Each booster has a number of charges. Every time a player uses a booster, one charge is
consumed. Some boosters can be used only in specific type of levels. In Appendix A.1
a full description of all the boosters with their effects and usage conditions.

2.3.2 Gameplay Metrics

In the last years, game metrics have become popular in the game industry as a source of
valuable information about game design. Game metrics are the result of the interaction
between the players and the game. Compared to user feedback or surveys, game metrics
have the advantage to be objective, not biased by player emotions and they are easier
to gather on a large scale. Since our goal is to estimate level difficulty, we use the SR on
a specific level as a measure of the perceived difficulty. The success rate sri,k on a level
i perceived by a group of players k is defined as follow:

sri,k = si,k

ai,k
, (2.1)

where si,k is the sum of the number of successes on level i of each player in group k and
ai,k is the sum of the number of attempts on level i of each player in the considered group
k. The reason why we use the SR as a measure of the perceived difficulty is because
we believe that if a player needs to try a level many times before solving it, and thus
the SR is low, he perceives the level as a difficult one, while on the contrary, if a player
solves a level in few attempts, he perceives the level as an easy one and the SR is high.
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Another reason why we use the SR is to allow a comparison with the state-of-the-art
approach. However, since the baseline does not consider different groups of players, we
furthermore use a combination of the SR of all the k groups to estimate sri that is the
overall difficulty perceived by all the players on level i.

2.3.3 Related Work

Until Silver et al. [80] published their work in 2016, presenting the Google DeepMind’s
AlphaGo system, most of the research in the game of Go was focused on RL to teach
computer playing the game. The state-of-the-art were MCTS programs that simulates
thousands of self-play games to estimate the optimal policy. Silver et al. [80] demon-
strated how deep neural networks trained on human expert player data can effectively
estimate the "value network" used to evaluate board positions and approximate the "pol-
icy network" used to select moves in the game of Go. The two networks were trained
by a combination of reinforcement learning and supervised learning using human expert
data. Their research was based on prior work on predicting expert moves in the game of
Go using supervised learning techniques [46]–[48]. Their solution is the first computer
Go program that beat a human professional Go player without handicaps. In 2015, Al-
phaGo defeated Fan Hui, a three times European Go champion, in all of the 5 matches
disputed. In 2016, it beat Lee Sedol, a 9-dan professional player considered one of the
best players at Go, in a five-game match.

Similarly to what Silver et al. did with AlphaGo, Hlynur [23] illustrated how CNN
can be designed to predict expert moves for the Othello game, exceeding the previous
state-of-the-art by 5.3%. He used a DCNN trained with handcrafted features and the
raw board state as input, showing that removing the handcrafted features decreases the
accuracy by only 0.9% but at the same time allows for a much faster computation. Chen
and Yi [25] demonstrated that CNN can provide similar performance while requiring
fewer resources and training time compared to more complex methods such as deep Q-
learning in challenging policy estimation task. More recently, the new Google AlphaGo
Zero program [81] trained solely by self-play reinforcement learning achieved super-
human performances, winning 100-0 against the previously published AlphaGo system.
However, a perfect-play agent that always plays the optimal move and leads to the best
possible outcome is out of the scope of this thesis. We aim to model human players and
even the best player does not always select the optimal action due to the difficulty of
identifing and evaluating each possible move in the Candy Crush Saga game. For this
reason, it is important that the AI agent plays in a human-like manner, making the same
sort of errors and therefore using a similar strategy to human players.

The game of Go has several similarities with the game used in our research. First,
the grid shape topology of the board and the discrete game action space that make
CNN a valid approach to simulate gameplay. Second, the vast search space that makes
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computationally hard to evaluate each possible state-action pair in the game. Third, the
observability, since both games have perfect information. Fourth, the time granularity,
since both are turn based games and finally, the Markov property, that practically holds
for both the games. Candy Crush Saga can be considered, for practical purposes, to have
the Markov property, even if there are few special cases where specific game items violate
this assumption. There is a special candy called "Chameleon candy" that alternates
between two colors every turn. However, since this type of candy is really rare in the
game, we will treat the game as a Markov process. Even if there are some differences,
like the fact that Go is a two player zero-sum adversarial game while Candy Crush Saga
is a single player game or that Go is deterministic while Candy Crush Saga it is not, we
rely on the results of previous work in the game of Go to guide our research. Finally, in
the last three years, some related work on the Candy Crush Saga game has been done.
As mentioned in Section 2.1.1, Poromaa [21] used a MCTS approach while Eisen [20]
and Purmonen [24] used a CNN-based approach to simulate gameplay, similarly to what
have been done in the AlphaGo system.

2.4 Theory

2.4.1 Linear Regression

Linear regression is one of the simplest approach for regression analysis. It models a
linear relationship between a dependent variable and one or more independent variables,
also called explanatory variables or predictors. Linear regression is largely applied in
biological, behavioural and social sciences as well as finance and economics to describe
the relationships between different variables. Linear regression models are used both
for prediction and for quantifying the relationship between response and explanatory
variables. When it is used for prediction, as in this thesis, a linear regression model is
obtained by fitting the observed training data. Then, if new values of the explanatory
variables are collected, the model is used to predict the response variables.

Given a data set {yi, xi1, . . . , xid}ni=1 where n is the number of examples in the data,
y is the response variable and x is the d-vector that describes the explanatory variables,
the linear relationship is modeled as:

yi = β01 + β1xi1 + · · ·+ βdxid + εi, i = 1, . . . , n, (2.2)

where εi is the error term that adds noise to the linear relationship. If written in matrix
form the linear equations can be expressed as:

y = Xβ + ε, (2.3)
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where

y =


y1
y2
...
yn

 , X =


1 x11 . . . x1d

1 x21 . . . x2d
...

... . . . ...
1 xn1 . . . xnd

 , β =


β0
β1
...
βd

 , ε =


ε1
ε2
...
εn

 . (2.4)

Several procedures to estimate the parameters β have been proposed. One of the most
popular is Ordinary Least Squares (OLS) since it leads to a closed-form solution. It
computes the estimated values β̂ by minimizing the sum of squared residuals. The
estimates are computed as:

β̂ = (X>X)−1X>y (2.5)

If the errors have finite variance and are uncorrelated with the predictors then the
estimator is consistent and unbiased.

E[xiεi] = 0 (2.6)

OLS method computes the best fitting line for the observed data. Furthermore, once a
regression model has been fit, an examination of the deviations of the observed values
from the fitted line (residuals), allows to investigate the validity of the obtained linear
model. For more information regarding linear regression analysis we refer to [82].

2.4.2 Convolutional Neural Networks

A Convolutional Neural Network is a specific type of feed-forward artificial neural net-
work that uses a shared-weights architecture and has the translation invariance property.
It is mainly used for processing data with a grid-like topology, e.g. time series or im-
ages. CNNs were inspired by the animal visual cortex where neurons are activated by
stimuli from a restricted region of the visual field. A CNN consists of an input layer,
an output layer and a variable number of hidden layers. Layers can be repeated many
times and the output of one layer becomes the input of the next one. An example of a
CNN architecture is illustrated in Figure 2.2.

A key characteristics of CNNs is that they have sparse connectivity, meaning that
when a convolution operation is performed, the output is determined only by a subset
of the input (called receptive field) that depends on the size of the filters. However, in a
deep CNN, deeper layers may have indirect connections with larger subset of the input.
This enable the network to learn complex functions combining simple building blocks.
Each hidden layer typically consists of one of the following three types: a convolutional
layer, a pooling layer or a fully connected layer.
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input

convolutional layer
with non-linearities

pooling layer

convolutional layer
with non-linearities

pooling layer

fully connected layer

output layer

Figure 2.2. Example of a CNN architecture. As first introduced by LeCun et
al. in 1989, this network alternates between convolutional layers with hyperbolic
tangent activation functions to introduce non-linearities and pooling layers. In this
representation, the convolutional layers include the activation functions. The grey
squares represent the activation maps. The last two layers are fully connected layers.
Usually, the output layer uses a softmax activation function. Image generated with
code adapted from [83].

Convolutional layer: It applies a convolutional operation to the input and it drasti-
cally reduces the number of free parameters allowing to operate with inputs that have
high dimensionality like images. Instead of having a connection from each input to each
output, as in a fully connected feed-forward neural network, it uses filters (typically of
a small size, e.g. 3x3) that are shared between inputs. In this way, each parameter of
the filter is used in every position of the input, with various design choices for managing
the boundaries. The filters are moved step by step over the input and at each step,
the dot product between the filter and the input is computed. The number of units
by which the filters shift over the input is the filter stride. On top of that is typically
added a non-linear activation function. Each convolutional layer uses one or more filters
and each of them, moving over the input, generates an activation map. Finally, all the
generated activation maps are stacked together and they constitute the input of the next
layer. As a result, the network learns filters that are activated when they detect specific
features in the input. Sometimes batch normalization is added at the beginning of the
convolutional layer to speed up training and to reduce overfitting.

Pooling layer: It reduces the size of each activation map combining multiple out-
puts of a convolutional layer into a single value. In practice, many types of pooling
layers exist and as an example the max pooling layer combines multiple output of the
previous layer retaining only the maximum value. The idea is to generate smaller rep-
resentations maintaining only the relevant information introducing invariance to small
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shifts or distortions. Furthermore, the pooling layer progressively decreases the size of
the representation, reducing the number of parameters and the amount of computation
required by the network.

Fully connected layer: A fully connected layer connects every neuron in the input to
every neuron in the output. This type of layer is usually added at the end of the network
to feed a softmax function and generate a distribution over the output classes. Lin et al.
[84] proposed another strategy called global average pooling (GAP) to replace the fully
connected layers. When using GAP, the last convolutional layer has to generate one
feature map for each target class. Then, instead of having a fully connected layer, the
average of each feature map is computed and the output is fed into a softmax function.
The advantage of this approach is that since there are no parameters to optimize in the
GAP layer, overfitting is avoided at this layer. Finally, since from each map only the
average value is retained the network is more robust to input spatial translations.

The idea of CNN [85], [86] dates back to the 80s. One of the first applications was
to recognize hand-written digits on checks or mails but due to slow computational re-
sources and limited amount of labeled data the research on CNNs progressed slowly
until 2012. In that year, Krizhevsky et al. [87] famously developed a network called
"AlexNet" and they won, by a large margin, the ImageNet large scale visual recognition
challenge (ILSVRC) [88]. After this successful result, many variants of CNNs have been
proposed and new applications have been found. At the time of writing, examples of the
most popular and prominent architectures are the inception network and the residual
network. The inception network architecture [89] was introduced by Google and mainly
consists of parallel 1x1, 3x3 and 5x5 convolutional filters combined into several modules.
This architecture is able to reduce the number of features, and so the performed oper-
ations, compared to the ones of "AlexNet", leading to a very efficient architecture. The
main idea of the residual network [90] is to add skip connections allowing the output
of a convolutional layer to bypass the next two layers. This approach helps the learn-
ing of deep CNNs with many layers by better gradient backpropagation. For a deeper
understanding about artificial neural networks and their applications we refer to [91].

2.4.3 Clustering

Clustering is an exploratory data mining process that consists of grouping together
objects such that elements in the same group (called cluster) are more similar compared
to elements in different groups. The term "clustering" refers to the general task and
many algorithms to perform it have been proposed. In this thesis we use hierarchical
clustering and k-means.
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Hierarchical clustering

The algorithm iteratively connects elements to form clusters based on distances between
elements. Two main hierarchical clustering approaches exist: the top-down approach
starts considering all the elements as a single cluster and iteratively splits them into
smaller ones, while the bottom-up approach starts considering all the elements as single
clusters and iteratively merges them. Different distance functions can be used, e.g.
euclidean distance, hamming distance, cosine distance. Also, the user needs to chose the
linkage function, since a cluster consists of multiple data point, the algorithm needs a
criterion to select which element to use when computing the distance function. Popular
linkage functions are the single-linkage function, the complete-linkage function and the
average-linkage function. The single-linkage function, considers the minimum of the
element distances. As a consequence, the distance D(X,Y ) between two clusters X and
Y is described by:

D(X,Y ) = min
x∈X,y∈Y

d(x, y), (2.7)

where d(x, y) denotes the distance between two elements x and y. The complete-linkage
function considers the maximum of the element distances and it is described by:

D(X,Y ) = max
x∈X,y∈Y

d(x, y), (2.8)

instead, the average-linkage function, also known as unweighted pair group method with
arithmetic mean (UPGMA), considers the average of the element distances and it is
described by:

D(X,Y ) =
∑

x∈X,y∈Y

d(x, y)
|X| · |Y |

, (2.9)

where |X| and |Y | are the cardinalities of clusters X and Y respectively. Finally, since
the general complexity of hierarchical clustering is O(n3) this algorithm performs well
only for small data sets. However, it does not produce a single partitioning but an
extensive hierarchy of merged clusters that can be visualized with a two dimensional
diagram known as dendogram [92]. Example of a dendogram is illustrated in Figure
2.3. We can observe how starting with six separate data points the algorithm iteratively
merges them until a single cluster containing all the points is obtained.

