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Abstract

Nowadays the big data paradigm is consolidating its central position in the
industry, as well as in society at large. Lots of applications, across disparate
domains, operate on huge amounts of data and offer great advantages both for
business and research. As data intensive applications (DIAs) gain more and
more importance over time, it is fundamental for developers and maintain-
ers to have the support of tools that enhance their efforts since early design
stages and until run time. The present dissertation takes this perspective and
addresses some pivotal issues with a quantitative approach, particularly in
terms of deadline guarantees to ensure quality of service (QoS).

Technically interesting scenarios, such as cloud deployments supporting a
mix of heterogeneous applications, pose a series of challenges when it comes
to predicting performance and exploiting this information for optimal design
and management. Performance models, with their potential for what if anal-
yses and informed design choices about DIAs, can be a major tool for both
users and providers, yet they bring about a trade-off between accuracy and
efficiency that may be tough to generally address. The picture is further com-
plicated by the adoption of the cloud technology, which means that assessing
operating costs in advance becomes harder, but also that the contention ob-
served in data centers strongly affects big data applications’ behavior. For all
these reasons, ensuring QoS for novel DIAs is a difficult task that needs to be
addressed in order to favor further development of the field.

Over this background, the present dissertation takes two main routes to-
wards facing such challenges. At first we describe and discuss a number of
performance models based on various formalisms and techniques. Among
these, there are both basic models aimed at predicting specific metrics, like
response time or throughput, and more specialized extensions that target the
impact on big data systems of some design decisions, e.g., privacy preserv-
ing mechanisms or cloud pricing models. On top of this, the proposed mod-
els are variously positioned across the spectrum between efficiency and accu-
racy, thus enabling different trade-offs depending on the main requirements
at hand. This is relevant in the second main part of this dissertation, where
performance prediction is at the core of some formulations for capacity allo-
cation and cluster management. In order to obtain optimal solutions to these
problems, in one case at design time and in the other at run time, we adopt
both mathematical programming and several performance models, according
to the different constraints on solving times and accuracy.

More in detail, we propose performance models based on queueing net-
works (QNs), stochastic well formed nets (SWNs), and machine learning (ML).
This variety is justified by the different uses of each methodology. ML pro-
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vides algebraic formulas for execution times, which are perfectly fit to be
added as constraints in our optimization problems’ mathematical program-
ming formulations, thus yielding initial solutions in closed form. Since ML
can reliably provide accurate predictions only in regions properly explored
during the training phase, the optimal solution is searched via a simulation-
optimization procedure based on analytical models like QNs or SWNs, which
in contrast are quite insensitive to the parameter range of evaluation, being
devised from first principles. These kind of models boast relative errors be-
low 10 % on average when predicting response times.

In terms of optimization, first of all we consider the design time problem
of capacity allocation in a cloud environment. The design space is explored
via both ML and simulation techniques, so as to choose the best virtual ma-
chine type in the catalog offered by cloud providers and, subsequently, de-
termine the minimum cost configuration that satisfies QoS constraints. We
show also how this optimization approach was applied during the design
phase of a tax fraud detection product developed by industrial partners, i.e.,
NETF Big Blu. Afterwards we also considered the run time issue of finding
the minimum tardiness schedule for a set of jobs when the current workload
exceeds predictions and the deployed capacity is not enough to ensure the
agreed upon QoS. Thanks to the varied efficiency of performance models, it
is possible to solve the design time problem in a matter of hours, whilst run
time instances are solved within minutes, consistently with the different re-
quirements.
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CHAPTER 1
Introduction

Many analysts point out that during these years technologies and methodolo-
gies that fall within the sphere of big data have swiftly pervaded and revolu-
tionized many sectors of industry and economy, becoming one of the primary
facilitators of competitiveness and innovation [65].

IDC reports that big data used to concern highly experimental projects, yet
its market is growing from $130 billion in 2016 to $203 billion in 2020, with
a compound annual growth rate of 11.9 %, with the banking and manufactur-
ing industries leading in terms of investment [131]. Big data applications offer
many business opportunities that stretch across industries, especially to en-
hance performance, as in the case of recommendation systems. Furthermore,
data intensive applications (DIAs) can also help governments in obtaining ac-
curate predictions, for instance quality weather forecasts to prevent natural
disasters and ease the development of appropriate policies to improve the
population’s life quality. To corroborate these considerations, notice that the
Obama government announced $200-million worth of investment to boost big
data related industries and positioned this strategy into the national agenda
in 2012. In addition, big data systems are increasingly exerting a central force
on society, thus requiring the development of intelligent systems providing
quality of service (QoS) guarantees to their users.

This dissertation reckons DIAs’ importance in today’s economy and tack-
les some relevant problems linked to their adoption. Any fruitful approach to
the optimization of big data applications must rely on effective performance
models, which are basic tools needed for the prediction of execution times or
the determination of costs given QoS constraints. For this reason, the initial
part of this dissertation discusses and compares a range of performance mod-
els, based on various formalisms and techniques. Building on top of these,
we also propose novel solutions to optimization problems that play a major
role in DIAs’ design and operation. In particular, we will detail formulations
for the capacity planning problem at design time, as well as for the run time
management of workload peaks.

This chapter proceeds as follows. Section 1.1 presents the main challenges
to face when dealing with DIAs in the cloud. Later on, Section 1.2 introduces
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1. Introduction

the most relevant big data frameworks, which were studied in the develop-
ment of this dissertation, then Section 1.3 similarly introduces convolutional
neural networks. After that, Section 1.4 motivates the choice to investigate
performance models and summarizes the proposed ones, while Section 1.5
is about the optimization techniques. Section 1.6 acknowledges the interna-
tional research projects that supported this work and Section 1.7 introduces
the main questions that drive the content of this dissertation. The chapter
ends with a list of the relevant publications where I contributed and the the-
sis organization.

1.1 Challenges for QoS Aware Big Data Systems

As DIAs acquire a central position in society, the IT field should shift from
simply building systems to developing intelligent systems that provide QoS.
Yet, predicting the performance of big data applications in scenarios of techni-
cal interest, notably a mix of applications running concurrently in a cloud sys-
tem, is very challenging. Big data applications are characterized by changing
behavior during execution: for instance, they require initially a lot of CPUs,
then a lot of network capacity, to later switch between the two, with some-
times complex patterns. Moreover, to cope with the large amount of data,
such applications often run in parallel stages. The performance (and thus
QoS) of parallel applications is often harder to predict due to synchronization
overheads. In summary, the most relevant challenges are:

Performance prediction via models Designing new models to predict the per-
formance of applications, in terms of execution time, given certain re-
sources, is key to providing QoS to application customers. Such models
should be accurate and efficient, i.e., provide an estimate quickly. The
use of accurate models is beneficial for both cloud providers and end
users: for cloud providers, models can trigger run time adaptations to
provide QoS guarantees; for end users, they can support what if analysis
and enable taking more informed decisions on the resources to use. It
is important that the models run reasonably fast, i.e., provide responses
quick enough to drive run time adaptations. However, model accuracy
and efficiency are two often conflicting objectives. More sophisticated
models, capturing in more details different aspects of the application
execution, are often more accurate, but also very costly to run. Thus
finding the best trade-off between these two goals is a major challenge.

Cost predictability in the cloud Designing new models to estimate the costs
in terms of cloud resources to run big data applications is key. An accu-
rate estimate enables more efficient scheduling of resources, including
cost-effective utilization of data centers.

Ensuring QoS on a budget Big data applications are supported by cloud in-
frastructures that, for resource contention, can be affected by perfor-
mance decline. For this reason, one of the major challenges for big data
applications is to define mechanisms and policies that implement re-
source partitioning and management in a way that cloud data centers’
resources are used efficiently, providing differentiated service levels to
customers according to the price of the resources.

2



1.2. Big Data Frameworks

In relation to the above challenges, at first this dissertation proposes var-
ious performance models and compares the advantages each brings to the
table. Undoubtedly these models give a strong contribution for the predic-
tion of response times and other performance metrics, but they can also be
used to assess DIAs’ resource requirements. Moreover, they are at the core of
the optimization methods presented as the other important part of this dis-
sertation. The choice among a gamut of alternative modeling techniques is
instrumental to face the different issues that arise in the diverse scenarios of
interest. Specifically, the adoption of optimization at design or run time is
characterized by different constraints, for instance in terms of the time taken
to obtain a solution or the required accuracy.

1.2 Big Data Frameworks

One of the pillars on which the big data revolution is based is the MapRe-
duce paradigm, which has allowed for massive scale parallel analytics [79].
MapReduce, a programming model and a scalable and fault tolerant run time
environment [36], is the core of Apache Hadoop, open source framework that
has proven capable of managing large datasets over either commodity clusters
or high performance distributed topologies [133].

The MapReduce framework became the most popular platform for data
analytics because of its simplicity, generality, and maturity [141]. A data pro-
cessing request under the MapReduce framework, called a job, consists of
two types of tasks: map and reduce. A map task reads one data chunk and
processes it to produce intermediate results, then reduce tasks fetch the par-
tially processed data and carry out further computation to generate the final
result [129].

Hadoop is an open source implementation of MapReduce ready for pro-
duction deployments and used for applications like log file analysis, database
(DB) querying, web indexing, report generation, machine learning research,
scientific simulation, bioinformatics, and financial analysis [59, 132]. Hadoop’s
success has been planetary; it attracted the attention of both academia and in-
dustry as it overtook the scalability limits of traditional data warehouse and
business intelligence solutions [79]. For the first time, processing unprece-
dented amounts of structured and unstructured data was within reach, thus
opening up, suddenly, a whole world of opportunities.

From the technological perspective, MapReduce is capable of analyzing
very efficiently large amounts of unstructured data, i.e., it is a viable solution
to support both the variety and volume requirements of big data analyses [77].
Cloud platforms make MapReduce an attractive framework for organizations
that need to process large datasets, but lack the computing and human re-
sources to install and manage a cluster. Moreover, Hadoop 2.x recently intro-
duced a wide set of performance enhancements, such as SSD support, caching,
and I/O barriers mitigation. IDC had estimated that Hadoop touched half of
the world data by 2015 [71], supporting both traditional batch and interactive
data analysis applications [112]. Paradoxically, the MapReduce paradigm,
which has contributed so much to Hadoop’s rise, is steadily declining in favor
of solutions based on more generic and flexible processing models. Among
these, Apache Spark is a framework that is enjoying considerable success and
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that, according to analysts, is expected to dominate the market for the next
decade [41].

The rigid division between map and reduce requires to subdivide a com-
plex application into a directed acyclic graph (DAG) of MapReduce jobs, com-
prising tasks that perform a specific computation on partitions/splits of the
input data. In this case, the MapReduce paradigm forces to store the results
of each intermediate phase on disk, thus being unsuitable for applications re-
quiring a low latency between different phases, along with general application
QoS guarantees. Other frameworks, such as Tez [109] and Spark [138], have
been introduced to address this problem. Although Tez can handle general
DAGs of MapReduce phases, it still requires to write each stage’s results on
disk. On the other hand, Spark can exploit a set of primitives to request the
caching of partial results in memory, thus allowing lower latency and better
performance. Spark has been developed on the resilient distributed dataset
(RDD) concept [137], a novel distributed memory abstraction providing a
restricted form of memory sharing. In practice, Spark can easily obtain a
10x speedup over Hadoop on specific scenarios [138]. This motivates Spark’s
widespread adoption, which made it the leading framework for data science
at scale. Acknowledging its newly acquired importance for big data, the focus
of this dissertation shifted from MapReduce, which in this fast paced field can
now be considered legacy, to Apache Spark.

1.3 Deep Learning Frameworks

Among DIAs, an important role is played also by neural networks (NNs).
Nowadays, convolutional neural networks (CNNs) find application across in-
dustries, most notably for image recognition and classification tasks, which
represented the first successful adoption of the technique [74]. Ranging from
medical diagnosis to public security, deep learning (DL) methods are fruit-
fully exploited in a wide gamut of products. In addition to the established
applications, there is ongoing work on the technique’s adaptation for other
use cases, like speech recognition [110] and machine translation [17]. Over
time, many frameworks have been developed to provide high level APIs for
CNN design, learning, and deployment. Among the most well known, we
recall Torch,1 PyTorch,2 TensorFlow,3 and Caffe.4

Contrasting to big data frameworks, CNNs generally do not process un-
structured data, instead networks themselves are somewhat tailored for the
intended input data. Adopting the image recognition example to support in-
tuition, CNNs are peculiar in that they consist of two main portions: an or-
dinary NN acting as classifier, thus distinguishing different image categories,
constitutes the final end of the structure, while a convolutional part auto-
matically extracts features to feed into the classifier. In layman’s terms, the
learning process enables the convolutional layers to recognize high level fea-
tures such as beaks or paws, which in turn help the classifier in telling cats
from birds.

1http://torch.ch
2http://pytorch.org
3https://www.tensorflow.org
4http://caffe.berkeleyvision.org

4

http://torch.ch
http://pytorch.org
https://www.tensorflow.org
http://caffe.berkeleyvision.org


1.4. Performance Modeling for DIAs

Usually DL models are trained relying on GPGPU systems (even in clus-
ters for experimental environments [130]), which allow to achieve from 5 up
to 40x time improvement when compared to CPU deployments [18]. Moti-
vated by the relevance assumed by these applications, in the following we
also propose two performance models specifically tailored for CNNs.

1.4 Performance Modeling for DIAs

In spite of all the fuss around big data technologies, it is still undeniably true
that fully embracing them is a very complex process. Many efforts have been
made to make this technology accessible, but establishing a production ready
deployment is time consuming, expensive, and resource intensive. Not to
mention the fact that fine tuning is still often perceived as a kind of occult art.

It is widely held that there is a clear need for an easy button to accelerate the
adoption of big data analytics [55]. That is why many companies have started
offering cloud-based big data solutions, like Microsoft HDInsight, Amazon
Elastic MapReduce, or Google Cloud Dataproc, while IDC estimates that, by
2020, nearly 40 % of big data analyses will be supported by public clouds [49].
The advantages of this approach are manifold. For instance, it provides an ef-
fective and cheap solution for storing huge amounts of data, whereas the pay
per use business model allows to cut upfront expenses and reduce cluster
management costs. Moreover, the elasticity can be exploited to tailor clusters
capable to support DIAs in a cost-efficient fashion. Yet, provisioning work-
loads in a public cloud environment entails several challenges. In particular,
the space of configurations (in particular, in terms of nodes type and num-
ber) is very large, thus identifying the exact cluster configuration is a complex
task, especially in light of the consideration that the blend of job classes in a
specific workload and their resource requirements may also vary over time.

At the very beginning, MapReduce jobs were meant to run on dedicated
clusters to support batch analyses via a FIFO scheduler [103, 105]. Neverthe-
less, DIAs have evolved and nowadays large queries, submitted by different
users, need to be performed on shared clusters, possibly with some guarantees
on their execution time [142, 143]. This is not a loose requirement, indeed, as
one of the major challenges [83, 122] is to predict the application execution
times with a sufficient degree of accuracy. In such systems, capacity allocation
becomes one of the most important aspects. Determining the optimal number
of nodes in a cluster shared among multiple users performing heterogeneous
tasks is a relevant and difficult problem [122].

Unfortunately, modeling the performance of such systems is very chal-
lenging. Indeed, production Hadoop environments are nowadays very large
massively parallel systems where map and reduce tasks coordinate exhibit-
ing precedence constraints and strict synchronization barriers. Additionally,
in our context, the stakeholders interested in the performance evaluation of
Hadoop processes are its users rather than its developers. Therefore, the com-
plexity and novelty of these systems together with the lack of full knowledge
of their development details make unclear the concepts that should be in-
cluded in a performance model in order for them to be both accurate and
manageable by performance evaluation tools.

Moreover, with Hadoop 2, resources are dynamically allocated between
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the map and reduce stages. While in early Hadoop versions CPU slots and
other resources were separated between mappers and reducers using a static
approach, in Hadoop 2 containers (both for MapReduce and Spark) are dis-
tributed among ready tasks in a dynamic fashion by YARN. On the one hand,
this allows a better cluster utilization, on the other hand performance model-
ing became much more difficult. In Spark, cluster resources are scheduled to
process part of the operations on RDDs: to obtain an RDD, Spark first builds
a DAG with its dependencies, then processes each stage providing a certain
amount of resources, based on data locality.

Because of all these reasons, predicting the execution time of Hadoop or
Spark jobs is usually done empirically through experimentation, requiring a
costly setup [54]. Performance prediction models are extremely useful to aid
development and deployment of big data applications, either for design time
decisions or run time system reconfiguration. Design time models can help,
e.g., to determine the appropriate size of a cluster or to predict the budget
required to run Hadoop or Spark in public clouds. Such models can be used
also at run time, allowing for a dynamic adjustment of the system configu-
ration [11, 104], e.g., to cope with workload fluctuations or to reduce energy
costs.

Analytically modeling DIAs is very challenging due to the great number
of parameters that have to be investigated. To ensure analytical model (AM)
tractability in such complex systems, AM-based performance models typi-
cally rely on simplifying assumptions that reduce their accuracy. On the other
hand, machine learning (ML) deals with the study and construction of algo-
rithms that can learn from data and make predictions on it without a priori
knowledge about the internals of the target system. In recent years, a growing
number of successful researches were done to explore the possibility of using
ML techniques to predict the performance of complex computer systems [62,
76, 135]. To be able to predict accurately, the ML model should be built during
a training phase with a sufficient amount of experimental data from different
workloads, using various parameters and configurations. However, running
several experiments in a cloud environment would be costly and time con-
suming. On top of this, though ML often provides good accuracy in regions
for which it is well trained, it shows poor precision in regions for which none
or very few samples are known.

Gray box modeling [42, 44, 63] is a new approach for performance mod-
eling and prediction that tries to achieve the best of the AM and ML worlds
by mixing the two. Such models can be exploited to support design time de-
cision making during the development and deployment phases of big data
applications. These models can then be also kept alive at run time to conduct
the dynamic adjustment of the system configuration [104]. In this context,
the performance models proposed in the present dissertation span the whole
spectrum from AMs to MLs, also with a hybrid approach aimed at attaining
similar accuracy despite the use of less operational data, which entails savings
on ad hoc experimental deployments.

In spite of the widespread adoption of DL systems, still there are few stud-
ies taking a system perspective that aim at investigating how, for example,
the training time changes when running on different GPGPUs or by varying
the number of training iterations or the batch size [18, 58]. DL applications
are characterized by a large number of design choices that often do not ap-
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ply readily to other domains or hardware configurations, up to the point that
even advanced users with considerable DL expertise fail at identifying opti-
mal configuration settings [58].

1.4.1 Contributions

The originality of this dissertation consists in an array of modeling techniques
capable of catching the system behavior under the dynamic assignment of the
available cluster resources. We assume that the cluster is governed by the
Capacity Scheduler, which partitions the available resources among multi-
ple customers through queues, each queue being regulated by a FIFO policy.
Based on this assumption, we devised several performance models relying on
different formalisms, so as to evaluate their relative accuracy and efficiency
and tailor them to the specific requirements of each use case. In particular, we
investigated queueing networks (QNs), stochastic well formed nets (SWNs),
fluid Petri nets, discrete event simulators (DESs), as well as ML approaches.

When the focus is on model expressiveness rather than fast prediction,
for instance during the design phase, it is possible to estimate DIAs execu-
tion times for multiple users and under unreliable resources. In particular,
we analyze a cloud-based scenario where the cluster, to save execution costs,
includes also spot virtual machines (VMs) [48]. The utilization of spot VMs
offers large discounts in VM prices, with the drawback of a non-guaranteed
availability level. We combine the performance and availability dynamics of
cloud resources in a single performability model that allows for evaluating how
failures caused by a sudden deallocation of VMs by the cloud providers de-
grade system performance.

In this dissertation, we also present a method to learn performance models
for CNNs running on a single GPGPU. The main metrics under investigation
are the forward time, relevant to quantify the time taken for classification
when the trained network is deployed, and the gradient computation time,
which on the other hand is important during the learning phase.

The validation of all the proposed models has been carried out with exper-
iments on real systems, considering a number of target deployments. Namely,
we considered public clouds with Amazon EC2 and Microsoft Azure HDIn-
sight, community clouds with CINECA, the Italian supercomputing center, as
well as on premises deployments with an internal installation, based on IBM
POWER8 processors, at Politecnico di Milano. In order to make the validation
both reproducible and reliable, we chose the TPC-DS benchmark, which is an
industry standard for data warehouse and business intelligence applications.
Alongside these analyses based on the benchmark, we also considered some
case studies proposed by industrial partners, including also ML workloads.
The presented simulation models show, on average, a good accuracy with re-
spect to measurements: their mean relative errors are 14.13 % for QNs and
9.08 % for SWNs.
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1.5 Capacity Planning and Resource Management
Optimization

Given a set of performance modeling techniques, with their pros and cons, the
next step of this dissertation is the development of optimization methods to
solve problems related to the management of DIAs in the cloud. Specifically,
we focused on the issues of capacity planning at design time, while at run
time on the rebalancing of the available resources to meet the requirements
of newly submitted jobs, possibly going beyond the foreseen workload and
associated capacity.

We formulate the design time capacity planning problem by means of a
mathematical model, with the aim of minimizing the cost of cloud resources.
The problem considers multiple VM types as candidates to support the exe-
cution of big data applications from multiple user classes. Cloud providers
offer VMs of different capacity and cost. Given the complexity of virtualized
systems and the multiple bottleneck switches that occur in executing DIAs,
very often the largest available VM is not the best choice from either the per-
formance or performance/cost ratio perspective [54, 142]. Through a search
space exploration, our approach seeks the optimal VM type and number of
nodes considering also specific cloud provider pricing models (namely, re-
served, on demand, and spot instances). The underlying optimization prob-
lem is NP-hard and is tackled by a simulation-optimization procedure able
to determine an optimized configuration for a cluster managed by the YARN
Capacity Scheduler. DIA execution times are estimated by relying on a gamut
of models, including ML and simulation based on QNs, stochastic Petri nets
(SPNs) [9], as well as an ad hoc simulator, dagSim [3], especially designed for
the analysis of applications involving a number of stages linked by DAGs of
precedence constraints. This property is common to legacy MapReduce jobs,
workloads based on Apache Tez, and Spark-based applications.

Analogously, the run time problem of resource reallocation is formulated
as a distinct mathematical programming model whose objective is the min-
imization of tardiness. In this case the focus shifts to private clouds, where
the previously applied pricing model is not relevant. Along the same lines, it
is not possible to choose a different VM type, since this decision was already
taken during the design phase. Exploiting another simheuristic procedure, it
is possible to obtain the optimal reallocation of resources that enables hard
deadline DIAs to meet their service level agreements (SLAs) and loosens the
constraints on soft deadline jobs, in order for them to achieve the minimum
overall weighted tardiness.

1.6 Acknowledgment

This dissertation has been developed within the framework of two H2020
projects: DICE and EUBra-BIGSEA. The former has as main goal a DevOps
framework for designing DIAs and exploiting information extracted from
their deployments to improve on such design, whilst the latter aims at a run
time environment to provide QoS guarantees for big data, both in data centers
and in the cloud.

Relying on the hereby presented performance models and optimization
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methods, we obtained two main outcomes: D-SPACE4Cloud5 and several
modules in the EUBra-BIGSEA ecosystem. D-SPACE4Cloud is a piece of soft-
ware designed to help system administrators and operators in the capacity
planning of shared big data clusters hosted in the cloud, so as to support both
batch and interactive applications with deadline guarantees. We believe that
being able to successfully address this problem at design time enables devel-
opers and operators to make informed decisions about the technology to use,
while also allowing for the full exploitation of the potential offered by the
cloud infrastructure. On the other hand, at run time it is no more possible
to take far reaching choices, yet the EUBra-BIGSEA architecture enables the
optimal management of the available resources, so as to reduce the impact on
QoS of unforeseen workload spikes.

1.7 Research Questions

Overall, this dissertation’s main contributions revolve around four research
questions. These range from the accuracy of performance models and pre-
diction techniques, but also their time efficiency, to the effectiveness of op-
timization procedures, even when applied in time constrained scenarios. It
is also relevant to investigate the impact of different deployment options on
performance, with particular attention to the savings enabled by non-obvious
interactions among workloads and underlying computational capabilities. In
the end, the proposed optimization techniques may allow for design choices
that go beyond simple cluster sizing, then such a possibility should be as-
sessed. The following paragraphs expand with more details the above men-
tioned problematics.

Research question 1. Which performance models can be applied to DIAs in an
accurate and efficient way? In particular, which have fitting characteristics for
design time optimization techniques or, alternatively, for run time management of
big data deployments?

Searching for the optimal configurations to deploy DIAs implies the ba-
sic requirement of predicting with a fair confidence their performance, de-
pending on the amount and type of allocated computational resources. If
design time optimization is less constrained in terms of convergence times,
conversely when operating at run time it is fundamental to shrink the time
taken for the optimization procedure, so as to keep at a minimum the impact
on DIAs execution. Hence, it is relevant to investigate the trade-offs between
accuracy and prediction speed enabled by different alternative techniques,
thus determining which better fit either application scenario and highlight-
ing the compromises that might possibly be needed.

Research question 2. How to identify the minimum cost configuration at de-
sign time and how to manage it at run time under high load conditions? Are the
proposed optimization methods accurate?

One of the major issues when dealing with complex pieces of software,
such as DIAs, is that they provide lots of configuration parameters, a num-
ber of which have effects on the overall performance. This problem is further

5DICE System Performance and Cost Evaluation for Cloud
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worsened by the vast catalog of alternative deployment choices enabled by
the cloud. In a similar setting, it is fundamental to devise appropriate meth-
ods capable of efficiently exploring the state space, since an exhaustive search
would be utterly impossible. Even more so when the goal is the run time man-
agement of DIAs clusters, as the more stringent optimization time constraints
exacerbate the issue. In the end, applicability of the proposed techniques
heavily depends on their accuracy, hence it is important to assess it via an
extensive experimental campaign.

Research question 3. When looking for the minimum cost deployment, are there
any dominant configurations? Is it possible, instead, that different workloads lead
to different minimum cost configurations? What is the impact of providers’ catalogs
on these considerations?

Common practices tend to associate specific classes of instances to appli-
cations based on the matching among VMs’ computational capabilities and
DIAs’ requirements. An immediate example is offered by Apache Spark,
which requires a large central memory on each worker node, so as to achieve
faster processing in iterative applications via the caching of RDDs. Cloud
providers often offer computing and memory optimized instances to satisfy
such needs. The focus in this research question is on investigating whether
such a preliminary choice is always optimal, or if the complex dependen-
cies between frameworks and deployment options enable different minimum
cost configurations based on varying concurrency levels, SLAs, and so forth.
Moreover, it is interesting to assess whether such behavior can be observed
also across various providers.

Research question 4. Are these techniques useful to investigate application ar-
chitectural choices at design time?

Several architectural choices might have an impact on DIAs’ observed per-
formance and this, in turn, affects the optimal configuration for what con-
cerns both the type and number of allocated resources. A natural implication
is the adoption of the devised methods for modeling and optimization at de-
sign time, when it is possible to quantitatively explore several choices and to
assess their effect on the final performance and operational costs.
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Manuscript Organization

This dissertation is organized as follows. To begin with, Chapter 2 outlines
related work and the state of the art. Then Chapter 3 provides details about
the performance models developed for this research, thus also addressing re-
search question 1. Chapter 4 describes the problem setting and the formu-
lations proposed for optimization, both at design and run time, which en-
tails research question 2. Further on, Chapters 5 and 6 discuss experimental
results that validate both performance models and optimization techniques.
Alongside validating research questions 1 and 2, they also show results and
case studies about research questions 3 and 4. In the end, Chapter 7 draws
the conclusions of this dissertation and hints at possible future work.
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CHAPTER 2
State of the Art

This chapter presents the basics of the relevant technologies and frameworks,
as well as various literature proposals relevant for this work. First of all, Sec-
tion 2.1 describes quite extensively both Apache Hadoop and Apache Spark,
which were the main frameworks subject to investigation for modeling and
optimization. Then Section 2.2 discusses several formalisms and their appli-
cation to performance modeling of DIAs, while Section 2.3 is about examples
of the use of hybrid ML techniques. Afterwards, Section 2.4 shows related
work relevant to the aspects of capacity planning and resources management
for big data. In the end, Section 2.5 underlines open issues in the current
literature and mentions how this dissertation contributes.

2.1 Overview of Technologies and Frameworks

Nowadays, Apache Hadoop 2 is the most widespread solution for handling
massive dataset on clusters of commodity hardware, while Spark is the most
promising framework that will probably support the execution of big data
applications for the next 5–10 years [41].

2.1.1 MapReduce and Hadoop

MapReduce is a general algorithm composed of two main functions, map and
reduce. The name was given by Google [37] through its first commercial im-
plementation, which allows for handling huge datasets in a fault-tolerant, dis-
tributed framework. The most widespread open source implementation of
this programming paradigm is Apache Hadoop.1

Hadoop in the root uses Apache Lucene, which is the open source API for
information retrieval, specifically one of its sub-projects: the web search en-
gine Apache Nutch, created as webcrawler in 2002. Google in 2003 published
the architecture of its distributed file system, Google File System, and in 2004
a paper explaining the MapReduce paradigm [37], providing in such a way

1http://hadoop.apache.org
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Figure 2.1 – Hadoop v1 architecture

two important technologies necessary to overcome the scalability limits of the
Nutch project. In 2006 Hadoop became an independent sub-project of Lucene
and a top level Apache project in 2008.

The first version of Hadoop had only a framework for the MapReduce pro-
gramming model. Every application that could be rewritten in terms of map
and reduce phases could take advantage of Hadoop’s distributed computation
capabilities. Figure 2.1 shows how Hadoop uses the Hadoop Distributed File
System (HDFS) and its related service as a storage layer, while the MapReduce
framework enables users to submit their own applications as MapReduce jobs.
Applications like Hive and Pig have been developed on top of Hadoop and,
by hiding the underlying MapReduce engine, they provide the capability of
using high level query languages to operate on data.

2.1.1.1 HDFS

The Hadoop Distributed File System was built as the infrastructure for the
Nutch Project. It has its origin in the Nutch Distributed File System, which
was specifically developed to overcome the lack of a distributed file system to
handle big sized files with a cluster of barebone commodity hardware. This
kind of file system had already most of the features and concepts that are
found in HDFS. The lack of a user permission system, absence of quotas, and
a much shorter set of configurable settings are, however, an exception.

In a Hadoop cluster, a master node running the NameNode service for
HDFS is responsible for maintaining a file system tree with the location and
properties of files in the so called FsImage file and metadata changes into a
transaction log, the EditLog. Both the FsImage and the EditLog are stored in
the local OS file system. Another relevant process in the HDFS infrastructure
is the DataNode, running on every node and physically storing data, as can
be seen in Figure 2.2. This last process is active on every node of HDFS and
handles the requests coming from the NameNode about physical operations
on files.
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Figure 2.2 – HDFS architecture

Exploiting HDFS, MapReduce can operate over huge-sized files, typically
at tera- or petabyte scale, by organizing them in blocks of fixed size and repli-
cating them among different nodes. HDFS has a default replication factor of
three. In order to provide data availability and reliability even upon differ-
ent degrees of system failure, while reducing network bandwidth utilization,
two replicas are, possibly, kept on different nodes of the same rack, and one
replica on another rack. The data copying process takes place in a pipelined
fashion. Since broadcasting the file from a unique source to the destination
nodes would impose an excessive toll on local network resources, when the
first DataNode starts receiving and writing data from the client, it forwards it
to the second DataNode, and so does this, until all the DataNodes have their
own replica. In this way the client has to forward data just once, spreading
the workload farther. In case of node failures, the DataNodes communicate
among themselves, without the intervention ofthe central NameNode, to keep
the file system in a coherent state, as shown in Figure 2.2.

HDFS has been specifically developed to store files of huge size and pro-
vide a high throughput. For this reason data is expected not to change, main-
taining a write-once-read-many access model. This is especially important if
the relevant amount of network traffic that would be generated by a change in
data content, caused by the update of every replica of every block where the
modification occurred, is considered.

Client applications cannot directly write a file into HDFS: data has to be
written first in a temporary file on the OS file system, then, once the file
reaches the size of a HDFS data block, a request is sent to the NameNode,
which will record the change in the file system structure and send back the
location of the DataNode where the new data will be physically stored. Only
upon file closure the NameNode will commit the file creation operation to the
persistent log. Users can interact with the file system at the NameNode with a
pseudo-POSIX interface, hiding the underlying NameNodes and DataNodes
structure.

In the first version of HDFS, the NameNode was a single point of failure.
In order to provide high availability, in recent versions two redundant Na-
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meNodes are instantiated on different machines of the same cluster. At any
point in time, one is in an active state, while the other is kept in a hot standby
state to provide automated failover in case of necessity. The standby node
can keep its state synchronized with the active one in two ways: either by
communicating the changes through a shared common storage device, or via
a group of separate daemons, called Journal Nodes, on which the active node
can communicate the applied changes and from which the passive one can
read them.

In case of user errors or situations when disaster recovery is needed, HDFS
now provides snapshots of the file system. Snapshots are instantaneous and
they record only the block list and the file size of a sub-tree of the file system,
or even the entire file system, yet without replicating the actual data. Upon
accidental deletion of a file, the related blocks are “protected” by the snapshot
and so only its metadata is deleted. In this way, by restoring the snapshot it is
possible to recover the previous state of the file system for that directory.

Another feature introduced with HDFS 2 is HDFS Federation. In the pre-
vious version of the file system, a single NameNode and a single namespace
were allowed, now this limit is overcome with multiple and independent fed-
erated NameNodes and namespaces. In this way the horizontal scalability
of the storage is supported by an horizontal scalability of the namespace, in
addition to isolation and a throughput improvement.

2.1.1.2 MapReduce Applications

A MapReduce job, or application, includes input data, typically stored in
HDFS), and user code defining the logic of map and reduce operations. The
job execution can be seen as split into the map, shuffle, and reduce phases.

In the map phase input data is divided into appropriate splits, each fetched
by a map task, making the number of map tasks data dependent. MapReduce
takes advantage of data locality, so map tasks are assigned to the nodes that
maximize the proximity of their needed data. Assigning a task on or close to
the machine that stores its input data on local disks is essential in order to
reduce network traffic and avoid congestion. For performance reasons, inter-
mediate map output data is saved in the local file system of the worker, since
replication would be time consuming and keep the network busy, whilst re-
dundancy is not required for these partial values.

In the shuffle phase key-value pairs from all the mappers are fetched in
parallel by some dedicated threads at the reducers, then the obtained files are
sorted. This phase begins as soon as the first map task finishes, making the
first data available for the reducers. The number of reducers is not data de-
pendent, but can be manually set. Moreover, the set of keys is hash partitioned
so that each key can be fetched by one and only one reduce task.

The reduce phase is the execution of the reduce logic on intermediate data.
The persistent output is written to an output file system, typically HDFS.

It is important to notice that, since reducers do not focus on a specific
source to collect their key-value pairs, data locality has less importance here,
while a map task is instead executed as close as possible to the chunk of data
it is assigned to. Since bandwidth usage optimization is a crucial element of
MapReduce jobs performance, it is convenient to limit the amount of data
transferred from the map tasks to a single reducer. By means of a so called
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Figure 2.3 – Hadoop v2 architecture

combiner function, it is often possible to execute an aggregation of the output
data of a map task on the physical node where it was executed, still keeping
them in the form of a valid input for the subsequent reduce task.

