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Prefazione

Oggigiorno il trasferimento di energia e informazioni è costantemente in aumento
dato dallo sviluppo delle nuove tecnologie nel campo elettrico ed elettronico. Il

ruolo dei cavi elettrici diventa dunque essenziale per assicurare buone prestazioni e il
loro stato di salute deve essere periodicamente monitorato. Tuttavia, improvvisamente
guasti si originano dal deterioramento, classificati in due categorie principali: guasti gravi,
come corto-circuiti e circuiti aperti, e guasti lievi, come danni di isolamento, crepe, ecc.,
che sono spesso difficili da rilevare a causa della loro bassa riflettività e rappresentano
un passo preliminare verso guasti gravi. A tale scopo è necessaria la disponibilità di
tecniche in grado di rilevare i guasti al fine di garantire una migliore affidabilità del
cavo. Negli ultimi decenni le tecniche basate sulla riflettometria, in particolare quella
nel dominio del tempo (TDR), sono state le più comuni nelle applicazioni industriali per
la localizzazione dei guasti ma, nonostante i loro risultati ottimali, presentano alcune
limitazioni in presenza di gusti lievi e soprattutto quando si introducono perdite, il che
si traduce in un deterioramento della stima di precisione.

Per superare questi problemi, lo sviluppo di nuove tecniche per la localizzazione
dei guasti è sempre più studiato. In particolare, negli ultimi anni i metodi basati
sull’inversione temporale (time reversal) hanno mostrato grandi vantaggi in questo campo,
in particolare due delle sue metodologie: Décomposition de l’Opérateur de Retourne-
ment Temporel (DORT) e Time Reversal-MUltiple SIgnal Classification (TR-MUSIC). In
questo lavoro TR-MUSIC è presentato e analizzato nelle sue prestazioni. Viene eseguito
un accurato studio metrologico di questa tecnica, in cui precisione e accuratezza sono
sono studiate sui cavi di potenza. La caratteristica più sorprendente di TR-MUSIC è
che garantisce una super risoluzione mentre lavora a frequenze singole, basata sull’analisi
della funzione di Green, e mostra anche una buona robustezza del rumore anche per valori
di SNR relativamente bassi. In primo luogo, vengono presentate le basi teoriche sui cavi
elettrici e il metodo operativo di TDR, mentre nel secondo capitolo viene presentato uno
studio sul cavo adottato nel nostro lavoro. Nella terza sezione viene mostrata la teoria
e una panoramica sui metodi a inversione temporale. Infine, negli ultimi tre capitoli,
vengono presentati i risultati delle simulazioni e degli esperimenti effettuati nel lavoro e



viene eseguito un confronto delle prestazioni tra TR-MUSIC e TDR quando un singolo
guasto è presente. In particolare, nel capitolo 4 la precisione e l’accuratezza di entrambi
i metodi sono studiate e confrontate in una singola linea senza perdite; nel capitolo 5
vengono introdotte le perdite e nel capitolo 6 le loro prestazioni sono studiate in una rete
ramificata a Y.

MUSIC mostra la stessa stima di accuratezza e una risoluzione molto più elevata in
precisione rispetto a TDR in assenza di perdite, il che lo rende molto interessante come
metodo di localizzazione dei guasti. Operando solo su pattern di fase, in presenza di
perdite l’attenuazione non influisce sulle prestazioni, non provocando quindi un deteri-
oramento della risoluzione; inoltre, anche guasti molto lievi possono essere facilmente
rilevati. Risultati interessanti si ottengono anche in presenza di rete ramificata, in cui si
ottiene un’ottima precisione e si evita l’effetto indesiderato della giunzione mediante il
cosiddetto sistema di baselining. Per concludere, TR-MUSIC ottiene buoni risultati con
reti singole e ramificate, con e senza perdite. Tuttavia, uno studio più esteso per miglio-
rare le prestazioni del metodo può essere condotto in futuro. Alcune di queste prospettive
sono illustrate, come lo studio di topologie di linea più complesse o l’analisi in presenza di
guasti multipli. Esperimenti e misure hanno avuto luogo presso le strutture di Centrale
Supélec (Gif-sur-Yvette, Francia).

Parole chiave：Cavo di potenza, localizzazione di guasti, inversione temporale,
parametri scattering, funzione di Green, statistica applicata, misure con VNA.



Abstract

Nowadays transfer of energy and information is constantly growing due to the devel-
opment of new electrical and electronic technologies. The role of electrical cables

thus becomes essential to ensure good performances of the whole system and their state
of health shall be periodically checked. Suddenly, deterioration occurs eventually causing
wiring faults, classified into two main categories: hard faults, as short and open circuits,
characterized by the fact that they prevent any signal from going further away, and soft
faults, as insulation damage, cracks etc., which are often difficult to detect due to its weak
reflectiveness and represent a preliminary step towards the occurrence of hard faults. For
this purpose, the availability of techniques able of detecting faults is necessary in order
to guarantee a better cable reliability. In the last few decades the reflectometry-based
techniques, in particular the one in time-domain (TDR), has been the most common in
industrial applications for fault detection but, despite their optimal results, some limita-
tions occur above all in presence of soft faults and when losses are introduced.

In order to overcome these problems, the development of new fault location tech-
niques is increasingly studied. Accordingly, in the last years time reversal based methods
have shown great advantages in this field, in particular two of its methodologies: Dé-
composition de l’Opérateur de Retournement Temporel (DORT) and Time Reversal -
MUltiple SIgnal Classification (TR-MUSIC). In this work TR-MUSIC is presented and
analyzed in its performances. A fine metrological study of this technique is carried out,
and its precision and accuracy are investigated on medium voltage power cables. The
most striking feature of TR-MUSIC is that it ensures a super resolution while working at
single frequencies, based on Green function phase patterns analysis, and also shows good
noise robustness even for low SNR values. Firstly, theoretical background on electrical
cables and the operational way of TDR are presented whereas in the second chapter a
study of the MV power cable adopted in our work is introduced. In the third section,
background, theory and an overview of time reversal is shown. Then, in the last three
chapters, the results of simulations and experiments carried out in the work are presented
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and a performances comparison between TR-MUSIC and TDR for single soft fault made.
In particular, in chapter 4 precision and accuracy of both methods are investigated and
compared in a single lossless line; in chapter 5 losses are introduced and in chapter 6 their
performances are studied in a Y-branched network.

Port MUSIC shows the same accuracy estimation and a much higher resolution in
precision with respect to TDR in absence of losses, making it very interesting as fault
location method. Operating on phase pattens only, in presence of losses attenuation does
not affect its performances, thus not causing a resolution deterioration; besides, very soft
faults can be easily detected. Interesting results are also obtained in presence of three
branches, where the same precision is performed and the undesired effect of the junc-
tion is avoided by means of the so-called baselining system. To conclude, TR-MUSIC
performs good results with single as well as Y-branched networks in lossless and lossy
conditions. However, an extended study could be continued in order to still improve the
method’s performances. Some of these perspectives are illustrated, as the study of more
complex line topologies or the analysis in presence of multiple faults. Experiments and
measurements took place in Centrale Supélec’s (Gif-sur-Yvette, France) facilities.

Key words: Power cable, Fault detection, Time reversal, Scattering parameters,
Green function, Eigendecomposition, Statistics, VNA Experimental validation.



Contents

1 General Introduction 5
1.1 Introduction to Electrical Cables . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Wiring Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Reflectometry Based Techniques . . . . . . . . . . . . . . . . . . . 9
1.1.3 TR-MUSIC and Past Works . . . . . . . . . . . . . . . . . . . . . 13

1.2 Theory Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Transmission Lines: Behavior and Concepts . . . . . . . . . . . . 15
1.2.2 Scattering Parameters Modeling of Wiring Networks . . . . . . . 20

1.3 Content of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Power Cable and Analysis of Losses 27
2.1 Cable Structure and Parameters . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Lossless Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Inductance Estimation . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2 Capacitance Estimation . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Lossy Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Resistance Estimation . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Conductance Estimation . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Analysis of Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Time Reversal: DORT and TR-MUSIC analysis 41
3.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Time Reversal in Open Media . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 The DORT Method . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 The TR-MUSIC Method . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 DORT Method in Guided Wave Propagation . . . . . . . . . . . . . . . . 48
3.4 MUSIC Method in Guided Wave Propagation . . . . . . . . . . . . . . . 52

3.4.1 Standard MUSIC Method . . . . . . . . . . . . . . . . . . . . . . 52

1



3.4.2 Inverted MUSIC Method . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Soft Fault Location in a Single Lossless Line 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Precision Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Accuracy Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Parametric Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Soft Fault Location in a Single Lossy Line 89
5.1 G Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Z Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 TDR in Presence of Losses . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 MUSIC in Presence of Losses . . . . . . . . . . . . . . . . . . . . 102

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Soft Fault Location in a Y-Branched Line 109
6.1 The Baselining System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1 Baselining in Free Space . . . . . . . . . . . . . . . . . . . . . . . 110
6.1.2 Baselining in Wiring Networks . . . . . . . . . . . . . . . . . . . . 111
6.1.3 Performance Analysis of Baselining in Case of Soft Fault . . . . . 112

6.2 Port MUSIC in the Three-dimensional Case . . . . . . . . . . . . . . . . 114
6.3 Numerical Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 Change of Fault Position . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.2 Precision and Accuracy Estimation . . . . . . . . . . . . . . . . . 123
6.3.3 Dummy Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 General Conclusions and Perspectives 129
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Glossary 135

List of figures 140

List of tables 141

2



Bibliography 143

3



4



Chapter 1

General Introduction

In the recent past, the increasing demand of electrical cables due to its fundamental role
in transfer of energy and signals brought to the development of new technologies and

structures aimed to improve their functionality and reduce the occurrence of faults. In
this first chapter, the different types of cables present nowadays and their main applica-
tions are introduced, together with the types of faults that could jeopardize the healthy
situation of a cable. Accordingly, some fault location techniques as reflectometry (in
particular TDR) and TR-MUSIC are briefly presented in its strengths and limitations.

Then, a theory background is recalled, where important concepts in transmission lines
useful for the operational mode applied in this work are discussed.

At last, a description of the thesis organization is carried out, where the main concepts
treated in each chapter are presented.

1.1 Introduction to Electrical Cables

In 1892, Thomas Edison filed an electrical conductor and surrounded it by insulating ma-
terial resistant to both fire and moisture, given birth to the first known electrical cable [1].
Practically, given a point A and a point B, it is quite simple getting an electrical signal,
just connecting them trough a piece of copper wire. Developments and specializations
in wiring have been studied during the XX century, bringing to get very powerful and
complex structures and making them indispensable in all modern electrical and electronic
systems. As a matter of fact, cables represent their backbone structures, acting as the
nervous system in the human body where signals, power and commands are delivered to
their destinations. Nowadays, electrical cables are everywhere and the increasing com-
plexity in modern electronic and electric systems, such as automotive or avionics fields,
have witnessed a huge reckoning on the extensive use of electrical wires. For instance,
today’s vehicles are not only equipments used just for transporting individuals, but they

5



Chapter 1. General Introduction

Figure 1-1. A complete network of electrical cables of a typical modern car with bundles
of cables in addition to their connectors referred to as the automotive wire harness

have included leisure and entertainment facilities as AC, radio, TV, navigation systems,
etc., thus necessitating the presence of wiring networks. In figure 1-1, an electrical cable
network in a typical modern car showing bundles of long cables with their connectors is
represented, where statistics conducted result that about 35% of the total vehicle infras-
tructure is electrical based. As a consequence, from few hundred of meters in vehicles
some years ago, now modern cars contain about 4km; besides, wire lengths have also in-
creased to several hundred km in civil and military airplanes and even more than 1200km
in transport ships. Figure 1-2 describes the cable lengths in different transport systems.
Moreover, estimates have shown that about 5000km are present in a nuclear power plant
which can skyrocket to 40000km of cables in railway infrastructures of large countries like
China and U.S [2]. A large variety of different cable structures exist and, in particular,
three main types of cables are the most common: power, coaxial and twisted pair cables.
Power cables are usually used for the transmission of electrical power at medium/high
voltage, both in the AC or DC mode. They originate from power plants to distribution
stations which are responsible for supplying this electrical power to different electricity
using facilities. They are made up by different layers, specifically detailed in the next
chapter, and they are very used for underground applications. Since they are adopted in
high voltage field, particular big sections are required, as shown in figure 1-3

Twisted pair cables have been introduced by Alexander Graham Bell in 1881 [4], for
telephone applications in order to reduce crosstalk or electromagnetic induction (EMI)
between pairs of wires. Two insulated copper wires are twisted around each other, where
each connection on a twisted pair requires both wires (a forward and a return conductor
of a single circuit). Although the twisted pair cable is used by older telephone networks
and is the least expensive type of local area network (LAN) cable, most systems still
contain them at some point along the network. Fiber optic cables and coaxial cables are
now widely adopted for LANs.
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1.1. Introduction to Electrical Cables

Figure 1-2. Cumulated lengths of electrical cables in transportation systems [3]

A coaxial cable is a type of cable made up by an inner conductor surrounded by a
cylindrical insulating layer, which is in turn surrounded by a conducting shield. Coaxial
cables are mainly used as transmission lines for radio frequency signals. Their applica-
tions include feedlines connecting radio transmitters and receivers with their antennas,
computer network connections, digital audio and distributing cable television signals.

In this work, a study of medium voltage power cables will be carried out and it
is worthy to note that in our numerical model we used uniform two-wire transmission
lines in order to validate the proposed methods for locating faults, while smaller coaxial
cables were used in the experimental measurements. Notably, the latter kind of cables
allowed comparing the experimental results with the numerical ones, besides they have
connectors compatible with most vector network analyzers used for measurements. The
same conditions between the numerical and experimental measurements are verified in
order to entirely validate the model.

Figure 1-3. Underground high voltage power cables

7



Chapter 1. General Introduction

Figure 1-4. A map showing different cable types with their function in an Airbus A340
aircraft [3]

In this section some of the most common cables are introduced, but it is important to
note that a very large variety of cables with different functions and applications can be
found. As a proof, in figure 1-4 the total cable network present in a single airplane, an
Airbus A340, is shown. Due to this massive use of wiring networks in nowadays systems,
one day or another, a cable in a network will show signs of weakness or aging leading to
the appearance of defects. These anomalies can be the origin of dysfunctions and imply
serious consequences for the system or the environment. In fact these defects, hereafter
referred to as wiring faults, can be categorized in two main families: hard or soft faults.
In the next section, the main reasons behind the occurrence of each of them will be
illustrated.

1.1.1 Wiring Faults

Many researches and efforts to protect cables against damaging factors have been adopted
in the last few years, but nevertheless, wires are still subject to undesired modifications
and breakdowns. Depending on the application field, the consequences of such a per-
formance degradation could be catastrophic and fatal especially when it refers to areas
inhabited by humans. Numerous incidents, in many sectors, have happened and billions
of dollars have been wasted. Industry facilities, buildings, transportation systems and
space/avionic companies are some of the sectors hit by this kind of problem. For exam-
ple, in May of 1986, a NASA Delta 3925 rocket booster carrying a GOES (Geostationary
Operational Environmental Satellite) weather satellite failed due to a momentary short
caused by a chafed wire. An Air Force Titan 4B broke up when a short circuit occurred,
and 13 years earlier, the failure of another Delta was also due to a chafed wire that caused
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1.1. Introduction to Electrical Cables

Figure 1-5. Example of cable degradation

short circuits [5]. Nevertheless, it was not until the TWA tragedy in 1996 that govern-
ments and industries started seriously looking for solutions to this problem. Generally,
the main causes of degradation and appearance of defects in cables can be either of ex-
ternal (chemical contamination, water penetration, corrosion ans oxidation) or internal
(manufacturer defects, local heating) origins [6]. An example of cable damage is shown
in figure 1-5.

The most common defects are short and open circuits which are the sources of many
fires or signal losses [7]. They are called ‘‘hard faults ”, and are characterized by the fact
that they prevent any signal from going further away. ‘‘Soft faults ”, are the second group
of wiring defects which are basically of very different kind and are usually more difficult
to detect [8]. Generally, any fault which is not considered hard shall be defined as a soft
one, these include insulation damage, cracks, frays, etc. Significantly, a precise knowledge
of the fault’s reflection coefficient might allow a better assessment about the type of
fault: hard faults are characterized by a strong reflection coefficient while, on the other
hand, a weak reflection coefficient is related to soft faults, which could make difficult to
see the reflected wave.

Consequently, detection and repair of a wiring fault becomes essential especially when
a wiring fault might lead to destructive consequences, from expensive, economic and
human lives terms. Therefore, proper and efficient wire diagnosis tools become strongly
recommended to prevent the fatal consequences that may be verified.

1.1.2 Reflectometry Based Techniques

In order to have diagnostic tools capable anticipating or detecting the occurrence of faults
in wiring networks, both hard ad soft, many methods have been developed throughout the
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Chapter 1. General Introduction

Figure 1-6. Radar systems using reflectometry principle for locating targets [3]

last few decades to test the condition of cables, most of which were devoted for locating
hard faults only. Generally, such kinds of faults are easier to detect and locate as they
are characterized by high reflection coefficients [9]. However, studies have reported that
a wide majority of wiring defects are considered to be soft, and these types of faults
are not considered dangerous since they do not posses direct consequences for a system
breakdown. Nevertheless, they must not be underestimated, since a soft fault will develop
sooner or later into a hard one, thus leading to devastating damages.

Two main categories of fault location techniques are common and largely used in
the last decades, but in this section only the reflectometry-based techniques will be pre-
sented. The reason behind this choice is that they are the most widely used methods
in this domain as they have presented effectual results compared to other traditional
non-reflectometry based methods, although they also present some limitations.

Reflectometry is a high frequency technique of investigation, imaging or nondestruc-
tive testing, dated back to the late 1930’s as a technique catching the attention of mainly
geologists and other scientists. The basic principle is simple to implement: a probe signal
is sent to the system or environment, this signal travels under the laws of propagation of
the medium studied and when it encounters an obstacle a portion of its energy is reflected
back to the point of injection. The analysis of this reflected signal is carried out to obtain
information about the system or the environment to diagnose.

Reflectometry has found its place in many different applications starting from radar
systems where it has been used extensively for detecting and measuring the distance
to a target (e.g aircraft) as shown in figure 1-6. Geotechnology [10], hydrology [11]
and telecommunication networks are other forms of reflectometry applications [12]. The
electronic measuring instrument used for characterizing and locating faults with reflec-
tometry in electric cables is called reflectometer. The reflectometer setup is composed
of a signal generator, a coupler, an oscilloscope and the tested cable as shown in figure
1-7, where the corresponding tool used to demonstrate the results is referred to as the
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1.1. Introduction to Electrical Cables

Figure 1-7. A scheme showing the principal of reflectometry

reflectogram. The process of detecting a fault can be summarized as follows: the signal
generator emits for example a step-like pulse which propagates along the cable. When
this pulse encounter an impedance discontinuity, i.e. fault, part will be reflected back and
another will continue propagating along the cable. The reflected wave front goes back
to the injection point where an oscilloscope records the signal amplitude variations over
time, and consequently the analysis of the reflected signal can infer information about the
system, as fault position, or the medium under consideration. The reflection coefficient
Γf of the impedance discontinuity can also be retrieved and it gives information about
the intensity of the discontinuity:

Γf =
Vreflected
Vincident

=
Zc − Zf
Zc + Zf

, (1.1)

where Zc is the characteristic impedance of the transmission line and Zf is the
impedance of the discontinuity. For instance, the reflection coefficient of an open cir-
cuit (Zf = ∞) is 1, while is -1 for a short circuit (Zf = 0). The time or phase delay
between the incident and the reflected waves tells the distance of the fault, while the
magnitude its intensity. As a matter of fact, reflectometry showed promising results
when dealing with hard faults but failed when addressing soft ones depicted by weak
reflectivities [13]. In order to better illustrate this point, the reflectogram of figure 1-8
showing the spread spectrum reflectometry (SSTDR) responses, where SSTDR is a type
of reflectometry methods, is considered for fault impedances ranging from 20Ω to 2000Ω

for a 50Ω coaxial cable [14]. It can be inferred that faults with high impedance discon-
tinuities (20% of Zc) are relatively easy to detect and locate due to their relatively high
peaks. On the other hand, fault impedances below this value become progressively more
difficult to identify as their response is much smaller than even the measurement errors.

Basically, reflectometry can be divided into two main families: time domain family
methods (TDR) and frequency domain family methods (FDR). However, in time domain
better results are obtained and it is largely most adopted in many application fields.

In its standard form, TDR injects a short rise time voltage step as an incident signal
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Chapter 1. General Introduction

Figure 1-8. A reflectogram showing the responses of a spread spectrum reflectometry
(SSTDR) for different load impedances for a 50Ω coaxial cable [14]

where reflected voltages from impedance discontinuities are also step functions. Conse-
quently, the position of the fault d is retrieved from the round trip time delay τ between
the incident and reflected waves and the velocity of wave propagation (vp) of the cable,
given by:

d =
vpτ

2
. (1.2)

Optimal results have obtained with TDR in lossless case and when hard faults are dealt,
but nevertheless several limitations arise which could jeopardize the fault detection or
location. Following, some of these limitations are listed, which represent a good starting
point to introduce the time reversal based methods.

Firstly, TDR methods face the so-called ‘‘blind zone ” limitation. If the system is not
matched to the intrinsic impedance of the cable, part of the energy of the injected signal
is directly sent back, without even going inside the cable. This creates an additional high
amplitude peak at the beginning of the reflectogram which may hide a defect close to
the injection point. Distributed reflectometry [15] can be adopted to face this problem,
where instead of using a single testing port as used in standard TDR techniques, multiple
testing ports are used. In the single Y-junction network of figure 1-9 a standard TDR
injects a single testing signal using one of the three ports (a), while distributed TDR uses
all the testing ports (b). Accordingly, two important limitations can be bypassed: firstly,
this new technique would be removing the blind zone effect by using several testing ports
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1.1. Introduction to Electrical Cables

(a) (b)

Figure 1-9. A single Y-junction network where TDR method was applied in (a) standard
version using a single testing port, (d) distributed form using multiple testing ports

rather than only the affected one, and besides it is capable of eliminating any ambiguity
on the fault’s location with respect to the branches of the network.

Furthermore, any uncertainty on the value of vp will decrease the accuracy about the
value of defect distance since the propagation speed depends on frequency. Then, as the
probe signal’s bandwidth may be quite large, it is not possible to precisely define the
propagation speed for the whole signal and greater the bandwidth, worse the result is.

But the greatest problem of TDR is related to the presence of losses, since it relies on
the presence of large bandwidths for obtaining a good spatial resolution for the location of
the fault. However, large bandwidths are not always satisfied especially with band-limited
systems or when attenuation and dispersion are introduced.

Notably, time reversal based fault detection techniques have shown a great efficiency
in locating soft faults and represent a valid alternative to reflectometry. In this work
one of its methodologies is developed, TR-MUSIC, which operates with a continuous
wave excitation (single tone, no bandwidth). The performances comparison between the
methods will be analyzed and shown in this work, under several points of view.