K-means

The algorithm was introduced in 1976 by Stuart Lloyd [93], which is why it is also
referred as Lloyd’s algorithm, however it was not published outside the Bell labs until
1982 and the term "k-means" was introduced in the same year by James MacQueen.
The algorithm aims to partition n observations into k (≤ n) clusters in which each
observation belongs to the cluster with the nearest mean.
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Figure 2.3. Example of a dendogram. On the x-axis the data points to be clus-
tered, on the y-axis the distance measure. The distance between merged clusters
is monotone increasing with the level of the merger. The height of each merge is
proportional to the dissimilarity between the data points in each merged cluster.
Using a bottom-up approach, the first generated cluster is {E,F}, then the second
generated cluster is {C,D}, the third is {A,B} and finally, the last two clusters:
{E,F,C,D} and the cluster with all the data points {A,B,E,F,C,D}.

More formally, given a set of observations (x1, x2, . . . , xn), where each observation is a
d-dimensional array, k-means partitions the n observations into k sets S = S1, S2, . . . , Sk

trying to minimize the within-cluster sum of square (WCSS) distances:

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖2, (2.10)

where µi is the mean of the points in Si. The most common version of the algorithm
uses iterative refinement to assign each observation to a cluster. The number of clusters
k is an input parameter of the algorithm and its choice significantly impacts the quality
of the output. The algorithm, starting with a set of k-means, alternates between two
steps until convergence:

1. Assignment step: assign each observation to the nearest cluster,

2. Update step: compute the new means of each cluster, called centroids.

The algorithm converges when no observation changes cluster during the assignment
step, however it does not guarantee to find the optimal solution. A common approach to
select the parameter k is the elbow criterion [94]. The main idea is to run the algorithm
for a range of values of k and computing the sum of squared errors (SSE) for each value.
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Plotting the SSE against the number of clusters k, we can chose k by looking at the
"elbow" of the line. The idea is to select a small value of k that still has a low SSE.
Sometimes this value cannot be unambiguously identified. Regarding the initialization of
the centroids, many variants have been proposed and a common approach is to randomly
initialize them. For more details about k-means we refer to [95].



Chapter 3

Methods

The approach we use for improving automatic playtesting can be divided into three
major stages:

1. Player modeling. In this first stage, we model different cohorts of players based
on their features. Furthermore, we create artificial agents that simulate their
strategies in the game. Since we use human gameplay data to learn the strategies,
using the taxonomy defined in [40], we can classify our method as a direct modeling
approach. However, since we do not have any direct strategy feature, we use
unsupervised learning techniques in this stage. To model the players we evaluate
the following two approaches:

(a) Clustering players. First we cluster the players and then we train a different
CNN-based agent on each player cluster.

(b) Clustering simulated strategies. We train a CNN-based agent feeding as
input both the player features and the game board. Then, during prediction,
by changing the players’ input parameters, we can simulate several type of
players. Lastly, clustering the simulated strategies we select different agents.

2. Gameplay simulation. On each level, various agents, simulating different player
strategies, play the entire level several times. Based on the result of the simulation
we compute the SR of each agent.

3. Players’ SR prediction. The final stage is to use the agents’ SR on the training
levels to fit a prediction model. Using this model we can predict the players’ SR
on new levels.

To perform automatic playtesting, the first stage is executed only one time or when
major changes, that made the player models previously defined no longer reliable, are

24



CHAPTER 3. METHODS 25

introduced in the game. On the contrary, stages two and three need to be performed
each time a new generated game content needs to be tested.

The novelty of these approaches relies in stage 1. Differently from existing ap-
proaches, we model strategies of various cohorts of players by directly learning them
from player gameplay data. Some of the existing approaches for automatic playtesting
consider only a single strategy while others, even if they simulate various strategies, rely
on designers’ knowledge or reinforcement learning to model them, without considering
player data. Furthermore, to the best of our knowledge, this is the first attempt to use
player modeling in a match-three puzzle game. In the next section, we describe the data
used in our research. Then, we describe in detail the stages of our two approaches and
the evaluation measures used. Finally, we propose an approach to estimate the strategy
required by each level to be solved.

3.1 Data

3.1.1 Data Collection

Since the number of daily active players for the Candy Crush Saga game is large and the
generated data is greater than what can be used as training data for a CNN-based agent
in a reasonable amount of time, we decided to track moves and players’ statistics only
from a subset of all the active players (~1%). The tracking process of the moves lasted
for three months collecting a good and diverse sample of player data. By contrast, the
players’ statistics, e.g. player’s SR or number of boosters used, have been continuously
collected while the player was playing the game. This allows to have accurate measures
of the player behaviour not only on the levels played during the tracking period. We
collected data from level 1 to level 2945. Levels in the range [1, 2500] are used as training
data for the player modeling stage, while levels in the range [2501, 2945] are used as test
data in the players’ SR prediction stage. The split ensures that training data contains all
the possible elements of the game since no item is introduced for the first time after level
2500. Furthermore, this split reproduces the same process that is performed in practice
where existing levels are used as training data while predictions are performed on future
ones. We remind that, as mentioned in Section 1.5, we removed levels constrained by
time or that contain the "Candy Frog" from the data set. Furthermore, due to an error
in the game engine interface that is used by the agents to simulate gameplay in moves
levels, we removed also this type of levels. Nevertheless, these levels represent only 4.6%
of the total number of levels. This leads to 2161 training levels and 414 test levels.
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3.1.2 Data Representation

Game board features: Each state is represented by 101 feature layers each one of size
9x9. The feature layers can be categorized into four main types:

1. Item layers. There are 80 binary input layers that encode, with a binary rep-
resentation, the items on the game board. Each of these layers is associated to a
single item. Each position in the grid is set to 1 if the item is present and on the
contrary, it is set to 0 if the item is not present. Since on each game board, only
a subset of all the possible items is present, the layers associated with items that
are not on the game board are filled with 0s.

2. Objective layers. There are 19 binary feature layers of this type. Each layer
represents a different objective that need to be achieved to win the level. It is
filled with 1s if the objective is not yet fulfilled in the given state and contrarily it
is filled with 0s if the objective is already fulfilled or if the objective is not requested
for the given level.

3. Moves left layer. A layer that represents the number of moves left to finish
the level. In the game the maximum number of available moves is 75 and as a
consequence the moves left can assume values in the range [1, 75]. To give more
importance to the last available moves we encode this feature as the ratio of 1
on the number of moves left. Adding this non-linearity has the effect of creating
bigger changes in the feature when the moves available are only a few. A change
of 1 move left when the available moves are few has a bigger impact on the feature
rather than the same change of 1 move when the available moves are a lot. This
is because if a player has 75 or 74 available moves he probably do not give too
much importance to this difference while if he has only 1 or 2 available moves, the
difference becomes important.

4. Bias layer. Additionally, we stack a layer filled with all 1s. This layer allows
the network to learn a bias on the position of the performed move in the grid.
It is possible that moves in a specific area of the grid are preferred to moves
in other positions. For example moves in the lower part of the board could be
preferred to moves in the higher part because they increase the probability of
creating cascade effects and obtaining more points. This layer can be described
as an overall "heatmap" of the performed moves. It add a bias representing the
likelihood of choosing a move in a specific position on the grid independently of
the content of the game board.

Note that except for the item layers, the other layers encode only a single value. As a
consequence the layers are created by repeating the value in every cell of the 9x9 plane.
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This allows to exploit the properties of the convolutional neural network also for this
input information.

Moves: Each move is a swap between two candies or items. By enumerating the inner
edges of the game grid we encode the moves with a scalar number. As showed in Figure
3.1, the moves are encoded enumerating first all the horizontal edges and then all the
vertical ones. Since the cases where the direction of the move has an impact on the
game are rare, we decided to do not distinguish between left-right or right-left moves
and between top-down or bottom-up moves. This leads to a total number of 144 possible
moves represented with integer values in the range [0, 143].

0

8

16

24

32

40

48

56

64

1

9

17

25

33

41

49

57

65

2

10

18

26

34

42

50

58

66

3

11

19

27

35

43

51

59

67

4

12

20

28

36

44

52

60

68

5

13

21

29

37

45

53

61

69

6

14

22

30

38

46

54

62

70

7

15

23

31

39

47

55

63

71

72

81

90

99

108

117

126

135

73

82

91

100

109

118

127

136

74

83

92

101

110

119

128

137

75

84

93

102

111

120

129

138

76

85

94

103

112

121

130

139

77

86

95

104

113

122

131

140

78

87

96

105

114

123

132

141

79

88

97

106

115

124

133

142

80

89

98

107

116

125

134

143

Figure 3.1. Moves encoding. Adapted from [20].

Player features: In Table 3.1 we list all the per-level player features that we use to
explore the differences in the player strategies. We define as an attempt each trial to solve
a level. An attempt is considered ended if the player completes all the objectives, ends
all the available moves or decides to exit the level. If a player decides to use a booster
that adds extra moves, the attempt ends when also all the extra moves are terminated.
An attempt is considered ended with a success if the player is able to achieve all the
objectives within the constraints of that specific level. Since in this work we do not focus
on the subset of levels that have time requirements, the constraint is always a maximum
number of moves the player can use to complete the level. As boosters, we consider
all the possible types: pre-level, in-level and consolation boosters. Each extra move is
considered as a single booster. For example, a plus five extra moves is counted as five
boosters.
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Table 3.1. Player features per level

Features

Number of attempts ended
Number of attempts ended with success
Number of boosters used

3.2 Player Modeling

The first stage aims to model players with different strategies. The goal of this stage is
to generate multiple agents that simulate different strategies instead of having a single
model that only simulates an average strategy learnt from all the players. Notice that
the strategy learnt by the baseline approach is a combination of examples collected
randomly from all the players. As a consequence it only represents an average strategy
but it does not represent the strategy of an average player. Since for each player we
have the performed moves in different states, a direct comparison between gameplay
data cannot tell us how differently the players play. In the following, we describe the
two different approaches we introduce for modeling various strategies while learning
them directly from player data.

3.2.1 Clustering Players Approach

The idea is to cluster the players into different groups based on their performance in
the game. A first objective with this approach is to discover if players with different
performances in the game exhibit a different decision making tendency or strategy and
if a CNN-based agent is able to capture it, approximating a policy function that shapes
their actions in the game. This approach consist of three major stages:

1. Computing player metrics

2. Clustering players

3. Training of CNN-based agents

1. Computing player metrics: Using the collected player features, for each player
we compute the success rate sri, on each level i, as follows:

sri = si

ai
, (3.1)

where si is the total number of attempts ended with a success and ai is the total number
of attempts started by the player on level i. Using the per-level SR, we can represent
each player with a one dimensional array containing all his SR ordered from level 1 to
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the last level played by each player. Due to privacy reasons we cannot expose the actual
players’ SR and as a consequence we use the standardized success rate ρi computed as:

ρi = sri − µi

σi
, (3.2)

where µi is the average and σi is the standard deviation of the SR between all the players
on level i. An alternative to describe the players, could be to use the maximum number
of stars or the maximum score on each level. However, the number of stars can assume
only three values while the maximum score contains several outliers. As a consequence,
we decided to use the players’ SR to more accurately describe the player performances
on each level. Furthermore, in order to have a fair and complete comparison between
players, in this approach we restrict our scope only to those players who finished all
the training levels. In other words, we eliminate players that did not reach level 2500.
This lead to a subset of 32, 479 players. This is also motivated by the fact that we
are interested in predicting the perceived difficulty only on new levels and in order to
play these levels, a player must have finished all the previous ones. We remind that we
tracked only approximately 1% of the total number of active players.

2. Clustering players: Using k-means with euclidean distance we cluster the players’
SR distributions to create k clusters of players with similar skill distributions over the
training levels. We use k-means since it can work with data with high dimensionality
and euclidean distance. Furthermore, k-means computes centroids that can give us a
qualitative interpretation of what kind of player group each cluster represents. In order
to decide the number of player clusters, represented by the parameter k, we use the
elbow criterion.

3. Training of CNN-based agents: Coherently with the defined player clusters, we
divide the state-action pair represented by the game boards and the associated performed
moves. As a consequence, each cluster data set contains moves tracked from players with
similar skill distributions. Then, on each cluster, we train a CNN that given the game
board as input, predicts the performed move of the player. All the agents are trained
for 10 epochs with the same network architecture and the same hyperparameters. For
each agent we use 30 million state-action pairs randomly selected from each cluster data
set. The test sets consist of 100,000 state-action pairs for each cluster. The training
takes about 18 hours on a single machine with 6 CPUs and one Nvidia Tesla K80 GPU.
Figure 3.2 summarize the various steps of this approach.

Finally, as a baseline for this approach, we train an identical CNN-based agent with
the same amount of data and for the same amount of steps as each cluster agent. The
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gameplay data are randomly selected from data tracked from player that reached level
2500 without any distinction based on player features.

Tracking
data
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Figure 3.2. Clustering players flow: We track data from a subset of all active
players. We then compute player performance features and we cluster the players
into k clusters. Then, we divide the data set based on the defined clusters. The
generated data sets are then used to train k different predictive models.