2.1.1.3 Hadoop YARN

Hadoop YARN is the result of a complete overhaul of the framework per-
formed in the development of the second version, yet it maintains backward
compatibility with legacy MapReduce applications. In the first version’s im-
plementation, the whole cluster was managed by a single process, the Job-
Tracker. Currently the two main JobTracker’s functionalities, resource man-
agement and job scheduling/monitoring, have been split into separate dae-
mons. The effects of this radical change on the architecture are a framework
decoupled from the MapReduce paradigm and the movement of the applica-
tion layer management away from the system daemons.

While initially Hadoop had the MapReduce engine as the only framework
available to developers, now this layer is just one of the possible applications
running on top ofYARN, as shown in Figure 2.3. For example, YARN allows
users to execute Distributed-Shell applications on multiple worker nodes in
the cluster. The system is still taking advantage of HDFS, but, as it leaves the
storage layer, it faces important changes in the Hadoop architecture.

Since applications are not necessarily MapReduce jobs, it becomes too sim-
plistic to organize the resources of nodes in terms of a fixed number of map
and reduce slots. The cluster is now seen as a resource pool and requests are
satisfied by assigning containers, providing a multiple of the fixed minimum
amounts of memory, disk, network, and CPU resources to user code. In this
way, applications can request and release resources according to their needs,
gaining a high flexibility for the YARN resource model.

The JobTracker disappears and the resource management is now accom-
plished by a ResourceManager, which still resides on the master node and
takes care of assigning containers to the requesting applications. Since the
optimality of scheduling policies is strictly dependent on the kind of applica-
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tions that are going to be run on the system, the ResourceManager works with
a pluggable scheduler, allowing users to implement their own. By default, the
Capacity scheduler can be replaced with the Fair scheduler or the old FIFO
scheduler. This latter is convenient only in very small clusters with a limited
workload, since its lack of job priority awareness and other advanced features
makes it unsuitable for large shared clusters.

The other feature of the JobTracker, the job scheduling and monitoring,
is now accomplished by ApplicationMasters. ApplicationMasters are per-
application framework instances decoupled from the central system, typically
operating on a slave node. When an application needs to start, the respective
ApplicationMaster is the application-specific first component, which is de-
ployed in a dedicated container. It then negotiates more containers with the
ResourceManager on behalf of the single instances of that application, coor-
dinates their execution, and monitors their resource consumption interacting
with NodeManagers. This change is not trivial, since the scalability is no more
limited by the capacity of the JobTracker and the sole role of the ResourceM-
anager at the master node is just to schedule resources.

NodeManagers are per-node processes and can be seen as the evolution
of TaskTrackers. They receive container requests from ApplicationMasters,
run and possibly kill them, monitor the resources in use, manage logs and
distributed caches, and periodically send heartbeats to the ResourceManager
about the health and resource utilization of their nodes.

2.1.1.4 Hadoop 3

In September 2016, Apache introduced Hadoop 3, which was officially re-
leased in December 2017. The Apache community has incorporated many
changes in Hadoop 3: some of the major new features follow.

Hadoop 3 uses erasure coding instead of replication. In this way, it is
possible to sustain the same level of fault tolerance, despite consuming less
storage space. According to the developers, this approach can lower storage
costs up to two times.

Moreover, Hadoop 3 introduced support for GPUs. In the previous ver-
sion, YARN could only handle memory and CPUs. Supporting GPUs enables
large improvements for specific workloads, such as ML and DL.

Another relevant new feature is the support for cloud storage systems, for
instance Amazon S32 and Microsoft Azure Data Lake.3

In the end, YARN now also supports Docker4 containers. This addition
enables mixing, on the same cluster, both big data and regular applications,
while also offering package isolation. Thanks to the use of containerized ap-
plications, it is easy to work around compatibility issues among dependencies.

2.1.2 Spark

Apache Spark is a cluster computing platform designed to be fast and general
purpose [139]. Given the fact that various use cases for Hadoop are somewhat

2https://aws.amazon.com/s3/
3https://azure.microsoft.com/en-us/solutions/data-lake/
4https://www.docker.com
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Figure 2.4 – Spark architecture

hindered by its continuous reliance on I/O to disk, often Spark is preferred
due to its greater adoption of memory for intermediate results.

Speed is an important factor when the task is to process large datasets.
The MapReduce model is extended in Spark so that it can efficiently support
more types of computation, such as interactive queries and stream processing.
Spark is also able to run computation in memory.

In Spark, workloads like iterative algorithms, interactive queries, and stream-
ing do not require separate distributed systems, as was the case with previous
big data tools. Spark supports these different workloads on the same engine,
therefore it is easy and inexpensive to combine different processing types that
are often needed in production data analysis pipelines. Integrating Spark with
other big data tools is still possible: in particular, it is quite common to host
Spark on Hadoop-managed clusters.

2.1.2.1 Spark Components

Apache Spark is responsible for scheduling, distributing, and monitoring ap-
plications at its core [139]. On top of its core engine, are available different
higher level components for various tasks, such as real time streaming or ML.
These components closely integrate with each other and users can easily com-
bine them.

The Spark ecosystem is designed in a way that all higher level components
benefit when the core engine adds an optimization. In addition, costs asso-
ciated with deployment, maintenance, testing, and support are minimized
thanks to the tight integration of the software stack, which avoids the need to
rely on multiple independent frameworks.

Another advantage of Spark’s ecosystem is the ability to build applications
that combine different processing models. For example, data streaming and
ML tasks can run simultaneously, possibly querying the same data in real time
via SQL or accessing it through the Spark shell for ad hoc analyses.

Figure 2.4 shows the various building blocks of Spark architecture. In the
following, each is presented with its main features and role in the big picture.
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Spark is designed to easily scale up from one node to large clusters with
many thousands of machines, hence the lowest layer in its architecture is oc-
cupied by several alternative cluster managers, such as YARN, Apache Mesos,5

or a simple standalone scheduler distributed as part of the Spark project. User
code can transparently run on any of these cluster management solutions,
thanks to the decoupling provided by the core framework.

Spark Core is responsible for Spark’s main functionality, such as task schedul-
ing, memory management, fault recovery, and interacting with storage sys-
tems. RDDs, which are Spark’s main programming abstraction, are defined
in Spark Core. RDDs are immutable and partitioned collection of records
distributed across many compute nodes that can be manipulated in parallel.
Spark Core provides several APIs for building and manipulating RDDs.

Spark SQL enables Spark to work on structured data. It allows query-
ing data via SQL and Hive Query Language (HQL), which is an Apache Hive
variant of SQL. Different data sources including Hive tables, Parquet, and
JSON can be used by Spark SQL. Developers can use SQL queries with RDDs
in Python, Java, and Scala, as well as combine SQL with complex analytics
all in a single application. However, the abstraction that more naturally fits
Spark SQL is offered by DataFrames, which were introduced in version 1.6. At
a high level, DataFrames logically represent tables of a relational DB. Previ-
ously Spark supported SQL via Shark, a project developed at the University of
California, Berkeley, which basically consisted in a port of Apache Hive to run
on top of Spark. Shark was later replaced since version 1.0 by Spark SQL, in
order to provide better integration with the underlying engine and language
APIs.

Spark Streaming enables processing of live data streams such as Internet of
Things or message queues containing web services status. Since Spark Stream-
ing’s API matches the RDD API in Spark Core, moving between applications
that use stored or streaming data is quite easy. Spark Streaming provides
the same level of fault tolerance, throughput, and scalability as Spark Core.
Furthermore, since Spark 2.0 streaming data, by its nature unbounded and
possibly infinite, can be represented and operated upon via the DataFrame
abstraction. Users can simply obtain DataFrames from streaming sources, ei-
ther files or Kafka,6 and use the same API as with static data.

MLlib is Spark’s library for ML. It features different kinds of ML algo-
rithms and tasks, such as classification, regression, and clustering, enabling
users to scale out any of these workloads to computational clusters.

GraphX is a library for graph-parallel computation as well as graphs an-
alytics. By extending Spark’s RDD API, GraphX allows users to create a di-
rected graph with arbitrary properties in each vertex and edge. Among its
capabilities, there are several common algorithms on graphs, like PageRank
or triangle counting, alongside basic operators, such as subgraphs or mapping
across vertices.

20



2.1. Overview of Technologies and Frameworks

Executor

Cluster Worker

Executor

Cluster Worker

Executor

Cluster Worker

Cluster Master

(Mesos, YARN,
or Standalone)

Driver

Figure 2.5 – The components of a distributed Spark application

2.1.2.2 Spark Runtime Architecture

When Spark runs in distributed mode, it uses a master/slave architecture with
one central coordinator, the driver, and many distributed workers, or execu-
tors. Both the driver and executors have their own separate Java processes. A
driver and its executors together form an application.

The Spark driver is responsible for converting user programs into tasks,
i.e., units of physical execution. We will use RDDs for the following exam-
ple, in order to keep it simpler. All Spark programs create RDDs from input
data, then the API allows either to derive other RDDs via transformations or to
perform some final operations, called actions, which extract some aggregate
values or save results. The logical flow is represented as a DAG, where oper-
ations are vertices and data dependencies are edges. When the driver runs, it
converts this DAG into an execution plan, where all the operations that can
be pipelined belong to a single stage. Tasks are nothing else than the list of
operations that compose a stage applied to a given data chunk. Overall Spark
applications can easily require even thousands of tasks.

As soon as the execution plan is ready, the driver schedules ready tasks on
executors. Tasks are ready when all their predecessors complete processing
and make intermediate data available. In order for the driver to know where
to schedule tasks, executors register themselves with it as soon as they are
started. Moreover, the driver tries hard to schedule tasks according to data
locality, thus placing initial tasks close to a replica of their assigned HDFS
block, for instance.

Alongside performing the actual processing, executors also take care of
storing into memory RDD blocks, possibly caching them, depending on users’
directions and memory pressure. For this reason, executors are started at job
submission time and remain active until the application is over. Spark’s fault
tolerance makes it possible for job to complete even if some executors should

5http://mesos.apache.org
6https://kafka.apache.org
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fail, by rescheduling lost tasks and, if need be, even entire stages to rebuild
failed cached blocks.

If executors take care of performing the logical tasks composing an appli-
cation, instead resources are negotiated by the driver with the cluster man-
ager, which provides a number of workers based on job requirements.

2.2 Performance Models for Big Data Applications

Deploying a DIA in a computer cluster requires a non-negligible learning
curve of the underlying technology and a good knowledge of the process re-
quirements. It is essential to consider that clusters are shared by multiple
users or institutions, are vulnerable to hardware failures and have a monetary
cost. The minimization of starvation between user jobs, the impact of execu-
tion errors, and the optimization of operational costs are important issues.

Modeling and simulating the configuration of a high performance dis-
tributed computer framework allows for predicting DIAs behavior before ex-
ecution. They enable the detection of potential problems such as bottlenecks,
the tolerance to hardware malfunctioning, as well as a finer estimation of the
resources usage, the running time, and throughput. Execution time and re-
sources are two of the main parameters for guaranteeing a fair scheduling
among user jobs and inferring the billing.

This section is subdivided into three parts, following the three main classes
of applications of interest: Apache Hadoop, Spark, and CNNs.

2.2.1 Apache Hadoop

The literature provides a large number of performance studies for Hadoop 1,
since the framework has been widely adopted in the ICT industry, often sup-
porting core business activities. Two main approaches have been explored:
i) simulation-based models implement the single constituents of Hadoop and
of the job, replaying in a simulated environment the steps and delays of the
real system; ii) analytical models, on the other hand, define a mathematical
representation of those constituents, avoiding the costs of running multiple
simulations. Both approaches make use of information such as input dataset
size, cluster resources, and Hadoop specific parameters.

Some examples of AMs follow. For instance, Bruneo et al. [26] introduce a
stochastic reward Petri net model representing an infrastructure as a service
(IaaS) cloud where the load conditions can change dynamically. Performing
several analyses on the proposed model, they can assess adaptation strategies
with respect to the advantages offered to IaaS providers. Ahmed and Logu-
inov [2], instead, construct a probabilistic performance model for MapReduce
and evaluate it against traces, considering large scale sorting as target work-
load. On the other hand, Lin et al. [84] define two sets of parameters, one
quantifying the capabilities of underlying resources and another collecting
jobs characteristics, and propose a system of equations that correlates all those
quantities to application performance. Similarly, Yang and Sun [134] formu-
late a simple model that associates system capabilities and job peculiarities,
with a focus on the effect of configuring the number of mappers or reducers
of each application on execution times. Another performance model estimat-
ing the execution time by considering the single costs of the various phases
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of a MapReduce job is described in Lin et al. [85]. In this work, the authors
go down to the very low level elements that determine the cost of single job
phases, writing a 37-parameter model that provides execution times within
10 % of those measured in a real cluster.

Verma et al. [122] propose the ARIA framework, whose capabilities in-
clude estimating the execution time of jobs in MapReduce clusters. Adopt-
ing scheduling techniques, the authors prove lower and upper bounds on
makespans and derive formulas for performance prediction. Such formulas
exploit information contained in the logs produced by similar jobs in previous
runs. With this method, they obtain both a conservative estimate, suitable for
strict SLAs, and an alternative result that does not guarantee deadlines are
met, yet boasts a relative error below 10 % in comparison to measured tim-
ings. The same research group later focused on the needs of organizations
running data intensive workloads on premises [123] . With a combination
of micro-benchmarks, application profiling, and iteratively re-weighted least
squares, they obtain a model for the effect of the underlying hardware on
jobs performance. The proposed method can help system administrators in
choices about hardware upgrades.

Some other approaches, e.g., Liang and Tripathi [81], are based on an ap-
proximate mean value analysis technique and use an iterative hierarchical
approach. At each iteration, they perform two steps: in the first one, the dis-
tribution of task execution times is used to estimate job execution times and
the synchronization delay among tasks of the same job. Such information is
then used to estimate tasks time overlap to refine the queueing synchroniza-
tion delay and finally update the mean job execution time estimate. Along
the same lines, Vianna et al. [125] combine a precedence graph and a QN to
capture the intra-job synchronization constraints, thus being able to estimate
the synchronization delays introduced by the communication among mappers
and reducers. Unfortunately, even if the approach is rather accurate (around
15 % accuracy on real systems), the authors assume that CPU slots are stati-
cally assigned to mappers and reducers, hence the proposed method cannot
be adopted to estimate performance under the Hadoop 2 dynamic resource
assignment policy.

Several works describe the adoption of Petri nets (PNs) for MapReduce
modeling. For instance, Castiglione et al. [28] describe a big data architecture
based on Hadoop by means of SPNs and apply mean field analysis to obtain
average metrics and estimate its performance. With this approach, the au-
thors obtain a fast approximate method for performance prediction. Another
approach, presented by Barbierato et al. [20], exploits generalized stochas-
tic Petri nets alongside other formalisms, such as process algebras or Markov
chains (MCs), to develop multi-formalism models and capture HQL queries.
Adopting the presented tool, the authors investigate how performance de-
pends on some configuration parameters. In the literature, colored Petri nets
(CPNs) have also been adopted to assess the feasibility of a distributed file sys-
tem project [1]. The authors design a deployment of HDFS exploiting spare
resources in a cluster of workstations available for teaching in their university,
so as to provide a sufficiently available distributed file system. CPNs are used
to assess system availability in a number of configurations of interest. More
recently, Ruiz et al. [108] formalized the MapReduce paradigm using priori-
tized timed colored Petri nets to obtain complete and unambiguous models
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of the system behavior. They evaluate the correctness of the system and carry
out a trade-off analysis of the number of resources versus processing time and
resource cost with CPNTools [66]. Further works with PNs and MapReduce
are oriented to measuring performance under failures [68] or studying the
fault tolerance mechanism [91].

On the other side, QNs have also been introduced for modeling cloud sys-
tems. Bardhan and Menascé [22] apply QN models for predicting the comple-
tion time of the map phase of MapReduce jobs within simple configurations
of Hadoop. This work is noteworthy as it explicitly considers contention and
parallelism on compute nodes to evaluate the execution time of a MapReduce
application, yet its weak spot is that it contemplates the map phase alone.
Alipour et al. [5] develop a cloud provider independent model with QNs that
represents entities involved in the Hadoop MapReduce phases, and customize
it for a specific cloud deployment. Finally, in Yu and Li [136] an analytical
queueing models has been developed to investigate the utilizations and mean
waiting times of mappers and reducers, respectively.

In QN literature, the fork/join paradigm is used to denote the modeling
of the concurrent execution of many tasks within higher level jobs [19, 98].
Specifically, this approach operates through two steps: i) jobs are spawned at
a fork node in multiple tasks, then ii) they are submitted to queueing stations
that, in turn, model the available servers. Once all the tasks have been served,
they can synchronize at a join node. It has to be noted that when a fork/join
network has more than two queues, a closed form solution is not possible [88].
That said, it is possible to mitigate the issue by using a special kind of struc-
ture that considers the MC underlying the QN and representing the possible
states of the system [81]. Unfortunately the state space grows exponentially
when the tasks number corresponds to realistic MapReduce jobs—in the order
of thousands—thus making the above approaches unsuitable [31, 88].

2.2.2 Apache Spark

Apache Spark is a powerful framework oriented to big data processing, which
allows users to quickly build applications combining SQL and data analyt-
ics. It is gaining wide renown for its improved performance in comparison to
Hadoop: Mavridis and Karatza [92] extensively compare the two frameworks
when applied to web log files analytics, thus proving a large speedup when
similar queries are executed on Spark. However, Gu and Li [57] study the im-
pact of dataset size on performance and argue that, despite the large speedup
when datasets fit nicely into cluster memory, Spark suffers a stronger degra-
dation when the dataset grows and in memory caching loses effectiveness.
These considerations motivate the adoption of performance modeling tech-
niques, which could offer valuable insight into such issues, as well as provide
accurate predictions in configurations where the use of Spark is advantageous.

The picture is further complicated by the effects of the full software stack
and underlying hardware on observed performance. Chiba and Onodera [30]
study in depth some queries from the TPC-H benchmark, considering logs,
performance counters, Java virtual machine and OS level profiling, in order to
identify bottlenecks and non-optimal behavior. Exploiting this information,
they optimize the configuration across the full stack and achieve a 30–40 %
speed increase on average, yielding up to 5x faster execution over default.
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Wang and Khan [127] model Spark jobs performance as a system of alge-
braic equations and propose to profile them via small scale experiments. The
evaluation is conducted with several well known applications, such as PageR-
ank and k-means, and suggests that scaling down both the dataset and cluster
sizes can lead to inaccuracies for the prediction of I/O. The same research
group later extended this model by taking into account the effects of interfer-
ence and contention in virtualized cloud environments [128]. As different ap-
plications show different behavior patterns, alongside an improved profiling
framework they also propose an algorithm to assess interference even when it
is due to a cascading effect.

Islam et al. [64] propose to model Spark application performance via a set
of power laws. These are obtained by profiling the job on a portion of the
input dataset, and then used as underlying performance model for a heuris-
tic algorithm that searches the minimum cost deployment while satisfying a
deadline on execution time. The validation shows that the technique allows
for saving in comparison to an over-provisioned cluster.

Recently, given the framework complexity, black box approaches based
on ML have been proposed to predict Spark applications performance as a
function of dataset size, executors memory, and number of cores [54].

2.2.3 Deep Learning and GPUs

Deep learning’s popularity is steadily increasing thanks to its impact on many
application domains, ranging from image and voice recognition to text pro-
cessing, and has received a lot of interest from many academic and industry
groups. Advances are boosted by enhancements of the deep networks struc-
ture and learning process (e.g., dropout [114], network in network [82], scale
jittering [126]) and by the availability of GPUs, which allows to gain up to 40x
improvement over traditional CPU systems.7

Over the last few years, several frameworks have been developed and are
constantly extended to ease the development of DL models and to optimize
different aspects of training and deployment of DL applications. Bahrampour
et al. [18] provide a comparative study of Caffe, Neon, Theano, and Torch,
by analyzing their extensibility and performance and considering both CPUs,
when possible in a multi-threaded setting, and GPUs. The paper provides
insights on how performance varies across input batch size and different con-
volution algorithm implementations, but it does not provide any means to
generalize performance estimates to different settings.

Due to the complexity of big data and DL frameworks, where multiple
software stacks are involved and/or the level of parallelism is very large,
black box performance modeling approaches based on ML are recently fa-
vored against more traditional AMs, like, e.g., QNs or PNs. For instance,
Hadjis et al. [58] developed solutions to minimize the total training time of
CNNs, given the network architecture of the DL model, the dataset target of
the training, and the set of available computational resources, characterized
by the number of CPUs/GPUs available on machines, their throughput, and
the network speed.

7http://www.nvidia.com/object/why-choose-tesla.html
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Since commonly CNNs are deployed on GPUs, it is relevant to understand
how such hardware can influence performance. Jia et al. [67] propose the
Stargazer framework to build application-specific performance models that
correlate execution time and several GPU parameters. Given the daunting
size of the design space, they exploit sparse random sampling to obtain a
small, yet representative, dataset and then apply an iterative model selection
procedure to determine the most important predictors, thus creating step by
step an accurate linear regression model.

Another approach to the issue is proposed by Liu et al. [86], who elabo-
rate a detailed representation of general purpose applications on GPUs. After
categorizing the subtasks possibly run on the GPGPU into data constant, data
linear, and computation dependent, they provide three general expressions
and the relevant parameters for all the main phases of GPU computation.
With these, they achieve an accurate performance model, validated against a
bio-sequencing application.

Kerr et al. [72] profile and build models for a range of applications, run
either on CPUs or GPUs. Relying on 37 performance metrics, they exploit
principal component analysis and regression in order to highlight those fea-
tures that are more likely to affect performance on heterogeneous processors.
Along the same lines, Luk et al. [87] develop Qilin, a technique for adap-
tively mapping computation onto CPUs or GPUs, depending on application
as well as system characteristics. With this approach, they show an improved
speedup with respect to manually associating jobs and resources.

2.3 Hybrid Machine Learning Approaches

In recent years, machine learning became popular to predict the performance
of complex computer systems. Ipek et al. [62] adopted artificial NNs to pre-
dict the impact of architectural changes on performance metrics while study-
ing memory systems and multi-threaded CPUs. Yigitbasi et al. [135] com-
pared several ML methods to predict Hadoop clusters performance, ranging
from ordinary linear regression to advanced techniques like artificial NNs,
regression trees, and support vector regression (SVR) with diverse MapRe-
duce applications and cluster configurations. Lama and Zhou [76] proposed
AROMA, a system based on SVR for automatic resource allocation and con-
figuration in cloud-based MapReduce clusters. AROMA mines historical exe-
cution data in order to profile past submissions and to match incoming jobs to
the available performance signatures for prediction. In this way, the proposed
system can avoid violations of the deadlines stated in SLAs, while incurring
minimum cost, with an average percentage error on running time predictions
around 20 %.

Black box modeling can derive performance models from data to make
predictions without a priori knowledge about the internals of the target sys-
tem. In this research area, Venkataraman et al. [121] built Ernest, a black box
performance prediction framework for large scale analytics based on experi-
ment design to collect the minimum number of training points. The approach
was evaluated by predicting the performance of different business analytics
workloads using Spark MLlib on Amazon EC2, achieving average prediction
errors under 20 %. Recently, Ernest has been integrated within the Heming-
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way framework [100] with the aim to identify the optimal cluster configura-
tion for ML training algorithms, where the convergence rate may be affected
by the cluster size. Ernest’s computational model was used to estimate the
time taken per iteration as a function of the cluster size. Hemingway uses lin-
ear regression to estimate how the convergence rate changes with the number
of involved machines.

Along the same lines, Alipourfard et al. [6] proposed CherryPick, a black
box system leveraging Bayesian optimization to unearth the optimal or near-
optimal cloud configurations that minimize cloud usage cost while guaran-
teeing application performance. The authors’ approach limits the search over-
head for recurring big data analytics jobs, focusing the search to improve pre-
diction accuracy of those configurations close to the best for a specific dead-
line. This can be a limit in more general settings, for instance under QoS con-
straints or loads that vary over time. Delimitrou and Kozyrakis [39] proposed
Quasar, a black box cluster management system that maximizes resource uti-
lization while meeting performance and QoS constraints. The authors exploit
classification techniques to determine the impact of the type and amount of
resources, as well as of workload interference, on system performance.

Some more recent works exploited the possibility to use AMs and ML in
synergy to get the best of both worlds. Tesauro et al. [116] proposed auto-
nomic resource allocation in a multi-application prototype data center with
the goal of maximizing the total expected business value. They show how
to combine the strengths of both reinforcement learning (RL) and QNs in a
hybrid approach, in which RL trains offline on collected data while a queu-
ing model policy controls the system. Thereska and Ganger [117] presented
a hybrid performance modeling framework, which uses the redundancy of
high level system specifications described through models and low level sys-
tem implementation to localize system-model inconsistencies and give hints
to the system and model designer regarding the root cause of the problem. In
this work, mathematical models based on queueing theory are coupled with
regression trees. Herodotou et al. [59] proposed Elastisizer, a system to which
users can express cluster sizing problems as queries in a declarative fashion.
In this system, the overall process of estimating execution time and cost of
MapReduce jobs is broken down into four smaller steps and, for each step, a
suitable white box or black box modeling approach is chosen.

There are also some works that target in memory transactional data stores:
Rughetti et al. [107] used a mixed AM/ML approach to dynamically tune the
level of concurrency of applications based on software transactional memory
to optimize system throughput. The AM and ML techniques used in this re-
search are parametric analytical modeling and NNs, respectively. Didona et
al. [47] introduce Transactional Auto Scaler (TAS), a system for automating
the scaling of fully replicated in memory transactional data grids in cloud
platforms. In TAS, analytical and ML models were incorporated to predict
throughput, commit probability, and average response time. White box mod-
els, based on queueing theory, are used to capture the dynamics of concur-
rency control or replication algorithms, so as to forecast the effects of data
contention, as well as the effects of contention due to CPU utilization. Didona
et al. [43] consider the issue of automatically identifying the optimal degree of
parallelism of an application using distributed software transactional mem-
ory by introducing a hybrid approach. They exploit TAS [47] as the analytical
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performance model, while decision tree (DT) regression is utilized as the ML
technique.

Didona and Romano [46] investigate a technique whose main idea consists
in relying on an AM to generate a knowledge base (KB) of synthetic data over
which a complementary ML is initially trained. The initial KB is then up-
dated over time to incorporate real samples from the operational system. For
updating the KB, the authors propose different algorithms based on merge
and replacement. As case studies, the authors consider Infinispan and total
order broadcast relying on DT regression and queueing models. The effect of
the proposed parametrized algorithms on the mean average percentage error
(MAPE) of the gray box model is evaluated by means of ten-fold cross valida-
tion. However, the authors do not investigate when the algorithm should stop
updating the ML model.

2.4 Capacity Planning and Management of Big Data
Frameworks

Capacity planning and architecture design space exploration are important
problems analyzed in the literature [4, 25]. High level models and tools to
support software architects (see, e.g., Palladio Component Model and its Pal-
ladio Bench and PerOpteryx design environment [23, 73], or stochastic pro-
cess algebra and the PEPA Eclipse plugin [97, 119]) have been proposed for
identifying the best configuration given a set of QoS requirements for en-
terprise web-based systems, but unfortunately they do not support cloud-
specific abstractions or (see, e.g., Kross and Krcmar [75]) directly address the
problem of deriving an optimized cloud and big data cluster configuration.

On the other side, capacity management, cluster sizing, and tuning of big
data applications have received also a widespread interest by both academia
and industry. Provisioning and scheduling resources for big data applica-
tions in cloud infrastructures face several challenges such as query dynamic-
ity, load fluctuations, performance unpredictability, and resource heterogene-
ity. One of the main challenges for big data cluster frameworks is how to
partition and dynamically allocate resources to reach high efficiency and scal-
ability. Resource partitioning and dynamic allocation mechanisms, indeed,
are enablers for providing efficient resource provisioning and improving sys-
tem utilization. Recently, significant work was performed to address these is-
sues, also decoupling resource management from the programming model: a
number of technologies have been proposed, such as YARN [120], Mesos [61],
Omega [111], and Borg [124].

Big data frameworks often require an intense tuning phase in order to
exhibit their full potential. For this reason, Herodotou et al. [60] propose
Starfish, a self-tuning system for analytics on Hadoop. In particular, Starfish
collects some key run time information about applications execution with the
aim of generating meaningful application profiles; such profiles are in turn
the basic elements to be exploited for Hadoop automatic configuration pro-
cesses. Furthermore, also the cluster sizing problem has been tackled and
successfully solved exploiting the same tool [59]. More recently, Dalibard et
al. [35] have presented BOAT, a gray box framework, which supports devel-
opers to build efficient auto-tuners for their complex computer systems, in

28



2.4. Capacity Planning and Management of Big Data Frameworks

situations where general purpose auto-tuners fail. BOAT is based on struc-
tured Bayesian optimization and has been used to support the performance
tuning of Cassandra clusters and of GPU-based servers for NN computation,
even with heterogeneous resources.

The problem of progress estimation of multiple parallel queries is ad-
dressed in Morton et al. [95]. To this aim, the authors present Parallax, a
tool able to predict the completion time of MapReduce jobs. The tool has
been implemented over Pig, while the PigMix benchmark has been used for
the evaluation. ParaTimer [94], an extension of Parallax, features support to
multiple parallel queries expressed as DAGs.

The capacity management and cluster sizing problems, instead, have been
faced by Tian and Chen [118]. The goal is the minimization of the execution
cost for a single MapReduce application. The authors present a cost model
that depends on the dataset size and on some characteristics of the considered
application. A regression-based analysis technique has been used to profile
the application and to estimate model parameters.

MapReduce cluster sizing and scheduling is considered in Lin et al. [83].
The authors propose a tandem queue with overlapping phases to model the
execution of the application and an efficient run time scheduling algorithm
for the joint optimization of the map and copy/shuffle phases. The authors
demonstrated the effectiveness of their approach comparing it with the offline
generated optimal schedule.

Another work by Curino et al. [34] proposes an ad hoc language to reserve
resources on a shared YARN cluster. Knowing current and future resource re-
quirements, the authors develop a mixed integer linear programming formu-
lation for the resource allocation and scheduling problem, which then they
solve exploiting two novel heuristics. The experimental validation shows that
the proposed approach enables full cluster utilization, with SLAs that are met
for all the accepted jobs and a throughput improvement of 15 %. In a simi-
lar direction, Jyothi et al. [69] propose to automatically extract service level
objectives from historical data, in order to schedule in advance periodic jobs.
This goal is achieved by placing recurring reservations and using linear pro-
gramming to efficiently pack jobs, thus retaining high cluster utilization while
also obtaining fewer violations. The proposed Morpheus framework has also
a dynamic re-provisioning component to mitigate the sources of performance
unpredictability.

Cluster sizing based on deadlines for MapReduce applications is consid-
ered in Phan et al. [101]. The authors recognize the inadequacy of Hadoop
schedulers released at the date to properly handle completion time require-
ments. The work proposes to adapt to the problem some classical multipro-
cessor scheduling policies; in particular, two versions of the earliest deadline
first heuristic are presented and proven to outperform off-the-shelf sched-
ulers. A similar approach is proposed in Zhang et al. [140], where the authors
present a solution to manage clusters shared among Hadoop application and
more traditional web systems. Zhang et al. [140] investigate the performance
of MapReduce applications on homogeneous and heterogeneous Hadoop clus-
ters in the cloud. They provide a simulation-based framework for minimizing
cluster infrastructural costs, yet a single class of workload is optimized.

The ARIA framework [122] addresses the problem of calculating the most
suitable amount of resources to allocate to map and reduce tasks in order to
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meet a user-defined due date for a certain application: the aim is to avoid
as much as possible costs related to resource over-provisioning. The same
authors, in a more recent work [142], provided a solution for optimizing the
execution of a workload specified as a set of DAGs under the constraints of a
global deadline or budget. This work considers heterogeneous clusters with
possible faulty nodes, too.

Mian et al. [93] provide a framework facing the problem of minimum cost
provisioning of MySQL clusters in cloud environments. The cost model in-
cludes resource costs and SLA penalties, which are proportional to execution
time violations of a given deadline. Queries execution times are predicted
through QN models, which, however, introduce up to 70 % relative errors.
The minimum cost configuration is identified via two greedy hill climbing
heuristics, which can identify heterogeneous clusters, but no guarantees on
the quality of the final solution can be provided. Delimitrou and Kozyrakis
[38] provide a run time framework for the management of large cloud in-
frastructures based on collaborative filtering and classification, which sup-
ports run time decision of a greedy scheduler. The overall goal is to maximize
infrastructure utilization while minimizing resource contention, taking into
account also resource heterogeneity: this goal is reached via exploiting infor-
mation from previous runs and offline training, so as to predict performance
and interference effects. The same authors extended their work in Delim-
itrou and Kozyrakis [40], supporting resource scale-out decisions (i.e., deter-
mining if more servers can be beneficial for an application) and server scale-
up (i.e., predicting if more resources per server are beneficial) for Spark and
Hadoop applications. If performance deviates from SLAs, Quasar reclassifies
the workload and readjusts resource allocation and/or assignment, so as to
meet the deadlines with minimum costs. The authors demonstrated that their
framework can manage effectively large systems, significantly improving in-
frastructure utilization and application performance. If their collaborative fil-
tering approach requires to gather little data from the running applications,
in turn it requires a significant effort to initially profile the baseline bench-
marking applications used to predict the effects of, e.g., resource contention
and scale-up/out decisions at run time: the exhaustive profiling of 30 work-
load types running from 1 to 100 nodes.

2.5 Open Issues

After exploring the state of the art in the main directions of performance mod-
eling and resource allocation, this final section wraps up the exposed content
and draws some observations on the relevant aspects that still need to be ad-
dressed.

When dealing with DIAs performance, the literature studies feature three
main approaches. Some proposals build formulas that take into account the
fundamental constituents of jobs, parametrize them via benchmarks or pro-
filing, then predict performance metrics. More convenient alternatives are
offered either by other works that describe AMs based on well known for-
malisms such as PNs, QNs, and MCs, or by proposals adopting ML techniques
to derive models. In this comparison, AMs are quite insensitive to the con-
figuration range where to predict, but suffer from possibly long simulation
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times. Depending on the constraints on prediction times, this might call for
simplifying assumptions, at the expense of accuracy, or even rule out some
formalisms outright. On the other hand, ML enables fast prediction, but re-
quires costly experiments to collect training data and can lose accuracy, even
dramatically, outside of the training domain.

With the aim of addressing the mentioned drawbacks, two principal classes
of approaches are currently explored: one is the use of optimal experiment de-
sign techniques to minimize data collection and, consequently, experimental
costs, without negatively affecting accuracy; another possibility is the adop-
tion of hybrid methods, in order to exploit the advantages of both basic tech-
niques and compensate the shortcomings. Along the lines of research ques-
tion 1, this dissertation considers mainly AMs and hybrid approaches, trying
to identify the most fitting methods based on the requirements to satisfy, in
terms of accuracy or speed.

Performance modeling for DL frameworks offers a less varied scene: these
applications boast an extremely high level of parallelism, so generally the lit-
erature in the field does not contemplate AMs, given the impractical sim-
ulation times. Several proposals use benchmarks or profiling, while others
adopt ML to associate system capabilities and application characteristics with
observed performance. We tread the latter path when proposing models for
Caffe, the DL framework.

