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POLITECNICO DI MILANO

Abstract
Dipartimento di scienze e tecnologie aerospaziali

Space Engineering

Multibody parafoil-payload model for SpaceRider trajectory and inflation loads
analysis

by Niccolò GLOUCHTCHENKO

Parafoils have been of great interest for space and military applications. Their higher
lift-to-drag ratio w.r.t ballistic parachutes allows to save mass and volume maintain-
ing the same vertical touch-down velocity. The possibility to control the system,
pulling the suspension lines, allows also to reduce the landing dispersion and to
counter-act the wind disturbance. These are some of the reasons why in the aerody-
namic decelerator system of SpaceRider a parafoil stage was selected.

The present work shows the parafoil-payload model developed in the frame of
the SpaceRider program. The model represents a system consisting of a parafoil
and a payload as two separate rigid bodies both with 6 DoFs (3 rigid rotations and
3 rigid translations). The representation is performed through time-domain state-
space model. Particular care is posed on the definition of the model validity limits
and its usage within them.

The main attractive feature of the model is the inflation loads analysis, useful
to check whether the design requirements imposed by the system are met or not.
The classical semi-empirical methods are coupled with a more complex dynamic
(12 DoFs instead of 3) to have a more accurate representation of the inflation loads
(especially during the pitch-down motion at cells inflation). The effect on the infla-
tion analysis of some parameters (as the Cmq ) is investigated and the importance of
some of them is outlined to perform the final design of the canopy. The possibility
to optimize the reefing technique for parafoil is also analyzed, reducing as much as
possible the inflation loads for a single stage reefing technique.

A small overview of the GNC system is also given. The guidance in the XY
plane is a classical way-points T-based approach with a sine control law. Particular
emphasis is given to the longitudinal control through the development of a non-
linear Lyapunov stable rigging angle control, thus allowing to reduce the landing
error during the terminal guidance phase. The GNC robustness is checked imposing
navigational errors, winds disturbances (gusts and turbulence) and limitations in the
control action.

The model developed is suitable to design the aerodynamic decelerator system
(canopy, reefing strategy, connection lines) and the GNC system. Due to its high-
fidelity it can be also used for validation purposes.

HTTPS://WWW.POLIMI.IT/
https://www.aero.polimi.it/
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Chapter 1

Introduction

The success of IXV mission proved at European level the possibility to safely re-enter
the atmosphere. The next step ESA required was the possibility to exploit the knowl-
edges gained from IXV to built a reusable space vehicle, SpaceRider. SpaceRider is a
low cost re-usable multipurpose European space platform to be launched on the top
of a Vega C in 2020. Payloads will be ferried to space by SpaceRider, then payloads
will work in a space environment for a period up to some months and finally they
will survive to the atmospheric re-entry thanks to SpaceRider. Thus it will allow
to safely retrieve the payloads which will be analyzed on Earth. During the first
phases of the program, configuration studies concluded that, in order to reuse the
spacecraft, it would be advisable to exploit a parafoil in the last stage of the aero-
dynamic decelerator system instead of a splash-down with ballistic parachutes [1].
The parafoil also allows to save mass with respect to a classical winged configura-
tion [2]. Although NASA with the X-38 program got insights of how parafoil works
for a space application [19] [5] [4] [15], European knowledge in this field remains
confined to military cargo delivery or university studies.

The parafoil main benefit is the possibility to steer the system, allowing to reduce
the dispersion of the landing point, thanks to a control logic [22] [29] [11] [23] [28]
[16]. Also, the higher lift-to-drag ratio, with respect to ballistic parachutes, allows
parafoil to have the same vertical velocity with a lower canopy area, thus lightening
the system. The total velocity will be higher (due to the horizontal component) so
the system will need to land in the same fashion of an aircraft or to be retrieved in
air (MAR) [2]. This total velocity can be even be reduced more if a flare strategy is
employed at landing [29], Appendix B. The controllability combined with a higher
flight velocity allows the parafoil also to be much more robust to the wind distur-
bances than a ballistic parachute. With respect to a traditional winged configuration,
the parafoil allows not only to save mass but also to reduce complexity due to the
lower terminal velocity at landing [2].

The aim of the present work is to develop a multi-body model that can accurately
represent the behavior of the parafoil-payload system in its all flight phases: from
inflation to landing. The model is designed to be used in the frame of the SpaceRider
mission [2], to size the aerodynamic decelerator system, the connection lines and the
GNC algorithms. Therefore the most important quantities that must be computed
correctly are the loads experienced at the inflation and the trajectory of the system
[4].

There are several models developed for a parafoil-payload system. The most
simple one considers a three degrees of freedom (DoFs) representation: the parafoil
is therefore considered only as an added inertia and with its aerodynamic properties.
These kinds of model are very useful to design and test GNC algorithms due to
their computational speed. More complex models add more DoFs: parafoil and
payload are treated as two separate elements. For example 9 DoFs model considers
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FIGURE 1.1: SpaceRider mission concept

decoupled angular dynamic of parafoil and payload but the same linear dynamic.
[13] [29]

In the present work a 12 DoFs model is developed and analyzed, its structure is
presented in Figure 1.2. A so high number of DoFs have never been implemented
so far. Usually models are limited to a 9 DoFs system representation [22] [29] [11]
[23] [28] [16] [26] [21] [20] [6] [18], because it is enough to represent in an accurate
way the dynamic behavior of the parafoil-payload system [22] (roll and skid-steering
modes). The addition of the 3 DoFs is of course an additional computational burden,
due to decouple the linear dynamic of the parafoil and the payload. Anyway it
is needed because of the particular SpaceRider connection lines system with four
bridles, Section 2.3. The modular design of the model allows also to use it to design
separately the parafoil and the GNC or even to test parafoil applications in different
environments from the Earth one, Figure 1.2.

Particular emphasis is posed on representing accurately the inflation loads. The
usual approach is to use empirical models coupled with a very simple (3 DoFs) dy-
namic [13] [29], the exploitation of additional DoFs of the presented model should
allow a more realistic trend of the loads.

PID controller are used in the longitudinal control even if the parafoil-payload
system is a very non-linear system [29] [25]. In the present work new approach of
non-linear Lyapunov stable rigging control will be developed, demonstrated and
characterized to see whether it performs better than a linear PID controller.

The present work is divided in 6 Chapters. In Chapter 1 an overview of the state
of the art and the aim of this work are presented. In Chapter 2 is reported the math-
ematical model to deal with the parafoil physic; the assumptions and the validity
limits of the model are presented too. The model is then validated in Chapter 3, in
order to ensure its physical meaning both at steady-state and at the inflation. Once
the model has been validated a control strategy can be applied to it, the control logic
and its analytic demonstration are shown in Chapter 4. Chapter 5 shows how the
model can be used to size both the GNC system and to design the aerodynamic de-
celerator system. In Chapter 6 achievements are critically analyzed with respect to
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the proposed objectives and possible starting points for further studies to be pre-
sented.
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FIGURE 1.2: Physical structure of the model
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Chapter 2

Modeling

The model represents a parafoil-payload system. There are two rigid bodies: parafoil
and payload, each of them has 6 DoFs. The three rigid body rotations and transla-
tions are allowed in 3D space. The overall degrees of freedom are 12. In Figure 2.1 is
visualized the system.

FIGURE 2.1: Parafoil-payload system
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FIGURE 2.2: Chapter 2 flow chart

The system is presented in this Chapter as shown in Figure 2.2: it is decomposed
in its three main constituting components (parafoil, payload and suspension lines).
A more detailed analysis of the parafoil element is presented, being divided in the
main components that make up the dynamic model.

2.1 Parafoil model

As stated previously the parafoil has been modeled as a rigid body with 6 DoFs. The
representation has some limitations that must be acknowledged. Most importantly
the fluid-structural interaction characterizing lightweight parafoil structures is not
completely modeled. No total or partial collapse of the parafoil or cells is therefore
considered, even if X-38 drop tests show these phenomena occur quite often [4]. This
limitation could demand some limits in the flight envelope, especially during con-
trol or maneuver (i.e.an incidence angle can not be lowered more than -12 degrees
because it could lead the canopy leading edges to collapse [13]).