3.2.2 Clustering Simulated Strategies Approach

The idea is to let the CNN automatically discover the relationship between the player
features and the performed moves since the neural network is able to automatically dis-
cover even complex relationships between input and output. Similarly to what Maddison
et al. [48] did in their research, we provide the network with additional information re-
garding the player who performed the move. Compared to the previous approach, where
we target one type of player at a time, it has the advantage of avoiding a substantial
reduction of training data. This approach consists of four major stages:

1. Computing player metrics

2. Training the CNN-based agent

3. Predicting moves simulating different players

4. Clustering the simulated strategies

1. Computing player metrics: Since we leave to the CNN the task of learning
the relationship between player features and predicted moves, this time we use three
different dimensions to represent each player.
First of all, using the collected player features, we compute the standardized success rate
ρi on each level i as defined in equation 3.2. Similarly, we computed the average amount
of boosters bi, used on each level i, as follows:

bi = boostersi

ai
, (3.3)
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where boostersi is the total number of boosters used by the player on level i and ai is
the total number of attempts started by the player on level i. Subsequently, we compute
the standardized value βi as:

βi = bi − µi

σi
, (3.4)

where µi is the average and σi is the standard deviation of the amount of boosters bi

between all the players on level i. Finally, for each player, we compute the following
three summary statistics:

• The standardized mean success rate ρ̄ as:

ρ̄ = 1
l

∑
i∈L

ρi, (3.5)

where L is the subset of levels played by the player during the tracking period and
l is the number of levels in L.

• The standardized mean amount of booster β̄, computed as:

β̄ = 1
l

∑
i∈L

βi, (3.6)

where L is the subset of levels played by the player during the tracking period and
l is the number of levels in L.

• The number of levels played l during the tracking period.

These three player features can be joined together through a unique identifier that
represents a specific player. For privacy concern, this unique identifier is anonymised
in a way that is not possible to go back to the real player. We decided to use these
three metrics because we believe that they can exhaustively represent the various types
of players in the investigated game, e.g. skilled vs less skilled players or regular vs
occasional players. Since we only take average values between all the levels played by a
player, we do not anymore need to restrict our focus on players who completed all the
2, 500 training levels.

Furthermore, standardizing the SR, is not only necessary for privacy reasons but it
also helps to take into account that different players may have played different levels.
Computing the standard values includes the difficulty of each level in the player metric.
However, in order to have meaningful summary statistics, we removed players who played
less than 50 levels. This is motivated by the fact that the mean, if computed on few
values, becomes too sensitive to outliers. Despite this, we still have tracked data from
more than half a million players.
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2. Training the CNN-based agent: We train a CNN-based agent that given the
game board and the three player features as input, predicts the move performed by the
corresponding player. Since players are not divided into groups, we have much more data
compared to the previous approach. Therefore, the network is trained for 10 epochs using
125 million state-action pairs as training data. The training data are selected to have
approximately 50,000 examples for each level in the range [1, 2500]. As a consequence,
each level is represented with a similar amount of data. The training takes about 3 days
on a single machine with 6 CPUs and one Nvidia Tesla K80 GPU. The test data consist
of 100,000 examples.

3. Predicting moves simulating different players: The trained CNN acts as a
move predictor sensitive to player features. It is able to generate different player moves
for the same input game board only by changing the input player parameters. The
player features are continuous values and, in theory, we can simulate an infinite number
of players. Since our goal is to generate a reasonable amount of different agents, we
select for each player features the 5th, 25th, 50th, 75th and 95th percentile and we
create an agent for each possible combination of these parameters. These percentiles are
selected to have an extensive representation of the real players. We decided to not use
the extreme values because they might represent anomalous players.

Finally, each agent is created by cloning the trained CNN and fixing the input player
features with a combination among those selected. This generates 125 different agents,
each one simulating a different type of player.

4. Clustering the simulated strategies: The 125 generated agents can be an ex-
haustive representation of the different type of players in the Candy Crush Saga game.
However, simulating gameplay of 125 agents for each level that needs to be tested is
computationally expensive. Moreover, some of these agents simulate very similar strate-
gies. In this step, we want to reduce the number of generated agents maintaining only
a small number of agents while maximizing the differences in the simulated strategies.
To select the agents, we create a validation data set with 10,000 state-action pairs and
for each agent we predict the moves. We can then represent each agent with a one-
dimensional array containing the predicted moves. Each array can be considered as an
explicit representation of the strategy of each agent. Then, we use hierarchical clustering
with hamming distance and complete-linkage function on the generated arrays, to group
agents with similar strategies. Finally, we select a single agent for each cluster. Figure
3.3 summarizes the various steps of this approach.

As a baseline for this approach, we train a CNN-based agent for the same number of
steps and using the exact same data but without the input player features. As a result,
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the baseline agent represents an average policy between all the players and simulates a
single strategy. It is worth to remember that the objective of this thesis is not to directly
compare the two experimented approaches, but to understand if each approach is better
than its own baseline answering if player modeling can improve automatic playtesting.

Tracking
data

Computing
player
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Training
CNN

Selecting
player
features

Agent 1

Agent ...

Agent 125

Predict
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Clustering
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Model 1
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Figure 3.3. Clustering simulated strategies flow: We track data from a subset
of all the active players. We then compute player features and we train a CNN-
based agent giving as input the game board and the player features. Then, we
predict moves on a validation set with different agents. Each agent shares the same
network but it has a different player input feature combination. Finally, we cluster
the simulated strategies and we select the agents maximizing the differences in their
predictions.

3.3 Gameplay Simulation

Eisen [20] illustrated how a CNN-based agent can be used to predict human moves in
the Candy Crush Saga game. Since his approach reached the best performance to date,
we decided to use a similar network architecture for predicting player moves.

3.3.1 Player Moves Prediction

This stage is identical for both the experimented approaches since it does not depend
on how we created the various agents. To simulate gameplay, for each agent, we use
the following infrastructure. Several machines run the game engine, integrated with
the agent interface, that takes care of simulating the attempts. At the same time, on
a web server we run various replicas of the CNNs. We decided to separate these two
components to allow the agent to use different approaches to select the moves, abstracting
it from the predictions of the neural network. The agent interfaces communicate with
the CNNs trough a component called load balancer. The main task of the load balancer
is to redirect the requests received from the agent interfaces to the CNN with the lowest
utilization. The requests contain the encoded game state obtained from the agent. The
response is the predicted probability distribution over the 144 possible moves. When
an attempt is finished, the results of the simulation are saved on a table using MySQL
database.

For each agent we ran a simulation on both training and test levels. A simulation
consists of 100 attempts on each level. This number is selected to run the simulation
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in a reasonable amount of time. Each attempt runs with a different seed that causes
the game to generate different random content. However, to have a fair comparison
between agents, the selected seeds are the same for each simulation. The simulation
takes approximately 18 hours for each agent while running on a total of 26 virtual
central processing unit (vCPU) cores and 24 GB of memory. The vCPU cores are
divided between the various components as follow: 18 vCPU cores are used to run the
bot interface, 2 vCPU cores are used by the load balancer while the remaining 6 vCPU
cores are used to run the CNNs. This allocation of resources has demonstrated to work
well in practice, in term of speed and utilization. All the computational resources are
allocated using a cloud service provider. When the network is used as an agent to
simulate gameplay, a greedy policy is used to select the moves. Since the output of the
network is a probability distribution over the 144 available moves, the greedy policy
selects the move with the highest predicted probability. Finally, from the results of
the simulations we compute the agents’ SR on each level. These metrics indicate how
difficult a level is for each agent.

3.3.2 Convolutional Neural Network Architecture

When designing a CNN, several architectural choices need to be taken and various hyper-
parameters need to be selected. In this research we rely on the choice made and discussed
in [20] with only small changes to the input layer to consider the player features in the
clustering simulated strategies approach. For completeness, in this section, we describe
the network architecture used for predicting the moves given the states. The network,
illustrated in Figure 3.4, is trained with Adam optimizer [96] and an initial learning rate
of 0.0005.

Input Layer: The input of the network slightly differs between the two approaches
we illustrate in our research. In the clustering players approach, the input is represented
by 101 layers each one of size 9x9 to represent a game board as described in Section
3.1.2. To train the network we use mini-batch gradient descent with a batch size of 2048
examples since it showed to be a good compromise between accuracy and efficiency.
This lead to an input of size [2048x9x9x101]. Differently, in the clustering simulated
strategy approach, we add as input three player features leading to an input size of
[2048x9x9x104].

Convolutional Layers: The network consists of 11 convolutional layers with 35 filters
per layer and kernel size of 3x3. Since we do not want the translation invariance property
of CNN architectures because we want to accurately determine which move to select, we
do not use pooling layers. Furthermore, since the game board is only 9x9, we want the
output size to be the same as the input size. As a consequence, we used zero-padding and
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Figure 3.4. Convolutional neural network architecture used in the clustering play-
ers approach, with data representations for each layer. In the clustering simulated
strategies approach, the input layer changes from 101 to 104 input features. Image
generated with code adapted from [20].

filters with stride of 1. Subsequently, a last convolutional layer with 144 filters is added
to the network. The range [0, 143] represents the encoding of the 144 possible moves
that the network can predict. Each convolutional layer is followed by an exponential
linear unit (ELU) activation function. The ELU function, introduced by Clevert et al.
[97], is computed as follow:

f(x) =

x, if x > 0
α(ex − 1), if x ≤ 0

(3.7)

where the ELU hyperparameter α controls the saturation of the ELU function for neg-
ative values. As suggested in [97], we use a value of α = 1.0. Compared to rectified
linear unit (ReLU) function, the ELU function has also negative values, which allow
the network to push the mean of each activation map closer to zero, reducing the bias
shift typical of ReLU functions. Furthermore, as showed in [20], the ELU improved the
accuracy of the model by 2.5% compared to the ReLU function.

Output Layer: The output layer is a GAP layer that transforms the 144 activation
maps of the last convolutional layers into 144 scalars retaining only the average value
for each map. Using a GAP layer also motivates the choice of encoding the information
represented by scalar values into feature planes by replicating the number on all the
cells of the 9x9 grid. Otherwise a fully connected layer would be necessary to include
these features into the model. Finally, in order to have a probability distribution over
the predicted moves, the softmax function is applied.
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3.4 Players’ SR Prediction

At this step we have the per-level agents’ SR on both training and test levels. As
demonstrated in [20], the agents’ SR does not directly map to the SR of the players.
However, they are correlated. In this stage we combine the agents’ SR on test levels to
better predict the players’ SR compared to the baseline in each of the two approaches.
In order to not expose the actual values of the players’ SR for privacy reasons, we scaled
the players’ SR dividing each value by the difference between the maximum and the
minimum value. As a consequence, the scaled players’ success rate sr′i on level i is
defined as:

sr′i = sri

max(sri)−min(sri)
, (3.8)

where sri is the actual players’ success rate on level i, max(sri) is the maximum success
rate and min(sri) is the minimum success rate between all the levels. This has the effect
of scaling the values while maintaining the same distribution. Furthermore, since the
distributions of SR for both the players and the agents have a positive skew, meaning that
the mass of the distribution is concentrated on the left, we apply a log transformation on
each variable. Nevertheless, applying the log transformation causes the values of the SR
that were zero to become minus infinite. As a consequence, we decided to use the mean
value to predict the players’ SR when the agent’s SR is zero. An alternative could be to
use the log(x+1) transformation where in our case x is the agent’s SR. However, we prefer
to handle the levels where the agent failed in a different way because when the agent’s
SR is zero does not necessary mean that the level is extremely difficult. This is also
motivated by the fact that for extremely low values of the agents’ SR there is no linear
relationship with the players’ SR. Since levels are designed and tested to be solvable by
humans within a reasonable number of attempts, extremely low values of the players’
SR do not exist. This explains why there is no linear relationship between extremely
low values of the log of the players’ and the log of the agents’ SR. We excluded those
levels where all the agents and the baseline failed since they would just introduce noise
to the comparison of the approaches. Finally, we decided to not use a cross-validation
approach for two reasons: first, because we want to produce the same scenario that
would be used in practice where the existing levels are used to make predictions on new
levels and second because we trained the agents on the training levels only and we let
them play on new ones to reduce overfitting. In this stage we use two slightly different
methods for the two experimented approaches.

3.4.1 Clustering Players Approach

Using the players’ and agents’ SR on training levels we fit a linear regression model for
each agent, including the baseline. Then, we use the linear models to predict the players’
SR on the test levels. An issue we need to take into account is that in Candy Crush Saga,



CHAPTER 3. METHODS 37

levels might have been modified during time. Since the players’ SR is computed from
the players’ attempts at the time they have played while the agents simulate the current
version of the levels, we eliminate from our data set those levels that have drastically
changed. We classify a modified level as drastically changed if the players’ SR on it
changes more than 50%. These levels represent 18% of the total number of levels and
removing them leads to 1722 training levels and 388 test levels.

Each model predicts the players’ SR of the specific group k that it represents. In
order to compare our approach with the state-of-the-art, we combine the predictions of
the agents on each test level i, computing the overall predicted success rate ŝri between
all the players using a weighted average as follow:

ŝri =
k∑

j=1
wj · ŝri,j , (3.9)

where k is the number of defined agents, wj is the percentage of players in cluster j and
ŝri,j is the success rate on level i of the agent trained with data from cluster j. The idea
is that the predictions of each agents have a weight that depends on the percentage of
players that the agent simulates. Finally, the predictions of this model are compared to
the predictions of the linear regression model created from the baseline agent’s SR.

3.4.2 Clustering Simulated Strategies Approach

Since we cannot precisely determine how many players each agent represents, in this
approach we predict on each test level i, the overall predicted success rate ŝri between
all the players using a single linear regression model. The model takes as input all the
k agents’ success rates ŝri,j . The predictions of this model are then compared to the
predictions of a linear regression model trained with the baseline agent’s SR.