The other relevant part of this dissertation is cluster sizing and run time
resource management. These problems are frequently solved, in the liter-
ature, considering simplified scenarios. For instance, some works focus on
specific workload classes and lose generality, while other proposals cannot
handle concurrent users, but only single user scenarios. Other drawbacks
that can be noticed in available solutions are the need for huge benchmark-
ing/profiling campaigns, or the applicability only to recurrent jobs, with the
same application that runs repeatedly with the same deadline. In answer-
ing research question 2, our goal is to overcome most of these shortcomings,
obtaining general techniques able to predict performance under varying con-
currency levels or SLAs. Particularly in the design time setting, we aim at
containing the required profiling campaign: running many experiments at
the real scale would defeat the purpose of design tools.
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CHAPTER 3
Performance Models

This chapter provides an overview of several performance models developed
for a gamut of big data applications: we propose models for Hadoop/MapRe-
duce and Apache Spark, on public and private cloud clusters, as well as CNNs.
Initially the focus was on Apache Hadoop for its role as enabling technology
for big data, but as soon as Spark took over due to its advantages in terms of
performance and flexibility we also moved our attention to the more recent
framework. Further, a collaboration with IBM Research brought about novel
modeling approaches and some interesting findings on CNNs’ performance.

Performance modeling covers a major role both for design considerations
and for resource management at run time, yet it is usually a hard task to
accomplish. To date, big data systems are massively parallel and show com-
plex behaviors due to precedence constraints, data dependencies, and strict
synchronization points, with further complexity added by the effects of the
underlying hardware. Notwithstanding the difficulty of devising appropriate
performance models, alternative approaches based on extensive experimen-
tation are impractical and anti-economical. These considerations motivate
the investigation of various formalisms with different levels of expressiveness
and efficiency, so as to explore several trade-offs between accurate predictions
and fast solutions. In particular, formalisms like QNs and SWNs are natu-
ral candidates for modeling the kind of distributed frameworks involved in
big data applications, since they provide a fork/join mechanism that closely
matches the division of work into a number of data-parallel tasks widely used
in Hadoop and Spark. These representations allow for a great deal of accu-
racy, but require time consuming simulations, too. Moreover, such expres-
sive models can easily be enriched so as to investigate some specific scenar-
ios, e.g., reliability or failure recovery. On the other hand, models obtained
via the application of ML techniques offer significantly faster predictions at
the expense of accuracy and extensibility. These specificities led us to use
ML-derived models in finding initial guesses for the optimization procedure,
whilst simulation-based approaches make for accurate prediction devices in
the final, heuristic phase.

In the following Hadoop 2 is adopted as reference example to discuss per-
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formance models. This choice is motivated by the many similarities between
Apache Hadoop and Spark: qualitatively the two frameworks largely share a
common basic structure, whilst the main difference lies in the more general
program flow allowed by Spark’s in memory abstractions. However, adapting
the proposed models to DAGs requires only the repetition of some already
present blocks. Practically, both the map and reduce phases in Hadoop mod-
els are represented with the same sub-network, then stages in Spark DAGs
can easily be modeled in the same way.

In the following, Section 3.1 lists some basic assumptions used in deriving
performance models for Apache Hadoop and Spark. Sections 3.2 and 3.3 de-
tail models for Hadoop 2 with two possible formalisms, queueing networks
and stochastic well formed nets. Later on, Section 3.4 describes the use of
fluid techniques and how to generalize any of the preceding models to Apache
Spark. Section 3.5 focuses on performance modeling for CNNs via the adop-
tion of linear regression, while Section 3.6 presents an algorithm for hybrid
ML. At last, Section 3.7 wraps up this chapter by discussing pros and cons of
all the described techniques, with a particular focus on optimization, which is
the topic of the next chapter. On top of this, the final section also shows how
this chapter contributes to answering research question 1.

3.1 Modeling Assumptions

Modeling the performance of Hadoop 2 clusters is challenging since, differ-
ently from the previous release where resources, i.e., CPU slots, were stati-
cally split for mappers and reducers, in the latest Hadoop containers are as-
signed dynamically among ready tasks, leading to a better cluster utilization.
In particular, we focus on clusters governed by the Capacity Scheduler, which
allows for partitioning the cluster among multiple customers through queues,
each queue being regulated by a FIFO policy. In the following we assume that
queues are partitioned and hence we can focus on single class systems.

The parallel execution of multiple tasks within higher level jobs is usually
modeled in the QN literature with the concept of fork/join: jobs are spawned
at a fork node in multiple tasks, which are then submitted to queueing sta-
tions modeling the available servers. After all the tasks have been served,
they synchronize at a join node. Unfortunately, there is no known closed form
solution for fork/join networks with more than two queues, unless a special
structure exists [81]. Hence, the performance metrics of such networks must
be computed by considering the MC underlying the QN, which represents
the possible states of the system [81]. However, such approaches are not fit
for Hadoop systems, since the state space grows exponentially with the num-
ber of tasks [31, 88], in the order of thousands in realistic MapReduce jobs
and tens of thousands in Spark jobs. For this reason, a number of approxi-
mation methods have been proposed. In particular, Nelson and Tantawi [96]
proposed a good approximation technique that, however, is based on service
times with exponential distribution, which is not the case for Hadoop deploy-
ments. Our initial experiments showed that mapper and reducer times follow
general distributions, which can be approximated by phase type or in some
cases Erlang. Under the exponential time hypothesis, the relative error ob-
served in our simulations was around 50–60 %.
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Figure 3.1 – Queueing network model

For this reason, we developed simulation models based on the concept of
finite capacity region (FCR) available in modern QN simulators [24]. Unfor-
tunately, QN models capture the behavior of Hadoop 2 with some approx-
imations. In Section 3.3 we rely on SWNs and provide a model that better
captures the behavior of real Hadoop 2 systems. Moreover, we investigate an
advanced cloud-based scenario where some resources are provided by unreli-
able spot instances and we evaluate the performance of jobs in case of failure.

3.2 Queueing Network Model

This section discusses a proposal of QN model for MapReduce applications
running upon YARN Capacity Scheduler. The performance model is depicted
in Figure 3.1. It is a closed QN model where the number of concurrent users
is given by H and they start off in the delay center, characterized by the av-
erage think time Z. When a user submits her job, this is forked into as many
map task requests as stated in the job profile, which then enter the FCR. FCRs
model situations where several service centers access resources belonging to
a single limited pool, competing to use them. Hence, the FCR enforces an
upper bound on the total number of requests served at the same time within
itself, allowing tasks to enter according to a FIFO policy, but also supporting
prioritization of different classes. The FCR includes two multi-service queues
that model the map and reduce execution stages. The FCR and multi-service
queues capacities are equal to the total number of cores available in the clus-
ter. In this way, we can model the dynamic assignment of YARN containers
to map and reduce tasks whenever they are ready. Map tasks are executed
by the first multi-service queue and synchronize after completion by joining
back to a single job request; the reduce phase is modeled analogously. Note
that the map join is external to the FCR in order to model that when map tasks
complete they release container cores, which can be assigned to tasks ready
in the FCR FIFO queue. Moreover, the reduce fork is also external to the FCR
to model correctly applications characterized by a number of reducers larger
than the total cluster capacity.

YARN Capacity Scheduler implements a FIFO scheduling policy within
the same queue and containers are allocated to the next job only after all re-
duce tasks have obtained their resources. The class switches present in the
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QN are meant to enforce that reduce tasks waiting for resources obtain them
with priority. Despite this, the model in Figure 3.1 is still an approximation:
notwithstanding the higher priority associated to reducers, subsequent users’
mappers can still occupy part of the servers available in the FCR when the
preceding job has an overall number of map tasks that is not multiple of the
cluster capacity. In such a case, the last map wave leaves room for serving
further requests, hence the following user can overtake part of the capacity
and the reduce stage of the first user will not start processing at full capacity
until those mappers complete.

Note that the discussed model has a single application class, like the sub-
sequent SWNs. Even if both formalisms can express multiple application
classes and possibly different schduling policies (e.g., fair scheduling or work-
conserving schemes), we do not present any such model due to the impracti-
cal simulation times. Indeed, preliminary analyses demonstrated that only
two classes are enough to cause state space explosion, leading to some days
(sometimes weeks), per simulation. In the perspective of exploiting them for
the optimization procedures in Chapter 4, we prefer to stick to single-class
models and heuristically separate the multi-class mathematical programming
formulations.

As a final consideration, note that the discussed model is rather general
and can be easily extended to consider also Tez or Spark applications, where
a Tez DAG node or Spark stage is associated to a corresponding multi-server
queue and fork/join pair.

3.3 Stochastic Well Formed Net Models

In this section we present two models based on the SWN formalism. The
first one, in Section 3.3.1, is quite similar to what discussed in Section 3.2: a
basic performance model for DIAs on the Capacity Scheduler, but the greater
expressiveness of SWNs allows for matching more closely the real scheduling
behavior. Specifically, if the model in Figure 3.1 cannot enforce the FIFO
queue of jobs, SWNs are powerful enough to model this mechanism. Later
on, Section 3.3.2 describes a more detailed model that can be used to assess
the detrimental effects of spot VMs failures, both in terms of delays in the
execution time and costs.

3.3.1 Basic Performance Model

The SWN in Figure 3.2 is able to capture completely the behavior of the Ca-
pacity Scheduler policy. Jobs execution is modeled by a closed workload,
where the nU1 users compete to access the cluster and cycle between demand-
ing to execute the MapReduce scenario (subnet in the dotted rectangle), and
spending an external delay period between the end of one response and the
next request (mean firing time of the think transition). The basic color class
User consists of a single subclass User1 and the job identities are captured by
assigning a token of different color to each job u1, . . . ,unU1.

To enforce the FIFO scheduling each job is assigned an ID i. The initial
marking M3 of the place IDs1 is set to the first index of the color class ID, and
once transition think sends a job to the ready state it increases this index by
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Figure 3.2 – Basic SWN model

one. The transition generateMaps will start the job that has the index equal to
the one it is getting from place IDs2. In other words, the job that has its turn
will start the map phase. Whenever a job gets resources for all of its reduce
tasks (place wait4ResRed drains), the job with the next index will be started
thanks to the transition startNext, which updates the IDs2 place with the next
index.

When a job x is ready to be processed and it has its turn—i.e., the place
jobReady is marked with a token 〈x, i〉 and the IDs2 place is marked with the
same index i—nM map tasks are generated (firing of generateMaps transition).
Such tasks, associated to job x, are represented by nM pairs 〈x, t〉, where the
color t belongs to the subclass Map of the basic color class Task. Each task 〈x, t〉
needs to acquire a resource r to be executed (firing of getResMap transition)
and map tasks can be concurrently executed according to resource availabil-
ity. The set of resources is defined by the basic color class Resource, which
consists of a unique partition Core including nC resources. The timed tran-
sition map models the duration of the map task execution and its firing time
is an Erlang-distributed random variable. The map stage is finished when all
the map tasks 〈x, t〉 associated to job x have been executed: the firing of the
joinMaps transition models the beginning of the next processing step, where
nR reduce tasks are generated. The reducing step is similar to the mapping
step, the only difference is that the reduce tasks, associated to job x, are repre-
sented by nR pairs 〈x, t〉where the color t belongs to the subclass Reduce of the
basic color class Task. Finally, observe that the map tasks 〈y, t〉, associated to a
job y, are generated when all the reduce tasks 〈x, t〉, associated to the previous
job x, are not waiting for resource availability. This condition is modeled by
the inhibitor arc inscription from place wait4ResRed to transition startNext.

3.3.2 Performance Degradation with Unreliable Resources

The models considered so far can capture the behavior of MapReduce systems
running on an enterprise infrastructure or public clouds based on standard
resources. Cloud providers (see, e.g., Amazon EC21) offer another type of re-
source loaning, spot, in which customers bid for the instance price. The VM
instances are billed the spot price, which is set by the infrastructure provider
and fluctuates periodically depending on current energy costs, which vary

1https://aws.amazon.com/ec2/spot/
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Figure 3.3 – SWN model with spot resources

throughout the day, and also on the overall supply and demand of virtual
resources. Spot instances are usually available at a competitive price. How-
ever, if the provider raises the spot price above user’s bid while she is using
spot instances, these can be arbitrarily terminated without notice. Hence, on
one side spot resources are an opportunity for lowering the execution cost
of MapReduce applications, but on the other side they introduce availability
threats.2

The model introduced in Figure 3.3 allows for exploring different config-
urations and to evaluate MapReduce jobs performance degradation in case
of spot instances termination. In particular, we assume that once spot VMs
fail, a monitoring component replaces them with the same number of on de-
mand resources. Since we are interested in the performance degradation of
the job currently in execution, we can drop the FIFO mechanism from the
model of Figure 3.2, i.e., the places IDs1, IDs2, and reduceRunning; the tran-
sition startNext; and the color class ID. The model in Figure 3.3 introduces
also a new color class CoreState, which consists of two singleton subclasses
cfree and cbusy, to record the state of a node. To enable this, the color do-
main of the place Cores is set to the Cartesian product Resource ×CoreState.
This change enables the place Cores to track the occupied cores as well as the
free cores. Transitions getResMap and getResReduce are modified to change the
core status from “free” to “busy” whenever they own a core, and vice versa for
transitions map and reduce.

The color class Resource is enriched with two new subclasses CoreSpot (CS)
and CoreDemand2 (CD2), which model spot instances and the on demand
nodes triggered to replace spot resources. The color definition Core is re-
named to CoreDemand1 (CD1) to model the on demand nodes that are initially

2Spot instances used to behave as explained here at the time of writing the relevant pub-
lication, Ardagna et al. [9]. Currently the price is fixed and Amazon can terminate these kind
of instances on a short notice. The availability assessment remains valid despite this change, as
the discussed model focuses on unpredictable failures, rather than on the details of the pricing
mechanism.
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started together with spot resources. The places FailedCores and AltCores are
added to identify the failed nodes and the alternative nodes waiting for re-
covery. The timed transition failure removes all the spot instances from the
available nodes with a rate proportional to the failure probability. When spot
instances fail due to a low bid, it takes at most a YARN heartbeat for the mon-
itoring component to figure out the loss. After this short delay, the replacing
process starts acquiring on demand nodes. As soon as the new on demand
VMs are ready with running NodeManagers, they have to be registered with
the ResourceManager in order to be used by the running job. We summed
up all these delays and introduced the timed transition recoverNodes, charac-
terized by an appropriate rate. Moreover, we included three instantaneous
transitions (recoverFailedMaps, recoverFailedReduces, and dropFree) to move a
failed map or reduce task to the waiting list and to drop the failed spot nodes
that were not occupied by any task.

Since our goal is to evaluate the average performance of the job when a fail-
ure happens (note that a failure can occur anytime between the start and end
of the job execution and in the latter case the job might complete before new
on demand VMs become available), we have to create the same environment
for every successive run of the job. Then, three transitions freeAlt1, freeAlt2,
and freeSpots are added to free the places AltCores and Cores from any residual
CD2 and CS at the end of the job execution and one outgoing arc is connected
to the transition generateMaps to put back the spot cores in the place storing
available nodes. As a result, spot failures can happen again while the sim-
ulator is running the next iteration. In this way we ensure that every job
submission is subject to failure and obtain relevant statistical results.

3.4 Fluid Models

Very often modelers are bound to face several problems when trying to pro-
vide a description of a physical system by using a formalism. Typically, these
problems are more evident in techniques using discrete states, since the anal-
ysis produces a state space explosion, with an exponential growth in the num-
ber of states following the complexity of the model. Different alternatives to
mitigate this problem have been proposed: in particular, fluid techniques in-
volving a continuous and discrete part have proved to reduce significantly the
severity of the issue. Continuous variables can be exploited in different sce-
narios: for example, they can be used to represent the rising temperature in a
closed room or the water leaking out of a full bucket.

In literature, fluid models have been presented in different ways for what
concerns the realization of the continuous aspect. Among the different fla-
vors, Gribaudo and Telek [56] refer to i) fluid stochastic Petri nets (FSPNs),
ii) reward, and iii) fluid models. FSPNs add to SPNs introducing the ability
to handle continuous parts. In reward models, the idea consists in using a
MC and associating a reward rate, a positive weight whose value depends on
the time spent in a particular state. Considering a specific time interval, it
is possible to aggregate all the gathered rewards into a continuous variable.
Fluid models proper are a generalization of the reward case, with fluid rates
that can be negative and additional constraints on the overall fluid level, such
as keeping it nonnegative or imposing an upper bound on it. Fluid models
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Figure 3.4 – FSPN model of a MapReduce job

can be used to successfully study the MapReduce framework and even more
sophisticate ones, such as Spark [138], including paradigms like concurrent
programming.

In the following, Section 3.4.1 describes the FSPN we proposed, while Sec-
tion 3.4.2 describes how to generate an approximation of the average execu-
tion time of jobs in the deterministic limiting case, while Section 3.4.3 con-
siders the exponential limiting case. Section 3.4.4 considers a convex combi-
nation of the previously presented limiting cases; finally, Section 3.4.5 adds
Spark generalization.

3.4.1 FSPNModel for a MapReduce Job

In order to formalize the proposed fluid model, let us focus on the MapReduce
paradigm, and describe it using the FSPN shown in Figure 3.4. In Section 3.4.5
the model will be generalized to Spark jobs. Note that the purpose of using a
FSPN model is just to specify the underlying fluid model without enumerating
its states: for this reason we will just give a brief description of the conventions
adopted in the formalism.

In this formalization, single circles represent discrete places, which can
hold an integer number of tokens; single boxes represent timed transitions that
can fire after an exponential amount of time; bars represent immediate tran-
sitions, which fire as soon as they are enabled; thin lines define standard arcs
that move tokens among places and enable the connected transitions; and
thin lines with circular ends define inhibitor arcs, which prevent the corre-
sponding transitions from firing whenever the input place is marked. Double
circles represent fluid places, which can hold a continuous amount of fluid;
double boxes identify fluid transitions, which continuously pump fluid in and
out of continuous places; double arrows represents fluid arcs that can remove
fluid from their input places; and thick arrows represents set arcs, that im-
mediately insert a given amount of fluid in their destination place when their
input transition fires.

The discrete amount of tokens is moved across the discrete arcs as usual.
With regard to the fluid places, they include a level denoted by a continuous
variable, which flows according to an instantaneous rate. The discrete FSPN
component regulates the fluid flow through the continuous part, while the
conditions enabling a transition depend on the discrete component only.

The model of the MapReduce paradigm considers N users (correspond-
ing to the marking of place Users) that can submit jobs to the system after
a think time Z. The submission of jobs from a user is modeled by the firing
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of transition Think, characterized by the infinite server semantic. According
to the YARN Capacity Scheduler, we consider that only one job at a time can
be executed by the system: this is obtained via place Available, which holds
a token whenever the infrastructure is ready to run a new job, thus enabling
the corresponding Start transition. Both the map and reduce phases (as well
as generic Spark stages) are modeled by a similar sub-network. Place Ready
holds a token whenever the phase is ready to start, and its beginning is mod-
eled by the firing of the immediate transition Start. This transition inserts,
via its output set arc, the number of tasks (either map or reduce) that need to
be executed in the corresponding phase in fluid place Queue. The execution
of the jobs is modeled by the time-dependent fluid transition Exec, which is
connected to place Queue with an output arc. Transitions Exec have a special
time-dependent semantic that will be described in the following sections: for
this reason it is represented with a small clock drawn at its side. Whenever
the queue is empty, either the next phase can start or the job can end thanks
to the firing of transition End.

Following Barbierato et al. [21], the fluid evolution is defined as a function
φ : R2 → R, which defines how the fluid level of the corresponding place
changes with time. In particular, φ (x, t) represents the fluid level reached by
a place at time t, given that it starts with level x at time t = 0. This semantic
is represented graphically by drawing a fluid arc that connects a fluid place
(Queue in Figure 3.4) to a time-dependent fluid transition (Exec in Figure 3.4).
In the model, two functionsφM (x, t) andφR (x, t) are associated respectively to
the map and reduce phases. These functions regulate the evolution of the fluid
in the corresponding places, so that the fluid level x represents the average
remaining number of tasks that still need to be executed in a phase.

Task duration distributions can be generally regarded as phase type or Er-
lang [9] parameterized according to the observed coefficient of variation (CV).
Now, Erlang distributions have a CV in the range [0,1]: for this reason we ap-
proximate the probability distribution function (PDF) with an appropriate
convex combination of the limiting cases with CVs equal to 0 or 1. Hence
Section 3.4.2 derives the exact fluid evolution function under deterministic
hypothesis, or CV 0, while Section 3.4.3 is about the exponential case, i.e.,
CV 1.

3.4.2 Deterministic Task Execution Time

Let us suppose that our MapReduce jobs are executed by C containers. Let us
also assume that a phase is composed of N tasks and that each task requires
a deterministic time T to be executed. Figure 3.5a represents the evolution of
the number of remaining tasks as function of time, which in our fluid model
corresponds to the fluid evolution function φ (N,t). At time t = 0, C out of N
tasks are immediately assigned to all the containers. Since their duration is
deterministic, all the C tasks will end at the same time T , leaving just N −C
tasks left to be executed in the system. Then the next batch of C tasks will
start, and it will end at 2T , leaving in the system N − 2C jobs. The function
φd (x, t) can then be defined as follows:

φd (x, t) = max
(
0,x −

⌊ t
T

⌋
C
)
. (3.1)
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Figure 3.6 – MC for stages with exponential service times

In this scenario, the time t̃d (N,C,T ) required to run N tasks with deter-
ministic running time T on C containers can be computed as:

t̃d (N,C,T ) = T
⌈N
C

⌉
. (3.2)

3.4.3 Exponential Task Execution Time

Let us now suppose that the task execution time is exponentially distributed,
with average execution time T . Since the minimum of n exponential distribu-
tions of rate µ is exponentially distributed with rate nµ, we can describe the
evolution of the number of remaining jobs with the death-only birth-death
process represented in Figure 3.6, where µ = 1

T . In particular, the average
sojourn time in states N to C is T

C , while for the states c ∈ {C − 1, . . . ,1} is T
c .

This can lead us to the definition of φe (x, t), as shown in Figure 3.5b: when
x ≥ C the number of jobs decreases at rate C

T , then the decrease rate reduces
at dxeT when x < C. This represents the fact that, when only fewer tasks than
resources are available, the system cannot take full advantage of its compu-
tational capacity, instead only as many as dxe can proceed in parallel. Overall
we obtain:

φe (x, t) =

x − t CT , if t < N−C
C T

c − (t − tc) cT , if tc ≤ t < tc−1
, (3.3)

where tc represents the time at which only c of the nodes are still in use, and
it can be computed in a recursive way starting from c = C down to c = 1 with
the following formulas:

tc =

N−CC T , if c = C
tc+1 + T

c , if 1 ≤ c < C
(3.4)

42



3.4. Fluid Models

S1 S5

S2

S3

S4

(a) Original

S1 S5S2 S3 S4

(b) Sequential

Figure 3.7 – DAG and order preserving sequential execution

In this scenario, the time t̃e (N,C,T ) required to runN tasks with exponen-
tially distributed running time with average T on C nodes can be computed
as:

t̃e (N,C,T ) = T

N −CC +
C∑
c=1

1
c

 . (3.5)

3.4.4 General Task Execution Time

Typically, real data does not follow exactly neither deterministic nor exponen-
tial service time distributions, instead we can observe samples with diverse
CVs. In order to take into account this variability and apply the proposed
technique in the general case, our approach considers a convex combination
of the previously presented limiting cases. The fluid evolution function be-
comes:

φ (x, t) = αφd (x, t) + (1−α)φe (x, t) , (3.6)

which, in turn, yields:

t̃ (N,C,T ,α) = αt̃d (N,C,T ) + (1−α) t̃e (N,C,T ) . (3.7)

Given the experimental data, we can profile each phase to extract the num-
ber of involved tasks and the average service time. Moreover, the α parameter
can be obtained minimizing the absolute error between the measured phase
duration and the predicted time t̃. For instance, a MapReduce fluid job profile
consists of the following parameters: NM, TM, αM, NR, T R, and αR.

3.4.5 Spark DAG Stages Generalization

Spark applications and jobs are characterized by generic DAGs, as shown in
Figure 3.7a. A generalized model to support Spark jobs should then use more
fluid places to represent the various stages of the DAGs and exploit the dis-
crete part of the model to properly share the available resources among the
tasks that are ready to start. However, in many cases a DAG can be simplified
as a sequence of stages. This result has been proven in scheduling theory for
real systems in which the number of tasks N is greater than the available re-
sources C [102]: a DAG execution can be approximated with a stage sequence
respecting precedence constraints.
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3.5 Models for Convolutional Neural Networks

Deep learning is gaining wide application in several domains, thanks to its
effectiveness for a number of different tasks. Recently even Apache Spark is
beginning to support both deep and transfer learning.3 Within this section,
however, we will refer to a framework specifically designed for CNNs, Caffe.4

In terms of studied networks, the focus is on AlexNet [74], GoogLeNet [115],
and VGG-16 [113], since they are quite well known for the good results ob-
tained in the ImageNet Large Scale Visual Recognition Challenge5 over time.

In this section, we present two methods to learn performance models for
CNNs running on a single GPGPU. The main metrics under investigation are
the forward time, relevant to quantify the time taken for classification when
the trained network is deployed, and the gradient computation time, which
on the other hand is important during the learning phase. In the following, we
will generally mention forward and backward passes, referring to the direc-
tion in which information flows through the CNN, with either features incre-
mentally processed for classification or partial derivatives that back propagate
to reach learnable weights.

Our goal is to lead new users with limited previous experience from an
initial test deployment to real scale applications. In order to meet the re-
quirements of both scenarios, i.e., the generality needed in the preliminary
design phase of a project on one side and the high accuracy expected when
running in production on the other, we discuss two alternative methods to
derive models that boast different trade-offs.

At first, we propose a gray box per layer approach where modeling is per-
formed layer by layer and the only explanatory variable is computational com-
plexity. This technique allows for a great deal of generality, since partial layer
predictions are easy to sum and obtain an overall performance estimate for the
full CNN, even if the specific network schema has never been considered as
part of the training set. Due to this, the approach is preeminently interesting
during the initial design stages, for instance to compare different alternative
CNNs and deployments in terms of performance. What is more, designers
can get a feeling of the resulting performance without ever needing to hit a
cluster or the cloud for experiments, which is advantageous regarding both
saved work hours and plain monetary savings. On the other hand, when a
deployment is already available, data coming from the real system enables a
different approach with its focus on precision rather than ease of generaliza-
tion. Details about this approach can be found in Section 3.5.1.

This second scenario can be tackled with a black box approach, called end
to end modeling, which focuses on a single CNN and learns the dependency
of execution time on varying batch size and iterations number. The improved
accuracy comes at the expense of a quite narrower focus centered around a
particular network architecture and deployment, which prevents the applica-
tion of the model in different situations. Moreover, this modeling technique
requires a collection of historical data, thus entailing either an experimen-
tal campaign or the proper monitoring of previous runs in a production en-

3https://databricks.github.io/spark-deep-learning/site/index.html
4http://caffe.berkeleyvision.org
5http://www.image-net.org/challenges/LSVRC/
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vironment. As we will demonstrate trough our empirical analyses, see Sec-
tion 5.5.2, small scale experiments are enough to extrapolate to a larger scale
range, which mitigates the cost of this approach. The technique used to obtain
these end to end models is described in Section 3.5.2.

3.5.1 Per Layer Model

We first present a modeling technique aimed at achieving great generality to
characterize the basic building blocks that compose CNNs. It allows for per-
formance prediction even on network architectures never taken into account
during the learning phase.

All CNNs comprise a number of layers belonging to a limited collection of
basic categories. Building upon this observation, we propose to learn several
linear regression models, in order to characterize common layer types. In this
way, it is possible to estimate the performance of a wide range of CNNs even
without previous experience with the specific structure, just by mixing and
matching these low level layer models.

Since every CNN is specified in terms of its connectivity structure and
a possibly extensive list of hyper-parameters, our approach is based on two
basic assumptions, in order to make the problem easily tractable and improve
model generality.

When working with GPUs, applications attain their best performance when
they fully leverage the data parallel architecture, hence we expect CNN de-
signers, as well as users, to tune networks accordingly. Such a consideration
means that, mostly, the execution of different layers will not overlap, whence
follows that layer running time predictions can just be summed to obtain an
estimate of the overall execution time:

t̂cnn = i
∑
l∈L

t̂l (3.8)

where i is the total number of iterations.
The second aspect to take care of is the choice of features to feed into the

regression models. A simplistic idea could be using all the various hyper-
parameters as features, but this would make for a difficult to interpret and
hardly generalizable formulation. On the other hand, we propose to summa-
rize all the relevant characteristics in a single feature: layers computational
complexity in terms of simple primitives available on GPGPUs. It is quite
intuitive that such quantity is a good metric for the workload needed to com-
plete a layer’s computation, as performance will strongly depend on the bulk
of algebraic transformations involved in the forward and backward passes
through the CNN.

To exemplify the derivation of computational complexity from network
hyper-parameters, in the following we present the detailed method for the
namesake convolutional layer. Before delving deep into the algebra, we set
forth the notation.

The convolutional part of CNNs operates on 3D tensors. With the nota-
tion 3 ch 4× 5 we represent a tensor with three channels stacked depth-wise,
where each slice is a matrix with four rows and five columns. In formulas, C
will be the number of channels, H the number of rows or height, W the num-
ber of columns or width. Filters are represented with their height and width
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Table 3.1

Operations per Output Pixel

Layer Forward Backward

Conv HfWfCinCout (2HfWfCin + 1)Cout
FC HinWinCinCout 2HinWinCinCout

Loss 4Cout − 1 Cout + 1
Norm 5Cout +Cn − 2 8Cout +Cn − 1
Pool HfWfCout (HfWf + 1)Cout

ReLU 3Cout 4Cout

only, since the general assumption with CNNs is that filters shift across the
spatial dimensions, but always span all the input channels. The amount of
zero padding on each side of the matrices is P , whilst the stride is S. We use
subscripts to distinguish properties of the input, output, and filters, e.g., Hin,
Hout, Hf. Cardinalities are used as a shorthand for index sets, as in i ∈Hin.

Some layers just apply predetermined operations, possibly depending on
hyper-parameters under users’ control. In contrast, convolutional and fully
connected layers have a set of learnable weights that evolve during the train-
ing phase via back propagation. The number of weights depends on their
hyper-parameters. Each output channel is obtained by convolving a different
filter with the input tensor, hence the count of learnable parameters is given
by:

(HfWfCin + 1)Cout (3.9)

Convolution entails multiplying Cin ch Hf ×Wf filters element-wise with in-
put activations and producing as output the sum of all these partial products
and an additive bias, hence there are Cout filter-bias pairs that contribute all
the entries in the tensor plus one coefficient. Equation (3.9) applies to fully
connected layers as well: they can be seen as a special case of convolutional
ones, with the difference that their filters are as large as the input tensor.

The 3D tensors involved in CNNs contain all the partial values, called
activations, obtained via the incremental transformations operated by filters.
In practice, layers take an input tensor and apply a filter to its entries, thus
yielding an output tensor with a possibly different layout. It is possible to
compute output dimensions given layer hyper-parameters, specifically filter
sides, padding around the edges, and stride:

Hout =
Hin + 2P −Hf

S
+ 1 (3.10)

where an analogous formula can be written for W as well. Following the
dependencies among layers, one can easily determine the dimensions of each
and every tensor in a CNN.

Tensor sizes are relevant because they appear in the formulas for com-
putational complexity, since every output activation comes from one of the
several applications of the filter to its inputs. Due to this reason, it is com-
mon to consider complexity per pixel, as the overall layer operations count is
always directly proportional to HoutWout. In particular, continuing our exam-
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ple, convolutional layers can be formalized as the following expression for all
(i, j,k) ∈Hout ×Wout ×Cout:

yijk = bk +
∑
t∈Hf

∑
u∈Wf

∑
l∈Cin

wtulkxı̃̃l (3.11)

where ı̃ = ϕ (i, t) and ̃ = ψ (j,u), while x and y are, respectively, input and
output activations. ϕ and ψ associate output and filter indices to the input
needed to convolve each activation and their specific functional forms de-
pend on the CNN and its hyper-parameters, in particular padding and stride,
but they do not affect the derivation of complexity. Overall, you multiply all
the weights times the input activations and accumulate the products on the
bias once per output channel, hence convolutional layers requireHfWfCinCout
operations per output pixel.

Back propagation through a CNN consists in accumulating the contribu-
tions to partial derivatives of the loss function from all the layers, so as to ana-
lytically obtain the full gradient with respect to learnable weights. Exploiting
the chain rule, at each layer it is possible to evaluate the exact derivative with
respect to each parameter or input activation just by proper transformation of
the ones relative to output activations. Specifically, recalling (3.11), we have:

∂yijk
∂wtulk

= xı̃̃l (3.12a)

∂yijk
∂bk

= 1 (3.12b)

∂yijk
∂xı̃̃l

= wtulk (3.12c)

Due to parameter sharing, as filters shift across the input tensor, all the
complete partial derivatives in these layers collect several contributions from
outputs. Following a common practice, we adopt the light notation using
deltas to represent partial derivatives of the loss function. With this conven-
tion, in order to obtain δ(x), for all (i, j, l) ∈Hin ×Win ×Cin the formula reads:

δ
(x)
ijl =

∑
t∈Hf

∑
u∈Wf

∑
k∈Cout

wtulkδ
(y)
ı̂̂k (3.13)

where ı̂ = ϕ−1 (i, t) and ̂ = ψ−1 (j,u), where the inversion is intended on the
spatial indices in the tensors, i.e., one inverts the one-variable functions of
the form ϕ (·, t) ,∀t ∈ Hf. In (3.13) the partial derivatives with respect to out-
put activations are propagated following backwards all the relevant filters,
multiplied by the partial derivative of each output against inputs obtained
in (3.12c), and summed so that every input activation collects contributions
from all the filters. The evaluation of δ(w) similarly involves aggregating
deltas from the output activations according to the filters’ movement, whilst
biases receive all these contributions once. Hence propagating deltas to biases
requires one operation per channel, whilst doing so for parameters and inputs
costs twice as much as the forward pass, because it fundamentally amounts
to following the convolution backwards once for weights and once for activa-
tions. All in all, each output pixel requires (2HfWfCin + 1)Cout.
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Table 3.2

CNN Characteristics, Batch Size 1

Network Layers Weights Activations Complexity

AlexNet 8 6.24e7 1.41e6 3.42e9
GoogLeNet 22 1.34e7 6.86e6 4.84e9
VGG-16 16 1.38e8 1.52e7 4.65e10

Table 3.1 shows formulas for all the kinds of layers, with the computa-
tional complexity per output pixel for both the forward and backward passes.
Now, using these formulas it is possible to build a dataset where the oper-
ations count is associated with the measured execution times of both passes:
given this data, we can build a series of models where computational complex-
ity is the only explanatory variable. For every layer category and direction we
learn, following the theory for linear regression, a model of the form:

tl = β0l + β1lcl + εl (3.14)

where tl is the execution time, cl the complexity, and εl ∼ N
(
0,σ2

l

)
random

errors. With the estimated coefficients β̂ it is possible to predict both forward
and back propagation time, then all the relevant contributions are added to
obtain the time taken for one iteration. Multiplying by the overall number
of iterations and summing the terms due to each layer, as in (3.8), yields a
prediction for the full run. In particular, it is possible to predict both training
and deployment execution times, depending on whether back propagation
terms are included in the sum.

The choice of using only computational complexity as independent vari-
able confers a lot of generality, allowing to learn a set of models on data com-
ing from a limited selection of CNNs and to apply it nonetheless to different
networks. Anyhow, the underlying hardware configuration obviously affects
performance: not adding explicitly any contribution related to hardware in
the formulation makes every trained model specific of the deployment where
data is extracted. Practically this means that applying our method to a new
GPGPU requires an initial experimental phase to obtain timing data relevant
for the different accelerator.