The aim of this thesis is not to design the parafoil canopy in details: fabric of the
canopy, position and dimensions of the inlets and so on. The rigid body assumption
is therefore acceptable. [25]

The sole interaction between structure and aerodynamic loads is considered dur-
ing the inflation, as it will be shown in Section 2.1.3.

The parafoil is a light wing load structure (lessthan50 N
m2 ), so the effect of the

added masses must be taken into account and modeled accurately. In these partic-
ular applications inertia effects due to added masses can be in the same order of
magnitude or even higher than the ones generated by system real masses. Consid-
erations about added masses also affect the position of the body reference frame of
the parafoil itself, Section 2.1.1.

2.1.1 Added mass and inertia model

The added mass effects are related to the change of body motion generating changes
in the surrounding fluid flow, so that the acceleration of the body requires addi-
tional forces because of fluid opposing this acceleration. [14] As reported by G.
Kowaleczko apparent masses and inertias ”are not the real mass and moment of in-
ertia of the fluid moving with the body but represents an additional energy transported to
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the fluid during body acceleration". [10] How to compute the trapped air masses and
inertias is shown in Section 2.1.2.

Before showing the way to compute added inertias and masses, the orientation
and position of the reference system must be taken into consideration. T.M. Barrows
demonstrates that in parafoils ”may not be possible to find a single point at which the rota-
tional and translational motions are decoupled" [3], it means that the smartest approach
is to impose the system reference in center of solid mass, and consequently to take
into account the displacement of added masses centers using the moment transport.

FIGURE 2.3: Added
masses

FIGURE 2.4: Added in-
ertia moments

The apparent mass centers are defined as points where is experienced less resis-
tance to rotational acceleration around the axis considered [10]. So the point C1 is
the apparent mass center of mx while the point C2 is the apparent mass center of my
and mz.

To find the position of these points some guidelines are given by G. Kowaleczko.
The y coordinates are equal to zero for symmetry along the XZ-plane. Coordinates x
are equal to zero being the reference system z-axis passing along the joining between
C2 and C1. [3] While the coordinates zC1 and zC2 can be computed using Equations
from 2.1 to 2.5.

zC1 = R− a1 zC2 = R− a2 (2.1)

a1 =
Rsinε0

ε0
a2 =

a1my− f lat

my− f lat +
Iappx− f lat

R2

(2.2)

ε0 = sin−1
(

b
2R

)
(2.3)

Iappx− f lat = ρ0.84
AR

1 + AR
π

48
c2b3 (2.4)

my− f lat = ρkB
π

4
t2c (2.5)

G. Kowaleczko reports how the value of kB changes depending on the tip shape
of the parafoil: 0.33 is a good value for an ellipsoid parafoil with AR = 3, kB =
1.0 for a rectangular parafoil with ellipsoidal end caps, kB = 1.24 for a rectangular
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parafoil with flat end caps. [10] This value will be fixed once the SpaceRider parafoil
is designed.

FIGURE 2.5: C2 and C1 positions

Being impossible to decouple the rotational and translational motions, the ap-
parent inertia matrix is not-diagonal and it can be written as shown in Equation 2.6.
This matrix will be then added to the real inertia matrix of the parafoil.

J =

 M J
o f f−diagonal

JT
o f f−diagonal

I

 (2.6)

Where the matrices that constitute the inertia matrix are expressed by the Equa-
tions from 2.7 to 2.9.

M =

mx 0 0
0 my 0
0 0 mz

 (2.7)

J
o f f−diagonal

=

 0 mxzC1 0
−myzC2 0 myxC2

0 −mzxC2 0

 (2.8)

I =

Iappxx + myz2
C2

0 −myzC2 xC2

0 Iappyy + mxz2
C2

+ mzx2
C2

0
−myzC2 xC2 0 Iappzz + myx2

C2

 (2.9)

The terms in Equations from 2.7 to 2.9 can be computed as stated by T.M. Brown
[14] using Equations from 2.15 to 2.20. Terms depend on apparent masses and in-
ertias values computed under the flat parafoil assumption, Equations 2.10 to 2.13.
Computed values are then corrected taking into account the thickness of the parafoil.

mx− f lat = 0.848ρ
π

4
t2b (2.10)

mz− f lat =
AR

1 + AR
ρ

π

4
c2b (2.11)
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Iappyy− f lat = 1.161
AR

1 + AR
ρ

4π

48
c4b (2.12)

Iappzz− f lat = 0.848ρ
π

48
t2b3 (2.13)

ā =
R(1− cos(ε0))

b
(2.14)

mx = mx− f lat

(
1 +

8
3

ā2
)

(2.15)

my =
1
a2

1
(R2my− f lat + Iappxx− f lat) (2.16)

mz = mz− f lat

√√√√1 + 2ā2

(
1−

(
t
c

)2
)

(2.17)

Iappxx =
(a1 − a2)2

a2
1

R2my− f lat +
a2

2

a2
1

Iappxx− f lat (2.18)

Iappyy = Iappyy− f lat

(
1 +

π

6
(1 + AR)AR ā2

(
t
c

)2
)

(2.19)

Iappzz = (1 + 8ā2)Iappzz− f lat (2.20)

Equation 2.21 shows the values of apparent masses and inertias computed with
this procedure at 0 height, using as reference the geometrical values of the parafoil
used in simulations, Table 2.1.

J
app

=



71 0 0 0 181 0
0 486 0 −7426 0 0
0 0 1749 0 0 0
0 −7426 0 120654 0 0

181 0 0 0 22081 0
0 0 0 0 0 5914

 (2.21)

TABLE 2.1: Geometric values of the parafoil used

Parameter Value
S [m2] 100
b [m] 17.32
c [m] 5.77

AR [-] 3
t/c [-] 0.18
R [m] 0.6 b

The present computation must be nested inside the model: in this way added
masses can be computed in real time during the inflation, Section 2.1.3. This shrewd-
ness is needed above all when analyzing the inflation loads. Results can be quite dif-
ferent: depending on added masses and inertias considered constant or computed
in real time, as shown in Figure 2.6.



10 Chapter 2. Modeling

140 142 144 146 148 150 152

t [s]

0

0.5

1

1.5

2

2.5

3

a
c
c
 [

g
's

]

Inertial acceleration (with g)

Constant added masses model

Variable added masses model

FIGURE 2.6: Inflation loads assuming constant or variable added
masses

2.1.2 Real and trapped masses and inertias

To be flexible the model can compute by itself the real mass of the parafoil canopy
and the trapped air mass. The model used is the one presented by O. Yakimenko in
[29]. The limits of the model are also presented: the parafoil used in simulations fits
all the applicability limits.

m = ρtcε0(2R + (1− 2ζ)ξ) (2.22)

Equation 2.22 is useful to compute both the air mass trapped inside the canopy
and the canopy mass itself, depending on the ρ used. The dependence on the air
density make mandatory to implement these computations inside the model due to
the changes of ρ that the system will experience during descent.