1.1.3 TR-MUSIC and Past Works

Studies conducted on time reversal have shown optimal results in fault detection reported
by several experiments. In particular two TR methods, which share the same foundations
but different way of working, have resulted in very good performances: DORT and TR-
MUSIC. Both the methods are illustrated and performed in this work (see chapter 3) for
the soft fault location on MV power cables, but DORT does not show any advantages
with respect to TDR in our studied case (single fault, matched load) since its approach is
based on time-domain too. On the contrary, TR-MUSIC has revealed interesting results
and a comparison in its performances with TDR is carried out. It does not operate on
time-domain but on Green function analysis: as result, the main feature of this technique
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is its ability of performing super resolution even in presence of losses and working at
single frequencies. Besides, good results in noise robustness are also obtained.

The method has been introduced for the first time by R. O. Schmidt in 1979 [16] in
the field of antenna applications conducted in open media. Related to this topic, many
works have been carried on by C. Prada and M. Fink from 70’s to 90’s and the cited
papers are inserted in this work.

In the recent past, this technique has been developed in guided wave propagation too,
about which several studies and experiments have been conducted both from academic
and industrial point of view. Specifically, many works performed by F. Rachidi and his
group (École Polytechnique Fédérale de Lausanne) and by A. Cozza (Centrale Supélec)
have been resulted very useful in the research and development of this technique and have
been inspiration for this thesis work. Especially, prof. A. Cozza carefully supervised the
results obtained in this work and three his previous works ([3], [17], [14]) have represented
a good starting point. The results obtained in these cited papers were very satisfactory,
referred to short lossless cables.

As a matter of fact, no works related to fault detection have been done in presence
of losses and very few works on long power cables: the behavior of such a method at
these conditions is studied in this work and a fine comparison with TDR is carried out.
Thus, the principal purpose of this thesis is the analysis of TR-MUSIC without and with
losses on power cables, in order to overcome the limitations arisen with TDR for soft
fault location. A single fault and a matched line scenario is considered as hypothesis for
this work.

1.2 Theory Background

In order to better understand the operational mode of different fault location methods
studied in this work, understanding how an electromagnetic wave propagates in a trans-
mission line is necessary. The aim of this section is first to position this work within the
framework of the transmission line theory and then in the context of the wiring modeling
techniques.

A transmission line is a system of metal conductors and dielectric insulating media
that is capable of transferring energy between a generator and a load. From this point of
view, a one dimensional propagation phenomenon takes place on a transmission line.

There are many types of transmission lines, as shown in figure 1-10 and they can
be divided into two main categories, according to the propagation mode. If both the
electric and magnetic fields are entirely transverse to the direction of propagation of
the traveling wave, the transmission line is in TEM (Tranverse ElectroMagnetic) mode.
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1.2. Theory Background

Figure 1-10. Examples of transmission lines: above the TEM mode is represented and
below the higher terms mode [18]

This mode is particularly interested, since contains structures consisting of two metal
conductors, such as coaxial cables, used in our numerical simulations and experimental
measurements. Instead, if at least one significant field component is in throughout the
direction of propagation, the transmission line is in higher terms mode. At low frequencies,
the wavelength λ is greater than the length l of the transmission line, thus the wave is
almost constant at any point on the line. In this case, it is unnecessary to introduce the
concept of propagation. On the other hand, at high frequencies λ becomes less than the
length l of the line and the amplitude of the wave is no longer constant throughout the
line. In this case, the propagation phenomenon must be taken into account. Accordingly,
the conductors shall have the same geometric shape both in length and cross-section and
the electric and magnetic fields must be considered transverse at the wave direction of
propagation at each point.

1.2.1 Transmission Lines: Behavior and Concepts

In this work, a coaxial cable is considered as network under test for the fault location
methods’ application, under the assumption that both the electric and magnetic field are
transverse to the direction of propagation (TEM mode). A two-conductor line is intro-
duced and a set of coupling partial differential equations are obtained for the transmission
line considered [18]. In particular, the TEM transmission line represented in figure 1-11
with the four lumped electrical parameters is considered, R and L account for loss and
energy storage in the conductors, and C and G for installation and loss in the insulator,
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Figure 1-11. Equivalent circuit of a small of a transmission line, showing the per-unit-
length parameters R, L, C, and G [18]

which are explained as follows:

(1) the per unit length resistance R in (Ω/m). This resistance varies with frequency
due to the skin and proximity effects;

(2) the per unit length inductance L in (H/m). This inductance depends on the diam-
eter of the conductors, the spacing between the two conductors and permeability
of materials;

(3) the per unit length capacitance C in (F/m). This capacitance depends on the
permittivity of the dielectric located between the conductors;

(4) the per unit length conductance G in (S/m) which reflects the losses due to the
dielectric. This conductance depends on the distributed capacitance and dielectric
loss angle tanδ.

Applying the Kirkhhoff’s laws to the transmission line before introduced the following
equations are found:

∂v(x, t)

∂x
= −Ri(x, t)− L∂i(x, t)

∂t
, (1.3)

∂i(x, t)

∂x
= −Gv(x, t)− C∂v(x, t)

∂t
. (1.4)

Considering a lossless line (R=G=0) and differentiating one equation with respect to x
and the other one with respect to t, the Telegraph’s equations are obtained as follows

∂2v(x, t)

∂x2
= −LC∂

2v(x, t)

∂t2
, (1.5)

∂2i(x, t)

∂x2
= −LC∂

2i(x, t)

∂t2
. (1.6)

16



1.2. Theory Background

The solutions of the Telegraph’s equations given by 1.5 and 1.6 can be obtained by the
analysis in time and frequency domain [19].

Time domain analysis allows to analyze the propagation of the signals in a network.
There exist many commercial full Maxwell solvers, such as CST MicroWave Studio [20],
that permit to simulate wire networks using different circuit analysis methods such as
matrix formulation, state variable, etc [21]. The time domain analysis is today’s one of
the most popular techniques for the solution of electromagnetic problems [22]. In fact, it
allows to obtain a short development time and an easy of understanding the procedure,
due to a simple discretization procedure. However, it presents also some disadvantages,
which can be listed as follows:

(1) stair-stepping edges, the orthogonal grid structure of the TD method implies that
edges of structures within the simulation have edges that follow the grid structure;

(2) computational time, for simulations with large spaces or multiple scales (largely
varying wavelengths), this means the simulation must be run for a very long time.

Accordingly, it is easier to start the analysis in frequency domain and switching back in
time domain afterwards.

Given the circuit of figure 1-12, and let V(x,t) and I(x,t) the voltage and the current
at any position x of the transmission line, it is possible to express them in their phase
notation, in time domain, taking the form of single-tone sinewaves:

V (x, t) = <e(V (x)ejωt) (1.7)

I(x, t) = <e(I(x)ejωt), (1.8)

The voltage and current at the position x can be found by solving the two wave equations:

∂2V (x, t)

∂x2
= ZY V (x) = γ2V (x), (1.9)

∂2I(x, t)

∂x2
= ZY I(x) = γ2I(x), (1.10)

where Z=R+jωL is the impedance in Ω/m, Y=G+jωC is the admittance in S/m, and
γ is the complex propagation constant given by:

γ =
√

(R + jωL)(G+ jωC) = α + jβ, (1.11)

with α and β being the attenuation constant in Nepers/m and the phase constant in
radians/m, respectively.
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Figure 1-12. Two Conductor Transmission Line of characteristic impedance Zc and ter-
minated by a load of impedance Zl [18]

For the transmission line of figure 1-12 , the solution of the second order ordinary
differential wave equations 1.9 and 1.10 results in

V (x) = V +
0 e
−γx + V −0 e

γx, (1.12)

I(x) = I+
0 e
−γx + I−0 e

γx, (1.13)

where V +
0 e
−γx and I+

0 e
−γx are the forward propagating voltage and current waves, while

V −0 e
γx and I−0 e

γx are the backward propagating voltage and current waves. The terms
V +

0 , V −0 , I+
0 , and I−0 are complex constants depending on the terminal conditions at the

two ends of the line. As a matter of fact, the current along the line can be written as a
function of the voltage in the form of

I(x) =
V +

0

Zc
e−γx +

V −0
Zc

eγx, (1.14)

where Zc is the characteristic impedance of the line. Specifically, Zc is the limit towards
which the input impedance of an infinitely long line tends to, i.e., a line on which a signal
propagates without ever being reflected towards the entrance. So at any point x in this
infinite line, the ratio of the voltage and current of a wave traveling along the line is its
corresponding characteristic impedance given as follows:

Zc =
V (x)

I(x)
=

√
Z

Y
[Ω], (1.15)

and for a lossless transmission line

Zc =

√
L

C
. (1.16)

The existence of a reflected wave on a line can be explained by the presence of an
impedance discontinuity along the line. This parameter is very important when studying
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1.2. Theory Background

Figure 1-13. Two-port transmission line with characteristic impedance Zc and faulty
characteristic impedance Zf at distance l1 from the testing port (1)

fault detection and location methods. For instance, for a uniform transmission line of
characteristic impedance Zc ending by an impedance load Zl, the incident wave will be
reflected at the load. To quantify this reflection, a reflection coefficient is defined, which
is given by the ratio of the forward propagating to backward propagating traveling waves
at each point x as:

Γ(x) =
Vreflected
Vincident

=
V −0 e

γx

V +
0 e
−γx , (1.17)

and for a lossless transmission line, where α = 0:

Γ(x) =
V −0
V +

0

ej2βx = Γ(0)ej2βx. (1.18)

Significantly, the reflection coefficient Γf at any discontinuity Zf along the line is given
by:

Γf =
Zf − Zc
Zf + Zc

. (1.19)

It is therefore important to point out that faults are characterized by this reflection
coefficient. Certainly, hard faults whether open or short circuits result in an absolute
reflection coefficient equal to 1 (|Zf | = 1), whereas any other kind of defect will result
in a |Zf | < 1. Consequently, the smaller Γf , softer the fault becomes. If the line is
matched, Zc = Zf and, consequently, Γf is zero.

Given the simple transmission line represented in the figure 1-13 where the fault is
characterized by the different characteristic impedance Zf 6=Zc, the reflection coefficient
at the discontinuity Zf along the line is given by a ratio between the two characteristic
impedances, according to the equation 1.19. If the difference between Zc and Zf is
small, the reflection coefficient at the fault position will be small and, consequently, the
time domain reflected wave will be small in amplitude. This is the reason why the time
domain methods (included TDR) may struggle to see the fault location in case of soft
fault. What it is interesting now is knowing the reflection coefficient at the testing ports,
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and according to the equation 1.18:

Γ(0) = Γ1 = Γfe
−j2βl1 (1.20)

Γ2 = Γfe
−j2β(l−l1) (1.21)

where Γ1 and Γ2 are the reflection coefficients seen from the testing port 1 and 2, respec-
tively, and l1 and l2 the distances between respective testing port and fault. The direction
of propagation is chosen positive from the testing port 1 to the fault, and thus x = 0
corresponds to the testing port 1 and the fault is represented here, for sake of simplicity,
as a discrete point fault.

However, the representation on 2-port-networks cannot be measured at high frequency,
in particular above some hundreds of MHz. Different problems in fact can arise:

(1) the measurement of Z and Y parameters, according to the definition, needs the
measurement of open circuit voltages and short-circuited currents, often on very
small devices. It means that for high frequency it is impossible to directly choose
the desired closure;

(2) in a microwave circuit, voltages and currents vary in a very rapid way: thus, it
is not signicative to measure separately voltages and currents but it is better to
measure parameters such power which depends on the linear combination between
them and which not varies significantly along the line;

(3) for measurement of active circuits, short-circuit and open-circuit conditions often
correspond to region of potential instability of the device, so they could not be
measured.

In order to solve these problems, for high frequency networks there is the necessity to
measure parameters related to the reflected and incident waves (voltage and current):
the so-called scattering parameters.

1.2.2 Scattering Parameters Modeling of Wiring Networks

Scattering parameters (S-parameters) which usually form what is referred to the scat-
tering matrix denoted as S, have been widely used in microwave applications where the
scattering analysis has proved to be a very powerful tool that provides the system param-
eters of an N-port network [23, 24]. In the S-parameter approach, an electrical network is
regarded as a "black box" containing various interconnected basic electrical circuit com-
ponents or lumped elements such as resistors, capacitors, inductors and transistors, which
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1.2. Theory Background

Figure 1-14. A two conductor transmission line containing a discontinuity represented as
a block (B) whose length is null [18]

interacts with other circuits through ports. The network is characterized by a square S
matrix of complex numbers, which can be used to calculate its response to signals ap-
plied to the ports. To better illustrate this approach, figure 1-14 is considered where the
transmission lines are characterized by a characteristic impedance Zc, each of length li, a
propagation constant γ , and connecting a null length discontinuity considered as a black
box B. In order to define the scattering parameters, first, the power waves a and b shall
be introduced, representing the incident and reflected waves, respectively, as shown in
figure 1-15. The power waves a and b, measured in [W 1/2], are defined as follows:

a =
V +

√
Zc

(1.22)

b =
V −√
Zc

(1.23)

Along a line the magnitudes of a and b are unchanged, but not he phase terms. Exploiting
voltage and current it is possible to define the power waves as a sum or difference by
voltage and current:

a =
V + ZcI

2
√
Zc

(1.24)

b =
V − ZcI

2
√
Zc

(1.25)

Figure 1-15. Power waves representation in the 2-port network of figure 1-14
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Figure 1-16. Circuit representation and modal currents in case of fault with length l2

where it is evident that the relationship between a and b can be seen as a reflection
coefficient Γ:

Γ =
b

a
=
V − ZcI
V + ZcI

(1.26)

If the network is linear, it is possible to define the reflected power wave b as function of
the incident power wave a, by means of the S parameters:

b =

[
b1

b2

]
=

[
S11 S12

S21 S22

][
a1

a2

]
(1.27)

The measurement of the S matrix parameters is given by:

S11 =
b1

a1

∣∣∣∣
a2=0

S12 =
b1

a2

∣∣∣∣
a1=0

S21 =
b2

a1

∣∣∣∣
a2=0

S22 =
b2

a2

∣∣∣∣
a1=0

(1.28)

where Sii represent the reflection coefficient and Sij the transmission coefficients.

In our case, the measurement of the S parameters is necessary in order to apply the
time reversal fault location methods introduced in chapter 3. A Matlab model of the NUT
has been built and the computation of the modal currents is done. The PSpice numerical
tool has been adopted for the construction of the model, where a 1V voltage source and
a matched load Rl are inserted in the network, as represented in figure 1-16. The model
built is made up of three transmission lines, where the one in the middle represents the
fault and its characteristic impedance is Zf while the other two lines represent the healthy
ones with characteristic impedance Zc. The scattering matrix theory is considered, where
S11 and S21 are computed exciting the network from the left side whereas S12 and S22 from
the right side, starting from the computation of the modal currents. Consequently, the S

22



1.2. Theory Background

Figure 1-17. Y-branched structure

parameters are obtained and the whole scattering matrix is computed at each frequency:

S11 =
I−1
I+

1

S12 =
I−1

I−3 e
+jβl3

S21 =
I+

3 e
−jβl3

I+
1

S22 =
I+

3

I−3 e
−j2βl3

(1.29)

The reflection coefficient S11 corresponds to the reflection coefficient of the first testing
port Γ1, since:

S11 =
b1

a1

∣∣∣∣∣
a2=0

=
I−1
I+

1

= Γ1 (1.30)

and thus
S11 = Γ1 = Γfe

−j2βl1 . (1.31)

Similarly, considering the testing port 2:

S22 = Γ2 = Γfe
−j2β(l−l1), (1.32)

where l is l1 + l2 + l3.

For the case of a Y-branched structure, the voltage and current continuity laws must
be verified at each junction along the line. For this purpose, considering figure 1-17:

V +
1 + V −1 = V +

2 + V −2 (1.33)

and
V +

1 + V −1 = V +
3 + V −3 . (1.34)

The current continuity condition at the junction, or Kirchhoff’s nodal law, implies that
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the sum of the currents flowing into the junction is equal to the sum of currents flowing
out of the junction. If expressed in terms of the voltage waves, the condition is:

V +
1

Zc
− V −1

Zc
=
V +

2

Zc
− V −2

Zc
+
V +

3

Zc
− V −3

Zc
, (1.35)

and thus the matrix S relationship can be obtained: V −1

V +
2

V +
3

 = S

 V +
1

V −2

V −3

. (1.36)

Since the network under test to be studied is a very long cable, as presented in the
next chapter, it is not possible to measure the transmission coefficients Sij since there is
impossibility of injecting signals in both the terminations due to the great distance be-
tween them. Therefore, the reflection coefficients only Sii are taken into account and the
analysis of the fault detection methods will include only the study of these parameters.
As a matter of fact, the S-matrix formulation is the method adopted in our numerical
simulations, performed throughout the multi-paradigm numerical computing software
Matlab. Our simulation code was made up of two main parts.
The first, an RSIM simulation tool is adopted which was originally designed for the
simulation of railway systems [25]. In fact, RSIM afforded an efficient design and imple-
mentation of different complex wiring networks, allowing the computation of both the
modal voltages and currents at each position of the network. The importance of this sim-
ulation tool is its easy interface with Matlab which make the results observation easier.
Besides, it is capable of returning only beneficial data necessary to compute the scattering
matrices compared to heavier uninteresting data produced by other commercial tools as
the full wave simulators.
As for the second part, it is based on the transmission line theory which allowed comput-
ing the characteristic impedance, propagation constant and modal currents (adopted for
the scattering parameters computation) at any point along the branches composing the
studied networks, which in turn permitted calculating the corresponding scattering ma-
trix S. The electrical parameters of the lines are obtained by considering the real values
of the NUT, in our case the MV power cable.

1.3 Content of Work

The principal purpose of the work is to evaluate and apply an innovative time reversal
based techniques for soft fault location in quite long power cables, also in presence of
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losses. In fact, the most common fault location technique adopted nowadays is the
time domain reflectometry (TDR) technique, and despite shows good results, several
limitations arise above all when losses are introduced. Port MUSIC is a particular version
of TR-MUSIC, a time reversal based method, which is theoretically introduced in this
work and compared in its performances with TDR.

In this chapter an introduction on electrical cables, types of wiring faults and reflec-
tometry technique is presented, together with a theory background on transmission lines
in order to fully understand the next chapters of the work.

In chapter 2, the structure and the parameters of the NUT considered in the work
are discussed. In particular, a medium voltage power cable is studied and an interesting
analysis of its losses in frequency is carried out. This last part will be very useful when
losses are introduced in the line.

The time reversal technique is introduced in chapter 3 and different methodologies
studied. Firstly, DORT is considered but due to some limitations TR-MUSIC is then
evaluated in its different versions. After a deep analysis on them, the so-called Port
MUSIC technique shows great advantages in fault location than other methods and a
comparison in its performances with TDR is carried out starting from chapter 4.

Chapter 4 adopts a single lossless line as NUT, where an interesting study on preci-
sion and accuracy estimation of both the methods is done. Spatial resolution and noise
robustness are evaluated also through a metrological analysis with Monte Carlo simula-
tions.

In chapter 5 losses are introduced and all the limitations of TDR arise. Performances
of Port MUSIC in such a condition are studied with also experimental validations with
VNA.

Finally, in chapter 6 a Y-branched structure is considered as NUT and the effect of
the junction investigated in both the methods. The baselining concept here introduced
and well explained is fundamental.

Conclusions and perspectives are then summed up for future possible developments.
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Chapter 2

Power Cable and Analysis of Losses

In this chapter, the medium voltage power cable is introduced in its structure and
characteristics, since it is adopted as NUT in our numerical simulations. Its electrical

and dimensional parameters are analyzed in frequency, both in lossless and lossy cases.
In particular, the analysis of its losses is carried out with an interesting study of them in
frequency which will result very useful in the next chapters. A mapping between them
and fixed attenuation values is implemented in order to retrieve the maximum frequency
for given attenuation values.

2.1 Cable Structure and Parameters

The comparison between different soft fault location techniques is studied on guided
wave propagation. As first step a lossless transmission line is considered, where R and
G are nil. Then, since it represents a realistic cable, all the effects that influence the
cable parameters must be taken into account, included the presence of losses. The line
simulates a medium voltage (12/20kV) power cable, typically used for energy distribution
with a 10km length. This choice is given by the fact that EDF (Electricité de France)
wanted to test the time reversal soft fault detection methods on these cables typically
used in ducts, trays or directly burial for energy transmission (figure 2-1).

The MV cable is a coaxial cable made up of six main layers, as shown in figure 2-2,
and listed below:

(1) a plain circular compacted copper (or aluminum) conductor, composed of many
smaller diameter conductors in order to reduce the skin effect;

(2) a conductor screen which is an extruded semi conductive compound. In power cables,
conducting carbon black (CB)-filled ethylene copolymers, such as ethylene-butyl
acrylate, ethylene vinyl acetate and ethylene thy acrylate, are commonly used as a
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Figure 2-1: Power cables tested in our numerical simulations, EDF Lab Les Renardières,
Seine-et-Marne, France

semiconducting layer. In the cable we consider for our analysis, the semiconductive
materials used are ethylene-butyl acrylate copolymers. Researches on semiconduc-
tive shields has been playing an important role in the development of electric power
cables. Their important functions can be summed up:

(a) preventing partial discharge at the interfaces between the insulation and the
conductor and between the insulation and the external shielding layer;

(b) moderating the electrical stress in the insulation layer by providing a uniform
electric field with reduced potential gradient;

(c) providing protection during short-circuits against damages caused by heating
of the conductor. It is known that the semi conductive layers can influence
the loss tangent of power cables;

(3) insulation layer, generally composed by XLPE (cross linked polyethylene). XLPE
is a semicrystalline polymer that has good electrical properties [26, 27], such as
low dielectric constant, low dielectric loss and high breakdown strength, together
with other desirable properties such as mechanical toughness and flexibility, good
resistance to chemicals, easy processing and low costs [28]. The maximum oper-
ational temperature is around 90 ℃, the emergency temperature 130 ℃, and the
short-circuit maximum temperature 250 ℃. An important advantage of XLPE as
insulation for medium and high voltage cables is their low dielectric loss [29, 30, 31].
The dielectric loss factor is about one decimal power lower than that of paper in-
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Figure 2-2: Power cable structure with the six different layers: (1) inner conductor, (2)
first semiconductor, (3) insulation, (4) second semiconductor, (5) external conductor, (6)
outer sheath [32]

sulated cables and about two decimal powers lower than that of PVC-insulated
cables;

(4) insulation screen, composed by an external extruded semi conductive layer;

(5) metallic screen, composed by many twisted pair copper conductors which form a
metallic layer. This layer is very important because it works as a screen in order to
avoid external and internal interferences;

(6) outer sheath, its main function is the protection of the layers by external agents, like
moisture, temperature, pressure and contacts. It is made up by PVC (PolyVinyl
Chloride) which comes in two basic forms: rigid and flexible. The one used as
protection of these cables is the latter one, obtained by the addition of plasticizers.
It is used in this form in many applications to replace rubber.