Table 3.2 lists several interesting properties that characterize CNNs’ per-
formance, obtained with the approach described so far. For each of the stud-
ied networks, we list its number of layers, overall learnable weights, activa-
tions, and complexity at batch size 1. As the batch size increases, activations
and complexity follow a direct proportionality. These quantities allow for
several considerations on CNNs, for instance it is possible to assess what is
the largest batch size that can fit in a GPU’s memory based on the number of
activations.

Since per layer models can be considered gray box approaches, they pro-
vide not only a performance prediction device, but also some interesting in-
sight about the way CNNs work. Here we discuss some of the relevant obser-
vations made possible by the modeling technique.

To begin with, some layers, though different, can be merged into a single
category without degrading the goodness of fit. Convolutional and fully con-
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Figure 3.8 – GoogLeNet pooling layers, backward pass

Table 3.3

Operation Count and Layer Time Breakdown, GoogLeNet

Category cfwl [%] tfwl [%] cbw
l [%] tbw

l [%]

Conv/FC 98.33 69.80 98.94 67.67
Norm 0.25 2.62 0.20 2.09
Pool 0.82 16.35 0.46 22.18
ReLU/Drop 0.60 11.23 0.40 8.07

nected layers are an intuitive example of this behavior, as the former are just
a generalization of the latter. A less obvious similarity was found between
rectified linear units and dropout layers. The former are the most common
expressions that provide a threshold effect on activations, thus introducing
the nonlinearities that offer CNNs’ representational power, whilst dropout is
a technique adopted to improve classification accuracy [114]. Likely the per-
formance of both can be characterized with just one pair of models due to the
fact that both need to loop through activations and act based on a point-wise
condition.

Even if some layers can be easily modeled as part of a wider category, we
nonetheless observed that pooling, in contrast, requires the adoption of mul-
tiple categories based on stride. In order to highlight this aspect, in the fol-
lowing we report some preliminary results on GoogLeNet from the GPGPU
deployment described in detail in Chapter 5. The Caffe framework allows
for running a CNN while profiling each layer, thus providing their average
performance. In these plots, different markers represent data coming from
timing runs with different batch sizes, the solid line is the model of layer exe-
cution times against complexity obtained via linear regression, and the dotted
lines are the boundaries of the 95 % confidence interval around the predicted
mean layer time. Figure 3.8a clearly shows two different behaviors for layers
operating at S = 1, which mostly lay on the smaller slope line, and for the
ones with S > 1, aligned on greater times. As you can see, it is not possible
to obtain a satisfactory model for pooling layers irrespective of stride. On
the other hand, Figures 3.8b and 3.8c prove that separate linear models can
effectively fit the measurements. Our interpretation of this phenomenon is
that the change in stride affects GPGPUs’ memory access patterns, causing a
degradation in performance.

As part of our investigation of CNNs’ performance, we initially focused
on comparing the breakdown of operation counts and layer execution times.
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Table 3.4

Linear Regression Models, NVIDIA Quadro M6000

Category β̂fw
0 [ms] β̂fw

1

[
ms
op

]
β̂bw

0 [ms] β̂bw
1

[
ms
op

]
Conv/FC 1.83e−1 3.43e−10 3.15e−1 3.65e−10

Norm 1.64e−2 7.11e−9 1.01e−1 6.87e−9
Pool S = 1 2.23e−2 1.27e−8 1.52e−1 1.93e−8
Pool S > 1 1.44e−2 1.45e−8 6.11e−3 5.67e−8

ReLU/Drop 8.91e−3 1.17e−8 1.18e−2 1.33e−8

Table 3.3 summarizes this analysis on data coming from our experimental de-
ployment, in particular we present the results for GoogLeNet only because all
the three considered CNNs showed an analogous behavior. Both for the for-
ward and backward pass, convolutional layers account for more than 98 % of
the overall computational complexity, yet the time taken for their processing
remains below 70 % of the total. This pattern highlights how GPGPUs are ac-
tually a good tool for CNNs, as they optimize precisely for the most common
kind of performed operations. Along the same lines, these breakdowns can be
useful in designing special purpose devices, such as the recent NVIDIA Volta
V100, which boasts tensor cores specifically devised for the matrix operations
that make up most part of convolutional layers computation.

Table 3.4 reports the linear regression coefficients by category, both for the
forward pass and back propagation. Following the notation established in
equation (3.14), this table shows the estimated intercepts and slopes. These
models were obtained on data for an NVIDIA Quadro M6000 GPU. Convo-
lutional and fully connected layers achieve the best marginal efficiency, fol-
lowed by normalization and, on a similar level, all the other categories. Our
statement is motivated by the lower slopes needed to fit the data: this means
that, when the complexity increases by a fixed amount, the convolution/fully
connected category suffers a relatively smaller impact in comparison to other
layer kinds. Such effect corroborates the observations previously discussed
with respect to the operations and time breakdowns.

3.5.2 End to End Model

The per layer model presented in Section 3.5.1 offers wide generality, yet ex-
ploiting more run time measurements obtained in a specific scenario can lead
to more accurate predictions for that particular case. Users who already own
a working deployment and settle on one or several specific CNNs are likely
eager to trade off some generality for lower prediction errors. The current sec-
tion shows an alternative model that allows for the mentioned compromise.

The basic idea is to extract from historical data, particularly logs of previ-
ous runs or traces collected by a monitoring platform, the execution time of
the network in its entirety, so as to build a dataset associating these timings to
batch sizes and number of iterations. Then it is possible to apply linear regres-
sion to a sample in order to obtain a model specialized for the particular CNN
and deployment under consideration, but capable of predicting performance
with high accuracy.

Deep learning practice usually involves several alternating phases of CNN
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training and testing. The former iteratively feeds the network with labeled
image batches, so that its parameters can change following the direction of
the back propagated gradient, whilst the latter evaluates the CNN’s evolving
quality in terms of more human readable metrics, rather than the loss func-
tion used for training, but without contributing to the learning of weights
and biases. For example, generally training is performed minimizing a loss
function that may be SVM-like or based on cross entropy, but the stopping
criterion is likely expressed in terms of classification accuracy or F-score, for
unbalanced datasets. Since training involves back propagation, but testing
does not, it is necessary to characterize two different models, one per phase,
in order to correctly catch relevant behaviors.

An interesting aspect to consider is the choice of features for the design
matrix. When the use case is more focused on working with fixed batch size or,
conversely, fixed iteration number, then it is straightforward to use only the
varying axis as explanatory variable. In both ways first degree polynomials
yield an accurate representation of the dependency of execution time on batch
size or iterations. The same does not apply to models learned against a dataset
with both batch size and number of iterations that vary. However, since the
results in the single variable case corroborate separately affine relations (i.e.,
in the form ax + b) of the execution time with either variable, the following
Theorem 3.5.1 guarantees that the only higher degree term to consider is the
quadratic interaction.

Theorem 3.5.1. Let F : R2→ R. F is affine in x for all y ∈ R and, symmetrically,
is affine in y for all x ∈ R. Then, F is a second degree polynomial of the form:

F (x,y) = axy + bx+ cy + d

Proof. Due to affinity, for any x ∈ R we can write:

F (x,y) = f (x)y + g (x)

Again, affinity guarantees that for all y ∈ R the pure second order partial
derivative with respect to x is null:

Fxx (x,y) = f ′′ (x)y + g ′′ (x) = 0

By equating the coefficients, it follows that f ′′ = 0 and g ′′ = 0, so f and g
are themselves affine in x, whence the thesis.

Thanks to Theorem 3.5.1 and knowing that, fixed every other variable,
execution time shows an affine dependency on either batch size or iterations
number, it follows that the overall dependency when both quantities vary can
be expressed as a quadratic polynomial where the only second degree term is
the batch-iterations product.

The same considerations discussed in Section 3.5.1 about the limitations
in applying the learned models to different GPGPUs hold for this approach
as well. Particularly, in this case they entail that each pair of training/clas-
sification performance models are specialized for a single CNN deployed on
exactly one hardware configuration. However, this second method is devised
for use cases where generality is less relevant, thus making the constraint less
problematic in practice.
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3.6 Hybrid Machine Learning

Often big data applications users need to know beforehand how long their job
execution will take using different configurations for the cloud infrastructure
they want to rent. In other words, they want to determine how jobs execution
time changes when the available resources (in terms of, e.g., VMs type and
their number) changes. However, running experiments in real cloud environ-
ments is generally expensive and time consuming. So, exploiting a reasonably
accurate model for performance evaluation and prediction of cloud applica-
tions is of great importance.

Our work starts from the bootstrapped hybrid performance modeling pro-
posed by Didona and Romano [45], which is a combined AM/ML modeling
approach that brings the strengths of AM methods to compensate the weak-
nesses of ML techniques, and vice versa. On the one hand, hybrid approaches
use AMs, which rely on a priori knowledge of the internals of the target sys-
tem, hence are a white box approach. On the other hand, ML infers the
relationships that map application and system characteristics onto the tar-
get performance indicators through statistical models, without requiring the
knowledge of internal system details, thus a black box approach. While white
box techniques offer good extrapolation capabilities, i.e., they are able to pre-
dict values in regions of the parameters space not sufficiently explored, black
box ones provide good interpolation capabilities, i.e., to predict values in areas
of the features space that have been sufficiently observed during the train-
ing phase. So, utilizing bootstrapped hybrid techniques allows for achieving
the best of both worlds. In particular, hybrid methods provide: (i) more ro-
bust performance predictors that require a small training phase in order to
instantiate a performance model, (ii) good predictive performance because
of extrapolation capabilities (both borrowed from AMs), (iii) the ability to
progressively enhance the accuracy of the performance predictor as new data
samples from the operational system are gathered, and (iv) good interpolation
capabilities (both borrowed from ML).

Didona and Romano’s approach exploits an early AM to generate an initial
set of synthetic data points, which are then fed into a ML model to predict
the application performance. Then the KB of synthetic data is updated by
real samples over time following either the merge or replacement strategies
to achieve a good accuracy. According to the former strategy, real samples
are collected from the real operational system and added to the synthetic set,
while in the replacement case, the nearest neighbor is removed and a new
real sample is incorporated into the initial KB. Consequently, the ML model
is also updated and trained according to the new KB. A critical consideration
during the aggregation of real data for the training process is that a limited
number of configurations can be analyzed at design time for cloud big data
applications. Moreover, in some cases real data samples might be noisy (for
instance, when big data applications run on shared cloud infrastructure) and
should be consumed conservatively.

Regarding our work, an iterative procedure was adopted for merging real
data from the operational system into the KB. Since in our case both synthetic
and real data come from a limited size configuration set, if we choose the re-
place strategy in the first iteration of our incremental and iterative process
of model selection and training new real data points evict the synthetic ones
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(a) Noisy data is added
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(b) After reshuffling the sample

Figure 3.9 – Model oscillation controlled by the hybrid algorithm

of the same configuration. Then, in each subsequent iteration, new real data
points evict the old real ones. Therefore, the output model of each iteration
will be trained on the latest available set of added (possibly noisy) data points
and the accuracy will not necessarily improve over time, instead it will be sub-
ject to oscillations. Hence, a model obtained though the replacement strategy
cannot be used in action, since relying on few possibly noisy data samples
often generates very inaccurate performance predictions.

On the other hand, when the merge strategy is implemented the results are
more accurate and dependable than the ones based on the replace strategy, as
soon as the number of iterations becomes large enough. However, since both
the size of the configuration set and the number of iterations are rather small
in our scenarios, naively applying Didona and Romano’s approach, the pre-
diction curve oscillates occasionally during successive iterations and the error
may become large even in the last iteration, which can produce unacceptable
prediction outputs.

As an example, Figure 3.9a shows a prediction model which is generated
after adding some new noisy data into the KB. The x-axis represents the num-
ber of cores for different configurations and the y-axis shows the response
time of MapReduce jobs in milliseconds. Based on how examples arrange
among training, test, and validation sets, it is possible that noisy measure-
ments exert a strong leverage effect and make the learned model quite inac-
curate: Figure 3.9a shows precisely a model driven quite off the bulk of exe-
cution times by a few outliers, with a MAPE that ends up being 72 %. The al-
gorithm proposed in the following sections addresses this issue by reshuffling
the KB whenever the MAPE on a validation set goes above a given thresholds,
with the resulting model shown in Figure 3.9b, where the MAPE becomes
19.5 %.

The goal of this section is to describe the hybrid ML models we developed
to predict the performance of Hadoop MapReduce, Tez, and Spark applica-
tions running on clusters managed by the YARN Capacity Scheduler. First of
all, Section 3.6.1 discusses two alternative AMs for producing artificial data
samples for the hybrid approach. Then, Section 3.6.2 details possible ML
techniques and the features to include in the dataset. In the end, Section 3.6.3
lists all the steps of the proposed algorithm.
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3.6.1 Analytical Models

Hybrid ML is a general method to augment and complement analytical mod-
eling techniques and ML, without constraining either in any way. Due to this
consideration, we compared various AMs and ML formulations. The first AM
we considered is the QN discussed in Section 3.2, which is used for modeling,
for the sake of simplicity, a MapReduce job execution in a cluster of comput-
ing servers.

As a second model, we consider a first principle formula that approximates
DAGs execution as a sequence of stages respecting precedence constraints (see
Figure 3.7). As discussed in Section 3.4, such approximation has been proven
to be accurate in scheduling theory for systems in which the number of tasks is
greater than the available resources. This happens very frequently in practice
especially for Spark jobs, which are characterized by thousands of tasks [99]
that take a few milliseconds each. A DAG execution time is estimated as:

D =
∑
i∈S

⌈ni
c

⌉
ti , (3.15)

where S is the set of all the stages in the job, ni is the number of tasks and ti
the average execution time of each task associated with stage i, while c is the
number of cores available for execution.

The term
⌈
ni
c

⌉
yields the number of waves required to complete all the

tasks at stage i. During the first
⌈
ni
c

⌉
−1 waves, tasks statistically keep all the c

cores busy, while during the very last wave the remaining tasks complete the
execution of stage i, possibly without saturating the c cores.

Equation (3.15) is pretty similar to (3.2). Specifically, the overall service
demand, D, is approximated summing up several terms like (3.2), one per
stage. In practice we are giving a first order approximation of the execution
time under the assumption that task durations are deterministic, without con-
sidering possible improvements due to overlaps between subsequent stages
for the sake of simplicity.

3.6.2 Machine Learning Model

In this work, machine learning is used to regress execution time of Hadoop
and Spark applications in a cloud cluster. Different techniques have been in-
vestigated (for additional details see Ataie et al. [15]) including linear regres-
sion, Gaussian SVR, polynomial SVR with degree ranging between 2 and 6,
and linear SVR. As feature set, we started from a diverse collection of features
including the number of tasks in a map/reduce phase, or Spark stage, average
and maximum values of tasks execution time, average and maximum values
of shuffling time, dataset size, and the number of available cores. The set of
relevant features has been obtained by considering the analytical bounds for
MapReduce clusters proposed in [90, 122].

Our initial experiments showed that Gaussian SVR and polynomial SVR
do not predict accurately and the errors they produce are usually large. On
the other hand, we found that the best results were most often achieved by
linear regression and linear SVR. However, the linear regression model was
unstable in frequent cases when linearly dependent features existed. Filtering
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linear dependent features required ad hoc analysis and resulted to be query
specific. For this reason, we preferred to adopt SVR, which is also notoriously
more robust to noisy data. Instead of considering the number of cores as a
feature, we considered 1

c , building on the approximate formula (3.15).
In our work, we perform a model selection process. A four-way data split-

ting method has been applied for identifying the best ML candidate model.
The available operational data samples in the KB are partitioned into four
disjoint sets: training and test set, as well as two cross validation sets, V1
and V2. Moreover, since our goal is to identify models able to achieve gen-
eralization, the operational data obtained with the largest configurations are
included only in V2, as this has been demonstrated a relevant choice for the
thresholds optimization step (see the next section and Section 5.4.1). While
the training set is used for training different alternative models, the V1 set is
exploited for SVR model selection, while V2 is used as stopping criterion and
to determine the best values for the thresholds of our iterative algorithm. The
test set is used for evaluating the accuracy of the selected model [13] and re-
stricted to include some specific configurations in order to test interpolation
or generalization capabilities.

3.6.3 Hybrid Algorithm

The pseudo-code of our proposed hybrid algorithm is shown in Algorithm 3.6.1.
A synthetic data set, used to form an initial KB, is generated at line 1 based on
one of the AMs discussed in Section 3.6.1 (i.e., approximate formula or simu-
lation). The KB is then used to select and train an initial ML model at line 2.
Since the real data samples are noisy, we need to avoid the dependency on this
data as much as possible. So, an iterative procedure is adopted for merging
real data from the operational system into the KB, which is implemented at
lines 3–14. Adding a new configuration in the KB means that many opera-
tional data points are included and subsequently split into the training, test,
and cross validation sets. The operational data for all available configurations
is gathered and then merged into the KB at lines 4–7. Then the updated KB
is shuffled and partitioned at lines 9 and 10. This shuffling is motivated as an
attempt to arrange the samples in a way that noisy data has the least impact
on the final model accuracy. Using these sets, line 11 is dedicated to the selec-
tion of an ML model between alternatives and its final training. Then some
error metrics are measured at line 12.

At lines 13 and 14, two conditions are checked. Both conditions consider
the MAPEs on the training set, εtrain, and on the second cross validation set,
εV2

, to check whether or not they are smaller than specific thresholds, namely,
τ in and τout. The error on the training set determines if the model fits well
its input data samples. So, if this error is small enough, the model will avoid
underfitting, or high bias. On the other hand, the error on the V2 set quantifies
the model’s generalization capability. So, if this error is sufficiently small, the
model will avoid overfitting, or high variance.

If the values of errors for the inner condition are not small enough and the
maximum number of inner iterations is not reached, the algorithm jumps to
line 8 to reshuffle and split the KB into train, V1, and V2 sets and choose a
different model. On the other side, the outer condition prohibits the emission
of a weak model. As it will be demonstrated in the following, if a good value is
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Algorithm 3.6.1 Hybrid algorithm

1: create a KB using synthetic data generated from AM
2: select and train an initial ML model
3: repeat
4: for all available configurations do
5: gather new data from operational system
6: end for
7: merge new data into KB using specified weights
8: repeat k← 1,2, . . .
9: shuffle KB

10: partition KB into train, V1, and V2 sets
11: select and train new ML model
12: evaluate εtrain and εV2

13: until
(
εtrain < τ

in ∧ εV2
< τ in

)
∨ k = kmax

14: until
(
εtrain < τ

out ∧ εV2
< τout

)
∨no additional data is available

chosen for the thresholds, the first condition prevents the oscillation problem
discussed in Section 3.6 and the second one stops the procedure as soon as a
good model is obtained.

On the other hand, if the value of errors for the outer condition is not small
enough, the algorithm jumps to line 3 to start another iteration. When both
errors are smaller than τout or no new data from the operational system is
available, the algorithm stops. If the errors are sufficiently small, the current
model seems to be good enough for performance prediction and the iterative
process can be stopped to avoid consuming more operational data for the mat-
ter of time and cost of real experiments. On the other hand, if no new data is
available, the algorithm stops and outputs the last ML model.

3.7 Discussion

All the performance models presented so far can be exploited, based on their
peculiarities, during the various phases of the optimization procedures de-
scribed in Chapter 4. In particular, ML and hybrid techniques yield closed
form algebraic equations, thus making them most appropriate for mathemat-
ical programming formulations, where such equations can be readily used as
constraints and derived to apply Karush-Kuhn-Tucker (KKT) conditions. At
the same time, these methods tend to be less accurate than simulation-based
models and, most importantly, cannot be reliably used for prediction in re-
gions of the design space not previously explored via experiments. On the
other hand, despite requiring seconds or even minutes to run each simulation,
the performance models devised via QNs or SWNs attain a good average ac-
curacy and are less sensitive to the range where their evaluation is performed.
QNs boast a 14.13 % relative error, whilst SWNs 9.08 %, as reported in Chap-
ter 5.

Overall, the above presented models are instrumental to provide an an-
swer to research question 1. Among them, some rely on ML, hence they re-
quire a preliminary experimental campaign in exchange for the fastest pre-
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diction times, but they also suffer the defect of being unreliable outside of
the training domain. Instead the models adopting QNs or SWNs, as already
highlighted, are more robust with respect to the evaluated working point, yet
trading off longer simulation times to achieve such guarantee.

In the following, according to the above mentioned considerations, ML
models will be exploited to provide algebraic formulas for system perfor-
mance, whereas other simulation-based formalisms are adopted to heuristi-
cally explore the state space starting from an informed initial guess. This
approach allows to obtain as final outcome an accurate and reliable predic-
tion, yet without wasting time in a never ending search, as it would be the
case if beginning with a random configuration.

Personal Publications

The models discussed in this chapter have been published in the following
research papers. Sections 3.2 and 3.3 refer to Ardagna et al. [9], a work sub-
mitted to, and awarded as best paper of, the 16th International Conference
on Algorithms and Architectures for Parallel Processing. The material in Sec-
tion 3.4 was first presented at the InfQ workshop [53], associated with Val-
ueTools. This work was later extended and published in ACM Performance
Evaluation Review as Gianniti et al. [52]. The hybrid techniques elaborated
in Section 3.6 were presented in the MICAS workshop [15], associated with
SYNASC.
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CHAPTER 4
Optimization Models

The following chapter overviews and details the optimization techniques that
form the core of this dissertation. Resource allocation, admission control,
and other related problems require performance models capable of provid-
ing predictions with fair confidence, possibly with additional constraints on
the overall time taken by the optimization process when this is aimed at run
time application. This is the reason why Chapter 3 discusses several alter-
natives and highlights their differences in terms of accuracy and evaluation
times. Here we will present a number of variants of a mathematical program-
ming formulation for resource allocation of big data applications, underlining
the trade-offs enabled by the alternative prediction techniques. At the same
time we will explore a spectrum of scenarios, from design time considerations,
such as capacity planning, to run time problems of cluster management.

Design time issues were addressed in the context of the European research
project DICE H2020, whilst the run time part was developed as part of the
Europe-Brazil collaboration project EUBra-BIGSEA H2020.

This chapter is so organized. Section 4.1 describes the architecture of the
design time tool, D-SPACE4Cloud, and Section 4.2 presents the general as-
sumptions of our problem statement. Later on, Section 4.3 discusses the opti-
mization model devised for solving the design time problem. Then Section 4.4
details the architecture of the run time middleware developed within EUBra-
BIGSEA, while Section 4.5 talks about the problem it solves. In the end, we
discuss the main achievements in Section 4.6, alongside their relevance to re-
search question 2.

4.1 D-SPACE4Cloud Design Time Architecture

The tool we present and discuss in this section, namely D-SPACE4Cloud, has
been developed within the DICE1 H2020 European research project [27]. The
project aims at filling gaps in model driven engineering with regard to the

1Developing Data-Intensive Cloud Applications with Iterative Quality Enhancement
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Figure 4.1 – Example DDSM

development of DIAs in cloud environments, embracing the DevOps [14] cul-
ture. DICE is committed to developing an integrated ecosystem of tools and
methodologies intended to streamline the DIA development process through
an iterative and quality-aware approach: design, simulation, verification, op-
timization, deployment, and refinement. DICE primarily proposes a data-
aware UML profile that provides designers with the means necessary to model
the dynamic and static characteristics of the data to be processed as well as
their impact on the performance of an application’s components. In addition,
the project develops an IDE capable of supporting the managers, developers,
and operators in quality related decisions. The IDE enforces the iterative de-
sign refinement approach through a toolchain of both design and run time
tools. The former cover simulation, verification, and optimization of deploy-
ment, whereas the latter encompass deployment, testing, and feedback anal-
ysis of monitoring data.

At the core of DICE project’s outcomes there are three main kinds of pro-
files for DIAs: DICE Platform Independent Models (DPIMs), DICE Platform
and Technology Specific Models (DTSMs), and DICE Platform, Technology,
and Deployment Specific Models (DDSMs). Since the optimization tool needs
to interact with performance models for a particular technology, DPIMs are
too abstract. On the other hand, DTSMs provide information about the logi-
cal components of an application and what framework or technology is used
to realize them, whilst DDSMs add even more detail about the specific choice
of underlying hardware, either physical or cloud resources. Given an initial
guess as DTSM, the optimization tool can compare several alternative DDSMs
(see an example in Figure 4.1) to highlight the most promising, also determin-
ing the cheapest configuration that meets QoS constraints. Moreover, after
actually deploying the DIA, it is possible to refine the models by parsing ap-
plication logs.

D-SPACE4Cloud is the DIA deployment optimization tool integrated in
the DICE IDE. The tool serves the purpose of optimizing the deployment costs
for one or more DIAs with performance guarantees. In a nutshell, within the
quality aware development process envisioned by DICE, a DIA is associated
with QoS requirements expressed in form of a maximum execution time, or
deadline, and concurrency level, i.e., a number of users executing the same
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Figure 4.2 – D-SPACE4Cloud’s architecture

application, with a certain think time, on a given system. D-SPACE4Cloud
addresses and solves the capacity planning problem consisting in the iden-
tification of a minimum cost cluster, both for public and private clouds, to
support the concurrent execution of several DIAs and their timely comple-
tion. To this end, the tool implements a design time exploration process able
to consider multiple target VM candidates, possibly also across different cloud
providers.

D-SPACE4Cloud supports the deployment optimization in the two dis-
tinct scenarios of public and a private cloud environments. The public cloud
is mainly characterized by the fact that cluster resources (i.e., VMs) can be
considered practically infinite for any common purpose. In this scenario, the
concurrency level is not a problem and the tool focuses on selecting the most
cost-effective VM type and number of replicas for each application. In the
private cloud scenario, however, the cluster is provisioned on premises, the
available resources are generally limited, and the resource allocation plan has
to contemplate the possibility to exhaust the computational capacity before
being able to provision a cluster that satisfies the QoS constraints. In such a
situation, the tool can, if required, alter the underlying problem adding an
admission control mechanism, which enables job rejection in the optimiza-
tion process. In this dissertation we only discuss the public cloud scenario
of design time problems, since the private cloud case boils down to a small
extension exploiting well known mathematical programming formulations,
namely, multidimensional knapsack and bin packing. Details can be found
in Ardagna et al. [12]. On the other hand, Section 4.5 is more focused on the
solution we developed for private cloud cases at run time within the frame of
the EUBra-BIGSEA project.

Figure 4.2 depicts the main elements of D-SPACE4Cloud’s architecture.
Our tool is a distributed software system designed to exploit multi-core and
multi-host architectures to work at a high degree of parallelism. In particu-
lar, it features a presentation layer (integrated in the DICE IDE) devoted to
handle the interactions with users and the other components of the toolchain,
an optimization service (colored gray), which transforms the inputs into suit-
able performance models [9] and implements the optimization strategy, and a
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horizontally scalable assessment service (colored green in the picture), which
abstracts the performance evaluation from the particular solver used under
the hood. Currently, D-SPACE4Cloud supports a QN simulator (JMT [24]), a
SPN simulator (GreatSPN [16]), and the EUBra-BIGSEA DES (dagSim [3]).

D-SPACE4Cloud takes in input:

1. A UML description of the applications sharing the cluster (see Artac et
al. [14] for additional details on DICE UML models). In this context,
DIAs are specified via DTSMs. Moreover, under specific circumstances,
execution logs, for instance the ones obtained executing the applications
in a pre-production environment, can replace DTSMs as input.

2. A partially specified deployment model for each application. The de-
ployment model must be specified in DDSM format. This model is used
as a template to fill and return in output.

3. A description of the execution environment, with a list of candidate
providers and VM types along with VM performance profiles. These
pieces of information are used to generate suitable performance mod-
els.

4. The list of QoS constraints, that is the concurrency level and deadline
for each DIA, respectively.

The optimization service is the centerpiece of the tool. It primarily parses
the inputs, stores the relevant information using a more manageable and com-
pact format, then calculates an initial solution for the problem (via the Initial
Solution Builder) and improves it via a simulation-optimization algorithm (im-
plemented by the Parallel Local Search Optimizer).

The initial solution is generated by solving a mixed integer nonlinear pro-
gramming (MINLP) formulation, whose perhaps most interesting feature is
that some of its constraints have been modeled by applying ML techniques to
the problem of estimating the execution time of DIAs. Different techniques
have been investigated [15, 106], including linear regression, as well as Gaus-
sian, polynomial, and linear SVR. The linear SVR was selected as it proved
to be both accurate and robust to noisy data. More details are available in
Section 4.3.

It must be highlighted, at this point, that the quality of the initial solution
can still be improved, mainly because the MINLP relies on an approximate
performance model obtained via ML. If such techniques’ strong suit is regres-
sion within the range explored during the training phase, there is no guaran-
tee on their accuracy when generalizing to other regions of the state space.
Since at design time it is quite unlikely that users have extensive datasets for
profiling, we exploit simulation-based performance models, which achieve
a good accuracy without depending too much on the particular configura-
tion under investigation. The difference in accuracy might cause the need
to adjust the solution with a local search; however, since the simulation pro-
cess is time consuming, the space of possible cluster configurations has to be
explored in the most efficient way, avoiding the evaluation of unpromising
configurations. The Optimizer component carries out this task, implement-
ing a simulation-optimization technique to minimize the number of resource
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replicas (i.e., VMs) for each application class. This procedure is applied inde-
pendently, and in parallel, on all the application classes and terminates when
a further reduction in the number of replicas would lead to an infeasible so-
lution.

As soon as all the classes reach convergence, D-SPACE4Cloud leverages
the optimized solution (selected provider, type and number of VMs per ap-
plication) to update the DDSMs and provides them in output. Such models, in
turn, can be converted into TOSCA blueprints and used to deploy the cluster
exploiting another tool, DICER [14], that is part of the DICE toolchain.

4.2 Problem Statement

In this section we aim at introducing some important details on the prob-
lems addressed in this dissertation. We envision the scenario wherein a busi-
ness venture needs to set up a cluster to carry out efficiently a set of inter-
active DIAs. A cluster featuring the YARN Capacity Scheduler and running
on a public cloud IaaS is considered a fitting technological solution for the
requirements of the company. In particular, the cluster has to support the
parallel execution of DIAs in the form of Hadoop jobs and Hive/Pig/Spark-
SQL queries or general Spark applications. Different classesA = {i | i = 1, . . . ,n}
gather the applications that exhibit a similar behavior and share performance
requirements. The cluster composition and size, in terms of type and num-
ber of VMs, must be decided in such a way that, for every application class i,
hi jobs are guaranteed to execute concurrently and complete before a prear-
ranged deadline Di . Moreover, YARN is configured in a way that all available
cores can be dynamically assigned for task execution. Finally, in order to limit
the risk of data corruption, and according to the practices suggested by ma-
jor cloud vendors, the datasets reside on a cloud storage service accessible in
quasi-constant time.

In general, IaaS providers feature a large catalog of VM configurations that
differ in features (CPU speed, number of cores, available memory, etc.) and
cost. Making the right design decision implies a remarkable endeavor that
can be repaid by important savings throughout the cluster life cycle. Let us
index with j the VM types available across, possibly, different cloud providers
and let V = {j | j = 1, . . . ,m}. We denote by τi the VM type used to support DIAs
of class i and with νi the total number of VMs allocated to class i.

In this scenario, we consider a pricing model derived from Amazon EC2.2

The provider offers: i) reserved VMs, for which it adopts a one time payment
policy that grants access to a certain number of them at a discounted rate for
the contract duration; ii) on demand VMs, which can be rented by the hour
according to current needs; and iii) spot VMs, created out of the unused data
center capacity. For such instances customers bid and compete, yielding very
competitive hourly fees at the expense of reduced guarantees on their reli-
ability.3 In order to obtain the most cost-effective configuration, we rely on

2https://aws.amazon.com/ec2/pricing/
3The bidding mechanism was in place at the time of writing. Currently the spot fee is fixed

by Amazon, but it remains the cheapest alternative due to the loose guarantees on reliability: the
provider can terminate these instances on a two-minute notice, in order to reclaim data center ca-
pacity. However, the following formulation remains valid, since it does not consider fine-grained
fluctuations of the spot price.
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reserved VMs (denoting with ri their number) to satisfy the core of compu-
tational needs and complement them with on demand (di) and spot (si) in-
stances, hence νi = ri +di + si . Let ρτi , δτi , στi be the unit costs for VMs of type
τi , respectively, reserved, on demand, and spot. Overall, the cluster hourly
renting out costs can be calculated as follows:∑

i∈A

(
ρτi ri + δτidi + στi si

)
. (4.1)

As the reliability of spot VMs is susceptible to market fluctuations, to keep
a high QoS level the number of spot VMs is bounded not to be greater than
a fraction ηi of νi for each class i. In addition, reserved VMs must comply
with the long term contract signed with the cloud provider and cannot exceed
the prearranged allotments Rij , where every class may have a separate pool
of reserved VMs of any type at their disposal. It is worth noting that this
cost model is general enough to remain valid, zeroing the value of certain
parameters, even in those cases where the considered cloud does not feature
reserved or spot instances. Specifically, if the IaaS provider does not offer
reserved VMs it is enough to set Rij = 0, while spot instances can be disabled
with ηi = 0.

Reducing the operating costs of the cluster by using efficiently the virtual
resources in lease is in the interest of the company. This translates into a re-
source provisioning problem where the renting out costs must be minimized
subject to the fulfillment of QoS requirements, namely a per class concur-
rency level hi given certain deadlines Di . In the following we assume that the
system supports hi users for each class and that users work interactively with
the system and run another job after a think time exponentially distributed
with mean Zi , i.e., the system is represented as a closed model [78].

In order to rigorously model and solve this problem, it is crucial to pre-
dict with fair confidence the execution times of each application class under
different conditions: level of concurrency, size and composition of the cluster.
The execution time can generically be expressed as:

Ti = Ti (ci ,hi ,Zi , τi) , ∀i ∈ A, (4.2)
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where ci is the total number of cores devoted to application i. The propor-
tionality between number of cores and VMs is established by the parameters
Γj , which quantify how many CPUs are hosted in each instance of type j, that
is ci = Γτiνi . What is worthwhile to note is that the previous formula repre-
sents a general relation describing either closed form results [90, 122], based
on ML [15, 54], or the average execution times evaluated via simulation: in
this dissertation we adopted both these last approaches.

In general, any performance model specified as (4.2) needs to be based on
a preliminary profiling of the relevant DIA in order to be representative of
its performance. Particularly, such profiling must take into account several
metrics, like the number of stages and tasks within each stage, their execution
times, and dependencies. The natural formalization for stage dependencies is
provided by DAGs.

Since the execution of jobs on a sub-optimal VM type may lead to perfor-
mance disruptions, it is critical to avoid assigning tasks belonging to class i
to the wrong VM type j , τi . Indeed, YARN allows for specifying node la-
bels and partitioning nodes in the cluster according to these labels, then it is
possible to enforce this separation. Our configuration statically splits differ-
ent VM types with this mechanism and adopts within each partition either
a further static separation in classes or a work conserving scheduling mode,
where idle resources can be assigned to jobs requiring the same VM type. The
choice about the scheduling policy within partitions is not critical, since it
does not impact on the optimization technique or performance prediction ap-
proach. When resources are tightly separated, we can expect the performance
estimate to accurately mirror the real system behavior, whilst in work con-
serving mode the observed performance may improve due to a better overall
utilization of the deployed cluster, hence the prediction is better interpreted
as a conservative upper bound. Equations (4.2) can be used to formulate the
deadline constraints as:

Ti ≤Di , ∀i ∈ A. (4.3)

In light of the above, we can say that the ultimate goal of the proposed
approach is to identify the optimal VM type selection, τi , and type of lease
and number of VMs, νi = ri+di+si , for each class i such that the total operating
cost is minimized while the deadlines and concurrency levels are met.