3.5 Evaluation Metrics

In this section we describe the metrics we use to evaluate both the move prediction
performance of the CNN models as well as the SR estimation performance of the linear
regression models.

3.5.1 Player Moves Predictions

To evaluate the performances of the CNN-based agents in predicting player moves we
use the top-1 and top-3 prediction accuracy. The top-1 and top-3 prediction accuracy
are the ratios of correct predictions to the total number of predicted actions. However,
the top-1 accuracy considers a prediction as correct if the correct move coincides with
the predicted one while the top-3 accuracy considers a prediction as correct if the right
move appears in the top three predicted ones.
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3.5.2 Linear Regression Models

To compare the baseline agent with our approach, we compute three different measures.
The goal is to see how close the predictions of each approach are to the actual observed
values compared to the baseline. The measures used in this research are: the mean
absolute error (MAE), the mean squared error (MSE) and the adjusted R-squared (R2

adj).
The MAE describes the means of the absolute differences between the predicted and the
observed players’ SR on all the n test levels and it is defined as:

MAE = 1
n

n∑
i=1
|ŝri − sri| (3.10)

The MSE measures the mean of the squared differences between the predicted and the
observed players’ SR on all the n test levels and it is defined as:

MSE = 1
n

n∑
i=1

(ŝri − sri)2 (3.11)

The MSE has the property of strongly penalizing large deviations from the observed
values. Finally, the adjusted R-squared, explains the predictive power of the regression
models considering the number of predictors. It decreases when a predictor improves
the model less than what would be improved by chance. This is a desirable property
since in the clustering simulated strategies approach, we compare a method that uses
multiple predictors with the baseline approach that only uses a single predictor. The
adjusted R-squared is defined as:

R2
adj = 1− [ (1−R

2)(n− 1)
n− k − 1 ], (3.12)

where n is the number of data points, k is the number of predictors excluding the
constant and R2 equals the square of the Pearson correlation coefficient [98] between the
observed and the predicted values.

3.6 Estimating Strategy Requirements

Finally, we aim to categorize levels based on the strategy required to solve them. Simi-
larly to what Isaksen et al. [17] have done with a simplified version of Tetris and Puzzle
Bobble. First, they trained an agent that reached super-human performances in the two
simplified games. Then they generated a population of different agents that play with
slightly different heuristics and finally they made the agents more human-like by adding,
in different quantities, two types of human errors: strategy and dexterity errors. A strat-
egy error means that a human player not always selects the optimal move, sometimes
he makes a mistake and he selects a sub-optimal or random move. A dexterity error
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means that even if the player knows which move he want to perform, sometimes he is not
able to correctly perform it due to pressure, time-constraints or other limitations. This
approach for player modeling is based on the idea that models of players are obtained
from a super-human agent by adding human errors to it. Using Candy Crush Saga as
a test bed we aim to estimate the impact of human errors on some levels. However,
the motor-skill required to correctly perform a move in Candy Crush Saga is very low
and levels that require a lot of dexterity do not exist. As a consequence, we only focus
on estimating the strategy requirement. Nevertheless, if the proposed approaches are
applied to other games it may be valuable to estimate the dexterity requirement too.
Since the variants of the games tested by Isaksen et al. are small enough to evaluate the
full game tree, they used heuristics and search to train the policy of the agents and they
modeled human errors using variants of Q-learning. On the contrary, we propose an
approach that works with CNN-based agents and with more complex games. We model
the strategy errors using a parameter ε. We modify the policy of the agents from a
greedy one to an ε-greedy policy. Using an ε-greedy policy means that the agent selects
greedy moves with probability 1 − ε, while with probability ε, the agent selects a ran-
dom move with uniform distribution over the set of available moves. Selecting a greedy
move means that we chose the move with the highest predicted probability from the
CNN-based agent output. Selecting moves randomly instead of greedily represents the
strategy error simulated by the agent. This approach is built on the assumption that the
strategy learnt from player data is enough to solve the levels. To obtain a meaningful
analysis we restrict our focus to those levels that are successfully solved by the agent
when playing with no strategy errors, using the greedy policy. Then, by comparing the
performances of the agents, we estimate the strategy required by each level. Starting
from the previously developed agent that simulates an average strategy, we create a
population of different agents by adding different amount of strategy errors. Finally, we
randomly selected some levels to test this approach.

Furthermore, in their research, Isaksen et al. used an agent that is able to play with
an optimal strategy when the strategy error is zero. Since the complexity of the game
we focus on is much higher and the game is non-deterministic, that type of agent is
not available. As a consequence, we consider the greedy policy as the optimal policy
and the SR reached by the greedy agent as the maximum SR. We normalize the values
dividing all the obtained SR by that maximum SR. By plotting the agent’s SR against
the amount of strategy used, represented by 1− ε, we observe how the SR improves as
we reduce the number of random moves made by the agent. Figure 3.5 shows the two
extreme cases. On the left a level that does not require any strategy since independently
from how many random moves are performed the level is solved. On the right a level
that requires the optimal strategy because if any strategy error is made the SR is zero.
These two extreme cases are not present in the game but are useful to give an idea of
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how to interpret the generated graphs.
Finally, to estimate the strategy required by a level, we compute the area above the

line. This metric indicates how much strategy is required to complete the level. In the
two extreme cases, the area above the line is zero when no strategy is required and it is
one when the optimal strategy is needed.

(a) (b)

Figure 3.5. Agent’s SR against strategy level for the two extreme cases of strategy
requirements. Figure (a) shows a level that does not require any strategy while
Figure (b) shows a level that requires 100% of strategy in order to be solved.



Chapter 4

Results

4.1 Preliminary Data Analysis

In this section we report the preliminary data analysis that we have done in order to
better understand the problem and select the most appropriate methods. However, due
to privacy reasons we cannot expose private information regarding the players or the
game and as a consequence some of the values have been standardized while others have
been completely hidden. The purpose of this section is not to illustrate the underling
data but is to give an idea of how we approached the problem and also make it clearer
some of the choices that we have done.

For each game match that we tracked, we collected 11 different features. The features
collected regard the match itself and do not concern with personal information of the
players, e.g. gender, age or country. Furthermore, also the identifiers used to link the
matches have been anonymised in a way that it is not possible to go back to the real
players. Subsequently, we expanded these features computing the following statistics:

– minimum

– maximum

– average

– standard deviation

– first quartile

– median

– third quartile

As a result we can describe each player with 77 features. Then, the successive step
was to pre-process and clean the data to retain only relevant information. We removed

41
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duplicates or data that contained errors. Furthermore, we removed those features that
had variance equal to zero meaning that the value was the same for all the players.
For example, when we focused on the players that reached level 2500, the maximum
number of stars for every player was 3. This means that the tracked players in at least
one of the training levels have reached a 3 stars score. Since this features does not
give any contribute to the player analysis we removed it. Then, we handled the missing
values. We decided to use different techniques based on the type of missing value. In
this research we used deletion, imputation with mean value and linear interpolation.
Subsequently we standardized all the data computing the z-score as follows:

z-score = x− µ
σ

, (4.1)

where x is the feature, µ is the mean and σ is the standard deviation of the considered
feature x. After, we removed the outliers. We considered as outliers all the data that had
a standard deviation that was higher than +10 or lower than -10. Finally, since most of
the remained features were highly correlated we computed the correlation matrix and
removed those features that had a correlation with any other feature that was higher
than 0.9. As a result each player was described with 25 different features.

After pre-processing the data, the first analysis we did was the eigenvalue and eigen-
vector decomposition of the matrix containing the players and their features. Figure 4.1
illustrates the eigenvalue decomposition of the player features matrix. The eigenvalues
are plotted in decreasing order. The figure shows that three eigenvalues have a value
that is significantly higher than the others. To better visualize the implications of this

Figure 4.1. Eigenvalue decomposition of the player matrix. The x-axis represents
the 25 different features ordered by their eigenvalues in decreasing order and the
y-axis the corresponding eigenvalues.
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analysis we illustrate in Figure 4.2 the individual explained variance of each feature with
the histogram and the cumulative explained variance with the blue line. We observed

Figure 4.2. Individual explained variance of each feature illustrated with the
histogram and cumulative explained variance illustrated by the blue line.

that only three player features are sufficient to explain almost 70% of the overall vari-
ance. As a consequence, we performed Principal Component Analysis (PCA) on our
data using three principal components. We then computed the sum of the absolute
values of each coefficients for the 25 player features and scaled each coefficient by the
explained variance ratio of the corresponding component. By ordering the features based
on the computed values we can observe which feature contributes the most if we want
to reconstruct the data into the original space with 25 dimensions. Results showed that
the average player’s SR is the most important feature. Furthermore, we observed that
the average amount of booster and the number of levels played are also important fea-
tures to reconstruct the data. This motivates the choices that we made in the clustering
simulated strategy approach where we decided to use these three features to describe
the players. Furthermore we also experimented to perform a PCA with 10 components
since in this way we are able to explain almost 93% of the overall variance. However as
visible in Figure 4.3 we observe that the explained variance ratio significantly decreases
after the third component. Furthermore, by computing again the importance of each
feature we obtained similar results to the analysis with three principal components.

Another analysis that we performed was to understand how many clusters of players
are present in the data. We ran the k-means algorithm on the cleaned player data
with different number of clusters k and used the "elbow criterion" to analyze the result.
Figure 4.4 illustrates that between four and eight are reasonable numbers of player
clusters. This motivates our choice of generating six agents that simulate six different
groups of players. Furthermore we performed an analysis of the levels in the game.
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Figure 4.3. Explained variance ratio of the 10 components obtained with principal
component analysis.

Figure 4.4. Elbow criterion to understand how many player cluster are present in
the data describing the players with 25 features.

We observed the distribution of the average players’ SR and their frequency. However,
these data cannot be published. Finally, we performed an analysis of the distributions
of the player features along the 2500 training levels. In the clustering player approach
we decided to use the distribution of the standardized SR to describe each player. We
also experimented with the distribution of the standardized amount of boosters and the
distribution of the standardized maximum number of stars. In Figure 4.5 we illustrate
the six generated centroids obtained by clustering the booster distributions.
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Figure 4.5. Centroids obtained by the k-means clustering algorithm on the stan-
dardized amount of booster distributions.

However, clustering by the standardized amount of booster generated very unbal-
anced clusters, some of them containing only a single data point representing an outlier.
Furthermore, the generated clusters were not interpretable and as a consequence we de-
cided to not continue into this direction. Clustering by the maximum number of stars
generated more balanced clusters. However, since the number of stars can assume only
three different values we decided to use the players’ SR to represent the performances of
the players in the game.

4.2 Player Modeling

We illustrate in the following section the results of the two experimented approaches
regarding the modeling of the players and the creation of the various agents that simulate
different strategies.

4.2.1 Clustering Players Approach

We represented each player with a one dimensional array containing all his 2, 500 stan-
dardized success rates ρi on the training levels. However, some players have missing SR
for various reasons. The missing data points represent 5.16% of the total number of
players’ SR. In order to have comparable players’ SR distributions, we reconstructed the
missing values using linear interpolation. Figure 4.6 shows two examples of standard-
ized players’ SR distributions over the training levels. In order to select the number of
player clusters k, we used the elbow criterion. By looking at the plot of the SSE against
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several numbers of k, as illustrated in Figure 4.7, we decided to group the players into
six different clusters.

(a) (b)

Figure 4.6. Two examples of standardized players’ SR distributions over the levels
in range [1, 2500].

Figure 4.7. Elbow line used to select the number of clusters k. On the x-axis
various numbers of k while on the y-axis the SSE of the corresponding generated
clusters. The plot shows that reasonable values of k are between 3 and 8.