The considered cross-section is 240mm, since for the energy transmission, in the first
kilometers (up to 10km) this kind of section is adopted, while 150mm of section after
that. The internal conductor and the metallic crew are made up of copper. From the data
sheet (furnished by EDF), the dimensions of the cable and its electrical parameters are
given, as shown in the tables 2-1, 2-2 and 2-3 [32]: However, the electrical parameters
are given at nominal frequency (50Hz) only. It is known that increasing the frequency
some effects arise and modify the cable R, L, C and G parameters, in particular:

(1) skin effect, for which at high frequencies the current flows only in the external depth
(skin depth) since the total flux is reduced. This is the reason why the resistance
and the inductance of the internal and external conductors are reduced as frequency
increases. In order to mitigate this effect, the two conductors are made up by many
smaller conductors (litz wires);

(2) proximity effect, which refers to the influence of alternating current in one conductor
on the current distribution in another, nearby conductor;
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Table 2-1: General characteristics of the cable

Shape of the section Circular
Insulation XLPE

Nominal voltage 12/20kV
Cable length 10km

Insulation relative permittivity 2.5
Nominal tanδ 5 · 10−4

Maximum tanδ 40 · 10−4

Copper permeability 1.25 · 10−6

Copper conductivity 5.8 · 107

Nominal cable temperature 40 ℃
Maximum cable temperature 90 ℃

Maximum cable temperature, sc 250 ℃

Table 2-2: Dimensional characteristics of the cable

Section Inner conductor Insulation Outer conductor
[mm2] diameter [mm] diameter [mm] diameter [mm]

150 14.3 26.5 33.6
240 18.4 30.6 37.9

Table 2-3: Electrical characteristics of the cable at 50Hz

Section P.u. capacitance P.u. inductance Resistance at 90
[mm2] [µF/km] diameter [mH/km] diameter [Ω/km]

150 0.24 0.35 0.159
240 0.29 0.33 0.098
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Figure 2-3: Voltage and current displacement in a cable and particular of δ angle [33]

(3) loss tangent (or tanδ) variation, a diagnostic method of testing cables to determine
the quality of the cable insulation. This is done to try to predict the remaining
life expectancy and in order to prioritize cable replacement and/or injection. It is
also useful for determining what other tests may be worthwhile. If the insulation
of a cable is free from defects, like water trees, electrical trees, moisture and air
pockets, etc., the cable approaches the properties of a perfect capacitor. In this
case, the voltage and current are phase shifted 90 degrees and the current through
the insulation is capacitive. If there are impurities in the insulation, like those
mentioned above, the resistance of the insulation decreases, resulting in an increase
in resistive current through the insulation, as shown in figure 2-3. The current and
voltage will no longer be shifted 90 degrees but something less than 90 degrees. The
extent to which the phase shift is less than 90 degrees is indicative of the level of
insulation contamination, and this “loss angle” is measured and analyzed. Tanδ
is not constant in frequency but it varies, according to different processes, as the
presence of semiconductive layers which increases its value in frequency due to its
additional series resistance (figure 2-4); in particular, the determination of tanδ is
related to the permittivity and conductivity of the insulation material, given by:

tanδ =
ε”

ε′
, (2.1)

where,
ε′ = ε ε” =

σ

ω
, (2.2)

in which ε′ and ε′′ are the real and the imaginary part of the complex permittivity
of XLPE and σ its conductivity [111].

In case of lossless line R and G are nil and only L and C are present in the cable. Knowing
the value of L and C at nominal frequency, their values at different frequencies can be
computed and their behavior in frequency analyzed.
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Figure 2-4: Behavior of tanδ frequency in presence of semiconductor layers in a cable [34]

2.2 Lossless Line

Considering figure 1-11, if the transmission line is lossless only L and C are present in the
line. In this section, the equations describing their behavior in frequency are presented.

2.2.1 Inductance Estimation

At low frequencies the current flows uniformly all over the section. Thus, considering
the figure 2-5 the concatenated magnetic flux integration is made from 0 to the radius
a, for the internal conductor, and from b to c for the external conductor. Increasing the
frequency, current starts flowing on the skin of the conductor section which is more and
more smaller as frequency increases. This conductor section through which current flows
is called skin depth δ and depends on frequency, copper permeability µ and conductivity

Figure 2-5: Cross-section of the coaxial cable, where the conductors are represented in
blue and the insulation in white
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Figure 2-6: Current flowing increasing the frequency

σ, given by:

δ =
1√
µπσf

, (2.3)

At higher frequencies, the integration is made from a-δ to a for the internal conductor and
from b to b+δ for the external conductor. When the skin depth is very low, the values Lint
and Lext can be neglected and just the inductance between the two conductors (which is
constant) is considered as result. Consequently, the total inductance L of a coaxial cable
decreases in frequency, as shown in figure 2-6. The internal inductances of the cable can
be computed using the Bessel functions and they result as:

Lint =
1

2πa

√
µ

2ωσ
, (2.4)

LXLPE =
µ

2π
ln
b

a
, (2.5)

Lext =
1

2πb

√
µ

2ωσ
, (2.6)

where Lint, LXLPE and Lext represent the inductance of the inner conductor, insulation
and outer conductor, respectively. The frequency at which Lint and Lext can be neglected
is around 1MHz, value from which a > 2δ.

2.2.2 Capacitance Estimation

The capacitance of a coaxial cable can be considered constant for a wide range of frequen-
cies. In fact, it depends only on the real permittivity ε′ which is constant for frequencies
up to 1GHz, at different temperatures, as shown in figure 2-7. Since in our simulations
the frequency range of the cable is lower than 1GHz, C can be considered constant. From
the mathematical point of view, C is given by:

C =
2πε0εr

ln b
a

=
2πε

ln b
a

=
2πε′

ln b
a

. (2.7)
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Figure 2-7: Capacitance in function of frequency at different temperatures [35]

2.3 Lossy Line

If losses are present in the transmission line, also R and G are included. In this section,
the general estimation of these parameters for a coaxial cable is presented. After that,
the analysis of losses introduced by R and G for the considered NUT is carried out, both
series R/L and shunt admittances G/C.

2.3.1 Resistance Estimation

As frequency increases resistance changes. Skin effect in fact reduces the section in which
the current flows and at high frequencies the section (skin depth) is very thin. Since the
section decreases, the resistance increases [36]. In a coaxial cable the value of resistance
in frequency is related to the surface resistance, given by:

Rs =

√
ωµ

2σ
, (2.8)

and the total resistance is
R =

Rs

2πa
+

Rs

2πb
, (2.9)

obtained applying the Bessel functions, where µ and σ always represent the permeability
and conductivity of copper. As result, the resistance increases in frequency as

√
f .
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(a) Generic dielectric behavior (b) XLPE tanδ at different temperatures

Figure 2-8. Tanδ behavior in frequency [35]

2.3.2 Conductance Estimation

The conductance G is the electrical parameter responsible of the dielectric losses. These
losses can be divided into two categories: polarization losses, due to the molecular res-
onances of the dielectric material, and conduction losses, due to the conductivity σ of
the dielectric material [37, 38, 33, 34]. The conductance is related to tanδ previously
introduced. In particular,

G =
2πσ

ln b
a

, (2.10)

and dividing by ωC,
G

ωC
=

σ

ωε
= tanδ. (2.11)

XLPE is commonly used in power cables above all for the very low tanδ and its
variation in frequency very slow. In fact, for XLPE tanδ can be considered constant
for a very wide range of frequency, up to 10MHz [35]. As shown in figure 2-8, where
different temperatures are considered, at 40 ℃tanδ is constant up to 10MHz and its
value is around 5·10−4, while its maximum value (the worst value in case of lossy fault)
is 40·10−4, as shown in the table 2-1. Therefore, since C is constant in frequency, G
increases linearly. The values of the electrical parameters in frequency of our specified
NUT have been estimated throguh the equations introduces, and are shown in table 2-4.
From these values it is possible to derive the values of series (R/L) and shunt admittance
(G/C) losses of the cable at different frequencies, as shown in table 2-5.

Starting from these values, an analysis of cable’s losses in frequency can be carried
out.
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Table 2-4: Electrical characteristics of the cable at different frequencies

Frequency [Hz] R [Ω/m] L [H/m] C [F/m] G [S/m]

50 5.43 · 10−5 2.61 · 10−7 0.273 · 10−9 4.29 · 10−11

104 2.4 · 10−3 1.018 · 10−7 0.273 · 10−9 8.59 · 10−8

105 7.7 · 10−3 1.015 · 10−7 0.273 · 10−9 8.59 · 10−7

106 2.4 · 10−2 1.013 · 10−7 0.273 · 10−9 8.59 · 10−6

107 7.7 · 10−2 1.012 · 10−7 0.273 · 10−9 8.59 · 10−5

108 0.24 1.012 · 10−7 0.273 · 10−9 8.59 · 10−4

109 0.77 1.012 · 10−7 0.273 · 10−9 8.59 · 10−3

Table 2-5: Series (R/L) and shunt admittance (G/C) losses at different frequencies

Frequency [Hz] R/L G/C

50 207 0.0314
104 6.8 · 103 6.28
105 2.31 · 104 62.8
106 7.49 · 104 628
107 2.39 · 105 6.28 · 103

108 7.57 · 105 6.28 · 104

109 2.39 · 106 6.28 · 105

2.4 Analysis of Losses

Known the values of losses for the studied cable at different frequencies, it is possible to
relate them with the attenuation, and from the derived relationship find out the maximum
frequency associated to fixed attenuation values. In fact, in case of losses, attenuation
and dispersion are introduced and may distort the signal response, both in amplitude and
phase. In such cases, limitations in frequency derive from the attenuation presence and
it is not possible to choose any arbitrarily bandwidth, but a maximum frequency shall be
computed in order to have low attenuation values. In other words, higher the frequency,
more attenuation is: if large bandwidth are taken into account, large attenuation values
influence the signal amplitude and it becomes very hard to find out the exact fault
position [39]. Considering a 2-port transmission line, as shown in figure 2-9, an arbitrarily
20dB attenuation value at the testing port (1) is chosen, and thus 10dB at the fault
position, represented by the red arrow. Starting from equation 1.11, attenuation and
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Figure 2-9: Lossy transmission line with arbitrarily chosen 10dB of attenuation at the
fault position

phase constants can be exploited as function of losses R/L and G/C:

α = ω
LG+RC

2β
, (2.12)

β =
1√
2

[−RG+ ω2LC +
√

(R2 + ω2L2)(G2 + ω2C2)]1/2. (2.13)

At high frequencies:
ω2L2 >> R2 ω2C2 >> G2, (2.14)

verified for frequencies around 750kHz÷1MHz. Then, after some mathematical opera-
tions:

α =
R
L

+ G
C

2

√
LC =

R
L

+ G
C

2
· 1

v
, (2.15)

β = ω
√
LC =

ω

v
, (2.16)

with the propagation velocity constant at 1.9044 · 108 [m/s], corresponding to the high
frequency velocity. From equations 2.15 and 2.16 the attenuation constant α depends on
losses and is independent on frequency at high frequencies. Besides, α is related to the
attenuation A, measured in dB :

α =
ln 10

A
20

l1
, (2.17)

with l1 the distance between the testing port and the fault position. Considering the case
of A=10dB :

α =
ln
√

10

l1
=

1.1513

l1
, (2.18)

and exploiting losses:
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Figure 2-10: Three dimensional mapping of the cable losses and attenuation for l1=10km

R

L
(f) +

G

C
(f) = 2αv =

4.38 · 108

l1
. (2.19)

According to equation 2.19, it is possible to plot in a three-dimensional way the losses
and the attenuation A. In fact, these three parameters depend on frequency and fixing
different attenuation values a mapping of losses is carried out. In figure 2-10 the case
l1=10km is figured out, where the white line corresponds to the ‘‘losses curve ” of the
cable, the black lines different contour values of fixed attenuations and the red points the
intersection between the curves. The region of different values of attenuation is better
shown with a colormap on the right. Considering the 10dB contour of attenuation, the
corresponding losses are found and, consequently, the associated maximum frequency,
shown in figure 2-11.

Once the maximum frequency is estimated, the spatial resolution can be derived and
applied for the time-domain methods. Particularly, it is given by:

∆s = v ·∆t =
v

fmax
. (2.20)

Different fault positions are considered and mapped, over a 10km line length, and the
correspondent maximum frequency and spatial resolution are found out.

The table 2-6 and the figure 2-12 show the limitations of the time-domain techniques
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Figure 2-11: Mapping of the cable losses with 10dB of attenuation and correspondent
frequency

Table 2-6: Frequency and spatial resolution estimation for different fault positions over
a 10km transmission line length with a fixed 10dB attenuation value

l1 R/L G/C Frequency Spatial % Spatial
[m] [Hz] Resolution [m] Resolution

10000 4.36·104 216.6 3.44·105 553.6 5.53
7500 5.8·104 379.7 6.04·105 315.3 3.15
5000 8.68·104 841.4 1.34·106 142.1 1.42
2500 1.72·105 3.27·103 5.21·106 36.6 0.36
1000 4.19·105 1.93·104 3.07·107 6.2 0.062
100 3.24·106 1.15·106 1.82·109 0.1 0.001

about the precision on fault detection. More the fault is far from the testing port, less
the frequency is, and consequently worse spatial resolution are obtained. Therefore, in
order to reduce the attenuation in lossy cases, a limited maximum frequency must be
considered and according to the equation 2.20 the time domain methods (as TDR) show
bad resolutions.
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Figure 2-12: Spatial resolution (%) as function of line length

2.5 Summary

In this chapter the structure of the studied NUT is analyzed and its electrical parameters
in function of frequency are estimated. All the effects influencing the electrical parameters
are presented and considered in the study. Accordingly, knowing the cable parameters,
the analysis of losses is carried out and a mapping at given attenuation values is figured
out. In particular, fixing the attenuation at 10dB at the fault position, the maximum
frequency in presence of losses is estimated and, consequently, the spatial resolution. As
a result, the time domain method, included TDR, show several limitations in presence
of losses, since for reducing the attenuation value a limited maximum frequency must be
taken into account.

Therefore, different techniques for soft fault location able to improve these limitations
shown in TDR are needed. In the next chapter, interesting fault location methods based
on time reversal are introduced and illustrated: DORT (Décomposition de l’Opérateur
de Retournement Temporel) and TR-MUSIC (Time Reversal - MUltiple SIgnal Classifi-
cation).
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Chapter 3

Time Reversal: DORT and TR-MUSIC
analysis

The main principle of time reversal is the focusing of the waves back towards the
source of its origin generating waves behaving as if they were propagating backward

in time. The availability of the scattering matrix S of the wiring network represents the
main difference with respect to TDR, in which the analysis of reflected waves in time-
domain allows the knowledge of the fault position.

In this chapter, two of the most common TR methodologies, ‘‘Decomposition of
the Time Reversal Operator” (DORT), and ‘‘TR-MUltiple SIgnal Classification” (TR-
MUSIC), will be presented, their wide range of applications and the respective advantages
and disadvantages. Namely, they share the same foundations related to the decompo-
sition of S but follow two different ways to translate it into the fault position. DORT
adopts a subspace approach in defining signals that, once fed into a numerical model
of the network, focuses back to the fault position in time-domain. Thus, most of the
limitations of any other time-domain method, included the need for large bandwidth to
create spatial resolution, still occur. On the contrary, TR-MUSIC, operates on a differ-
ent subspace approach based on the Green function of the network; the phase patterns
provided by the Green function are the mean of identifying positions.

Main concepts and background of time reversal are presented in the first part of the
chapter, and then the way of working of DORT and TR-MUSIC are illustrated, both in
open media and in guided wave propagation.

3.1 Background and Motivation

A gunshot is fired at night in an area with several tall buildings. Soon afterward a
location is detected and displayed on screen at the emergency department of the nearest
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Figure 3-1: Example of TR application for the kidney stones detection [48]

hospital and also in a patrol car near by. As a matter of fact, the sound from the gunshot
is recognized by microphones placed on the surrounding buildings and in a computer
simulation projected back to the source. This is referred to as time reversal ; it is a
method that adopts backward propagation of waves to focus wave energy onto a specific
location in space and time. The first experiments performing TR methods dates back in
1965, when Parvulescu and Clay [40] time reversed the received signal and broadcast it
from the source to the receiver again, proving that the matched signal technique was able
to focus the arrival of the waves in space. Many studies and researches in this field show
improvements and more and more better results until the advances in microelectronics
and array technologies during the beginning of the 1990s, which led to the development
of the acoustic Time Reversal Mirror (TRM) by Fink and collaborators at the University
of Paris VII, Laboratoire Ondes et Acoustique (LOA) [41, 42, 43, 44]. The list of the
possible applications of TR methodologies is very wide: it goes from automatic processes
[45, 46] to ultrasonic focusing, from avionic and space to undersea applications, from
geology for seismic imaging [47] to medical problems as the detection of breast cancer or
kidney stones [48], as shown in figure 3-1.

Thus, time reversal is a process of recording the signal from a remote source, time-
reversing and back-propagating it to retro-focus around the source [49]. Consequently, the
received signals are time reversed and re-broadcast into the media, experiencing similar
multipaths and scattering as those they have undergone in the forward direction. They
finally focus on the position of the initial source, a process similar in concept to playing
a movie backwards.

3.2 Time Reversal in Open Media

Time reversal is firstly introduced in open media and, in order to better understand
its functional concepts, an experiment in the acoustic field is presented. In particular, a
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Figure 3-2: Acoustic TR of the TR cavity, where both the recording (a) and time reversal
steps (b) are represented [3]

source radiates a short pulse which is transmitted into the inhomogeneous medium (figure
3-2(a)). Attenuation and distortion are generated due to the presence of discontinuities
and inhomogeneities in the medium. At the end, they encounter a set of transducers
surrounding the source, better known as the TR cavity, where each of them records the
signal [49]. This is the first step of the procedure, known as the recording step. In the
second step, called time reversal step and shown in figure 3-2(b), each transducer plays
back its sound signal in reverse. Re-creation of the initial wave occurs but traveling
backward and refocusing on the original source point. Practically, a closed TR cavity
is difficult to be realized and a need of a new operational way is fundamental. This is
the reason why the Time Reversal Mirror (TRM) has been introduced. It is made up by
several transducers, each one having its own electronics. As in the TR cavity case, the
transducers act both in passive (echo) and active (transmit) modes, since they record
and re-transmit the time reversed signal. The TRM operational mode consists in three
main steps, as shown in figure 3-3: in (a) the transmitting step is presented where the
TRM emits pulses into the inhomogeneous medium towards the target. The scatterer
will create a backscattered field which will be recorded by the TRM as shown in step
(b), better known as the recording step. In the final step (c), a time reversed field will be
re-transmitted into the medium leading to a focusing on the position of the target.

Based on the time reversal concepts, two methods are presented in this work starting
from the next section, DORT and TR-MUSIC. In this chapter, the concepts and the
theory derivation are introduced, both in open media and transmission line propagation,
and their advantages and limitations are shown, in order to make a reliable comparison
with TDR, presented in the next chapters. Particularly, they are known as ‘‘subspace” TR
imaging techniques since based on subspace analysis of the scattering matrix. In fact, both
the methods derive from the singular value decomposition (SVD) of the faulty scattering
matrix of the line and differ from the adopted matrix subspace: the signal subspace S for
DORT and the noise subspace N for MUSIC.
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Figure 3-3: The TR process using the TRM where the three steps are presented in
presence of an inhomogeneous medium [3]

3.2.1 The DORT Method

As introduced in the previous section, DORT consists in a subspace analysis deriving
from the the scattering matrix decomposition. Based on the theoretical analysis of time
reversal mirrors, it relies on the matrix formalism used to describe a transmit-receive
process [50, 51, 52]. Given an array of L transducers as the one shown in figure 3-3, the
general idea is to express the received signals as a function of the transmitted ones. First,
the inter-element impulse response klm(t) is introduced in order to better understand the
functional principle of DORT. In particular, klm(t) is the signal applied from the element
m and received to the element l after a temporal Delta function. According to the
reciprocity theorem known for propagation in inhomogeneous medium, the inter-element
impulse response from m to l is equal to the inter-element impulse response from l to m,
so that klm(t) is equal to kml(t) [53]. The repetition of the process for each pair (m, l)
of transmitting and receiving elements leads, at a given frequency, to the transfer matrix
S(ω), with dimensions [L×L]. In general, if the medium contains N pointlike scatterers,
S can be written as the product of three matrices:

S = UΛV †, (3.1)

where U is the matrix describing the transmission and propagation from the L trans-
ducers to the N scatterers, Λ is the diagonal matrix describing the reflectivities of the
scatterers on the S matrix, and V is a transpose conjugate matrix which describes the
back-propagation process from the N scatterers towards the L transducers. As a matter
of fact, the formulation represented in equation 3.1 is equivalent to the singular value
decomposition of the scattering matrix, where Λ is a real diagonal matrix of the singular
values while U and V are unitary matrices whose columns are the left-singular vectors
and right-singular vectors of S, respectively [54]. What it is very important in the DORT
procedure is the Time Reversal Operator K and the decomposition of it, as the acronym
DORT suggests, and it is given by:
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K = SS†. (3.2)

According to the reciprocity theorem, the transfer matrix S(ω) is symmetric and
therefore K is Hermitian. Since K is Hermitian, for the Hermitian matrix properties,
it can be diagonalized. The decomposition on eigenvalues and eigenvectors is therefore
accomplished. In fact, the SVD of S is equivalent to the eigenvalue decomposition of K,
where

K = V Λ2V †, (3.3)

with Λ2 being a real diagonal matrix of the eigenvalues, and V being the eigenvectors
matrix. In particular, the eigenvector matrix V can be divided into a signal space S and
a noise space N . S is formed by the eigenvectors with nonzero eigenvalues whereas N is
formed by the remaining eigenvectors having almost zero eigenvalues. Consequently, S
= span{vi : λ2

i > 0}, while N = span{vi : λ2
i ≈ 0}, where vi are columns of the unitary

matrix V, and written in a matricial form, considering L=2 :

K =

[
v1 v2

][
λ2

1 0

0 λ2
2

][
v†1 v†2

]
(3.4)

If there is only one scatterer, only the first eigenvalue λ1 is significant while λ2 is
close to zero. In general, the number of scatterers N is equal to the number of nonzero
eigenvalues obtained through the SVD of the scattering matrix S. The eigenvectors asso-
ciated to the significant eigenvalues represent the signal subspace S, in this case v1, while
the eigenvectors associated to the non-significant eigenvalues represent the noise subspace
N , in this case v2. It is important to note that in presence of multiple scatterers, the
correspondent eigenvalues in the Λ2 matrix are ordered by intensity, i.e., the eigenvalue
λ1 represents the strongest scatterer [55]. Consequently, in presence of a single scatterer
the eigenvalue λ1 is the only one different from zero. In the example of figure 3-4, the
diagonalization of K results into two significant eigenvalues, denoted as λ1 and λ2 (with
λ1 > λ2) corresponding to the two targets A and B, and L-2 eigenvalues close to zero. So,
focusing on the weaker target (B), the eigenvector v2 corresponding to λ2 is propagated
in space and time. The result is a wave focusing on the target B; a similar result is also
obtained propagating the eigenvector v1 corresponding to λ1 in order to focus on the tar-
get A [56, 57, 58]. With this example, one of the advantages of DORT is shown: in fact,
selective focusing is achieved using the DORT method, and in presence of multiple scat-
terers it is possible to inject the correspondent eigenvectors and selectively focusing the
attention on it. As a matter of fact, DORT works well in presence of multiple scatterers
and is able to individually select them [59, 60, 61].
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Figure 3-4: Selective focusing accomplished by DORT method in presence of two scat-
terers [3]

3.2.2 The TR-MUSIC Method

MUltiple SIgnal Classification (MUSIC) was first introduced by R. O. Schimdt in 1979 [16]
as a method used to provide asymptotically unbiased estimates of a general set of multiple
wavefronts arriving at an antenna array. For this reason, MUSIC is considered as a DOA
estimation method, where DOA (Direction Of Arrival) denotes the direction from which
a propagating wave arrives at a certain point. Many fields include the MUSIC method,
especially radar, sonar, electronic surveillance and telecommunication applications. As
DORT, it is born in open media applications and only recently has been adopted as fault
detection method in wiring networks [62, 63]. The basic idea is equivalent to DORT,
since also MUSIC derives from the SVD of the scattering matrix S or, equivalently, from
the EVD of the TRO K. However, it is completely different with respect to DORT since
it does not adopt the signal subspace S in the operational procedure but, on the contrary,
the noise subspaceN , where S ⊥N . This implies high spatial resolution results: as better
shown and explained in section 3.4, considering the noise subspace instead of the signal
subspace can bring many advantages in several applications, by studying accuracy and
precision of the methods [64, 65]. These two orthogonal subspaces are used to construct
a spectrum function, be got though by spectral peak search and detect DOA signals. In
MUSIC this function is called Pseudo-spectrum Φ(x), able to find peaks at the position of
the scatterer at any frequencies. In fact, one of the great advantages of MUSIC is that it
is able to localize the target at single frequencies, adopting mono-chromatic waves. When
the Pseudo-spectrum function tends to infinite, a peak is detected and it represents the
scatterer position, at any arbitrarily chosen frequency. Now the question is: when the
Pseudo-spectrum function tends to infinite and in which way does MUSIC operate?