The parameter ζ in Equation 2.22 is the x-coordinate normalized of the intersec-
tion between the mean chord and its normal passing through confluence point of
the suspension lines. Being a normalized coordinate its value can range from 0 to 1,
usually is equal to 0.25 or 0.5. The parameter ξ is defined as ξ = c(1 + µ2)−0.5
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Ixx = ρtc
(

ε0 −
1
2

sin(2ε0)

)(
R3 +

3
2

R2µ(1− 2ζ)ξ + Rµ2(1− 3ζ + 3ζ2)ξ2

+
1
4

µ3(1− 4ζ + 4ζ2 − 4ζ3)ξ3
)
+ 2ε0

(
1
3

R(1− 3ζ + 3ζ2)ξ2 +
1
4

µ(1− 4ζ + 4ζ2 − 4ζ3)ξ3
)

Iyy = ρtc
(

ε0 +
1
2

sin(2ε0)

)(
R3 +

3
2

R2µ(1− 2ζ)ξ + Rµ2(1− 3ζ + 3ζ2)ξ2

+
1
4

µ3(1− 4ζ + 4ζ2 − 4ζ3)ξ3
)
+ 2ε0

(
1
3

R(1− 3ζ + 3ζ2)ξ2 +
1
4

µ(1− 4ζ + 4ζ2 − 4ζ3)ξ3
)

Izz = ρtcε0

(
2R3 + 3R2µ(1− 2ζ)ξ + 2Rµ2(1− 3ζ + 3ζ2)ξ2 +

1
2

µ3(1− 4ζ + 4ζ2 − 4ζ3)ξ3
)

Ixz = ρtcξ2sin(ε0)

(
1
2

R2(1− 2ζ)ξ +
2
3

Rµ(1− 3ζ + 3ζ2)ξ +
1
4

µ2(1− 4ζ + 4ζ2 − 4ζ3)ξ2
)

(2.23)
Equations from 2.22 to 2.23 allow to compute the mass and inertia properties of

the parafoil knowing its geometry.
It is notable how the µ is going to affect these computations, in case of rig-

ging control the masses and inertias will change in time, thus computations must
be nested inside the model that will be time-integrated.

Equation 2.24 shows the values found with this model at sea-level for the parafoil
data reported in Table 2.1.

J
real

=



161 0 0 0 0 0
0 161 0 0 0 0
0 0 161 0 0 0
0 0 0 11281 0 3579
0 0 0 0 4156 0
0 0 0 3579 0 15238



J
trapped

=



171 0 0 0 0
0 171 0 0 0 0
0 0 171 0 0 0
0 0 0 12011 0 3812
0 0 0 0 4420 0
0 0 0 3812 0 16232



(2.24)

2.1.3 Inflation model

As reported by J.S. Lingard, experimental analyses of the parafoil inflation show
how during the first moments of the inflation the parafoil behaves like a ballistic
parachute. There is no cell inflation until the surface reaches the value 0.8 of the
nominal fully-inflated surface. Therefore the parafoil doesn’t generate lift and it
doesn’t behave like a wing until this condition occurs. [13] In case of inflation control
techniques (reefing), it is assumed that the ballistic approximation is true only until
the surface reaches 0.8 of the first reefed stage.

From a dynamical point of view, as far as parafoil is similar to a ballistic parachute,
it means that the DOFs of the system must be temporary reduced. Ballistic parachutes
indeed have not a lateral-directional dynamic comparable to the parafoil one. In the
present thesis the choice is to reduce the DoFs of the parafoil from 6 to 5 until the
surface reaches the cell inflation value. Imposing the dynamic around the pitch axis
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equal to zero, it will not affect results in a negative way. Being the inflation time
very reduced with respect to the overall simulation time, the trajectory will not be
affected by significant errors. The loads experienced by the system will be eventu-
ally higher than a 6 DoF simulation because the motion around one axis is limited.
The result is thus conservative and acceptable.

It is also possible to use the same inflation model with different parameters. The
model foresees the numerical integration of the dynamic equations while having the
surface evolution in time expressed by an exponential law 2.25.

S(t) = %ree f Sre f
e
(t−tin)n

∆t − 1
(en − 1)

(2.25)

Where ∆t is found with Knacke equation, 2.26. D0 is the nominal diameter of the
parafoil computed as if it has a circular shape, Equation 2.27. VS is the snatch veloc-
ity: the velocity of the parachute at the beginning of the inflation and it is obtained
by the dynamic simulation. τ0 is the dimensionless inflation time, a parameter that
changes depending on the type of parachute considered, on the shape of the section
and on the presence or absence of reefing. For ballistic parachutes τ0 is generally
10, while for parafoils is equal to 14 if there is slider reefing (suitable only for small
personal parafoils) otherwise can be assumed equal to 3.5 if there is no reefing.

∆t =
τ0d0

VS
(2.26)

d0 =

(
4Spara f oil

π

)0.5

(2.27)

The CDNom of ballistic parachutes and parafoil at high angles of attack is close to
1, as shown in graphs in Section 2.1.4.

When the parafoil surface is about the nominal value, there is a pitch down ma-
neuver. During this movement cells begin to inflate. Thus the value of the angle
of attack begins to rise, the lift begins to be generated and the peak load is reached,
Figure 2.7. This is correct as reported by J.S. Lingard [13].

In the model was implemented the possibility to have multiple reefed stages in
order to reproduce the X-38 drop tests, Chapter 3, and to be more flexible too.

Reefing is a peculiar technique to limit inflation loads avoiding to deploy all the
canopy at the same time. In this way the aerodynamic loads will be reduced with
respect to the free-inflation case.

The reefing strategy analyzed in the present work is a span-reefing one, due to
its flight heritage. It was exploited by Pioneer in the X-38 test campaign. It helps to
compute the added mass evolution with respect to time: only the span will change
and it can be related to the surface evolution in time with Equation 2.28. The time
variant b will then be used in Section 2.1.1.

b(t) =
S(t)

c
(2.28)

Simulations showed that the reefing strategy of a parafoil is not straight forward
as for the ballistic parachutes. In the latter, as a rule of thumb, if the parachute
is reefed at 33% of the nominal area decelerations experienced will be 1/3 of the
free-inflation case. In parafoils this rule isn’t true because the behavior of the aero-
dynamic coefficients at high angle of attack are the main parameters affecting aero-
dynamic loads.
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FIGURE 2.8: Parameters comparison free-inflation vs 33% reefed case

As shown in Figure 2.8 the peak load in the reefed case is not 1/3 as it would be
in a ballistic case (reefing percentage is equal to 33%). Instead it is only reduced of
a factor 1.88. This is due to the aerodynamic loads generated by the parafoil once
its cells inflate: the α at the peak load is the same value for both cases (CL and CD
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having the same aerodynamics). Although due to the limited size of the canopy,
before the peak load the reefed case increases its velocity, so it experiences a higher
value of deceleration than expected, Figure 2.9.
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FIGURE 2.9: Velocity increases in the case of reefed case

2.1.4 Aerodynamic forces

In comparison with airplane wings, parafoil aerodynamic characteristics must be
modeled accurately in the non-linear regime because they usually work at higher
angle of attack. This is particularly true for the CL, CD and Cm, because they are
responsible for the angle of attack at which the system will trim itself. Examples
of behaviors of aerodynamic coefficients at angle of attacks ranging from 0 to 90
degrees are reported in Figures from 2.10 to 2.13. Referring to these graphs it is
possible to extrapolate the aerodynamic coefficient values knowing α. [15] [4] [5]
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FIGURE 2.13: X-38 parafoil Cm values evaluated at the confluence
point [19]

As stated in the inflation model Section 2.1.3, parafoil begins to behave as a wing
when it is almost fully inflated. It implies that other aerodynamic characteristics CY,
Cn, Cl can be considered in their linearized form.

CL = CL0 + CLα α

CD = CD0 + CDα α2 + CDlines

CY = CY/ββ

Cm = Cmq q
c

2V
+ Cm0 + Cmα α

Cn = Cnr r
b

2V

Cl = Clp p
b

2V

(2.29)

The term CDlines in Equation 2.29 is the drag generated by connection lines. While
it is supposed the lift generated is negligible, the drag could be considerable. In
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order to be flexible the model compute the CDlines with an empiric law depending on
the parameters which characterize the connection lines, Equation 2.30.

CDlines =
num R d cos(α)3

S
(2.30)

In Equation 2.30 d is the diameter of the suspension lines (must be given as an
input) while num is the number of connection lines. As rule of thumb, it can be
assumed there is one line each 1.11m2 of canopy surface [13].

Once the aerodynamic coefficients are computed, it is possible to find the value
of the aerodynamic forces and moments with Equation 2.31. They are aligned with
the wind axis so they must be rotated in the body axis with the rotation matrix 2.32.
The term µ is the rigging angle that can be set and maintained constant or changed
during flight, as shown in Section 4.3.2.

