
Politecnico Di Milano
School of Industrial and Information Engineering

Master of Science in Computer Science and

Engineering

MQTT+:
Enhanced Syntax and Broker

Functionalities for Data Filtering,
Processing and Aggregation

Supervisor: Alessandro Enrico Cesare Redondi
Co-supervisor: Matteo Cesana

Master Thesis of:
Riccardo Giambona
Student ID: 863204

Academic Year: 2017/2018

2

3

Acknowledgments

I want to thank my supervisor Alessandro Enrico Cesare Redondi and my co-supervisor Matteo Cesana for

helping me writing this thesis.

I want also to thank dc-square GmbH, the company behind HiveMQ, for the license they gave us to allow us

to compute the performance tests.

Riccardo Giambona

4

Index Of Contents

Abstract ... 11

Sommario .. 12

Chapter 1: Introduction ... 13

Chapter 2: MQTT Overview ... 14

2.1 - Introduction ... 14

2.2 - Usage ... 14

2.2.1 - Step one: Connect .. 14

2.2.2 - Step two: Publish/Subscribe ... 16

2.3 - QoS (Quality of Service) ... 16

2.4 – Syntax ... 19

2.4.1 – Topic .. 19

2.4.2 – Single level wildcard (+) ... 19

2.4.3 – Multi-level wildcard (#) .. 20

Chapter 3: State of art ... 21

3.1 – Related works research .. 21

3.2 – Available standard MQTT brokers/platforms ... 22

3.3 – Final MQTT broker implementation ... 23

Chapter 4 – MQTT+ Logic .. 24

4.1 - Introduction ... 24

4.2 – MQTT+ Syntax ... 24

4.2.1 – Multiple value separator (;) ... 24

4.2.2 – Special subscription topic syntax ... 25

4.2.2.1 – OperationsBlock structure .. 26

4.2.3 – Available Operations.. 26

4.2.3.1 – Last Value Operations ... 26

4.2.3.2 – Temporal Operations .. 27

4.2.3.3 – Periodic Operations .. 28

4.2.3.4 – Rule based operations .. 29

4.2.3.5 – Information extraction ... 30

4.3 – Semantic ... 31

4.3.1 – Available data types ... 32

4.3.1.1 – Single data types ... 32

4.3.1.2 – Set data types ... 33

5

4.3.1.3 – Inner data type ... 34

4.3.2 – Operations semantic .. 34

4.3.2.1 – Last value operations .. 34

4.3.2.2 – Temporal operations .. 35

4.3.2.3 – Periodic Operations .. 35

4.3.2.4 – Rule Based Operations ... 35

4.3.2.5 – Information extraction operations ... 36

4.4 – Subscription processing .. 37

4.4.1 - Parsing .. 37

4.4.1.1 – Syntax analysis .. 38

4.4.1.2 – Semantic analysis .. 38

4.4.2 – Subscription buffering ... 44

4.4.2.1 – Resource consumption ... 44

4.4.3 – Subscription elaboration ... 46

4.4.4 – Publish topic choice ... 46

4.5 – Data Buffering ... 47

4.5.1 – Temporal analysis buffer ... 47

4.5.1.1 – Temporal operations usage .. 47

4.5.2 – Last value analysis buffer ... 48

4.5.2.1 – Statistics .. 49

4.5.2.1 – Last value operations usage ... 50

4.5.2.2 – Periodic operations usage .. 50

4.5.3 – Buffer access .. 51

4.5.4 - Resource consumption ... 52

4.5.4.1 – Last detection buffer .. 52

4.5.4.2 – Temporal buffer .. 53

4.5.4.3 – Techniques to save memory ... 54

4.5.4.4 – Considerations on techniques to save memory ... 57

4.6 – Complex operations .. 57

4.6.1 – Complex operation processing .. 57

4.6.2 – Complex operation caching ... 58

Chapter 5 - MQTT+ Implementation ... 59

5.1 – Subscription processing .. 59

5.1.1 – Involved entities .. 59

5.1.2 – Elaboration steps ... 61

5.2 – Subscription parsing ... 61

6

5.2.1 – Involved entities .. 61

5.2.2 – Elaboration steps ... 61

5.3 – Subscription elaboration .. 63

5.3.1 – Immediate elaboration .. 63

5.3.1.1 – Involved entities ... 63

5.3.1.2 – Elaboration steps .. 63

5.3.2 – Periodic elaboration .. 65

5.3.2.1 – Involved entities ... 65

5.3.2.2 – Elaboration steps .. 65

5.4 – Information extraction and buffering ... 66

5.4.1 – Involved entities .. 66

5.4.2 – Elaboration steps ... 66

5.5 – Operation elaboration .. 68

5.5.1 – Not periodic arithmetic operation ... 68

5.5.1.1 – Involved entities ... 68

5.5.1.2 – Elaboration steps .. 70

5.5.2 – Periodic arithmetic elaboration ... 70

5.5.2.1 – Involved entities ... 70

5.5.2.2 – Elaboration steps .. 70

5.5.3 – OnImage elaboration ... 72

5.5.3.1 – Involved entities ... 72

5.5.3.2 – Elaboration steps .. 72

5.5.4 – RuleBased elaboration ... 74

5.5.4.1 – Involved entities ... 74

5.5.4.2 – Elaboration steps .. 74

Chapter 6 – Performance tests .. 76

6.1 – Technical specifications .. 76

6.2 – Convention on CPU load ... 76

6.3 – Numbers ... 77

6.3.1 – Bandwidth usage ... 77

6.3.2 – CPU consumption .. 81

6.3.3 – RAM Usage... 82

6.4 – Images ... 83

6.4.1 – Bandwidth usage ... 83

6.4.2 – CPU usage .. 84

6.4.3 – RAM Usage... 86

7

Chapter 7 - Conclusions ... 87

7.1 – Future works ... 87

7.1.1 – Broker capabilities ... 87

7.1.2 – Advanced semantic analysis .. 88

7.1.3 – Specify explicitly the TTL .. 88

7.1.4 – Reply to invalid subscriptions .. 88

7.1.5 – Resource dependent subscription acceptance .. 89

7.1.6 – Advanced operation caching ... 89

Bibliography ... 90

8

Index Of Figures

Figure 1: Connect-Flow (©dc-square GmbH HiveMQ MQTT Essentials) .. 14

Figure 2: Connect-Message (©dc-square GmbH-HiveMQ-MQTT Essentials) ... 15

Figure 3: Publish-Subscribe-Flow (©dc-square GmbH-HiveMQ-MQTT Essentials) .. 16

Figure 4:QoS (0) (©dc-square GmbH-HiveMQ-MQTT Essentials) ... 16

Figure 5: QoS (1) (©dc-square GmbH-HiveMQ-MQTT Essentials) .. 17

Figure 6: QoS (2) (©dc-square GmbH-HiveMQ-MQTT Essentials) .. 17

Figure 7: Subscribe message (©dc-square GmbH-HiveMQ-MQTT Essentials) ... 18

Figure 8: Single data types tree ... 32

Figure 9: Multiple data types tree ... 33

Figure 10:Semantic analysis example 1 ... 39

Figure 11: Semantic analysis example 2 .. 41

Figure 12: Semantic analysis example 3 .. 41

Figure 13: Semantic analysis example 4 .. 42

Figure 14: Semantic analysis control flow ... 43

Figure 15: Subscription process ... 60

Figure 16: Subscription parsing ... 62

Figure 17: Immediate subscription elaboration .. 64

Figure 18: Periodic subscription elaboration .. 65

Figure 19: Information extraction and buffering .. 67

Figure 20: Arithmetic elaboration not periodic ... 69

Figure 21: Arithmetic elaboration periodic ... 71

Figure 22: OnImage elaboration .. 73

Figure 23: RuleBased elaboration ... 75

Figure 24: Numeric bandwidth usage - fixed sensors ... 77

Figure 25: Numeric bandwidth usage - fixed clients ... 78

Figure 26: RPT vs SKR - fixed sensors .. 79

Figure 27: RPT vs SKR - fixed clients .. 79

Figure 28: Numeric CPU load - fixed clients .. 81

Figure 29: Numeric CPU load - fixed sensors .. 81

Figure 30: Numeric RAM usage - fixed clients ... 82

Figure 31: Numeric RAM usage - fixed sensors ... 82

Figure 32: Images bandwidth - fixed clients .. 83

Figure 33: Images bandwidth - fixed sensors .. 83

Figure 34: CPU load - fixed clients ... 84

Figure 35: CPU load - fixed sensors ... 84

Figure 36: RAM usage fixed clients .. 86

Figure 37: RAM usage - fixed sensors .. 86

Figure 38: Capabilities answer example .. 87

https://d.docs.live.net/c2a9a1ec37d3b39f/Universita'/Magistrale/Tesi/Documento/Tesi.docx#_Toc518459449
https://d.docs.live.net/c2a9a1ec37d3b39f/Universita'/Magistrale/Tesi/Documento/Tesi.docx#_Toc518459450
https://d.docs.live.net/c2a9a1ec37d3b39f/Universita'/Magistrale/Tesi/Documento/Tesi.docx#_Toc518459451
https://d.docs.live.net/c2a9a1ec37d3b39f/Universita'/Magistrale/Tesi/Documento/Tesi.docx#_Toc518459452
https://d.docs.live.net/c2a9a1ec37d3b39f/Universita'/Magistrale/Tesi/Documento/Tesi.docx#_Toc518459454
https://d.docs.live.net/c2a9a1ec37d3b39f/Universita'/Magistrale/Tesi/Documento/Tesi.docx#_Toc518459455
https://d.docs.live.net/c2a9a1ec37d3b39f/Universita'/Magistrale/Tesi/Documento/Tesi.docx#_Toc518459456
https://d.docs.live.net/c2a9a1ec37d3b39f/Universita'/Magistrale/Tesi/Documento/Tesi.docx#_Toc518459458
https://d.docs.live.net/c2a9a1ec37d3b39f/Universita'/Magistrale/Tesi/Documento/Tesi.docx#_Toc518459459
https://d.docs.live.net/c2a9a1ec37d3b39f/Universita'/Magistrale/Tesi/Documento/Tesi.docx#_Toc518459460
https://d.docs.live.net/c2a9a1ec37d3b39f/Universita'/Magistrale/Tesi/Documento/Tesi.docx#_Toc518459461
https://d.docs.live.net/c2a9a1ec37d3b39f/Universita'/Magistrale/Tesi/Documento/Tesi.docx#_Toc518459462

9

Index Of Tables

Table 1: Implementations evaluation criteria ... 22

Table 2: Implementations list - Part 1 ... 22

Table 3: Implementations list - Part 2 ... 23

Table 4: Last values operations ... 26

Table 5: Last value operations examples ... 27

Table 6:Temporal operations .. 27

Table 7: Temporal operations examples ... 28

Table 8:Periodic operations examples .. 28

Table 9: Rule based operations ... 29

Table 10: Rule based operations examples ... 29

Table 11: Information extraction operations .. 30

Table 12: Information extraction operations examples .. 30

Table 13: Data types description table .. 32

Table 14: Multiple data types description ... 33

Table 15: Inner data types ... 34

Table 16: Last value operations semantic definition ... 34

Table 17: Temporal operations semantic definition ... 35

Table 18: Periodic operations semantic definition .. 35

Table 19: Rule base operations semantic definition ... 35

Table 20: Information extraction semantic definition .. 36

Table 21: Subscriptions table .. 44

Table 22: Temporal analysis buffer ... 47

Table 23: Temporal analysis usage example ... 48

Table 24: Last value analysis buffer ... 48

Table 25: QuarterHourly stats ... 49

Table 26: Hourly stats .. 49

Table 27: Daily stats ... 49

Table 28: Last value operation usage example ... 50

Table 29: Periodic operation usage example .. 51

Table 30: Buffer mapping .. 51

Table 31: Cache structure example ... 58

Table 32: Operation types ... 68

MQTT+ | Riccardo Giambona

11

Abstract

In the last few years, the Message Queueing Telemetry Transport (MQTT) publish/subscribe protocol

emerged as the de facto standard communication protocol for IoT, M2M and wireless sensor networks

applications. Such popularity is mainly due to the extreme simplicity of the protocol at the client side,

appropriate for low-cost and resource-constrained client devices. Other nice features include a very low

protocol overhead, ideal for limited bandwidth scenarios, the support of different Quality of Services (QoS)

and many others. However, when a client device is interested in performing processing operations over the

data published by multiple sensors, the use of MQTT may result in high network bandwidth usage and high

energy consumption for the end devices, which is unacceptable in resource constrained scenarios.

To overcome these issues, we propose in this thesis MQTT+, which provides an enhanced protocol syntax

and enrich the pub/sub broker with data filtering, processing and aggregation functionalities.

MQTT+ is implemented starting from an extensible MQTT broker and evaluated in different application

scenarios.

MQTT+ | Riccardo Giambona

12

Sommario

Negli ultimi anni, il protocollo di tipo publish/subscribe MQTT (Message Queueing Telemetry Transport) è

diventato lo standard di fatto per quanto riguarda i protocolli di comunicazione usati per IOT, M2M e reti di

sensori wireless. Questa popolarità è dovuta all’estrema semplicità del protocollo lato client e questo lo

rende appropriato per dispositivi low-cost e con poche risorse computazionali a disposizione.

Altre interessanti funzionalità del protocollo, includono un bassissimo overhead di gestione, ideale per casi

in cui la banda di rete sia limitata, il supporto di diverse QoS (Quality Of Services) e molte altre.

Nonostante ciò, quando un client è interessato ad eseguire delle operazioni di elaborazione dei dati

pubblicati da diversi sensori, l’utilizzo di MQTT può comportare un alto consumo di banda di rete e un

elevato consumo di energia da parte dei client, il che è inaccettabile in scenari in cui i clients siano

dispositivi con poche risorse computazionali.

Per superare questi limiti, in questa tesi viene proposto MQTT+, che fornisce un protocollo con una sintassi

avanzata e introduce nel broker delle funzionalità di filtraggio, analisi e aggregazione di dati.

MQTT+ è implementato a partire da un broker estendibile e valutato in diversi scenari applicativi.

MQTT+ | Riccardo Giambona

13

Chapter 1: Introduction

The Internet of Things (IoT) is day by day becoming a reality. Tiny and cheap devices equipped with sensors

and wireless communication capabilities are being used more and more frequently in several application

scenarios, such as wireless sensor networks, environmental monitoring, e-health, etc.

Regardless of the specific scenario, all IoT applications are characterised by common requirements:

Sensor nodes operate with low-bandwidth wireless transceivers to transmit/receive data to/from a

common data concentrator (sink node) or other IoT nodes. Such data may be then processed, according to

the application’s needs, either at the sink node or onboard other sensor nodes using low-power and

energy-efficient microcontrollers. Such a resource-constrained environment stimulated in the last few

years a vast body of research to design and optimise existing protocols at all layers of the communication

stack. For what concerns the application layer, several efforts have been performed:

Protocols such as the Message Queue Telemetry Protocol (MQTT)[1], the Constrained Application Protocol

(COAP)[2] and the Extensible Messaging and Presence Protocol (XMPP)[11] are the results of such efforts.

Among the existing solutions, MQTT is certainly the one that has received the greatest attention in the last

few years, practically becoming the standard de-facto in M2M and IoT applications. As a matter of fact,

MQTT is becoming the most popular protocol to connect resource constrained devices to the major cloud

platforms (e.g., Amazon AWS, Microsoft Azure, IBMWatson), which all expose their services through MQTT.

The reasons of such popularity derive from MQTT’s incredible simplicity client-side, which nicely fits in

resource-constrained applications, yet supporting reliability and several degrees of quality of service (QoS).

MQTT is based on the publish/subscribe pattern, and all communications between nodes are made

available by a broker. The broker accepts messages published by devices and forwards them to clients

subscribed to those messages, ultimately controlling all aspects of communication between devices.

There is however a set of common IoT and M2M applications scenarios where the use of MQTT causes an

inefficient use of the available network and computing resources. Those are all cases where data

consumers (subscribers) are interested in only a subset of the data produced (published) by sensor devices,

while the broker still forwards the entire data available. Examples include clients interested in receiving

data only if it respects some condition, clients interested in certain aggregation functions (e.g., cumulative

sum, average) over a set of data published, or clients interested in the result of some processing task over

such data, rather than the data itself. In all these cases, two main drawbacks can be identified: first, the

data forwarded by the broker may potentially be discarded by subscribers, wasting network resources and

(ii) subscribers need to perform additional processing operations, consequently decreasing their available

computational and energy resources. To mitigate those issues, we propose in this paper an advanced MQTT

broker (MQTT+) able to deal with such situations.