MUSIC operates through a projection procedure, involving the noise subspace N
and the Green function g(x) phase patterns, computed at any position x of the medium.
Therefore, a certain number of discrete points in the space must be chosen and their Green
functions calculated. A Green function is a complex mathematical tool which represents

46



3.2. Time Reversal in Open Media

Figure 3-5: Mesh plot of the Pseudo-spectrum of scatterers present in an open medium

a wave varying both in time and space. In other words, it represents a propagating wave
from a certain point to another one where only the phase pattern of the wave is taken into
account [66, 67]. Going back to the functional procedure of MUSIC, the Pseudo-spectrum
function Φ(x) can be represented as follows:

Φ(x) =
1

L−N∑
λ2i≈0

|<vi, g(x)>|2
, (3.5)

where vi represent the L-N orthogonal vectors to the signal subspace vectors, for the L-N
eigenvalues equal to zero. Since S ⊥ N , it represents the noise subspace. Both vi and
g(x) are vectors since the Pseudo-spectrum function is computed at any frequency of
the considered bandwidth. As shown in the equation 3.5, at the x position in which the
projection between such vectors is zero, Φ(x) is maximum and at any frequency peaks
are found. In order to clarify this point, the example in figure 3-5 is presented, where
the Pseudo-spectrum is maximum in two points corresponding to the locations of two
scatterers present in an open medium. As observed in this example, two well-resolved
peaks are detected given by the projection procedure. This ‘‘well-resolvedness” result is
obtained by the fact that MUSIC adopts the N subspace and allows the determination
of singular points for detecting the scatterers [68, 69].

Generally speaking, it was shown that the MUSIC Pseudo-spectrum computed using
the Green function as a steering vector yields accurate estimates of the target locations
while achieving a sub-wavelength resolution. More importantly, this result pushed for-
ward towards practical implementation for applications not limited to open media, but
also in guided wave propagation represents by transmission lines [70, 71].
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(a) Open media (b) Wiring network

Figure 3-6. DORT procedure [3]

3.3 DORT Method in Guided Wave Propagation

Conceptually, a fault in a wiring network is nothing else than a discontinuity. This simple
observation implies that locating a fault in a transmission line is essentially the same
problem as a scatterer in an open medium. A different approach to fault location has been
adopted from the acoustics to the case of guided wave propagation along transmission
lines and has shown to be efficient in locating a single soft fault. It is important to note
that in our work the hypothesis of single soft fault is done and the line is matched at all
the testing ports [72]. As a matter of fact, important differences exist in DORT between
the open media and the guided wave propagation cases. First, in free space, a generated
wave from an array of transducers is equally reflected in all directions of a point-like
scatterer. The reflection coefficients are the same in all the considered directions and
corresponds to the Γs of the scatterer; the target in this case acts as a secondary isotropic
source. On the other hand, for the case of transmission lines, when a propagating wave
encounters a fault, a reflected wave (in the opposite direction of propagation) and a
transmitted wave (in the same direction of propagation) are generated; in particular, the
first one is factorized by the reflection coefficient Γf of the fault while the transmitted
one by (1+Γf ), and thus the reflection coefficients weighting the generated waves from
the fault are not equal. To better understand the concept an example is shown in figure
3-6. Beside, while in open media the signal received at the jth port is only made up by
the reflected wave generated from the scatterer, in transmission line the reflected and
transmitted waves are intrinsically mixed up and different weights are included. This
situation has no analogy in open media, making the use of the DORT method in guiding
media different and more critical [73].

DORT is a time-domain based method which is able to synthesize signals aimed to
focus at the fault position. It operates maximizing the energy at that position, when a
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Figure 3-7: Frequency-domain signals focusing at the fault position in a 2-port transmis-
sion line

discontinuity in a transmission line occurs, and even in presence of low SNR values it
can localize the fault precisely. Considering a 2-port transmission line with a single soft
fault, the EVD is applied, where v1 represents the eigenvector associated to the ‘‘faulty”
nonzero eigenvalue λ1 and v2 the eigenvector associated to the ‘‘healthy” nil eigenvalue
λ2. As already introduced in section 3.2.1, DORT is an imaging method operating in the
signal subspace and thus the eigenvector v1 is considered in the procedure. In particular,
the components of such eigenvector are injected from the both ports of the transmission
line, in time-domain, and they focus at the fault position maximizing the energy at that
point [74]. Considering the 10km line in figure 3-7, the frequency-domain signals s1(ω)
and s2(ω) are injected in the line and focus at the fault position, situated at 2.5km from
the testing port (1). If the fault is a discrete point, it is known from the transmission
line theory that the reflection coefficient of an injected wave is Γf while the transmission
coefficient is 1+Γf . In this case, the Sf matrix of the faulty line is given by:

Sf =

[
Γfe

−j2ωτ1 (1 + Γf )e
−jω(τ1+τ2)

(1 + Γf )e
−jω(τ1+τ2) Γfe

−j2ωτ2

]
. (3.6)

Instead, if the the fault is not a discrete point but it has a finite line length, the
transmission coefficient is different from 1+Γf . Considering the figure 3-8, the line has a
fault given by an impedance discontinuity with length w, where the reflection coefficients
seen by the fault Γ0 and seen by the testing port (1) Γf are given by the following
equations:

Γ0 =
Zf − Zc
Zf + Zc

, (3.7)

Γf = Γf (Γ0). (3.8)

In this case, the Sf matrix is given by:

Sf =

[
Γfe

−j2ωτ1 (1− Γ2
f )e
−jω(τ1+τ2)

(1− Γ2
f )e
−jω(τ1+τ2) Γfe

−j2ωτ2

]
. (3.9)

Approximating the transmission coefficient magnitude term to 1, it is possible to neglect
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Figure 3-8: Reflection coefficients in a 2-port transmission line with a fault represented
by a finite line length

it and consequently:

Sf =

[
Γfe

−j2ωτ1 e−jω(τ1+τ2)

e−jω(τ1+τ2) Γfe
−j2ωτ2

]
, (3.10)

and normalizing the reflection terms,

Sf =

[
e−j2ωτ1 e−jω(τ1+τ2)

e−jω(τ1+τ2) e−j2ωτ2

]
. (3.11)

Multiplying it by its transpose conjugate matrix S†f , the TRO K is given by:

K = SfS
†
f = 2

[
1 ejω(τ2−τ1)

e−jω(τ2−τ1) 1

]
. (3.12)

Applying the EVD to the matrix K, as in the equation 3.4, the eigenvector v1 is the one
associated to faulty eigenvalue λ1. After some mathematical operations, the vector v1

can be exploited in its two components,

v1 =

[
e−jωτ1

e−jωτ2

]
=

[
s1(ω)

s2(ω)

]
, (3.13)

which correspond exactly to the injecting signals s1(ω) s2(ω) focusing on the fault, as rep-
resented in figure 3-7. After having computed the Fourier anti-transform of s1(ω) s2(ω),
the two time-domain components (for a 2-port transmission line) or the n components
(for a n-port transmission line) of the eigenvector associated with the ‘‘faulty” eigenvalue
are injected along the line, and a focusing is obtained at the meeting point founded by
its intersection both in space and time. In other words, when the components of such
eigenvector cross each other the energy is maximized at that point and the fault posi-
tion is detected. The DORT graphical representation which figures out these concepts is
called ‘‘Space-Time” plot and it is shown in figure 3-9, referred to the transmission line of
figure 3-7. In particular, at the instant t=0 the first time-domain component of v1 (yellow
line) is injected from the testing port (1) along the line while its second component (blue
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Figure 3-9: Space-Time plot representing the eigenvector components for a two-port
transmission line in presence of a single fault

line) is injected from the testing port (2) with a time delay (τ2 − τ1), corresponding to
the phase of the transmission coefficients of matrix K. According to the figure 3-7, the
meeting point between the two components is exactly at the fault position, l1=2.5km.
It is important to consider that in our simulations, as will be better shown in the next
chapters, the fault is considered as an impedance discontinuity with w=1, and this is the
reason why in figure 3-9 the fault is localized at 2500.5m.

The operational concepts of DORT have been explained in this section and its ability
to localize the fault is shown. It is a very interesting method which allows to make a
fault location and detection through a simple SVD or EVD decomposition. With respect
to TDR, a model must be known a priori and inserted into the simulation software, in
our case Matlab. The RSIM code has been adopted with the faulty line model and the
measurements implemented in the code. This allows an easier measurement procedure
since all the computational work is done by the software. It is able to localize the fault
efficiently at different conditions, but shows great advantages in particular in two cases:

(1) open- or short- circuited lines (figure 3.10(a)), when multiple reflections are present,
since its ability to maximize the energy at the fault position makes the focusing level
higher, even than quite low SNR values;

(2) multiple faults (figure 3.10(b)), due to its ability to selectively individuate a precise
eigenvalue associated to a fault.

However, it is not our cases since as hypotheses of this work a single soft fault is
considered and the transmission line is matched-end at all its terminations. Therefore,
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(a) Multiple reflections (b) Multiple faults

Figure 3-10: Space-Time diagrams

no other reflections are present due to the testing ports but only the one generated by
the fault. Moreover, it is a time-domain method and thus the spatial resolution problems
arisen with TDR in presence of losses (see chapter 2) still occur in DORT. A development
of a new method to overcome these problems is needed and, as shown in the next section,
TR-MUSIC in wiring networks is developed.

3.4 MUSIC Method in Guided Wave Propagation

TDR and DORT methods are essentially based on a time-domain approach, and thus
rely on the availability of potentially large bandwidths in order to create the conditions
for good spatial resolutions. In fact, the spatial resolution ∆s shown in the equation 2.20
is inversely proportional to the bandwidth and in presence of losses it is limited, resulting
in bad resolutions. In this section, MUSIC is introduced in wiring networks. Differences
with respect to the open media case are considered and different versions are proposed
and discussed.

3.4.1 Standard MUSIC Method

In section 3.2.2, a general idea of MUSIC in free space has been presented where the
concepts of Pseudo-spectrum and Green function are introduced. Standard MUSIC is
the method introduced by Schmidt in the acoustic field: here, the same concepts will
be illustrated in a faulty transmission line and they will be shown in a deeper way.
Standard MUSIC is based on a projection procedure between the Green functions g(x)

at each line position x and the eigenvectors v⊥i (from now on marked with ⊥ to make
intuitive their belonging in N , related to λ2

i ≈ 0). To better understand the role of the
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Figure 3-11: Green function generation from five different line positions

Green functions and the projection operations, an example is shown in figure 3-11. Five
different line positions are considered, included the real fault position x̃ (in the example
corresponding to x4) which is distant l1 from the testing port (1). Each position is a good
candidate for the detection of the fault position since the exact position of the fault is not
known a priori. MUSIC operates analyzing the phase patterns of different functions and
comparing the phase of the noise space eigenvectors derived from the measured scattering
matrix with the phase of the Green function vector at each position of the line. The green
arrows in the figure represent the Green functions generated from each candidate position.
Ideally, exciting every point of the line, the Green function of such a point represents the
propagation function generated from this point to the testing ports, along the line. As
matter of fact, the Green function is no more than a transfer function, considered at
different line positions. From a mathematical point of view, it is given by:

g(x) =


e−jβx1

e−jβx2

...
e−jβxp

 =


e−jωτ1

e−jωτ2

...
e−jωτp

, (3.14)

where in this example p=5. Considering go and back from the testing port (1) to the xk
position, the Green function vector becomes:

g(x) =


e−j2βx1

e−j2βx2

...
e−j2βxp

 =


e−j2ωτ1

e−j2ωτ2

...
e−j2ωτp

. (3.15)

According to equation 3.5, when the Green function at position xk gets zero projection
onto the noise subspace N eigenvector, and thus when the two phase patterns coincide
(xk = x̃), the Pseudo-spectrum function Φ(x) is maximum and a peak is detected at
that fault position. Graphically shown in figure 3-12, some considerations are intuitive
looking at this figure. First of all, it is important to observe that a 2-dimensional vectorial
space is considered since a 2-port line is taken into account in this case. The Green
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Figure 3-12: Projection operation in standard MUSIC

function vector rotates in such a 2-dimensional space and when the projection between it
(green vector) and the noise subspace eigenvector (blue vector) is maximum, the Pseudo-
spectrum function Φ(x) tends to infinite. In this case g(x) is exactly orthogonal to the
signal subspace eigenvector v1, due to the fact that S ⊥ N . The noise subspace is taken
into account in the projection procedure since the zero point of sinϑ and not the maximum
of cosϑ is detected. As a matter of fact, MUSIC is a DOA estimation method and it is
going to estimate the direction of arrival (ϑ) of a signal with respect to another one and
in guided wave propagation that angle is nothing else than the displacement between
g(x) and v1. The research of the zero points of sinϑ is advantageous since, as shown in
figure 3-13, the projection is represented by a sinewave in function of ϑ, due to the Green
function vectorial rotation. It is easy to observe that the cosine function (blue line) is
quite smooth around its maximum and it is quite hard to identify the exact maximum
value of cosθ. On the other hand, since the behavior of the sinusoidal function (red line)
around its zero points is sharper, the and the Green functions g(x) at each line position
‘‘well-resolvedness” criterion is verified and a better resolution obtained.

In noiseless case standard MUSIC is very accurate, but in presence of noise the vector
v⊥1 is particularly subject to noise and over a certain number of realizations the accuracy
deteriorates. Briefly speaking, considering the figure 3-12, in presence of noise the vector
v⊥1 (which in the 2-port case is equal to v2) rapidly moves around its starting position
and the projection procedure with g(x) is getting worse. Accordingly, a new version of
MUSIC is shown in the next section where the same operational procedure is kept, but
the noise subspace is no more considered, aimed to improve the accuracy.
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Figure 3-13: Projection function

3.4.2 Inverted MUSIC Method

The ability of TR-MUSIC to provide a super-resolution performance is one of its strengths
which makes it interesting and advantageous with respect to other fault location methods.
When the projection between g(x) and v⊥1 is maximum (min sinϑ), it wll be minimum
onto v1 (max cosϑ). Therefore, a necessary condition for obtaining the super resolution
is to make sinϑ nil. In standard MUSIC (see 3.4.1), what allows to obtain this super
resolution is the orthogonality between the signal and the noise subspace. However,
this condition can also be verified considering the inversed procedure; instead of the
orthogonal vector to v1, the orthogonal Green function vector g(x)⊥ is taken into account,
as represented in figure 3-14. In such case, nor the whole scattering matrix neither the
EVD decomposition are considered in the computations but v1 is the phase pattern of the
Sii vector obtained directly from measurements. The advantages of this MUSIC version,
called ‘‘Inverted MUSIC”, make it more reliable and more practical since:

(1) the noise subspace N is not involved, which allows to improve the accuracy esti-
mation in case of low SNR values;

(2) only the reflection parameters Sii are considered, which in case of long lines does
not imply the measurement of transmission parameters.

Involving only the reflection scattering parameters, the equations 1.31 and 1.32 shown
in 1.2.2 are recalled where both magnitude and phase are illustrated. In particular,
normalizing them, the ith term of the vector v1 is given by:

Sii
|Sii|

= ∠Sii = e−j2βli = e−j2ωτi , (3.16)

where li is the distance between the ith port and the fault while τi the time needed to
the wave for reaching the fault from such a port. The only phase term is obtained and
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Figure 3-14: Projection operation in inverted MUSIC

can be directly projected onto the orthogonal Green function vector

g(x)⊥ =

[
1

−1

]
e−j2βx1

e−j2βx2

...
e−j2βxp

 =

[
1

−1

]
e−j2ωτ1

e−j2ωτ2

...
e−j2ωτp

, (3.17)

having the same pattern.

Therefore, in Inverted MUSIC no matrix subspaces are adopted and the inversed
projection procedure is applied. The creation of the vectors to be projected can be
accomplished in two ways, and thus two different approaches will be illustrated:

(1) Frequency-delay MUSIC, where all the frequency samples are involved and the vec-
tors are function of each ωj sample;

(2) Port MUSIC, where single frequency samples are involved and the creation of v1

and g(x)⊥ is performed depending on the number of testing ports.
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3.4. MUSIC Method in Guided Wave Propagation

Figure 3-15: Graphical linear regression of the Frequency-delay MUSIC functional oper-
ation

Frequency-delay MUSIC

Frequency-delay MUSIC operates at different values of frequencies and considering only
one testing port: thus, the only scattering parameter S11 is considered. Given a single
2-port transmission line with p τ , where each τ indicates a different position along the
line, from every τ is generated a Green function where all the frequency samples m are
included and mixed up in the vectors creation. Every scalar component depends on the
jth frequency sample. For a specified kth τ :

g(x)⊥ =

[
1

−1

]
e−j2ω1τk

e−j2ω2τk

...
e−j2ωmτk

 , v1 =


e−j2ω1τ̃

e−j2ω2τ̃

...
e−j2ωmτ̃

, (3.18)

where τ̃ represents the exact fault position and the size of these vectors is given by
the m frequency samples. All the frequency samples are mixed up together and the fault
position is looked for: cycling for all the τ positions along the line, the kth τ for which the
relationship τk=τ̃ is verified results in the maximum projection between v1 and g(x)⊥ and
the fault candidate is found. Frequency-delay MUSIC operates as a linear regression in
order to find out the exact τ value. Greater is the number of frequency samples m, better
will be the regression and the resulting fitting. Considering the figure 3-15, the black line
represents the phase terms of the measured v1 with the exact τ̃ . For a specified kth τ
value, the vector g(x)⊥ is represented by the red line. When the fault position has been
detected, the behavior in frequency of the Green function phase patterns corresponds to
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Figure 3-16: Transmission line excited from both the testing ports and particular on
Green function generation from a fault candidate

∠v1. If there are only few frequency samples the regression can bring to very big mistakes,
as shown in the blue line case, where the projection procedure does not allow to find out
the exact position of the fault.

However, frequency-delay-MUSIC shows a problem in its procedure since, in order to
obtain the phase pattern vector of the measured scattering coefficient v1, a normalization
of the S11 coefficient is needed. But since the magnitude of this coefficient depends on
frequency, normalization is not possible in this case due to the fact that all the frequency
samples are mixed up together. This problem can be overcome considering another
version of Inverted MUSIC, implemented in this thesis work, which operates at single
frequencies but considering more testing ports: Port MUSIC.

Port MUSIC

Port MUSIC does not operate with many frequency samples but at single frequencies
to fit the fault position. No regression is resulting and all the testing ports of the line
must be taken into account for the vector construction. However, there is a price to be
paid since in order to apply this method the entire length of the line must be known,
and consequently the whole time T necessary for a wave to travel along the line. It is
important to note that in this work the time delays τ are considered and not the distances
x between testing ports and fault since in this case there is not necessity to know the
value of the velocity of the wave propagation, but only the frequency. Considering the
line in figure 3-16, where a simple 2-port line is illustrated, both the ports are excited
and the two reflection scattering parameters S11 and S22 are involved:

S11(ω) = Γ1 = Γfe
−j2ωτ̃ , (3.19)

S22(ω) = Γ2 = Γfe
−j2ω(T−τ̃), (3.20)
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where τ̃ is the time needed for the wave to reach the exact fault position from the port
(1). Normalizing the reflection coefficients Sii, the phase vector v1 is obtained:

v1 =

[
S11

|S11|
S22

|S22|

]
=

[
e−j2ωτ̃

e−j2ω(T−τ̃)

]
, (3.21)

at a given single frequency sample. At each fault candidate position τk it is possible to
find out the Green function generated from such a point to both the testing ports (green
line in figure 3-16):

g(x)⊥ =

[
1

−1

][
e−j2ωτk

e−j2ω(T−τk)

]
. (3.22)

The kth τ correspondent to τ̃ results in a complete vectorial projection. Thus, p Green
function vectors are built, one for each kth position of the line, whose size is given by the
n number of testing ports. For each kth fault candidate, single frequency measurements
are carried out cycling from 0 to m.

The great advantage of Port MUSIC is the fact that it can operate at single frequencies;
it is therefore possible to apply the normalization of Sii. However, the price to be paid
is that the entire length of the line must be known a priori and that a certain number of
measurements must be done, corresponding to the n number of testing ports. Although
it can operate at single frequencies, in order to be more robust it is better to consider
more frequency samples. In fact, the Pseudo-spectrum function Φ(x) is defined over many
frequency samples:

Φ(x) =
1

m∑
j=1

p∑
k=1

|<v1, g(x)⊥>|2
, (3.23)

for each kth fault candidate. It is worthy to observe that in case of multiple faults,
not only the vector v1 is involved in the projection but the N S eigenvectors, where N
represents the number of faults, as the number of scatterers in open media.