Subsequently, we applied k-means to the players’ SR distributions. Figure 4.8 shows the
centroids of the generated clusters. By looking at the centroids, we can qualitatively
describe the six different types of players represented by each cluster. Players in cluster
1 (orange) show a consistently high standardized SR and the cluster can therefore rep-
resents very good players. On the contrary, players in cluster 4 (purple), show a very
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Figure 4.8. Centroids of the 6 generated clusters. The x-axis represents the train-
ing levels while on the y-axis the standardized SR. Centroid 0, in blue, represents
players with decreasing standardized SR, centroid 1, in orange, represents players
with high standardized SR, centroid 2, in green, represents players with average
standardized SR, centroid 3, in red, represents players with increasing standardized
SR, centroid 4, in purple, represents players with low standardized SR and finally,
centroid 5, in brown, represents players with average standardized SR but with less
variance compared to centroid 3. [This image is better viewed in colors].

low standardized SR distribution and the cluster can therefore represents less skilled
players. Players in cluster 0 (blue) show a decreasing standardized SR and the cluster
can therefore represents players that encounter difficulties in progressing the game. On
the contrary, players in cluster 3 (red), show an increasing standardized SR and the
cluster can therefore represents players that learn good strategies over time. Finally,
players in cluster 2 (green) show a standardized SR distribution close to the average as
well as players in cluster 5 (brown), but with slightly less variance over the levels. Since
k-means generates clusters with different sizes, in Table 4.1 we reported the number of
players in each cluster. Note that cluster 1 contains only 2% of the players, indicating
the possibility that these players are simply outliers. To understand if the variability
in the standardized players’ SR distribution has an impact on the obtained clusters, we
tried to cluster the levels into few buckets based on their difficulty and then represent
each player with his average standardized SR distribution over the buckets. Since we
obtained similar player clusters we decided to use the simplest approach avoiding to
introduce a second clustering step on the levels.
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Table 4.1. Player clusters

Cluster # Color # of Players % of Players

0 blue 3460 10.65
1 orange 652 2.00
2 green 7042 21.68
3 red 2581 7.95
4 purple 8958 27.58
5 brown 9786 30.13

4.2.2 Clustering Simulated Strategies Approach

In this approach we decided to add other two player features: the standardized mean
amount of booster β̄ and the number of levels played l during the tracking period.
Furthermore, instead of using the distribution of the SR along the levels, we aggregated
the values to have a single measure ρ̄, that represents the overall skill of the player. Then,
we let the network detect the relationship between these features and the performed
move. After training the CNN, we predicted on a validation set of 10,000 states with 125
different input player feature combinations. We generated all the possible combinations
using the 5th, 25th, 50th, 75th and 95th percentiles of each player feature. The moves
predicted by each agent are then considered as a sort of explicit representation of the
simulated strategy of the agent. Clustering the simulated strategies we selected six
agents that maximized the difference in the predicted moves. Results showed that the
25th and the 75th percentiles were never used by any of the obtained agents. This is
reasonable since the player features are real numbers and extreme values lead to more
diverse strategies. As a consequence we experimented repeating the clustering only
with the 5th, 50th, and 95th percentiles of each player feature. Figure 4.9 shows the
dendogram generated by hierarchical clustering. It shows that most of the agents have
very similar predictions, however the six most different agents have a difference in the
simulated strategies of at least 13%. This means that by changing the player features the
network predicts differently. Table 4.2 shows the selected agents, their player features
and a possible interpretation of the simulated types of players. The selected agents are
the ones that on each of the six major clusters have a distance to their merged cluster
that is the maximum compared to the other agents in the same cluster. As distance
measure we used the hamming distance between the simulated strategies. The hamming
distance represents the percentage of moves that the compared agents predict differently.
We can observe that the two most diverse agents select different moves 31% of the time.
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Figure 4.9. Dendogram illustrating the differences in the simulated strategies of
27 different agents. The x-axis represents the 27 different generated agents with
different combinations of the standardized mean success rate ρ̄, the standardized
mean amount of boosters β̄ and the number of different levels played l. The y-axis
represents the percentage of moves that the agents predict differently.

Table 4.2. Agents generated by clustering simulated strategies

Agent Skill (ρ̄) Levels played (l) Boosters (β̄) Description

Agent 0 −0.76 241 −0.06 less skilled player
Agent 1 −0.76 69 1.51 less skilled occasional booster player
Agent 2 0.96 927 −0.37 skilled regular non-booster player
Agent 3 0.96 927 1.51 skilled regular booster player
Agent 4 0.05 241 1.51 booster player
Agent 5 0.96 69 −0.37 skilled occasional non-booster player

4.3 CNNs Training and Prediction

Except for the input size, we used the same network architecture for the two experi-
mented approaches. Regarding the clustering players approach, Table 4.3 reports the
top-1 accuracy, while Table 4.4 reports the top-3 accuracy of each agent. With bold
we indicate the agent with the best accuracy on each data set. Each row represents a
different data set. The first row represents the training accuracy of each agent on its
own last mini-batch (consisting of 2048 examples). The remaining rows represent the
test accuracy on different test data sets (each one consisting of 100,000 examples). By
looking at the accuracy on the test data sets, we observed that in both the top-1 and
top-3 accuracy, each agent better represents the players in its cluster compared to the
baseline approach. This indicates that the CNN model is able to learn different policies
by changing the input data used during training. However, we observed that there is
only a small difference between the prediction accuracy of the agents and the baseline.
This is explained by the fact that we ran experiments with thousands of different players.
As a consequence, even if we divide the data, each cluster contains examples from many
different players and the CNN learns the average strategy of the players on each cluster.
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Combining data of such a large number of players reduces the differences in the strate-
gies learnt. Furthermore, we noted that the baseline accuracy is different on each data
set. This confirms that players in different clusters select moves with different strategies
and the baseline agent is not specialized to predict any of them. Furthermore, also the
agents show different accuracy. A possible explanation is that some players select moves
that are more predictable than other players. For example, players in cluster 2, select
moves that are more easily predictable by the CNN-based model than any other player
cluster since the agent 2 performed better than any other agent in the top-1 accuracy.
Nevertheless, all the agents showed a similar training progression and as an example,
in Figure 4.10 we illustrate the training process of two of them. Finally, if we use the
agents to predict on the same game boards, on average they disagree 30% of the times,
meaning that approximately one third of the times they select different moves between
each other. This confirms once again that we learned different player strategies. Note
that the prediction accuracy of the model does not directly relate to their performances
in the game. An agent can be very good in predicting the players that simulates but if
the moves performed by that players are bad, the agent will perform poorly when play-
ing the game. With a similar reasoning, even the improvement of the agents’ accuracy
compared to the baseline agent on each player cluster does not necessary mean that the
agents are better than the baseline during gameplay. The tables only shows that each
agents better predict the players that simulate compared to the baseline agent and that
different player cluster use different strategies.

Regarding the clustering simulated strategies approach, Table 4.5 illustrates the top-
1 and top-3 test and training accuracy. We reported the accuracy for both the network
that uses the player features and the baseline. The maximum disagreement between
the generated agents is 31%, meaning that the CNN has learnt to play differently based
on the values of the player features. Finally, we observed that the test accuracy in the
clustering player approach is higher than the test accuracy in the clustering simulated
strategies approach. A possible explanation is that in the first approach we restricted

Table 4.3. Clustering players. Top-1 training and test accuracy

Data set Agent 0 Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Baseline

Training data 52.97 47.46 48.77 46.39 49.10 51.78 49.74
Test cluster 0 data 51.93 - - - - - 51.16
Test cluster 1 data - 47.06 - - - - 46.02
Test cluster 2 data - - 53.03 - - - 51.97
Test cluster 3 data - - - 46.78 - - 45.54
Test cluster 4 data - - - - 51.95 - 51.85
Test cluster 5 data - - - - - 52.89 52.49
Test baseline data 50.11 49.52 50.56 50.14 49.86 50.53 50.11
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Table 4.4. Clustering players. Top-3 training and test accuracy

Data set Agent 0 Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Baseline

Training data 82.35 77.15 80.40 77.35 81.24 82.82 81.01
Test cluster 0 data 82.79 - - - - - 82.46
Test cluster 1 data - 78.26 - - - - 77.50
Test cluster 2 data - - 83.63 - - - 82.99
Test cluster 3 data - - - 77.73 - - 76.74
Test cluster 4 data - - - - 83.68 - 83.45
Test cluster 5 data - - - - - 83.75 83.56
Test baseline data 81.47 81.11 81.96 81.80 81.52 81.52 81.56
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Figure 4.10. Visualization of the training process for agents 1 and 2. Figure (a)
illustrates the top-1 training accuracy, Figure (b) shows the top-3 training accuracy
while Figure (c) illustrates the batch loss.

our focus to players that finished all the training levels and the moves performed by
these players are more predictable than the ones performed by random players.

4.4 Players’ SR Prediction

Throughout this thesis, in order to not expose the actual values for privacy purposes, the
players’ SR has been scaled by the difference between the maximum and the minimum
SR as described in Equation 3.8. Note that the agents’ SR have not been scaled and
that on both the scaled players’ SR and the agents’ SR we applied a log transformation
to obtain less skewed distributions. Furthermore, we used linear regression models to
predict the log of the scaled players’ SR when the agents’ SR is greater than zero and
the mean of the log of the scaled players’ SR on training levels as a prediction when the
agents’ SR is zero. For comprehensibility, in the rest of the thesis we will refer to the
log of the scaled players’ SR as simply the players’ SR and we will refer to the log of the
agents’ SR as simply the agents’ SR.
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Table 4.5. Clustering simulated strategies. Top-1 and top-3 training and test
accuracy of the agent trained with player features and the baseline

Data set Accuracy Player Features Agent Baseline

Training data Top-1 46.52 46.04
Top-3 78.08 78.29

Test data Top-1 46.28 46.11
Top-3 78.01 77.82

4.4.1 Clustering Players Approach

In order to validate our models we performed various tests. First, we tested that there
exists a statistical relationship in the training data between each agent’s SR and the
players’ SR that each agent simulates. Since each agent uses only a single predictor, in
Table 4.6 we reported its coefficient and the regression statistics. We can observe that
the p-values are all lower than 5% meaning that is likely that changes in the predictor
are related to changes in the response variable. In our case this means that changes in
the agent’s SR are likely to be related to changes in the players’ SR. Note that each
line in the table refers to a different linear model that correlates the agent’s SR with its
corresponding players’ SR.

Table 4.6. Linear regression analysis between each agents’ SR and its correspond-
ing players’ SR in the training data

Agent coef. std. err. t-stat. p-value

Baseline 0.696 0.006 120.84 0.00
Agent 0 0.618 0.005 127.08 0.00
Agent 1 0.317 0.004 71.55 0.00
Agent 2 0.668 0.006 105.54 0.00
Agent 3 0.528 0.006 87.40 0.00
Agent 4 0.800 0.006 124.90 0.00
Agent 5 0.689 0.006 124.64 0.00

Since we used linear regression models to predict the players’ SR we also need to
ensure that the following assumptions are valid:

1. Linearity of the relationship between dependent and independent variables

2. Homoscedasticity of the errors

3. Statistical independence of the errors

4. Normality of the error distribution
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(a) (b) (c)

(d) (e)

Figure 4.11. Plots validating the linear regression assumptions in the training
data for agent 4. Figure (a) illustrates the linear relationship between the players’
SR and the predicted players’ SR, the black dashed line is the diagonal. Figure (b)
shows the agent’s SR against the residual errors while Figure (c) shows the levels
against the residuals. Figure (d) shows the histogram of the residual errors and
finally, Figure (e) shows the normal probability plot of the residuals.

As an example, we check these assumptions for the linear regression model trained with
agent 4’s SR. The same tests are performed with all the remaining linear models and
the plots are illustrated in Appendix A.3.1. Note, that these analysis are performed on
the training data before using the linear models for prediction. Plotting the agent 4’s
predicted SR against the players’ SR, as illustrated in Figure 4.11a, we validated that
exists a linear relationship between the dependent and the independent variables. Except
for very high values of the agent’s SR, the data points are symmetrically distributed
around the diagonal line. This implies that there is no major violation of the linear
relationship assumption (1). Figure 4.11b illustrates the agent’s SR against the residual
errors. The variance of the errors seems to be fairly constant along the independent
variable, except for very high agent’s SR where it seems to be lower. For completeness,
we also checked that the variance of the errors is constant along the dependent variable
and we obtained similar results. As a consequence, the variance of the errors does not
significantly increase as a function neither of the predicted players’ SR nor the agents’
SR. However, the residual errors seem to be centered around zero only for values of the
agent’s SR between -1 and -4. For very low or very high agent’s SR the errors are not
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centered around zero. More precisely, when the agent’s SR is very low or very high,
the residual error is more likely to be positive, meaning that we underestimate levels
that are very difficult or very easy for the agent. However, since the data points that
violate the homoscedasticity assumption (2) are only a small number compared to the
total number of training data points, we concluded that there is only a minor violation
of this assumption. In Figure 4.11b, we can also observe that consecutive errors are not
correlated, therefore there is no violation of the statistical independence of the errors
assumption (3). Figure 4.11c shows that the errors are equally distributed along the
levels as well. Figure 4.11d illustrates the histogram of the residual errors. We can
notice that the histogram seems to represent a normal distribution. Finally, we checked
against violation of the normal distribution of the errors assumption (4) by looking at
the normal probability plot [99] illustrated in Figure 4.11e. We can see that only a few
points at both the tails of the theoretical quantiles do not follow the line. As a result,
we can say that there is no violation of the normal distribution of the errors assumption.

(a) (b)

Figure 4.12. Plots confirming the linear regression assumptions in the test data
for the agent 4. Figure (a) illustrates the linear relationship between the players’
SR and the predicted players’ SR, the black dashed line is the diagonal. Figure (b)
shows the agent’s SR against the residual errors.