The reader is referred to Figure 4.3 for a graphical overview of the main
elements of the considered resource provisioning problem. Furthermore, Ta-
ble 4.1 reports a complete list of the parameters used in the models presented
in the next sections, whilst Table 4.2 summarizes the decision variables.

4.3 Design Time Problem

In the following, we present the optimization models and techniques exploited
by the D-SPACE4Cloud tool in order to rightsize the cluster deployment given
the profiles characterizing the DIAs under study, the candidate VM types,
possibly at different cloud providers, and the prices practiced by those providers.
The resulting optimization model is a resource allocation problem, presented
in Section 4.3.1.
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Table 4.1

Model parameters

Param. Definition

A Set of application classes
V Set of VM types
hi Number of concurrent users for class i
Zi Class i think time [s]
Di Deadline associated to applications of class i [s]
ηi Maximum percentage of spot VMs allowed to class i
Γj Number of CPUs available within a VM of type j
ρj Effective hourly price for reserved VMs of type j [e/h]
δj Unit hourly cost for on demand VMs of type j [e/h]
σj Unit hourly cost for spot VMs of type j [e/h]
Rij Number of reserved VMs of type j devoted to class i users

Table 4.2

Decision variables

Var. Definition

νi Number of VMs assigned for the execution of applications from
class i

ri Number of reserved VMs booked for the execution of applications
from class i

di Number of on demand VMs assigned for the execution of applica-
tions from class i

si Number of spot VMs assigned for the execution of applications from
class i

ci Total number of cores assigned to class i
xij Binary variable equal to 1 if VM type j is assigned to application

class i

The first issue D-SPACE4Cloud has to solve is to quickly, yet with an ac-
ceptable degree of accuracy, estimate the completion times and operational
costs of the cluster: to this end, within the mathematical programming for-
mulation of the problem, we decided to exploit ML models for the assessment
of application execution times. In this way, it is possible to swiftly explore
several plausible configurations and point out the most cost-effective among
the feasible ones. Afterwards, the required resource configuration can be fine
tuned using more accurate, yet more time consuming and computationally
demanding, simulations to obtain a precise prediction of the expected run-
ning time.

According to the previous considerations, the first step in the optimiza-
tion procedure consists in determining the most cost-effective resource type
for each application based on their price and the expected performance. The
mathematical programming models that allow to identify such an initial solu-
tion are discussed in Sections 4.3.1 and 4.3.2. Finally, the algorithm adopted
to efficiently tackle the resource provisioning problem is described in Sec-
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tion 4.3.3.

4.3.1 Mathematical Programming Model

The big data cluster resource provisioning problem can be formalized as the
following mathematical programming formulation:

min
x,c,r,d,s

∑
i∈A

(
ρτi ri + δτidi + στi si

)
(P1a)

subject to:

∑
j∈V

xij = 1, ∀i ∈ A, (P1b)

Ri,τi =
∑
j∈V

Rijxij , ∀i ∈ A, (P1c)

ρτi =
∑
j∈V

ρjxij , ∀i ∈ A, (P1d)

δτi =
∑
j∈V

δjxij , ∀i ∈ A, (P1e)

στi =
∑
j∈V

σjxij , ∀i ∈ A, (P1f)

Γτi =
∑
j∈V

Γjxij , ∀i ∈ A, (P1g)

xij ∈ {0,1} , ∀i ∈ A,∀j ∈ V . (P1h)

(c,r,d,s) ∈ argmin
∑
i∈A

(
ρτi ri + δτidi + στi si

)
(P1i)

subject to:

ri ≤ Ri,τi , ∀i ∈ A, (P1j)

si ≤
ηi

1− ηi
(ri + di) , ∀i ∈ A, (P1k)

ci ≤ Γτi (ri + di + si) , ∀i ∈ A, (P1l)

Ti (ci ,hi ;Zi , τi) ≤Di , ∀i ∈ A, (P1m)

ci ∈ N, ∀i ∈ A, (P1n)

ri ∈ N, ∀i ∈ A, (P1o)

di ∈ N, ∀i ∈ A, (P1p)

si ∈ N, ∀i ∈ A. (P1q)

Problem (P1) is presented as a bi-level resource allocation problem where
the outer objective function (P1a) considers running costs. For each appli-
cation class the logical variable xij is set to 1 if the VM type j is assigned to
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application class i. We will enforce that only xi,τi = 1 in (P1b), thus deter-
mining the optimal VM type τi for application class i. Hence the following
constraints, ranging from (P1c) to (P1g), pick the values for the inner problem
parameters.

The inner objective function (P1i) has the same expression as (P1a), but
in this case the prices ρτi , δτi , and στi are fixed, as they have been chosen at
the upper level, thus making the function linear in the number of allocated
VMs. Constraints (P1j) bound the number of reserved VMs that can be con-
currently started according to the contracts in place with the IaaS provider.
The subsequent constraints, (P1k), enforce that spot instances do not exceed
a fraction ηi of the total assigned VMs and constraints (P1l) link the total
available cores with the allocated VMs. Further, constraints (P1m) mandate
to respect the deadlines Di . In the end, all the remaining decision variables
are taken from the natural numbers set, according to their interpretation.

4.3.2 Initial Solution

The presented formulation of Problem (P1) is particularly difficult to tackle,
as it is a MINLP problem, possibly nonconvex, depending on Ti . According
to the literature about complexity theory [50], integer programming prob-
lems belong to the NP-hard class, hence the same applies to (P1). However,
since there is no constraint linking variables belonging to different application
classes, the general formulation can be split into several smaller and indepen-
dent problems, one per class i ∈ A:

min
ci ,ri ,di ,si

ρτi ri + δτidi + στi si (P2a)

subject to:

ri ≤ Ri,τi , (P2b)

si ≤
ηi

1− ηi
(ri + di) , (P2c)

ci ≤ Γτi (ri + di + si) , (P2d)

χhi,τihi +χci,τi
1
ci

+χ0
i,τi
≤Di , (P2e)

ci ∈ N, (P2f)

ri ∈ N, (P2g)

di ∈ N, (P2h)

si ∈ N. (P2i)

In Problem (P2) we rewrote (P1m) as constraint (P2e), which is a simple
model of the average execution time, function of the concurrency level and
the available containers, among other features, used to enforce that the com-
pletion time meets the arranged deadline. On the other hand, the constraints
(P2b)–(P2d) were just carried over from the full formulation.

Equation (P2e) is the result of a ML process to get a first order approx-
imation of the execution time of Hadoop and Spark jobs in cloud clusters.
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Following Ataie et al. [15], which compares linear regression, Gaussian SVR,
polynomial SVR with degree ranging between 2 and 6, and linear SVR, here
we opt for a model derived with linear SVR. This is due to the fact that SVR
with other kinds of kernel fares worse than the linear one, whilst plain linear
regression requires an ad hoc data cleaning to avoid linear dependencies in
the design matrix, thus making it harder to apply in the greatest generality. In
order to select a relevant feature set, we started by generalizing the analytical
bounds for MapReduce clusters proposed in Malekimajd et al. [90] and Verma
et al. [122]. This approach yielded a diverse collection of features including
the number of tasks in each map or reduce phase, or stage in the case of Spark
applications, average and maximum values of task execution times, average
and maximum shuffling times, dataset size, as well as the number of avail-
able cores, of which we consider the reciprocal. More details about the ML
method and the choice of features can be found in Section 3.6.2. Since most
of these features characterize the application class, but cannot be controlled,
equation (P2e) collapses all but hi and ci , with the corresponding coefficients,
into a single constant term, χ0

i,τi
, that is the linear combination of the feature

values with the SVR-derived weights.
Problem (P2) can be reasonably relaxed to a continuous formulation as in

other literature approaches: for example see Ardagna et al. [10]. Furthermore,
the problem can be additionally simplified with a simple algebraic trans-
formation: given the total number of VMs needed to support the required
workload, it is trivial to determine the optimal instance mix using dominance
considerations. Indeed, since στi < ρτi < δτi , spot VMs are selected first, but
respecting the constraint (P2c), then it is the turn of reserved ones, whose
number is bounded by Ri,τi and, at last, on demand VMs will cover the still
unheeded computational needs. Moving from this consideration, it is possi-
ble to reduce the problem to a formulation that involves only the number of
cores, ci , and the overall number of VMs, νi , as exposed below:

min
ci ,νi

νi (P3a)

subject to:

ci ≤ Γτiνi , (P3b)

χhi,τihi +χci,τi
1
ci

+χ0
i,τi
≤Di , (P3c)

ci ≥ 0, (P3d)

νi ≥ 0. (P3e)

The continuous relaxation makes it possible to apply the KKT conditions,
which are necessary and sufficient for optimality due to the regularity of Prob-
lem (P3), thanks to Slater’s constraint qualification: (P3c) is the only nonlin-
ear constraint and is convex in the domain, which in turn contains an internal
point. Notice that, in this way, we can analytically obtain the optimum of all
the instances of Problem (P3), one per class i ∈ A, as proven in Theorem 4.3.1.

Theorem 4.3.1. The optimal solution of Problem (P3) is:
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ci =
χci,τi

Di −χhi,τihi −χ
0
i,τi

, (4.4a)

νi =
ci
Γτi

=
1
Γτi

χci,τi
Di −χhi,τihi −χ

0
i,τi

. (4.4b)

Proof. The Lagrangian of Problem (P3) is given by:

L (ci ,νi) = νi +λΓ
(
ci − Γτiνi

)
+

+λχ
(
χhi,τihi +χci,τi

1
ci

+χ0
i,τi
−Di

)
+

−λcci −λννi

(4.5)

and stationarity conditions lead to:

∂L
∂νi

= 1− Γτiλ
Γ −λν = 0, (4.6a)

∂L
∂ci

= λΓ −λχχci,τi
1

c2
i

−λc = 0, (4.6b)

while complementary slackness conditions are:

λΓ
(
ci − Γτiνi

)
= 0, λΓ ≥ 0, (4.7a)

λχ
(
χhi,τihi +χci,τi

1
ci

+χ0
i,τi
−Di

)
= 0, λχ ≥ 0, (4.7b)

λcci = 0, λc ≥ 0, (4.7c)

λννi = 0, λν ≥ 0. (4.7d)

Constraint (P3c) requires ci > 0 and, thanks to (P3b), it also holds νi > 0,
thus λc = λν = 0. Now, equations (4.6a) and (4.6b) can be applied to obtain
λΓ > 0 and λχ > 0. So constraints (P3b) and (P3c) are active in every optimal
solution, whence we get (4.4a) and (4.4b).

Since Theorem 4.3.1 provides optima in closed form for Problem (P3), it
is straightforward to repeat its algebraic solution for all the pairs class-VM
of Problem (P1). The choice of the preferred VM type whereon to run each
class is made via the comparison of all the relevant optimal values, selecting
by inspection the minimum cost association of classes and VM types.

4.3.3 Optimization Algorithm

The aim of this section is to provide a brief description of the optimization
heuristic embedded in D-SPACE4Cloud. It efficiently explores the space of
possible configurations, starting from the initial ones obtained via Theorem 4.3.1.
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t

Figure 4.4 – Hyperbolic jump

Since (P3c) might be only a preliminary approximation, the very first step
of the procedure is simulating the initial configuration in order to refine the
prediction. This step, as well as all the subsequent ones, is executed in par-
allel, since the original Problem (P1) has been split into independent sub-
problems. After checking the feasibility of the initial solution, the search
algorithm begins the exploration incrementing the VM count whenever the
solution results infeasible or decreasing it to save on costs if the current con-
figuration is already feasible.

In order to avoid one-VM steps, which might lead to a very slow conver-
gence for our optimization procedure, particularly when dealing with large
clusters, the optimization heuristic exploits the fact that the execution time of
DIAs is inversely proportional to the allocated resources [15, 90, 122]. Hence,
at every iteration the application execution time is estimated as:

ti =
ai
νi

+ bi , (4.8)

where ti is the execution time and νi the number of VMs, whilst ai and bi
are obtained by fitting the hyperbola to the previous steps results. Hence,
from the second search step on, we can compute ai and bi using the predicted
execution times returned by the performance simulators and the associated
resource allocations. In this way, at every iteration k it is possible to have
an educated guess on the number of VMs required to meet the deadline Di ,
as depicted in Figure 4.4, where hyperbolas obtained at subsequent steps are
used to determine the next resource allocation to assess by intersection with
the line at height Di . The result of this operation is:

νk+1
i =

ak,k−1
i

Di − b
k,k−1
i

. (4.9)

Our optimization algorithm aims at combining the convergence guaran-
tees of dichotomic search with the fast exploration allowed by specific knowl-
edge on system performance, such as equations (4.8) and (4.9). Each job class
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Algorithm 4.3.1 Local search

Require: ν0
i ∈ N

1: simulate ν0
i

2: if ν0
i is infeasible then

3: ν1
i ← ν0

i + 1
4: l1i ← ν0

i
5: else
6: ν1

i ← ν0
i − 1

7: u1
i ← ν0

i
8: end if
9: repeat k← 1,2, . . .

10: simulate νki
11: update bounds
12: νk+1

i ← f
(
νki ,ν

k−1
i

)
13: check νk+1

i against bounds
14: until uki − l

k
i = 1

15: return uki

is optimized separately and in parallel as described in pseudo-code in Al-
gorithm 4.3.1. First off, the initial solution ν0

i , obtained as outlined in Sec-
tion 4.3.2, is evaluated using the simulation model. Since equation (4.9) re-
quires at least two points, the conditional at lines 2–8 provides a second point
at one-VM distance and sets the initial one as lower or upper bound, accord-
ing to its feasibility. Then the algorithm searches iteratively the state space
performing simulations and keeping track of the interval enclosing the op-
timal solution. Every new step relies on the hyperbolic function in (4.9), as
shown at line 12.

As already mentioned, D-SPACE4Cloud mixes dichotomic search and do-
main knowledge about performance characteristics in order to exploit the best
of both worlds. Fitting a hyperbola to previous results allows to speed up the
exploration by directing it where the system performance is expected to be
reasonably close to the deadline imposed as constraint, yet the use of only the
latest two simulations, dictated by convenience considerations, might ham-
per convergence with oscillations due to inaccuracies. We address this issue
by recording the most resource hungry infeasible solution as lower bound, lki ,
and the feasible configuration with fewest VMs as upper bound, uki . Hence,
at line 11, if νki turns out to be feasible, then it is assigned to uki , otherwise to
lki . Furthermore, every new tentative configuration νk+1

i predicted at line 12
must belong to the open interval

(
lki ,u

k
i

)
to be relevant: at line 13 the algo-

rithm enforces this behavior, falling back to the mid point when this property
does not hold.

Now, given the monotonic dependency of execution times on the number
of assigned computational nodes, the stopping criterion at line 14 guarantees
that the returned configuration is the provably optimal solution of the inner,
separate Problem (P2) for class i. In other words, the joint selection of the VM
type and their number is NP-hard, but when the type of VM is fixed in the
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Figure 4.5 – Overall EUBra-BIGSEA architecture

first phase, our heuristic obtains the final solution for all classes in polynomial
time.

4.4 BIGSEA Run Time Architecture

In the collaboration with the EUBra-BIGSEA project we improved upon the
results of the previous work at design time and contributed to the develop-
ment of a middleware focused on the run time management of DIAs. This
was made possible as EUBra-BIGSEA targets container-based systems, thus
enabling a higher degree of flexibility in resource reconfiguration and re-
balancing. Furthermore, this project takes into account Apache Mesos4 as
scheduler, again improving in flexibility in comparison to YARN and adding
the possibility of negotiation among resource managers.

The run time architecture presented in this section consists of a set of key
components designed to satisfy a group of functional requirements: specif-
ically i) handling the resource provisioning, ii) reducing costs related to big
data application execution, and iii) guaranteeing QoS. All the modules are
driven by the optimization of the resources infrastructure usage. This re-
quirement is accomplished by minimizing costs, monitoring, and dynamically
allocating resources to meet deadlines.

The considered Spark applications can be executed on Mesos or, alterna-
tively, on YARN resource managers. Given an application, we characterize its
deadline as hard or soft: hard deadlines must be met, whilst soft deadlines
have an associated priority and can be violated if the system does not have
enough capacity. In this case, the system tries to minimize the weighted tar-
diness of soft deadline applications, i.e., it will possibly reallocate the cluster
nodes in a way that the weighted sum of application excess time with respect
to soft deadlines is minimized.

As shown in Figure 4.5, the architecture consists of a broker and config-
uration service, a monitoring system, a performance prediction service, and
two software management layers, i.e., the optimization service and the proac-

4http://mesos.apache.org
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tive policies module. While the monitoring system fulfills the task of collect-
ing information regarding the system metrics, such as batch queues capacity,
network and CPU load, or applications elapsed time, the other layers have
distinct goals. The broker, the contextualization service, and the proactive
policies module implement the specification and enact high level proactive
rules triggering infrastructure adaptation and load balancing. On the other
hand, the optimization service aims at pursuing the respect of QoS guaran-
tees and reduction of resource usage costs.

More precisely:

Broker: The Broker API’s task consists in receiving application requests en-
riched with additional information concerning, e.g., the configuration
and deadlines, as well as in triggering the application execution.

Optimization Service: The Optimization Service is made up of two sub-com-
ponents: i) a module able to provide the initial capacity configuration
(OPT_IC) and ii) a module to rebalance application allotments in case
of heavy load (OPT_JR).

OPT_IC exploits a lookup table including a set of initial solutions, i.e.,
the optimal configuration in terms of number of cores and VMs to meet
a deadline. In case the application runs on a new scenario, the available
history is used to perform a linear interpolation, providing as result a
guess at the minimum cost configuration. Following this phase, an op-
timization algorithm to compute the optimal allocation of cores is exe-
cuted off line and the lookup table is updated correspondingly. You may
notice that this is basically a subproblem of (P1) where the VM is fixed.

Performance Prediction Service: The Performance Prediction Service is com-
posed of two predictor tools and estimates application execution times
given the total number of available cores.

Specifically, the algorithm used by the initial optimizer exploits an ad
hoc DES called dagSim, which provides off line accurate results at the
cost of long execution times, in the order of seconds or minutes when
dealing with complex DAGs. On the other hand, the algorithm used
by the re-balancer tool deploys a different predictor called Lundstrom,
which provides on line less accurate results though performing well in
terms of execution time (sub-second) even for large DAGs [8].5

Reactive and Proactive policies: This module provides a bridge between users’
application submission and the execution platforms, through adding or
removing resources according to thresholds triggered by the monitoring
infrastructure. Violation of the policy thresholds triggers the execution
of high level rules resulting in the adaptation of the infrastructure by
horizontally or vertically scaling the currently deployed cores and bal-
ancing the load among the physical servers. This module is in charge
of controlling the infrastructure and exploits the prediction service in
order to understand if an application is early or late with respect to the
deadline, since some rules are meant to avoid tardy applications and
add resources when the delay goes over a threshold.

5The description of both tools can be found at http://www.eubra-bigsea.eu/menu-

deliverables.
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The performance of data analytics applications running on the EUBra-
BIGSEA platform is profiled in advance, so a QoS guarantee is defined and
resource allocation is optimized according to the performance requirements.
Application profiling collects relevant information about stages and their tasks,
as said in Section 4.2.

Since optimization-based policies are effective only when application per-
formance profiles are available, the developed techniques consider mainly
batch applications, such as data acquisition, bus trajectory identification, and
social data clustering, while interactive applications are managed through
reactive and proactive rule-based policies. Rules of this kind, specified by
system administrators, are based on the analysis of the metrics provided by
the EUBra-BIGSEA monitoring system and will trigger reconfigurations if the
monitoring metric, for reactive rules, or a prediction of its future value, in the
case of proactive rules, is above or below a given threshold.

The work flow for running applications on the above described infrastruc-
ture is detailed in the following, with an explanation of the several steps num-
bered in Figure 4.5. Each submission (1) has to provide a series of relevant
data: an application identifier, the dataset size, the required deadline with its
type, either soft or hard, plus some further parameters. Based on these pieces
of information, the optimization module looks up the application signature
in the system’s history. Either the optimal configuration is already cached, or
the module computes a preliminary guess via interpolation of the available
historic data. In the latter case, OPT_IC (3) is used to refine such guess and
return an optimal initial configuration, relying on the performance prediction
service.

At this point, the broker checks the current system status: under light load
conditions the application can enter the system right away, but in heavy load
the overall capacity is not enough to fit all the required resources, hence soft
deadline applications are rebalanced to accommodate the new submission.
The optimal reconfiguration is obtained via OPT_JR (8).

Given the final allocation, the configuration and contextualization service
takes care of properly setting up the resource pools (4). Now, the policies
module takes over the control of the cluster, with reactive rules that inter-
vene (5) depending on the metrics evaluated by the monitoring service. Simi-
larly, proactive policies poll the optimization service (6) to assess the current
configuration and, based on the prediction, identify predicted violations or
over-provisioning. Under any of these circumstances, the optimization ser-
vice updates the requirements (7), thus activating the adaptation module to
properly redistribute resources.

4.5 Run Time Problem

In line with the overall architecture requirements, the optimization module
has to implement two main functionalities. First, given i) the application sig-
nature, ii) the target VM type, established beforehand by system administra-
tors, and iii) the deadline for the big data application execution, required by
the end user, the optimization module computes the minimum cost configu-
ration in terms of number of VMs to allocate. In addition, the optimization
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service should also rearrange resource pools when the system sustains heavy
load and capacity becomes a tight constraint.

At submission time, if the capacity available in the system is enough to
accommodate the deployment of a new application, then execution can start.
When this is not the case, the IaaS infrastructure will try to achieve the best
possible QoS by prioritizing the allocation of resources to hard deadline ap-
plications and reallocating the residual capacity in a way that the weighted
sum of soft deadline applications’ exceeding times is minimized. In such a
situation, the system is under heavy load and the optimization module has to
determine the new resource configuration, based on these premises. In par-
ticular, given i) the soft deadline applications signatures and ii) their current
execution progress, the optimization service determines a new configuration
that minimizes the weighted tardiness. We are working in the assumption
that each soft deadline application is associated with a weight that formalizes
its (or its end user’s) priority in the eye of the EUBra-BIGSEA platform: the
higher the weight, the more important is to meet the prearranged SLAs.

Note that, in this second scenario, the newly submitted application can
start its execution only borrowing resources from soft deadline applications,
hence it will receive the amount of resources established in the first scenario
if and only if i) it is a hard deadline application and ii) the shared cluster has
enough capacity to accommodate all the hard deadline applications’ require-
ments. Specifically, if the latter condition cannot be satisfied, the submission
is rejected and system administrators are alerted of the failure to accept the
job.

Optimizing the initial configuration is substantially just another appli-
cation of the single class sizing problem, Problem (P2), discussed in Sec-
tions 4.3.2 and 4.3.3. Section 4.5.1 introduces the approach for the weighted
tardiness scenario. Later, Section 4.5.2 analyzes the formulation and derives
the closed form optimal solution of its continuous relaxation. In the end,
Section 4.5.3 introduces a search procedure aimed at determining an optimal
integral solution for the minimum weighted tardiness problem.

4.5.1 Mathematical Programming Model

If the system is under heavy load, the optimization module has to reallocate
cluster resources. First of all, hard deadline applications cannot be delayed,
so their share of VMs is assigned with priority. As soon as these requirements
are fulfilled, the residual capacity can be allocated among soft deadline appli-
cations so as to minimize their overall weighted tardiness. Please note that in
this scenario, since we are operating at run time, it is not possible to change
VM types: rather, each application i is associated with specific instances τi ,
according to the results of the design time problem.

Let us denote with Ad the set of soft deadline applications. As in the pre-
vious section, each application is characterized by the parameters obtained
via ML techniques, χci,τi and χ0

i,τi
, the deadline Di , and the number of cores

available on every VM, Γτi . Since this problem is solved while jobs actually
run on the cluster, it is possible to take into account monitoring data to assess
whether applications are either executing faster than expected or falling be-
hind schedule. Almeida et al. [7] provides more details, but here it is material
to know that the only impact is a rescaling of deadlines, hence we continue
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with the already introduced notation. The available spare capacity in terms of
cores isN . Each application is also characterized by a weightwi : the larger the
value, the higher is the application priority. Given the hybrid ML formulation
for response time, it is possible to define the tardiness of every application as:

χci,τi
1
ci

+χ0
i,τi
−Di , ∀i ∈ Ad. (4.10)

In this scenario all the application classes have only one concurrent job at a
time: equation (4.10) is just constraint (P2e) where hi = 1 and the correspond-
ing term χhi,τi is aggregated into χ0

i,τi
. Since the system is under heavy load, the

number of cores allocated to application i is such that the deadline Di cannot
be met and the tardiness is strictly positive.

Again we adopt the decision variables ci , representing the number of cores,
and νi , counting the assigned VMs, hence we can derive the following formu-
lation:

min
c,ν

∑
i∈Ad

wi

(
χci,τi

1
ci

+χ0
i,τi
−Di

)
(P4a)

subject to:

ci ≤ Γτiνi , ∀i ∈ A
d, (P4b)∑

i∈Ad

Γτiνi ≤N, (P4c)

ci ∈ N, ∀i ∈ Ad, (P4d)

νi ∈ N, ∀i ∈ Ad. (P4e)

Problem (P4) is a straightforward weighted tardiness minimization under
a capacity constraint. The objective function (P4a) is the sum of all the tar-
diness terms associated to the various applications, each multiplied by the
corresponding weight. The set of constraints (P4b) imposes a bound on the
number of cores available per VM, while constraint (P4c) enforces that no
more than the remaining N cores are allocated to soft deadline applications.
In the end, constraints (P4d)-(P4e) state that all the variables ci and νi are
taken from the natural numbers, as expected given their interpretation.

4.5.2 Initial Solution

Taking the continuous relaxation of Problem (P4), it is possible to consider
KKT conditions both necessary and sufficient for optimality, given the fact
that Slater’s constraint qualification holds. The relaxed problem is formulated
as follows:

min
c,ν

∑
i∈Ad

wi

(
χci,τi

1
ci

+χ0
i,τi
−Di

)
(P5a)

subject to:
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ci ≤ Γτiνi , ∀i ∈ A
d, (P5b)∑

i∈Ad

Γτiνi ≤N, (P5c)

ci ≥ 0, ∀i ∈ Ad, (P5d)

νi ≥ 0, ∀i ∈ Ad. (P5e)

The following Theorem 4.5.1 provides a closed form optimal solution for
the continuous problem.

Theorem 4.5.1. The optimal solution of Problem (P5) is:

c1 = N

1+
∑
j∈Ad\{1}

√
wj
w1

χcj,τj
χc1,τ1

,

ci =

√
wi
w1

χci,τi
χc1,τ1

1+
∑
j∈Ad\{1}

√
wj
w1

χcj,τj
χc1,τ1

N, ∀i ∈ Ad \ {1} ,
(4.11)

with:

νi =
ci
Γτi
, ∀i ∈ Ad. (4.12)

Proof. The Lagrangian of Problem (P5) is given by:

L (c,ν) =
∑
i∈Ad

wi

(
χci,τi

1
ci

+χ0
i,τi
−Di

)
+

∑
i∈Ad

λΓi
(
ci − Γτiνi

)
+

+λN
∑
i∈Ad

Γτiνi −N

−∑
i∈Ad

λci ci −
∑
i∈Ad

λνi νi

(4.13)

and stationarity conditions lead to:

∂L
∂ci

= −
wiχ

c
i,τi

c2
i

+λΓi −λ
c
i = 0, ∀i ∈ Ad, (4.14a)

∂L
∂νi

= −λΓi Γτi +λN Γτi −λ
ν
i = 0, ∀i ∈ Ad, (4.14b)

while complementary slackness conditions are:

λΓi
(
ci − Γτiνi

)
= 0, λΓi ≥ 0, ∀i ∈ Ad, (4.15a)

λN

∑
i∈Ad

Γτiνi −N

 = 0, λN ≥ 0, ∀i ∈ Ad, (4.15b)
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λci ci = 0, λci ≥ 0, ∀i ∈ Ad, (4.15c)

λνi νi = 0, λνi ≥ 0, ∀i ∈ Ad. (4.15d)

We know that ci > 0 by the definition of tardiness and, according to con-
straints (P5b), also νi > 0 holds. Thanks to the conditions (4.15c) and (4.15d),
then, we derive λci = λνi = 0, for all i ∈ Ad.

From the KKT (4.14a) and (4.14b) we have:

λΓi =
wiχ

c
i,τi

c2
i

, ∀i ∈ Ad, (4.16a)

λΓi = λN , ∀i ∈ Ad, (4.16b)

whence derive λΓi > 0, ∀i ∈ Ad and λN > 0, thus the constraints (P5b) and (P5c)
are active in optimal solutions. Substituting:

λN = λΓi =
wiχ

c
i,τi

c2
i

, ∀i ∈ Ad. (4.17)

Exploiting (4.17), we obtain also:

wiχ
c
i,τi

c2
i

=
wjχ

c
j,τj

c2
j

, ∀ (i, j) ∈ Ad ×Ad (4.18)

and:

ci = c1

√
wi
w1

χci,τi
χc1,τ1

, ∀i ∈ Ad. (4.19)

Since all the (P5b) hold as equalities, we can substitute Γτiνi for ci in con-
straint (P5c), which is also active. Using (4.19) we can compute a closed form
for c1 and, consequently, for all the decision variables of this problem, thus
obtaining (4.11).

4.5.3 Optimization Algorithm

Theorem 4.5.1 only provides a solution for the continuous relaxation of Prob-
lem (P5). Additionally the ML model used to formulate tardiness and, conse-
quently, the objective function (P4a) is just a first approximation for the sys-
tem performance. These reasons motivate a search procedure to determine
an integer solution and, possibly, leverage the higher accuracy of simulation-
based models to attain more efficiency or a decrease in global weighted tardi-
ness. Algorithm 4.5.1 reports this state space exploration: it receives in input
the set of soft deadline applications and the maximum number of iterations
allowed to run, then it returns the optimized cores allocation. The detailed
description of its behavior follows.

First of all, the loop at lines 1–3 obtains the initial continuous solution
via the formulas and, right after, the VMs allocation ν is heuristically made
feasible at line 4. The idea is simple: it is enough to round each νi to the next
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Algorithm 4.5.1 Resource rebalancing

Require: Ad, k̄ ∈ N
1: for i ∈ Ad do
2: compute νi as per (4.11)
3: end for
4: round ν and make the configuration feasible
5: repeat k← 1,2, . . .
6: νold← ν
7: U ←∅
8: for i ∈ Ad do
9: for j ∈ Ad : j , i do

10: choose ∆νi and ∆νj so that Γτi∆νi = Γτj∆νj
11: evaluate δH

ij with hyperbola, as per (4.8)

12: if δH
ij < 0∧ νj −∆νj ≥ 1 then

13: add
(
∆νi ,∆νj

)
to U

14: end if
15: end for
16: end for
17: δ∗ij ← 0
18: m∗← (0,0)
19: for

(
∆νi ,∆νj

)
∈U do

20: evaluate δL
ij with Lundstrom

21: if δL
ij < δ

∗
ij then

22: m∗←
(
∆νi ,∆νj

)
23: end if
24: end for
25: apply m∗ to ν
26: until k ≥ k̄ ∨ ν = νold

27: return ν

greater integer and, if need be, to remove one VM from the applications with
the smallest weights until the capacity constraint (P4c) is satisfied.

At line 5 starts the main loop of the local search algorithm. Each iteration
amounts to the exploration of a neighborhood centered around the current
optimal solution, with a best improvement policy. The neighborhood con-
tains all the configurations that can be reached if an application gives up one
VM and its cores are reassigned to another job, see line 10. Different applica-
tions are possibly hosted on different VMs, then it is necessary to make sure
that these moves respect the proportionality of vCPUs. For example, if job ı̄
yields 1 quad-core VM and ̄ is hosted on single-core instances, the latter will
receive 4 replicas, thus leaving unchanged the total resource pool. Since the
size of the neighborhood is O(|Ad|2), relying solely on simulations for the ex-
ploration would make optimization times too long for use at run time. This
is the reason why the neighborhood is first swept via the algebraic approxi-
mation (4.8) in the two nested loops at lines 8–16. Instead of reevaluating the
full objective function for each move, the algorithm only considers the partial
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effect on the weighted tardiness values for i and j: these terms are called δij .
According to the condition at line 12, only the promising moves that do not
take all the VMs from an application (νj −∆νj ≥ 1) and improve the overall
weighted tardiness in the hyperbolic approximation (δH

ij < 0) are later assessed
via simulations.

The second part of the main iteration (lines 17–25) goes over all the promis-
ing moves identified with the algebraic approximation and reevaluates them
via the more accurate Lundstrom’s model. The variable m∗, initially set to the
identity move, keeps track of the best improving move. At last, the main cy-
cle concludes by applying the best move and increasing the iteration count.
Line 26 states the stopping criterion: either the algorithm keeps exploring for
the maximum number of iterations k̄, or the latest neighborhood did not pro-
vide any improving moves, meaning that the search procedure reached a local
minimum.

4.6 Discussion

The material of this chapter consists primarily in two formulations of opti-
mization problems relevant for the design and management of DIAs. In par-
ticular, at design time this contribution enables capacity allocation, as well
as the choice of optimal resource types, while at run time it focuses on the
minimization of tardiness when reacting to workload spikes.

In both cases we proceed in three major steps: first of all a rigorous for-
mulation of the problem at hand, then the exploitation of the KKT conditions
to obtain an initial solution in closed form, in the end we devise a search pro-
cedure to refine the optimal solution. The performance models presented in
Chapter 3 fit into these steps coherently with their peculiarities, with ML that
is valuable in the analytical phase thanks to the algebraic formulas it yields,
whilst simulation-based models have an edge in the final exploration due to
their insensitivity to the parameter range where they are evaluated.

The proposed formulations and optimization procedures show how it is
possible to tackle research question 2. Specifically, the design time problem
solved by D-SPACE4Cloud allows for determining beforehand the minimum
cost deployment for target DIAs, based on the expected incoming load. In
addition to this result, the run time problem studied within EUBra-BIGSEA
enables reallocating the available resources according to the actual current
load, even if this is higher than what previously estimated. This is possible
thanks to looser SLAs that permit some submissions to become tardy, rather
than imposing a penalty immediately when the completion is not timely.

Alongside its theoretical core, the current chapter also presents the archi-
tecture of the systems where the proposed optimization procedures are imple-
mented. On one side, D-SPACE4Cloud is part of the DICE IDE, whose main
objective is supporting the adoption of big data technologies with a DevOps
approach. On the other hand, in the collaboration with EUBra-BIGSEA we
developed OPT_IC and OPT_JR, which focus on the run time management of
DIA deployments. As Chapter 6 will detail, the use of D-SPACE4Cloud can
grant savings throughout a cluster life cycle of more than 30 % and enable
investigating in early design stages the impact of some architectural choices,
such as privacy preserving mechanisms. Similarly, OPT_IC and OPT_JR allow
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for reacting within minutes to sudden unforeseen changes in the incoming
workload.