MQTT+ allows a client to subscribe to advanced functionalities on the data published, including rule-based

data filtering, spatial and temporal data aggregation and data processing. All functionalities are provided

reusing as much as possible the original MQTT protocol logical and syntactical rules and minimally

modifying the client-side procedures. As a proof of concept, MQTT+ is implemented starting from a publicly

available MQTT broker (HiveMQ) and evaluated in different application scenarios.

This thesis is structured as follows: Chapter 2 briefly discuss the MQTT protocol, highlighting its main

features. Chapter 3 analyses the existing modified solutions of MQTT. Chapter 4 introduces MQTT+ logic

and the proposed enhancements. Chapter 5 explains how this project has been implemented. Chapter 6

shows the results of the performance tests between MQTT and MQTT+ and finally, Chapter 7 talks about

the future improvements that will be applied to this project.

MQTT+ | Riccardo Giambona

14

Chapter 2: MQTT Overview

2.1 - Introduction

The Message Queuing Telemetry Transport is a lightweight publish/subscribe protocol whose design

principles are to minimise both the end-devices requirements and the utilised network resources, still

ensuring reliability and some degree of quality of service.

MQTT follows a traditional publish/subscribe pattern in which a client device publishes information relative

to a particular topic, i.e., a multilevel string describing the data being published (e.g. kitchen/temp).

Other clients interested in such information subscribe to that topic. Information forwarding from the

publishers to the subscribers is made possible by a broker, which is the core part of the system and is in

charge of receiving data from the publishers and forwarding it to the subscribers.

Such design allows to decouple the publishing and subscribing processes: clients interested in a particular

topic do not need to know who the publishers are, neither they have to be synchronised to the publishing

operations.

2.2 - Usage

In this section, we are going to see the basics steps to use the MQTT protocol.

2.2.1 - Step one: Connect

Before being able to publish data or subscribe to any topic, each client needs to connect to a broker. Such

connection is based on TCP/IP and implemented through a simple message exchange between the client

and the broker. [15]

Figure 1: Connect-Flow (©dc-square GmbH HiveMQ MQTT Essentials)

MQTT+ | Riccardo Giambona

15

During this process, a client communicates several information to the broker such as its client identifier, the

connection keep alive time interval,the clean Session parameter and other optional parameters

(authentication, last will topic and message, etc).

All this information is contained in the CONNECT message as shown below:

Figure 2: Connect-Message (©dc-square GmbH-HiveMQ-MQTT Essentials)

This CONNECT message is confirmed by a CONNACK message that indicates if the connection succeeded or

not, specifying also the reason of the eventual failure.

Referring to the CONNECT message structure, it’s important to understand what the 3 required attributes

are:

• ClientID: Represents the name given to the client. It must be unique in the set of all the connected

clients, since it needs to identify the single client that is connected to the broker. It can be set by

the user, or generated randomly by the client library

• CleanSession: If it’s set to true, then the session is clean, which means that after a client

disconnects or loses the connection, all the subscriptions that it made during the session are lost

and in case of reconnection it has to subscribe again to all topics. Instead if it’s set to false, the

session is persistent and in case of client disconnection, the client is still subscribed to all the

subscriptions it made during the session.

• KeepAlive: This is the maximum interval of time (in seconds) in which a client can send no

messages. If a client doesn’t send any message after this period of time, the connection is

automatically closed by the broker and therefore the client is disconnected.

MQTT+ | Riccardo Giambona

16

2.2.2 - Step two: Publish/Subscribe

After the connection a client may directly start publishing data or subscribing to a certain topic using

specific MQTT messages with minimal transport overhead (the fixed-length header is just 2 bytes).

Figure 3: Publish-Subscribe-Flow (©dc-square GmbH-HiveMQ-MQTT Essentials)

In this example, we can see a single temperature sensor that publishes its detection, using the topic

“temperature” and two different clients that subscribe to the same topic that receive the message

forwarded by the broker.

It’s important to know that the publish and subscription topics don’t need to be initialized, which means

that we don’t have first to register the topic “temperature” to use it, but we can directly publish to that

topic without any prior initialization. [16]

2.3 - QoS (Quality of Service)

For both publish and subscribe, clients have the possibility of choosing a Quality of Service (QoS) value,

which impact on the way the broker handles the messages from/to the clients.

Three QoS levels are defined:

1. At most once (fire-and-forget), which relies on the underlying TCP connection

 Figure 4:QoS (0) (©dc-square GmbH-HiveMQ-MQTT Essentials)

MQTT+ | Riccardo Giambona

17

2. At least once, where the sender will retransmit a message until an ACK is received

Figure 5: QoS (1) (©dc-square GmbH-HiveMQ-MQTT Essentials)

3. Exactly once, where it is guaranteed that a transmitted message is received only once by the

counterpart.

Figure 6: QoS (2) (©dc-square GmbH-HiveMQ-MQTT Essentials)

Of course, we can see from the flows that the higher the QoS, the higher will be the network traffic, since

the process requires more acks for each single message sent. Also, the delay will be higher, since we have

to wait all acks.

MQTT+ | Riccardo Giambona

18

Note that the quality of service is not something defined globally, but it is defined for the messages sent

from the broker to the subscribers and for the messages from the publishers to the broker.

Please note that the QoS for the messages forwarded by the broker to the subscribers it is equal to the QoS

specified by the subscribers in their subscription message for each topic.

The message sent at the moment of subscription is structured as shown below:

Figure 7: Subscribe message (©dc-square GmbH-HiveMQ-MQTT Essentials)

Instead, the QoS of the messages published by the sensors can be different from the QoS specified in the

subscription process. For example, I can have QoS 0 for messages from publishers to broker and QoS 2 for

messages from broker to subscribers (on certain topics). [17]

MQTT+ | Riccardo Giambona

19

2.4 – Syntax

In this paragraph we are going to analyse the syntax that can be used to specify the topics for publishing or

subscribing. [18]

2.4.1 – Topic

A topic is just a string separated by slash separators and each block is called level

myhome/groundfloor/livingroom/temperature

One way to specify a topic is like it’s shown in the example above, but what happens if we want to

subscribe to several publishing topics with just one subscription? This is what wildcards are for.

2.4.2 – Single level wildcard (+)

This wildcard is also called single-level wildcard because it substitutes all the possible values of a single level

with the + symbol. Let’s clarify with an example:

myhome/groundfloor/+/temperature

 [M] myhome/groundfloor/livingroom/temperature

 [M] myhome/groundfloor/kitchen/temperature

 [NM] myhome/groundfloor/kitchen/brigthness

 [NM] myhome/firstfloor/kitchen/temperature

 [NM] myhome/groundfloor/kitchen/fridge/temperature

Using the + wildcard, if we subscribe to the topic: myhome/groundfloor/+/temperature

we will receive all the messages published with the topics marked with the symbol [M] (Matching), so

basically in the level with the + we could put any possible value and the publish topic would match anyway

with the subscription topic.

Of course the +, as said before, it’s a single level wildcard, so the levels different of + must be specified

exactly as the publish topic levels, this is why in the cases marked with the [NM] (Not matching) symbol,

the subscription topic won’t match the publish topic.

topic level

separator

topic level

Single-level

wildcard

MQTT+ | Riccardo Giambona

20

2.4.3 – Multi-level wildcard (#)

In this case the # is a multi-level wildcard, because it substitutes not only one single level of the topic, but it

substitutes a variable number of levels starting from the one where the # is until the end of the topic.

Please note that this wildcard can be put only as the last character of the topic and not in any position like

the + wildcard. Let’s clarify with an example:

myhome/groundfloor/#

 [M] myhome/groundfloor/livingroom/temperature

 [M] myhome/groundfloor/kitchen/temperature

 [M] myhome/groundfloor/kitchen/brightness

 [NM] myhome/firstfloor/kitchen/temperature

In this case we can see that the subscription topic must be equal to the publish one, only for the first two

levels (myhome/groundfloor), but the other levels can be any other thing and the subscription topic

would match anyway the publish topic.

multi-level

wildcard

MQTT+ | Riccardo Giambona

21

Chapter 3: State of art

3.1 – Related works research

In the last ten years, many research studies have proposed modifications and enhancements to the MQTT

protocol. One of the most popular work is the one from Hunkeler et. al which propose MQTTSN[6], a

version of MQTT focused particularly on constrained wireless sensor networks.

MQTT-S do not require clients to connect to the broker through a TCP/IP connection, therefore greatly

simplifying their design. Other interesting features of MQTT-SN are the possibility of using an encoded

format for publishing and subscribing topics (so as to save bandwidth) and the support for clients working

according to a duty cycle.

Other solutions have been proposed that tackle different weaknesses of MQTT: the work in [8] tackles

client mobility using memory buffers on publishers; in [12] a lightweight encryption technique based on

Elliptic Curve Cryptography is proposed to increase the security of both MQTT and MQTT-SN protocols; in

[5], authors analyse the end-to-end reliability of MQTT-SN considering several system parameters.

Two very recent works show contact points with what proposed in this paper: the work in [3], authors

propose MQTT-CV (MQTT for communicating vehicles), in which vehicles publish sensor data and a control

infrastructure is subscribed to such data. The main difference compared to MQTT is that the broker may

accept some rule from the control infrastructure (e.g., forward only vehicle speed data greater or lower

than a threshold). This is similar to the rule-based subscription available in the proposed MQTT+, although

no details are given on how such rule-based subscriptions can be integrated in the MQTT syntax. Finally,

the work in [8] proposes MQTT-NEG (Near-user Edge Gateway), a broker implementation that is able to

interconnect different groups of sensors (i.e., content islands) and manage the published messages either

locally (within each content island) or globally (distributing messages among different islands).

A more general body of research focuses on enhancing the capabilities of publish/subscribe systems. Li and

Jacobsen propose PADRES, a pub/sub system which allows expressive and composite subscriptions tailored

to the world of workflow management and business process execution. PADRES allow a subscriber to be

notified when particular events (jobs in a workflow) happen in parallel, or in sequence, or repeat

periodically.

On the same line, Demers et al. propose Cayuga [4] a pub/sub system allowing a user to express

subscriptions spanning multiple events and supporting aggregation and parametrisation of subscriptions.

The system is based on a non-deterministic finite automata and an event algebra which provides

expressiveness and maps to the state of the automata.

Other recent works relative to aggregation of data in generic pub/sub systems are the ones from Pandey et

al. In [9] and in [10] the authors propose a solution to aggregate data in a distributed way, among several

brokers, together with an optimisation problem to minimise the communication cost of such distributed

aggregation.

MQTT+ | Riccardo Giambona

22

3.2 – Available standard MQTT brokers/platforms

After we made a research of the already existing solutions in the market, for improving the standard MQTT,

the next research to do was to identify which broker, of the many available, to modify and extend with the

MQTT+ logic and at the same time preserve the backward compatibility with the standard MQTT. From this

research we listed all the found broker implementations and for each one of them we analysed its

characteristics.

The criteria to evaluate each implementation and its characteristics are the following:

Language C#, Java => Suitable C => Not very suitable Others => Not suitable

Documentation Well documented Poorly documented No documentation

Extensibility Easily extensible Not easily extensible Not extensible

Table 1: Implementations evaluation criteria

In the following tables we are going to list all the analysed implementations.

Name Languages Documentation Extensibility

MQTTnet [Not very suitable]

Suitable Poorly documented

Easily extensible

IBM Websphere MQ Telemetry [Not suitable] Suitable

- Not extensible

IBM IoT MessageSight [Not suitable] Suitable

- Not extensible

IBM Integration Bus Advanced [Not suitable] Suitable - Not extensible

Really small message broker [Not very suitable] See

Mosquitto

See Mosquitto See Mosquitto

Note:

This project was made open-source thanks to the project Mosquitto, so we can refer to that project for

the specifications.

Moquette [Not very suitable] Suitable No documentation Easily extensible

Emitter [Not suitable] Not suitable Well documented Easily extensible

Eurotech Everywhere Device Cloud [Not suitable] - Well documented Not extensible

Emqttd [Not suitable] Not suitable Well documented Easily extensible

Xively [Not suitable] - Well documented Not suitable

Table 2: Implementations list - Part 1

MQTT+ | Riccardo Giambona

23

3.3 – Final MQTT broker implementation

From the previous analysis we can see that the best two implementations for our purposes are the

ActiveMQ versions and the HiveMQ one.

We decided to use the HiveMQ because, differently from ActiveMQ, it’s not required to take the source

code, study how that specific broker was implemented and understand where to put our modified logic to

extend it to MQTT+, but everything works with events raised by the broker and that you can intercept

registering the events and your modified code will run when those events are raised.

This simplifies a lot the work to do and allows you to focus only on the modifications you need to introduce

on the broker, not worrying at all about internal broker logic.

So in the next sections and especially in the implementation sections we will refer to HiveMQ[14] broker.

Name Languages Documentation Extensibility

Yunba.io [Not suitable] - - -

RabbitMQ [Not suitable]

Not suitable Well documented Easily extensible

Apache ActiveMQ [Suitable] Suitable Well documented Easily extensible

NOTE: From this project the following two were born:

-ActiveMQ Apollo: they say to be the improved version of ActiveMQ, but the documentation isn’t very

detailed, probably this is due to the fact that the project is very young

-Apache ActiveMQ Artemis: Not blocking version, asynchronous version

Mosquitto [Not very suitable] Not very

suitable

Well documented Easily extensible

HiveMQ [Suitable] Suitable Well documented Easily extensible

Mosca [Not suitable]

Not suitable No documentation Easily extensible

Litmus Automation Loo [Not suitable] - - Not extensible

Solace Message Routers [Not suitable] - - Not extensible

JoramMQ [Not suitable] Suitable - Not extensible

VerneMQ [Not suitable] Not suitable -

HBMQTT [Not suitable] Not suitable No documentation

ThingScale IoT message broker [Not suitable] - -

vertx-mqtt-broker [Not very suitable] Suitable Well documented

Table 3: Implementations list - Part 2

MQTT+ | Riccardo Giambona

24

Chapter 4 – MQTT+ Logic

4.1 - Introduction

In this chapter we are going to describe the work that has been done to improve the MQTT syntax and

expressive power, compared to the actual state described before.

Also, as said before, what is true for the standard MQTT is also valid for the MQTT+.

The introduced changes are just additions to the MQTT functionalities, leaving untouched the standard

logic. For this reason, in our project there are two types of topics:

• Standard topics: Topics that follow the standard MQTT syntax, which are managed by the already

existing HiveMQ logic.

• Special topics: Topics that respect the MQTT+ syntax, which are managed by the added logic by

this project.

This thing allows to have sessions where some subscribers use the MQTT syntax and other the MQTT+

syntax in the same session of the broker and this won’t cause any kind of problem, allowing perfect

backward compatibility.

4.2 – MQTT+ Syntax

First of all, it’s important to note that the topic syntax used by the publishers is left untouched compared to

the standard MQTT, because the new functionalities are used by the subscribers to ask some kind of

elaboration on the data sent by the publishers to the broker.

For this reason, in this modified syntax, we will implicitly refer to the topics used by the subscribers only.

4.2.1 – Multiple value separator (;)

As explained in the previous sections, the MQTT allows to specify the + and the # wildcard, but what If we

want to specify that we want to subscribe to only a subset of the possible values that a topic level can

have?

In this case the # wildcard is not what we need because it includes multiple levels and the + wildcard

neither, because it includes all possible values that a topic level can have.

That’s why we introduced the possibility to specify a topic with the values separated by the ; symbol to list

only the values that we want to consider. The following topic example will clarify the usage.

MQTT+ | Riccardo Giambona

25

temperature/polimi/deib/room1/sensor1;sensor2;sensor3

 [M] temperature/polimi/deib/room1/sensor1

 [M] temperature/polimi/deib/room1/sensor2

 [M] temperature/polimi/deib/room1/sensor3

 [NM] temperature/polimi/deib/room1/sensor4

As we can see in the example above, each one of the topic with the last level value in the specified set

(sensor1, sensor2 and sensor3) is accepted, otherwise it’s not.

4.2.2 – Special subscription topic syntax

The special subscription topics are in the following form:

$OperationsBlock/MatchingPart

First of all, we can notice that these topics must start with the special character “$”.

This character is used by the broker to distinguish special topics from standard ones.

The $OperationBlocks must always be specified and can’t be a wildcard (+ or #).

This is done because the broker needs to know the sequence of operations that needs to be computed on

the published data.

The blocks in the MatchingPart can be anything that respects the MQTT standard (+ and # included).

Also each block can be a single value (e.g “sensor1”) or a list of values (”sensor1;sensor2”) as explained in

the section before.