Similar conclusions can be derived for the other linear models with only few ex-
ceptions. The linear models trained with agent 1’s and agent 3’s SR showed a small
correlation between the levels and the residual errors. This is not surprising since the
players that they simulate have a non-constant average SR in the training data. This
implies that for these two specific agents, adding the levels as a feature of the linear
model could improve the performances. Moreover, the linear model trained with agent
1’s SR violates the normality of the error distribution assumption. However, this agent
represent only 2% of the total number of players and we knew that it could represents
outliers or anomalous players. Since agent 1 and 3 represent only 9% of the players in
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total, for practical purposes, a lower performance of the linear models for these agents
is tolerable. Finally, similar plots for validating the assumptions with the baseline agent
are reported in Appendix A.3.1. Subsequently, we use the fitted linear models to predict
on test levels. In Figure 4.12 we observe that the assumption we validated in the train-
ing data for the linear models still hold in the test data. More specifically, Figure 4.12a
shows that there is a linear relationship between the agent’s and the players’ SR in the
test data while Figure 4.12b shows that the residual errors are well distributed, not cor-
related and with a fairly constant variance. In Figure 4.13, as an example, we illustrate
the SR predictions of the players in cluster 4 for both the baseline and agent 4. The com-
parisons between the other agents and the baseline while predicting the remaining player
clusters are reported in Appendix A.3.2. We observe that the linear model fitted with
the agent 4’s SR significantly outperforms the baseline in predicting the SR of players in
cluster 4. Moreover, we observe that the baseline approach systematically overestimates
these players. This is explained by the fact that cluster 4 represents players which have
a SR distribution that is consistently under the average value. Similar reasoning can be
done looking at the others agents’ predictions compared to the baseline. Furthermore,
Figure 4.13c shows that even if we train the baseline agent to predict the SR of players
in cluster 4 instead of predicting the average SR between all the players, the prediction
performances remain lower than those of agent 4. This confirms that the SR of players
in cluster 4 are more correlated to the SR of agent 4 rather then the SR of the baseline
agent. However, if we train the baseline agent to predict the SR of players in cluster 4
the difference with our approach in terms of SR predictions is small. This suggest that
after clustering the players, using only the baseline agent to predict each player cluster
SR could be a trade-off between computational requirements and prediction accuracy.

Table 4.7 reports the MAE, MSE and adjusted R-squared computed on each player
cluster. Note that on each row the "agent" columns describe a different agent, the one
trained with the corresponding player cluster. For example, we never use agent 1 to

Table 4.7. Analysis of the linear regression models while predicting on test data
sets and comparison with the baseline agent

MAE MSE Adj R-squared

Players in Agent Baseline Agent Baseline Agent Baseline

Cluster 0 0.27 0.34 0.12 0.19 0.47 0.12
Cluster 1 0.34 0.85 0.18 0.87 −0.27 −5.26
Cluster 2 0.33 0.34 0.16 0.17 0.34 0.30
Cluster 3 0.40 0.91 0.22 0.94 −0.99 −7.75
Cluster 4 0.31 0.41 0.15 0.26 0.49 0.13
Cluster 5 0.30 0.31 0.14 0.16 0.50 0.44



56 4.4. PLAYERS’ SR PREDICTION

(a) (b)

(c)

Figure 4.13. Agent 4’s and baseline’s predictions for the success rate of players
in cluster 4. Figure (a) illustrates the agent 4’s predictions while Figures (b) and
(c) show the predictions obtained from the baseline’s SR. The baseline predictions
in (b) are obtained training the baseline linear model to predict the average SR of
the players. The baseline predictions in (c) are obtained training the baseline linear
model to predict the SR of the players in cluster 4. In each graph, the black line
shows the linear regression model while the red dashed line shows the ideal linear
model. In the top left corner we illustrate the R2 measure of the fitted regression
model. In the bottom right corner of the graph we report the equation of the line
obtained by the linear regression model.

predict the SR of players in different clusters from cluster 1. On the contrary, the
baseline columns indicate always the same baseline agent used to predict the SR of
players in all the defined clusters. We can observe that each linear model, compared to
the baseline, better represents, in terms of SR predictions on test levels, the players that
the agent simulates. Note that the adjusted R-squared is 1 in the ideal case where the
line perfectly fits all the data points but it does not have a lower bound. This means
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Figure 4.14. Boxplot comparing agent’s and baseline’s residual errors. For each
player cluster illustrates the distribution of the residual errors of the agent repre-
senting the cluster, in blue on the left, and the baseline approach, in red on the
right.

that as the linear model get worse, the adjusted R-squared value can become negative
and it can decrease indefinitely. A boxplot illustrating the residual errors of the agents
and the baseline on each player cluster is shown in Figure 4.14. It shows that the agents
have an error closer to zero and a lower variance, confirming that they can better predict
the players’ SR that they simulate compared to the baseline.

Finally, in order to compare our approach with the baseline approach and answer our
research question we combined the agents’ predictions to obtain a single measure. The
linear combination of the six predictions, as defined in 3.9, is based on the percentage
of players that each agent represents. Table 4.8 reports the evaluation of our approach
compared to the baseline. The clustering players approach reduced the prediction MAE
from 0.30 to 0.26 with an improvement of 13% and reduced the prediction MSE from 0.13
to 0.10 with an improvement of 23%. In the table we also reported the 95% confidence
interval of the mean. We ran a paired t-test to check that the mean difference between
the absolute errors per each test level is different from zero. We decided to use a paired
t-test because the two approaches are tested on the same levels and we want to remove
the variability in the errors that has not been completely removed by the linear regression
models due to the minor violation of the homoscedasticity assumption. The paired t-
test increases the statistical power of our analysis because it removes the between-level
variability. If a level is too difficult, the difference between the approaches does not
have to be large even if the error is big. As a result, we obtained a two-tailed p-value
of 0.04%. Since it is lower than 5% we rejected the hypothesis of no difference between
the absolute errors of the two approaches. For completeness, we ran a two-sided t-test
to check that the two approaches have a statistically different MAE. Since we obtained
a p-value lower than 5%, we can reject the null hypothesis of identical average scores.
Similar results were obtained for the MSE. As a consequence, we have strong evidence
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that the new approach outperforms the baseline approach. The MAE is the metric
that for practical purposes we consider most important between the two. We prefer
to have few wrong predictions and frequent accurate predictions rather than constantly
fairly accurate predictions. This because human testing is still worth when concerning
subjective or qualitative measurements like fun or player experience and if applied in
conjunction with our approach, it can easily detect highly wrong predictions.

Table 4.8. Clustering players. Overall linear regression performance measures

Approach MAE MSE

Baseline 0.30 ± 0.03 0.13 ± 0.02
Clustering players 0.26 ± 0.03 0.10 ± 0.02

Predictions using the mean of the players’ success rate

Regarding data points where the agents or the baseline have a zero SR, a prediction is
formed using the mean of the players’ SR where the corresponding agent’s or baseline’s
SR are zero in the training data. This means that for each agent, the predictions in the
test levels where the agent failed are computed by looking at the mean of the players’
SR in the training levels where the corresponding agent failed as well. In Table 4.9 we
reported both the performance in the linear part and the overall prediction performance.
We can say that our approach reduced the MAE by 7% and the MSE by 4% when
considering both the linear and the mean predictions. Furthermore, we reported the 95%
confidence interval of the measurements. Note that the improvement of our approach is
lower when considering the mean predictions as when considering only the linear part.
Since the agents and the baseline failed in different levels, we need to consider that
the number of levels predicted with the mean is different between each agent and the
baseline. On average the six agents predict 62 levels using the mean while the baseline
predicts 69 levels with the mean. We ran a paired t-test to check that the within pair
difference obtained is larger than would be expected to have occurred by chance. Since
we obtained a two-tailed p-value greater than 5% we cannot reject the null hypothesis
when considering also the predictions realized with the mean SR.

Table 4.9. Clustering players. Regression performance measures

MAE MSE

Approach Linear part Total Linear part Total

Baseline 0.30 ± 0.03 0.31 ± 0.02 0.13 ± 0.02 0.14 ± 0.02
Clustering players 0.26 ± 0.03 0.29 ± 0.02 0.10 ± 0.02 0.13 ± 0.02



CHAPTER 4. RESULTS 59

Figure 4.15 illustrates the distribution of the SR for the failed levels of each agent as
well as the mean used to predict in these cases. The players’ SR in the failed levels tend
to be lower compared to the succeeded levels. This is desirable since we expect levels
where the agents failed to be difficult for the players as well. However, the variance is
high and as a consequence the mean prediction performs poorly. Furthermore, since the
failed levels represent on average 18% of the test levels, their impact on the regression
performances is considerable. Finally, we can observe that the predicted mean in the
baseline approach is closer to the true mean compared to other agents. This is due to
the fact that the baseline represents a greater number of players and their average SR is
less variable between training and test levels. On the contrary, the average SR on failed
levels for some agents, especially agents 1, 2 and 3, changes a lot between training and
test levels. This was expected by looking at the SR distribution in Figure 4.8 and it can
explain why adding these levels reduces the performances of our approach.

Figure 4.15. Data points and boxplots of levels predicted with the mean. The red
triangles show the mean prediction of each agent while the blue crosses indicated
the true mean.

4.4.2 Clustering Simulated Strategies Approach

In this approach, since we cannot accurately determine how many players each agent
simulates, instead of combining the predictions of six different linear models, we use a
single linear regression model with six predictors. Another difference with the previous
approach is that we no longer need to eliminate levels that drastically changed since both
the players’ SR and the agents’ SR are computed using the most recent and identical
version of the levels.

As we did for the clustering players approach, we validated the four linear regression
assumptions in the training data and we reported the plots in Appendix A.4.1. We can
observe that the assumptions hold with only a minor violation of the homoscedasticity
of the errors assumption. Subsequently, we used the linear model fitted with the six
agents’ SR and the one fitted with the baseline’s SR to predict on test levels. Table
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4.10 reports the evaluation of our approach compared to the baseline. The clustering
simulated strategies approach reduced the prediction MAE from 0.30 to 0.26 with an
improvement of 13%, the prediction MSE from 0.17 to 0.13 with an improvement of 24%
and finally improved the adjusted R-squared from 0.51 to 0.62 with an improvement of
22%. We ran a paired t-test to check that the per-level mean difference of the absolute
errors between the two approaches is different from zero with a significance level of 5%.
We obtained a two-tailed p-value of 0.08% and rejected the null hypothesis concluding
that the mean difference between the two approaches is statistically significantly different
to zero. For completeness, we ran a two-sided t-test to check that the two approaches
have a statistically different MAE. We obtained a two-tailed p-value lower than 5% and
we rejected the null hypothesis of identical average scores. Furthermore, since in this
approach we compared a linear model with six predictors with a linear model with a
single predictor, the most important metric is the adjusted R-squared because it takes
into account the number of predictors. More precisely, the adjusted R-squared decreases
if we add a predictor that improves the model less than what would be improved by
chance.

Table 4.10. Clustering simulated strategies. Overall regression performances

Approach MAE MSE Adj R-squared

Baseline 0.30 ± 0.04 0.17 ± 0.06 0.51
Clustering simulated strategies 0.26 ± 0.03 0.13 ± 0.05 0.62

Predictions using the mean of the players’ success rate

The data points where any of the agents or the baseline failed are predicted using the
mean of the players’ SR in the training levels where the corresponding agents or baseline
failed as well. In Table 4.11 we reported the prediction performances in the linear
part and the overall performances. The six agents predicted 193 levels using the mean
since whenever one of the agents failed a mean prediction is applied, on the contrary, the
baseline predicted only 101 levels using the mean players’ SR. Considering all predictions,
the clustering simulated strategies approach achieved a 8% lower MAE, a 16% lower MSE
and a 19% higher adjusted R-squared than the baseline approach. However, we ran a
paired t-test and we obtained a two-tailed p-value greater than 5%. As a consequence,
we cannot reject the null hypothesis of mean difference identical to zero when considering
also the predictions realized with the mean SR with a significant level of 0.05.

Note that the performance metrics reported in this thesis are computed on the scaled
and log-transformed values. Reverting the SR predictions and computing the errors on
the original SR values only led to different absolute values yet similar improvements
between the proposed approaches and the baseline.
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Table 4.11. Clustering simulated strategies. Regression performance measures

MAE MSE Adj R-squared

Approach Linear part Total Linear part Total Linear Total

Baseline 0.30 ± 0.04 0.35 ± 0.03 0.17 ± 0.06 0.22 ± 0.05 0.51 0.46
Clustering sim. str. 0.26 ± 0.03 0.32 ± 0.03 0.13 ± 0.05 0.18 ± 0.04 0.62 0.54

4.5 Estimating Strategy Requirements

We performed an analysis to categorize levels based on the strategy required to solve
them. This approach is built on the assumption that the strategy learnt from player
data is enough to solve the levels. Nevertheless, we observed that on average between
agents, 82% of the tested levels are successfully solved. We created a population of 16
different agents, each one simulating a different amount of strategy error. By comparing
the performances of the agents, we estimate the strategy required by each level. We
randomly selected 20 levels to test this approach and we ordered the agents that use
an ε-greedy policy from the one that plays completely random (ε = 1 ) to the one that
plays greedily (ε = 0 ). By plotting the agent’s SR against the amount of strategy used,
represented by 1 − ε, we observed how the SR improves as we reduce the number of
random moves made by the agent. Figure 4.16 shows for levels 154 and 155 the strategy
level plotted against the agents’ SR. The strategy level represents the amount of strategy
used by the agent. As a consequence a strategy level of zero means that the agent uses
a random policy while a strategy level of one means that the agent follows a greedy
policy. Note that the agents’ SR are normalized dividing them by the maximum value.
This because in order to compare levels we assume that when the agents play with
full strategy they reach the optimal performances (SR = 1). To estimate the strategy
required by a level, we computed the area above the line. By computing this metric for
the two levels in Figure 4.16 we obtained a strategy requirement of 0.72 for level 154
and a strategy requirement of 0.24 for level 155.