Relevant Publications

The publications relevant to the optimization techniques discussed in this
chapter follow. The design time architecture of D-SPACE4Cloud was de-
scribed in a tool paper submitted to QUDOS [32], a workshop held during the
International Conference on Performance Engineering. More details about
both the architecture, Section 4.1, and the design time optimization problem,
Section 4.3, are presented in Ciavotta et al. [33]. Another publication, Maleki-
majd et al. [89], discusses a similar formulation focused on legacy MapReduce
jobs. On the other hand, the aspects investigated during the EUBra-BIGSEA
project, Sections 4.4 and 4.5, were recently proposed in Ardagna et al. [8].
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CHAPTER 5
Performance Models

Validation

This chapter presents and discusses several validation experiments carried
out to assess the accuracy and effectiveness of the performance models de-
scribed in Chapter 3. First of all, in Section 5.1 we detail the experimental
platforms used for these runs. Later, Section 5.2 introduces validation results
for MapReduce, with a particular focus on QNs, SWNs, and fluid techniques.
Further on, Section 5.3 overviews the results we obtained to validate dagSim,
whilst Section 5.4 lists experiments and results for the hybrid method valida-
tion. In the end, in Section 5.5 we show the outcomes obtained in validating
the models proposed for CNNs and Section 5.6 wraps up the chapter with
a discussion of the results and their relationship with research questions 1
and 4.

5.1 Experimental Platforms

All the data about real systems performance for the validation of the proposed
models has been measured on a series of clusters, either rented on public
clouds or accessed in private data centers. Namely, we have real logs obtained
on Amazon EC2, Microsoft Azure, CINECA—the Italian supercomputing cen-
ter, as well as some GPU-enabled machines at IBM Research Yorktown. The
motivation behind this choice is to verify the robustness of the models against
the different contention patterns shown by each platform, as caused by both
their setups and other users sharing the same underlying infrastructure.

The Amazon cluster included 30 m4.xlarge instances with a total of 120
vCPUs configured to support 240 containers overall. On the other hand, on
Microsoft Azure we provisioned clusters of variable size, reaching up to 26
nodes. In this case we also used different instances, with A4 and D12v2 VMs.

PICO,1 the big data cluster available at CINECA, is composed of 74 nodes,
each of them boasting two Intel Xeon 2670v2 2.5 GHz 10-core processors,

1http://www.hpc.cineca.it/hardware/pico

83

http://www.hpc.cineca.it/hardware/pico


5. Performance Models Validation

with 128 GB RAM per node. Out of this 74 nodes, up to 66 are available
for computation. In our experiments on PICO, we used several configura-
tions ranging from 60 to 120 cores and set up the scheduler to provide one
container per core.

The cluster is shared among different users, hence resources are managed
by the Portable Batch System (PBS). PBS allows for submitting jobs and check-
ing their progress, configuring at a fine-grained level the computational re-
quirements: for all submissions it is possible to request a number of nodes
and to define how many CPUs and what amount of memory are needed on
each of them. Since the cluster is shared, the performance of single jobs de-
pends on the overall system load, even though PBS tries to split the resources.
Due to this, it is possible to have large variations in performance according to
the total usage of the cluster. In particular, storage is not handled directly by
PBS, thus leading to an even greater impact on performance.

We tried to mitigate this variability first of all by requesting entire nodes
of the cluster for the execution of our experiments. In such a way, we could be
sure that nobody else could run other jobs on the same nodes, thus interfering
with the performance measurement. An ephemeral Hadoop cluster has been
created at the beginning of each experiment on the allocated nodes, where we
also locally kept HDFS, in order to experience lower variability than the one
observed using the centralized storage. In spite of these settings, still the ex-
periments showed high variability, in particular with a few runs characterized
by extremely high execution time. In our analysis we discarded runs with an
anomalous execution time, taking out all the experiments that lie more than
three standard deviations away from the average computed for the same con-
figuration.

The dataset used for testing has been generated using the TPC-DS bench-
mark2 data generator, creating at a scale factor ranging from 250 GB to 1,000 GB
several files directly used as external tables by Hive or Spark. We chose
the TPC-DS benchmark as it is the industry standard for benchmarking data
warehouses.

5.2 Performance Models for MapReduce

As MapReduce benchmark, we introduced five ad hoc queries,3 which are
mapped as a single MapReduce job in Hive. This queries are named R1–5
and are shown in Listing 5.1. The profiling phase has been conducted by
extracting average task durations from at least twenty runs of each query.
The discussed parameters are shown in Table 5.1, where we show the values
obtained from measurements performed on CINECA. In the table we report
the scale factor f , the number of tasks of each phase, respectively nM and nR

for mappers and reducers, and the average task durations, respectively t̄M

and t̄R. As you can see, the number of tasks in each phase can grow in the
order of thousands.

2http://www.tpc.org/tpcds/
3https://github.com/deib-polimi/Hive-Experiment-Runner

84

http://www.tpc.org/tpcds/
https://github.com/deib-polimi/Hive-Experiment-Runner


5.2. Performance Models for MapReduce

se l e c t avg ( ws_quantity ) , avg ( ws_ext_sa les_pr ice ) ,
avg ( ws_ext_wholesale_cost ) , sum( ws_ext_wholesale_cost )

from web_sales
where ( web_sales . ws_sa les_pr ice between 100.00 and 150.00)

or ( web_sales . ws_net_prof i t between 100 and 200)
group by ws_web_page_sk
l imit 100

(a) R1

se l e c t inv_item_sk , inv_warehouse_sk
from inventory
where inv_quantity_on_hand > 10
group by inv_item_sk , inv_warehouse_sk
having sum( inv_quantity_on_hand ) > 20
l imit 100

(b) R2

se l e c t avg ( s s_quant i ty ) , avg ( s s _ n e t _ p r o f i t )
from s t o r e _ s a l e s
where ss_quant i ty > 10 and s s _ n e t _ p r o f i t > 0
group by s s _ s t o r e _ s k
having avg ( s s_quant i ty ) > 20
l imit 100

(c) R3

se l e c t cs_item_sk , avg ( cs_quant i ty ) as aq
from c a t a l o g _ s a l e s
where cs_quant i ty > 2
group by cs_item_sk

(d) R4

se l e c t inv_warehouse_sk , sum( inv_quantity_on_hand )
from inventory
group by inv_warehouse_sk
having sum( inv_quantity_on_hand ) > 5
l imit 100

(e) R5

Listing 5.1 – Interactive queries

5.2.1 QN and SWNModels

The QN and SWN models presented in Chapter 3 have been validated with
an experimental campaign on Amazon EC2 and CINECA, the Italian super-
computing center. Section 5.1 details the two setups. The target framework
was Hadoop 2.6.0.

We used the GreatSPN [16] and JMT [24] tools for the performance anal-
ysis of SWNs and QNs, respectively. In both cases the simulation stopping
criterion was configured with 10 % accuracy at a 95 % confidence interval.
Via parsing Hadoop logs it is possible to obtain lists of task execution times,
which are needed for the replayer in JMT service centers. These logs are also
used to choose a proper distribution and parameters for the map and reduce
transitions in the SWN models. As discussed in Section 3.1, while reduce task
service times can be considered exponentially distributed, the execution time
of map tasks fits better with more general distributions, like Erlang [9]. In
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Table 5.1

Fitted parameters, CINECA

Query f [GB] nM t̄M [ms] nR t̄R [ms]

R1 250 144 25,970 151 2,346
R1 500 287 32,159 300 1,958
R1 750 434 34,244 455 1,996
R1 1,000 591 40,534 619 3,063
R2 250 4 57,326 4 8,785
R2 500 2 42,202 2 6,582
R2 750 3 48,869 3 7,500
R2 1,000 65 1,082,274 68 13,086
R3 250 381 28,659 400 2,369
R3 500 757 37,018 793 2,570
R3 750 1,148 42,348 1,009 2,785
R3 1,000 1,560 41,961 1,009 3,048
R4 250 288 25,087 302 2,958
R4 500 573 41,007 601 2,961
R4 750 868 43,902 910 3,259
R4 1,000 1,183 42,615 1,009 8,667
R5 250 4 13,456 4 1,424
R5 500 2 11,774 2 1,499
R5 750 3 12,682 3 1,462
R5 1,000 64 19,557 68 1,610

particular, we used Erlang-2 for R1, Erlang-4 for R2 and R3, lastly Erlang-5
for R4 and R5. The shape and rate parameters are set according to each query
profile. The other timed transitions appearing in the SWN models are consid-
ered to be exponentially distributed. Note that the choice of a specific PDF for
the execution times of different tasks depends on the query, but also on the
underlying system: contention and other performance disrupting behaviors
influence the timings empirically measured on the various platforms.

The following results validate the QNs and SWNs discussed in Sections 3.2
and 3.3. We feed the models with parameters evaluated via the experimen-
tal setup and compare the measured response times with the simulated ones.
Specifically, we consider as a quality index the accuracy on response time pre-
diction. We define errors as:

ε =
T s − T r

T r , (5.1)

where T s is the simulated response time, whilst T r is the average measure-
ment across multiple runs. Such a definition allows not only to quantify the
relative error on execution times, but also to identify cases where the pre-
dicted time is smaller than the actual one, thus leading to possible deadline
misses. Indeed, if ε < 0 then the prediction is not conservative.

Table 5.2 lists the validation results for QNs and SWNs. Among these ex-
periments, we considered both single user scenarios, repeatedly running the
same query on a dedicated cluster with Z = 10s, and multiple user scenarios,
with the same think time, but higher concurrency levels. For all the experi-
ments we report the number of concurrent users, the overall cores available in
the cluster, the dataset scale factor, and the total number of map and reduce
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Table 5.2

QN and SWN models accuracy

Query Provider h c f [GB] nM nR T r [ms] εqn [%] εswn [%]

R1 Amazon 1 240 250 500 1 55,410 −8.40 −8.63
R2 Amazon 1 240 250 65 5 36,881 −25.45 2.97
R3 Amazon 1 240 250 750 1 76,806 0.60 8.48
R4 Amazon 1 240 250 524 384 92,197 −14.72 −3.01
R1 CINECA 1 60 500 287 300 378,127 8.94 −12.69
R3 CINECA 1 100 500 757 793 401,827 30.59 26.36
R3 CINECA 1 120 750 1,148 1,009 661,214 14.82 5.61
R4 CINECA 1 60 750 868 910 808,490 4.48 −0.26
R3 CINECA 1 80 1,000 1,560 1,009 1,019,973 −1.00 0.03
R5 CINECA 1 80 1,000 64 68 39,206 −6.65 −1.04
R1 CINECA 3 20 250 144 151 1,002,160 3.67 −9.27
R1 CINECA 5 20 250 144 151 1,736,949 −30.02 −17.74
R2 CINECA 3 20 250 4 4 95,403 17.45 4.00
R2 CINECA 5 20 250 4 4 145,646 −32.97 3.09
R1 CINECA 5 40 250 144 151 636,694 3.70 −3.63
R2 CINECA 3 40 250 4 4 86,023 22.97 −17.81
R2 CINECA 5 40 250 4 4 90,674 13.78 29.68
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Figure 5.1 – Performance degradation and cost reduction

tasks, plus the mean execution time measured on the real system and the rel-
ative errors for both models. In the worst case, the relative error can reach
up to 32.97 %, which is in line with the expected accuracy in the performance
prediction field [78]. Moreover, the SWN model achieves a higher accuracy,
with the average of the relative errors taken in absolute value that decreases
from the 14.13 % of QNs down to 9.08 %.

5.2.2 Spot Failure Analysis

To evaluate the SWN model of Figure 3.3 we considered query R1 running
on the 1,000 GB dataset with 15 VMs, 4 cores each. Without failures, the
execution time of R1 is 556,680 ms, where around 57 % of the time is spent
in the map stage. The baseline simulation time is T0 = 533,438ms, yielding
a −4.18 % relative error. We define the performance degradation as η(t) =
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(T (t)−T0)/T0, where T (t) is the simulated response time obtained via the SWN
model in Figure 3.3 when the recovery time is t. To measure the recovery time
of our system on Amazon EC2, we switched off one of the VMs, started a new
one after 30 s and recorded the moment when the first task is assigned for
execution to the new instance. In ten experiments, the mean recovery time
was equal to 331,715 ms, where the time to start the new instance was around
180 s.

In the first analysis we consider a conservative scenario where the failure
is injected into the system in an early stage of query execution, so we fixed
the mean time to failure to 50 s. We considered a cluster with 7 spot VMs out
of 15 and we varied the recovery time between 120 s and 480 s. In this way we
estimate system performance degradation in a range where VMs startup is ei-
ther faster (for example, in container-based systems where the startup time is
negligible and the recovery time is due only to YARN NodeManagers startup)
or slower than on Amazon EC2. The plot reported in Figure 5.1a shows, as
expected, that the longer the recovery process stalls, the more performance
degrades, and it can reach up to 25 % if the recovery process takes 8 minutes.

Note that in some cases we obtained negative values for η(t) because simu-
lation data is subject to inaccuracies. This is why we rely on linear regression
to estimate the overall performance degradation trend. In this and the next
analysis we obtained a p-value equal to 0.001 for the full model F-test, mean-
ing that the regression line is a good fit except for white noise.

In the second experiment, the mean recovery time is fixed to 331,715 ms,
the average we measured in our experiments, and the number of spot in-
stances is increased from 1 to 7 out of the total of 15 VMs. The result is shown
in Figure 5.1b, which reports the results for cost reduction due to using spot
instances as well as performance degradation. Cost reduction is computed as
Cr = C (s;p) /C (0;0), where C (s;p) is the cluster cost when s spot instances are
used, with a failure probability p. C (0;0) is the case when no spot instance is
used. C (s;p) can be computed as:

C (s;p) = δ (ν − s) + pδs+ (1− p)σs, (5.2)

where ν is the total number of VMs, while δ and σ are hourly prices for on de-
mand and spot instances, respectively. δ and σ are set to $0.285 and $0.031,3,
based on Amazon’s pricing.

It should be noted that, according to the experiments, the job execution
time is shorter than an hour: according to Amazon’s pricing policy, in case
spot instances are abruptly terminated, then users are not charged for partial
hour usage. The first term on the right hand side of (5.2) is the cost of the ini-
tial on demand instances, while the second term is the price the user should
pay to acquire the same number of on demand instances as the lost spot ones
in case of failure. Finally, with probability (1− p) spot instances do not fail
and the third term indicates the cost in this scenario. We evaluate the prob-
ability of spot termination as p = P (X < T ), where X is the random variable
for time to failure and T is the execution time. Assuming X is exponentially
distributed, p can be easily obtained in closed form. Figure 5.1b shows that,
based on the proposed SWN model, one can efficiently use spot instances to
decrease cluster costs, with a 52.5 % saving for 8 spot instances in exchange
for just a 25 % performance degradation.
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Figure 5.2 – R3 map, 120 containers, 500 GB dataset

5.2.3 Fluid Models

In this section, we describe the results of the experiments we conducted to
validate the fluid techniques described in Section 3.4. These experiments have
been performed at CINECA, with the configuration described in Section 5.1.

First of all, we studied the empirical cumulative distribution functions
(CDFs) of task durations on different nodes, in order to identify the cases in
which performance was strongly affected by exogenous interference. We then
considered the accuracy that can be reached adopting the approach based on
a convex combination of the deterministic and exponential limiting cases.

Figures 5.2, 5.3, 5.4 and 5.5 show the empirical CDFs derived from the
measurements. Figures 5.2 and 5.3 refer to subsequent phases of the same
experimental run, namely, query R3 running on the six-node, 120-container
cluster deployment over the 500 GB dataset. Accordingly, Figures 5.4 and 5.5
show query R5 on the three-node, 60-container cluster over the 750 GB dataset.

As a general trend well represented in Figures 5.3 and 5.5, reducers tend
to behave quite regularly. Most likely, possible variabilities spread across the
shuffle stage that overlaps with the map phase, hence end up being hardly
noticeable in each reducer task duration. On the other hand, mappers suffer a
stronger impact from external interference. In the reported graphics we have
examples of both good and problematic performance. Figure 5.2 shows how
all but one node have a very similar behavior. Further, the only different node
is not significantly distant from the others, hence probably the low variability
is imputable to the physiological effects of data locality. Instead, Figure 5.4
reports that the three involved nodes are quite variable in performance. In
this case, since we are dealing with a small interactive query, any exogenous
interference may cause a strong impact on the overall response time, thus
making prediction harder.

Tables 5.3 and 5.4 reports the results of the accuracy assessment for the
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Figure 5.3 – R3 reduce, 120 containers, 500 GB dataset
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proposed method, considering MapReduce jobs only. In particular, we con-
sider the fluid evolution function (3.7), discussed in Section 3.4.4. For sev-
eral experiments we report the involved query, the total number of contain-
ers available in the cluster (c), the scale factor for the dataset generator (f ),
the average measured (T r) and predicted (T s) execution time, and the rela-
tive error (ε). The average accuracy achieved with the approximate formula
is 9.23 %, perfectly in line with the expectations in the performance predic-
tion field [78], where a 30 % accuracy on response times is acceptable. Only
a handful of experiments show a relatively high error, peaking at 28.91 % in
absolute value. Nonetheless, the standard error of the mean is 1.33 %. The
largest relative errors tend to appear in the experiments involving R5, a small
query both in terms of number of tasks and overall duration. This behavior
suggests that the relative abundance of resources might amplify the effects of
variability, making prediction a harder task to accomplish.

5.3 DagSimModels

In order to validate dagSim, an ad hoc DES specifically developed for model-
ing DAG-based DIAs, we collected real measures by running SQL queries on
Apache Spark.4 The techniques adopted by dagSim itself are not presented
in Chapter 3 because the tool was devised by project partners, yet it is avail-
able as third party simulator in both D-SPACE4Cloud and the EUBra-BIGSEA
modules, hence the following results are instrumental to assess the precision
of their predictions.

The dataset was generated with TPC-DS, as discussed in Section 5.1. List-
ing 5.2 shows the considered queries: Q26 and Q52, which belong to the TPC-

4https://spark.apache.org
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Table 5.3

Accuracy with the fluid approximate formula, part 1 of 2

Query c f [GB] T r [ms] T s [ms] ε [%]

R1 60 250 80,316 82,314 2.49
R2 60 250 84,551 78,100.96 −7.63
R3 60 250 275,684 282,737.30 2.56
R4 60 250 219,243 221,205.13 0.89
R5 60 250 25,924 19,134.99 −26.19
R1 60 750 389,562 387,158.42 −0.62
R2 60 750 80,090 74,975.87 −6.39
R3 60 750 1,027,329 1,052,517.40 2.45
R4 60 750 808,490 834,140 3.17
R5 60 750 24,392 17,339.16 −28.91
R1 60 1,000 556,680 564,379.06 1.38
R2 60 1,000 2,009,929 2,546,188 26.68
R3 60 1,000 1,374,024 1,419,558.01 3.31
R4 60 1,000 1,374,244 1,562,961.30 13.73
R5 60 1,000 48,839 60,180 23.22
R1 80 500 143,139 138,049.55 −3.56
R2 80 500 73,243 69,092.11 −5.67
R3 80 500 526,760 533,398.48 1.26
R4 80 500 410,376 423,152 3.11
R5 80 500 23,558 17,090.94 −27.45
R1 80 750 268,821 266,099.64 −1.01
R2 80 750 78,080 73,276.07 −6.15
R3 80 750 791,314 807,333.48 2.02
R4 80 750 618,045 634,756.77 2.70
R5 80 750 23,894 17,100.00 −28.43
R1 80 1,000 439,052 442,487.10 0.78
R2 80 1,000 1,110,685 1,129,076.31 1.66
R3 80 1,000 1,019,973 1,043,506.48 2.31
R4 80 1,000 960,985 1,061,851.90 10.50
R5 80 1,000 39,206 28,972.61 −26.10

S0 S1 S2

S3

S5

S4

S6

(a) Q26

S0

S1

S4S3

S2

(b) Q52

Figure 5.6 – Spark queries DAGs

DS benchmark. These queries have been executed on SparkSQL, yielding the
DAGs shown in Figure 5.6.

Since profiles collect statistical information about jobs, we repeated the
profiling runs at least twenty times per query. Analogously to the MapReduce
case, properly parsing the logs allows to extract all the parameters composing
every query profile, for example average and maximum task execution times,
number of tasks, etc. Profiling has been performed on Microsoft Azure, with
A4 and D12v2 VMs, with clusters of variable sizes, reaching up to 26 dual-
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Table 5.4

Accuracy with the fluid approximate formula, part 2 of 2

Query c f [GB] T r [ms] T s [ms] ε [%]

R1 100 250 49,726 59,324 19.30
R2 100 250 82,861 77,078.03 −6.98
R3 100 250 168,209 172,945.69 2.82
R4 100 250 138,238 141,341.11 2.24
R5 100 250 25,316 18,281.41 −27.79
R1 100 500 132,383 127,974.74 −3.33
R2 100 500 73,870 69,572.08 −5.82
R3 100 500 401,827 416,948.55 3.76
R5 100 500 24,619 18,226.33 −25.97
R1 100 750 203,531 203,550.04 0.01
R2 100 750 78,291 73,068.51 −6.67
R3 100 750 635,991 651,107.92 2.38
R4 100 750 514,310 526,617.13 2.39
R5 100 750 24,887 17,988.72 −27.72
R1 120 250 46,215 50,790 9.90
R2 120 250 83,136 76,901.37 −7.50
R3 120 250 143,650 144,140.92 0.34
R4 120 250 97,829 90,498.44 −7.49
R5 120 250 26,072 18,720.46 −28.20
R1 120 500 91,809 83,580.16 −8.96
R2 120 500 72,543 68,232.80 −5.94
R3 120 500 303,843 298,283.35 −1.83
R4 120 500 275,407 279,794.24 1.59
R5 120 500 25,265 18,030.72 −28.63
R1 120 750 199,234 200,260.15 0.52
R2 120 750 79,042 74,269.17 −6.04
R3 120 750 661,214 660,269.38 −0.14
R4 120 750 507,861 513,599.16 1.13
R5 120 750 24,882 18,143.36 −27.08

core containers. Along with profiles, we also collected lists of task execution
times to feed the replayer in dagSim stages.

Among these experiments, we considered single user scenarios, where one
query has been run repeatedly on a dedicated cluster, interleaving a 10 s aver-
age think time between completions and subsequent submissions. Tables 5.5
and 5.6 report the results for dagSim models for single user scenarios on
the 500 GB dataset. Alongside the query name, real and predicted execution
times and the relative error, these tables also list the overall number of avail-
able CPUs and the total number of tasks (n) involved in each query. Due to
the different shapes of the DAGs, n is the number of tasks across all the stages
of each query. The worst case error is −19.01 % and, on average, errors settle
at 3.06 %.

5.4 Hybrid Models

In this section we explore in depth the behavior of our hybrid ML modeling
technique when it is applied to MapReduce and Spark applications, while also
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se l e c t i_item_id ,
avg ( cs_quant i ty ) agg1 ,
avg ( c s _ l i s t _ p r i c e ) agg2 ,
avg ( cs_coupon_amt ) agg3 ,
avg ( c s _ s a l e s _ p r i c e ) agg4

from c a t a l o g _ s a l e s , customer_demographics , date_dim ,
item , promotion

where c a t a l o g _ s a l e s . cs_sold_date_sk = date_dim . d_date_sk
and c a t a l o g _ s a l e s . cs_item_sk = item . i_item_sk
and c a t a l o g _ s a l e s . cs_bil l_cdemo_sk = customer_demographics . cd_demo_sk
and c a t a l o g _ s a l e s . cs_promo_sk = promotion . p_promo_sk
and cd_gender = ’ F ’
and cd_mar i ta l_s ta tus = ’W’
and cd_educat ion_status = ’ Primary ’
and ( p_channel_email = ’N’ or p_channel_event = ’N’ )
and d_year = 1998

group by i_ i tem_id
order by i_ i tem_id
l imit 100

(a) Q26

se l e c t dt . d_year , item . i_brand_id brand_id ,
item . i_brand brand , sum( s s _ e x t _ s a l e s _ p r i c e ) e x t _ p r i c e

from date_dim dt , s t o r e _ s a l e s , item
where dt . d_date_sk = s t o r e _ s a l e s . ss_sold_date_sk

and s t o r e _ s a l e s . ss_item_sk = item . i_item_sk
and item . i_manager_id = 1
and dt . d_moy=12
and dt . d_year=1998

group by dt . d_year , item . i_brand , item . i_brand_id
order by dt . d_year , e x t _ p r i c e desc , brand_id
l imit 100

(b) Q52

Listing 5.2 – TPC-DS queries Q26 and Q52

discussing its extrapolation and interpolation capabilities in each case.
The dataset used for running the experiments has been generated using

the TPC-DS benchmark data generator, as detailed in Section 5.1. The scale
factor was set to 250 GB. For MapReduce experiments we deployed Hadoop 2.5.1,
while for Spark applications version 1.6.0 was considered. Moreover, all these
experiments were executed on PICO, CINECA’s big data cluster, for a total of
about 20,000 CPU hours.

In SVR training, weights are used as a means to suggest the ML to give
more relevance and trust to real samples, rather than synthetic ones. There-
fore, all the experiments to validate the hybrid approach adopt a five to one
ratio between real and analytical data: even if some operational data points
might be noisy, higher weights assigned to real data allow for achieving better
accuracy than pure AMs, since the effect of noisy data is managed within the
inner loop. The number of inner iterations of Algorithm 3.6.1 was set to 10.
We used GNU Octave for numerical computation, relying on LibSVM [29] as
ML library.

To validate the effectiveness of the proposed hybrid approach in a com-
parative manner, we introduce two techniques that do not exploit AMs in
learning:

Basic ML relies on SVR for the computation of the regression function. In
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Table 5.5

DagSim model validation, Microsoft Azure D12v2

Query c n T r [ms] T s [ms] ε [%]

Q26 12 1,406 660,700 620,773 −6.04
Q52 12 704 658,397 654,464 −0.60
Q26 16 1,406 551,669 495,246 −10.23
Q52 16 704 515,202 512,122 −0.60
Q26 20 1,406 454,054 393,414 −13.36
Q52 20 704 410,588 407,066 −0.86
Q26 24 1,406 385,639 332,364 −13.81
Q52 24 704 356,296 353,852 −0.69
Q26 28 1,406 354,183 286,861 −19.01
Q52 28 704 302,741 299,305 −1.13
Q26 32 1,406 304,048 250,327 −17.67
Q52 32 704 263,034 260,648 −0.91
Q26 36 1,406 244,214 228,456 −6.45
Q52 36 704 245,084 242,489 −1.06
Q26 40 1,406 225,484 208,327 −7.61
Q52 40 704 213,353 211,291 −0.97
Q26 44 1,406 198,966 189,840 −4.59
Q52 44 704 198,044 196,234 −0.91
Q26 48 1,406 186,659 186,953 0.16
Q52 48 704 188,860 187,162 −0.90
Q26 52 1,406 170,516 171,346 0.49
Q52 52 704 177,380 175,511 −1.05

this case, the algorithm is fed with the same operational data used by
our hybrid ML at the last iteration.

Iterative ML adds operational data iteratively and the initial KB is empty,
lacking the AM information. In other terms, we considered the general
structure of Algorithm 3.6.1 except lines 1 and 2 that corresponds to
AMs’ involvement.

To compare quantitatively our hybrid approach with the basic and itera-
tive ML baseline methods, we define three performance measures:

The MAPE of response time focuses on prediction accuracy. It is defined as
the mean of relative errors, taken as percentages, of predicted response
times against their expected value measured on the operational system.
MAPE is used to evaluate both extrapolation and interpolation capabil-
ities.

The number of iterations of the external loop of Algorithm 3.6.1, which equals
to the number of real data samples fed into the ML model.

The cost of the experiments performed in the cloud in order to obtain oper-
ational data. In formula:

p
∑
i∈C

nici T̄i , (5.3)
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Table 5.6

DagSim model validation Microsoft Azure A3

Query c n T r [ms] T s [ms] ε [%]

Q26 6 1,406 2,475,150 2,479,524.66 0.18
Q52 6 704 2,101,121 2,094,742.67 −0.30
Q26 8 1,406 2,014,112 2,026,360.58 0.61
Q52 8 704 1,651,055 1,644,624.56 −0.39
Q26 10 1,406 1,718,490 1,720,192.80 0.10
Q52 10 704 1,270,516 1,258,821.03 −0.92
Q26 12 1,406 1,632,222 1,647,299.29 0.92
Q52 12 704 1,067,327 1,059,946.54 −0.69
Q26 14 1,406 1,381,072 1,393,737.17 0.92
Q52 14 704 918,809 913,134.69 −0.62
Q26 16 1,406 1,213,972 1,224,156.94 0.84
Q52 16 704 827,597 823,043.16 −0.55
Q26 18 1,406 1,069,438 1,095,197.38 2.41
Q52 18 704 759,571 752,902.94 −0.88
Q26 20 1,406 1,036,132 1,035,922.42 −0.02
Q52 20 704 681,948 676,836.53 −0.75
Q26 22 1,406 919,943 989,514.49 7.56
Q52 22 704 608,599 603,718.41 −0.80
Q26 24 1,406 850,542 872,744.23 2.61
Q52 24 704 561,149 556,509.52 −0.83
Q26 26 1,406 657,342 671,679.98 2.18
Q52 26 704 507,889 504,324.45 −0.70
Q52 28 704 474,160 470,658.54 −0.74
Q26 30 1,406 586,840 625,812.40 6.64
Q26 32 1,406 565,578 579,209.02 2.41
Q26 34 1,406 561,356 583,397.80 3.93
Q52 34 704 397,761 392,896.90 −1.22
Q26 36 1,406 511,154 536,921.19 5.04
Q52 36 704 377,816 374,978.62 −0.75
Q26 38 1,406 482,202 507,705.68 5.29
Q52 38 704 375,542 373,554.58 −0.53
Q26 40 1,406 466,190 491,614.12 5.45
Q52 40 704 354,247 351,353.37 −0.82
Q26 42 1,406 425,101 447,379.84 5.24
Q52 42 704 329,417 327,510.50 −0.58
Q26 44 1,406 406,187 429,318.34 5.69
Q52 44 704 321,173 316,978.11 −1.31
Q26 46 1,406 383,123 391,511.05 2.19
Q52 46 704 314,163 316,043.45 0.60
Q26 48 1,406 367,084 398,411.46 8.53
Q52 48 704 300,379 296,947.31 −1.14
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Figure 5.7 – (a) Comparison of formula-based approximation, simulation, and
the mean values of real data, (b) right extrapolation, and (c) cost for R1 query

where C is the set of different configurations considered for model se-
lection and training, ni the number of repetitions of each experiment,
ci the number of cores associated to each particular configuration, and
T̄i the mean execution time measured for single runs in configuration i.
Moreover, p is the time unit cost of CPUs practiced by the cloud vendor.
In layman’s terms, this is the sum of CPU hours devoted to experiments
multiplied by the hourly cost of cloud instances.

The following sections describe the experiments. In order to fairly com-
pare our hybrid approach with the iterative ML, we describe how to find op-
timal thresholds that minimize errors on response time. Then, the extrapo-
lation and interpolation capabilities of the approaches are investigated when
some points lack from the set of available configurations, i.e., they are used
only to eventually test model accuracy, without contributing to the training
or cross validation. It is important to point out that, while for MapReduce
scenarios the thresholds were optimized both for the hybrid and iterative ap-
proach, the subsequent experiments to validate accuracy for Spark jobs com-
pare iterative ML run with optimal thresholds to hybrid models that still rely
on the ones obtained for MapReduce. In this way the baseline method attains
its best performance, whilst the proposed approach is used in a realistic sit-
uation, with thresholds optimized on historical data that is not necessarily
similar to the new dataset.

5.4.1 MapReduce Job Analysis with Approximate Formula

In this section, we report the results we have achieved on the R1 MapReduce
query (see Listing 5.1a) considering the approximate formula (3.15) as AM
technique. Several configurations ranging from 20 to 120 cores have been
used for this set of experiments. For each configuration, the profiling phase
has been conducted extracting the number of map and reduce tasks and their
average durations across twenty runs.

The configuration set for analytical data includes 11 different numbers
of cores used for executing MapReduce jobs. Figure 5.7a plots the average
response time of MapReduce job executions versus the number of cores. The
average relative error of the values obtained from equation (3.15) is around
16 % with respect to the mean values of real samples, the maximum relative
error is about 31 %.
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5. Performance Models Validation

In order to have a fair comparison between the approaches, we found the
optimal combination of the (τ in, τout) pair in both the hybrid and iterative ML
cases. We consider optimal the values that minimize MAPE on the V2 set.

We varied τ in in the range [25,40] and τout in [10,30] with step 1.5 For
every combination of the two thresholds, the algorithms are run with 50 seeds
for the pseudorandom number generator, so as to have different outcomes.
Then the generated results are averaged to compute the mean value of MAPE
across seeds for every combination. This method showed that the optimum
thresholds are (34,23) and (30,19) for the hybrid and iterative ML approaches,
respectively.

5.4.1.1 Extrapolation Capability on Many Cores

To examine the extrapolation capability of the approaches in the upper region
of the configuration set, the following analyses progressively remove from the
training set and cross validation sets V1 and V2 the configurations with the
largest available capacity, which are moved to the test set. In other terms, in
the first scenario the training and V1 set included AM data and the real system
data only for configurations from 20 to 100 cores, while the V2 and test sets
included experimental data for 108 and 120 cores, respectively. In the second
case, we used in the training and V1 set real data from 20 to 90 cores, the
V2 set included operational data for 100 cores, while the test set included
experimental results in the range [108,120] cores and so on. Then, the error
on response time prediction, the number of iterations, and the associated cost
of the alternative techniques were compared.

If not differently stated in the following, both the extrapolation and inter-
polation capabilities analyses are performed by training 50 models obtained
setting 50 different seeds. These are also different from the ones used to iden-
tify the optimal thresholds.

As can be seen in Figure 5.7b, the error on the test set of the hybrid and
the iterative ML across the 50 models are close up to three missing points,
i.e., three configurations excluded during the training phase; but when the
number of missing points grows, our hybrid approach performs better than
the iterative ML. On the other hand, the number of learning iterations of the
hybrid approach is between 2 and 6 and is thus rather smaller than the one
of iterative ML, which varies between 12 and 16.5, on average. As Figure 5.7c
shows, the iterative ML cost is from 2 to 4 times larger than our hybrid tech-
nique, based on the increased number of iterations needed for convergence,
hence the larger amount spent for experiment on the real system.

5.4.1.2 Extrapolation Capability on a Few Cores

Next, we examined the extrapolation capability of the approaches in the lower
region of the configuration set. In the beginning, the test set includes only 20-
core data then, moving from the left side of the configuration axis towards the
right, we gradually added other points. As it can be seen from Figure 5.8, our
hybrid approach outperforms both the iterative ML and basic ML approaches
in terms of the MAPE in almost all scenarios. Specifically, as long as the num-
ber of missing points is small, the errors on the test set of the hybrid and

5Here we dropped the percent signs to keep the notation light and easier to follow.
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Figure 5.8 – Left extrapolation for R1 query

iterative ML are relatively close, but the number of iterations of the hybrid
approach is much smaller than for iterative ML. When the number of missing
points gradually grows, although the number of iterations of the hybrid and
iterative ML models get closer, the accuracy of the hybrid approach improves
in comparison with the iterative ML.

Comparing Figure 5.8 and Figure 5.7b, you can see that all the alternative
approaches yield higher errors when extrapolating towards the region with a
low resource allocation. We can enumerate a few reasons for this behavior.
First, the left side of the response time curve is more informative than the
right side, as depicted in Figure 5.7a. As a result, the prediction when some
configurations on the left end of the axis are excluded from the training set
is more difficult. Second, the optimization process for finding the optimal
combinations of the thresholds was run including 120 in the V2 set, thus nat-
urally favoring better results at the higher end of the axis. All in all, these ex-
periments show an error too large for common performance evaluation prac-
tice [78], since they reach higher than 30 %. As the behavior repeats also for
the other considered technologies, we will omit the analogous analyses in the
next sections. However it is common practice for DIAs to be deployed on rea-
sonably large clusters, hence investigating the extrapolation behavior towards
greater numbers of supporting cores is the most sensible choice.