The MQTT matching rules apply only with the MatchingPart and not on all the subscription topic

($OperationBlocks/MatchingPart). The following example will clarify the concept:

Suppose we have the following publish topic:

temperature/polimi/deib/room1/sensor1

The following are some subscriptions with the indication if they match with the publish topic or not:

 [M] AVGDAILYAVG/temperature/polimi/deib/room1/sensor1

 [M] SUMDAILYAVG/temperature/polimi/deib/#

[NM] AVGDAILYAVG/temperature/polimi/room2/sensor3

MatchingPart OperationsBlock

MQTT+ | Riccardo Giambona

26

4.2.2.1 – OperationsBlock structure

The OperationsBlock is a sequence of single operation blocks and each block is separated from the others

by a “$” char. For example, a valid operations block is: “AVGDAILYAVG”
The meaning of this sequence will be clear reading the next sections.

In this block there could be any compatible sequence of operations (the meaning of compatibility will be

explained in the semantic analysis section) and each operation can be of 5 different types:

• Last value: This kind of operations work on the last values sent by the specified sensors or on an

output given by a previous operation

• Temporal: This kind of operations work on the values sent by the sensors in a certain time window.

• Periodic: This kind of operations send periodically some kind of statistics (AVG,SUM,etc..) at a fixed

interval of time and there can be at most one of this operations in the OperationsBlock

• Rule based: This kind of operations filter out the data given in input to them that don’t respect the

specified rule

• Information extraction: This kind of operations are used to extract information from a more

complex data structure, for example to extract the number of people from an image.

4.2.3 – Available Operations

We are now going to describe all the available operations that can be specified in the operations block.

4.2.3.1 – Last Value Operations

Operation Name Operation Description

$AVG It computes the average on the last values assumed by the sensors or on the
values generated by a previous operation

$SUM It computes the sum on the last values assumed by the sensors or on the
values generated by a previous operation

$MIN It takes the minimum of the last values assumed by the sensors or on the
values generated by a previous operation

$MAX It takes the maximum of the last values assumed by the sensors or on the
values generated by a previous operation

$COUNT It counts the number of matching topics stored in the buffer or the number
of elements passed by a previous operation (it will be clearer when the
operation composition will be explained)

Table 4: Last values operations

MQTT+ | Riccardo Giambona

27

Examples of valid subscriptions are:

Example topic Description

$SUM/tmp/# Subscribes to the sum of all temperature
sensors that communicate with the system

$MIN/tmp/+/+/room1/+ Subscribes to the min temperature of the
sensors that are in room1 in any organization
or building.

$AVG/tmp/polimi/deib/room1/sensor1;sensor2 Subscribes to the average of the value of
sensor1 and sensor2 in room1 of deib in
polimi.

Table 5: Last value operations examples

4.2.3.2 – Temporal Operations

This kind of operations follow the following syntax:

$TMP<LastValueOpId>;TimeWindow

As we can see, a temporal operation is characterized by the fact that the operation ID starts with the TMP

keyword (that stands for temporal).

The TimeWindow block follows this syntax:

gg:hh:mm -> It means two digits for days, two digits for hours and two digits for minutes.

 For example 00:01:00 specifies a time window of 1 hour

The LastValueOpId can be replaced with any of the last value operations listed before.

The following table lists all the possible temporal operations:

Operation Name Description

$TMPAVG;gg:hh:mm This computes the average of the values assumed
by the sensor, in the given Time Window.

$TMPSUM;gg:hh:mm This computes the sum of the values assumed by
the sensor, in the given Time Window.

$TMPMIN;gg:hh:mm This takes the minimum of the values assumed by
the sensor, in the given Time Window.

$TMPMAX;gg:hh:mm This takes the maximum of the values assumed by
the sensor, in the given Time Window.

$TMPCOUNT;gg:hh:mm This counts how many values a sensor sent, in the
given Time Window.

Table 6:Temporal operations

MQTT+ | Riccardo Giambona

28

Examples of valid subscriptions are:

4.2.3.3 – Periodic Operations

This kind of operations follows the following syntax:

$TimeIntervalKeyword<LastValueOpId>

As TimeIntervalKeyword the following values can be specified:

-DAILY: The event triggers at the end of the day (at 00:00 of each day)

-HOURLY: The event triggers at the end of each hour of the day (08:00,09:00,10:00,etc..)

-QUARTERHOURLY: The event triggers at the end of each quarter hour (08:15,08:30,08:45,etc..)

Instead, the <LastValueOpId> can be replaced with any of the last value operations listed before.

Examples of valid subscriptions are:

Example topic Description

$TMPSUM;00:01:00/tmp/# Subscribes to the sum of the values sent in the
last hour by all the temperature sensors that
communicate with the system

$TMPMIN;00:01:00/tmp/+/+/room1/+ Subscribes to the minimum temperature sent in
the last hour by the sensors that are in room1,in
any organization or building.

$TMPAVG;00:01:00/tmp/polimi/deib/room1/
sensor1;sensor2

Subscribes to the average of the values sent by
sensor1 and sensor2 in room1 of deib in
polimi, in the last hour

Table 7: Temporal operations examples

Example topic Description

$DAILYSUM/tmp/# At the end of the day, it sends the sum of the
values sent in the last day by all the temperature
sensors that communicate with the system

$DAILYMIN/tmp/+/+/room1/+ At the end of the day, it sends the minimum of the
values sent in the last day by the sensors that are
in room1, in any organization or building.

$DAILYAVG/tmp/polimi/deib/room1/
sensor1;sensor2

At the end of the day, it sends the average of the
values sent in the last day by
sensor1 and sensor2 in room1 of deib in
polimi

Table 8:Periodic operations examples

MQTT+ | Riccardo Giambona

29

4.2.3.4 – Rule based operations

Operation Name Operation Description

$GT;value It lets pass the input value (published by a sensor or given by a previous
operation) only if its value it’s strictly greater than the fixed parameter
“value” (the parameter value can be a generic double number)

$GTE;value It lets pass the input value (published by a sensor or given by a previous
operation) only if the value it’s greater or equal than the fixed parameter
“value” (the parameter value can be a generic double number)

$LT;value It lets pass the input value (published by a sensor or given by a previous
operation) only if the value it’s strictly less than the fixed parameter “value”
(the parameter value can be a generic double number)

$LTE;value It lets pass the input value (published by a sensor or given by a previous
operation) only if the value it’s less or equal than the fixed parameter
“value” (the parameter value can be a generic double number)

$EQ;value It lets pass the input value (published by a sensor or given by a previous
operation) only if the value it’s equal to the fixed parameter “value” (the
parameter value can be a generic double number)

$NEQ;value It lets pass the input value (published by a sensor or given by a previous
operation) only if the value it’s different than the fixed parameter “value”
(the parameter value can be a generic double number)

$CONTAINS;text It lets pass the input string (published by a sensor or given by a previous
operation) only if the string contains the fixed parameter “text”

Table 9: Rule based operations

Let’s see some usage examples. In each example there will be the topic used by the sensor to publish a

value and the value sent to the broker.

Publish Topic Publish Value

tmp/sensor1 25
string/sensor2 “example”

Table 10: Rule based operations examples

Here there are some subscriptions with the indication if the published value passes the filter or not

[OK] $GT;20,25/tmp/+

[OK] $LT;30,76/tmp/+

[OK] $NEQ;26/tmp/+

[OK] $CONTAINS;exa/string/sensor2

[NO] GT;30/tmp/+

[NO] EQ;14/tmp/+

[NO] $CONTAINS;randomString/string/+

MQTT+ | Riccardo Giambona

30

4.2.3.5 – Information extraction

Operation Name Description

$COUNTPEOPLE It takes the image passed as input and extracts the
number of people present in that image

$COUNTMALE It takes the image passed as input and extracts the
number of males present in that image

$COUNTFEMALE It takes the image passed as input and extracts the
number of females present in that image

Table 11: Information extraction operations

Examples of valid subscriptions are:

Example topic Description

$COUNTPEOPLE/image/sensor1 It extracts the number of people from the image
sent by sensor1

$COUNTMALE/image/sensor1 It extracts the number of males from the image
sent by sensor1

$COUNTFEMALE/image/sensor1 It extracts the number of females from the image
sent by sensor1

Table 12: Information extraction operations examples

MQTT+ | Riccardo Giambona

31

4.3 – Semantic

In the previous section, we have seen all the possible operations that it is possible to specify, but the real

strength of the OperationsBlock comes from the combination of the available operations.

We have decided to let the users freely combine the operations, with just the limitation that the final

OperationsBlock has a valid semantic.

The concept behind, that inspired this approach, is very similar to the logic of method calls.

So, with this similarity, just think each possible operation as a method with at most one input parameter

and one output. For example, let’s suppose we have these methods:

String CONTAINS(String par);

ArrayList<Double> DAILYAVG();

Double AVG(ArrayList<Double> elements);

Let’s see the following method calls:

1. CONTAINS(DAILYAVG()) -> Of course this call gives a compiler error since the CONTAINS

 takes a string as a parameter and instead the DAILYAVG

 returns an arraylist of double

2. AVG(DAILYAVG()) -> This call, instead, it’s accepted by the compiler, because the DAILYAVG

 returns an array of doubles and the AVG method accepts that array as

 parameter and returns a Double

Now, the passage from methods and our operation concatenation is very straightforward and the

corresponding OperationsBlock are the following:

1. $CONTAINS$DAILYAVG

2. AVGDAILYAVG

Always remember that the OperationsBlock operations are executed from right to left, to respect the

methods convention. In the next section we’ll list the available data types that the various operations can

take as inputs or return as outputs.

MQTT+ | Riccardo Giambona

32

4.3.1 – Available data types

In this section we are going to explain all the data types that are used in our semantic and their hierarchy.

Even in this case the similarities between this structure and the object-oriented programming is evident.

Indeed, in the case of object-oriented programming, each object has always a parent object and the root of

that tree is the Object class. Here, instead, as root (super-type) we have Anything and the children (sub-

types) of the root are the other available data-types.

We split the data types in two different hierarchy trees: One for the single data types and the other for the

set data types.

4.3.1.1 – Single data types

This kind of types are used from operations that take as input a single value or/and as output return a

single value.

Figure 8: Single data types tree

Data Type Description

Anything Used as root and super type of all data types.
ByteBuffer Indicates a generic buffer of bytes
ImageByteBuffer Indicates a buffer of bytes that represents an image
Numeric Indicates a generic number with no further meaning
PeopleCount Indicates a number that represent the number of people
MaleCount Indicates a number that represent the number of males
FemaleCount Indicates a number that represent the number of females
String Indicates a generic string

Table 13: Data types description table

Anything

ByteBuffer

ImageByteBuffer

Numeric

PeopleCount

MaleCount FemaleCount

String

MQTT+ | Riccardo Giambona

33

4.3.1.2 – Set data types

This kind of types are used from operations that take as input a set of values or/and as output return a set

of values.

Figure 9: Multiple data types tree

Table 14: Multiple data types description

Anything

OptionalNumericSet

NumericSet

PeopleCountSet

MaleCountSet FemaleCountSet

Data type Description
Anything Used as root and super type of all types.
OptionalNumericSet It indicates a set that can be specified or not. It is used to indicate that the

input/output of the operation could be a set or not (it will be clear later on)
NumericSet It indicates a set with its elements that are generic number with no further

meaning
PeopleCountSet It indicates a set with its elements that are numbers that represent the

number of people
MaleCountSet It indicates a set with its elements that are numbers that represent the

number of males
FemaleCountSet It indicates a set with its elements that are numbers that represent the

number of females

MQTT+ | Riccardo Giambona

34

4.3.1.3 – Inner data type

The inner data type is a useful concept for the sets and indicates what kind of elements compose the set

and for each set data type it’s defined in this way:

Actually, the inner data type is defined also for the other data types, but it’s simply equal to the original

type, so it’s trivial and we won’t list it here.

4.3.2 – Operations semantic

Now we are going to list all the previously explained operations with their definitions for the input and the

output data types

4.3.2.1 – Last value operations

All last value operations are defined in this way:

Input data type Output data type

OptionalNumericSet Numeric
Table 16: Last value operations semantic definition

As we can see, they take the OptionalNumericSet as input data type.

This is due to the fact that the last value operations can work in two different ways:

1. If the previous operation doesn’t return a NumericSet, the last value operation will take the values

to work on from the last value buffer.

2. If the previous operation returns a NumericSet, the last value operation is performed on the

NumericSet previously returned.

So, with this kind of behaviour, we need the optionality of the NumericSet as input, since in some cases

there is a NumericSet given by the previous operation and in some other cases there isn’t, but the

operation works the same.

Data type Inner data type

OptionalNumericSet Numeric
NumericSet Numeric

PeopleCountSet PeopleCount
MaleCountSet MaleCount

FemaleCountSet FemaleCount
Table 15: Inner data types

Important Definition – Input Independency

If an operation has as input Anything, it means that the operation is computed working on the values in

the buffer and never considers the input of previous operations.

MQTT+ | Riccardo Giambona

35

4.3.2.2 – Temporal operations

All the temporal operations are defined in this way:

Input data type Output data type

Anything Numeric
Table 17: Temporal operations semantic definition

These operations have Anything as input data type. This is because the elements to work on are always

the ones that are in the temporal buffer, with a timestamp that is inside the time window specified with

the temporal operation.

4.3.2.3 – Periodic Operations

For all periodic operations we have:

Input data type Output data type

Anything NumericSet
Table 18: Periodic operations semantic definition

As before, the Anything data type as input is due to the fact that also these operations take the data to

work on from the buffer and not from previous operation.

The NumericSet set as ouput is necessary because, when the specified time passes, the operation returns

the specified statistic (AVG,SUM,MIN,ecc..) for each topic stored in the buffer that matches with the

subscription topic (or to be precise, that matches with the matching part of the subscription topic), so this

is a set of values. This will be clear when we’ll discuss about the statistics and their logic.

4.3.2.4 – Rule Based Operations

Operation name Input data type Output data type

$GT;value OptionalNumericSet OptionalNumericSet
$GTE;value OptionalNumericSet OptionalNumericSet
$LT;value OptionalNumericSet OptionalNumericSet
$LTE;value OptionalNumericSet OptionalNumericSet
$EQ;value OptionalNumericSet OptionalNumericSet
$NEQ;value OptionalNumericSet OptionalNumericSet

$CONTAINS;text String String
Table 19: Rule base operations semantic definition

The contains operation is trivial: It takes a string as input and returns the same string if the text is contained

in the input string.

MQTT+ | Riccardo Giambona

36

Instead, the understanding of the other rule-based operations is a bit more complex.

Consider these two different valid subscriptions:

1. $GTE;25$DAILYAVG/tmp/+ -> I want to know the daily averages of the temperatures in the

 various rooms only If they are above or equal to 25 degrees

2. $GTE;25/tmp/+ -> I want to receive all the temperature updates only if they are above

 or equal to 25 degrees

In this two cases the behaviour of the GT is different, because in the first case it has to filter out all the

values coming from the DAILYAVG that are less than 25, so the GTE takes a NumericSet as input, instead in

the second case, each time a temperature sensor publishes a value, it has to decide whether to let it pass

or not, so in this case the GTE takes a Numeric data type as input (a single value).

This different behaviour explains why there is the optionality of the NumericSet, because in some cases the

NumericSet is provided by the previous operation and in other cases it’s not.

The OptionalNumericSet as output comes from a direct consequence of this behaviour, because if the GTE

has as input a NumericSet, it returns a NumericSet with the filtered data, instead if it has a Numeric (single

number) as input, it will return a Numeric (single number).

4.3.2.5 – Information extraction operations

Operation name Input data type Output data type

$COUNTPEOPLE ImageByteBuffer PeopleCount
$COUNTMALES ImageByteBuffer MaleCount
$COUNTFEMALES ImageByteBuffer FemaleCount

Table 20: Information extraction semantic definition

As we can see, the input is the same for every operation and it’s a buffer of bytes that represents a valid

image to be processed.

The output is different, because even though all those operations return a number as output, that output

has a different meaning for each operation. In the case of COUNTMALE it is the number of males, instead in

the case of COUNTFEMALES it’s the number of females and, finally, for COUNTPEOPLE it is the number of

generic people.

This difference is equivalent to the concept of unit measure: 1Kg or 1 m have both as value one, but they

mean a different thing.

This concept of distinguish the numbers in Numeric,PeopleCount,MaleCount and FemaleCount will be

crucial to buffer and retrieve correctly the various numbers, avoiding to mix numbers of different meanings

in aggregations. This thing will be explained better when we’ll show the buffer structure.

MQTT+ | Riccardo Giambona

37

4.4 – Subscription processing

4.4.1 - Parsing

As we have seen in Chapter 2, the first step to do is to subscribe, in order to receive the published data by

the various sensors. So, let’s see how the subscription process works in MQTT+.

When a subscription arrives to the broker, the subscription topic must be parsed to verify if it’s a valid

subscription or not. The parsing includes two steps:

• Syntax analysis: This step checks that each operation block in the OperationsBlock follows the

syntax rules that we specified in the previous sections.