Faer =
1
2

ρV2S

−CD
CY
−CL


Maer =

1
2

ρV2S

Cl b
Cm c
Cn b

 (2.31)

Tw/b =

cos(α + µ)cos(β) cos(α + µ)sin(β) −sin(α + µ)
−sin(β) cos(β) 0

sin(α + µ)cos(β) sin(α + µ)sin(β) cos(α + µ)

 (2.32)

In the present work two different aerodynamic data of the SpaceRider parafoil
have been considered. First the X-38 non-linear aerodynamic data reported in [19]
and shown in Figure 2.12 and 2.13. Secondly, to test the robustness of the model,
the aerodynamic data reported in Table 2.2 and 2.3 were used. Lateral aerodynamic
data are taken from O. Yakimenko book [29].

TABLE 2.2: Aerodynamic data considered for the linear parafoil

Aerodynamic coefficient Value
CL0 [-] 0.24

CLα [1/rad] 2.14
CD0 [-] 0.12

CDα [1/rad] 0.33
Cm0 [-] -0.175

Cmα [1/rad] 0
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TABLE 2.3: Damping and lateral aerodynamic coefficient considered
for both parafoils

Aerodynamic coefficient Value
CYβ

[1/rad] -1
Cmq [1/rad] -2.5
Cnr [1/rad] -0.27
Cnp [1/rad] -0.082
Cnβ

[1/rad] -0.0015
Clp [1/rad] -0.84
Clr [1/rad] -0.082
Clβ

[1/rad] -0.036

The X-38 data are very useful not only because they are represented in non-linear
range of α (from 0 to 90) but also because they refer to a parafoil of aspect ratio 3 with
a Clark-Y airfoil section. This kind of parafoil is the most used type so, probably, they
will be the most representative data of the real behavior of the SpaceRider parafoil.

2.1.5 Dynamics model

The representation of the system is performed in time domain with a non-linear
state-space model obtained by considering the conservation of the angular and lin-
ear momentum, in this way Equation 2.33 may be written.

After modeling all the forces and moments as described in Sections 2.1.1 and
2.1.4, it is possible to solve the dynamic system thus obtaining the evolution in time
of the states, namely the linear and angular velocities. Having a coupled system,
Section 2.1.1, the vectorial system described in Equation 2.33 must be solved at each
iteration step at the same time.

[
v̇
ω̇

]
= J−1

([
F
M

]
−
[

ω ∧Mv
ω ∧ Iω

]
−
[

ω ∧ J
o f f−diagonal

ω

0

]
−
[

0
Mapp−C1

]
−
[

0
Mapp−C2

])
(2.33)

Terms Mapp−C2 and Mapp−C1 in Equation 2.33 refer to added masses moments
that are written as stated in Equation 2.34 and 2.35. [10]

Mapp−C1 = xC1
∧ (ω ∧ (Mv + J

o f f−diagonal
ω)) + xC2

∧ (ω ∧ (Mv + J
o f f−diagonal

ω))

(2.34)

Mapp−C2 = (ω ∧ xC1
) ∧ (Mv + J

o f f−diagonal
ω) + (ω ∧ xC2

) ∧ (Mv + J
o f f−diagonal

ω)

(2.35)

Kinematics model

The representation of the parafoil attitude kinematic is performed by means of quater-
nions, Equation 2.36. This choice is due to avoid the singularity that afflicts the Euler
angles representation. Singularity that could be experienced during parafoil infla-
tion. Depending on the value of Cmq , the pitch angle could get very close to −π

2 .
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Computational speed is also affected positively by the presence of sole algebraic re-
lations during integration.

The signs of the matrix in Equation 2.36 are related to the relative orientation of
the inertial and body axes, Figure 2.1.

q̇ =
1
2


0 −ω3 −ω2 −ω1

ω3 0 −ω1 ω2
ω2 ω1 0 −ω3
ω1 −ω2 ω3 0

 q (2.36)

The quaternion representation of the attitude allows to get results closer to the
reality than using the Euler angles. As shown in Figure 2.14 the model oscillates
more and peak values are closer to the real ones.
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FIGURE 2.14: Model comparison with real drop test data

As far as the position in the inertial frame is concerned, it is possible to retrieve its
behavior with respect to time from the body velocity, Equation 2.37. The LIB matrix
is the direct cosine matrix representation of the attitude and it is retrieved at each
time step from the quaternions.

ẋ = LIBv (2.37)

Kinematic model plus dynamic model give the evolution in time of all the 6 DOFs
of the parafoil.

2.2 Payload

The payload is represented as a rigid body. The main difference from the parafoil
model is the absence of added masses effects: being the wing load higher than 50 N

m2

the added mass can be neglected. It allows not to consider the terms Mapp−C2 and
Mapp−C1 and also to decouple the translational and rotational dynamic, Equation
2.38.
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Mv̇ = F

Jω̇ = M−ω ∧ Jω
(2.38)

The inertia properties and the aerodynamic forces generated by the payload are
not listed in the present work because they represent the SpaceRider vehicle, thus
they are subjected to secrecy policy of Thales Alenia Space. The only known data is
the mass of the vehicle of 2550 kg as reported in [2].

In Section 3 several studies are presented: the payload inertia properties will
be retrieved from References, while aerodynamic data will be considered only if
they are clearly stated in References, otherwise the dead-mass assumption (payload
generates only weight) is considered.

Kinematics are treated in the same way described in Section 2.1.5.

2.3 Connection lines

The connection between payload and parafoil consists of a riser and four bridles in a
swivle configuration Figure 2.1, in order to re-use the same connection lines strategy
of the precedent mission IXV, lowering costs in this way. The suspension lines are
not accounted as connection lines because they are modeled as part of the parafoil
rigid body.

Due to the presence of four bridles, the loads on the system will not be evenly
divided on each bridle: at some instants one or more of them could be slacked and
the loads transmitted only through one or two bridles. This phenomenon can be
represented only with a 12 DoFs representation, Figure 2.15.

Because of the present connection lines design, it is not possible to determine in
an analytic way the tension in the bridles, id est to do a projection of the riser force
in bridle directions. Thus a numerical approach is followed: a Newton-Raphson
zero-search algorithm is employed to find the equilibrium in S1. The unknown data
is the S1 position while the equilibrium is obtained by means of riser and bridles
tension. It is worth noting that bridles and riser have been modeled as elastic springs
(Table 2.4) working only when they are pulled because they can not sustain loads in
compression. A check is done to control that each bridle is in tension, if not, its force
is not accounted in the equilibrium search.

Ftension = k ∆l + c
∆l − ∆lprevious

∆T
(2.39)

TABLE 2.4: Connection lines parameters

Riser Bridles
k [ N

m ] 220000 220000
c [-] 0.2 ccritical 0

The term ccritical shown in Table 2.4 is the critical damping coefficient and it is
computed with the assumption of spring-mass system: ccritical = 2

√
mk.
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FIGURE 2.15: Tension in the bridles

Figure 2.15 shows how different bridles of the same simulation are subjected to
different loads (lines of the same color). It is also shown how different initial ψ0
induce different loads at the deployment, considering the same bridle (same line
format but different colors).