Finally, Figure 4.17 illustrates the scaled players’ SR against the strategy required.
We scaled the SR dividing by the difference between the maximum and the minimum
SR to not show the actual values for privacy reasons. We observe that the strategy
requirement is correlated with the players’ SR. Although some levels have a similar SR,
they have significantly different strategy requirements. This indicates that even if two
levels have a similar difficulty, the concentration and focus required by players to solve
them is different.
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(a) (b)

Figure 4.16. Two examples of strategy requirement plots for two random levels.
Figure (a) shows a level (number 154) that has a high strategy requirement while
(b) shows a level (number 155) that requires less strategy to be solved. The SR on
the y-axis is normalized dividing it by the maximum value.

We found that Jelly levels have on average a higher strategy requirement compared
to other types of levels even with a similar SR. However, this difference in the strategy
requirement is present only on easy levels (with a high players’ SR). This is explainable
by the fact that in order to solve them, the player has to perform the moves above the
jelly tiles and performing random moves in other positions reduces the possibilities to
clear all the jellies and finishing the level. Regarding more difficult levels, the simple
strategy of performing the moves above the jelly tiles is not enough and more complex
reasoning is needed. This explains the fact that for difficult levels there is no a clear
difference in the strategy requirements between different types of levels. Finally, we can
hypothesize that levels that can be successfully solved also with random moves might be

Figure 4.17. Players’ SR against the strategy required for the 20 different tested
levels.
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perceived less challenging by some players or that levels that require too much strategy
might be an obstacle to some other players. A deeper analysis is needed to verify these
hypothesis. Furthermore, in the proposed analysis we only uses a single agent and
modified it by adding different amount of human errors. In future work we will increase
the diversity in the population of developed agents by adding human errors not only
to one agent but to all the agents obtained with the two player modeling techniques
proposed in this thesis.



Chapter 5

Discussion

5.1 Combining the Agents with a Single Regression Model

In the clustering player approach, in order to have a fair comparison with the baseline
that uses only a single predictor, we decided to use six linear models and combine their
predictions afterwards. However, we experimented also to use a single linear model that
takes as input all the six agents’ SR. We found that this model has a very similar MAE
and MSE of our approach. However, looking at the p-value of each predictor we found
that agent 2 has a p-value of 0.61, meaning that its predictions are not improving the
model and they might be highly correlated to other agents’ predictions. By removing
this agent from our approach, we found that all the remaining predictors have a p-value
that is lower than 5% while the performance of the approach remained unchanged. A
similar result is obtained in the clustering simulated strategies approach. The lowest
p-value between the six predictors was 0.08 and removing the corresponding agent did
not alter the results. This is beneficial not only for simplicity, but also for sustainability,
since each time a new game content needs to be tested we have to simulate gameplay
with all the developed agents. By reducing the number of simulations we will reduce
the computational resources utilized. Furthermore, by providing more accurate predic-
tions, our approaches can reduce the number of iterations required by game designers
to adjust a level. However, we need to consider that the computational requirements
of our approach grow linearly with the number of simulated groups of players. From
the sustainability point of view, a deeper analysis of the trade-off between number of
iterations and number of simulations per iteration is necessary to answer if the proposed
approach is more or less sustainable than the baseline approach. Finally, since the vari-
ous simulations can be executed in parallel the time required to test a game content is
the same as the baseline approach.
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5.2 Comparison of the Two Approaches

Even if it is not the purpose of this thesis a comparison between the two approaches may
be of interest. Nevertheless, we need to remind that the agents in the two approaches
are trained on different data sets and predict on different test levels. By looking at
the comparison of the two approaches with the baseline, we observe that they produce
very similar improvements in the linear part. On the contrary, if we consider both
the linear predictions and the mean predictions the clustering players approach only
slightly improve the baseline yet being better in absolute numbers than the clustering
simulated strategies approach. However, the diversity may be due to the different test
levels considered in the two approaches. Note that in the clustering players approach
we had to remove levels that drastically changed during time. Indeed, comparing the
two approaches with the same test levels we obtained similar results. The clustering
players approach favors description and interpretation, meaning that the various agents
directly simulate a specific group of players. This means that if a particular behaviour
is discovered by the simulation of an agent, it is possible to go back to the players
that showed this behaviour. However, it requires that meaningful player clusters are
created and more importantly, that players in different clusters use, on average, different
strategies. On the contrary, the clustering simulated strategy approach works better
when the relationship between player features and strategies is unknown. By looking at
the player features of the selected agents, it is possible to qualitatively determine which
player each generated agent represents. Furthermore, during training, this approach uses
all the available data and should be preferred when gameplay data are limited. However,
one of the major drawback of this approach is that the feature combinations tested to
select the agents grow exponentially with the number of player features. A possible
solution could be to randomly select few of them or use evolutionary algorithm to explore
the feature space and select the agents. In this research we aimed to model different
type of players and as a consequence we selected the agents that led to more diverse
strategies, however, it may be of interest to select agents based on their performance in
the game or other metrics.

5.3 Practical Implications

Accurately determining the difficulty of a level is crucial for game companies since the
difficulty has an impact on the revenues, both directly, in terms of boosters bought by the
players and indirectly, in terms of player satisfaction and entertainment. For example,
if a too difficult level is included in the game, there is a risk that frustrated players
may stop playing the game. Furthermore, being able to estimate the perceived difficulty
of a specific group of players, can provide an indication of how many players could be
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affected by a too difficult level. Additionally, it allows game designer to create levels with
a desired difficulty for specific players. As an example, a game designer may want to
create a level that is easy for everyone while another game designer may want to develop
a level that is easier for regular players than for occasional players. Furthermore, it is
possible to allow the CNN-based agents to play extra moves after the maximum number
of available moves is reached. Since the maximum number of moves is a parameter that
game designers need to decide when creating a level, simulating longer gameplay allows
to compute an estimate of how many moves to add if a level is considered too difficult
for a specific type of players or globally too difficult. Furthermore, since players have
the possibility to buy boosters that give them extra moves at the end of an attempt, we
can estimate the potential impact of this type of boosters on different players.

The experiments in this thesis were performed using a cloud service provider. Thanks
to the fact that the training of the agents and the simulation of the gameplay can
be executed in parallel, the proposed approaches scale very well with an increase of
computational power. Furthermore, not only the simulation of different agents were
executed in parallel, but for each agent, several copies were executed, each one simulating
several attempts of the same level. As a consequence, we experimented using 1,000
attempts per level and preliminary results showed a little improvement of the players’
SR prediction. Finally, a deeper analysis on the agents’ performance discovered that for
levels that contain a special item called "Sugar Key", the agents’ SR is constantly lower
than the players SR. The "Sugar Key" are key-shaped candies, which can be matched like
regular candies, however they cannot be matched with any special candy. The "Sugar
Key" is always present with one or more "Sugar Chest". Every time a key is destroyed,
a layer of lock on the chests is removed. Removing all the chests is usually a necessary
condition to complete the level. As a consequence, the lower agents’ performance can
be explained by the fact that a different or deeper strategic thinking is required when
this element is present on the game board, or it might be a lack of training data with
these special items since they appear only on 8% of the levels. Also the "Sugar Key"
can appear in six different colors and for each color it is considered as a different input
feature for the CNN. A deeper analysis is necessary to better understand this issue.

5.4 Generalization of the Results

Despite the fact that we tested our approaches using the Candy Crush Saga game, we
believe that the same approaches, with few variations, can be applied to other games
as well. Using player features to differentiate gameplay simulations and better predict
players’ behaviour is a general concept that can apply to many games. Furthermore,
the proposed approaches could have an even bigger impact on those games where the
features of the players have a stronger relationship with the player strategies [15].
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Drachen et al. [45] in their research, showed how the selection of the clustering
algorithm can lead to different insights of the players population. In the clustering players
approach, we used k-means to extract the general distribution of players’ behaviour. By
using others clustering algorithms, like Simplex Volume Maximization, we could identify
and model players with extremes behaviours and use them to obtain different insights
about the game. Furthermore, as illustrated by Holmgård et al. [16], the developed
agents could be useful to characterize and classify new players by looking at which
agent better represents the player decision making style. In this thesis we focused on the
players’ SR as a metric to evaluate new game content. However, the proposed approaches
can be used to estimate other metrics. As an example, in Candy Crush Saga, we can
use the developed agents to estimate the score distribution and automatically set the
thresholds for reaching one, two or three stars on each level. These parameters are
usually set and fine-tuned by game designers. Moreover, especially in other games, the
proposed approaches could also work with completely different metrics.

Finally, the developed agents can be used for several purposes. Similarly to what
Holmgård et al. [15] did in their research we can visualize the gameplay simulation to
observe how different players interact with the game or we can use the agents to perform
game balancing [10], providing each player with a slightly different level that matches
their performances, skills and expectations.

5.5 Limitations

In this thesis, due to the properties of the experimented game, we used player features
that are indirectly related to the player strategies. Defining, tracking and computing
player features that directly relate to the performed moves, e.g. number of special candies
created, could be useful to improve the developed player models. Moreover, in this work
we did not consider the direction of the performed moves. Adding the possibility for the
agents to chose between left-right or right-left moves and top-down or bottom-up moves
can potentially increase the performances of the developed agents. Furthermore, we
could also add the possibility for the agents to use in-level boosters by increasing their
action space. Another possible limitation is that the presented approaches can only be
used in games where the content evolves during time since they use data from existing
game content to predict on future ones. Nevertheless, in most of the F2P games the
game content is continuously added in order to engage and retain players. In addition,
since we simulate gameplay using CNN-based agents, the experimented approaches work
better with games that have states that can be represented with images or encoded in
a grid-shape topology, games that have a discretizable action space and games that
have the Markov property. Finally, a last limitation regards the models used to predict
the players’ SR. In this thesis, we used linear regression models. However, using more
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complex models could improve the prediction performances and a possible approach is
discussed in the next section.

5.6 Future Work

5.6.1 Players’ SR Prediction with Generalized Linear Models

To overcome the limitations of the linear regression models in the players’ SR predic-
tion stage we could try to use Generalized Linear Models (GLMs). GLMs are helpful,
especially when the range of the dependent variable y is restricted and the variance is
not the same along the predicted values but depends on the mean of y. A generalized
linear model is built with a linear predictor and two functions: a link function describing
how the mean of y depends on the predictor and a variance function describing how the
variance depends on the mean. The general linear regression applied in this research
is a particular case of GLM with identity link function and unit variance. In our case,
since the predicted SR is a ratio and assumes values between 0 and 1, it could be better
modeled by a binomial distribution. As a consequence a possible approach could be to
use a GLM with logit as link function and variance function V (µi) defined as:

V (µi) = µi(1− µi), (5.1)

where µi is the expected value of y. A preliminary experiment showed that a GLM with
binomial distribution improves the MAE of both the proposed approaches. Furthermore,
it could be worth to model the extra uncertainty that derives from the fact that the agents
play deterministically and as a consequence the agent’s SR is self-correlated. Meaning
that there are some levels where the agent is always good or always bad while when we
aggregate the players we average between different SR. More work in this direction could
be done to improve the performances of the proposed approaches.

5.6.2 Further Applications

The benefits of having multiple agents simulating different strategies are not limited to
better estimate the players’ SR on new levels. A first extension is to compute different
metrics while other applications are reported in this section and future work should
deepen these aspects.

Clean the data

While tracking gameplay data from players we are aware that also "noise" in the data is
tracked as well. As an example, sometimes players might select moves randomly, without
focusing on the game and this data are tracked as well. Having multiple agents simulating
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different strategies could be beneficial to reduce this noise. Our approaches help to
directly model the diversity in the player strategies. However, while modeling player
strategies we inevitably include the tracked "noise" in the simulated behaviour. This
is especially true for casual games that can be played without too much concentration.
A possible approach to discover moves that are selected randomly, is to look at the
time spent by the players to select each move and compare it with the average time
spent. If a move is selected very fast, this could indicate that it is just picked randomly.
Furthermore, some gameplay data are more useful to learn different player strategies
than others. If all the agents predict the same move, this means that independently
from which strategy they simulate the players more likely select that specific move.
Results showed that 23% of the time all the developed agents predict the same move.
It could indicate that these are states where a specific move is clearly preferred by the
players. Maybe because there is only one legal move available or maybe because the
predicted move leads to win the game. Since no difference is learnt from the CNNs
in these states, removing them and re-training the networks could potentially increase
the differences in the simulated strategies. Finally, we need to consider that we are
simulating the strategies of groups of players and not individual ones. As a consequence
it is possible that two different players, even if they belong to the same cluster, select two
different moves in a given state. It is also possible that a player selects different moves
even in the exact same state in two different moments. Note that in the experimented
game it is hard to decide which move leads to the best outcome. By looking at the
predicted probability of the CNN we can detect the gameplay data where the network
is not sure on which move is the best one. As an example we can set a threshold and
if the network predicts two or more moves with probabilities that differ less than the
threshold we can assume that the network is not able to decide which one is preferred
and a different strategy to select the move might be appropriate in this case. In order
to simulate different strategies of the same group of players we can select from the
distribution of the predicted moves using different policies instead of the greedy one.
This means that for example, if a move is scored 0.2 by the CNN, it will be selected with
probability of 20%. The softmax function applied by the output layer guarantees that
the predicted scores can be interpreted as probabilities and sum up to one. However,
previous experiments showed that selecting moves in a non-greedy manner, only lead to
worse performances. Future work in these directions is needed to validate or reject our
hypothesis and deeper understand both the players and the game.