• Semantic analysis: This step checks that the OperationsBlock is a semantically valid sequence of

operations

The parsing process is important for several reasons:

1. Avoid wrong input runtime errors: If a subscription passes the parsing process successfully, we are

guaranteed that, when that subscription needs to be elaborated, the computation will be

successful and won’t fail because of some incompatible operations that were put in sequence by

an error of the user. Indeed, with this logic, if the initial input is correct (this must be always

guaranteed by the user), the subscription will be elaborated correctly and this avoids to check, for

every operation, if the input is correct.

2. Avoid waste of computational resources: The correct execution is important also for saving

computational time. For example, if we have the current subscription:

$CONTAINS;text$COUNTPEOPLE/image/+

Without parsing, we wouldn’t recognize that this subscription would fail in the step where the

$CONTAINS expects a string as input and instead it receives a number. This would waist (for each

image sent!) the computational time to analyse and extract the number of people from the image

and (as we will see in the section dedicated to tests) this is a computationally intensive operation

and must be done only when it’s really needed.

3. Define subscription returned data type: The data type returned from the semantic analysis is

crucial and necessary to access the right buffer to store and retrieve the correct data as we will see

in the buffering section.

MQTT+ | Riccardo Giambona

38

4.4.1.1 – Syntax analysis

This step is conceptually very simple, because basically it is sufficient to:

• Verify that the OperationsBlock starts with “$” and that it has at least one valid operation

• Split the OperationsBlock by “$”, verify that each operation is a syntactically valid operation as

we specified in section 3.2 and that there is not more than one periodic operation

If this first analysis is successful, then the semantic analysis is performed.

Instead, if the subscription syntax is not valid, the subscription is discarded and not considered as a valid

MQTT+ subscription.

4.4.1.2 – Semantic analysis

This is the second and (more complex) final step of parsing.

If we arrive at this step, then the OperationsBlock contains for sure only syntactically valid operations and

we can also be sure to work on a correctly formatted OperationsBlock string.

Before showing how the semantic analysis works, it is necessary to introduce the concept of type

compatibility and type forwarding.

DEF. Type Compatibility

Suppose we have two data types:

• Type1

• Type2

Type 1 is compatible with Type2 only in two cases:

• Type1 is the same type of Type2

• Type1 is a sub-type of Type2

DEF. Type forwarding

Suppose we have the following operation and input:

1. Operation -> InputSpecificationDT: Type1, OutputSpecificationDT: Type2

2. Given input DT: Type3

The given input DT is forwarded as output of the Operation if and only if the following two conditions

hold:

1. Type3 is compatible with Type1 (input-compatibility)

2. Type3 is compatible with Type2 (forwarding-compatibility)

MQTT+ | Riccardo Giambona

39

So, from the previous definitions we can see that type compatibility, in the semantic analysis, is important

for two reasons:

• To check if the type given as input, by the previous operation, is compatible with the input data

type required by the current operation

• To forward the input data type as output if the input type is compatible with the output type

Let’s make this process clearer with an example. Suppose to have this subscription, with valid syntax:

AVGCOUNTPEOPLE/image/+ -> Makes the average of the number of people in the

 images sent by all image sensors

This is how the semantic analysis works (remember that the operations are processed from right to left):

1. First step (analyse the $COUNTPEOPLE):

a. Is the given input (ImageByteBuffer) compatible with the $COUNTPEOPLE input

specification (ImageByteBuffer) ? Yes, because they are the same type

b. Is the given input (ImageByteBuffer) compatible with the output specification of the

operation (PeopleCount) ? No, because ImageByteBuffer is not a sub-type of

PeopleCount, so don’t forward and give as output the specified output DT (PeopleCount)

2. Second step (analyse the $AVG):

a. Is the given input (PeopleCount) compatible with the $AVG input specification (Anything) ?

Yes, because PeopleCount is a sub-type of Anything

b. Is the given input (PeopleCount) compatible with the $AVG output specification (Numeric) ?

Yes, because PeopleCount is a sub-type of Numeric, so the sub-type is forwarded and the

output of the operation is PeopleCount.

3. Are there any more operations? No, then return the subscription data type (PeopleCount)

So, in this case the semantic analysis has successfully ended and the returned data type of the subscription

is PeopleCount. The returned data type indicates what kind of data type the elaboration of all operations

in the OperationsBlock will return and this is crucial, as said before, for the correct buffering of the data.

NOTE: the input of the first operation ($COUNTPEOPLE) is always supposed correct and given as

specified in the operations semantic specification table, because if the initial input is wrong, then it’s not

a problem of OperationsBlock semantic, but it’s an error of the user that made a subscription to some

sensors that publish data not compatible with the operation specified.

$COUNTPEOPLE $AVG ImageByteBuffer PeopleCount PeopleCount

Figure 10:Semantic analysis example 1

MQTT+ | Riccardo Giambona

40

For this reason, it’s very important the process of forwarding a compatible type from input to output,

because let’s assume that there wasn’t this behaviour and that the operation always returns as output the

specified output. Then, in the previous example, the $AVG would return Numeric as output and this data

type is taken as the subscription return type, but it’s wrong!

It’s wrong, because we would lose the information that the $AVG is an average of the number of people

(PeopleCount) and not a generic number.

This behaviour of type forwarding is also extended to be compatible between sets and single data types

Even though this concept is complex, the following two examples will clarify the logic behind. The first one

will be the first case (Set data type as input and single data type as output) and the second one the second

case (Single data type as input and set data type as output)

Set data type as input and single data type as output example

Suppose to have this subscription with valid syntax:

AVGDAILYAVG/tmp/+ -> Makes the average of the average temperatures observed in a day in each

 room

DEF. Type forwarding between sets and single type

Set data type as input and single data type as output

Suppose we have the following operation, input and inner-input:

3. Operation -> InputSpecificationDT: SetType1, OutputSpecificationDT: SingleType2

4. Given input DT: SetType3

The inner type of the input DT is forwarded as output of the Operation if and only if the following two

conditions hold:

• SetType3 is compatible with SetType1 (input-compatibility)

• Inner-type of SetType3 is compatible with SingleType2 (Set-single compatibility)

Single data type as input and set data type as output

Suppose we have the following operation and input:

5. Operation -> InputSpecificationDT: SingleType1, OutputSpecificationDT: SetType2

6. Given input DT: SingleType3

The Set type with SingleType3 as inner-type is forwarded as output of the Operation if and only if the

following two conditions hold:

1. SingleType3 is compatible with SingleType1 (input-compatibility)

2. SingleType3 is compatible with inner-type of SetType2 (Single-Set compatibility)

MQTT+ | Riccardo Giambona

41

This is how the semantic analysis works:

1. First step (analyse the $DAILYAVG):

a. Is the given input (Anything) compatible with the $DAILYAVG input specification

(Anything)? Yes, because they are the same type

b. Is the given input (Anything) compatible with the output specification of the operation

(NumericSet)? No, because Anything is not a sub-type of NumericSet, then give as output

the specified output DT (NumericSet)

2. Second step (analyse the $AVG):

a. Is the given input (NumericSet) compatible with the $AVG input specification

(OptionalNumericSet)? Yes, because NumericSet is a sub-type of OptionalNumericSet

b. Is the inner-type of the given input (Numeric) compatible with the $AVG output

specification (Numeric)? Yes, because they are the same type, so the inner-type of the

given input (Numeric) is forwarded and the output of the operation is Numeric.

3. Are there any more operations? No, then return the subscription data type (Numeric)

Single data type as input and set data type as output example

Suppose to have this subscription with valid syntax:

$DAILYAVG$COUNTPEOPLE/image/+ -> Returns the average of the number of people in a day for

 each room

This is how the semantic analysis works:

1. First step (analyse the $COUNTPEOPLE):

a. Is the given input (ImageByteBuffer) compatible with the $COUNTPEOPLE input

specification (ImageByteBuffer)? Yes, because they are the same type

b. Is the given input (ImageByteBuffer) compatible with the output specification of the

operation (PeopleCount)? No, because ImageByteBuffer is not a sub-type of

PeopleCount, then give as output the specified output DT (PeopleCount)

$DAILYAVG $AVG Anything NumericSet Numeric

$COUNTPEOPLE $DAILYAVG ImageByteBuffer PeopleCount PeopleCountSet

Figure 12: Semantic analysis example 3

Figure 11: Semantic analysis example 2

MQTT+ | Riccardo Giambona

42

2. Second step (analyse the $DAILYAVG):

a. Is the given input (PeopleCount) compatible with the $DAILYAVG input specification

(Anything)? Yes, because PeopleCount is a sub-type of Anything

b. Is the given input (PeopleCount) compatible with the $AVG output specification inner-type

(Numeric)? Yes, because PeopleCount is a sub-type of Numeric.

c. What is the Set data type that has as inner-type PeopleCount? PeopleCountSet, then

return this type as output data type

2. Are there any more operations? No, then return the subscription data type (PeopleCountSet)

With this logic, we can see that even in the case of sets, the data type forwarding is guaranteed.

Note that without this extension for the mixed case, in which one data type (input/output) is a single data

type and the other type a set data type, we would lose the information of a sub-inner-type given as input.

For instance, in the last example, the returned data type would be NumericSet instead of

PeopleCountSet, losing the information that in input we had PeopleCount as data type.

As last example, let’s see the case in which the semantic analysis fails.

Suppose to have this subscription with valid syntax:

$COUNTPEOPLE$AVG/image/+

This is how the semantic analysis works:

In this case, when the $COUNTPEOPLE operation is analysed, the semantic analysis recognizes that the

given input (Numeric) is not compatible with the required input (ImageByteBuffer), so it raises a semantic

exception, the analysis stops and the subscription is discarded because it’s not semantically valid.

The following flow chart summarizes all the previously explained steps of the semantic analysis

$AVG $COUNTPEOPLE OptionalNumericSet Numeric Semantic exception raised

Figure 13: Semantic analysis example 4

MQTT+ | Riccardo Giambona

43

Figure 14: Semantic analysis control flow

MQTT+ | Riccardo Giambona

44

4.4.2 – Subscription buffering

After the subscription has been parsed and recognized as a valid subscription, the HiveMQ broker saves it

in a subscription buffer.

The entries of this buffer are as shown in the table below:

ClientID Subscriptions

Client1 $DAILYAVG/temperature/polimi/..

$HOURLYSUM/temperature/..

Client2 $TMPMIN;00:01:14/temperature/..

Table 21: Subscriptions table

So, for each client, we have all the subscription that it made.

Actually, the subscriptions made by a client are already managed and stored by the HiveMQ broker in an

internal DB, but since each time a sensor publishes a message, these subscriptions must be retrieved (to

see if the publish topic matches with some subscriptions), this will impact to the broker performances, as

explained also in the HiveMQ guide, because it requires slow hard disk accesses (that we all know to be a

PC’s bottleneck) and therefore these queries must be done as few as possible.

For this reason, the subscriptions are retrieved from the DB only at broker start-up and after that they are

read from the buffer.

Please note that this buffer is always in sync with the DB, because:

• Each time a client makes a subscription, that subscription is added to the buffer

• Each time a client unsubscribes, that subscription is removed from the buffer

• Each time a client, with a clean session, disconnects, all its subscriptions are removed from the

buffer

This buffer is also used for other reasons than just on a publish from some sensors. For example, it’s used in

data buffering to enable or disable temporal buffering and it’s also used to decide if to compute or not

computationally expensive operations (people detection from images).

All these other usages of the subscription buffer will be explained later in the document.

4.4.2.1 – Resource consumption

Let’s now see how much memory this buffer consumes.

Suppose to have:

1. N clients

2. M subscriptions for each client

3. Each subscription occupies an amount of memory equal to SRS (Subscription record size).

4. Each client id occupies an amount of memory equal to CIS (client id size).

Then, the amount of memory used is approximately:

𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒 ≈ 𝐶𝐼𝑆 ∙ 𝑁 + 𝑆𝑅𝑆 ∙ 𝑁 ∙ 𝑀 = (𝐶𝐼𝑆 + 𝑆𝑅𝑆 ∙ 𝑀) ∙ 𝑁

MQTT+ | Riccardo Giambona

45

Now let’s suppose that:

• N: We have 100.000 clients (which are a lot connected to the same broker!)

• M: Each client can make up to 100 subscriptions

• SRS: A subscription can have a length of 100 characters maximum (100 bytes)

• CIS: A client id can have a length of 15 characters maximum (15 bytes)

Then the buffer size is approximately:

𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒 ≈ (15 + 100 ∙ 100) ∙ 100.000 𝑏𝑦𝑡𝑒𝑠 = 955 𝑀𝐵

This value is not very small, but anyway it can be handled by a normal PC. Please note that this is the worst

case possible, in which all 100.000 clients make 100 subscriptions each and with the maximum length of

client id and subscription topic and they never disconnects (or they all make permanent connections), so

this formula calculates the upper bound of the memory usage.

This is very unlikely that happens in a real context and in any case this memory upper bound can be fixed

by the broker administrator, imposing the maximum number of subscriptions that a client can made, the

maximum number of connected clients and subscription topic and client id maximum lengths, so this

memory consumption can be easily taken under control.

Moreover, with the fact that whenever a client unsubscribes or disconnects, the buffer is updated and their

subscription removed, it is very difficult that the upper bound limit is reached.

MQTT+ | Riccardo Giambona

46

4.4.3 – Subscription elaboration

After the subscription has been parsed and stored in the buffer, the OperationsBlock in the subscription

needs to be elaborated.

This elaboration can take place in two different moments:

• Whenever a sensor publishes a message (with a topic that matches the subscription topic):

This is the case in which the OperationsBlock doesn’t contain any periodic operation. This is

called immediate subscription elaboration.

• Whenever the timer triggers the time interval event: This is the case in which the

OperationsBlock contains a periodic operation. In this case, the elaboration is postponed until the

time interval specified by the periodic operation has passed.

The way in which this is implemented will be discussed later in the document.

4.4.4 – Publish topic choice

After the subscription has been elaborated, we must decide which topic to use for publishing the message

to the interested client.

Suppose that the current subscription has been elaborated:

$AVG/tmp/+

To publish the result, to the client that made the subscription, we can’t use the same topic of the

subscription, because this is illegal in the MQTT protocol. Indeed, the HiveMQ broker will raise an exception

if you try to publish to a client with a topic containing wildcards.

So, since this approach is not possible, we have introduced to possible solutions:

• Single keyword replacement (SKR): We substitute each wildcard in the subscription topic with $A.

So, in this case, the publish topic would be: $AVG/tmp/$A

• Replacement with participating topics (RPT): We substitute each wildcard in the subscription topic

with every possible value that matches the subscription topic. For example, if in the buffer we have

sensor1 and sensor2 for the last level of the topic, the publish topic would be:

$AVG/tmp/sensor1;sensor2

In case we decide to use SKR, the bandwidth used is less, since we don’t have to specify all the values on

which the aggregation has been done, but the client doesn’t know which topics the aggregation has been

made on. This is why we introduced RPT that gives to the client this information (referring to the last

example the client knows that the average has been made on the values of sensor1 and sensor2) at the

price of a higher bandwidth used.

The choice of which approach to use is left to the broker administrator, depending on what it’s more

important between bandwidth used and the information given to the client, for the specific context that

will be considered.

MQTT+ | Riccardo Giambona

47

4.5 – Data Buffering

In this chapter, we are going to introduce another important concept: Data Buffering.

Either for temporal analysis, last value analysis and periodic analysis, a buffer is required. In the first case,

to store all the values that a sensor publishes in a certain time window, in the second case to store just the

last value sent by each sensor and in the third case to store some statistics about the values assumed by

each in sensor in a certain interval of time.

Since the usage of the buffer from these three operations is different, we decided to use two different logic

and structures to memorize the interested data: One for last value and periodic analysis and the other one

for temporal analysis.

4.5.1 – Temporal analysis buffer

The entries of the buffer for temporal analysis are shown as in the table below:

Topic Value Detection Time

tmp/polimi/deib/room1/sensor1 18 21/02/2018 22:30:00

19 21/02/2018 22:35:00

20 21/02/2018 22:45:00

tmp/polimi/deib/room1/sensor2 21 21/02/2018 22:45:00

20 21/02/2018 22:47:00

tmp/polimi/deib/room2/sensor1 25 21/02/2018 23:00:00

23 21/02/2018 23:04:00

Table 22: Temporal analysis buffer

As we can see, for each topic (the identifier of a certain sensor/publisher), the detected values are stored

with their detection time that indicates the date and time at which those values arrived to the broker.

4.5.1.1 – Temporal operations usage

This buffer is used only by temporal operations (TMPAVG,TMPSUM,etc..) and now we’ll see how.

Suppose we have the following subscription to process:

$TMPAVG;00:02:00/tmp/polimi/deib/room1/+

[This subscription returns the average temperature detected by all sensors in room1 in the last 2 hours]

Suppose that the current instant is: 22/02/2018 00:37:00 and that the buffer table is the one above

MQTT+ | Riccardo Giambona

48

The elaboration that takes the data from the buffer is split in 2 steps:

1. We have to see which topics, of the ones in the buffer, match the subscription.

In this case, the first two topics in the buffer match it and the last one doesn’t.