2.4 Parachute extraction

During extraction the parachute is completely decoupled from the payload. Indeed
they are moving like two separate objects because there is not a line taut by now, so
there is no tension along the lines. Instead of neglecting this phase, imposing a time
step a priori, a reduced DoFs dynamic model is implemented. While the parachute
is still in its bag, the whole system parachute-bag can be modeled as a point mass,
where the mass will be only the real one of fabric plus suspension lines and bag
(no apparent mass effect). In this way the DoFs of the system are reduced to the
translational motions, Equations 2.40 and 2.41. Note that the initial conditions of the
velocity could be different from zero. This can be useful in order to study a mortar
ejection (i.e. to eject the first parachute stage) so that an initial ∆V can be imposed.
Alternatively an impulse force can be imposed.

mBPv̇ = Faer + Fg + Tpp (2.40)

ẋBP = LIBBP
v (2.41)

The term Tpp in Equation 2.40 refers to the tension that the previous parachute
exerts on the bag to pull out the next parachute stage.
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TABLE 2.5: Extraction model values

Time to line taut [s] Relative velocity at line taut [m/s] Previous parachute pulling force [N]
No bag extraction Bag extraction No bag extraction Bag extraction No bag extraction Bag extraction

Supersonic drouge 0.1 0.411 5 58.64 0 0
Subsonic drouge 0.5 0.123 0 23.44 0 7572.6

Main chute 0.5 0.498 0 96 0 12327

FIGURE 2.16: Bag extraction representation

The integration of the separate parachute and payload dynamic equations is per-
formed when line taut is reached. Line taut is obtained when the difference between
the point mass position and the payload position is equal to the connection line plus
suspension line lengths, Equation 2.42. Right now the two bodies begin to interact
and a peak load is usually experienced at line taut. When using this model the line
taut peak is neglected but it is acceptable because the major peak loads are always
experienced at the inflation of the parachute/parafoil so the sizing of the connection
lines on these loads guarantees the integrity at the line taut loads.

||xBP − xv|| ≥ lriser + lsusp−lines (2.42)

The present approach allows to have a more flexible and precise model: the sim-
ulation is re adapted at the change of the boundary conditions (i.e. initial conditions,
characteristics of the parachutes, deployment logic). Of course these additional sim-
ulations increase the overall computational burden.

In Table 2.5 the values of extraction times and the supersonic drouge parachute
velocity at line taut are consistent with the experimental data of the IXV mission
[1], while the value of the relative velocity at the last line taut is too high to have
physical meaning. It is due to the limitation of the present model which assumes the
force of the previous parachute acting with constant modulus on the bag-parachute.
The force indeed changes its value because it is a dynamic problem involving three
bodies: the previous parachute stage, the bag-parachute and the payload. In order
to avoid additional computational burden and since extraction times are acceptable,
no further bodies were added to the simulation.
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Validation of the model

The simulator is a tool ensuring realistic data, therefore a check on the quality of the
results must be done. Not having the possibility to test the algorithms and the model
in flight, the validation was performed reproducing the data given by other thesis,
works or space programs. Being the simulator focused on reproducing accurately
both trajectory and loads two validations will be done and presented in this Chapter:
one at steady-gliding and the other at the inflation dynamic, Figure 3.1. If both the
analyses estimate correctly the expected values within a certain threshold of error,
then the simulator can be considered "validated".

FIGURE 3.1: Validation logic flow chart

The aim is to validate the 12 DoFs dynamic model, it means that the control ac-
tion has not yet been applied. It worths noting that all the analyzed studies are mod-
els with less DoFs (usually 9 or 6 [23] [6] [20]), thus the present validation can not be
considered enough to directly apply the simulator to the design of the SpaceRider
parafoil. A drop test with a flight model is mandatory to validate the model.

In some cases not all the data needed to perform a simulation were available, so
sensitivity analyses on the unknown parameters were performed.

3.1 Steady-glide validation

Most of works are centered on the post inflation flight analysis of the parafoil-payload
system, because they are mainly focused on implementing a GNC algorithm and
testing it. For example in Scheuermann’s work [20] the flight test isn’t performed
with a drop test but, having an engine attached to the payload which is turned off at
a determined altitude, the inflation and transitory phase can not be checked.

On the basis of the data reported in Scheuermann’s work [20], some simulations
were performed in order to have a sensitivity analysis on the parameters not re-
ported and related to the suspension lines. The following data are not given:

• length of riser and bridles

• connection points position

• rigidity of the bridles and riser

A simplification of Scheuermann’s model was also made: the payload does not
generate any aerodynamic force, it only acts as a dead-mass.
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TABLE 3.1: Results comparison between simulation and steady state
values of van der Kolf

Parameter Reported value Simulation result Relative error [%]
||V|| [m/s] 13.94 14.21 1.93
Vh [m/s] 12.99 13.11 0.92
Vv [m/s] 5.14 5.49 6.8
γ [deg] 21.63 22.73 5

Payload α [deg] 15.52 16.57 6.7
Payload θ [deg] -6.11 -6.16 0.8

The simulations show how the connection lines do not affect the attitude of the
parafoil and thus the trajectory, Figure 3.2.

Of course this is true only if the previous assumption of dead mass payload is
true. Indeed the attitude of the payload is strongly affected by the connection lines
disposition, as shown in Figure 3.3.

The most important parameter reported by Scheuermann is the nominal flight
path angle, the value of 10deg [20] is checked with simulation results. The difference
between them is 3.85% and it is acceptable knowing the assumption.

Another sensitivity analysis was performed using the CIMNE data as Reference
[8]. Knowing that the suspension lines do not affect the trajectory under assumption
of dead-mass payload, the focus of this sensitivity analysis was upon longitudinal
dynamic. Indeed the CL and CD are given but the Cm is not. The sensitivity analysis
is necessary to have an insight of how much the Cm is going to affect results.

As shown in Figures 3.6 and 3.5 the value of Cm greatly affects results, because it
changes the AoA at which the system trims itself.

Figures from 3.7 to 3.9 show the results reported by [23] compared to the ones
obtained by the simulator developed in the frame of the present work.

To perform an additional check, the thesis [6] was reproduced. As shown in
Table 3.1 the values reported by Gideon van der Kolf are well represented by the
simulator: with a maximum error well below 10%.
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FIGURE 3.6: Aerodynamic coefficient sensitivity analysis at steady
state
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3.2 Inflation validation

Previous reported cases were all focused on the trajectory analysis. To validate dy-
namics at the inflation, an analysis was made comparing simulation results and
flight data of the X-38 drop tests.

This kind of analysis is very important in order to use the simulator to size the
riser and bridles. The main loads are experimented during inflation and the highly
dynamic nature of the event make them very difficult to be correctly represented.
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3.2.1 X-38 drop tests 7500 f t2 parafoil

The reference drop test is P3D5, above all because its aerodynamic data are deeply
analyzed and reported in [4].

In flight tests, during inflation, the transition from an angle of attack of 90 deg to
0 deg occurred in 2 seconds [4]. As shown in Figure 3.10 the transition time is equal
to 2.13s.

After full inflation parafoil trims itself to a nominal value of −8.5deg [4], Figure
3.11 shows how the simulation result is very close to the real value: an error of less
than 2%.

The full inflation of the X-38 parafoil is reported to last from 20 to 30 sec [4], in
the simulation the deployment takes 18.91s as shown in Figure 3.12.

Oscillations experienced by the X-38 model during inflation are reported to be
within −70/35deg [4]. The simulation overestimated these oscillations as reported
in Figure 3.13. Figure 3.13 also shows that X-38 in simulation oscillates with a higher
frequency compared to the one of the real drop test experiment. It can be related to
unknown values of the riser damping coefficient or Cmq , as shown in Figure 3.14.
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The most critical values overestimated by simulations are the accelerations expe-
rienced by the payload. They are reported to be 4 g’s for the first reefing stage and
from 2.5 to 1.5 g’s for other stages [15]. In simulations instead a value of 4.2 g’s is
computed for the first stage and from 2.4 to 2.2 g’s for other stages, Figure 3.15.
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The simulator correctly represents the steady state but it overestimates accelera-
tions during inflation. This is probably due to both the differences of the the payload
drag data and the density value.
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3.2.2 US Army 4200 parafoil drop test

The drop test LCWW-2 done by Pioneer for the US Army in the frame of the JPADS
program is here reproduced.

The focus of the validation is again on the reproduction of the inflation loads.
Knowing that the payload in this case was a cradle plus a mock-up of a military ve-
hicle, the entire test was reproduced: both drogue and parafoil are reefed in multiple
stages.

Loads depend on how much drag the payload generated, mainly for two reasons:
firstly a bigger drag slows down all the system to lower velocities before parafoil
openings, secondly a bigger drag reduces the velocity increment during the free-fall
phase between drogue cut and parafoil deployment, Figure 3.16.
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In order to have a correct representation of the drag, Equation 3.1 was used to
compute the drag area. This is a standard formula for cradles.