In order to better understand this concept, the graphical representation of figure 3-17
is showed, where the performances of Port MUSIC are analyzed in the 10km lossless
and noiseless line of figure 3-7. The figure represents the Pseudo-spectrum function Φ(x)

and the yellow straight line represents the exact position of the fault. Port MUSIC can
operate at single frequencies and at each frequency sample it is able to localize the fault.
In particular, considering the specified samples of 0.6, 1.2 and 1.8MHz represented by
the pink, red and green horizontal line, respectively, it is possible to observe that at
each frequency many peaks are detected: in other words, Φ(x) is maximum at different
points for a single frequency. These peaks are represented by the colored points along
each horizontal line. For example, considered the frequency of 1.2MHz (red line) for a
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Figure 3-17: Pseudo-spectrum representation in a lossless and noiseless line with the fault
at 2.5km from the first testing port

range going from 2300m to 2700m, the Pseudo-spectrum is maximum in 10 points: Port
MUSIC finds 10 fault candidates at this frequency in such range. In the same way, at
the frequency 0.6MHz (pink line) 5 fault candidates are detected and at 1.8MHz (green
line) 14. As a matter of fact, considering many frequencies it is possible to state which
is the exact fault position: each fault candidate is evaluated at each frequency, and only
one of them is collected for all the considered frequencies. This candidate is represented
with bigger balls, and underlined by the the yellow straight line.

Now the question is: why at each frequency many peaks are found? And what the
yellow hyperbolas on the Pseudo-spectrum plot represent? To answer at these questions,
it is important to note that at each frequency the detected fault candidates are period-
ically separated. This is due to the fact that in transmission lines theory the position
along a line is periodic and then the Green function is periodic too. In particular, moving
from the xk position to the right or left side along the line by λ/4, the Green function is
given by:

g(x) =

[
e−j2β(xk+λ

4
)

e−j2β(L−xk−λ4 )

]
. (3.24)

Considering the only S11 reflection parameter and the position xk + λ
4
:

e−j2β(xk+λ
4

) = e−j2βxk · e−j2β
λ
4 = e−j2βxk · e−j2( 2πf

v
)λ
4 (3.25)

= e−j2βxk · e−j4
π
λ
λ
4 = e−j2βxk · e−jπ (3.26)
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Figure 3-18: Illustration of projection procedure with periodicity of transmission line

and thus, the resulting vector is the opposite vector to the orthogonal Green function
vector:

g λ
4

(x)⊥ = −

[
1

−1

][
e−j2βxk

e−j2β(L−xk)

]
. (3.27)

As shown in figure 3-18, when the projection is zero for g(x)⊥, it will be zero also for its
opposite vector. Consequently, considering the Pseudo-spectrum plot, different periodical
peaks are detected and the yellow hyperbolas are formed, called ghosts. In order to
clearly show this concept, the Pseudo-spectrum function (see equation 3.23) is taken into
account and the detected peaks are plotted in function of distance, as shown in figure
3-19. Considering the same three frequency samples as in figure 3-17, it is evident that
they are distanced by λ

4
, figure 3.19(a). Besides, only at one position all the frequencies

converge together and are able to detect a peak: it is the exact fault position. Moreover,
more frequency samples are considered, more accurate the fault location is and less errors
are made, figure 3.19(b).

Therefore, the concepts of Inverted MUSIC have been shown in this section and the
advantages of Port MUSIC with respect to the other methods are verified. It is important
to note that Inverted MUSIC does not show differences with respect to Standard MUSIC
in the noiseless case (figure 3-19): advantages in noise robustness will be discussed in
chapter 4. Accordingly, in the next chapters the results and performances comparison
between Port MUSIC and TDR will be shown.

61



Chapter 3. Time Reversal: DORT and TR-MUSIC analysis

(a) Three frequency samples (b) All frequency samples

Figure 3-19: Peak detection in Port MUSIC

3.5 Summary

In this chapter, two time reversal based methods have been introduced: DORT and
MUSIC. Both derive from the same scattering matrix decomposition and operate on
the S subspace analysis, but their functional mode is different since based on different
subspaces (S for DORT and N for MUSIC). The advantages of DORT are several but not
in our case study. In fact, when there are multiple faults or multiple reflections it becomes
very useful since it is able to maximize the energy at the fault positions. The theoretical
concepts and the procedure have been presented, and its graphical representation for
fault location shown.

The substantial difference of MUSIC with respect to DORT is that it is not a time-
domain based method but it operates in frequency, through a projection procedure where
Green functions at different positions on the line and S noise subspace are involved. This
results in a very super resolution performances which overcomes the limitations in time
encountered by TDR and DORT above all in presence of losses (see chapter 5). Moreover,
a new version theoretically more robust than the standard one has been introduced,
Inverted MUSIC, and two different approaches of this technique presented. In particular,
Port MUSIC has resulted very interesting since it is able to operate at single frequencies,
improving the spatial resolution problems arising with TDR.

In the next chapters, a performances comparison between Port MUSIC and TDR will
be shown, from both simulations and experiments points of view. In particular, in the
next chapter a 10km 2-port lossless line is considered as NUT, in chapter 5 a 2-port lossy
line and in chapter 6 a Y-branched line.

62



Chapter 4

Soft Fault Location in a Single Lossless
Line

In the previous chapters the concepts and the general ideas of different fault location
methods have been presented, with their advantages and limitations. The time rever-

sal based methods have been introduced in two main methodologies: DORT and MUSIC.
After having deeply theoretically analyzed such methods, Port MUSIC is revealed the
most profitable, ensuring good performances even in presence of noise.

From this chapter on, simulations studying the methods’ ability in soft fault location
are analyzed and a comparison between TDR and Port MUSIC performances carried out.
Precision and accuracy of both methods are investigated with different noise levels and
according to its intensity a specified study is done.

The NUT considered in the numerical simulations is a 10km line length MV power
cable whose parameters, structure and behavior in frequency have been studied in chapter
2. In this chapter, a lossless line is considered while more complex structures will be
presented in the next chapters, and the fault is represented as an impedance discontinuity.

4.1 Introduction

In chapter 1 the general theory of a lossless line has been presented. Only L and C are
involved and the characteristic impedance is represented by the equation 1.16. In table
2-4 the electrical parameters in frequency of our NUT are shown and considering the high
frequency values the characteristic impedance Zc of the healthy line can be computed:

Zc =

√
L

C
= 19.24 Ω. (4.1)
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Figure 4-1: Transmission line considered in the simulations with 1m-fault situated at
2.5km from the first testing port and represented by an impedance discontinuity

The fault is represented as a thinner line portion, obtained for example crushing it and
the consequent characteristic impedance of such a part will be different. In particular,
in this work a 10% increase and decrease of C and L respectively is considered and the
faulty characteristic impedance is:

Zf =

√
0.9 · L
1.1 · C

= 17.4 Ω. (4.2)

The fault is considered as 1m line length and is situated 2.5km from the first testing port
over the 10km line length, as shown in figure 4-1. Since a lossless line is considered, there
are no limitations in bandwidth and so an arbitrarily maximum frequency can be chosen.
In this work a 10MHz bandwidth with 10kHz of frequency sampling is adopted. The
reason why we have not chosen an higher maximum frequency deals with the fact that
in the next chapter a lossy line is analyzed and, in order to compare the results between
the two cases, a lower bandwidth is considered. Thus, the velocity of propagation can be
computed at high frequencies and is given by:

v =
1√
LC

= 1.9044 · 108 m

s
. (4.3)

The test spectrum signal is represented by a Taylor window, which is similar to a Cheby-
shev window but with a weaker decrease of secondary lobes (figure 4.2(b)). Other kinds
of windowing could be chosen, as the rectangular or Gaussian one, but Taylor ensures
a good compromise between the spatial resolution of the main lobe and the presence of
secondary lobes. The spectrum signals are considered in baseband and thus only half of
the whole bandwidth is considered for the simulations: therefore the maximum frequency
is 5MHz and the number of frequency samples 501.

Before starting the simulations, it is important to precise how the SNR has been
defined in this work. A very important role is played by it, as will be shown in the next
sections of this chapter. In particular, it is defined in frequency-domain since when TDR
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(a) Frequency-domain (b) Time-domain

Figure 4-2: Peak detection in Port MUSIC

is considered a Fourier anti-transform is applied in order to obtain the time-reflected
echo, and at each time instant a convolution over all the frequency samples is carried
out. In other words, a mean operation is involved and thus the resulting SNR at each
time instant will be lower than computing it directly in time. Therefore, defining it in
time-domain the noise robustness of TDR would be worse than what considered in this
work. Figure 4-3 represents the amplitude of S11 considering three different SNR values
in frequency, 20dB, 10dB and 0dB.

4.2 Precision Estimation

In this section TDR and Port MUSIC are compared in the precision at which they are
able to locate the fault. Different SNR values are considered in such a simulation and
a study of spatial resolution is carried out. The methods’ performances are analyzed
separately and the results compared considering the same conditions.

TDR

As introduced in chapter 1, TDR operates injecting a time impulse in the network and
the reflected wave is analyzed. In particular, the time delay needed to the reflected
wave for reaching the injecting port allows the identification of the fault position. The
reflectogram is the graphical tool with which it is possible to observe the reflected wave
and therefore detecting the fault position. As a matter of fact, TDR operates with a
Fourier anti-transform, where the time-domain reflection coefficient S11 is retrieved.

Considering the faulty line of figure 3-8, the correspondent reflectogram is shown in
figure 4-4. From this figure some observations can be done. First, uncertainty about the
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Chapter 4. Soft Fault Location in a Single Lossless Line

Figure 4-3: S11 amplitude in frequency at three different SNR: 20dB (blue), 10dB (red)
and 0dB (green)

fault position can be observed since the fault is not detected through a single peak or
a singularity but is located between 2480m and 2520m. It can be any point inside this
region: for sake of simplicity in our work we have considered the middle point between the
two peaks. Then, the derivative shape of the reflectogram is interesting to be investigated.
Considering the same line in figure 3-8, the reflection coefficient seen from the testing port
(1) can be retrieved starting from Γ0:

Γf = Γ0 + (1− Γ2
0)(−Γ0)e−j2βw, (4.4)

and after some mathematical operations,

Γf = j2βwΓ0e
−jβw = jω2

w

v
Γ0e

−jβw, (4.5)

where the derivative term jω explains the reflectogram shape obtained. It is interesting
to observe that the previous analysis is valid only in case of electrically short fault. In
fact, according to [17], the term Γf (ω)

Γ0
can be approximated by the following equation:

Γf (ω)

Γ0

=
Ajω

jω + p
, (4.6)
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Figure 4-4: Reflectogram in case of 1m-fault over a 10km transmission line

where A is a constant term and p a real-valued pole,A = 2
1+Γ2

0

p =
1−Γ2

0

1+Γ2
0
v
w

, (4.7)

found out through a Padé approximation. In the lower frequency range, where the fault
is electrically short, a further approximation can be done:

Γf (ω) = jω
A

p
Γ0, (4.8)

and substituting the values of equation 4.7, the equation 4.5 is retrieved. According to
this last equation, it is possible to compute the value of |Γf | at 10MHz of maximum
frequency and thus knowing how much the reflected time-domain impulse is decreased
with respect to the injected one when encounters the fault. Substituting all the values,
with w = 1 and the characteristic impedances of equations 4.1 and 4.2:

|Γf (ω)| = 2ω
w

v
|Γ0| = 0.033. (4.9)

Therefore, it is important to know whether a fault is electrically short or not; in fact,
in case of not electrically short fault, the denominator cannot be neglected and p acts
as a real pole, changing the identification of the fault position. In order to evaluate the
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Figure 4-5: Spatial resolution of TDR in case of lossless line

spatial resolution of TDR, and in more general of all the time-domain based methods,
the injected time-domain impulse is considered (the resolution does not change when the
wave is reflected or transmitted). A protocol must be adopted in order to have the same
yardstick for both the methods compared. In particular, a decrease of 3dB from the
maximum peak is taken into account.

As shown in figure 4-5, the spatial resolution of the time-domain methods is around
22m when a lossless line is considered which, over a 10km line length, corresponds to
0.22%.

Port MUSIC

The projection procedure operated by Port MUSIC for detecting the peaks involves, as
seen in chapter 3, the orthogonal Green function vectors and the normalized Sii vector
v1. In a lossless line Γ0 is a real number: for sake of simplicity S11 only is considered and
is given by:

S11 = Γ1 = Γfe
−j2βx̃ = jω2

w

v
Γ0e

−jβwe−j2βx̃. (4.10)

Since MUSIC operates considering the phase terms only, in order to obtain the vector v1

as in the equation 3.21, a normalization is needed:

S11

|S11|
= je−j2ωτ̃ . (4.11)
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4.2. Precision Estimation

(a) Pseudo-spectrum (b) Frequency counter

Figure 4-6: Fault location in Port MUSIC considering the line in figure 4-1

However, in this case each normalized Sii coefficient is an imaginary term and the resulting
angle is displaced by π

2
. In order to solve this problem, each Sii term shall be multiplied

by j and in this lossless case the vector v1 is built up as follows:

v1 =

[
jS11

|S11|
jS22

|S22|

]
=

[
e−j2ωτ̃

e−j2ω(T−τ̃)

]
. (4.12)

Running the simulations by Matlab where the projection is applied, the Pseudo-spectrum
function is obtained where at each frequency several periodic peaks are detected and
the fault is clearly located at 2500.5m (figure 4.6(a)). If there is no noise the peaks are
found precisely and no spread is present between them. In order to clearly observe the
peaks detected by Φ(x), a plot representing the number of local peaks at each position is
figured out in figure 4.6(b). Several peaks are detected, corresponding to the number of
fault position candidates collected at each frequency sample. At 2500.5m the number of
candidates is 501, since without noise the candidates are not moved away from the exact
position of the fault and all the frequencies samples considered in the bandwidth detect
it exactly. In case of noise the number of candidates at the fault position is smaller and
the spread between the peaks increases.

In figure 4-7, the point A represents the fault candidate in the noiseless case while the
point B the fault candidate when a certain value of noise is present, represented by the
black line. At a fixed frequency, higher the noise is, worse spatial resolution is expected:
decreasing the SNR value, in fact, both accuracy and spatial resolution deteriorate, since
the vector v1 is subjected to noise

< v1, g(x)⊥ >=< (s1 + n1) · g(x)⊥ >=< s1 · g(x)⊥ + n1 · g(x)⊥, (4.13)
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Figure 4-7: Projection function with fault location without (A) and with (B) noise

where s1 and n1 represent the signal and noise terms of the vector v1, respectively. Thus,
in presence of noise the peaks are displaced from the exact fault position and from each
other. To better understand the behavior, four different SNR values are considered and
the correspondent Pseudo-spectra are shown in figure 4-8. The influence of noise is more
evident considering the frequency counter, in which is shown that decreasing the SNR
value less candidates are collected around the fault position and for low values (i.e. 20dB)
the precise location becomes difficult. A solution adopted to improve this problem at
20dB will be shown in the next section. Figuring out the frequency counter (figure 4-9)
it is also possible to compute the ‘‘effective spatial resolution ” at each SNR value. It is
important to observe that it is a pragmatic concept, where both accuracy and precision
are measured and the resulting displacement represents an accuracy measurement of the
method. As expected, it gets worse decreasing the SNR value. It is a different concept
with respect to the real spatial resolution, which is the measurement index representing
a method precision in the fault detection.

In order to compute the spatial resolution in MUSIC the peaks detected by the Pseudo-
spectrum function must be analyzed and since MUSIC operates at single frequencies all
the different frequency samples must be taken into account. For high SNR values all
the fault candidates are situated around the fault position and most of the frequencies
are able to precisely identify the exact position. In such a case, precision dominates on
accuracy. On the other hand, decreasing the SNR, the fault is not detected at the exact
position and accuracy dominates on precision. In this case, it is senseless talking about
the ability of a method in the precision estimation: in fact, it can be very precise in
locating the fault but if it is not the exact position it is useless.
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(a) 80dB (b) 50dB

(c) 40dB (d) 20dB

Figure 4-8: Pseudo-spectra at different SNR values

(a) 80dB (b) 50dB

(c) 40dB (d) 20dB

Figure 4-9: Frequency counter at different SNR values
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Figure 4-10: Scatterplot between spread and resolution at each frequency sample

This is the reason why for the precision estimation only high values of SNR are
considered, the SNR values above which the precision dominates on the accuracy. And
now the question is: which values of SNR could be considered for this estimation? And
for which values, on the other side, the accuracy dominates on the precision? In order
to answer at these questions, for each value of SNR (from 200dB to 0dB distanced by
10dB) a scatterplot is studied, shown in figure 4-10, where for a single noise realization
the equivalent spread and the spatial resolution are plotted at each frequency sample.
The same four arbitrarily SNR values are considered: 80dB (blue line), 50dB (red line),
40dB (yellow line) and 20dB (violet line). First of all, an interesting thing to observe is
the linear relation between resolution and spread at the different SNR values.

For high SNR values the spread is low since the noise does not influence the result in
a very deeply way. The precision of the peaks dominates the accuracy and thus in this
region is useful compare the methods considering their precision in locating the fault.
In the scatterplot it is represented by the 80dB case (blue line) where the slope of the
line is positive and the resolution is greater than the spread at each frequency sample.
For low SNR values, as the 20dB case (violet line) in the scatterplot, the noise is quite
violent and the spread over each frequency value is higher. In this case the accuracy
dominates the precision and it is senseless the comparison of the method performances
in precision. An accuracy estimation analysis is needed (see section 4.3), where over a
certain number of noise realizations the accuracy of both the methods is evaluated. The
red and yellow lines are close to the limit case and it corresponds to a SNR value between
50dB and 40dB, respectively. Therefore, below the limit SNR value (black dotted line),
the precision estimation is useless and the accuracy must be investigated.
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Figure 4-11: Spatial resolution in Port MUSIC considering three different SNR values:
70dB (blue), 60dB (red) and 50dB (yellow)

Accordingly, three different SNR values higher than the limit case are considered for
the precision estimation: 50dB (yellow), 60dB (red) and 70dB (blue). The resulting plot
considering all the frequency samples is shown in figure 4-11. Comparing this result with
the TDR case the super resolution advantages of MUSIC are evident where, for the three
cases considered, the spatial resolution is on the millimeter/centimeter order. Taking into
account for example a single frequency sample, (i.e. 4MHz at 60dB), the correspondent
peak resulting from the vector projection is shown in figure 4-12 and the super resolution
of 1.4mm is obtained, decreasing the maximum peak by 3dB as done for TDR. For lower
SNR values, MUSIC still performs super resolution on the order of the centimeter but
the study have not been done for the reasons explained before.

A study of accuracy will be shown in the next section involving these SNR values. In
such a case, also the peak amplitude decreases since a noise term is added, as shown in
the equation 4.13, and the projection is not perfect as in the noiseless case, where the
peak amplitude tends to infinite.

4.3 Accuracy Estimation

In this section the uncertainty about the fault position is investigated in both TDR and
Port MUSIC. In order to perform it a noisy case is taken into account, with 20dB of SNR,
chosen according to the study done in the previous section. A certain number of noise
realizations are considered and a Monte Carlo simulation is applied in order to estimate
the accuracy of the different methods.
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Figure 4-12: Peak resulting from the MUSIC projection procedure, at 4MHz and 60dB
of SNR

TDR

Uncertainty is investigated by studying the standard deviation of each method and a
consequent histogram is figured out. For TDR the reflectogram is shown (figure 4.13(a)),
where it is evident the presence of 20dB SNR: the noise level is not so high due to the
definition given to SNR in this work. In fact, as stated in section 4.1, it has been defined
in frequency and as consequence of the mean operation carried out in frequency-domain,
the noise level will be lower in time-domain. Running a Monte Carlo simulation with 100
noise realizations the resulting histogram identifying the fault position is shown in figure
4.13(b), where a quite good standard deviation σ is obtained.

Port MUSIC

In this case it is not immediate the procedure for computing the accuracy of the method.
In fact, at each realization a counting of the fault candidates at the different frequencies
is carried out and the position with the greatest number of candidates is identified as
fault position. If the line is noiseless, in the exact fault position there is no displacement
and all the frequencies find a peak at that position, as observed in figure 4.6(b). But in
presence of noise (above all for low SNR values, i.e. 20dB) more candidates around the
fault position occur and errors can be arisen. This procedure for which MUSIC locates
the fault considering the maximum peak over the fault candidates is called majority law.
It is the basic procedure and its operational mode is shown in figure 4-14. Considering
a single realization, if the exact fault position is the blue one (4.14(a)) no errors arise.
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(a) Reflectogram with SNR=20dB (b) TDR histogram

Figure 4-13: Monte Carlo simulation results in TDR with 100 noise realizations and 1000
frequency samples

But in presence of noise the maximum peak can indicate a different position, bringing to
errors in the location (4.14(b)). As a result, the histogram in figure 4.15(a) is obtained
with a σ much higher than the TDR case.

In order to improve the problems arisen with the majority law, a second procedure
is introduced: the smooth function. It operates considering the number of local peaks
at different positions as the majority law, but it works with a convolution operation.
In particular, a moving window is considered and the local peaks included in its area
are convoluted together: in other words, it is nothing else than a low-pass filter. The
accuracy is improved with respect to majority law (σ = 0.039) but the precision is worse
since a region of space is considered and not singular peaks (figure 4.15(b)). Obviously,
another consideration to be done is the choice of the width of the moving area. In the
considered example, 7 position points are considered and included in the moving window:
increasing it, accuracy improves but precision deteriorate. With 3 position points, for

(a) (b)

Figure 4-14: Majority law procedure in Port MUSIC
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(a) Majority law (b) Smooth function

Figure 4-15: Port MUSIC histograms with 100 noise realizations and 1000 frequency
samples

example, σ is 0.048 while with 15 position point 0.035. The choice of 7 point positions is
a good compromise between precision and accuracy estimation (figure 4-16).

However, also considering the smooth procedure σ is still higher than the TDR case,
and a new procedure shall be implemented to improve the performances. With this
in mind, a third procedure for the accuracy estimation in Port MUSIC is developed:
DB-Scan function. It operates in different region of the two-dimensional space frequency-
distance (the space created by the Pseudo-spectrum function), through a ‘‘cluster analysis
”. A maximum distance is chosen, the reference distance dref , and σ is computed consid-
ering only the points for which d < dref , where d is the distance between the samples.
Different clusters are generated in the space and only the fault candidates close to the
exact fault position are included in the accuracy estimation. Since MUSIC operates at
independent frequencies, the exclusion of certain frequency samples is possible and ad-
vantages in accuracy estimation are expected. Considering always 10MHz as maximum

(a) Moving window (b) Resulting peaks

Figure 4-16: Smooth function procedure in Port MUSIC
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Figure 4-17: DB-Scan procedure where dref > 9.51m is considered and different clusters
are generated involving also the ghosts

frequency in baseband a dref < 9.51m must be chosen. The reason of this choice is related
to the presence of ghosts. In fact, the ghosts are distanced from each other and from the
fault position by λ

4
and, obviously, at high frequencies this distance decreases. Different

clusters are created where clouds of points are figured out in space, as represented in
figure 4-17 by white points: thus, dref must be lower than λ5MHz

4
, which corresponds to

9.51m.
Moreover, the central cluster must be taken into account (the one within the fault) and

for this purpose the maximum kurtosis is evaluated. The kurtosis is an index which mea-
sures how much a distribution is smooth evaluating how much the samples are spread
in a particular distribution. In statistics and metrology it is common as the 4th mo-
ment and in the similar way of skewness (3rd moment), kurtosis is a descriptor of the
shape of a probability distribution. The way in which kurtosis can be expressed is the
‘‘kurtosis index ”:

γ = β − 3, (4.14)

where β is the ratio between the fourth central moment µ and the square variance:

β ,
µ4

σ4
=

E[(xi − µ)4]

(E[(xi − µ)2])2
, (4.15)

with xi a particular point in the Pseudo-spectrum space. Looking for the maximum, the
cluster with less dispersion between its samples is obtained. In fact,

if γ < 0 the distribution is "leptokurtic", smoother than a Gaussian distribution;
if γ = 0 the distribution is "mesokurtic", smooth as a Gaussian distribution;
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(a) dref = 2.37m (b) dref = 1.58m

Figure 4-18: Pseudo-spectra in which DB-Scan is applied

if γ > 0 the distribution is "platykurtic", sharper than a Gaussian distribution.