2. For each matching topic, we have to take the values that are in the interval of time

[CurrentInstant-2h;CurrentInstant] (or in other words the values that are not older than two hours

from now)

At the end of these two steps, the elements to compute the average on are:

So, the computed average is: (20+21+20)/3 = 20,33333

And this value is sent to the client that made the subscription.

Note that the third topic of the buffer wasn’t considered because it didn’t match the subscription and also

the first two detections of the first topic (sensor1) were not considered because those detections are

outside the time window.

4.5.2 – Last value analysis buffer

The structure of the last value buffer is different from the previous one, because in this case, for each topic,

alongside the value and its detection time, there are also some statistics on the received data and an

expiration date, indicating when the value is too old to be considered valid as “last” received value. At the

moment, this value is fixed at one hour after the detection time, which means that the TTL (time to live) is

1h.

Topic Value Detection Time Expiration date Statistics

tmp/polimi/deib/room1/sensor1 20 21/02/2018
22:45:00

21/02/2018
23:45:00

{See below}

tmp/polimi/deib/room1/sensor2 25 21/02/2018
22:47:00

21/02/2018
23:47:00

{See below}

tmp/polimi/deib/room2/sensor1 23 21/02/2018
22:55:00

21/02/2018
23:55:00

{See below}

Table 24: Last value analysis buffer

Topic Value Detection Time

tmp/polimi/deib/room1/sensor1 20 21/02/2018 22:45:00

tmp/polimi/deib/room1/sensor2 21 21/02/2018 22:45:00

20 21/02/2018 22:47:00

Table 23: Temporal analysis usage example

MQTT+ | Riccardo Giambona

49

4.5.2.1 – Statistics

The statistics object contains useful information for the elaboration of periodic operations.

In particular it contains statistics values of some interesting quantities (SUM,MIN,ecc..) for each possible

interval of time that a periodic operation can use (15 minutes,1 hour,1 day).

So, the statistics object is structured in this way:

Statistics for the quarter hour interval

Number of detections QuarterHourlySum QuarterHourlyMin QuarterHourlyMax

23 152,45 12,5 23,76
Table 25: QuarterHourly stats

Statistics for the hour interval

Number of detections HourlySum HourlyMin HourlyMax

50 234,12 10,23 34,35
Table 26: Hourly stats

Statistics for the day interval

Number of detections DailySum DailyMin DailyMax

123 430,23 8,9 43,39
Table 27: Daily stats

All these three statistics are in the same record of each topic, which means that

Statistics = Statistics for the quarter hour interval + Statistics for the hour interval

 + Statistics for the day interval

Note that the AVG statistic is not memorized in the statistics because it would be useless, since when it’s

needed, it’s sufficient to take the sum of the interested interval of time and divide it by the number of

detections of that interval of time. For example, for the daily interval we have:

DailyAvg = DailySum/Number of detections

How are these statistics updated?

Each time a new value (NV) is stored in the buffer, the statistics (for each time interval) are updated in this

way:

• IntervalSum = IntervalSum + NV

• IntervalMin = Min(IntervalMin, NV)

• IntervalMax = Max(IntervalMax, NV)

• Number of detections = Number of detections + 1

The last value analysis buffer, it’s used by the last value analysis operations (AVG,SUM,MIN,etc..) and the

periodic operations (DAILYAVG,QUARTERHOURLYSUM,etc..). Let’s see how in the next two sections.

MQTT+ | Riccardo Giambona

50

4.5.2.1 – Last value operations usage

Suppose we have the following subscription to process:

$AVG/tmp/polimi/deib/#

[This subscription returns the average temperature detected by all sensors in the deib department]

Suppose also that the Current instant is 21/02/2018 23:46:00 and the buffer is the one in the table 19.

The elaboration to take the data from the buffer is split in 3 steps:

1. Do we have another operation, before AVG, that returns a set that the AVG can use? No, so the AVG

must work on the buffer and not on a previous input.

2. We have to see which topics, of the ones in the buffer, match the subscription.

In this case all the topics in the buffer match the subscription.

3. For each matching topic, we have to take the values that are still valid (with an expiration date that

is after the Current instant)

At the end of these three steps, the elements to compute the average on are:

So, the computed average is: (25+23)/2 = 24

And this value is sent to the client that made the subscription.

Note that the first line was not considered (room1/sensor1) because its value was not valid anymore

(CurrentInstant > 21/02/2018 23:45:00)

4.5.2.2 – Periodic operations usage

Suppose we have the following subscription to process:

$DAILYAVG/tmp/polimi/deib/#

[This subscription returns the average temperature detected by all sensors in the deib department in the

whole day]

This execution of this subscription is postponed until the end of the day, when the day event triggers.

Topic Value Detection Time Expiration date Statistics

tmp/polimi/deib/room1/sensor2 25 21/02/2018
22:47:00

21/02/2018
23:47:00

-

tmp/polimi/deib/room2/sensor1 23 21/02/2018
22:55:00

21/02/2018
23:55:00

-

Table 28: Last value operation usage example

MQTT+ | Riccardo Giambona

51

The elaboration to take the data from buffer is split in 2 steps:

1. We have to see which topics, of the ones in the buffer, match the subscription.

In this case all the topics in the buffer match the subscription.

2. For each matching topic, we have to take from the statistics the DailySum and the number of

detections.

 At the end of this step, suppose that the retrieved data from the statistics is:

Topic DailySum Daily number of detections

tmp/polimi/deib/room1/sensor1 420,24 25

tmp/polimi/deib/room1/sensor2 230,24 10

tmp/polimi/deib/room2/sensor1 625,23 35

Table 29: Periodic operation usage example

From this table we sum all the DailySums to obtain the total sum and the number of detections to obtain

the total number or detections:

Total Sum = 420,24 + 230,24 + 625,23 = 1257,71

Total number of detections = 25 + 10 + 35 = 70

From these two values the DailyAvg is computed:

DailyAvg = TotalSum/Total number of detections = 1257,71 /70 = 17,97

The DailyAvg is then sent to the client that made the subscription.

4.5.3 – Buffer access

As we said before, in semantic analysis, we have to buffer data with different semantic meaning in different

buffers.

To guarantee this fact, the two types of buffers (last detection buffer + temporal analysis buffer) are put in

a single object (that we’ll indicate as { buffer object }) and this object must be replicated for each different

semantic type, so we need a mapping between the {buffer object} and its semantic type.

This mapping can be represented as the table shown below:

Stored data type Buffer

Numeric {buffer object}
PeopleCount {buffer object}
FemaleCount {buffer object}
MaleCount {buffer object}

Table 30: Buffer mapping

MQTT+ | Riccardo Giambona

52

So, how can we decide which buffer to use for the elaboration of a subscription?

Very simple: If the subscription is valid (it has passed the parsing process), we know its returned semantic

data type. From this data type we get the inner data type and with this one we access the previous table

and retrieve the correct {buffer object} to read/store data from/into.

4.5.4 - Resource consumption

Buffering can be resource consuming, especially for the RAM, but memory consumption is very different

between last detection buffer (the one used for last value and periodic operations) and temporal buffer

(the one used for temporal operations).

4.5.4.1 – Last detection buffer

Suppose that:

• Each sensor publishes its detections with a different topic

• Each detection occupies an amount of memory equal to LDRS (Last detection record size).

• We have N sensors

Now, since for each topic there is just one record the amount of memory used is approximately:

𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒 ≈ 𝑁 ∙ 𝐿𝐷𝑅𝑆

So, it’s linear in the number of sensors sending data.

Just to have a rough idea of idea of the memory consumption, an LDR (Last detection record)

is composed of:

• Topic size: 29 bytes (with the topic structure like the one in table 19)

• Value: 8 bytes (Double)

• Detection time: 18 bytes (with the date structure like the one in table 19)

• Expiration date: 18 bytes (with the date structure like the one in table 19)

• Statistic object x 3 (one for each time interval: quarterhourly,hourly,daily): 28 * 3 = 84 bytes

o Number of detections: 4 bytes (Integer)

o TimeIntervalSum: 8 bytes (Double)

o TimeIntervalMin: 8 bytes (Double)

o TimeIntervalMax: 8 bytes (Double)

So, making the sum of every component of the LDR, we obtain that:

𝐿𝐷𝑅𝑆 ≈ 154 𝑏𝑦𝑡𝑒𝑠

So, let’s assume that we have 100.000 sensors, the memory usage of this buffer in memory would be

approximately:

Buffer size100.000 ≈ 100.000 * 154 bytes = 14,69 MB

That is a quantitative of memory that, nowadays, every computer has, so the last detection buffer isn’t a

problem for the RAM resource. Moreover, once we know the maximum number of sensors that can

connect and send data to the broker (this limit can be set by the broker administrator) the upper bound of

this buffer size is fixed and won’t go more than that (because each sensor can occupy at most one record in

the buffer).

MQTT+ | Riccardo Giambona

53

For this reason, this buffer doesn’t need cleaning techniques to reduce the memory used.

A total different approach, instead, it’s used for the temporal buffer.

4.5.4.2 – Temporal buffer

Suppose that:

• Each sensor publishes its detections with a different topic

• Each topic occupies an amount of memory equal to TS (topic size)

• Each detection occupies an amount of memory equal to DRS (detection record size)

• We have N sensors

• Each sensor sends each detection with a frequency of λ (sec-1)

• The interval of time in which temporal buffering is on is T (sec)

Then the buffer size is approximately:

𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒 ≈ 𝑁 ∙ 𝑇𝑆 + 𝑁 ∙ 𝜆 ∙ 𝑇 ∙ 𝐷𝑅𝑆 = (𝑇𝑆 + 𝜆 ∙ 𝑇 ∙ 𝐷𝑅𝑆) ∙ 𝑁

In this case we can see that the buffer size depends by four different variables (the DRS is fixed):

• The number of sensors

• The frequency at which these sensors are sending data

• The interval of time in which the buffer must store all the data

• The topic size

Now, let’s see how a DR (detection record) is composed:

• Value: 8 bytes (Double)

• Detection time: 18 bytes (with the date structure like the one in table 17)

So, making the sum of every component of the DR we obtain that:

𝐷𝑅𝑆 ≈ 26 𝑏𝑦𝑡𝑒𝑠

Now, let’s assume to have:

• N: 100.000 sensors

• TS: topics of 50 characters (50 bytes)

• λ: 1 message every 100 ms (10 messages per seconds)

• T: 1 day (86400 seconds)

Then the buffer size is approximately:

Buffer size ≈ (50+(1/10)*86400*26)*100.000 bytes = 20,93 GB

MQTT+ | Riccardo Giambona

54

That is a huge number and it’s very likely that a single broker doesn’t have all that RAM, but let’s even

consider a more optimistic scenario with less sensors and with a lower sending frequency, so let’s consider:

• N: 1.000 sensors

• TS: topics of 50 characters (50 bytes)

• λ: 1 message every 1 sec

• T: 1 day (86400 seconds)

Buffer size ≈ (50+1*86400*26)*1.000 bytes = 2,09 GB

Even in this case, the RAM required to buffer all the data sent by the sensors in one day is not irrelevant.

From these considerations, it’s clear that some kinds of techniques are required to optimize the usage of

the memory from this buffer.

4.5.4.3 – Techniques to save memory

As we have seen before, the temporal buffer can reach a significant size in terms of ram used, so in this

section we are going to explain what techniques have been introduced to mitigate this problem for the

temporal buffer.

The following ones are the techniques that have been introduced:

• Start buffering only when temporal subscription arrives

• Clear the buffer from old values

• Add a new sensor value only if there is a subscription interested in that sensor

• Disable buffering if there is not anymore an interested subscription

Start buffering only when a temporal subscription arrives

This optimization comes from the fact that it is a waste of resources memorizing values that will never be

used by any subscription, so the buffering is started only when in the subscriptions buffer there is at least

one subscription with a temporal operation in its OperationsBlock.

Clear the buffer from old values

Since we know all the subscriptions made by clients (stored in the subscriptions buffer), we also know what

is the biggest temporal window size used.

For example, suppose to have these subscriptions in the buffer:

1. $TMPAVG;00:02:00/tmp/polimi/deib/#

2. $TMPAVG;00:30:00/tmp/polimi/deib/room2/+

3. $COUNTPEOPLE/img/polimi/deib/room2/imgSensor1

So, in this case, the biggest window size used by subscriptions that contain temporal analysis operations is

2 hours (00:02:00). Let’s call this window MWS (Maximum window size), so in this case MWS = 2 hours.

MQTT+ | Riccardo Giambona

55

This MWS is updated each time a new subscription is added or removed. For example, if the first

subscription is removed, the MWS is updated to 30 minutes. Instead, if the following subscription is added:

4. $TMPAVG;00:04:00/tmp/polimi/deib/#

Then the MWS is updated to 4 hours.

In any case, whatever is the MWS computed in the way explained above, whenever a sensor publishes a

detection that needs to be buffered, all the detections that are older than the MWS are removed from the

temporal buffer.

This logic follows the principle that if a detection is older than the MWS, then it’s not used by any

subscription, so it’s useless to take it in the buffer.

Note that this approach has the drawback explained with the following sequence of events:

1. The MWS is set to 2 hours, analysing the subscriptions from 1 to 3

2. 4 hours of time have passed

3. A sensor publishes a detection, with a topic matching subscription 1, that needs to be stored in the

temporal buffer

4. The subscription 1 is computed and it finds all the values sent in the last 2 hours in the buffer

5. The buffer cleans all detections older than MWS (2 hours)

6. The subscription 4 is added and the MWS is set to 4 hours

7. A sensor publishes a detection, with a topic matching subscription 4, that needs to be stored in the

temporal buffer

8. The subscription 4 needs to be computed, but it finds only the values of the last 2 hours and not 4,

because they older ones have already been deleted when MWS was set to 2 hours!

Even though there is this drawback, we decided to give anyway more importance to memory consumptions

(since we saw that the buffer can reach a significant size), rather than avoiding that a subscription finds an

empty buffer or a buffer with less elements than needed. The solution to avoid this drawback (consuming

more memory) would be to leave in the buffer all the detections, hoping that at a certain moment in the

future, it will arrive a subscription that will use them.

Add a new sensor value only if there is a subscription interested in that sensor

Suppose to have these subscriptions in the subscriptions buffer:

• $TMPAVG;00:02:00/tmp/polimi/deib/room1/sensor1;sensor2

• $TMPAVG;00:30:00/tmp/polimi/deib/room1/sensor1

If a sensor publishes a detection with the following topic:

tmp/polimi/deib/room1/sensor5

This topic doesn’t match any subscription of the ones currently in the buffer, so it has no sense to buffer a

detection from a sensor that no one is interested in.

This behaviour is very useful to save memory if I have a lot more publish topics than subscriptions and

these sensors send their detection at high frequency.

MQTT+ | Riccardo Giambona

56

Of course, the drawback is the same as the case before: If, at a certain point in the future, it will be added a

subscription interested in a temporal analysis of sensor5, the data sent until that moment, by sensor5,

won’t be in the buffer (and the detection set for sensor5 will be empty), but again even in this case we

preferred to optimize memory usage, instead of taking in the buffer more data than needed, for future use.

Disable buffering if there is not anymore an interested subscription

As explained in the subscriptions buffering, whenever a client unsubscribes to a certain topic, that topic is

removed from the subscriptions buffer. This is true also when a client with a clean session disconnects: all

the topics of subscriptions made by that client are removed from the buffer.

So, with this logic, it can happen that at a certain point all the “temporal subscriptions” (subscriptions with

a temporal operation) are removed.

In this case, the temporal buffer is disabled and no more data is buffered until a new temporal subscription

arrives.

When this happens, all the detections previously stored in the buffer are deleted. Note that to guarantee a

correct functioning, the operation of deleting detections is not optional and we can’t leave the detections

there for future use.

Now, to understand why it’s mandatory to delete the detections, let’s suppose that the detections are not

deleted and that the following sequence of events happen:

1. A client makes a temporal subscription on sensor1 and this is the only temporal subscription in the

subscriptions buffer

2. The temporal buffer is enabled

3. 1 hour of time passes

4. The client unsubscribes from that subscription

5. The temporal buffer is disabled

6. Another client makes a temporal subscription (with a window size of 2 hours) on sensor1

7. The temporal buffer is re-enabled

Let’s suppose also that the following detections have been sent by sensor1 in the meantime that the

previous events happened:

18 20 21 22 19 21 20 18 17 19 20 18 17 16 17 18 20

 enabled disabled enabled

Then, whenever the client that made the subscription at step 6 wants to elaborate its subscription, since it

has a window size for the temporal operation equal to 2 hours (big enough to include all values sent), takes

all the values in which the buffer was enabled and it computes the operation on them, but this is wrong,

because the correct computation would need to consider also the values received when the buffer was

disabled, values that unfortunately are not available since they were not buffered. So, since a user would

expect that a temporal operation is computed on a continuous sequence of detections, without gaps due to

buffer enabling and disabling, this behaviour must be avoided.