CDSAoA = CDS f rontcos(α) + Sbottom(1.1(sin(α))3 + 0.02) (3.1)

The flight time is a little overestimated: almost 11 minutes instead of 10 minutes
from the deployment. Mainly the error is due to the parafoil trajectory, being the
drogue parachute cut at the correct altitude of 5029 meters after 18.1 seconds from
aircraft release (instead of the 16 seconds reported [15]).

Some parameters are not known and their effect on the dynamic behavior of the
system must be considered. A sensitivity analysis was carried out.

As shown in Figure 3.17 an important parameter which highly affects the infla-
tion loads is the dimensionless time τ0. As stated in Section 2.1.3 usually for free
inflation parafoils τ0 is equal to 3.5 but it was found out in the literature that this
value can drop even to 2. The value of 2 allows to get a more comprehensive repre-
sentation of the real drop test data.

Parameters characterizing the connection lines are the rigidity k and the damping
coefficient c. They are unknown data in the drop test reported in [5]. The effects on
the loads by changing them are shown in Figure 3.18.
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In the sensitivity analysis reported in Figure 3.18 the constant values are τ0 = 2
and Cmq = −2.5. It can be noted how, increasing the value of K, it does not imply an
increase of the loads experienced but it allows the generation of more spikes.

Figures 3.18 and 3.19 show that loads approach zero after the pitch down move-
ment of the parafoil canopy; it is due to the lines slack, not experienced in the drop
test, so the canopy should oscillate less. That’s why a sensitivity analysis of the
longitudinal damping coefficient variation was carried out maintaining τ0, K and c
costant, Figure 3.20. In case of Cmq = −5 the lines do not slack because the parafoil
does not reach an excessive pitch down attitude, but it can be noted how the peak
load reaches a lower value.
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After completing these analyses, a tuning of the parameters can be done in order
to reproduce the exact dynamic of the drop test, checking that all parameters remain
in a physical feasible range of values. The result is shown in Figure 3.21.
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Figure 3.21 shows that at the beginning the real values are well represented but,
before reaching steady state, the simulated values are different from the real ones.
The reason is probably related to the value of Cmq . Indeed in the simulation Cmq is
supposed to be constant while in reality it probably changes. Unfortunately no aero-
dynamic studies were carried out on the topic, NASA studies [19] proved that static
aerodynamic coefficients like CL, CD, Cm change during inflation, so it is possible to
suppose that even aerodynamic damping coefficients change their values.
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Chapter 4

Guidance Navigation & Control

In this chapter the GNC system will be dealt with. The possibility to steer the
parafoil-payload system, applying a control action, is the real attractive feature of
the parafoil respecting to a ballistic parachute.

The system logic flows like shown in Figure 4.1. In the same manner it will be
shown in the following pages.

FIGURE 4.1: GNC flow chart

Firstly the Navigation gives an estimate of the states of the system that are needed
to the Guidance, Section 4.1. Then the Guidance elaborates a feasible trajectory to get
to the landing target or (if not possible) as close as possible to it, Section 4.2. Lastly
the Control tries to make the system follow the trajectory given by the Guidance,
Section 4.3.

Two types of control are possible in a parafoil: the longitudinal one and the
lateral-directional one. The lateral-directional control allows the system to steer it-
self in the XY-plane. The longitudinal control allows to manage the FpA, the GS and
so the remaining time of the flight.

4.1 Navigation

Having not yet available the system architecture of the SpaceRider, a set of instru-
ments must be supposed to model the Navigation subsystem.

Looking also at other works [20] and also reasoning on the topic, it is straight
forward to assume that the most important quantities to be used by the Guidance
will be an estimation of:

• Position of the system and of the target in the 3D space, it can be provided by
a GPS unit

• Velocity, both in modulus and direction, it can be retrieved by a GPS unit or by
a Inertial Unit (IMU) or a combination of both

It is supposed that the measurements are affected by white Gaussian noise. So
the estimated states will be a superposition of the real ones plus the noise contribu-
tion, Equation 4.1.
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xobs = xreal + xnoise (4.1)

The parameter xnoise used in Equation 4.1 is related to the accuracy of the instru-
ments on board. Supposing to have a GPS unit, the parameter values used in the
simulations are Table 4.1.

TABLE 4.1: Standard deviation values used

Position [m] Velocity [m/s]
σ value 10 0.2

If multiple instruments are used, a method to combine the informations must be
implemented and used. It could be useful to combine the IMU with the GPS in order
to filter out the noise of GPS measurements.

The value of σ for the velocity estimation in Table 4.1 is the one expected for
a SpaceRider-like mission, the white Gaussian noise is going to act differently on
each component: meaning that this will going to affect not only the magnitude of
the velocity estimated but also its direction. Figure 4.4 shows a sensitivity analysis
that demonstrates the accuracy of the GNC algorithm is not compromise until the
σvel value remains below 2.1m/s, that is approximately 10% the value of the flight
velocity.

The wind is supposed to be estimated on board by the system, this will have
some consequences as shown in Section 5.2.
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FIGURE 4.5: Lateral angular error definition [17]

4.2 Guidance

The Guidance can be considered decoupled in the lateral-directional plane and in
the longitudinal plane in case of large canopies that are turn-rate limited. This was
the case for example of X-38. [26] In case of small canopies, steep turns are going
to affect also the FpA, thus the lateral motion will be coupled with the longitudinal
one.

SpaceRider case can be well assumed to be a large-canopy one.

4.2.1 Lateral-directional Guidance

The lateral-directional Guidance has the aim to compute a trajectory to be followed
in the XY-plane. In the present work two possibilities are given to the model user:

• to insert directly a 3D trajectory to be followed

• to let the system compute its own trajectory giving only the wanted landing
point

The first option is important in the frame of the SpaceRider mission. Not only
because there are multiple industrial actors, each of them with a specific task (the
mission analysis and the control system could be assigned to a different companies)
but also because, due to its practical application, it could be necessary to make some
considerations on the path to be followed: i.e. to avoid populated areas or to have
multiple possible landing points, as back up alternatives. In this case the Guidance
will be limited to a path-following technique: the error to be given at Control will be
computed as the angular displacement between the actual position and the wanted
one at the next time instant.

The choice of the position of the point to be aimed is very important in this kind
of strategy: a too close point could lead the Control to overreact continuously, a
too far point could make the system to ”cut short” on the path to be followed. In
the present work the aiming point was chosen at a distance of 200 meters from the
actual position.

The second option is the classical approach used for parafoil-payload systems: an
adaptive Guidance allowing the system to be flexible and to compute its own trajec-
tory depending on the wind direction. There are lots of possible adaptive guidance
algorithms: Dubins paths [7], LQR aimed to minimize control effort, spiral loiter [23]
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FIGURE 4.6: T-based approach

and so on [12]. All of them divide the flight path into four segments: homing, loiter,
terminal guidance and flare.

The Guidance algorithm used in the present work is a T-based Guidance [11]. It
is a simple and robust Guidance algorithm that can easily be implemented on board.
It is a Guidance that is based on the definition of 4 way-points, the position of these
way-points is computed with the information of the wind and of basic properties of
the system.

First an initialization phase is needed. It can be a free-flight phase or usually an
open loop full circle. In this phase an estimation of the wind velocity is performed
looking at the drifting, due to the wind action. In the present work the initialization
phase is considered through a free-flight time interval after inflation, in this way also
oscillations due to inflation are let to damp.

After the initialization of the Control, the first control mode is homing: the sys-
tem aims to the energy management way-point (EM). It is positioned at a distance of
5 standard radius of turning from the landing point in a downwind direction. The
standard turning radius is computed as R = V/ωstd. Where flight velocity V and
angular turning velocity ωstd must be known or estimated by the dynamic properties
of the system.