Computing the maximum kurtosis the central cluster is considered since it is the one
with less dispersion between its samples. Implementing DB-Scan, less frequency samples
are taken into account and, in order to equally compare the results with TDR, a greater
initial number of frequency samples are considered in such a way to obtain 1000 frequency
samples for which d < dref is verified.

The accuracy of Port MUSIC operating with DB-Scan is evaluated by considering two
different cases of dref : 2.37m and 1.58m, corresponding to 1

4
and 1

6
of λ5MHz

4
, respectively.

The Pseudo-spectra are shown in figure 4-18, where it is evident the low frequencies
exclusion operated by this operational function. The improvement in accuracy results in

(a) dref = 2.37m (b) dref = 1.58m

Figure 4-19: Histograms in which DB-Scan is applied
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(a) Majority law (b) DB-Scan with dref = 2.37m

Figure 4-20: Accuracy estimation in frequency counter

the histograms figured out in 4-19. Less dref is, better accuracy is performed. However,
taking lower dref values brings to the exclusions of an higher number of frequencies,
making the results not so reliable. Again, a compromise between these two effects shall
be considered and for this purpose the λ5MHz

16
(4.18(a)) is considered in our simulations.

The correspondent σ value (= 0.0166), shown in figure 4.19(a), verifies the accuracy
improvement of Port MUSIC adopting DB-Scan and comparing it with majority law the
result is evident. The frequency counter plots are shown (4-20) where a sharper behavior
in DB-Scan (4.20(b)) results in a better σ estimation.

In conclusion, the accuracy between TDR and Port MUSIC are comparable when DB-
Scan is adopted. What it is interesting to observe now is the behavior of these methods
in the accuracy estimation when the number of frequency samples and the bandwidth
change. From now on, TDR and Port MUSIC will be compared considering the only
DB-Scan procedure with dref = λ5MHz

16
.

4.3.1 Parametric Study

In the previous sections the simulations have been carried out considering fmax=10MHz
and 1000 samples. Now, the influence of these parameters variation and how the methods’
performances are modified is studied. Besides, the influence of noise and the change of
fault position is analyzed too and the accuracy results evaluated.

Number of Frequency Samples

A 10MHz of maximum frequency is considered with a different number of frequency
samples. The accuracy estimation of both TDR and Port MUSIC is studied. The cases
of 5000 and 10000 frequency samples are considered and compared to the previous case
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(a) m = 5000 (b) m = 10000

Figure 4-21: TDR histograms with different frequency samples m

with m=1000. Increasing the total number of frequency samples m, an improvement in
accuracy is expected for both the methods since a better mean operation is carried out.

For TDR, the histograms shown in figure 4-21 effectively figure out the expected
behavior, with a decrease of σ increasing the number m of frequency samples. A very
interesting thing to note is the behavior of σ: in fact, it decreases proportionally to
√
m, according to the central limit theorem. It can be easily verified considering the

mathematical model of TDR: in this case, in fact, the variance of all the m samples is
invariant and thus CLT can be applied:

σ2 =
1

m2

m∑
j=1

σ2
j =

1

m
. (4.16)

Also in Port MUSIC an higher number of frequency samples results in a better ac-
curacy estimation. In fact, more samples are included in the central cluster with maxi-
mum kurtosis and consequently, over a certain number of noise realizations, the accuracy
improves. A mathematical model is introduced, assuming that all the samples are dis-
tributed as a Gaussian distribution, in order to study the variation of σ changing m.
Considering two arbitrarily values of fmin and fmax and their samples mmin and mmax,
the deviations are related as follows:

σmax = σmin
fmin
fmax

=
σ0

fmax
, (4.17)
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Figure 4-22: Behavior of σ in function of the number of frequency samples both for TDR
(blue) and Port MUSIC (red)

where σ0 is referred to the reference frequency fmin. The equivalent variance is given by:

σ2
eq =

1

m2

mmax∑
j=mmin

σ2
j =

1

(mmax −mmin)2
σ2

0

mmax∑
j=mmin

1

j2
. (4.18)

Applying the Euler-Maclaurin formula,

mmax∑
j=mmin

1

j2
= (mmax −mmin)

mmax∫
mmin

1

j2
= −m

j
, (4.19)

we can obtain
σ2
eq

σ2
0

=
1

mminmmax

=
1

m2
min(1 + m

mmin
)
, (4.20)

and if m » mmin

σ2
eq

σ2
0

≈ 1

m
. (4.21)

Therefore, also Port MUSIC follows the CLT varying the number of frequency samples
m and the behavior of σ is very similar to TDR, as shown in figure 4-22.

Maximum Frequency

A 100MHz of maximum frequency is now considered with 1000 frequency samples and
its influence on the methods’ performances studied with 20dB of SNR. Intuitively, also
in this case an improvement in accuracy is expected.

For TDR the explanation derives directly from the Fourier theory since increasing
the frequency bandwidth, a compression in time-domain occurs. It is figured out in the
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(a) TDR- Reflectogram (b) Port MUSIC - Frequency counter

Figure 4-23: Results with 100MHz of maximum frequency and 1000 frequency samples

reflectogram of figure 4.23(a), where for the blue peak (100MHz) a better accuracy in fault
location is evident with respect to the red one (10MHz): beside, it is interesting to observe
that the blue peak is 10 times higher than the red one due to the proportional relationship
between Γf and ω (see equation 4.5). This compression in time-domain performs benefits
also in the precision estimation since a better spatial resolution is obtained. In case of
fmax = 100MHz, 2.2m of resolution is obtained (figure 4.24(a)) and increasing more the
bandwidth a significant improvement is verified. However, as shown in figure 4.24(b),
in order to obtain a resolution of the cm or mm order performed in MUSIC very high
bandwidths must be taken into account (10 ÷ 100GHz), which are not always available
especially in presence of losses.

Intuitively, increasing the maximum frequency in MUSIC an improvement in accuracy
occurs since an higher number of high frequencies are involved and the equivalent spread
decreases. Consequently, an higher number of frequency samples are detected by the
frequency counter around the fault position and the effective spatial resolution improves
(figure 4.23(b)), from 0.09m when fmax = 10MHz to 0.04m.

As a matter of fact, both for TDR and MUSIC the σ have been computed through a
Monte Carlo simulation, resulting 0.00062 and 0.00084 respectively.

SNR

Until now a 20dB value of SNR has been chosen in order to evaluate the accuracy with a
significant noise value. In this section, a statistical analysis is carried out by considering
a varying SNR in the range from 40dB to 0dB, all values below the limit case, and the
accuracy estimated. In fact, this is the range at which the accuracy dominates on the
precision: it is better shown in figure 4-26, where at different SNR values the peaks
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(a) fmax = 100MHz (b) Resolution in function of fmax

Figure 4-24: TDR spatial resolution

obtained by Φ(x) are figured out. For SNR values higher than the limit case (>40dB),
a very small range of positions is involved in the fault location: in particular, it is lower
than the spatial resolution observed at that specified frequency (≈ mm) and consequently
accuracy is dominated by precision. Instead, for SNR values going from 40dB to 0dB
the fault is located in a wider range of position, higher than the spatial resolution at
that specified frequency. As a result, σ deteriorates decreasing the SNR value. A
metrological study using the cumulative density function is carried out in order to better
analyze the effects of SNR. Three different values are taken into account and the CDF
figured out (figure 4-27): as shown, the noise robustness is more or less the same for TDR
and MUSIC. Beside, as expected σ gets worse decreasing the SNR value. To quantify the
variation of the estimated fault’s position for a given SNR, its mean value is observed
along with its upper and lower bound estimates. A 95% confidence interval is considered,
i.e. the significance level is set to 0.05 where the lower and upper bound estimates are
taken at 2.5% and 97.5% of the CDF corresponding to the studied network at a predefined
SNR, as shown in figure 4-28 considering the CDF at 0dB.

In this section the noise influence is investigated, showing that the performances of
the two methods are very similar with very good results (figure 4.29(a) and 4.29(b)). It is
interesting now to compare the noise robustness of Port MUSIC with the standard MUSIC
method. From the theory, the new concept of Inverted MUSIC has been introduced since,
ideally, should be more robust in presence of noise due to the fact that the projection
operation does not involve the noise subspace N but real measured quantities (see section
3.4.2). In order to verify it, the CDF of the upper, mean and lower values analysis is
done also for the standard version of MUSIC and the results compared. As expected and
shown in figure 4.29(c), at the same conditions of Inverted Port-MUSIC and with same
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(a) Noiseless (b) SNR 80dB

(c) SNR 50dB (d) SNR 40dB

(e) SNR 20dB (f) SNR 0dB

Figure 4-25: Pseudo-spectra Φ(x) at different SNR values

84



4.3. Accuracy Estimation

(a) Noiseless (b) SNR 80dB

(c) SNR 50dB (d) SNR 40dB

(e) SNR 20dB (f) SNR 0dB

Figure 4-26: Peaks detected by Φ(x) at different SNR values

85



Chapter 4. Soft Fault Location in a Single Lossless Line

(a) TDR (b) Port MUSIC

Figure 4-27: Cumulative density function at three different SNR values: 40dB (yellow),
20dB (red) and 0dB (blue)

Figure 4-28: CDF of the deviation of the faults’s position for an SNR value of 0 dB

DB-Scan tools adopted, standard MUSIC is more influenced by noise with an higher σ
for different SNR values.

Fault Position

In this section, we are going to see what happens if the fault position changes considering
the fault at 7.5km from the first testing port, always over a 10km line length. Actually, the
line is lossless and therefore it is easy to think that the fault position shall not influence
the results. In fact, no losses are present on the line and consequently no attenuation is
present. As seen in chapter 2 through the relationships between attenuation and fault
position over a line, without attenuation there is no limitation in frequency and, thus,
the performances of the methods are not influenced by the fault position.
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(a) TDR

(b) Port MUSIC

(c) Standard MUSIC

Figure 4-29: CDF with upper, mean and lower value and true value

This is not true when a lossy line case is studied, since at each fault position cor-
responds a different value of maximum frequency. In this section a simple computation
with the fault at 7.5km from the testing port (1) is reported, with the only goal to verify
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that it does not influence the performances of the methods and as introduction to the
lossy line case. Sampling with 1000 frequency samples and 10MHz of fmax at 20dB of
SNR, the resulting σ are 0.0147 and 0.0116 for TDR and MUSIC, respectively, proving
that the fault position does not affect the results.

4.4 Summary

In this chapter, a single lossless line has been studied. The precision and accuracy of
TDR and Port MUSIC have been evaluated in function of SNR, which plays a very im-
portant role in such estimation analysis. In particular, for high SNR values the precision
estimation is carried out whereas the accuracy estimation for low SNR.

The super resolution of MUSIC ensures great advantages with respect to TDR, above
all in case of frequency limitations. Beside, the methods show very similar results in
accuracy: at this purpose, different MUSIC accuracy estimation procedures have been
presented, where DB-Scan has performed very interesting results.

In conclusion, it is possible to state and observe the advantages of Port MUSIC with
respect to TDR, with the same accuracy results and a much higher precision in the
fault location. The price to be paid is the necessity of using all the available ports, but
according to CLT it would show anyway advantages with respect to TDR with the same
number of injecting ports. The study of a lossy line illustrated in the next chapter will
result very interesting since attenuation and dispersion are introduced, causing limitations
in frequency.
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Chapter 5

Soft Fault Location in a Single Lossy
Line

The analysis of a lossy line and the effects of attenuation and dispersion on the fault
location method are studied in this chapter. The NUT considered is the one in-

troduced in chapter 2 (10km with 1m-fault), and the relationships found out between
attenuation and losses of the cable are recalled. 10MHz of fmax is still considered but due
to attenuation some frequency limitations are presented. 1000 frequency samples and the
noiseless case are studied both for TDR and Port MUSIC.

Two different types of fault are considered in the analysis: firstly, the fault is repre-
sented by a portion of line with a different conductance with respect to the remaining
part of the line, while R=0 for the entire line (‘‘G fault ”). In such case, for TDR a
numerical validation of the model is introduced and verified with CST MWS. Then, for
the entire line R 6= 0 and G 6= 0, and the fault is represented, as in chapter 4, by an
impedance discontinuity (‘‘Z fault ”). In this case it is no more a ‘‘conductance fault” but
is given by Zf 6= Zc.

In the last section of the chapter an experimental validation of Port MUSIC is imple-
mented, adopting the Vector Network Analyzer (VNA) in Supélec facilities.

5.1 G Fault

The fault is considered here as a piece of lossy line where the conductance is different from
the remaining part of the line. These kinds of faults are very common in real cables given,
for example, by the excessive moisture upon the cable or a water penetration. Such effects
are going to modify the value of tanδ of the involved portion of line and consequently a
change in the value of G occurs. In particular, as shown in figure 5-1, for the healthy line
tanδ is 5 · 10−4 while 5 · 10−3 for the fault (table 2-1). Both the characteristic impedances
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Chapter 5. Soft Fault Location in a Single Lossy Line

Figure 5-1: Transmission line with a different conductance fault

of the healthy and the faulty lines are complex numbers changing with frequency, with
different value of G:

Zc =

√
jωL

Gc + jωC
, (5.1)

Zf =

√
jωL

Gf + jωC
, (5.2)

where Gc and Gf are the conductances of the healty and faulty line, respectively. Com-
puting the value of Γ0, starting from the equations 5.1 and 5.2,

Γ0 = j
tanδ

4
(5.3)

is obtained, where it is possible to note that it is no more a real number but an imaginary
one. Substituting it in the equation 4.5, we obtain:

Γf = −ωw
v

tanδ

2
e−jβw. (5.4)

MUSIC shows the same results as the lossless line case (see chapter 4). In fact, it operates
on phase patterns only and thus is not influenced on the fault topology. This is due to
the fact that in Port MUSIC a normalization procedure is applied and since Γ0 is out of
phase no phase distortion is verified. The only difference with respect to the lossless case
is the composition of v1 since now Γ0 is a complex term, and each term of v1 is given by:

Sii
|Sii|

= e−j2ωτi . (5.5)

Interesting results involving instead TDR: in this case, the time-domain reflected wave
has no more the derivative shape since the term j is deleted by Γ0. Investigations about
its shape are developed in this section, first in Matlab and then numerically verified in
CST MWS. The fault in the reflectogram is now detected by the minimum peak, as shown
in figure 5-2. It corresponds to the minus sign of equation 5.4. Besides, Γf depends on
tanδ: in figure, two values of tanδ are shown (5·10−3 in blue and 0.01 in red) where it is
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5.1. G Fault

Figure 5-2: Reflectogram in case of G fault with two different tanδ values: 5·10−3 in blue
and 0.01 in red

possible to observe that for low values of tanδ the reflected wave could not be seen.

In order to numerical validate the Γ0 model of equation 5.4, the CST software Mi-
crowave Studio has been adopted where the cable structure is the same as the one studied.
Three cable portions are built, the ones at the extremes representing the healthy lines
and the one in the middle representing the faulty line. The dielectric considered is the
XLPE, with the same tanδ value considered in Matlab for the healthy lines and a 0.01
constant value (predefined value of lossy XLPE offered by the software) for the fault. A
PEC (Perfect Electrical Conductors) model is adopted for the inner and outer conductors.
The structure of the cable built with MWS is shown in figure 5-3, where a cutting along
the z plane figures out the three different layers of the cable (in gray the conductors and in
white the dielectric). Beside, a cutting along the x plane shows the different conductance
in the faulty and healthy sections, respectively in green and red. A port mode is adopted
for the simulations in order to chose the directions of the electric and magnetic fields:
TEM mode (mode=1) has been selected, where the waves propagating along these lines
are characterized by electric and magnetic fields entirely transverse to the direction of
propagation, as represented in figure 5-4. The CST simulations are aimed to validate
the numerical results obtained with the model of a 10km power cable. The faulty line
length considered is still 1m but, in order not to make too heavy the computations only
a very small portion of the 5km health lines is considered (1m or 1.5m) depending on the
considered case: the result is not influenced on this changes since we are interested in
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Chapter 5. Soft Fault Location in a Single Lossy Line

Figure 5-3: Cable structure with CST where dielectric of faulty (green) and healthy (red)
line sections are shown

(a) Electric field

(b) Magnetic field

Figure 5-4: TEM mode propagation developed in MWS

Figure 5-5: Cable model when a single discontinuity is studied: the healthy and faulty
lines are 1.5m and 1m respectively
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5.1. G Fault

studying the shape of the reflected wave, no matter the value of frequency or line length.
Due to the smaller line lengths considered, an higher 1GHz bandwidth is chosen. Since
the phase constant β is known from CST (=15.11 rad

m
), the velocity can be computed

corresponding to 4.1·108m
s
. It is approximated to a constant value, as done also before,

since for wide frequency ranges the inductance can be considered constant and thus the
velocity does not depend on frequency, but the high frequency value can be considered.
Thus, the wavelength can be computed and its value is around 0.41m for the maximum
frequency.

As first, the effect of the imaginary reflection seen by the fault Γ0 is studied. The
model introduced in this section puts into evidence a difference with respect to the lossless
case caused by the imaginary Γ0 term. In order to analyze the influence of j on the time
echo reflected signal just a single discontinuity is considered with a single portion of
healthy line of 1.5m length and 1m fault, figure 5-5. Two waveguide ports are inserted
at the line terminations: a source, representing the transmission port at the healthy
line extremity and a matched load, representing the receiving port at the faulty line
extremity. The simulations with CST software have been carried out and the result
shown in figure 5.6(a), in blue. The distortion presented in the plot is a systematic error
due to the software since CST does not consider tanδ constant in the whole frequency
range but just in a higher range (figure 5.6(b)). This problem can be fixed by increasing
the number of mesh density although the program deteriorates in computational speed;
in any case, it does not figure out a precise constant value and consequently a distortion
in the signal is included. In our case a compromise is chosen, where the constant value is
reached for a quite wide frequency range. In order to validate the model, the same results
must be obtained in Matlab. With this in mind, the time domain excitation signal e(t) (a
Gaussian tapering window is chosen in order to avoid the oscillations due to secondary
lobes) is multiplied by Γ0. In particular, after having applied the Fourier transform to
the excitation signal e(t) and multiplied it by Γ0 in frequency-domain, the time reflected
signal e0(t) delayed by 2βl is recovered through a Fourier anti-transform:

e0(t) =

∫
dωE(ω)j

tanδ

4
e−j2βl, (5.6)

where l is the distance between the injecting port and the fault position. The result is
represented in figure 5.6(a) by the red curve. The signal follows the same behavior of
the one obtained with CST, both in intensity and reflection width, validating thus the
numerical model. The effect of the imaginary term j on the time reflected signal is quite
similar to a derivative shape although the term ω is missing.

After the numerical model validation, the complete case is studied with both the fault
discontinuities in order to study Γf . Again, two ports at the line terminations are added
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Chapter 5. Soft Fault Location in a Single Lossy Line

(a) Comparison between Matlab (red) and CST
(blue) results

(b) Tanδ behavior in CST

Figure 5-6: CST simulation results when a single discontinuity is studied

operating as transmission and receiving ports. Two cases have been analyzed: when the
fault is not electrically short (figure 5.7(a)) with 1m of faulty line length and when it
is (figure 5.7(b)) with 1cm of faulty line length. In the first case, 1m of healthy line
lengths are considered while in the second case 1.5m: this choice has been done in order
to obtain the same time delay around 7ns in both the cases and show with more clearness
the comparison. The result is shown in figure 5-8, where the blue line represents the case
(a) and the red line the case (b). At each discontinuity the term Γ0 is presented, with
different signs since at the second discontinuity

Γ0 = −j tanδ
4

. (5.7)

Decreasing the faulty line length, the distances between these two two-peaks shapes gets
closer until the fault becomes electrically short. In such a case, Γf can be approximated
by the equation 4.8 and a single reflection is shown. This result is very similar to the one
of figure 5-2 obtained with Matlab for the same value of tanδ, fixed at 0.01. The same
intensity of the reflection and the same shape is figured out, numerically validating the
Γ0 model introduced, where the negative peak of the signal identifying the fault position
is given by the real nature of Γf (equation 5.4).

5.2 Z Fault

In presence of losses, limitations in frequency arise and in the time-domain methods bad
spatial resolutions are performed. On the contrary, Port MUSIC is able to ensure super
resolution performances, showing very precise results. In this case the entire line is lossy
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5.2. Z Fault

(a) Not electrically short fault

(b) Electrically short fault

Figure 5-7: Cable model when two discontinuities are studied

Figure 5-8: CST result when 2 discontinuities are studied: electrically short (red) and
not electrically short fault (blue)
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Chapter 5. Soft Fault Location in a Single Lossy Line

Figure 5-9: Dispersive case: envelope of the wave (in red) and its components (in blue)
representing group and phase velocity respectively

with both R 6= G 6= 0 and the characteristic impedance is given by:

Zc =

√
R + jωL

G+ jωC
, (5.8)

and for the faulty line portion:

Zf =

√
R + jω0.9L

G+ jω1.1C
, (5.9)

where G in this case is the same and the fault is simulated as in the lossless case by a
10% decrease and increase of L and C, respectively. Due to the losses, attenuation and
dispersion are present in the computations. In fact,

γ =
√

(R + jωL)(G+ jωC) = α + jβ, (5.10)

where α 6= 0 and β = β(f). Attenuation is given by the presence of α, as discussed
in chapter 2. Dispersion is related to the linear frequency dependence of β. Actually,
the substantial difference with respect to the case of section 5.1 is the fact that it is
a ‘‘dispersive ” case. The direct consequence is that velocity is no more constant in
frequency but is divided into two terms: phase velocity and group velocity. The group
velocity of a wave is the velocity with which the overall shape of the waves amplitudes,
known as the modulation or envelope of the wave (red line in figure 5-9), propagates
through the space. For example, if a stone is thrown into the middle of a very still pond,
a circular pattern of waves with a quiescent center appears in the water, also known as
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5.2. Z Fault

a ‘‘capillary wave ”. The expanding ring of waves is the wave group, within which one
can discern individual wavelets of differing wavelengths traveling at different speeds. The
shorter waves travel faster than the group as a whole, but their amplitudes diminish as
they approach the leading edge. The velocity at which these shorter waves travel is called
phase velocity. It is the rate at which the phase of the wave propagates in space and
represents the velocity at which the phase of any wave frequency component travels. For
such a component (blue lines), any given phase of the wave (i.e., peaks or troughs) will
appear to travel at the phase velocity. It is anything else than the ratio between the
pulsation ω and the phase constant β, while the group velocity is its partial derivative,
since it represents a local velocity:

vphase =
ω

β
, vgroup =

∂ω

∂β
. (5.11)

In particular,

(1) if ω is directly proportional to β, the group velocity is exactly equal to the phase
velocity. A wave of any shape will travel undistorted at this velocity. This is the
lossless line case;

(2) if ω is a linear function of β, but not directly proportional (ω = ak+ b), group and
phase velocity are different. The envelope of a wave packet will travel at the group
velocity, while the individual peaks and troughs within the envelope will move at
the phase velocity;

(3) if ω is not a linear function of β, the envelope of a wave packet will become dis-
torted as it travels. Since a wave packet contains a range of different frequencies
(and hence different values of β), the group velocity will be different for different
values of β. Therefore, the envelope does not move at a single velocity, but its
wavenumber components (β) move at different velocities, distorting the envelope.
If the wavepacket has a narrow range of frequencies, and ω(β) is approximately
linear over that narrow range, the pulse distortion will be small, in relation to the
small non-linearity.