Then, the only correct solution is to delete all the detections when the buffer is disabled (this also frees the

memory occupied by the buffer with a potentially high saving in term of RAM used) and starting from a

clean state (the empty buffer) when the buffer needs to be re-enabled again.

Also, to be consistent with the previous technique, if there is not anymore at least one subscription

interested in a certain sensor, all the detections stored of that sensor are removed from the buffer.

MQTT+ | Riccardo Giambona

57

4.5.4.4 – Considerations on techniques to save memory

Even with the previous techniques employed, it can be possible that anyway the buffer saturates all the

available RAM of the broker, because the previous techniques are useful to free memory as soon as

possible, but they don’t fix an upper bound of the RAM used by the buffer.

Unfortunately, to fix an upper bound, we must fix a maximum value for each one of the variables that

contribute to increase the buffer size. So, let’s report here the formula of the temporal buffer size:

𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒 ≈ (𝑇𝑆 + 𝜆 ∙ 𝑇 ∙ 𝐷𝑅𝑆) ∙ 𝑁

As we said before, the variables are 4: TS, λ, T and N.

To fix a limit on these variables it’s necessary to know the context in which the broker will operate.

For example, in order to fix:

• TS: We must know how is the structure of the topics used to identify each sensor/publisher

• λ: We must know if we can control the behaviours of each sensor that send messages to the broker

or we can’t and in the case we can, we must establish what is an acceptable sending frequency for

our context

• T: We must know what is the maximum interval of time that a client is interested in for temporal

operations

• N: We must decide how many sensors can connect to the same broker

So, since our broker was made to be used in any context in which the MQTT protocol can be used, these

choices must be left to the administrator of the broker that knows the application context and broker

resources. Knowing this, he can set their values accordingly.

4.6 – Complex operations

For complex operations we mean computationally intensive operations.

In our case, the only complex elaboration is the image people detection process, but this of course, is a

concept that can be extended for any other kind of complex operation.

4.6.1 – Complex operation processing

Before processing a complex operation, the broker logic evaluates if this computation is really necessary or,

in other words, if the result of this computation will be used by any subscription or not.

For example, let’s suppose that an image, sent by a sensor, arrives to the broker. Before extracting the

number of people (or males, or females) from the image it is checked that at least one subscription in the

subscriptions buffer has an operation $COUNTPEOPLE (or $COUNTMALE, or $COUNTFEMALE).

If this condition is satisfied, then the elaboration is started, otherwise the image is not elaborated, saving

computational resources.

MQTT+ | Riccardo Giambona

58

4.6.2 – Complex operation caching

Caching the result of a complex operation is a required thing to save even more computational power.

Suppose that:

• An image sensor publishes a message with topic:

img/polimi/deib/room1/imgSensor1

• There are 100 clients subscribed to the same topic:

$COUNTPEOPLE/img/polimi/deib/room1/imgSensor1

Without caching, we would have to elaborate the published image 100 times, one time for each

subscription made. Instead, with caching, we can extract the number of people just once, save the result in

the complex operation cache and if the result it’s needed by any other subscription, the value stored in the

buffer is read.

With this approach, it’s easy to see that if there is only one subscription requiring image elaboration or if

there are 100, the computational time required is the same, because the elaboration is always done one

time only. This saves a lot of computational resources!

The cache structure is very simple and for the case of the $COUNTPEOPLE operation it can be imagined as a

table like this one:

Publish Message ID People count

1255 5

1758 8
Table 31: Cache structure example

As we will see in the implementation part, the ID of the published message is known through all the

elaboration process and so, whenever the $COUNTPEOPLE operation is required the cache is accessed

using the publish id as key.

Please note that this table won’t cause memory issues, because a record of the table is deleted as soon as

the elaboration of all the interested subscriptions is terminated for that publish message.

Note also that the only case in which the table can have multiple records is the case in which two or

multiple publish messages are elaborated simultaneously (using multi-threading).

MQTT+ | Riccardo Giambona

59

Chapter 5 - MQTT+ Implementation

In this chapter we are going to see how the logic explained in the previous chapter is actually implemented.

First of all, it’s important to know that in HiveMQ everything that happens in the broker can be handled by

registering a callback that the broker can call when the specific event happens.

In particular, we handle the following events:

• Publish Received: This event is raised whenever a publisher publishes a message. It gives

information about the published message (payload, topic, QoS, etc..) and about the publisher

(ClientID)

• Client Connect: This event is raised whenever a client connects to the broker. It gives information

about the connected client (ClientID) and on the session type (clean or persistent).

• Client Disconnect: This event is raised whenever a client disconnects from the broker. It gives

information about the disconnected client (ClientID) and if the disconnection was made gracefully

with a MQTT DISCONNECT message or if there was a tcp connection loss.

• Subscribe Received: This event is raised whenever a client subscribes to one or more topics. It gives

information about the client that made the subscription (ClientID) and about all the topics that the

client wants to subscribe to.

• Unsubscribe Received: This event is raised whenever a client unsubscribes to one or more topics. It

gives information about the client (ClientID) and about the topics that the client wants to

unsubscribe from.

5.1 – Subscription processing

After the interested clients have connected to the broker, they have to subscribe to the interested topics.

Let’s see how a subscription is accepted in the MQTT+ logic.

5.1.1 – Involved entities

• Client: A generic client that subscribes to a certain topic

• SubscribeReceived: The class that handles the subscription event

• Subscription: The class that represents a valid subscription. It also has methods to parse a

subscription.

• SubscriptionManager: The class that has all the valid subscriptions made by clients (it implements

subscription buffering)

• MessageStore: The class that manages all the existing buffers (one for each semantic type). It has

all the operations that allow to read and write buffered data.

The following sequence diagram shows the interactions between these entities.

MQTT+ | Riccardo Giambona

60

Fi
g

u
re

 1
5

: S
u

b
sc

ri
p

ti
o

n
 p

ro
ce

ss

MQTT+ | Riccardo Giambona

61

5.1.2 – Elaboration steps

1. The client sends the subscription message to the broker, specifying all the interested topics.

2. Parse the topic and verify if it’s syntactically and semantically valid. If parsing isn’t correct, throw

ParsingErrorException and end computation

3. Get the initialized subscription object

4. Call the SubscriptionManager to add the new valid subscription in the subscription buffer.

5. Notify the MessageStore that a new subscription has been added to the subscription buffer. This

notification is needed to verify if the new subscription is a temporal subscription and, in that case,

enable the temporal buffer associated to the semantic data type of the subscription, if it was

disabled.

6. If there are other topics, return to step 2

5.2 – Subscription parsing

Let’s focus now on what happens on subscription parsing.

5.2.1 – Involved entities

• SubscriptionSemanticAnalyzer: The class that analyses the semantic of a subscription and it has a

method that computes the data type returned by the OperationsBlock sequence of the

subscription.

• Subscription: The class that represents a valid subscription.

• SubscriptionSyntaxAnalyzer: The class that analyses the syntax of a subscription.

• ElaborationBlockInfo: The class that contains all the information regarding a single operation

(periodicity, ID, parameters, etc..)

5.2.2 – Elaboration steps

1. The class SubscriptionSyntaxAnalyzer is initialized with the subscription topic to be parsed.

2. The structure of the topic is checked to verify that it respects the MQTT+ syntax (it starts with $, it

has at least one operation,etc..). If it doesn’t, then the SyntaxAnalysisException is thrown and the

parsing stops.

3. Take the first elaboration block in the OperationsBlock and initialize the ElaborationBlockInfo with

it.

4. Check if the string representing the elaboration block is a valid operation, specified with the correct

syntax or not. If it’s not, then the SyntaxAnalysisException is thrown and the parsing stops.

5. Add the parsed elaboration block to the list that contains all the elaboration blocks in the

OperationsBlock

6. Move to the next elaboration block (the next operation starting with $)

7. Repeat from step 4, until all the elaboration blocks are analysed.

8. Start semantic analysis to get the returned semantic type of the subscription

9. If the subscription is semantically valid, then stop the parsing procedure and initialize the

Subscription object with the topic passed and the results from semantic and syntax analysis (the

elaboration block info list and the returned data type). If it’s not, then throw the

SemanticAnalysisException and stop parsing.

The following sequence diagram shows all the steps explained here.

MQTT+ | Riccardo Giambona

62

Fi
g

u
re

 1
6

: S
u

b
sc

ri
p

ti
o

n
 p

a
rs

in
g

MQTT+ | Riccardo Giambona

63

5.3 – Subscription elaboration

After a client subscribed to all the topics it is interested in, each one of those subscriptions, at a certain

moment, needs to be elaborated. There can be two types of elaborations:

• Immediate: It applies to subscriptions that doesn’t contain any periodic operation and It starts

whenever a sensor publishes a message with a topic that matches the subscription topic.

• Periodic: This applies to periodic subscriptions and it starts whenever the interval of the subscription

periodicity (QUARTHERHOURLY, HOURLY, DAILY) has passed.

5.3.1 – Immediate elaboration

5.3.1.1 – Involved entities

• SubscribedClients: All the clients that subscribed to one or more topics, matching the topic of the

published message.

• Sensor: A generic sensor that publishes a message

• PublishReceived: The class that handles the publish event

• InformationExtractor: The class that extract some information from complex data structures (e.g.

images) and buffers the extracted information or the published numeric value.

• PublishRedirect: The class that establishes which clients are interested in the published message and

after each matching subscription has been elaborated, it sends the results of the various elaborations

to the correct clients.

• PublishVirtualizer: The class that elaborates the OperationsBlock of each matching subscription

5.3.1.2 – Elaboration steps

1. A sensor sends a message to the broker

2. The InformationExtractor class analyses the payload of the message and establishes if it’s an image,

a number or a generic string. If it’s an image, it extracts useful information from it and it buffers

that data, if it’s a number, it just buffers the publish data and if it’s a string, nothing is buffered (we

store only numbers: published or extracted from images).

3. The PublishRedirect class is called and it establishes the subscriptions that match with the publish

topic

4. The OperationsBlock is elaborated and the result of this sequence of operations is put into the

payload of a publish message (called VirtualPublishMessage, because it contains a payload that it’s

not the original payload sent, so it’s not actually sent by any real sensor).

5. The virtual publish message is then added to a list that contains all the publish messages that the

broker must send to the interested clients

6. Repeat from 4 until all subscriptions have been elaborated

MQTT+ | Riccardo Giambona

64

Fi
g

u
re

 1
7

: I
m

m
ed

ia
te

 s
u

b
sc

ri
p

ti
o

n
 e

la
b

o
ra

ti
o

n

MQTT+ | Riccardo Giambona

65

5.3.2 – Periodic elaboration

5.3.2.1 – Involved entities

• Clients: Clients that made some periodic subscriptions

• SubscriptionManager: The class that has all the valid subscriptions made by clients (it implements

subscription buffering)

• PeriodicTask: The class that periodically sends the results of periodic operations to the interested

clients.

• PublishVirtualizer: The class that elaborates the OperationsBlock of each subscription

5.3.2.2 – Elaboration steps

1. 15 minutes have passed

2. Takes all the periodic subscriptions with QUARTERHOUR as periodicity

3. The PublishVirtualizer class creates all the publish messages that need to be sent to the interested

clients

4. The PeriodicTask sends all these messages to the interested clients

5. Repeat from 3 until all periodic subscriptions (with QUARTERHOUR as periodicity) have been

elaborated

Figure 18: Periodic subscription elaboration

MQTT+ | Riccardo Giambona

66

5.4 – Information extraction and buffering

Now we are going to focus on how the information is extracted and buffered. In the previous sequences we

have seen that this task is given to the InformationExtractor. Let’s see now how it works.

NOTE: We supposed to use OpenCV[20] as image library that has only the CountPeople function. If

COUNTMALE or COUNTFEMALE are needed, Face++[19] must be used, but the working principle is

practically the same to the one of OpenCV, so it won’t be shown here.

5.4.1 – Involved entities

• InformationExtractor: The class that extract some information from complex data structures (e.g.

images) and buffers the extracted information or the published numeric value.

• ImageAnalyzer: The class that actually extracts information from images

• ComplexObjectsBuffer: The class that implements complex operations caching

• MessageStore: The class that manages all the existing buffers (one for each semantic type). It has

all the operations that allow to read/write data from/to the buffer.

• NumericBuffer: The class that implements a numeric buffer.

5.4.2 – Elaboration steps

1. The InformationExtractor establishes what kind of data the payload contains (string, image,

number)

2. In case it’s a string, return and end the elaboration, because the string doesn’t need to be buffered

or elaborated

3. In case it’s a number, set the valueToBuffer to the published value (remember that the

InformationExtractor is always called by the PublishedReceived class after a publish) and set the

data type to Numeric

4. In case it’s an image:

4.1 Extract the number of people from the image

4.2 Cache the result in the ComplexObjectsBuffer to be re-used by other subscriptions

4.3 Set the valueToBuffer to the extracted number of people

4.4 Set the bufferDataType to CountPeople

5. Call the MessageStore to store the valueToBuffer

6. The MessageStore class takes the right buffer to put the valueToBuffer in, checking if the data type

associated to the buffer it’s the bufferDataType

7. Store the valueToBuffer in the selected buffer

MQTT+ | Riccardo Giambona

67

Figure 19: Information extraction and buffering

MQTT+ | Riccardo Giambona

68

5.5 – Operation elaboration

Now let’s see how an operation in the OperationsBlock is computed.

All the possible operations that we can specify in a subscription are split in three different categories.

Let’s see how the operations of these three categories are computed.

Note that for arithmetic operations we have to split the explanation in two different categories:

• Not periodic: The operation takes the input data from the buffer or from the previous operation

• Periodic: The operation takes the input data from the stored statistics.

5.5.1 – Not periodic arithmetic operation

5.5.1.1 – Involved entities

• PublishVirtualizer: The class that elaborates the OperationsBlock of each subscription

• ArithmeticElaborationService: The class that prepares the data to be computed by the

ArithmeticOpsElaboration class.

• ArithmeticElaborationOps: The class that has the logic to compute all the arithmetic operations,

starting from a given data set.

Operation type Operations list Notes

Arithmetic

AVG,SUM,MIN
,MAX,COUNT

In this category, there are also the operations that contains
these tokens in their name.
For example TMPAVG;00:01:00 is arithmetic, because it
contains AVG and also QUARTERHOURMIN it’s in this category
because it contains MIN.
This has a logic, because independently on which set of data
these operations work on or the moment in which these
operations are executed, they are always arithmetic
operations.

OnImage

COUNTPEOPLE,
COUNTMALE,
COUNTFEMALE

In this category, there are all the operations that work on
images

RuleBased GT,GTE,LT,LTE,
EQ,NEQ,CONTAINS

In this category, there are all the operations that filter the
input data, using some kind of rule to decide which data let
through or block.

Table 32: Operation types

MQTT+ | Riccardo Giambona

69

Fi
g

u
re

 2
0

: A
ri

th
m

et
ic

 e
la

b
o

ra
ti

o
n

 n
o

t
p

er
io

d
ic

MQTT+ | Riccardo Giambona

70

5.5.1.2 – Elaboration steps

1. The operation is analysed to identify if it’s an Arithmetic, OnImage or RuleBased operation. Of

course, in this case, it is an Arithmetic operation.

2. If the operation takes the data set from the buffer:

2.1 The ArithmeticElaborationService is called with: The elaboration block, the publish message topic

and the interested subscription

2.2 Take from the buffer all the elements with a topic that matches with the specified subscription

topic

2.3 Call the ArithmeticOpsElaboration to compute the arithmetic operation on the retrieved data set

3. If the operation takes the data set from the previous operation:

3.1 The ArithmeticElaborationService is called with the elaboration block and the elements to process

3.2 Call the ArithmeticOpsElaboration to compute the arithmetic operation on the elements passed

5.5.2 – Periodic arithmetic elaboration

Note that in this sequence diagram, we suppose that the required operation is an AVG operation, but for

other operations the steps would be the same, it would be only necessary to change the method called for

the StatisticsManager.

5.5.2.1 – Involved entities

• PublishVirtualizer: The class that elaborates the OperationsBlock of each subscription

• ArithmeticElaborationService: The class that prepares the data to be computed by the

ArithmeticOpsElaboration class.

• ArithmeticElaborationOps: The class that has the logic to compute all the arithmetic operations,

starting from a given data set.

• StatisticsManager: The class that manages the statistics in the last detection buffer.