5.4.1.3 Interpolation Capability

To assess the interpolation capability of our proposed approach, we consid-
ered three different scenarios: a configuration where the training and V1 set
included analytical and operational data for: (i) 20, 72, and 120 cores, (ii) 20,
48, 72, 100, and 120 cores, and (iii) 20, 40, 48, 72, 80, 100, and 120 cores.
These scenarios are reported in Figure 5.9 and Figure 5.10 on the x-axis with
values 3, 5, and 7, which represent the number of configurations excluded in
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Figure 5.9 – Interpolation for R1 query

the learning phase.
As shown in Figure 5.9, though the error on response time prediction of

the hybrid approach is slightly worse than that of the iterative ML, the hybrid
approach still performs much better than basic ML. Furthermore, the number
of iterations of the hybrid approach is between 2 and 3 in all three scenarios,
thus smaller than iterative ML’s. Moreover, as shown in Figure 5.10, the cost
of constructing hybrid and basic ML models is much less than that of the
iterative ML; for example, it is almost one third of the iterative ML’s cost
when three or five points are missing. Hence our hybrid approach performs
better than the basic ML in terms of accuracy and outperforms the iterative
ML in terms of the number of experiments to run and the corresponding cost.

5.4.2 MapReduce Job Analysis with QN Simulation

The goal of this section is to evaluate our hybrid approach when relying on
a less accurate AM, i.e., QN simulation, with respect to the previous section.
The lower accuracy was obtained by considering exponential time distribu-
tion for map and reduce stages, while the best fit for the map stage are Erlang
PDFs (see Ardagna et al. [9] for further details). In this way, we can verify if
our hybrid approach is too sensitive to the accuracy of the AM or if the in-
terpolation and right extrapolation capabilities can be obtained also in such
conditions.

At first, the QN model shown in Figure 3.1 is used to generate the set
of synthetic data samples that constitute the initial KB. This was done with
JMT [24], setting up a 95 % confidence interval at 10 % accuracy. We set the
think time, Z, to 10 seconds in a single user scenario.

In Figure 5.7a, the average response times obtained from simulation (red
line) are compared with those obtained from real experiments. The average
relative error of the values observed from simulations is around 65 % with
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Figure 5.11 – Right extrapolation for R1 query (simulation)

respect to the mean values of real samples, and in the worst case the relative
error reaches 96 %, which shows that the QN analysis is very conservative.

To have a fair comparison between the two techniques, the optimal combi-
nation of the (τ in, τout) thresholds was determined as in the previous section
both for our hybrid and the iterative ML approach. The optimal thresholds
are (38,24) and (30,19) for the hybrid and iterative ML approaches, respec-
tively.

The results of the right extrapolation are reported in Figure 5.11. Our
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Figure 5.12 – Interpolation for R1 query (simulation)

hybrid approach outperforms the iterative ML approach in terms of the MAPE
in all scenarios. When the only missing configuration is 120, the error of our
hybrid approach is around 11 %, in contrast to around 14 % of the iterative
ML. On the other hand, when half of the rightmost points of the configuration
set are missing, the hybrid approach achieves 30 % error on the test set while
the iterative ML obtains about 38 %.

For assessing the interpolation capability of our proposed approach, we
followed the same procedure described in Section 5.4.1.3. As shown in Fig-
ure 5.12, the error on response time prediction of the hybrid approach is
slightly worse than the one of iterative ML and basic ML, while its number
of iterations is significantly lower than for iterative ML. The maximum rela-
tive error in the case of hybrid ML reaches 20.5 %, while for iterative and basic
ML are 19.5 % and 18.5 %, respectively. Moreover, as shown in Figure 5.10,
the cost of hybrid and basic ML models is much lower, up to three times, than
the iterative ML model’s.

5.4.3 Spark Job Analysis with Approximate Formula

In order to examine the predictions techniques on Apache Spark, we per-
formed the last set of experiments on the official Q40 query (Listing 5.3) of the
TPC-DS benchmark, whose DAG is shown in Figure 5.13, using the approx-
imate formula in equation (3.15) as AM. In particular, we followed a similar
process as reported in Section 5.4.1, using the same set of configurations for
both analytical and real data as in the R1 case. The profiling phase has been
conducted extracting the number of tasks and the average task durations from
around ten runs with the same configuration.

In Figure 5.14a we compare the average execution times measured on the
real system to the ones obtained with equation (3.15). The average relative
error of the approximation formula is around 34 %.
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se l e c t w_state , i_item_id ,
sum( case

when ( cast ( d_date as date ) < cast ( ’ 1998−04−08 ’ as date ) )
then c s _ s a l e s _ p r i c e − coalesce ( cr_refunded_cash , 0)
else 0
end ) as sa les_before ,

sum( case
when ( cast ( d_date as date ) >= cast ( ’ 1998−04−08 ’ as date ) )
then c s _ s a l e s _ p r i c e − coalesce ( cr_refunded_cash , 0)
else 0
end ) as s a l e s _ a f t e r

from c a t a l o g _ s a l e s l e f t outer join c a t a l o g _ r e t u r n s
on ( c a t a l o g _ s a l e s . cs_order_number = c a t a l o g _ r e t u r n s . cr_order_number

and c a t a l o g _ s a l e s . cs_item_sk = c a t a l o g _ r e t u r n s . cr_item_sk ) ,
warehouse , item , date_dim

where i _ c u r r e n t _ p r i c e between 0.99 and 1.49
and item . i_item_sk = c a t a l o g _ s a l e s . cs_item_sk
and c a t a l o g _ s a l e s . cs_warehouse_sk = warehouse . w_warehouse_sk
and c a t a l o g _ s a l e s . cs_sold_date_sk = date_dim . d_date_sk
and date_dim . d_date between ’ 1998−03−09 ’ and ’ 1998−05−08 ’

group by w_state , i_ i tem_id
order by w_state , i_ i tem_id
l imit 100

Listing 5.3 – TPC-DS query Q40

S0

S1

S2

S5

S3

S4

S6

Figure 5.13 – Q40 DAG

The optimal pair (τ in, τout) was determined only for the iterative ML ap-
proach and was (25,15). Vice versa, in the case of hybrid approach, we used
the same thresholds (34,23) obtained for the R1 query in Section 5.4.1.

Right extrapolation capability analysis results are reported in Figure 5.14
(b) and (c). Figure 5.14b shows that the use of the proposed approach defeats
the iterative ML, always providing a lower MAPE on the test set. What is
remarkable is that while we move to the left side, where more points are ex-
cluded in learning, the iterative ML’s MAPE increases dramatically, demon-
strating the dominance of our proposed approach. In particular, when only
the 120 configuration is missing, the error of the hybrid model is approxi-
mately 7 %, contrary to 15 % of the iterative ML. However, when 5 points are
missing from the configuration set, the error of iterative ML shoots up to 30 %
while in the case of hybrid algorithm just a small increase is observed, reach-
ing 11 %.

Concerning interpolation, we considered three different scenarios when
applying the hybrid algorithm to query Q40: (i) three points are missing—20,
72, and 120 cores, (ii) five points—20, 48, 72, 100, and 120 cores, and finally
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Figure 5.14 – (a) Comparison of formula-based approximation and the mean val-
ues of real data, (b) right extrapolation and (c) cost for Q40 query
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Figure 5.15 – Interpolation for Q40 query

(iii) seven points—20, 40, 48, 72, 80, 100, and 120 cores. Concerning the
relative error, we observe in Figure 5.15 that the iterative ML approach gives
better accuracy compared to our technique. Although the hybrid error for
three missing points is high (17 %), in case of seven missing points the hybrid
algorithm gets closer to iterative ML’s performance. However, the number of
iterations of the hybrid approach is smaller than the one of iterative ML, thus
leading to lower costs, as reported in Figure 5.10.

5.5 CNNModels

In this section we report numerical results to support and validate the mod-
eling techniques proposed for CNNs. In order to provide a reproducible ex-
perimental setting, we consider AlexNet [74], GoogLeNet [115], and VGG-
16 [113] as CNNs, while the datasets are the ones released for ILSVRC2012.6

6http://www.image-net.org/challenges/LSVRC/2012/
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Table 5.7

NVIDIA GPUs Specifications

Characteristic M6000 P100 Unit

NVIDIA CUDA cores 3,072 3,584 -
GPU memory, DDR5 12 16 GB
Memory bandwidth 317 732 GB/s
Single precision operations 7.0 9.3 TFLOPS

We collected data from two computational nodes with different GPUs.
The first has an Intel Xeon E5-2680 v2 2.80 GHz 10-core microprocessor, an
NVIDIA Quadro M60007 GPU, and runs CentOS 6.8; the second sports an
Intel Xeon E5-2680 v4 2.40 GHz 14-core CPU, an NVIDIA Tesla P100-PCIe8

graphic card, and CentOS 7.4. Table 5.7 reports some relevant specifications
of both GPU models. We report single precision operations per second since
Caffe uses this precision by default in floating point arithmetics. Thanks to
the increased speed and to the more than double memory bandwidth, P100
showed an improvement in end to end execution times in the range 40–90 %.

Exploiting an ad hoc benchmarking framework internally developed at
IBM Research, we performed several runs of the three CNNs with varying
batch sizes and iterations numbers. In every configuration we collected mainly
two logs, one for the regular learning procedure and one for “timing” runs.
Caffe provides this handy capability for obtaining detailed measurements
of each layer composing the network: instead of proceeding with the usual
workflow, which interleaves a number of training iterations with a streak of
validation batches used only to assess the current classification quality, the
framework focuses on recording the precise execution times for all the lay-
ers. We built the datasets for the per layer models by juxtaposing the average
layer running times returned after Caffe timing runs and the complexity de-
termined via the formulas in Table 3.1. On the other hand, we extracted from
ordinary execution logs, via a custom parser, the time taken to perform both
the training and testing phases of the CNNs, thus constructing datasets where
these overall times are associated with the corresponding batch sizes and iter-
ations.

As accuracy metric we consider signed relative errors, as defined in equa-
tion (5.1). Both the measured times T r and the predictions T s refer to the
total time taken for CNN training. As additional accuracy metric, when we
need to summarize the results, we take absolute values of the relative errors
and compute the average, thus obtaining MAPEs. Our validation dataset con-
sists of around 500 runs and in the following we report the most significant
outcomes.

7https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/
documents/75509_DS_NV_Quadro_M6000_US_NV_HR.pdf

8https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-
datasheet.pdf
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Table 5.8

Per Layer Model Validation, NVIDIA Quadro M6000

Network Batch Iterations T r [ms] ε1 [%] εgn [%]

AlexNet 16 100 3,427 −0.71 −21.30
AlexNet 16 150 4,880 4.60 −17.10
AlexNet 16 230 7,488 4.52 −17.16
AlexNet 32 100 4,914 1.20 0.68
AlexNet 32 150 6,987 6.77 6.22
AlexNet 32 230 10,719 6.72 6.16
AlexNet 64 100 8,209 −1.16 15.10
AlexNet 64 150 11,555 5.34 22.65
AlexNet 64 230 17,790 4.91 22.16
GoogLeNet 16 100 7,666 2.93 2.93
GoogLeNet 16 150 10,823 9.36 9.36
GoogLeNet 16 230 16,578 9.47 9.47
GoogLeNet 32 100 13,201 −7.19 −7.19
GoogLeNet 32 150 18,874 −2.63 −2.63
GoogLeNet 32 230 28,542 −1.27 −1.27
GoogLeNet 64 100 24,299 −13.68 −13.68
GoogLeNet 64 150 34,088 −7.70 −7.70
GoogLeNet 64 230 52,468 −8.05 −8.05
VGG-16 8 100 18,440 −2.98 −15.96
VGG-16 8 150 26,157 2.60 −11.13
VGG-16 8 230 39,954 2.99 −10.79
VGG-16 16 100 33,283 −2.07 −9.41
VGG-16 16 150 46,621 4.87 −2.99
VGG-16 16 230 72,084 4.00 −3.79
VGG-16 32 100 62,875 −1.40 −5.43
VGG-16 32 150 88,732 4.81 0.52
VGG-16 32 230 136,685 4.32 0.06

5.5.1 Per Layer Model

Here we report the validation results of our proposed per layer modeling ap-
proach. The predictions computed via the models discussed in Section 3.5.1
are compared to the measured execution time for the relevant runs.

Table 5.8 lists the accuracy achieved on the M6000 node, alongside CNN,
batch size, number of iterations, measured time T r. For comparison, we report
both the relative errors obtained by predicting with models learned on same
CNN timing runs, in column ε1, and the ones gotten when using the models
for GoogLeNet across all the considered networks, in column εgn. In this way
we underline the generalization capabilities of this approach.

Following a common practice, we varied the batch size according to a geo-
metric progression of ratio 2, ranging from 16 to 64, except for VGG-16, which
could not run at batch size 64 due to memory constraints: as reported in Ta-
ble 3.2, it has the most activations, thus exhausting earlier the GPU’s RAM. As
far as accuracy is concerned, when using GoogLeNet’s models errors in most
cases remain below 20 % and the MAPE is 9.29 %. When considering CNN-
specific models, instead, errors generally remain below 10 % and the MAPE
settles at 4.75 %.

Another interesting aspect to highlight is that when the batch size in-
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Table 5.9

End to End Model Validation, NVIDIA Tesla P100-PCIe

Network b̃ ı̃ ntrain ntest MAPE [%]

AlexNet 16 150 6 140 3.18
AlexNet 24 170 12 140 6.43
AlexNet 32 200 20 140 3.01
GoogLeNet 16 150 6 140 5.79
GoogLeNet 24 170 12 140 1.09
GoogLeNet 32 200 20 140 2.43
VGG-16 16 150 6 140 3.70
VGG-16 24 170 12 140 2.20
VGG-16 32 200 20 140 3.41

creases, the CNNs show different efficiencies. When fixing the number of
iterations and comparing T r at various batch sizes, AlexNet has the most fa-
vorable ratio. We can interpret this result as an effect of the lower number of
layers (see Table 3.2), which introduces fewer synchronization points between
subsequent computation phases, thus less overhead.

5.5.2 End to End Model

This section describes the validation approach for the end to end model pro-
posed in Section 3.5.2 and its results.

Recall that feasible batch sizes are limited by memory constraints, so in
this experiment we vary b with step 8 to achieve a greater sample size: we
ran experiments on the P100 node exploring the Cartesian product of B = {8,
16,24,32,40,48,56,64} and I = {100,120,150,170,200,230,250,300,350,400,
500,700,800,950,1000,1100,1400,1600,2000,2300}.

In order to assess the quality of execution time prediction, for each CNN
we split the dataset into training and test portions. Models were learned on
the subset devoted to the training phase, while the final accuracy metric is
the MAPE evaluated on the test set by comparing overall real execution times
with the corresponding predictions. By splitting the dataset we can quan-
tify the predictive capability on configurations not available during the learn-
ing via linear regression, particularly in terms of extrapolation towards larger
batch sizes and more overall iterations. This approach to splitting data is mo-
tivated by the economic benefit of running only a limited number of small
scale experiments, rather than spanning the whole domain where parameters
can attain values.

Table 5.9 lists the results obtained with these experiments. The split be-
tween training and test set was performed by setting thresholds on the batch
sizes and numbers of iterations allowed in the former. Every row corresponds
to a model learned on the training set {(b, i) ∈ B× I : b ≤ b̃, i ≤ ı̃}, whose sample
size is ntrain. For ease of comparison, we used as test set only the subset of
data points that do not appear in any of the training sets, hence each CNN is
associated with a single test sample size ntest. All the three CNNs show good
accuracy on the test set, with a worst case MAPE of 6.43 % even when rather
small training sets are used.
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Figure 5.16 – AlexNet end to end time, ntrain = 6

Figure 5.16 reports, as example, a plot depicting the results obtained with
the model learned for AlexNet using the 6-element training set, which corre-
sponds to the first row in Table 5.9. Triangles represent the data points in the
training set, circles are real measurements in the test set, while crosses are the
predictions given by the linear regression model, again only in the test set.
The predicted execution times show a good accordance with the correspond-
ing measurements, with a MAPE of 3.18 % on the test set. With this training
set, the estimated coefficients are in the order of magnitude of 10−2 for β̂i and
β̂b, while β̂ib is in the order of 10−3. As the batch sizes b are typically be-
tween 10 and 100, the number of iterations i is typically larger than 10,000,
the dominant term will be i · β̂i + i · b · β̂ib. This outcome is quite intuitive, as
the product i · b quantifies the total number of images fed into the CNN for
processing: clearly the amount of input data has a major role in determining
performance.

5.6 Discussion

The performance models described in Chapter 3 were evaluated here. All the
simulation models achieve a good accuracy on average, with QNs settling at
a 14.13 % relative error, SWNs at 9.08 %, and dagSim at 3.06 %. These good
results motivate the choice to adopt them to predict performance during the
optimization procedures presented in Chapter 4. In addition, these models
are built on framework behaviors, so they are quite insensitive to the range
where they are evaluated.

On the other hand, both hybrid and basic ML techniques offer models that
are very fast to evaluate, given their algebraic closed form, but not as accurate.
Most importantly, a general property of regression methods is their unrelia-
bility outside of the domain spanned by training data. At design time it is not
possible to constrain an application to an already explored parameter range,
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whence we apply ML only to provide the optimization procedures with a rea-
sonable starting point for the search.

Alongside the already discussed validation results, this chapter also shows
the evaluation of a deployment choice, whether or not to use spot instances,
performed with SWNs. Thanks to the expressiveness of the formalism, it is
possible to extend basic Hadoop or Spark models and add some complex be-
haviors, thus enabling the quantitative evaluation of various alternative de-
sign choices.

In the end, we also report the validation of two performance models ob-
tained with linear regression to investigate CNNs running on GPGPUs. For
this use case, simulations cannot be used due to the high level of parallelism
attained in GPUs, which would lead to state space explosion and make sim-
ulation times impractical. However the presented ML approaches allow to
attain very accurate models, with a MAPE of 9.29 % for the per layer method
and always below 7 % in the end to end case.

Overall, the hereby presented experimental campaign quantitatively proves
the accuracy of the proposed performance models, thus contributing to re-
search question 1. Furthermore, Section 5.2.2 shows an example of using the
proposed methods to assess the impact of spot instances, along the lines of
research question 4. Adopting an expressive modeling formalism as SWNs, it
is possible to investigate the trade-off between low operational costs and un-
reliability offered by the peculiar spot pricing model, which could make for
an interesting design choice when SLAs are not too stringent.
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CHAPTER 6
Optimization Techniques

Validation

This chapter presents several validation analyses carried out to assess the
quality of the solutions returned by the proposed optimization tools: D-SPACE-
4Cloud, OPT_IC, and OPT_JR. To begin with, Section 6.1 uses profiling data
about TPC-DS queries for the validation of D-SPACE4Cloud, with scenarios,
real system experiments, and a scalability analysis. Then Section 6.2 presents
a case study, where D-SPACE4Cloud is applied in the design process of a
product developed by industrial partners. Similarly, Section 6.3 validates
OPT_IC, the tool for determining optimal provisioning used in the EUBra-
BIGSEA architecture, on an analogous application. At last, in Section 6.4 we
report the validation study for the run time re-balancer tool, OPT_JR, while
Section 6.5 concludes the chapter with a discussion of the achieved results,
also in relation to research questions 2, 3 and 4.

6.1 Design Time Problem

In the following we show the results of several experiments performed to val-
idate the approach proposed for the solution of the design time capacity allo-
cation problem. All these analyses have been performed on two Ubuntu 14.04
VMs hosted on an Intel Xeon E5530 2.40 GHz equipped server. The first VM
ran D-SPACE4Cloud and dagSim, with 8 vCPUs and 12 GB of RAM. The sec-
ond one, instead, ran JMT 0.9.3, with 2 vCPUs and 2 GB of RAM.

6.1.1 Experimental Settings

Refer to Section 5.1 for details on the considered experimental platforms and
the TPC-DS dataset generator, which was used to create the DB where to
run queries. In particular, this section uses the profiles of the MapReduce
R queries in Listing 5.1, as well as the Spark Q queries in Listings 5.2 and 5.3.
On top of the VM types mentioned in Section 5.1, notice that this section also
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Figure 6.1 – Query R1, two concurrent users

considers deployments on Microsoft Azure based on A3, D13v2, and D14v2
instances.

Another considered deployment is an in house cluster based on IBM POWER8
(P8) processors available at Politecnico di Milano, which runs Red Hat En-
terprise Linux 7.3 and Spark 1.4.1. The deployment includes four worker
VMs with 11 cores and 60 GB RAM each, plus one similarly configured mas-
ter node, for a total of 44 CPUs available for computation. Physical storage is
provided by several fiber channel disks amounting to 12 TB. Spark executors
were configured with 2 cores and 4 GB RAM, while 8 GB were allocated to the
driver.

6.1.2 Scenario-based Analyses

The optimization approach described in Section 4.3 needs to be validated, en-
suring that it is capable of catching realistic behaviors as one can reasonably
expect of the system under analysis. We test this property with a set of assess-
ment runs where we fix all the problem parameters but one and verify that
the solutions follow an intuitive evolution.

The main axes governing performance in Hadoop or Spark clusters hosted
on public clouds are the level of concurrency and the deadlines. In the first
case, increasing hi and fixing all the remaining parameters, we expect a need
for more VMs to support the rising workload, thus leading to an increase of
leasing costs. On the other hand, if at fixed parameters we tighten the dead-
lines Di , again we should observe increased costs: the system will require a
higher parallelism to shrink execution times, hence more containers to sup-
port it.

For the sake of clarity, in this section we performed single-class analyses:
considering only one class ensures an easier interpretation of the results. Fig-
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Figure 6.2 – Query R3, one concurrent user
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Figure 6.4 – Query Q40, ten users

ures 6.1, 6.2 and 6.3 report the solutions obtained with the 250 GB dataset on
MapReduce queries when relying on the JMT simulator. The average running
time for these instances is about two hours. All the mentioned figures show
the cost in e/h plotted against decreasing deadlines in minutes for both the
real VM types considered as candidate: CINECA is the 20-core node available
on PICO, whilst m4.xlarge is the 4-core instance rented on Amazon AWS. In
Figures 6.1 and 6.2 the expected cost increase due to tightening deadlines is
apparent for both query R1 and R3. Further, in both cases it is cheaper to
provision a cloud cluster consisting of the smaller Amazon-offered instances,
independently of the deadlines. It is then interesting to observe that R1 shows
a different behavior if the required concurrency level increases. Figure 6.3
shows that, as the deadlines tighten, it is possible to identify a region where
executing the workload on larger VMs becomes more economic, with a 27.8 %
saving.

Figures 6.4 and 6.5 show the behavior of several Spark runs on the 500 GB
dataset. Q40 with ten users exhibits a straightforward behavior, with D13v2
instances always leading to cheaper deployments. In order to quantify mon-
etary savings, we compute the ratio of the difference between costs over the
second cheapest alternative. With this metric, D13v2 yields an average per-
centage saving around 23.1 % for Q40, hence this VM type proves to be the
cheapest choice by a reasonable margin. On the other hand, a single-user Q52
provides a more varied scenario. As shown in Figure 6.6 for clarity, two VM
types, namely, A3 and D12v2, alternate as the cheapest deployment when the
deadline varies. By identifying the proper alternative, it is possible to obtain
an average saving around 19.3 % over the considered range of deadlines. The
maximum saving is about 36.4 %.

Overall, these results provide a strong point in favor of the optimization
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Figure 6.5 – Query Q52, single user
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procedure implemented in our tool, as they prove that making the right choice
for deployment can lead to substantial savings throughout the application life
cycle. Take into account that Microsoft Azure suggests VMs of the D11–15v2
range for memory intensive applications, such as analytics on Spark or dis-
tributed DBs, whilst we showed that, depending on the workload, even the
most basic offerings in the A0–4 range can satisfy QoS constraints with a com-
petitive budget allocation. On top of this, D-SPACE4Cloud can also determine
the optimal number of VMs to use in order to meet the QoS requirements,
which is a nontrivial decision left to users.

In terms of execution times, D-SPACE4Cloud carried out the whole opti-
mization procedure for Spark experiments within minutes. All the running
times were in the range [24,560]s, with an average of 125.98 s. In these cases
the search algorithm ran much faster due to the performance gain allowed by
dagSim, which we used as simulator for the Q queries.

Figure 6.7 shows the results of a multi-user analysis over the 500 GB dataset.
Fixing all the other parameters, in particular query Q26 and a deadline of 20
minutes, we varied the required concurrency level between 1 and 10 users
with step 1. Here the D12v2 instances prove in every case the better choice,
with an average 30.0 % saving in comparison to the second cheapest deploy-
ment.

In the end, to show the generality of the techniques implemented in D-
SPACE4Cloud, we performed some runs of a random forest ML algorithm on
the Azure platform. In particular, it was a binary classification problem on the
logistic regression dataset from SparkBench [80], which comprises 10 millions
entries with 100 features. Such an application has characteristics markedly
different from query workloads, due to the iterative nature of its training al-
gorithm. This analysis uses the obtained profile, a single user, and deadlines
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Figure 6.8 – Random forest, single user

varying between 5 and 10 minutes, with a 1-minute stride. As shown by Fig-
ure 6.8, in this case D12v2 instances make for the cheapest deployments irre-
spective of the deadline, with an average saving of 30 % in contrast to the sec-
ond cheapest alternative, i.e., D13v2. Note that for 6–9 minutes both D13v2
and D14v2 enable same cost deployments.

6.1.3 Solution Validation on a Real Cluster

A further experiment was aimed at assessing the quality of the optimized so-
lution obtained using D-SPACE4Cloud. Given a query and a deadline to meet,
we focus on the execution time measured in a real cluster provisioned accord-
ing to the number and type of VMs returned by D-SPACE4Cloud, quantifying
the relative gap as a metric of the optimizer accuracy. Formally:

ε =
D − T r

T r (6.1)

where D is the deadline and T r the execution time measured on the system,
so that possible misses would yield a negative result.

We considered six cases, varying deadline and query, and ran D-SPACE-
4Cloud to determine the optimal resource assignment to meet the QoS con-
straints on D12v2 instances with a 500 GB scale factor. Table 6.1 collects data
that relates to this experiment. Every row shows the relevant query and dead-
line, the optimal number of cores, the measured execution time, and the per-
centage gap ε. First of all, none of the considered runs led to a deadline miss.
Moreover, the relative error is in most cases below 30 %, with a worst case
result of 36.83 % and the average settling at 26.26 %. Overall we can con-
clude that the optimization tool is effective in identifying the minimum cost
solution at design time, guaranteeing that deadlines are met as well.
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Table 6.1

Optimizer single class validation, D12v2

Query D [ms] c T r [ms] ε [%]

Q26 180,000 48 158,287 13.72
Q52 180,000 48 150,488 19.61
Q26 240,000 36 186,066 28.99
Q52 240,000 36 175,394 36.83
Q26 360,000 24 280,549 28.32
Q52 360,000 24 276,790 30.06

Table 6.2

Optimizer multi-class validation, D14v2

Query D [ms] c T r [ms] ε [%]

Q26 720,000 16 533,731 34.90
Q40 720,000 16 530,122 35.82
Q52 720,000 16 562,625 27.97

In addition, we used D-SPACE4Cloud to optimize a multi-class instance
on D14v2 VMs. Table 6.2 shows the results of this experiment, with three dif-
ferent queries subject to the same deadline that share a cluster of three worker
nodes, for a total of 48 cores, under a work conserving scheduling policy. In
this case, the worst case result is 35.82 %, with an average of 32.90 %. The
accuracy is slightly lower than the single class scenario due to possible perfor-
mance gains allowed by spare resources borrowed from other classes during
their idle time, yet it remains good for practical applications.

6.1.4 Scalability Analysis

In this section we quantify the time taken to obtain the optimized solution for
instances of increasing size, both in terms of number of classes and aggregate
user count. All these runs exploited dagSim as simulator and Azure D14v2
VMs as target deployment.

The experiment considers three different queries, namely, Q26, Q40, and
Q52, varying the deadline between five minutes and one hour with a five-
minute stride, to obtain 12 sets of three distinct classes. Thus, we have Q26,
Q40, and Q52 with deadline 60 minutes, then the three queries all with a
deadline of 55 minutes, and so on. The instances are then created cumu-
latively joining the three-class sets following decreasing deadlines. For ex-
ample, the configuration with 3 classes has D = 60min, the second instance
with 6 classes collects D ∈ {60,55}min, the third one adds D = 50min, and
so forth. We repeated this test instance generation with a required level of
concurrency ranging from 1 to 10 users, but without ever mixing classes with
different hi : in any given instance, ∀i ∈ C, hi = h̄. In this way, we considered a
total of 120 different test instances with varying number of classes and overall
concurrent users: classes range between 3 and 36, while the aggregate number
of users from 3 to 360.

Figure 6.9 shows the results of this experiment. The plot represents the
mean execution time of D-SPACE4Cloud at every step. The number of users
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Figure 6.9 – Execution time for varying number of classes and users

is per class, thus, for example, the configuration (24,4) totals 96 users subdi-
vided into 24 distinct classes with concurrency level 4. Overall, the average
processing time ranges from around 40 minutes for three classes up to 12
hours for 36 classes. On the other hand, the best single instance, which needs
only three minutes, is with three classes and one user each, while the longest
running takes 16 hours and a half to optimize 36 classes with 9 users each.

The reported results show how D-SPACE4Cloud can solve the capacity al-
location problem for cloud systems in less than one day, which is a reasonable
time span for design time considerations. Furthermore, current best practices
discourage hosting as many as 36 application classes and 360 users on a single
shared cluster, hence several of the considered instances should be considered
one order of magnitude larger than nowadays production environments.

6.1.5 Comparison with an Alternative Literature Proposal

As already highlighted in Chapter 2, currently in the literature there are no
works studying the same problem solved by D-SPACE4Cloud. This notwith-
standing, comparing the obtained results with a reasonable baseline is helpful
in validating the quality of the proposed approach.

Hemingway [100] is not too far from the formulation used in D-SPACE4-
Cloud. The mentioned framework focuses on ML workloads and iteratively
reaches, exploiting Bayesian optimization, the optimal configuration for re-
current jobs. For a job to be recurrent, it has to be the very same piece of soft-
ware that runs repeatedly under the same deadline. Compared to the method
discussed here, Hemingway has some shortcomings: i) it only considers single
user scenarios, and ii) it must be applied fixing the application and SLAs.

In order to have a fair comparison, we take into account the underlying
performance model, Ernest [121]. Since the model itself is valid only with
a single user, this is the scenario considered in the following. The authors
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Table 6.3

Optimal solution comparison, D12v2

Query D [ms] cr εd [%] εe [%]

Q26 180,000 48 0.00 16.67
Q52 180,000 48 0.00 0.00
Q26 240,000 40 −10.00 0.00
Q52 240,000 40 −10.00 −10.00
Q26 360,000 24 0.00 16.67
Q52 360,000 24 0.00 0.00

propose to apply nonnegative least squares fitting and learn a performance
model of the form:

t = θ0 +θ1
s
m

+θ2 log(m) +θ3m, (6.2)

where t is the execution time, s the input data size, and m the number of
allocated machines. Each of the variable terms serves the purpose of mod-
eling a specific common communication/computation pattern implemented
in distributed applications: namely, the term in θ1 relates to data-parallel
processing, whilst the logarithmic term models tree-shaped aggregation, and
θ3m highlights reduction operations targeting only one sink node.

Ernest’s authors propose a methodology to train the model based on op-
timal experiment design, which, however, is out of scope in this dissertation.
To have a fair comparison, the training datasets comprised all the runs done
during the experimental campaign, which was very fine grained and included
a very large set of experiments where the system configuration varied with
two-core steps for every platform. In this way, model learning happens with
an abundance of data, so as not to impair the baseline. We applied the learned
model to predict performance across the whole range of possible core alloca-
tions, then obtained the optimum by inspection, taking the minimum cost
configuration whose predicted time is feasible, i.e., shorter than the imposed
deadline. Adopting this approach, we are sure to determine the global opti-
mum associated with the baseline model. Similarly, we use measurements on
the real system to determine by inspection the minimum cost configuration
that meets a given deadline. The quality metric is then the signed relative
error on the predicted allocation:

ε =
cp − cr

cr , (6.3)

where cp is the optimal number of cores returned by D-SPACE4Cloud (re-
spectively, Ernest) and cr the actual optimum obtained by inspection from
measurements on the real system. With this definition, when the optimizer
assigns too scarce resources the error is negative.

Table 6.3 considers six cases, varying deadline and query, and lists the op-
timal resource assignment to meet the QoS constraints on D12v2 instances
with a 500 GB scale factor. Every row shows the relevant query and deadline,
the optimal number of cores, and the percentage errors with both alternatives.
The two methods prove accurate, with relative errors that always remain be-
low 20 %, on average 3.33 % for D-SPACE4Cloud and 7.22 % for Ernest.
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Table 6.4

Optimal solution comparison, IBM POWER8

Query D [ms] cr εd [%] εe [%] εe′ [%]

Q40 2,537,015 6 0.00 0.00 33.33
Q40 1,905,821 8 0.00 −25.00 25.00
Q40 1,566,992 10 0.00 −20.00 20.00
Q40 1,337,868 12 0.00 −16.67 16.67
Q40 1,165,666 14 0.00 −28.57 28.57
Q40 1,044,557 16 0.00 −25.00 25.00
Q40 964,752 18 0.00 −22.22 22.22
Q40 902,173 20 0.00 −30.00 10.00
Q40 854,692 22 0.00 −27.27 9.09
Q40 812,298 24 0.00 −33.33 8.33
Q40 784,445 26 −7.69 −38.46 0.00
Q40 763,447 28 −7.14 −35.71 0.00
Q40 743,283 30 −6.67 −40.00 −6.67
Q40 726,324 32 −6.25 −43.75 −6.25
Q40 718,641 34 −11.76 −47.06 −11.76
Q40 696,641 36 −5.56 −50.00 −16.67
Q40 687,299 38 −10.53 −47.37 −15.79
Q40 664,080 40 0.00 −50.00 −20.00
Q40 662,526 42 −4.76 −52.38 −23.81
Q40 663,823 44 −9.09 −54.55 −27.27

Table 6.4, on the other hand, reports an extensive comparison over the
full range of experiments run on the internal cluster based on IBM P8 pro-
cessors for query Q40. In particular, the table shows results obtained at a
1,000 GB scale factor, with deadlines set at the mean execution times (or re-
sponse times [78]) measured on the real system. In this case, Ernest with the
basic feature set widely underestimates the optimal resource allocation across
the board. In order to obtain a fair comparison, the column marked εe′ lists
the errors yielded by the Ernest model tweaked using the additional term
θ4s

2m−1, at which the authors hint in their paper, suggesting that it is useful
for some workloads. This analysis shows that the proposed approach exploit-
ing D-SPACE4Cloud and dagSim attains a better accuracy than the baseline,
with an average relative error of 3.47 % instead of the 16.32 % obtained by
Ernest with the additional feature. The worst value for the error is also lower,
−11.76 % against 33.33 %.

6.2 Data Privacy Case Study

Within the frame of DICE, Netfective Technology built a minimum viable
product (MVP) to appraise the capabilities of big data in e-government appli-
cations, especially for tax fraud detection. Big data technologies have already
proven how valuable they are to industries. Many businesses that have taken
advantage of big data management and processing systems have increased
their effectiveness and efficiency; whether it be for healthcare, advertising, or
retail. Fraud recognition requires a holistic approach and a combined use of
tactical or strategic methods and state of the art big data solutions. Tradi-
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tional fraud detection practices have not been particularly successful largely
because they come into play after the fact, whilst big data intelligence soft-
ware can perceive the deviant behavior in real time, thereby enabling fiscal
agencies to get better outcomes.