After EM way-point is reached, the energy management phase is initialized: a
check is done if the actual altitude of the system is more than the one needed to get
to the landing point. If the actual altitude is equal or less than the one needed to
get to the landing zone, a direct approach to the LZ is activated. Otherwise a loiter
strategy is employed to lose altitude without getting too far from the LZ. The loiter
phase consists of the system switching its aim between way-point L1 and way-point
L2, Figure 4.6. This strategy is better than a simple circular loiter, Figure 4.7, because
the circular shape of the pattern could lead to an uncontrollable parafoil situation



42 Chapter 4. Guidance Navigation & Control

0

4000

2000

2000

H
 [
m

]

Y [m]

0

4000

3D trajectory

S [m]

-20000

6000

-4000
-2000 -6000

FIGURE 4.7: Example of circular loiter technique, landing error 500
meters

and also because it could be difficult for the energy management to decide whether
to initialize another turn or not. [11]

During loiter phase a continuous computation of the residual energy (in form of
altitude) is done, Equation 4.2. When this condition is met, the system triggers the
terminal guidance phase. This is one of the most critical points: if the terminal guid-
ance is switched on too early the target will be overshot, while if it is switched on too
late the system will fall short of the LZ. Some margin must be taken into account:
that is the reason why a 180deg turn is considered in the altitude margin. This is
possible only if the possibility to have a longitudinal control is foreseen: decreasing
γ will tackle residual altitude.

hcapsule ≤ (−tan(γ)||xLZ − xcapsule||+ π/ωst||vZI ||) (4.2)

The terminal guidance phase is an homing phase aiming directly to the landing
point, it is the last opportunity to do corrections in the XY-plane in order to get as
close as possible to the LZ.

4.2.2 Longitudinal Guidance

The objective pursued by the longitudinal guidance is to follow a given FpA profile.
The FpA profile maybe be based on the following considerations: maximizing the
time of flight or tuning to have a direct landing approach thus skipping the loiter
part.

In the model the FpA profile is supposed to be an input, except for the terminal
guidance and flare phase. These phases are indeed the ones where FpA control can
be most useful in order to reduce the landing error, Equation 4.3 shows how the γ is
computed to land exactly in the right position.
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GS =
||xLZ − xsystem||

hsystem

γ = −tg−1
(

1
GS

) (4.3)

4.3 Control

Knowing the errors given by the Guidance, the Control outputs the control action
that will act on the dynamic of the system.

From a system point of view the control is actuated pulling or releasing the sus-
pension lines using hinges. Depending on the number of lines pulled and on their
position along the canopy, the effect on the system will be different.

To model realistically the actuators rate limits and saturation were imposed. The
values were chosen to simulate the hinges functioning, but, these limitations help to
have a smoother variation. When the suspension lines are released it is supposed
that the variation of δ is faster due to aerodynamic pressure pushing the canopy to
its natural position, Table 4.2.

TABLE 4.2: Limitation on the control variables

Rate limits [deg/sec] Saturation [deg]
δa / δs +5 / -90 90 / 0

µ +5 / -90 0 / -12

4.3.1 Lateral-directional Control

The lateral-directional control is obtained by means of pulling or releasing the sus-
pension lines connected to the trailing edges at the outer sections of the parafoil. The
effect will be a canopy local curvature, that can be modeled as if there is an aileron
located there.

Costello demonstrates how two dynamic modes of control are possible for parafoil:
roll and skid steering. He also reports that is necessary to account for the tilt of the
canopy to correctly characterize the dynamic response of the system to the control
input. This is ensured by the employment of a 12 DoFs model. [22]

The control action u is equal to δ, namely the angular deflection of the aileron.
In order to turn right and left, two ailerons are needed: one on the left side of the
canopy and the other one on the right side. The control action will not affect directly
the dynamic of the system, it will change the aerodynamic properties as shown in
Equation 4.4. The values of δasymm and δsymm used in Equation 4.4 are defined as
Equation 4.5.

CL = CLwithoutcontrol + CLδ
δasymm + CLδs

δsymm

CD = CDwithoutcontrol + CDδ
δasymm + CDδs

δsymm

Cn = Cnwithoutcontrol + Cnδ
δasymm

Cl = Clwithoutcontrol + Clδ δasymm

(4.4)

δasymm = min(δle f t, δright)

δsymm = δright − δle f t
(4.5)
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TABLE 4.3: Control aerodynamic derivative values

Control aerodynamic derivative Value [1/deg]
Cnδa

0.0115
Clδa

-0.0035
CLδs

0.0037
CDδs

0.0039
Cmµ 0.01846

Modeling through aerodynamic derivatives allows the model to be flexible: in
this way the control technique employing air bleeds can be represented too. [20]

Two possible control laws were analyzed:

• a classical proportional law δ = u = Kη

• a sine law δ = u = Ksin(η)

The second law is an adaptation of the law developed by Sanghyuk Park. [17] It is
not possible to adopt directly his control law because he foresees the control action
to act directly on the dynamic of the system as a lateral acceleration, while in this
more complex model the control law acts as aileron deflection, thus it can not have
the dimensions of an acceleration. S. Park law is also limited to a forward facing
way-point. To overcome this limitation a saturation of η at values of π/2 and −π/2
is imposed. In this way the system will not see a control action equal to zero in case
of η = π.

As far as sin(η) = η are equal for small angles in small perturbation conditions,
the two laws will perform approximately in the same way. Therefore the difference
is quite visible for large angular displacements coupled with small turning radius,
as shown in Figure 4.8. The sine follows more accurately the wanted path than the
proportional one.

Therefore the sine law was selected for the lateral-directional control.

4.3.2 Longitudinal Control

Literature reports to halve the landing error if there is the possibility to exploit lon-
gitudinal control. [29] This was observed also in the simulations performed, even if
their number is too small to be considered a real trend, an example is given in Figure
4.10.

The longitudinal control can be achieved in two ways: firstly by means of sym-
metric ailerons deflection and secondly by rigging control. The first control strategy
depends on the aerodynamic of the parafoil. Indeed if CDδs

and CLδs
have the same

modulus and sign, the increment of lift and drag will be similar in case of ailerons
deflection. It means that the lift-to-drag ratio will be approximately unaffected and
the FpA too, their dependency is expressed in Equation 4.6.

γ = − 1
tan−1( L

D )
(4.6)

Rigging control is a viable way for every kind of parafoil, independently on the
aerodynamic. It consists in a rigid rotation of the canopy front part pulling or re-
leasing all the lines attached to the leading edge of the parafoil, Figure 4.11. As
Lingard states in his work [13], the rigging angle affects the dynamic of the parafoil
in multiple ways.
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There is relation between µ (rigging angle) and Cm, as shown in Figure 4.12.
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FIGURE 4.12: Cm/µ slope

In this way a linearized additional term can be added to the usual formulation
of the longitudinal moment coefficient. The value of Cm/µ used in Equation 4.7 can
be retrieved from the slope of the curve in Figure 4.12: Cm/µ = 0.018461/deg. The
sign is inverted with respect to the one of the Figure 4.12 because Lingard consid-
ers the rigging angle to be positive, while in this work is considered negative to be
consistent with the right-hand rule and the reference system taken, Section 2.

Cm = Cm0 + Cm/αα + Cm/µµ (4.7)

The other effect of the rigging angle on the dynamic is its presence in the rotation
matrix from wind to body axes, as shown in Equation 2.32. In the same way the
incidence angle is modeled for an airplane wing.

As shown in Reference [13] the interaction between rigging angle and the dy-
namic of the system is more complex than the actual model presented in the present
work. There is a cross interaction between symmetric ailerons deflection and rigging
angle with Cm. µ also affects the CL and CD dependence from α. These effects will
be implemented once the design of the SpaceRider parafoil will be more detailed.

The effects considered are sufficient to study the feasibility of the non-linear lon-
gitudinal control law analyzed in the present work, Equation 4.8.

µ̇ = Kµ(γdesired − γ)2sign(γdesired − γ) + θ̇

µk = µk−1 + µ̇∆t
(4.8)

To be implemented in the model, Equation 4.8 must be coupled with a user-
specified initial condition. In simulations the µ0 considered is always equal to 0 deg.