5.5.2.2 – Elaboration steps

1. The ArithmeticElaborationService is called with the elaboration block and the interested

subscription

2. Call the ArithmeticOpsElaboration to get all the averages matching the subscription topic

3. Call the StatisticsManager, with the interested subscription, to retrieve the required statistics

MQTT+ | Riccardo Giambona

71

Fi
g

u
re

 2
1

: A
ri

th
m

et
ic

 e
la

b
o

ra
ti

o
n

 p
er

io
d

ic

MQTT+ | Riccardo Giambona

72

5.5.3 – OnImage elaboration

For this type of operation, we suppose to elaborate a COUNTPEOPLE operation and to use OpenCV as

image library.

5.5.3.1 – Involved entities

• PublishVirtualizer: The class that elaborates the OperationsBlock of each subscription

• OnImageElaborationService: The class that prepares the data to be computed by the

OnImageOpsElaboration class.

• OnImageOpsElaboration: The class that has the logic to compute all the OnImage operations.

• ComplexObjectsBuffer: The class that implements complex operations caching

5.5.3.2 – Elaboration steps

1. The operation is analysed to identify if it’s an Arithmetic, OnImage or RuleBased operation. Of

course, in this case, it is an OnImage operation.

2. The OnImageElaborationService is called with the elaboration block, publish message topic, the

interested subscription and the publish id useful to get the cached image elaboration result

3. Call the OnImageOpsElaboration to compute the OnImage operation

4. Call the ComplexObjectsBuffer to get the cached computation for the image operation

MQTT+ | Riccardo Giambona

73

Fi
g

u
re

 2
2

: O
n

Im
a

g
e

el
a

b
o

ra
ti

o
n

MQTT+ | Riccardo Giambona

74

5.5.4 – RuleBased elaboration

5.5.4.1 – Involved entities

• PublishVirtualizer: The class that elaborates the OperationsBlock of each subscription

• RuleBasedElaborationService: The class that prepares the data to be computed by the

RuleBasedOpsElaboration class.

• RuleBasedOpsElaboration: The class that has the logic to compute all the RuleBased operations.

5.5.4.2 – Elaboration steps

1. The operation is analysed to identify if it’s an Arithmetic, OnImage or RuleBased operation. Of

course, in this case, it is a RuleBased operation.

2. The RuleBasedElaborationService is called with the elaboration block and the payload of the

published message

3. Call the RuleBasedOpsElaboration to compute the RuleBased operation

4. If the specified rule is satisfied, return the published payload as it is, otherwise throw a

BlockComputationException. This exception causes the elaboration process of the subscription to

stop.

MQTT+ | Riccardo Giambona

75

Fi
g

u
re

 2
3

: R
u

le
B

a
se

d
 e

la
b

o
ra

ti
o

n

MQTT+ | Riccardo Giambona

76

Chapter 6 – Performance tests

In this chapter we are going to discuss the performance tests that have been made to compare the

resources used in the case of the non-modified broker with MQTT and the modified broker with MQTT+ .

First of all, let’s see how these tests have been made.

6.1 – Technical specifications

The tests have been executed on a PC with the following specifications:

• CPU: Intel i7-6700@3,4 GHz

• RAM: 8 GB

• Storage technology: SSD

• O.S.: Windows 10 Pro (Version: 1803)

The CPU execution time and RAM usage have been monitored using the Get-Process[21] command, used

within a PowerShell script, instead the Bandwidth used has been monitored using the tshark[22] command

line tool.

The clients and sensors have been generated using two simple applications created ad hoc in java.

These applications generate the required clients and sensors for each test case. The MQTT clients and

sensors are generated using the Eclipse Paho for Java library[23].

6.2 – Convention on CPU load

Since we noticed that the CPU execution time, given by the Get-Process command, varies a lot depending

on the sending frequency of the sensors, we normalized the value obtained by a reference value in this

way:

Cn,m =
𝐶𝑛,𝑚

𝐶MQTT1,1

Where n specifies the number of sensors and m the number of clients used.

Basically, this definition normalizes the CPU execution time (returned by the get-process command) by the

CPU load with 1 sensor and 1 client in the case of MQTT. In this way, if the various absolute CPU executions

time change, the normalized value stays the same, since the proportion between the absolute value and

the reference value remains the same.

MQTT+ | Riccardo Giambona

77

The comparison has been made on three types of resources: CPU, RAM and Bandwidth.

For each resource considered the comparison has been split in two, based on the type of data that sensors

sent to the broker: Numbers or Images.

In the following sections we will show the comparisons for different number of sensors (the publishers) and

clients (the subscribers).

6.3 – Numbers

For these tests, the following topics have been used:

• Publish topic: numeric/polimi/deib/room1/sensorID

• Subscription topic: AVGQUARTERHOURLYAVG/numeric/polimi/deib/room1/+

The sensorID used in the publish topic is different for each sensor used (Sensor1,Sensor2,Sensor3,etc..)

Since the $QUARTERHOURLYAVG operation would have required to wait 15 minutes for each test (with n

sensors and m clients), the computation of all the required tests, with real timing, would have taken too

long.

For this reason, the timings have been rescaled dividing the real timings by 15. So, since in a real context we

supposed that sensors sent their detections every 20 seconds, we obtain the current rescaled timings:

• $QUARTERHOURLYAVG: One message every (15/15 minutes = 1) minute

• Sensors sending interval: One message by each sensor every 1,333 (20/15) seconds

NOTE: All messages are sent with QoS 0. This is done to avoid the influence of the acks, that higher QoS

have, in the bandwidth

NOTE 2: In the bandwidth comparison we compare only the downlink usage, since the uplink usage is the

same for MQTT and MQTT+, because in both cases the detections must be sent from the sensors to the

broker.

6.3.1 – Bandwidth usage

Figure 24: Numeric bandwidth usage - fixed sensors

0,01

0,1

1

10

100

1000

10000

100000

1 25 50 75 100

D
o

w
n

lin
k

u
sa

ge
 (

K
B

)

Number of clients

Bandwidth (fixed sensors)

MQTT-1 Sensor

MQTT - 25 Sensors

MQTT-50 Sensors

MQTT-75 Sensors

MQTT-100 Sensors

MQTT+ (SKR) -1 Sensor

MQTT+ (SKR) -25 Sensors

MQTT+ (SKR) -100 Sensors

MQTT+ (SKR) -50 Sensors

MQTT+ (SKR) -75 Sensors

MQTT+ | Riccardo Giambona

78

Figure 25: Numeric bandwidth usage - fixed clients

From these two charts we can see that the MQTT+ always uses less bandwidth than the standard MQTT.
Also, as expected, the bandwidth used increases as much as we increase the number of clients and this is

valid both for MQTT and for MQTT+.

The difference in MQTT+ is that the bandwidth used remains constant, increasing the number of sensors.

We can see this behaviour looking to the second chart. In this chart, if we fix a certain number of clients

(we fix the line we are looking to), changing the number of sensors doesn’t affect the bandwidth and this

can be easily noted by the fact that the MQTT+ lines are horizontals for any number of sensors.

This behaviour, apparently, seems to be not respected by the curve with just 1 client, but this is caused by

the fact that for just one client, there is only one message to send at the end of the minute interval, so the

bandwidth consumed by the message payload is minimal (around 50 bytes). The other bytes used, depend

by the acks exchanged for the messages, because even if we are using QoS 0 (with no acks), the MQTT

protocol relies on the TCP protocol that requires an ack message for each packet sent, so increasing the

number of packets published (obtained by increasing the number of sensors that publish data), the acks

that the broker must send back to the publishers increase and this contributes to minimally increase the

bandwidth used.

In the other cases (from 25 to 100 clients) the bandwidth used by the payload of the messages sent is

higher than the one used by the TCP acks, so the first component “hides” the second one and since the first

one doesn’t depend by the number of sensors (it is always sent just one packet in the test interval), we can

see the expected behaviour for the bandwidth: constant bandwidth consumption for every number of

sensors.

0,01

0,1

1

10

100

1000

10000

100000

1 25 50 75 100

D
o

w
n

lin
k

u
sa

ge
 (

K
B

)

Number of sensors

Bandwidth (fixed clients)

MQTT-1 Client

MQTT-25 Clients

MQTT-50 Clients

MQTT-75 Clients

MQTT-100 Clients

MQTT+-1 Client

MQTT+-25 Clients

MQTT+-50 Clients

MQTT+-75 Clients

MQTT+-100 Clients

MQTT+ | Riccardo Giambona

79

Figure 26: RPT vs SKR - fixed sensors

Figure 27: RPT vs SKR - fixed clients

These last two charts show a comparison between the SKR and RPT method, for the publishing topic.

From the first chart we can see that both methods bandwidths depend by the number of clients used, but

in case of SKR, the slope of the lines is smaller and so the SKR consumes less bandwidth than RPT for any

number of clients or sensors. This is expected by the logic with which these two methods build their publish

topics.

From the second chart it’s clear that the SKR bandwidth doesn’t depend on the number of sensors (we

have horizontal lines), because the publish topic is the same whether if we have 1 or 100 sensors.

Instead, this is not true for RPT that has to list, in the publish topic, all the sensor ids used. For this reason,

it’s also sensor dependent.

0

10

20

30

40

50

60

70

80

90

100

1 25 50 75 100

D
o

w
n

lin
k

u
sa

ge
 (

K
B

)

Number of clients

RPT vs SKR (fixed sensors)

MQTT+ (SKR) - 1 Sensor

MQTT+ (SKR) - 25 Sensors

MQTT+ (SKR) - 50 Sensors

MQTT+ (SKR) - 75 Sensors

MQTT+ (SKR) - 100 Sensors

MQTT+ (RPT) - 1 Sensor

MQTT+ (RPT) - 25 Sensors

MQTT+ (RPT) - 50 Sensors

MQTT+ (RPT) - 75 Sensors

MQTT+ (RPT) - 100 Sensors

0

10

20

30

40

50

60

70

80

90

100

1 25 50 75 100

D
o

w
n

lin
k

u
sa

ge
 (

K
B

)

Number of sensors

RPT vs SKR (fixed clients)

MQTT+ (SKR) - 1 Client

MQTT+ (SKR) - 25 Clients

MQTT+ (SKR) - 50 Clients

MQTT+ (SKR) - 75 Clients

MQTT+ (SKR) - 100 Clients

MQTT+ (RPT) - 1 Client

MQTT+ (RPT) - 25 Clients

MQTT+ (RPT) - 50 Clients

MQTT+ (RPT) - 75 Clients

MQTT+ (RPT) - 100 Clients

MQTT+ | Riccardo Giambona

80

So, for the specific subscription we made, we obtain the following comparison for bandwidth:

MQTT+ (SKR) MQTT

It’s independent from the number of sensors It’s not client or sensor independent

It always consumes less bandwidth than MQTT It always consumes more bandwidth than MQTT+

In terms of gain we obtain these results:

Minimum gain (MQTT+ (SKR) 1-1 vs MQTT 1-
1)

Maximum gain (MQTT+ (SKR) 100-100 vs MQTT 100-
100)

-1,765 KB; -96% -18,11 MB; -99%

That is a great advantage in terms of bandwidth, given the fact that we are just considering numbers (with

very small payloads) and that for sure in a real environment there will be more than 100 sensors and 100

clients, so this gain will be higher.

Instead for SKR and RPT we obtain the following comparison:

MQTT+ (SKR) MQTT+ (RPT)

It’s independent from the number of sensors It’s not client or sensor independent

It always consumes less bandwidth than MQTT+
(RPT)

It always consumes more bandwidth than MQTT+
(SKR)

It gives less information to the clients It gives more information to the clients

In terms of gain we obtain these results:

Minimum gain SKR 1-1 vs RPT 1-1 Maximum gain SKR 100-100 vs RPT 100-100

0 KB; 0% -86,72 KB; -92%

The absolute value of the maximum gain is not that high, but anyway it could be useful for contexts in

which bandwidth is a very critical resource.

In general, for subscriptions with an aggregation (e.g AVG,SUM, etc..) after a periodic operation (e.g.

QUARTERLYHOURAVG, etc..), like the one we used, we can introduce some theoretical formulas.

If we call:

• m: The number of clients

• n: The number of sensors

• λ: messages/second sent by the sensors

• λA: messages/second sent by the broker to the clients

• P: length of each publish message for MQTT (bytes)

• T: Observation interval (seconds)

• Q: length of each publish message for MQTT+ (bytes)

• W: length of sensorID (bytes)

• O: length of the MQTT+ OperationsBlocks

𝐵𝑀𝑄𝑇𝑇 = λ ∙ T ∙ (𝑚 ∙ 𝑛 ∙ 𝑃) 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑔𝑎𝑖𝑛 = −
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑔𝑎𝑖𝑛

𝐵𝑀𝑄𝑇𝑇
 ∙ 100

𝐵𝑀𝑄𝑇𝑇+ = λ𝐴 ∙ T ∙ (𝑚 ∙ 𝑄)

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑔𝑎𝑖𝑛 = 𝐵𝑀𝑄𝑇𝑇 − 𝐵𝑀𝑄𝑇𝑇+

DEF

We define Q as:

𝑄 ≈ {
𝑃 + 𝑂, if SKR is used

 𝑃 + 𝑂 + 𝑊 ∙ 𝑚, if RPT is used

MQTT+ | Riccardo Giambona

81

6.3.2 – CPU consumption

Figure 28: Numeric CPU load - fixed clients

Figure 29: Numeric CPU load - fixed sensors

We see from these charts that the CPU load, for both MQTT and MQTT+, depends from the number of

clients and sensors, but we can notice that in the MQTT+ case this load is always less or at most equal (in

case of 1 fixed client or 1 fixed sensor) compared to the MQTT.

This is due to the fact that, in case there are numbers to be elaborated, the most complex operation to do

is deciding which are the interested clients to a certain publish topic and since in MQTT+ we send less

messages (just one per client) than MQTT, as a consequence, the CPU load of MQTT+ will be lower.

Also note that, even in the case of a fixed number of clients (first chart), the CPU load increases as the

number of sensors increases. This is because, for each message sent, the MQTT+ logic needs to buffer the

data and this contributes to, minimally, increase the computation load.

0

1

2

3

4

5

6

7

8

1 25 50 75 100

C
P

U
 L

o
ad

Number of sensors

CPU Load (fixed clients)

MQTT-1 Client

MQTT-25 Clients

MQTT-50 Clients

MQTT-75 Sensors

MQTT-100 Clients

MQTT+-1 Clients

MQTT+-25 Clients

MQTT+-50 Clients

MQTT+-75 Clients

MQTT+-100 Clients

0

1

2

3

4

5

6

7

8

1 25 50 75 100

C
P

U
 L

o
ad

Number of clients

CPU Load (fixed sensors)

MQTT-1 Sensor

MQTT-25 Sensors

MQTT-50 Sensors

MQTT-75 Sensors

MQTT-100 Sensors

MQTT+-1 Sensors

MQTT+-25 Sensors

MQTT+-50 Sensors

MQTT+-75 Sensors

MQTT+-100 Sensors

MQTT+ | Riccardo Giambona

82

 So, for the specific subscription we made, we obtain this gain for the CPU Load:

Minimum gain (MQTT+ 1-1 vs MQTT 1-1) Maximum gain (MQTT+ 100-100 vs MQTT 100-100)

0; 0% -5,77; -81%

The gain obtained for 100 sensors and 100 clients is significant.

6.3.3 – RAM Usage

Figure 30: Numeric RAM usage - fixed clients

Figure 31: Numeric RAM usage - fixed sensors

From these charts we can see that the RAM consumption remains more or less the same for any number of

sensors or clients, moreover the RAM used by the MQTT+ it’s quite similar to the one used by MQTT.

This is positive, since it means that the MQTT+ logic doesn’t impact much on RAM resources compared to

the original broker.

310

312

314

316

318

320

322

324

326

328

330

1 25 50 75 100

A
ve

ra
ge

 R
A

M
 U

sa
ge

 (
M

B
)

Number of sensors

Average RAM Usage (fixed clients)

MQTT-1 Client

MQTT-25 Clients

MQTT-50 Clients

MQTT-75 Clients

MQTT-100 Clients

MQTT+-1 Client

MQTT+-25 Clients

MQTT+-50 Clients

MQTT+-75 Clients

MQTT+-100 Clients

310

312

314

316

318

320

322

324

326

328

330

1 25 50 75 100

A
ve

ra
ge

 R
A

M
 U

sa
ge

 (
M

B
)

Number of subscribers

Average RAM Usage (fixed sensors)

MQTT-1 Sensor

MQTT-25 Sensors

MQTT-50 Sensors

MQTT-75 Sensors

MQTT-100 Sensors

MQTT+-1 Sensor

MQTT+-25 Sensors

MQTT+-50 Sensors

MQTT+-75 Sensors

MQTT+-100 Sensors

MQTT+ | Riccardo Giambona

83

6.4 – Images

For these tests the following topics have been used:

• Publish topic: image/polimi/deib/room1/SensorID

• Subscription topic: $COUNTPEOPLE/image/polimi/deib/room1/+

The sensorID used in the publish topic is different for each sensor used (Sensor1, Sensor2, Sensor3, etc..)