Categorize levels

We showed in Section 4.5 how developing a population of agents with different skills can
be used to categorize levels absed on their strategy requirement. Having different metrics
to evaluate a level can be useful for game designers to test the levels and to improve
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the quality of the game. We can hypothesize that levels that can be successfully solved
also with random moves might be perceived less challenging by some players or that
levels that require too much strategy might be an obstacle to some other players. A
deeper analysis is needed to verify these hypothesis. In their research, Isaksen et al. [17]
also estimated the dexterity required by each level. However in Candy Crush Saga the
dexterity requirements are very low on all the levels. Nevertheless, a slightly different
ability, called observability, can be modeled and estimated on each level. The idea is
that players, differently from the developed agents, do not always detect all the available
moves on the game board. We can add this type of error to the agents in different
quantities and then estimate the observability required by each level. The error can be
modeled by randomly reducing the number of available moves that the agent can select.
The moves will not be selected randomly as it is for the strategy error, instead they will
be selected greedily but within a subset of all the available moves. As an example, an
observability of 50% means that the agent only detects half of the available moves on
each game board. As a consequence if the agent predicts a move that is not between
the ones that are detected, the move is discarded and the subsequent predicted move
is selected. This process is repeated until the predicted move is in the subset of the
detected moves. Moreover, instead of randomly detecting the moves, different heuristics
can be used to decide which moves are detected and which ones are not. As an example,
we can create an agent that more often detect matches of red candies than blue candies
or an agent that more often detect matches with T-shape rather than L-shape. Ideally,
we could learn also these peculiarities from data.

Another application might be to classify each level based on the agreement between
the agents in selecting the moves on game boards obtained from that level. Computing
the agents’ agreement on several game states obtained from a specific level allows us to
categorize levels based on how often different agents agree. The idea is that levels where
all the agents select the same moves are less fun to play since the player strategy has
a minor impact on the gameplay. Finally, we can also categorize levels based on the
predicted probabilities of the network [100]. For example, if the network on a specific
level consistently predicts a move with high probability it might indicate that the possible
choices for the player are limited and as a consequence the level is less entertaining, while
on the contrary if the network predicts many moves with similar probabilities it might
indicate a more fun and challenging level.



Chapter 6

Summary and Conclusions

6.1 Summary

We experimented if simulating strategies of various cohorts of players would produce
agents’ SR that can be used to better predict the players’ SR on new generated game
content. We proposed two different approaches to model different player strategies by
directly learning them from real player data without expert knowledge. We validated our
approaches using the Candy Crush Saga game as a test bed. We tracked several player
metrics and gameplay data consisting of the game board and the performed move for
levels in the range [1, 2945]. In the first approach, called clustering players, we divided
the tracked state-action pairs based on the performances of the players that have been
tracked. Then, we trained different CNN-based agents on each generated player cluster.
On the contrary, the second approach, called clustering simulated strategies, is based
on the idea of letting the network discover the relationship between player features and
player strategy. We trained a CNN-based agent that received as input three different
player features in addition to the game board. Then, during prediction, by changing
the input features we were able to predict different moves and as a consequence to
simulate different players. We tested both of the proposed approaches against the state-
of-the-art method that simulates an average strategy learnt from a random sample of
real players. The goal was to understand if simulating different player strategies could
generate agents’ SR that can be used to better predict players’ SR on new levels. All
the simulations where performed by running 100 attempts for each level and aggregating
the results to compute the agent’s SR. Then, we used linear regression models to map
from the agents’ SR to the players’ SR. In the clustering players approach we fitted
a different linear model for each agent and we combined the predictions based on the
percentage of players that each agent simulates. In the clustering simulated strategies
approach we used a single linear model that directly combines the various agents’ SR.
Then, we used the developed linear models to predict players’ SR on test levels. This
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corresponds to how the approaches could be used in practice. The training will be done
on all the available levels and the models will be used to predict on newly created levels.
Finally, we compared the prediction performances of our approaches with the state-of-
the-art approach. We found that both the approaches were able to improve the MAE
by 13% and the MSE by approximately 23% in the linear regression part. Adding the
mean predictions to have an estimate of the players’ SR also for levels where the agents
failed reduced the improvements. However, also in this case, the proposed approaches
performed better then the baseline approach. Furthermore, we found that not all the
developed agents were strictly necessary to predict the players’ SR and reducing the
number of agent maintained the same prediction accuracy while saving computational
resources. We discussed how the clustering players approach favors interpretability and it
can provide game designers with multiple difficulty measures, perceived by different type
of players instead of only the average perceived difficulty. On the contrary, we discussed
how the clustering simulated strategy approach can work without any assumption on
the relationship between player features and strategies and how it allows to use all the
available data during training. Finally, we discussed limitations and future work that
could possibly improve the developed approaches.

6.2 Conclusions

We have been able to model different player strategies while directly learning them from
real player data. Incorporating characteristics of the players into the model allowed us
to improve the prediction accuracy of the CNN-based agents as well as the players’ SR
prediction of the linear models. Furthermore, using the proposed approaches, we have
been able to provide game designers with level difficulty measures perceived by different
cohorts of players helping them to iteratively balance game content and create the best
possible player experience. Additionally, we illustrated how the developed agents can
be used to estimate strategy requirements of new levels and proposed different ways to
further extend the work of this thesis.

To answer our research question, results suggested that player modeling can improve
the level difficulty estimation of a CNN-based agent simulating human gameplay. As a
consequence, player modeling techniques can be used to improve automatic playtesting.
In addition, the proposed approaches are general and can be extended to work with
other games and different player features or to estimate different metrics.
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Appendix

A.1 List of Boosters

In the following table there are all the various boosters with their description, effect,
usage condition and how they look like in the game. Each row represents one booster.

Table A.1. Full list and description of boosters

Name Image Type Levels Effect

Lollipop
Hammer In-level All levels

Smash a candy (or a blockers) except choco-
late spawner, ingredients, toffee tornado or
sugar chest and destroy it.

Extra Moves
+5

In-level, con-
solation

All except
timed levels Adds five additional extra moves.

Extra Moves
+3 Pre-level All except

timed levels Adds three additional extra moves.

Jelly Fish Pre-level Jelly levels Spawn 3 jelly fish at random on the game-
board.

Colour
Bomb Pre-level All levels Start with one colour bomb on the gameboard.

Coconut
Wheel Pre-level Ingredients

levels Spawn a coconut wheel on the gameboard.

Free Switch In-level All levels Allows the player to switch 2 candies even if
they do not match.

Striped and
Wrapped Pre-level All levels Start the game with a wrapped and a striped

candy on the gameboard.

Bomb
Cooler In-level All levels

Adds five extra moves to Candy Bombs. Avail-
able only if there are Candy Bombs on the
gameboard.

Lucky
Candy Pre-level Order levels Spawn a lucky candy on the gameboard.

UFO Pre-level All levels Spawn a UFO on the gameboard.

Striped
Brush In-level All levels

Allows the player to convert any regular candy
into a striped candy and to choose the direc-
tions of the stripes.

Party
Popper In-level All levels Clears the gameboard and adds special can-

dies.
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A.2 Supplement Information Regarding CNN Inputs

In the following table there are all the input features of the CNN. Each row represents
one feature layer.

Table A.2. Full list of input features (1/2)

Layers

REGULAR_CANDY
PEPPER_CANDY
MYSTERY_CANDY
CHAMELEON_CANDY
CANDY_COLOR
CANDY_COLOR_RED
CANDY_COLOR_YELLOW
CANDY_COLOR_BLUE
CANDY_COLOR_GREEN
CANDY_COLOR_ORANGE
CANDY_COLOR_PURPLE
FISH
CANDY_STRIPED_LINE
CANDY_STRIPED_COLUMN
CANDY_WRAPPED
LUCKY_CANDY
VOID
EMPTY
LIGHT_1
LIGHT_2
CANDY_CANNON
STATIC_BLOCKER
FROSTING
LIQUORICE_LOCK
FUDGE
INGREDIENT_COLLECTOR
PORTAL
PORTAL_ENTER_POINT
PORTAL_EXIT_POINT
PORTAL_VISIBLE
PORTAL_VISIBLE_ENTER_POINT
PORTAL_VISIBLE_EXIT_POINT
LICORICE_SQUARE
MULTI_FROSTING_1
MULTI_FROSTING_2
MULTI_FROSTING_3
MULTI_FROSTING_4
MULTI_FROSTING_5
CHOCOLATE_SPAWNER
MARMELADE_LOCK
DIVINE_DROP
SUGAR_DROP
CANDY_CANNON_AMMO_CANDY
CANDY_CANNON_AMMO_INGREDIENT
CANDY_CANNON_AMMO_LIQUORICE_SQUARE
CANDY_CANNON_AMMO_PEPPER
CANDY_CANNON_AMMO_MULOCK_CANDY
CANDY_CANNON_AMMO_MYSTERY_CANDY
CAKE_BOMB
JELLY_FROG
MULOCK_1
MULOCK_2
MULOCK_3
MULOCK_4
MULOCK_5
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Table A.3. Full list of input features (2/2)

Layers

COCONUT_WHEEL
INGREDIENT
EXTRA_TIME
MULOCK_KEY
CHOCOLATE_FROG
POPCORN
UFO
EVIL_SPAWNER
FROGGER_EXIT
JELLY_COLOR_GREEN
JELLY_COLOR_RED
BOBBER
CANDY_CANNON_AMMO_CHAMELEON
CANDY_CANNON_AMMO_LUCKY
CANDY_CANNON_AMMO_TIME
CONVEYOR_BELT
CONVEYOR_BELT_UP
CONVEYOR_BELT_RIGHT
CONVEYOR_BELT_DOWN
CONVEYOR_BELT_LEFT
CONVEYOR_BELT_PORTAL
CONVEYOR_BELT_PORTAL_NONE
CONVEYOR_BELT_PORTAL_RED
CONVEYOR_BELT_PORTAL_BLUE
CONVEYOR_BELT_PORTAL_GREEN
ORDER_CANDY_COLOR_RED
ORDER_CANDY_COLOR_BLUE
ORDER_CANDY_COLOR_YELLOW
ORDER_CANDY_COLOR_ORANGE
ORDER_CANDY_COLOR_PURPLE
ORDER_CANDY_COLOR_GREEN
ORDER_CANDY_WRAPPED
ORDER_CANDY_STRIPED
ORDER_CANDY_COLOR
ORDER_CANDY_FUDGE
ORDER_CANDY_FROSTING
ORDER_CANDY_POPCORN
ORDER_LIQUORICE_SQUARE
ORDER_STRIPED_STRIPED
ORDER_STRIPED_WRAPPED
ORDER_STRIPED_CANDY_COLOR
ORDER_WRAPPED_WRAPPED
ORDER_CANDY_COLOR_CANDY_COLOR
ORDER_CANDY_COLOR_WRAPPED
BIAS_LAYER
MOVES_LEFT
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A.3 Supplement Plots for the Clustering Players Approach

A.3.1 Assumption Validation on Training Levels Plots

(a) Agent 0 (b) Agent 1 (c) Agent 2

(d) Agent 3 (e) Agent 4 (f) Agent 5

Figure A.1. Players’ SR against predicted SR

(a) Agent 0 (b) Agent 1 (c) Agent 2

(d) Agent 3 (e) Agent 4 (f) Agent 5

Figure A.2. Agent’s SR against residuals
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(a) Agent 0 (b) Agent 1 (c) Agent 2

(d) Agent 3 (e) Agent 4 (f) Agent 5

Figure A.3. Levels against residuals

(a) Agent 0 (b) Agent 1 (c) Agent 2

(d) Agent 3 (e) Agent 4 (f) Agent 5

Figure A.4. Residual frequency
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(a) Agent 0 (b) Agent 1 (c) Agent 2

(d) Agent 3 (e) Agent 4 (f) Agent 5

Figure A.5. Normal probability plots of residuals

(a) Players’ vs predicted SR (b) Baseline’s SR vs residuals (c) Levels vs residuals

(d) Residual frequency (e) Residual normal prob. plot

Figure A.6. Assumptions validation for the baseline
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A.3.2 Agents’ and Baseline’s Predictions in the Player Clusters

(a) Agent 0’s predictions (b) Baseline’s predictions for cluster 0

(c) Agent 1’s predictions (d) Baseline’s predictions for cluster 1

(e) Agent 2’s predictions (f) Baseline’s predictions for cluster 2

Figure A.7. Agents’ vs baseline’s predictions on each player cluster (1/2)
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(a) Agent 3’s predictions (b) Baseline’s predictions for cluster 3

(c) Agent 4’s predictions (d) Baseline’s predictions for cluster 4

(e) Agent 5’s predictions (f) Baseline’s predictions for cluster 5

Figure A.8. Agents’ vs baseline’s predictions on each player cluster (2/2)

A.4 Supplement Plots for the Clustering Simulated Strate-
gies Approach

A.4.1 Assumptions Validation on Training Levels Plots
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(a) Agents’ vs predicted SR (b) Avg agents’ SR vs residuals (c) Levels vs residuals

(d) Residual frequency (e) Residual normal prob. plot

Figure A.9. Assumptions validation for the agents’ linear model

(a) Baseline’s vs predicted SR (b) Baseline’s SR vs residuals (c) Levels vs residuals

(d) Residual frequency (e) Residuals normal prob. plot

Figure A.10. Assumptions validation for the baseline’s linear model
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