The β formulas derived in chapter 2 (equation 2.13 and 2.16) show that the dispersion
acts at lower frequencies, for our studied NUT below 750kHz ÷ 1MHz. The β-ω curve
will show, thus, linear proportionality for frequency values starting from such a value.

5.2.1 TDR in Presence of Losses

In this dispersive case, two different cases are studied: first, the fault position is at 2.5km
from the testing port (1), as done for the lossless case, and then the fault is studied
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Chapter 5. Soft Fault Location in a Single Lossy Line

Figure 5-10: Dispersive case: expected e0(t) shape obtained with CST: electrically short
fault (red) and not (blue)

at 7.5km from the same port. In fact, in presence of losses both attenuation and fmax

depend on fault position and, theoretically, more the fault is far from the testing port
less the maximum frequency associated to a fixed attenuation value is.

A mathematical model to retrieve the shape of the time reflected wave must be in-
troduced in order to know what should be expected for identifying the fault position.
Starting from equations 5.8 and 5.9, the Γ0 term is given by:

Γ0 =
Zf − Zc
Zf + Zc

= Γr + jΓi = −0.0493 + j0.0087, (5.12)

obtained after some operations with Wolfram Mathematica Software. Both Γr and Γi

depend on R, L, C, G of the cable and ω. Substituting the equation 5.12 in 4.5, the term
Γf is given by:

Γf = jω2
w

v
Γre

−jβw − ω2
w

v
Γie
−jβw, (5.13)

and with fmax = 10MHz and w=1:

|Γf | = 2ω
w

v

√
Γ2
r + Γ2

i = 0.033. (5.14)

The reflectogram showing the expected shape of Γf is plotted with CST (figure 5-10)
where a line with the fault electrically short (0.01m) and not electrically short (1m) is
considered with fmax=1GHz (figure 5-7). Both attenuation and dispersion are very low
in this case since the fault position is very close to the testing port (l1=1.5m) and the
frequency range considered is wide. This plot is very important since it gives an indication
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5.2. Z Fault

(a) Fault at 2.5km from the injecting port (b) Fault at 7.5km from the injecting port

Figure 5-11: Reflectograms with fmax=10MHz

of what we are expecting on the reflectogram shape in this dispersive case. The analysis
throughout Matlab can be now carried out, considering the fault at the two different
positions.

When the fault is at 2.5km from the testing port attenuation and dispersion are weak.
The reflectogram is shown in figure 5.11(a), where it is possible to observe that the fault
can be easily located at 10MHz. In fact, according to table 2-6 in chapter 2, the fmax
associated to 10dB of attenuation is on the order of 5MHz and thus at 10MHz it is quite
weak, around 15dB according to equation 2.19, making the fault location feasible. The
problems arise when the fault distance from the testing port increases. Keeping constant
the frequency at 10MHz attenuation increases, making more difficult the fault location.
As a matter of fact, the case with the fault at 7.5km from the injecting port is considered
and the reflectogram shown in figure 5.11(b). It is evident the stronger attenuation
(around 50dB) influence which make the fault location hidden and the expected e0(t)
shape is not visible. In order to reduce the value of attenuation, the value of fmax must
be reduced: the analysis done in chapter 2 results here very useful. Arbitrarily choosing a
fixed value of attenuation at 10dB, as already explained, the value of related fmax can be
retrieved according to figure 5-12 and it is around 605kHz. Thus, a frequency reduction
is applied and consequently a clearer time-domain signal is obtained, shown in figure
5-13. The expected peak is now visible and the fault can be identified. However, there
is a price to be paid: reducing the frequency bandwidth, a dilatation in time-domain
occurs, according to Fourier theory. It implies a worse spatial resolution (around 320m)
in the time impulse injected and a consequent deterioration in the precision estimation,
as shown in figure 5-14. Losses deteriorate the accuracy estimation too: the fault is
not located at the exact position due to the fact that the fixed high frequency velocity is
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Chapter 5. Soft Fault Location in a Single Lossy Line

Figure 5-12: Three-dimensional attenuation-losses plot with the fault at 7.5km from the
injecting port
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5.2. Z Fault

Figure 5-13: Reflectogram with the fault at 7.5km and fmax≈605kHz

Figure 5-14: TDR spatial resolution in presence of losses with the fault at 7.5km from
the injecting port and fmax≈605kHz
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Chapter 5. Soft Fault Location in a Single Lossy Line

(a) Fault at 2.5km from the injecting port (b) Fault at 7.5km from the injecting port

Figure 5-15: Pseudo-spectra with fmax=10MHz

considered. However, since in this case v=v(f) a systematic error is present.

5.2.2 MUSIC in Presence of Losses

As already said, MUSIC operates only on phase patterns since a normalization procedure
is applied. Therefore, only dispersion influences its performances in presence of losses:
the problems arisen in TDR due to attenuation can be overpassed and there is no need to
reduce the frequency bandwidth. According to what stated in chapter 2, dispersion acts
at lower frequencies, up to 750kHz÷1MHz. This is verified from the Pseudo-spectra in
figure 5-15, where from that value of frequency the fault can be easily located. Up to that
frequency value, β is wrongly detected and consequently the fault position. The reason
why is due to the velocity dependence on frequency: the phase velocity is considered and

(a) Phase velocity in function of frequency (b) Pseudo-spectrum at higher frequencies

Figure 5-16: Effects of dispersion in Port MUSIC
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(a) L constant (b) 30% of L variation

Figure 5-17: Phase velocity at different L variations

at lower frequency it is affected on dispersion. For ω > ω0 at which the equation 2.16 is
verified, vphase tends to vgroup and β gets closer to the linear proportionality with ω (figure
5.16(a)). However, it will never reach the perfect linearity due to losses and consequently
a small spread will be present, as shown in figure 5.16(b).

This dispersion is associated to the R, G and L variation in frequency. In order to
see the relative contributions and analyze the causes of such a dispersion, a sensitivity
approach is adopted where the weight of the inductance variation has revealed stronger
than resistance and conductance. With this in mind, two examples of different L variation
are shown in figure 5−17, where in (a) is taken constant and in (b) its variation is 30%. It
is important to note that a phase Γf term has been introduced when dispersion is present.
Consequently, in order to properly apply the projection procedure a phase normalization

Figure 5-18: Dispersive Pseudo-spectrum after compensation
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Figure 5-19: VNA adopted in the experiments situated in GeePs department of Supélec,
Gif-sur-Yvette, France

Figure 5-20: GPIB interface device realized by Agilent Technologies

must be applied too. Besides, operating frequency by frequency, β(ω) can be retrieved
and, known the distance from the port, it is possible to compensate the phase distortion
and obtain a precise Pseudo-spectrum (figure 5-18). Moreover, the super-resolution still
remains on the millimeter order as in the lossless line case.

To conclude, in presence of losses frequency and time are mixed together in the time-
domain methods and thus it is not possible to distinguish at which frequencies the dis-
persion acts, while in MUSIC it is well-defined. Besides, Port MUSIC is not affected by
amplitude distortion since a normalization is applied and no frequency limitations occur.
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5.3 Experimental Results

In order to verify the feasibility in practical applications of MUSIC, measurements with
VNA are performed. This kind of measurements are conducted on shorter high frequency
cables and not on the 10km power cable studied in this work. Therefore, these measure-
ments aim to show the practical feasibility and efficiency of Port MUSIC method and not
as experimental validation of the obtained results. Particularly, the 10km power cable
has not been tested for two main reasons:

(1) unavailability of testing networks (10km power cable, connectors, measurement set)
at the Centrale-Supélec laboratory;

(2) difficulty on simulating 1m faults, above all tanδ ones, really caused by defects as
moisture or water trees.

Real scattering parameters are computed by means of VNA and the post-processing
operation is done with Matlab. The experimental measurements shown in this section are
conducted testing the single branch configuration without presence of losses, since losses
in the tested high frequency cables are very low and can be neglected without errors.
The real scattering matrices are measured through a Vector Network Analyzer (VNA)
whose testing ports were connected to the extremities of the NUTs. The VNA we used
is a Rohde&Schwarz ZVB-8 network analyzer, with a frequency range from 300 kHz to 8
GHz, and four testing ports, shown in figure 5-19. The TOSM calibration (also referred as
SOLT calibration) procedure is applied using the calibration kit of the Rohde&Schwarz
ZVB-8 network analyzer, by testing the open, short and matched termination at each
port and the through termination between the combinations of the ports. Although we
are interested on reflection measurements only, we chose to apply this kind of calibration,
where also the transmission parameters are measured, since it ensures a better general
accuracy with respect to the reflection normalization procedure, in which only the S11

and S22 parameters are measured. The intermediate-frequency filter bandwidth was set
to 100 kHz. The input power has been set at 0dBm harmonic excitation signal: this
ensures a strong rejection of noise, yielding very clean results that can be regarded as
practically unaffected by any noise source. Using the VNA implies accessing the collected
data in frequency-domain. Thus post-processing using Matlab has been applied in order
to extract the time-domain responses using the Fourier anti-transform. The importation
of the data collected through VNA in Matlab has been done by means of a GPIB interface
device realized by Agilent Technologies (figure 5-20), which connects together the VNA
and the PC with Matlab included. By means of some Matlab functions the scattering
data are imported and saved in the code. Every device is characterized by an address
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(a)

(b)

Figure 5-21: 20cm long sample made of semi-rigid coaxial lines

number, which allows to Matlab to recognize it and create a connection between the
devices. Besides, parameters needed for the post-processing computation have been set
and then the same approach used for simulations has been carried out. Coaxial cables
with 50Ω of characteristic impedance have been used as transmission lines. It is difficult
to find practical coaxial cables with this characteristic impedance, but nevertheless for
measurements they ensure high stability in the procedure. The conclusions drawn in this
section are not related to the type of lines used, since the proposed method is completely
general, and thus also for longer lines it can be applied. Shorter coaxial cables offer
another important advantage, since soft faults can be introduced through a set of 20cm
long samples made of semi-rigid coaxial lines terminated by two connectors. Crushing
the sample, a soft fault is simulated as shown in figure 5-21. In our case, we have
considered a 1.4mm crush sample with 1cm of length; intuitively, less a crush is, more
the fault is soft. As a consequence, the thickness from its normal 3.4mm cross-section
has been reduced to only 2mm. The cables have been strictly bonded to the table by
means of some stickers in order to prevent undesired effects eventually caused by sudden
movements. Moreover, in order to try to minimize the effect of the interconnections
between the cable and the VNA, the difference system will be considered. Thus, two
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Figure 5-22: NUT considered in the experiments

scattering matrices of the NUT have been measured, the faulty one and the healthy
one, always by placing the semi-rigid line in the network. As a matter of fact, in post-
processing done in Matlab the difference between these two scattering matrices is taken
into account and the only reflection coefficients of the resulting matrix is involved in the
v1 construction. This procedure is called ‘‘baselining ” (or difference system) and it will
be better seen in the next chapter when the Y-branched network is studied and the need
of the junction removal becomes necessary for the efficiency of the fault location methods.
The considered cable is 2m length and the first termination of the 20cm semi-rigid cable
is situated at 1m from the testing port (1), as shown in the figure 5-22, and the practical
NUT implementation is shown in figure 5-23. The measurement of the scattering matrices
has been done considering a bandwidth going from 1MHz to 1GHz; by means of VNA,
magnitude, phase and the correspondent Smith Chart are obtained and their values used
in the post-processing operation done with Matlab. Obviously, in order to verify the
feasibility of the method, the fault is simulated also in Matlab by means of the generated
codes introduced in the previous sections and the resulting Pseudo-spectra are compared
(figure 5-24).

In this work, a simple experiment validation has been done by recalling the work
contained in [3], where more complex structures have been studied and experimentally
validated, in order to take confidence with the VNA real measurements and showing
the feasibility of the method, although the impossibility of testing 10km power cables.
Another interesting thing to observe is that considering higher frequencies, the super-
resolution performance of MUSIC is going to improve. In fact, increasing the frequency

Figure 5-23: Practical NUT implementation
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(a) Model simulations (b) VNA measurements

Figure 5-24: Pseudo-spectra comparison referred to the NUT of figure 5-22

the wave support is smaller and together with it also the spatial resolution, with a value
moving around 0.01mm. As a matter of fact, the distance between the different ghosts
corresponds, also in this case, to λ

4
and it is possible to observe that at 500MHz is around

10cm.

5.4 Summary

In this chapter losses are introduced in the line and TDR and Port MUSIC are compared
in performances. Time-domain methods are influenced by both amplitude and phase
distortion due to attenuation and dispersion, respectively. In particular, the study car-
ried out in chapter 2 about the mapping has resulted useful since the fmax related to a
particular attenuation value is derived. Thus, in order to obtain good attenuation values
a frequency limitation in bandwidth occurs causing a deterioration in spatial resolution.

Port MUSIC is very advantageous in this lossy case: in fact, operating frequency
by frequency, dispersion can be confined at low frequency ranges and above a certain
frequency value the fault can be easily located. Moreover, attenuation does not affect its
performances, not causing frequency limitations and super-resolution is still verified.

At last, MUSIC experimental validation with VNA are performed proving the prac-
tical feasibility of the method.
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Chapter 6

Soft Fault Location in a Y-Branched Line

It is interesting now to study a more complex case when an higher number of testing
ports is present. A Y-branched structure is analyzed where the role of the junction

shall be accurately investigated. Actually, the operational mode of TDR is already known
and discussed in chapter 1, where signals must be injected from all the ports and a
triangulation is necessary to identify the fault position. In the first part it is re-called
together with the explanation of the baselining system, in order to study and avoid the
effect of the junction.

Then, the behavior and performances of Port MUSIC are presented, both through
simulations and experiments, and a comparison with TDR is carried out.

6.1 The Baselining System

Echoes which come back from targets and interfere with useful signals are referred as
clutters. Such undesired signals can be due to targets including natural objects such
as ground, sea, precipitations, sand storms, animals (especially birds), atmospheric tur-
bulence, and other atmospheric effects, etc. In such cases, the echoes returned by a
relatively weak reflectivity target may be masked by those produced by clutter leading
to an impossibility of detection in some critical cases. Consequently, to overcome the
problem of clutter in free space propagation, the basic idea was to try to minimize as
much as possible its effect, introducing the concept of ‘‘difference system ” or ‘‘baselining

”. This situation can be also verified in wave propagation along guided structures, where
discontinuities (as junctions) play the same role of clutters masking the fault especially
in presence of soft one that is basically characterized with weak reflectivities. The basic
concepts of baselining are introduced and explained in this section, first in free space and
then in wiring networks.
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(a)

(b)

Figure 6-1: Free space propagation without (a) and with (b) targets

6.1.1 Baselining in Free Space

An antenna emitting waves is firstly considered in an homogeneous medium and the
presence of many scatterers analyzed, as shown in figure 6-1. At the beginning (a), no
target is present in the medium, thus the wave propagates until it interacts with the
scatterers. In presence of several scatterers a multiple scattering scenario is obtained,
where a specified scatterer X not only reflects the initial emitted wave but also several
reflections coming from other scatterers occur. However, if the scatterers are distant from
each other, the reflected wave interaction is considered (referred to the single scattering
scenario) and the waves reflected from the other scatterers are negligible. In fact, the
wave reflected from a scatterer X and interacting with other scatterers is minimized since
its amplitude decreases as the square the distance separating X from other scatterers.
In (b), a target is added. Multiple reflections occur given by the interactions between
scatterers and target. Under the assumption of the single scattering scenario, only the
most significant reflected wave resulting from the first interaction will be considered for
both the case of the target and the scatterers and subtracting the total waves (incident
and reflected) present in (b) from those in (a), only the reflected wave diffracted by
the target results. This is verified if the first-order Born approximation is applied, i.e.
the reflected waves of the other scatterers are not affected by its presence. A ‘‘new ”
system is obtained by applying the difference of the systems with and without the target
presence: it seems as the target was a secondary source, emitting isotropically in all
directions. This system is denoted as baselining; equivalently, it corresponds to a system
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Figure 6-2: A transmission line containing an impedance discontinuity with a reflection
coefficient Γ1 and a fault with a reflection coefficient Γ2

whose transfer function is the result of the subtraction of two transfer functions: the first
one is the reference system without the target and the second one is the system with
the presence of the eventual target. In the same way, a fault in a wiring network can
be considered as a scatterer in free space, where a fault can be seen as a target while
discontinuities (including junctions and mismatched loads) as scatterers. In this case,
multiple scattering scenario refers to the multiple reflections involving fault and junction.
However, some inequalities are present for the difference system between free space and
guided wave propagation. Waves are attenuated as the inverse of the distance in free
space, while guided waves perform negligible attenuation. Under the assumption of a
soft fault, the effect of the other elements of the system after the subtraction operation
are ideally removed and the fault can be treated as a secondary source, as seen for the
target in the open media case.

It is important to note that the baselining system results fundamental for fault detec-
tion and location techniques above all in presence of soft faults. The reason is intuitive
since it makes the signature of the initially weak reflectivity soft fault more visible in
presence of junctions.

6.1.2 Baselining in Wiring Networks

Although most of the contributions of other elements in the system not related to the
fault are avoided, due to the multiple interactions with the target a residual contribution
of such elements still exists and appears in the difference system response. To better
understand such a contribution, a simple uniform lossless transmission line is considered,
containing a discontinuity of reflection coefficient Γ1 and a fault of reflection coefficient
Γ2 as illustrated in figure 6-2. For the sake of simplicity line lengths are equal to zero,
and consequently no delay terms will appear in the following computations. The incident
and reflected voltages at the extremities (1) and (2) are given by V +

1 , V −1 , V +
2 , and

V −2 respectively. The system is assumed being in a steady state and that the waves
propagating in the faulty system between the discontinuity and the fault referred to as
V +
f and V −f . Under these assumptions,

V +
f = V +

1 (1 + Γ1) + V +
f Γ1Γ2, (6.1)
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dividing and factorizing,
V +
f

V +
1

=
1 + Γ1

1− Γ1Γ2

. (6.2)

The global reflection coefficient at the first port (1), denoted as

S11 =
V −1
V +

1

∣∣∣∣∣
V +
2 =0

, (6.3)

shall be calculated firstly in the reference system without the fault, where

Sb11 = Γ1, (6.4)

whereas in the faulty network it is given by

Sf11 = Γ1 +
Γ2(1 + Γ1)2

1− Γ1Γ2

. (6.5)

Knowing that in this case,

V −1 = Γ1V
+

1 + Γ2(1 + Γ1)V +
f (6.6)

the global reflection coefficient of the "baselining" can be calculated as

S11 = Sf11 − Sb11 =
Γ2(1 + Γ1)2

1− Γ1Γ2

. (6.7)

It is clear that the baselining does not eliminate totally the contribution of the discon-
tinuity, designated by Γ1 in the equation 6.7, thus explaining the presence of multiple
reflections. With this in mind, the harder the fault is, i.e the higher Γ2 is, the more sig-
nificant is the perturbation brought by the fault presence to the system. Consequently,
soft faults ensure weaker perturbations caused by the fault’s presence in the system.

6.1.3 Performance Analysis of Baselining in Case of Soft Fault

In order to better illustrate the concept of baselining for the case of a soft fault, the
single junction network of figure 6-3 is considered. The reflectograms of figure 6-4 show
the TDR echo for the system containing the fault and that deprived of it, where a stronger
echo can be seen at the position of the junction whereas a barely visible response can be
detected at the position of the soft fault (figure 6.4(a)). Applying the difference system
to the responses of the two systems the effect of the junction is removed and a stronger
visible signature identifies now the fault position, as shown in figure 6.4(b). Accordingly,
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Figure 6-3: A transmission line containing an impedance discontinuity with a reflection
coefficient Γ1 and a fault with a reflection coefficient Γ2

the main objective of baselining in making the soft fault’s weak signature visible is
demonstrated and validated in this example. On the other hand, it is important to
point out that the results are obtained on the basis of a perfect baselining, i.e. 100%

identical network to that of the faulty topology one. What if a perfect baseline is not
available? This is a reasonable question since all methods using the difference system to
improve the detectability of soft faults are either accomplished with simulations or with
measurements done in a very controlled laboratory environment. Baseline approach is a
very good solution to make soft faults more visible, but it is very difficult to obtain such
a perfect one in a realistic environment. For instance, such wire movements which are
inevitable in high-vibration environments as that in planes or easily in some laboratory
experiments, can change the impedance of the wire-NUT interfaces thus masking the
eventual presence of a soft fault. It was proven in some experiments that slightly moving
a wire create more impedance changes than frays (soft faults). In other words, regardless
of how accurate and sensitive the systems are made, the environmental impedance changes
can be expected to be larger than the fray impedance change, making it impossible to
locate such frays using reflectometry methods. Under those circumstances, and due to
the deficiency of reflectometry methods in dealing with soft faults when discontinuities
are present, adopting time reversal for this purpose becomes essential. They can ensure
a maximization of the energy impinging on the fault position with respect to the rest of
the system (DORT) or a super-resolution performance due to the Green function analysis
(TR-MUSIC). In any case, the signals applied to the network no longer aim at directly
locating the fault but, rather, are meant to characterize the propagation of signals through
the network. The scattering matrix of the network rather than echoes is involved now
in the procedure and it should improve the problem of discontinuities arisen with TDR,
making the fault, as softer is, always visible.

The numerical and experimental results are shown in the next sections and the per-
formances of Port MUSIC evaluated.
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(a)

(b)

Figure 6-4: Free space propagation without (a) and with (b) targets

6.2 Port MUSIC in the Three-dimensional Case

As known, a projection procedure is applied in the operational mode of Port MUSIC and,
with respect to the single line case, two main differences arise:

(1) size of v1 and g(x)⊥ which become [3× 1] since three testing ports are present;

(2) space dimension where the projection is involved;

(3) two Green function vectors are involved in the projection.