The sensors send their images one at a time (sequentially: first sensor1, then sensor 2 and so on..) with a

delay between each message of 20 seconds.

Even in this case, all messages are sent with QoS 0.

6.4.1 – Bandwidth usage

Figure 32: Images bandwidth - fixed clients

Figure 33: Images bandwidth - fixed sensors

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

1 25 50 75 100

D
o

w
n

lin
k

u
sa

ge
 (

M
B

)

Number of sensors

Bandwidth (fixed clients)

MQTT - 1 Client

MQTT - 25 Clients

MQTT - 50 Clients

MQTT - 75 Clients

MQTT - 100 Clients

MQTT+ - 1 Client

MQTT+ - 25 Clients

MQTT+ - 50 Clients

MQTT+ - 75 Clients

MQTT+ - 100 Clients

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

1 25 50 75 100

D
o

w
n

lin
k

u
sa

ge
 (

M
B

)

Number of clients

Bandwidth (fixed sensors)

MQTT- 1 Sensor

MQTT-25 Sensors

MQTT-50 Sensors

MQTT-75 Sensors

MQTT-100 Sensors

MQTT+ - 1 Sensor

MQTT+ - 25 Sensors

MQTT+ - 50 Sensors

MQTT+ - 75 Sensors

MQTT+ - 100 Sensors

MQTT+ | Riccardo Giambona

84

Looking at the previous two graphs, we can see that, for this particular subscription, the number of sensors

contributes in the same way of the number of clients in the bandwidth. In fact, the two charts are identical.

This has perfect sense if we think about the logic on which this subscription is elaborated.

Let’s suppose we have 1 sensor that sends one message and 3 clients that receive that message, so the

traffic to the clients is 1*3*P (if P is the size of one packet). So, if I want to double the traffic, it’s indifferent

whether If I double the number of sensors or the one of the clients (2*3*P = 1*6*P).

This proves the results that we got in the tests.

Anyway, an important thing to notice is the gain in term of bandwidth with respect to the MQTT:

Minimum gain (MQTT+ 1-1 vs MQTT 1-1) Maximum gain (MQTT+ 100-100 vs MQTT 100-100)

-0,13 MB; -99% -1,29 GB; -99%

The gain in terms of bandwidth is huge in case of 100 sensors and 100 clients and this is an important

result, because it justifies the introduction of MQTT+ in context where bandwidth is a critical resource.

6.4.2 – CPU usage

Figure 34: CPU load - fixed clients

Figure 35: CPU load - fixed sensors

1

10

100

1000

1 25 50 75 100

C
P

U
 L

o
ad

Number of sensors

CPU Load (fixed clients)

MQTT - 1 Client

MQTT - 25 Clients

MQTT - 50 Clients

MQTT - 75 Clients

MQTT - 100 Clients

MQTT+ - 1 Client

MQTT+ - 25 Clients

MQTT+ - 50 Clients

MQTT+ - 75 Clients

1

10

100

1000

1 25 50 75 100

C
P

U
 L

o
ad

Number of clients

CPU Load (fixed sensors)

MQTT- 1 Sensors

MQTT - 25 Sensors

MQTT - 50 Sensors

MQTT - 75 Sensors

MQTT - 100 Sensors

MQTT+ - 1 Sensor

MQTT+ - 25 Sensors

MQTT+ - 50 Sensors

MQTT+ - 75 Sensors

MQTT+ | Riccardo Giambona

85

From the previous charts we can see that the CPU load for MQTT depends both by clients and sensors.

Instead, for MQTT+, we can see that the CPU load doesn’t depend by the number of clients. This is a

consequence of the caching for complex operations. With caching, as said before, the image is processed

only once per message (one elaboration per sensor), but after it’s cached, that value is sent to any

interested client, without having to make the computation again.

So, this explains the horizontal lines for MQTT+ in the second chart (or equivalently the overlapped lines in

the first one).

In these charts we can also see the main drawback of the MQTT+: An increase of the computational

resources required.

Indeed, the CPU load required by the MQTT+ is always higher than the one of the MQTT, in particular we

obtain the following results:

Minimum increase (MQTT+ 1-1 vs MQTT 1-1) Maximum increase (MQTT+ 100-100 vs MQTT 100-
100)

+9; +900% +803,91; +9937%

This is the price we have to pay if we want to avoid the image elaboration by each client, but consider that:

1. For the image elaboration we used OpenCV with a general purpose script for recognizing

people[25] that has been trained with few examples. The performances of this elaboration can be

improved training much more the recognition algorithm and maybe using more optimized

algorithms.

2. In a real context the broker will be correctly sized (maybe a cloud could be used) for the

computational load required by the context. In this way, this additional load can be managed.

3. We can consider of using an online service for image recognition (Face++, Amazon Rekognition[24],

etc..). In this way, we reduce the load on the broker, but we increase the bandwidth that needs to

be used to send the images to the external elaboration service.

4. In these tests we used a high-resolution image (1280x720 with 24 bit/pixel). In a video-surveillance

system is highly probable that the images used have a lower resolution and so the image analysis

software would take less computational resources to be computed.

MQTT+ | Riccardo Giambona

86

6.4.3 – RAM Usage

Figure 36: RAM usage fixed clients

Figure 37: RAM usage - fixed sensors

From these charts we see that the RAM remains more or less constant for any number of sensors or clients.

We can also notice that, due to the image elaboration process, the RAM used by MQTT+ is higher of about

100 MB, compared to the one used by MQTT.

This is not a serious problem, since we notice that the RAM for MQTT+ remains around 420 MB, that is an

acceptable quantitative of memory for any computer.

300

320

340

360

380

400

420

440

1 25 50 75 100

A
ve

ra
ge

 R
A

M
 U

sa
ge

 (
M

B
)

Number of sensors

Average RAM Usage (fixed clients)

MQTT - 1 Client

MQTT - 25 Clients

MQTT - 50 Clients

MQTT - 75 Clients

MQTT - 100 Clients

MQTT+ - 1 Clients

MQTT+ - 25 Clients

MQTT+ - 50 Clients

MQTT+ - 75 Clients

MQTT+ - 100 Clients

300

320

340

360

380

400

420

440

1 25 50 75 100

A
ve

ra
ge

 R
A

M
 U

sa
ge

 (
M

B
)

Number of clients

Average RAM Usage (fixed sensors)

MQTT - 1 Sensor

MQTT - 25 Sensors

MQTT - 50 Sensors

MQTT - 75 Sensors

MQTT - 100 Sensors

MQTT+ - 1 Sensor

MQTT+ - 25 Sensors

MQTT+ - 50 Sensors

MQTT+ - 75 Sensors

MQTT+ - 100 Sensors

MQTT+ | Riccardo Giambona

87

Chapter 7 - Conclusions

In this thesis we have proposed MQTT+, an advanced version of MQTT which allows clients to use an

enhanced syntax to exploit a broker’s computation power to perform different operations.

MQTT+ supports rule-based subscriptions, spatial aggregation (last value operations) and temporal

aggregation (temporal operations) of data and advanced data processing tasks. Such basic operations can

also be combined together with composite subscriptions.

7.1 – Future works

In this section we are going to explain the possible future improvements that can be applied to the MQTT+

logic.

7.1.1 – Broker capabilities

With the current implementation, each client must know what operations the broker can compute and

knowing this, make valid subscriptions to the broker.

An interesting functionality would be to give the clients the possibility to first ask the broker what

operations can do and after that, decide what subscriptions to do.

A possibility to do that, would be to use the already existing reserved topic $SYS, to get information about

the broker capabilities. For example, a client could ask the broker this information by subscribing to the

topic $SYS/capabilities and the broker, at the moment of a subscription by a new client to this topic, could

answer with a JSON response like the following one:

Figure 38: Capabilities answer example

In this way the client knows the keyword to use for each operation, the description of what that operation

does and what kind of data that it returns.

Note that another implicit improvement, needed to implement this, is to introduce the support of

answering with JSON messages.

MQTT+ | Riccardo Giambona

88

7.1.2 – Advanced semantic analysis

Actually, we can give only one semantic definition for each available operation (only one data type as input

and one data type as output), but sometimes it’s necessary to have multiple definitions for one operation

(like the overload of the methods).

For example, this is useful to define more precisely the behaviour of the rule-based operations that work

on numbers (GT,GTE,etc..), because with the current logic of the semantic analysis we defined as input and

output of these operations the OptionalNumericSet data type. This was done because these operations

can take/give as input/output both Numeric or NumericSet and the only way to guarantee both

behaviours was to specify the OptionalNumericSet as input and output.

A more elegant way to do this is to define the overloads of these operations like this:

Overloads Input data type Output data type

Overload 1 Numeric Numeric

Overload 2 NumericSet NumericSet

With this modification, the semantic analyser checks in which of the two cases we are and proceeds with

the semantic analysis, choosing the right overload. For example, if we have:

$GT;25$DAILYAVG/temperature/+

The second overload is chosen for the GT operation. Instead, if we have:

$GT;25$COUNTPEOPLE/images/imgSensor1

The first overload is chosen.

This, of course, adds complexity to the semantic analyser that has to choose dynamically the suitable

definition, between the available ones, looking at the given input, but it gives a more precise way of

defining operations with different possible behaviours, like the rule-based operations.

7.1.3 – Specify explicitly the TTL

In the current implementation the TTL for the detections is fixed statically in the code to 1h, but this could

be suitable for certain contexts and not in others.

To let the user choose explicitly the TTL, an idea would be to insert the TTL in the variable header of the

publish message. The addition of a new field in the variable part of the header causes no issues since the

length of the variable header is carried in the fixed part of the header, but this of course implies to modify a

bit the libraries that send the publish messages, to include this additional header.

7.1.4 – Reply to invalid subscriptions

Currently, if a client makes an invalid subscription (the parsing process raises an exception), the

subscription is simply discarded by the broker, but the client doesn’t know anything about it.

A way to let the client knows about a parsing error, would be to include this information in the suback

message, but this implies to modify the client library that handles the messages sent by the broker, since in

the current implementation of MQTT, if the subscription is not accepted by the broker, the client continues

to try subscribing until the broker accepts the subscription.

MQTT+ | Riccardo Giambona

89

7.1.5 – Resource dependent subscription acceptance

Actually, the subscription is accepted whenever the parsing process is valid.

Another improvement could be to accept a valid subscription only if we have the resources to handle it.

For example, let’s suppose that a client wants to make a temporal subscription like this one:

$TMPAVG;01:00:00/temperature/+

If we have the same parameters for the sensors of the example made in section 4.5.4.2, we can estimate

that the memory required, to store all the data for this subscription, is more or less 20,93 GB. If the broker

knows that the available memory isn’t sufficient to guarantee all this memory, then it can reject the

subscription to avoid memory issues.

7.1.6 – Advanced operation caching

Actually, the operation caching is useful only to cache the results of image elaborations, but this caching

could be extended to cache also the results of subscriptions that are used by several clients.

For example, suppose that we have 1000 clients that subscribe to the same subscription:

$TMPAVG;01:00:00/temperature/+

As we have seen in the previous example, this subscription could take a lot of memory, therefore the

computation of the average on such a big data set could be an intensive operation.

In the actual implementation, this computation must be done 1000 times (one for each subscription made),

instead if we cached the result of the entire subscription, it would be necessary to make this computation

just one time.

Also, we could apply this reasoning to re-use common operations between different subscriptions, for

example if we have 1000 clients subscribed to:

$TMPAVG;01:00:00/temperature/+

and other 1000 clients subscribed to:

$GT;20$TMPAVG;01:00:00/temperature/+

Even though these two subscription topics are different, they share the last part of the topic

($TMPAVG;01:00:00/temperature/+), so they also share the complex operation TMPAVG;01:00:00.

This common operation can be saved in the cache and used in the elaboration of both subscriptions, saving

computational resources.

Of course, these modifications to the caching logic introduce more complexity in terms of what to cache

and if it’s possible to reuse the results in cache for other subscriptions.

MQTT+ | Riccardo Giambona

90

Bibliography

[1] Andrew Banks and Rahul Gupta. 2014. MQTT Version 3.1. 1. OASIS standard 29 (2014).

[2] Carsten Bormann, Angelo P Castellani, and Zach Shelby. 2012. Coap: An application protocol for billions

of tiny internet nodes. IEEE Internet Computing 16, 2 (2012), 62–67.

[3] Samir Chouali, Azzedine Boukerche, and Ahmed Mostefaoui. 2017. Towards a Formal Analysis of MQtt

Protocol in the Context of Communicating Vehicles. In Proceedings of the 15th ACM International

Symposium on Mobility Management and Wireless Access. ACM, 129–136.

[4] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker White. 2006. Towards

expressive publish/subscribe systems. In International Conference on Extending Database Technology.

Springer, 627–644.

[5] Kannan Govindan and Amar Prakash Azad. 2015. End-to-end service assurance in IoT MQTT-SN. In

Consumer Communications and Networking Conference (CCNC), 2015 12th Annual IEEE. IEEE, 290–296.

[6] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. 2008. MQTT-S- A publish/subscribe protocol

for Wireless Sensor Networks. In Communication systems software and middleware and workshops, 2008.

comsware 2008. 3rd international conference on. IEEE, 791–798.

[7] Guoli Li and Hans-Arno Jacobsen. 2005. Composite subscriptions in contentbased publish/subscribe

systems. In ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and Open

Distributed Processing. Springer, 249–269.

[8] Pietro Manzoni, Enrique Hernández-Orallo, Carlos T Calafate, and Juan-Carlos Cano. 2017. A Proposal for

a Publish/Subscribe, Disruption Tolerant Content Island for Fog Computing. In Proceedings of the 3rd

Workshop on Experiences with the Design and Implementation of Smart Objects. ACM, 47–52.

[9] Navneet Kumar Pandey, Kaiwen Zhang, Stéphane Weiss, Hans-Arno Jacobsen, and Roman Vitenberg.

2014. Distributed event aggregation for content-based publish/subscribe systems. In Proceedings of the 8th

ACM International Conference on Distributed Event-Based Systems. ACM, 95–106.

[10] Navneet Kumar Pandey, Kaiwen Zhang, Stéphane Weiss, Hans-Arno Jacobsen, and Roman Vitenberg.

2015. Minimizing the communication cost of aggregation in publish/subscribe systems. In Distributed

Computing Systems (ICDCS), 2015 IEEE 35th International Conference on. IEEE, 462–473.

[11] Peter Saint-Andre, Kevin Smith, Remko Tronçon, and Remko Troncon. 2009. XMPP: the definitive

guide. " O’Reilly Media, Inc.".

[12] Meena Singh, MA Rajan, VL Shivraj, and P Balamuralidhar. 2015. Secure mqtt for internet of things

(iot). In Communication Systems and Network Technologies (CSNT), 2015 Fifth International Conference on.

IEEE, 746–751.

[13] Dinesh Thangavel, Xiaoping Ma, Alvin Valera, Hwee-Xian Tan, and Colin Keng-Yan Tan. 2014.

Performance evaluation of MQTT and CoAP via a common middleware. In Intelligent Sensors, Sensor

Networks and Information Processing (ISSNIP), 2014 IEEE Ninth International Conference on. IEEE, 1–6.

[14] dc-square GmbH. HiveMQ. n.d. https://www.hivemq.com/.

MQTT+ | Riccardo Giambona

91

[15] dc-square GmbH. MQTT Essentials Part 3: Client, Broker and Connection Establishment. n.d.

https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment.

[16] dc-square GmbH. MQTT Essentials Part 4: MQTT Publish, Subscribe & Unsubscribe. s.d.

https://www.hivemq.com/blog/mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe.

[17] dc-square-GmbH. MQTT Essentials Part 6: Quality of Service 0, 1 & 2. s.d.

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels.

[18] dc-square GmbH. MQTT Essentials Part 5: MQTT Topics & Best Practices. s.d.

https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices.

[19] Face++,Megvii. s.d. https://www.faceplusplus.com/.

[20] OpenCV. s.d. https://opencv.org/.

[21] PowerShell-GetProcess. s.d. https://docs.microsoft.com/en-

us/powershell/module/microsoft.powershell.management/get-process?view=powershell-6.

[22] tshark. s.d. https://www.wireshark.org/docs/man-pages/tshark.html.

[23] Eclipse Paho Java. s.d. https://www.eclipse.org/paho/clients/java/.

[24] Amazon Rekognition. s.d. https://aws.amazon.com/it/rekognition/.

[25] Python people detection script. s.d. https://www.pyimagesearch.com/2015/11/09/pedestrian-

detection-opencv/.