In the following we discuss a cost impact analysis carried out through D-
SPACE4Cloud in order to assess the effects of various alternative data privacy
techniques. This was done as part of the design process for NETF’s MVP,
Big Blu, which is aimed at supporting tax fraud detection thanks to big data
technologies.

6.2.1 Background

Data anonymization, also known as de-identification, consists in techniques
that can be applied to prohibit the recovery of information about individu-
als. For example, not allowing the result of a statistical query to be shown
when the number of retrieved records falls below some threshold, or deliber-
ately entering small inaccuracies or “noise” in the results of statistical queries
makes the deduction of individual information more difficult.

In a DB, data is stored in tables and each record corresponds to one indi-
vidual. Each record has a number of attributes, which are classified into three
categories: i) key attributes, which uniquely identify individuals; ii) quasi-
identifiers, which can be combined with external information to expose some
individuals, or to reduce uncertainty about their identities; and iii) sensitive
attributes, which contain sensitive information about individuals. In practice,
each category requires different levels of privacy protection.

There are several techniques that can be applied to data before or along
the big data process, in order to protect the privacy of individuals. Some of
the most used are:

Generalization replaces quasi-identifiers for less specific, but semantically
consistent, values. In this technique, a value is replaced for another
more generic, yet faithful to the original.

Suppression deletes key identifiers or quasi-identifiers to form anonymized
tables. It is used in the context of statistical DBs, which provide only
summaries of the table data instead of individual data.

Encryption uses cryptographic schemes based on public or symmetric keys
to replace sensitive data (key-attributes, quasi-identifiers, and sensitive
attributes) for encrypted data. It transforms data and makes it unread-
able to those who do not have access to the encryption key.

Perturbation (or masking) consists in replacing actual values for dummy data.
The general idea is to randomly change data to mask sensitive infor-
mation while preserving the critical structures inferred with modeling.
Examples of masking techniques are: replacement, shuffling, blurring,
redaction/nulling.

Hashing is the transformation of a string of characters into a, usually shorter,
fixed length representation of the original string.
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Big Blu, the prototype developed by NETF, sends an alert whenever a sus-
picious tax declaration enters the information system. Big Blu has been imple-
mented by relying on open source state of the art big data frameworks such
as Kafka—to manage high rate event flows, Cassandra—to store and query
massive amounts of data, and Spark—to process huge volumes of data.

The application will be performing computation on the whole data, in-
cluding newly generated inputs. This data has to be processed using fraud
indicators, which are a set of rules prescribed by domain experts. In the case
that a new fraud indicator is introduced, Big Blu has to proceed with a new
batch processing phase on the entire DB. It must also be able to answer any
query using a merge between old batch results and new real time computa-
tion. The result is a list of taxpayers who may be fraudulent.

6.2.2 Experimental Setup

In this section we present the cost impact of different privacy protection ap-
proaches. The first assessed privacy mechanism is masking. In our concrete
case, we introduced a dictionary table, which implements a one-to-one map-
ping between clear and masked attributes. The other privacy mechanism con-
sidered in our evaluation is encryption using Advanced Encryption Standard
(AES) with 256-bit keys. AES is a symmetric block cipher widely used to en-
crypt sensitive data. In our case, the IDs and sensitive data stored in the DB
tables are encrypted and decryption is performed contextually while running
queries. We use two sizes for the keys in order to better understand their
performance overhead.

To evaluate the system performance against different privacy preserving
mechanisms, we ran experiments on the Microsoft Azure platform with VMs
of type D12v2—8 cores and 28 GB RAM, and D4v2—4 vCPUs and 28 GB
memory. The number of nodes varied between 3 and 13, hence overall we
performed experiments using up to 52 cores. Each query for each configura-
tion was run 10 times to evaluate the average execution time.

In order to avoid any privacy and/or confidentiality issue, the discussed
results were obtained working on a synthetic, but realistic, dataset. NETF
developed a random taxpayer generator to fill the DB with millions of records,
with a relational model designed so as to be realistic, generic, and neutral.

In the following, we consider three reference queries (see Listing 6.1),
which will be the baseline for evaluating the performance and cost overhead
introduced by the proposed privacy techniques. Query 1 accesses two tables
to perform its analysis: Declare and TaxPayer. It intends to measure the differ-
ence between incomes earned by a taxpayer during two successive years. This
is carried out to detect fraudsters by comparing the two incomes according to
some criteria. For instance, if the income declared a certain year is less than
20 % (this percentage can be set as a parameter) of the one declared the previ-
ous year, then the taxpayer is flagged as suspect. Since incomes are stored in
the table Declare, Query 1 executes two joins: the first to make sure that the
two tax declarations relate to the same taxpayer; and the second to obtain the
full set of information about them. The result of this query is saved and used
by other queries by passing the expected arguments, such as the percentage
of income decrease, and the number of years to take into account. Query 5 in-
volves only the table Declare. This table contains all the information needed
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se l e c t tp . id , tp . gender ,
tp . b ir thdate , tp . birthdepartment , tp . birthcommune ,
d1 . ta xde c la ra t ion , d1 . dec lara t iondate , d1 . income ,
d2 . t a x d e c l a r a t i o n as d2taxdeclarat ion ,
d2 . d e c l a r a t i o n d a t e as d2declarat iondate ,
d2 . income as d2income

from Declare d1
inner join Declare d2 on d1 . taxpayer = d2 . taxpayer
inner join TaxPayer tp on d1 . taxpayer = tp . id

(a) Query 1

se l e c t dic . und_id , tp . gender ,
tp . b ir thdate , tp . birthdepartment , tp . birthcommune ,
d1 . ta xde c la ra t ion , d1 . dec lara t iondate , d1 . income ,
d2 . t a x d e c l a r a t i o n as d2taxdeclarat ion ,
d2 . d e c l a r a t i o n d a t e as d2declarat iondate ,
d2 . income as d2income

from Declare d1
inner join Declare d2 on d1 . taxpayer = d2 . taxpayer
inner join TaxPayer tp on d1 . taxpayer = tp . id
inner join Dict ionary dic on dic . id = tp . id

(b) Query 3

se l e c t *
from Declare d1

(c) Query 5

se l e c t tp . id , s . loca t ion , td . roomcount
from TaxDeclaration td , S ignatory s , TaxPayer tp
where s . taxpayer = tp . id and s . t a x d e c l a r a t i o n = td . id

(d) Query 7

Listing 6.1 – NETF case study reference queries

to know every individual income and other credentials helpful to justify the
amount of tax that should be paid. Query 7 involves three tables: TaxPayer,
TaxDeclaration, and Signatory. Each tax return must be signed by the tax-
payers before they submit it to the fiscal agency. This query retrieves, among
other things, the place of signature.

To achieve masking, we introduced a dictionary table that implements a
one-to-one mapping between a clear ID and a masked ID. Query 3 is derived
from Query 1. The idea behind Query 3 is to measure the overhead on the
system due to the additional join required to read the clear IDs. Similarly,
Query 6 and Query 8 are derived from Query 5 and Query 7, respectively,
and are used to examine the overhead on the system due to the additional
join. As previously discussed the second considered privacy mechanism is
encryption with AES at 256 bit. In this case, the IDs and sensitive data stored
in the Cassandra tables are encrypted and decryption is performed contextu-
ally while running Queries 1, 5 and 7. All the mentioned queries have been
implemented in Spark 2.0.

We use the number of records in the TaxDeclaration table to express the
dataset size. Experiments were performed in the range between 1 and 30
million records. In Kalwar et al. [70] one can find more details about the
assessment of performance degradation due to the use of privacy preserving
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Figure 6.10 – Cost impact of masking, Queries 5 and 6, 1.5-million dataset

techniques, but here we only discuss the evaluation of their cost impact, which
was performed via D-SPACE4Cloud. In particular, we investigated this aspect
only in the configurations that showed the most degraded performance, with
the rationale of assessing the worst case scenarios.

6.2.3 Cost Impact Analysis

In case of performance degradation, we used D-SPACE4Cloud to evaluate
the cost impact of the implementation of privacy mechanisms when the two
versions of the same query (i.e., plain and anonymized) need to be executed
within the same deadline. The initial deadline was set according to the time
measured on the real system with the smallest configuration. The deadline
is decreased iteratively with a step whose range is [5,500] seconds: the dif-
ference was not fixed and varied according to the dataset size and privacy
technique being considered. In this way, multiple optimization instances are
considered for each experiment.

Initially we considered Query 5 and 6 with the 1.5-million dataset and
an 85 s initial deadline. Then, the deadline was iteratively decreased by 20 s
in order to consider 10 optimization instances. The results are reported in
Figure 6.10. From the experimental results one can see that above 45 s and
for 20 s no extra costs are incurred, while for the 25 s and 15 s deadlines the
cost overhead due to the masking technique is between 50 and 66 %. Dead-
lines lower than 15 s resulted too strict and D-SPACE4Cloud did not find any
feasible solution.

Figure 6.11 reports the results for Queries 1 and 3, when the 10 millions
entries dataset is considered. The initial deadline is set to 3,500 s, that is the
maximum execution time registered on the real cluster for both queries, and
is iteratively reduced by 500 s. The results show that the cost overhead due to
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Figure 6.11 – Cost impact of masking, Queries 1 and 3, 10-million dataset

the masking technique is between 33 and 40 % and no extra costs are incurred
for deadlines larger than 2,500 s. Deadlines lower than 1,500 s were too strict
and no feasible solutions could be found.

Further experiments were targeted at encryption. We selected the 10-
million dataset and evaluated Query 7, encrypted with AES 256 bit and unen-
crypted, for which we registered the largest performance degradation, about
5 %. In this way the results we achieve will be conservative. The initial dead-
line was set equal to 80 s, which was then iteratively reduced by 5 s at a time.
The results reported in Figure 6.12 show that a 50 % cost overhead is achieved
at 40 s, which is also the minimum deadline that can be feasibly supported by
the system.

Finally, we report the results we achieved by considering the largest dataset,
i.e., 30 millions, for Query 5. The initial deadline was set to 80 s, which then
was iteratively reduced by 20 s. Figure 6.13 reports the cost for AES 256 bit
encryption. The experiment shows that the additional cost due to encryption
is only 13 % at maximum, while below 40 seconds D-SPACE4Cloud could not
find any feasible solution.

From these results, we cannot state clearly which approach leads to higher
cost impacts, since they alternate as cheapest choice depending on the query
at hand and the considered dataset size. However this proves the worth of D-
SPACE4Cloud, as mapping performance degradation to cost overhead is not
a straightforward task to accomplish.

6.3 OPT_IC Case Study Validation

As noted in Section 4.4, the OPT_IC component developed in EUBra-BIGSEA
substantially solves a formulation of problem (P1), which is presented in Sec-
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Figure 6.12 – Cost impact of encryption, Query 7, 10-million dataset
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tion 4.3, where the supporting VM type is fixed. Here we show the validation
of OPT_IC with an example application developed by Brazilian research part-
ners: BULMA.

The problem faced by BULMA is identifying bus trajectories from sequences
of noisy geospatial and temporal data sources, also known as map matching
problem. It consists in performing the linkage between buses’ GPS trajectories
and the corresponding road segments, i.e., predefined trajectories or shapes,
on a digital map. In this sense, BULMA is a novel unsupervised technique ca-
pable of matching a bus’s trajectory with the “correct” shape, considering the
cases in which there are multiple shapes for the same route, which is a com-
mon event in many Brazilian cities, like Curitiba and São Paulo. Furthermore,
BULMA is able to detect deviations from the prescribed trajectories and mark
them in its output. The goal of BULMA is to provide high quality integrated
geospatial and temporal training data to support predictive ML algorithms of
intelligent transport systems applications and services.

There are two types of files used by BULMA, namely, shape and GPS files.
The first consists in data for the same root and corresponds to a rich/detailed
set of georeferenced points describing the trajectory that a bus should follow,
i.e., the predefined bus trajectory. It is extracted from General Transit Feed
Specification data, which is an input file released by an operator or authority
and containing details about public transit supply. Regarding GPS files, they
contain all the GPS trajectories of a city’s bus fleets during a certain period
of time. In our case, each GPS file corresponds to all the GPS trajectories
of the city’s bus fleet during a day. Thus, BULMA matches a bus trajectory
with the “correct” shape, considering the cases in which there are multiple
shapes for the same route. As an example, Figure 6.14 includes two shapes
describing the trajectories that a bus may follow to serve route 022 in the same
direction. Most state of the art techniques are able to detect whether or not a
bus is performing route 022, but, to the best of our knowledge, none of them
is able to indicate if a bus will start its trajectory from point A or B. This is
relevant when feeding the matched trajectory into a predictive algorithm for
the purpose of arrival time estimation: if the generated trajectory is erroneous,
so will be the output arrival time, too. Now, in Figure 6.14 the correct starting
point of the prescribed trajectory is A, hence running any predictive algorithm
on the matched trajectory starting from B would yield a wrong estimation of
the arrival time at C. For all the aforementioned reasons, BULMA solves this
problem with a good accuracy.

BULMA has been implemented in Spark and we performed the experi-
ments by running the application in the Microsoft Azure HDInsight platform,
considering Spark 2.1.0. Workers were deployed on D4v2 VMs, with 8 cores
and 28 GB of memory, and every executor was configured to run with 8 cores
and 16 GB of RAM. To check the performance of our tools, we considered a
set of different configurations with a varying number of nodes in the cluster.
In particular, we performed runs from 1 to 6 nodes and generated 5 days’
worth of GPS training data. To validate OPT_IC we aimed at assessing the
quality of the returned optimal solution. Assuming to optimize the initial de-
ployment of BULMA under a deadline constraint, we focus on the response
time measured in a real cluster provisioned according to the number of VMs
determined by the optimization procedure, using the relative gap as a metric
of the optimizer accuracy, as in (6.1).
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Figure 6.14 – Two different shapes describing the trajectories a bus may follow to
serve route 022
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Figure 6.15 – OPT_IC percentage error as a function of the deadline
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se l e c t i_brand_id brand_id , i_brand brand , sum( s s _ e x t _ s a l e s _ p r i c e ) e x t _ p r i c e
from date_dim , s t o r e _ s a l e s , item
where date_dim . d_date_sk = s t o r e _ s a l e s . ss_sold_date_sk

and s t o r e _ s a l e s . ss_item_sk = item . i_item_sk
and i_manager_id = 36
and d_moy = 12
and d_year = 2001

group by i_brand , i_brand_id
order by e x t _ p r i c e desc , i_brand_id
l imit 100

Listing 6.2 – TPC-DS query Q55

We considered 56 cases, varying the deadline between 5,500 s and 11,000 s
with step 100 s, and ran OPT_IC to determine the optimal resource assign-
ment to meet the QoS constraints on D4v2 instances. Figure 6.15 plots the
data we obtained. We experienced a deadline miss only in 5 out of 56 cases,
amounting to the 8.9 %. Moreover, the relative error is always below 35 %,
with a worst case result of 35.12 % and the average of the errors taken in ab-
solute values settling at 18.13 %. From the plot, we observe an abnormal be-
havior, i.e, some rapid jumps, which are related to changes in the deployment
configuration suggested by OPT_IC, specifically the number of required VMs.
In particular, at most the gap in terms of required VMs is 1 and the accuracy
increases when the deadline is tight, i.e., for larger clusters. Since the initial
deployment can also be updated by the proactive policies module, overall we
can conclude that the OPT_IC tool is effective in identifying the minimum
cost initial deployment, guaranteeing that deadlines are met as well.

6.4 OPT_JR Validation

The aim of this section is the analysis of the accuracy and scalability of OPT_JR
algorithm when used in the deployment of real systems. Consistently with
what detailed in Section 5.1, also here we use synthetic DBs created with the
TPC-DS dataset generator at scale factors of either 500 GB or 1,000 GB. The
considered queries are Q26, Q40, and Q52—listed in Listings 5.2 and 5.3, as
well as a fourth query, Q55, see Listing 6.2. Also in these scenarios, since ap-
plication profiles have a statistical nature, we collected ten runs per query on
each platform.

Real data for these analyses comes from two deployments. One is a Mi-
crosoft Azure HDInsight1 cluster based on D13v2 VMs. Each VM boasts 8
cores, 56 GB of RAM, and 400 GB of local SSD, so they could support Spark
executors with 8 cores and 40 GB RAM. The cluster was composed of two mas-
ter nodes dedicated to 4 GB Spark drivers and six workers that hosted execu-
tors, for an aggregate 48 vCPUs. Section 6.1.1 details the second deployment
based on IBM P8 processors.

The re-balancer tool, OPT_JR, has been executed on a server with two Intel
Xeon Silver 4114 2.20 GHz CPUs and 48 GB of RAM.

1https://azure.microsoft.com/en-us/services/hdinsight/
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Table 6.5

OPT_JR model validation Test 1, all weights set to 1

Query M m V v D [s]

Q26 28 8 4 2 1,000
Q52 28 8 4 2 1,000
Q40 56 18 4 2 1,000
Q55 56 18 4 2 1,000

Table 6.6

Differences of OPT_JR validation tests with respect to Test 1

Test N (500 GB) N (1,000 GB) p wQ52

Test 1 24 44 1.33 1
Test 2 48 88 0.66 1
Test 3 16 28 2.00 1
Test 4 24 44 1.33 10

Table 6.7

OPT_JR model validation, Test 5

Query M m V v D [s]

Q40 56 18 4 2 600
Q55 56 18 4 2 800
Q26 28 8 4 2 800
Q40 56 18 4 2 800
Q52 28 8 4 2 800
Q55 56 18 4 2 800
Q26 28 8 4 2 1,000
Q40 56 18 4 2 1,000
Q52 28 8 4 2 1,000
Q55 56 18 4 2 1,000

6.4.1 Scenario-based Analyses

As a first form of validation, we used data profiled on the P8 cluster to hand-
craft eight test cases, whose goal is investigating the impact of various prob-
lem parameters on the performance and effectiveness of OPT_JR. In every
case the maximum number of iterations allowed to OPT_JR is set to 10. Each
test is characterized by a pressure p, defined as:

p =
ĉ
N
, (6.4)

where ĉ is the minimum number of cores that does not cause a deadline vio-
lation, as obtained via OPT_IC, and N is the number of available cores.

Table 6.5 describes Test 1, which is the base test and includes four queries.
Table 6.6 details the differences of Tests 2, 3, and 4 with respect to Test 1. In
Test 2, N is increased to get a pressure equal to 0.66: there are more available
cores than required. On the contrary, in Test 3, N is decremented to set the
pressure equal to 2.00: the number of available cores is half of the required.
In Test 4 the weight of Q52 is set to 10 in order to show how the algorithm
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Figure 6.16 – OPT_JR validation (1,000 GB): overall weighted tardiness vs. itera-
tions number

actually considers weights in computing the solution, but the other parame-
ters are the same as in Test 1. On the contrary, Test 5 is more complex, with
details in Table 6.7: multiple instances of the same query are considered so
that the overall number of running applications is 10. We repeated the above
described tests both with a 500 GB scale factor and at 1,000 GB. Finally, Test 6
uses the same applications of Test 5 with both datasets at the same time, thus
resulting in two replicas of all the queries in Table 6.7. N has been set to 78
in the 500 GB instance of Test 5, then to 150 for 1,000 GB, and 226 in Test 6.

In the following we discuss the results we achieved. Comparing the pa-
rameters and the results for Tests 1, 2, and 3, it is possible to see that, by
reducing the number of available cores, both the number of iterations (see,
e.g., Figure 6.16) and the execution time (see Table 6.9) tend to increase. This
was expected, since the smaller number of available cores in Test 3 makes the
problem more difficult to solve. For Test 2 a single point is reported: in the
first iteration, the objective function is always 0 since all the queries meet the
soft deadline constraint.

The curves reporting the values of the total weighted tardiness, in Fig-
ure 6.16, decrease progressively on each subsequent iteration, thus proving
that the local search technique is able to improve the initial heuristic assign-
ment by selecting the best core configuration swap at each iteration. In all the
tests the algorithm stops before reaching the maximum number of iterations,
experimentally set to 10, since the candidates set U becomes empty, demon-
strating that the optimization algorithm identifies in a few iterations the final
local optimum solution. Note that final iterations never apply any change,
consistently with Algorithm 4.5.1, hence the objective function remains un-
changed in correspondence of each test’s last step.

Finally, the results about the cardinality of the candidates list U are pre-
sented in Figure 6.17. This parameter plays a crucial role to understand algo-
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Figure 6.17 – OPT_JR validation: cardinality of candidates list U vs. iterations
number

Table 6.8

Number of cores assigned to Q52, 1,000 GB dataset

Test c

Test1 8
Test2 12
Test3 4
Test4 12

rithm performance, since this list’s size corresponds to the number of times
the predictor is invoked: a time consuming operation, since it implies, among
other operations, a call to the Lundstrom tool as an external process. More-
over the size of set U has a monotonic decreasing behavior with respect to the
number of elapsed iterations. Also in this plot only one point is reported for
Test 2: since the initial solution already meets all the deadlines, no further
change gets evaluated.

Table 6.8 shows the different number of cores assigned to Q52 in different
tests when the dataset size is set to 1,000 GB and how the different param-
eters can impact on the produced solution. The minimum number of cores
necessary to satisfy the deadline of 1,000 s is 12. In Test 1, since the number
of available cores is less than the requirement—p is 1.33, not all the needed
resources can be assigned. For this reason, in the optimal solution only 8
cores are assigned to Q52. On the contrary, Test 2 is characterized by p < 1,
i.e., there are more resources than required, so all the necessary cores can be
given to Q52. Test 3 is characterized by p = 2.00: for this reason, the number
of cores for Q52 is even lower than in Test 1, with 4 instead of 8. Finally, in
Test 4 there are not enough resources to satisfy all the requirements, just as in
Test 1, yet Q52 has a larger weight than the other queries and it receives all
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Table 6.9

OPT_JR execution times and speedup with different numbers of threads

Test f [GB] T o (1) [s] T o (2) [s] S (2) T o (4) [s] S (4)

Test 1 500 13.73 12.18 1.13 8.86 1.55
Test 1 1,000 34.86 25.61 1.36 20.31 1.72
Test 2 500 13.88 11.64 1.19 8.96 1.55
Test 2 1,000 19.21 14.34 1.34 11.34 1.69
Test 3 500 13.78 11.65 1.18 8.83 1.56
Test 3 1,000 45.70 34.91 1.31 29.43 1.55
Test 4 500 13.77 11.62 1.19 9.33 1.48
Test 4 1,000 34.09 25.66 1.33 20.33 1.68
Test 5 500 60.86 48.99 1.24 42.23 1.44
Test 5 1,000 224.89 160.75 1.40 128.40 1.75
Test 6 both 313.04 229.82 1.36 181.10 1.73

Table 6.10

Description of the case study scenario

Query f [GB] w ts [s] D [s]

Q20 1,000 5 0 780
Q52 1,000 1 320 600
Q55 1,000 1 320 600

the 12 required cores.

6.4.2 Performance Evaluation

OPT_JR exploits a set of OpenMP2 directives to solve the re-balancing prob-
lem in multi-threaded mode. The objective of this approach consists in ex-
ploring the neighborhood with a parallel process, in such a way that the Lund-
strom performance predictor gets invoked concurrently across multiple can-
didates.

Table 6.9 shows the performance speedup obtained on Tests 1–5, with both
dataset scale factors 500 GB and 1,000 GB, as well as on Test 6. Specifically,
the tests were executed with the Lundstrom predictor in single and multi-
threaded mode, using either 2 or 4 cores. The usage of more than 4 CPUs
does not provide significant advantages on these tests, because of the limited
size of the candidate moves list U (see Figure 6.17). Both the optimization
time, T o, and the speedup, S, are expressed as functions of the number of
threads. The above results suggests that our approach is adequate to manage
at run time real clusters supporting long running batch queries, as the time
requested to obtain a new configuration is in the order of a few minutes.

6.4.3 Real Scenario Case Study

Here we present the behavior of OPT_IC and OPT_JR in a real use case. This
scenario considers three queries, i.e., Q20, Q52, and Q55, submitted for ex-
ecution on the dataset of scale factor 1,000 GB over a cluster with 6 D13v2

2http://www.openmp.org
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Figure 6.18 – Usage of resources of queries run in the case study

VMs, for a total of N = 48 cores. The three submissions happen in different
instants. All the queries have been initially executed separately to collect the
execution logs fed into dagSim and Lundstrom.

The details of the scenario are presented in Table 6.10: for each query
there is the dataset scale factor, weight, submission time, and deadline. At
t0 only Q20 is submitted for execution on the cluster, with its deadline set
to 780 s. OPT_IC estimates that 16 cores, which correspond to two VMs, are
needed to fulfill the deadline. Since the full cluster is initially available, all the
required VMs can be assigned to Q20. After about 320 s, at t1, Q52 and Q55
are submitted with both deadlines set to 600 s. OPT_IC estimates optimal
allocations of 30 and 28 cores, respectively, which can be supported by 4 VMs
per query. Since the cluster does not have enough spare capacity, we are in
heavy load condition. OPT_JR is triggered to minimize the weighted tardiness
by re-balancing VMs across queries: in the identified solution two VMs are
assigned to each query. It is worth noting that with this configuration Q20,
which has the largest weight, is expected to meet its deadline, while Q52 and
Q55 are not.

After about 250 s, t2, Q20 ends its execution. Nevertheless, we are still in
heavy load condition: the execution of Q52 and Q55 was slowed down by the
limited number of cores, so each query would require a larger allocation than
initially estimated. For this reason OPT_JR is executed again to re-balance
resources between the two. Both tardiness values are similar, so OPT_JR pro-
vides each with half the available resources, that is 24 cores or 3 VMs. The
detection of the end of Q20 and the successive invocation of OPT_JR takes
only some seconds, but the implementation of the suggested solution takes
some minutes, due to booting time and Spark configuration reload. At time
t3, 340 s later, the new resources are actually available to Q52 and Q55, which
are supported by three VMs each from now on. When Q55 ends, t4, Q52
is still running. Nevertheless, its end is foreseen in a few seconds: for this
reason its number of executors is not incremented, since the overhead due to
rescaling can nullify the benefits of a resource increment. In the end, in a few
seconds also Q52 ends and the presented scenario completes.

To evaluate the accuracy of OPT_JR, we compare the overall weighted tar-
diness computed at each invocation with the actual value. At t1, only Q52 and
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Q55 contribute to the objective function, since Q20 is expected to end before
its deadline. The estimated objective function is 908 s, while the actual value
is 924 s. The relative error is very low, only 1.73 %, thanks to the good accu-
racy of the simulator. It is worth noting that, in the computation of both the
estimated and real objective function, we are assuming that Q52 and Q55 will
be always executed with the resources allocated to them at the moment. Since
more resources will then be made available, the final aggregate tardiness will
be smaller.

The second invocation of OPT_JR occurs at t2: the estimated tardiness
value is 320 s, while the actual value is 406 s, for a relative error of 21 %. The
larger error is mainly due to the delay in assigning new resources. OPT_JR
is assuming that they are available at t2, yet they were ready only at t3. This
delay causes also a delay in the end of the execution of Q52 and Q55, result-
ing in a greater tardiness for both. Nevertheless the use of OPT_IC and of
OPT_JR allows the user to satisfy Q20’s deadline, thanks to higher weight,
and to minimize tardiness for the others.

6.5 Discussion

The present chapter validates under several perspectives the optimization
techniques described in Chapter 4.

Initially we study the effect of several parameters, such as deadlines and
concurrency levels, on the cost to run a cluster that supports some DIAs. Our
analyses suggest, in particular, that at times even VM types not optimized for
a given kind of workload may become the best choice. More generally, taking
such a decision with the help of the proposed performance modeling and op-
timization approach enables savings up to 36.4 %. These results, highlighting
situations where the initial deployment choice inspired by framework charac-
teristics is suboptimal, strongly provide an answer to research question 3.

D-SPACE4Cloud ensures that deadlines are met, with errors in compari-
son to the measured execution times below 30 %, and provides optimal so-
lutions within hours even when dealing with extremely large instances, thus
guaranteeing solution times absolutely acceptable during the design phase.
In addition to these general analyses, we also applied D-SPACE4Cloud to case
studies for the design of a real MVP: the tool predicted the effect on costs of
a set of alternative design choices for an application centered on privacy. In
particular this case study, presented in Section 6.2, shows how the devised op-
timization procedures can valuably be exploited in real world projects for the
exploration of various architectural choices, thus giving an important point
in favor of research question 4.

Afterwards, we also provide validation results for the run time aspects
studied in the frame of EUBra-BIGSEA. We begin by assessing a number of
test cases devised to highlight the capability of OPT_JR to address variations
in the problem instance. In line with expectations, the tool assigns more or
less resources to each considered application depending on the pressure and
contention in the system. On top of this, we showed how the optimization
method can provide a minimum weighted tardiness solution within minutes,
even when the submissions become numerous. At last, by enforcing on a real
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system the optimal solution returned by OPT_JR, we assessed its quality and
quantified a 21 % relative error.

Overall, the relative errors listed in the current chapter validate the fact
that the proposed optimization techniques are accurate, thus satisfying re-
search question 2. Even at design time, before actually deploying the system,
it is possible to predict with fair confidence the final behavior and to deter-
mine the optimal configuration required to meet QoS constraints.
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CHAPTER 7
Conclusions and Future Work

Throughout this dissertation we presented several techniques to address a
number of related problems of interest in the field of DIAs. The main goal
pursued in this work was the optimal capacity allocation and management of
big data deployments with performance guarantees, both at design and run
time, yet a lot of attention was dedicated to other aspects that play an enabling
role.

In particular, Chapter 3 focuses on the analysis of various performance
models obtained via a series of formalisms, such as QNs, SWNs, and ML. Ex-
ploring such a wide range of alternatives was made necessary by the varying
requirements of the different optimization procedures, specifically in terms
of execution times of the searches themselves, as well as accuracy. To begin
with, our optimization procedures are initially formulated through mathe-
matical programming. Algebraic models can be easily added as constraints to
the formulation, thus enabling the use of KKT conditions, which provide in
closed form a sensible starting point for the search. In this case ML methods
are perfectly fit for the requirement, as their output is an algebraic formula
involving application parameters and system configurations. However, their
big disadvantage is a lack of reliability when applied outside of the range
covered by the data available at the time of training: since it is not possible to
guarantee that the optimal configuration belongs to that domain, even more
so at design time, we also adopt simulation-based techniques to complement
ML. During the simulation-optimization approach, QNs, SWNs, or dagSim
play their role, thanks to both their insensitivity to the evaluation range and
accuracy, with relative errors settling within 3 % and 10 % on average, as re-
ported in Chapter 5. Such results positively answer to research question 1.

Alongside their exploitation to support optimization, we also discuss the
use of performance models to assess design choices, in line with the topic of
research question 4. For example, Section 3.3.2 extends a basic performance
model for Hadoop by considering the effects of spot instances failures caused
by cloud providers’ decisions to reclaim data center capacity under increased
load. Chapter 5 also reports the results of some analyses based on this SWN,
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with the goal of understanding the possible cost savings and the correspond-
ing performance degradation enabled by this peculiar pricing model.

A further contribution of Chapter 3 is a pair of approaches to performance
modeling of CNN applications deployed on GPGPUs. In this scenario, due
to the extreme level of parallelism that rules out most simulation-based for-
malisms, we opt for two alternative ML models. The first one, the so called
per layer model, is based on the derivation of the computational complexity
of each type of layer used in CNNs, so as to apply linear regression and link
complexity to layer execution times. In this way we obtain a set of models gen-
eral enough to be applied to new CNNs that are not part of the training set.
As a second approach, we also motivate the adoption of an end to end model
based on two fundamental parameters, batch size and number of iterations,
in order to predict performance when an application is already deployed on
a specific system. This method enables a higher accuracy, but at the expense
of decreased generality, since the obtained model is hardwired to a particu-
lar pair CNN-GPU. In both cases, the observed accuracy is good and, along
the lines of research question 1, these performance models may be adopted in
future work at the base of optimization procedures.

After presenting performance models, in Chapter 4 we shifted to the op-
timization methods topic, following research question 2. Thanks to the col-
laboration with two research projects, DICE H2020 and EUBra-BIGSEA, we
investigated both design and run time problems. At first, we focused on de-
sign time issues, such as capacity allocation in cloud environments, with a
design space exploration that considers also the choice among different alter-
native VM types to support the workload. After performing the basic choice
on the instance type via ML models, the optimization proceeds with a search
technique relying on third party simulators and terminates by returning the
minimum cost configuration able to satisfy QoS constraints. Later on, we
turned our attention to run time problems, like minimizing the overall tardi-
ness of a set of jobs when the current workload exceeds what had been fore-
cast, for instance due to an unforeseen peak of requests. In this scenario there
are stringent constraints on the execution time of the optimization procedure,
hence we need to consider only the most performant simulators to support the
search phase. For this reason, in this case we adopt dagSim or Lundstrom, fast
simulators developed by research partners in the frame of EUBra-BIGSEA.

We evaluated these optimization methods in Chapter 6. D-SPACE4Cloud
allows for several considerations at design time, for instance assessing the ef-
fect of QoS constraints or concurrency levels on the costs incurred to support
big data applications. Properly deciding the VM type where to run a work-
load leads to cost savings up to 36.4 %, with the additional consideration that
it is not possible to single out one dominant choice but, as hinted in research
question 3, actual workloads, concurrency levels, and QoS constraints play
a role in determining the optimal configuration. In order to highlight how
D-SPACE4Cloud can be useful during DIA design, we reported the outcomes
of a case study for NETF Big Blu, a tax fraud detection application, showing
how our tool was used to investigate in early stages the possible impact on
costs of different privacy preserving mechanisms: this case study is another
example of application of the proposed techniques in designing DIAs, accord-
ing to the focus of research question 4. Shifting focus to run time aspects, we
also assessed the quality of the proposed solution for the minimum weighted
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tardiness problem. It appears that OPT_JR can sensibly modulate the solu-
tion based on system pressure, with the ability to return it within minutes
also under a heavy load. Further, such solutions show a 21 % relative error
with respect to measurements on a real system.

In the future, the research carried out so far will be extended in various
directions. One of these will be the validation of our performance models
against ML and DL workloads, an appealing scenario given their widespread
adoption in the industry for a range of applications. Furthermore, via extend-
ing the underlying performance predictors, also the optimization methods
will be made compatible with such new workloads. Another interesting re-
search branch to explore is the optimal sizing of GPU-based systems, possibly
not only for CNNs, but also for other applications. Similarly, it will be rele-
vant to extend the investigation beyond one-GPU nodes, taking into account
both multi-GPU machines and clusters of such GPU-enabled installations.
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AES Advanced Encryption Standard. 123, 124, 126

AM analytical model. vi, 6, 22, 25, 27, 28, 30, 31, 52–56, 94, 95, 97, 98, 100,
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API application programming interface. 4, 13, 20, 21, 74

CDF cumulative distribution function. 89
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83, 104–109, 140, 141

CPN colored Petri net. 23
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CV coefficient of variation. 41, 43
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91–93, 102, 103
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DL deep learning. 4–7, 18, 25, 31, 44, 141

DPIM DICE Platform Independent Model. 60

DT decision tree. 28
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FCR finite capacity region. 35, 36
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FSPN fluid stochastic Petri net. xi, 39, 40
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OS operating system. 14, 15, 24
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PBS Portable Batch System. 84

PDF probability distribution function. 41, 86, 100

PN Petri net. 23–25, 30
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POSIX Portable Operating System Interface. 15
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RAM random access memory. 84, 106, 111, 112, 123, 128, 130
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