In fact, given n the number of testing ports of the NUT, the size of the vectors involved
is [n× 1]. Besides, the procedure occurs in a n-dimensional space with (n-1) g(x)⊥. It is
interesting to observe that in standard MUSIC (n-1) eigenvectors belonging to N would
be involved. Thus, referring to figure 6-5 in the three-dimensional case, a peak is found
when both the two Green function vectors g

1
(x)⊥ and g

2
(x)⊥ are minimally projected

onto v1. In other words, Φ(x) is maximum when both g
1
(x)⊥ and g

2
(x)⊥ belong to the

same subspace, orthogonal to the subspace where v1 is contained. As a matter of fact,
the vector v1 is given by:

v1 =


S11

|S11|
S22

|S22|
S33

|S33|

 =

 e−j2ωτ̃1

e−j2ωτ̃2

e−j2ωτ̃3

, (6.8)
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Figure 6-5: Three-dimensional projection procedure

Figure 6-6: Example of faulty Y-branched structure

Figure 6-7: Green function evaluation in a Y-branched structure
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where τ̃1, τ̃2 and τ̃3 are the times needed to the injected signals for reaching the fault
position from the correspondent testing port, as shown in the example of figure 6-6.
Differently from the 2-dimensional case, now the Green function must be computed sepa-
rately branch by branch. With this in mind, firstly the faulty branch is individuated and
then the exact fault position along such a branch. For example, the branch 1 is considered
and all the positions belonging to this branch are evaluated. The correspondent Green
function vector is given by:

gbranch 1(x) =

 e−j2ωτk

e−j2ω(T1+T2−τk)

e−j2ω(T1+T3−τk)

, (6.9)

where T1, T2 and T3 are the times needed to the injected signals for reaching the junction
from the correspondent testing port, as shown in figure 6-7. The same procedure is done
for branch 2 and 3:

gbranch 2(x) =

 e−j2ω(T2+T1−τk)

e−j2ωτk

e−j2ω(T2+T3−τk)

, (6.10)

gbranch 3(x) =

 e−j2ω(T3+T1−τk)

e−j2ω(T3+T2−τk)

e−j2ωτk

. (6.11)

The two orthogonal vectors g
1
(x)⊥ and g

2
(x)⊥ are obtained multiplying the Green func-

tion vectors by w1 and w2, respectively, where:

w1 =
1√
2

 1

0

−1

 , w2 =
1√
6

 1

−2

1

. (6.12)

The branch 3 is individuated as the faulty one and then the same procedure as before is
applied, evaluating τk = τ̃ for identifying the fault position.

6.3 Numerical Results and Analysis

In this section numerical results on a Y-branched line are performed and the performances
of Port MUSIC evaluated. Given a simple structure, as represented in figure 6-8, TDR
operates with a simple triangulation, supplying all the testing ports and comparing the
three time delays. In fact, in presence of a junction, TDR cannot operate injecting signals
in only one branch as before: if the fault is situated on the faulty branch it is able to
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Figure 6-8: Y-branched structure with fault in branch 3

localize its position but if not it fails.

What about Port MUSIC? Obviously, by definition it also operates considering all the
branches since the S parameters and the Green function vectors are built according to the
number of testing ports. Besides, it operates at single frequencies and the length of each
branch must be known a priori; as already said, it represents a disadvantage since without
this condition it fails. In this section the performances of Port MUSIC in presence of a
junction are analyzed, included the effects of the impedance discontinuity and the method
precision estimation. As introduced in section 6.1, the baselining procedure is applied in
order to avoid the discontinuity response which could jeopardize the whole performance
of the method. Therefore the S11 parameter of equation 6.7 is now considered, resulting
from the difference between the faulty S11 (Sf11) and the healthy S11 (Sb11). Noiseless and
lossless line is considered in this section: in fact, the effects of noise and losses have been
already analyzed in the previous chapters, and no modifications on it are brought by the
presence of the junction. Considering the fault as an impedance discontinuity, the same
values as in chapter 4 (Zc =19.24Ω and Zf =17.4Ω) are considered, thus resulting still a
soft fault. Situated in the middle of the branch 3, it is important to point out that the
fault line length is 1m and it is situated 1.5km far from the testing port 3 and 1.5km far
from the junction. Therefore, the center of the faulty line, which is the point localized by
Port MUSIC in the simulations, is 1500.5m. First of all, Port MUSIC individuates the
branch in which the fault is situated, as explained in the previous section and then its
exact position. When the projection is minimum a peak at each frequency is detected and
the resulting Pseudo-spectra for each branch are represented in figure 6-9. As observed,
in the branch 1 and 2, the ‘‘healthy branches ”, distanced peaks are found belonging to
the ghosts. Instead, an higher peak density is evident in the faulty branch, the number
3, where the hyperbola shapes of the ghosts are clear and each frequency detects a peak
at the exact fault position. It is important to remind that the MTLs in this case are
oriented from the correspondent testing port to the junction, chosen this convention for
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(a) Branch 1

(b) Branch 2

(c) Branch 3

Figure 6-9: Pseudo-spectra in presence of a junction, referred to the network of figure 6-8
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Figure 6-10: Pseudo-spectrum of the faulty branch around the fault position

sake of simplicity. Therefore, in the plots of each branch represented in figure 6-9, the
correspondent testing port is on the left while the junction is always situated on the
right, marked by the red line. What it is interesting to observe is the shape of the
Pseudo-spectrum plot around the fault position. In fact, looking closer in figure 6.9(c)
in the 10m range between 1495m and 1505m from the testing port 3, oscillations around
the fault position are evident, as shown in figure 6-10. This phenomena is caused by
the presence of the junction. As seen in the equation 6.7 (section 6.1.2), although the
baselining procedure a little residual term of the junction remains, due to the multiple
reflections between fault and junction, as represented in the network of figure 6-11. The
blue line represents the reflected wave due to the fault, as in the single line case, and
the green line represents the multiple reflection wave between the fault and the junction.
Therefore, at the testing port 3 a wave made up by the sum of these two waves back
propagates, with two different amplitude and phase patterns:

A(ω) = A1e
−j2ωτ1 + A2e

−j2ωτ2 , (6.13)

Figure 6-11: Multiple reflections between fault and junction in the Y-branched structure
of figure 6-8
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Figure 6-12: A(ω) representation in the complex plane

where the first term represents the wave reflected by the fault (blue line), and thus,

A1 = Γf , (6.14)

represented by the black point, and τ1 is the time delay referred to the fault position.
Besides, in the last equation the second term represents the residual term due to the
junction presence, where its amplitude represents the reflection coefficient and is given
by:

A2 = 2
Zc
2
− Zc

Zc
2

+ Zc
= −1

9
, (6.15)

corresponding to the red points of figure 6-11, and where τ2 is the time delay referred to
the multiple reflections between fault and junction. From the last equation,

A2 << A1. (6.16)

As a matter of fact, A(ω) is the result of the summation of two terms at different fre-
quencies and thus can be graphically represented in the complex plane, as shown in figure
6-12. The blue vector represents the wave reflected by the fault with amplitude A1 and
time delay τ1, whereas the red vector represents the wave combined by fault-junction
multiple reflections with amplitude A2 and time delay τ2. The rotation velocities of these
two vectors are clearly different, being different the time delays. As a result of this
vector summation, the effective peak found with the projection procedure by the Pseudo-
spectrum function is not the green point as would have been in the single line case but the
orange point which moves around. This is the reason why oscillations around the fault
position occur. It is the physical phenomena of beat, in acoustic and electromagnetism
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(a) 300 far from the testing port (b) 300 far from the junction

Figure 6-13: Pseudo-spectra of the Y-branched structure of figure 6-8 where the fault
position has changed

very common, where the addition of different frequencies results in positive or negative
interferences. To better understand, the oscillations occur since the approximated Green
functions are considered in the computation: in fact, the Green functions are calculated
at each position of the healthy line, and thus no real faults are included in. But, when a
junction is present in the line multiple reflections occur between it and the real fault and
another term arises as shown in equation 6.7, which is not included in the approximated
Green functions terms. This additional term is the effective cause of the presence of
oscillations.

6.3.1 Change of Fault Position

According to figure 6-12, higher the difference of frequencies is more interference between
frequencies occur and, consequently, more oscillations around the fault position are shown
in the Pseudo-spectrum. In other words, higher the distance between the fault and the
junction is, more oscillations around the fault position are present. Vice versa, lower
the distance is, less oscillations are present around the fault position: this is the worst
case since a bias is formed and for certain number of frequency samples the peak is
wrongly detected. In figure 6-13 these new configurations are shown: in (a) the fault
is situated at 300m from the testing port 3 and 2.7km from the junction, whereas in
(b) at 2.7km from the testing port 3 and 300m from the junction. In this last plot the
bias is evident and, above all for the lowest frequencies the fault candidates individuated
by the projection procedure are quite far from the exact fault position. Considering
instead, the same structure of figure 6-8 but with the fault in the middle of the branch
1 and 2, respectively, the Pseudo-spectra are presented in figure 6-14. Also in this case,
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(a) Branch 1 (b) Branch 2

Figure 6-14: Pseudo-spectra of the Y-branched structure of figure 6-8 where the fault is
situated in different branches

Port MUSIC finds the faulty branch first and then the Green function corresponding to
the exact fault position, whereas in the other healthy branches only peaks belonging to
the ghosts are present. In 6.14(b), where the fault is included in the second branch, it
is possible to observe the highest density of ghosts, evident above all around the fault
position. This is due to the the fact that the length of the second branch is greater than
the first branch and, being the maximum frequency the same at 5MHz (baseband), the
distance between the ghosts decreases. According to this case, it is interesting to point
out that when the fault is at 300m from the testing port the oscillations are even more
since the distance between the junction and the fault has increased, creating a yellow
path in the Pseudo-spectrum at the fault position (figure 6-15). Therefore, increasing the

Figure 6-15: Pseudo-spectrum when the fault is on the branch 2 and 300m from the
testing port
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(a) Accuracy estimation with 20dB SNR and 100
noise realizations

(b) Precision estimation considering three different
SNR values

Figure 6-16: Port MUSIC performances in the Y-branched structure of figure 6-8

distance between the two discontinuities (fault and junction) more accuracy about the
fault position is performed and, ideally, for very long distances the junction weight could
be neglected.

6.3.2 Precision and Accuracy Estimation

For a single line, both in lossless and lossy case, the greatest strength of Port MUSIC
method is its super resolution, which ensures very precision estimates in the fault location.
In the three-dimensional case, the effects of the junction on the method performances
are evaluated and a deterioration in accuracy estimation is verified due to the presence
of oscillations. The situation gets even worse in presence of noise when the standard
deviation over a certain number of noise realizations becomes larger. For example, the
Pseudo-spectrum at 20dB SNR is shown in figure 6.16(a). In this case, σ over 100 noise
realizations is 0.128, much higher than the 20dB case in a single line. However, it is not
a value that can be taken into account since the accuracy estimation is influenced by the
presence of oscillations.

Instead, Port MUSIC still ensures a very super resolution performances also in this
three-dimensional case, in the range of centimeter and millimeter, depending on the
frequency value. As done for the single line case, the 70dB, 60dB and 50dB SNR cases
are presented, and the behavior of the spatial resolutions in frequency is shown (figure
6.16(b)). The resolution is slightly increased with respect to the single line case, probably
due to the fact that now the projection involves the sum of two vectors. However, super
resolution is still achieved and it is important to remind that TDR would perform the
same resolution range for bandwidths around 10GHz.
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(a) Pseudo-spectrum when dummy faults are in-
serted in the Y-branched structure of figure 6-8

(b) CDF of the NUT in figure 6-8 with 100 noise
realizations and SNR=20dB in presence of dummy
faults

Figure 6-17: Dummy faults

6.3.3 Dummy Faults

In order to improve the performances of MUSIC in a Y-branched structure, it is possible
to proceed inserting dummy faults at each position along the line, junction included. The
projection procedure is the same as before, with the data scattering matrix computed
in the same way. The difference, in this case, is that the ‘‘real ” Green functions are
considered and involved in the projection procedure and, thus, the multiple reflections
between junction and fault are included into them. In other words, real dummy faults
are now present at each position of the line: when the Green function is now generated,
reflections occur between junction and the real fault, which can be totally compared with
the S11 reflected wave back propagating. As consequence, oscillations around the fault
position are not present and the fault is localized with great accuracy (figure 6.17(a)).
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Figure 6-18: Y-branched structure adopted for the experimental results

As procedure, dummy faults with the same length as the real fault are added at each
position of the structure, at each branch. The real Green function generated by a dummy
fault at each position is computed and its orthogonal vectors carried out.

The super resolution of MUSIC is still performed, whose results are the same as the
case in the section 6.3.2 and, beside, the accuracy estimation can be now evaluated. In
fact, since no more oscillations are present the fault can be detected without systematic
errors. With this in mind, the same approach considered in chapter 4 is studied, where
a Monte Carlo simulations with 100 noise realizations is considered. In order to compare
this 3-ports system results with the results obtained in the single line case, the same
SNR values are considered going from 40dB to 0dB. The cumulative density function
is calculated with the upper and the lower bound level at 97.5% and 2.5% of the cor-
respondent CDF respectively. As result, the accuracy estimation has improved in this
three-dimensional case, and MUSIC performs a better noise robustness with respect to
the 2-ports case, as represented in figure 6.17(b). The reason why is probably due to the
fact that more data are considered with respect to the bi-dimensional case, resulting in
a better accuracy estimation.

6.4 Experimental Results

As done for the single 2 ports-line, the experimental Port MUSIC performances are eval-
uated also in the case of a Y-branched structure. The experiments set-up is the same as
the one adopted in section 5.3, but for sake of clarity, we briefly reintroduce the measure-
ment instruments. High frequency coaxial cables with 50Ω of characteristic impedance
are chosen as transmission lines. The soft faults are simulated by using 20cm semi-rigid
cables and crushing them in a little portion with 1cm length and 1.4mm thickness. The
ends of the cables making up each NUT were used as testing ports, by connecting them
to a Rohde&Schwarz ZVB8 vector network analyzer, covering a frequency range from
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Figure 6-19: Practical implementation in the Y-branched case

300kHz to 8GHz, with four testing ports. The measurement of the scattering matrices
was done over a predefined bandwidth ranging from 1MHz to 1GHz and the intermediate-
frequency filter bandwidth was set to 100 kHz. After having calibrated the VNA using
the calibration kit provided by the manufacturer, the study of the network configuration
has been carried out following two steps:

(1) measurement of Sb11 of the reference healthy system with the unaltered 20cm semi-
rigid sections;

(2) measurement of Sf11 of the NUT, after having replaced the reference samples with
the crushed ones.

After having measured the two scattering matrices of the tested networks, post-processing
was done by using Matlab where several steps are followed to obtain the results. The
line considered is a Y-branched line, where the line lengths of the three branches is
shown in figure 6-18. First of all, the experiments have been done by considering the
approximated Green functions, computed at each line position without a real fault. The
fault is situated in the first branch, with the first termination at 65cm from the testing
port 1, and the picture of the implementation is shown in figure 6-19. Besides, the
fault position has been changed in order to see its effects on the oscillations, and the
Pseudo-spectra shown in figure 6-20, considering the cases in which the semi-rigid line
has been inserted at 35cm (b) and 95cm (c) from the testing port of the branch 1. Since
the maximum frequency considered here is 500MHz, the distance between the ghosts at
that frequency is around 10cm. Here, the Pseudo-spectra are plotted considering 40cm
of range in order to show the oscillations around the fault position. As expected and
shown in the simulations, oscillations are present due to the multiple reflections between
junction and fault and they are stronger as the fault is far from the junction. However,
inserting dummy faults at each position of the line, as seen in the previous section, the
real function are considered and since in this case the multiple reflections are included
in the Green functions no oscillations occur around the fault position. The case (a) is
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(a) 65cm from the testing port

(b) 35cm from the testing port

(c) 95cm from the testing port

Figure 6-20: Pseudo-spectra carried out with VNA measurements
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Figure 6-21: Pseudo-spectrum carried out with VNA measurements inserting dummy
faults

considered and looking at figure 6-21 a comparison with the oscillations case can be done,
where it is evident the same fault position but without the presence of oscillations.

6.5 Summary

In this chapter a more complex structure has been analyzed, with three branches and a
junction. First of all, the baselining system has been introduced and deeply discussed
aimed to avoid the effect of the junction.

TDR performances are then evaluated where a triangulation is needed and all the
testing ports must be used. In the single line case an advantage of TDR with respect
to MUSIC was the possibility of using just a single port, which is no more valid in a
three-dimensional case.

At last, Port MUSIC is studied: oscillations are shown in the Pseudo-spectrum since
multiple reflections arise between fault and junction. To solve this problem, dummy faults
at different positions of the line are introduced and their Green functions computed.
Besides, super resolution is still performed and an improvement in accuracy is carried
out.
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Chapter 7

General Conclusions and Perspectives

7.1 Conclusions

A fine analysis of the time reversal method has been presented in this thesis work. The
measurement process described pretends to be something that can be used and improved
for future measurements in soft fault detection environments.

A 10km medium voltage cable is adopted as NUT and a soft fault simulated as an
impedance discontinuity of 1m length. First, TDR method is implemented and a fine
comparison with time reversal carried out in order to overcome its limitations. Actually,
as seen in chapter 3, different TR methodologies are taken into account but after a deep
analysis on each of them (DORT, standard MUSIC, Frequency-delay MUSIC and Port
MUSIC), Port MUSIC showed several advantages which lead us to consider it in the
performances comparison with TDR.

In chapter 4 a lossless line is considered and a metrological analysis on precision
and accuracy estimations of both the methods is carried out. As a result, in precision
estimation a super resolution is performed by Port MUSIC (on the order of the millimeter)
even with a quite limited bandwidth (fmax = 10MHz), whereas TDR needs very large
bandwidths for achieving such a resolution. Moreover, at the same noise conditions the
two methods perform the same accuracy estimation, studying their behavior at different
SNR values (from 40dB to 0dB), see figure 4-29. Therefore, in absence of losses, Port
MUSIC shows multiple advantages than TDR since performs the same accuracy and a
much better precision in fault location. The price to be paid is that MUSIC operates
only if the entire length of the line is known a priori and both the testing ports must be
used, whereas TDR needs just a single port.

Adding losses the work becomes even more interesting. In fact, limitations in fre-
quency are introduced in TDR in order to reduce the attenuation value. Being TDR
a time-domain based method, reducing the frequency a worse resolution has obtained
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(figure 5-14), around 320m. Instead, Port MUSIC performs great results since is only
affected by dispersion, operating just on Green function phase patterns and thus atten-
uation does not influence its performances. A super resolution on the millimeter order is
still achieved, going beyond the limitations encountered by TDR.

In the last chapter (6), the fault detection analysis is carried out on a Y-branched
structure. Both TDR and MUSIC need all the testing ports to operate in this case
even if MUSIC still require the knowledge of the branches length. Here, the baselining
system is introduced in order to avoid the cumbersome effect of the junction. In fact,
multiple reflections originate between fault and junction which create oscillations in the
Pseudo-spectra around the fault position. This problem is bypassed introducing dummy
faults along the line (section 6.3.3). Super-resolution is still accomplished in MUSIC and
accuracy improved with respect to the single line case.

To conclude, different topologies and effects of a 10 km power cable have been analyzed
in this thesis in order to compare some fault detection methods. Port MUSIC showed
very good results, exceeding the limitations encountered by TDR. In particular, some of
its strength points can be briefly listed:

(1) it is based on a Green function analysis deriving from a subspace decomposition
of the scattering matrix: no time-domain reflected waves are involved and, thus,
the problems arisen in the time-domain methods (as TDR) in presence of losses are
overcome;

(2) its ability to operate on phase patterns only since a projection procedure involving
Green function and S parameters is carried out;

(3) its ability to operate frequency by frequency, which allows the choice of specified
frequency samples if distortion is present.

Numerical validations and experiments with VNA are also carried out in order to
practically validate the models. With this work an application of MUSIC on MV cables
is performed and good results are obtained. However, several applications can be studied
and carried on in order to still improve the soft fault detection in power cables.

7.2 Perspectives

We decided to operate in this work adopting time reversal properties to the problem
of fault location in transmission lines. Good results are obtained with single as well as
Y-branched networks in lossless/lossy conditions. However, an extended study could be
continued in order to still improve the methods performances. Some of these perspectives
are listed in this section:
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• implementation of a new version of MUSIC, in this work just introduced in its
concepts in section 3.4.2, Frequency-delay MUSIC, which builds the vectors v1 and
g(x)⊥ in function of frequency and not depending on the number of testing ports.
It implies a greater set of data to be analyzed and, consequently, a more noise
robustness and a better accuracy estimation shall be expected;

• the practical experiments on very long MV power cables in order to experimentally
validate the theory also on bigger cables are required. For this purpose, the proper
instruments are needed, for measuring and to be measured;

• implementation of time reversal, and in particular TR-MUSIC, on more complex
structures, with several branches (>3) and junctions;

• analysis of TDR and time reversal in presence of active electrical components in
the line (as voltage/current sources, transformers, electronic components) in order
to observe and study the response of the structure, both in time and frequency
domains. The adoption of the EMTP software can be applied in order to numerically
validate the results;

• improvements in DORT method to make it applicable using reflection coefficients
only and not the whole scattering matrix S;

• analysis and study of different networks: open-load, short-circuits in order to have
multiple reflections and in presence of multiple faults. In those cases DORT should
be more advantageous than the other fault location methods. In such a case, the
comparison in methods performances could be very useful, even between time re-
versal methods;

• application of TR-MUSIC on other cable structures, different from coaxial cables.
In this case, a study of the cable structure and the frequency dependence with its
electrical parameters is initially needed and its consequent mapping in relation to
attenuation.
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Glossary

List of Acronyms

CDF Cumulative Density Function
CLT Central Limit Theorem
CST Computer Simulation Technology
DOA Direction Of Arrival
DORT Decomposition de l’Operateur de Retournement Temporel
EDF Electricite De France
EMI Electro Magnetic Induction
EVD Eigen Value Decomposition
FDR Frequency Domain Reflectometry
MTL Multi-conductor Transmission Line
MUSIC Multiple Signal Classification
MV Medium Voltage
MWS Micro Wave Studio
NUT Network Under Test
PEC Perfect Electrical Conductor
SNR Signal to Noise Ratio
SSTDR Spread Spectrum Time Domain Reflectometry
SVD Singular Value Decomposition
TDR Time Domain Reflectometry
TEM Transverse Electro Magnetic
TOSM Through Open Short Match
TR Time Reversal
TRM Time Reversal Mirror
TRO Time Reversal Operator
VNA Vector Network Analyzer
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XLPE Cross Linked PolyEthylene
ZT Space-Time Diagram

Mathematical Notations

R set of real numbers
x generic column vector
x† transpose conjugate of column vector
x⊥ orthogonal of column vector
λ(Λ) eigenvalues of the matrix Λ
diag(· · · ) diagonal matrix
E[·] expected value of
≈ approximated by
, defined as
S signal subspace
N noise subspace
g(x) Green function vector
σ variance of
K time reversal operator
<e(·) real part of
e0(t) time-domain reflected wave
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