As said at the beginning of this Section the other possibility to actively control the
FpA is by means of symmetric aileron deflection. This possibility is also analyzed
and the control law presented in Equation 4.9 is used.
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u = δ̇ = Kδs(γ− γdes) (4.9)

How δs is going to affect the dynamic of the system it is presented in Equation
4.4 with the values reported in Table 4.3. The Lyapunov stability of the symmetric
brake deflection is shown in Section A.

It worths noting that both the longitudinal control strategies can only decrease
the γ value, not increase it, because suspension lines can only be pulled or released
to their natural conditions, not pushed to a controlled value.

Lyapunov stability demonstration of rigging angle control

To ensure the control Lyapunov stability the following conditions must be met:

• V(x) > 0 for every x different from the xeq

• V(xeq) = 0

• V̇(x) < 0 for every x

Equation 4.10 can be selected as Lyapunov function. This is going to respect the
first two conditions considering the way it was written.

V(x) =
1
2
(γdesired − γ)2 (4.10)

Now, taking the derivative, Equation 4.11 is obtained.

V̇(x) = (γdesired − γ)(γ̇desired − γ̇) (4.11)

It can be supposed, without loosing of generality, that the γdesired profile is going
to vary slower than the dynamic of the system itself (it could be a constant value or
slowly varying). In this way the derivative of γdesired is zero.

V̇(x) = −γ̇(γdesired − γ) (4.12)

By definition of the angles the Equation 4.13 holds.

γ + θ = µ + α (4.13)

Thus γ can be rewritten as Equation 4.14.

γ = µ + α− θ (4.14)

Substituting in the derivative, the Equation 4.15 is obtained.

V̇(x) = −(µ̇ + α̇− θ̇)(γdesired − γ) (4.15)

Focusing on α̇ and using the properties of the partial derivatives Equation 4.16
can be written.

α̇ =
δα

δCL

δCL

δt
(4.16)

The first term is equal to the reciprocal of CL/α
and for a parafoil (as for a wing)

is positive. This imply obviously that control must operate only when the aerody-
namic forces can be considered linearly dependent on α. It is not a limitation because
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during the inflation (when linear aerodynamic coefficients assumption is not true)
the control is deactivated: to avoid unnecessary overload of the control.

The other term of Equation 4.16 is the time derivative of the lift coefficient. The
lift coefficient can be directly related to the lift by the well-known Equation 4.17.

CL =
2L

ρV2S
(4.17)

δCL

δt
=

2L
ρS

δ

δt
(

1
V2 ) (4.18)

The velocity is not going to change in its modulus, only in its direction, so the
Equation 4.18 is equal to zero. The variation of ρ due to density change in the at-
mosphere model is very slow with respect to the dynamic of the system, this is the
reason why they have not been considered in the differentiation.

So Equation 4.15 becomes Equation 4.19.

V̇(x) = −(µ̇− θ̇)(γdesired − γ) (4.19)

Knowing Equation 4.8, the term µ̇ can be substituted with the control law, in this
way Equation 4.20 is obtained.

V̇(x) = −Kµ(γdesired − γ)2sign(γdesired − γ)(γdesired − γ) (4.20)

As it can be noted the Equation 4.20 respects the last condition for the Lyapunov
stability: it is always negative if Kµ is more than 0.
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Chapter 5

Simulation results

In Chapter 5 the functionalities and the real application of the model are shown.
The model can be used to size the aerodynamic decelerator system (parachute and
parafoil) and also to test and characterize GNC algorithms. Figure 5.1 shows the
overall structure of Chapter 5.

FIGURE 5.1: Chapter 5 structure and logic

5.1 System design

In the present Section the model is used to size the parafoil system. The main de-
sign requirements derive from maximum deceleration at the opening (i.e. it do not
exceed 3g’s to avoid damage to the payload) or flight velocity in steady-state condi-
tions. The main variables are the canopy surface, affecting both requirements, and
the reefing technique, affecting only opening loads.

5.1.1 Reefing optimization

The reefing technique is based on two parameters: the surface of the reefed stage
(expressed in % with respect to the nominal area) and the time delay between the
stage inflation and the initialization of the following stage.

As introduced in Section 2.1.3, the reefing strategy in parafoil has not a linear
correlation with experienced inflation loads. The non-linearity of the phenomenon
allows to perform an optimization of the reefing parameters to reduce the loads at
inflation. Due to software limitation the optimization employed in the present work
is a gird-search type: different combinations of time-delays and reefing percentages
are simulated and mapped. It is then possible to retrieve the optimal configuration
from graphs.
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FIGURE 5.2: Gird-search first stage reefing optimization

In Figure 5.2 the results of the optimization process are reported, referring to the
following system configuration: SpaceRider (as payload), parafoil (with canopy sur-
face 250m2 and aerodynamic properties of the X-38 parafoil, Section 2.1.4). As shown
in Figure 5.2 the optimal solution is found at a reefing percentage of 25% with a time-
delay of 4 seconds between first stage inflation and full inflation. The time-delays
analyzed are only 4,6 and 8 seconds because the reefing cutters are standard py-
rotechnics hardware, so they can not be customized from application to application.
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As shown in Figure 5.3 the time-delay effect changes depending on the deploy-
ment conditions (velocity and altitude), but in any case a time-delay of 4 seconds
remains the lower boundary near the minimum.

Imposing a time-delay of 4 seconds (the best solution for SpaceRider applica-
tion) and knowing that a design requirement of maximum 3 g’s must be met, an
operational curve is drawn, Figure 5.4. In Figure 5.4 the y-axis is the dynamic pres-
sure defining a combination of altitudes and velocities, while the x-axis is the reefing
percentage. In order to deploy the parafoil without exceeding design requirements
the configuration must stay under the operational curve, choosing a combination of
reefing percentage, altitude and speed.

To check the validity of this procedure, the grid-search optimization is performed
also for the X-38 first stage reefing. As shown in Figure 5.5 the reefing strategy
employed by NASA and Pioneer for the first stage is the optimal one: a reefing
percentage around 33% and time-delay of 6 seconds. Thus the grid-search technique
developed in the frame of this work is a viable procedure to find the actual optimal
reefing strategy.
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5.1.2 SpaceRider aerodynamic decelerator system design

The parafoil is an element of the wider aerodynamic decelerator system of Spac-
eRider. It could be possible that the parafoil design requirements come from a termi-
nal velocity constraint. In this way the inflated surface area of the canopy would be
fixed (once the aerodynamic properties of the parafoil are known) and, as shown in
Section 5.1.1, the reduction of maximum decelerations obtainable with reefing strat-
egy is limited. So it could be necessary to design the previous ballistic parachutes
stages in order to have limited loads at the parafoil opening.

A tool has been created to find a combination of ballistic parachute and opening
logic through an iterative approach with an optimization-like logic to respect to the
maximum load design requirements.

The parameters that can be changed are:

• First stage parachute area

• Second stage parachute area

• Opening altitude of the second stage

The inputs to be given are:

• Initial conditions before first stage deployment

• Parafoil opening altitude (due to cross-range considerations)

• Parafoil canopy surface (the standard SpaceRider parafoil with 250m2 canopy
is used)

• Maximum load that can be experienced (3gs)

The changing parameter logic of the tool is the following: if the parafoil stage
experienced loads are above the design limit the second stage parachute area is in-
creased. In case the second stage loads are higher than the allowable value, the area
of the second stage parachute is decreased, the area of the first parachute is increased
and the opening altitude is increased too. The first stage instead is exploited not only
to maintain the opening loads below the design requirement (if too high the area is
decreased) but also to damp the loads excess from the other stages: if the load of the
first stage is lower than a certain threshold, its area is increased to avoid overloading
the other stages.
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TABLE 5.1: Parameters value found that satisfies the design require-
ments

Parameter First stage diameter Second stage diameter Second stage opening h
Value [m] 4.1 8 8500
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FIGURE 5.6: Loads behavior with the optimization iteration

The results obtained, using this iterative approach, are shown in Figure 5.6, con-
vergence is obtained after 6 iterations. The found values of parachute areas and of
the second stage opening altitude are reported in Table 5.1.

5.2 GNC analysis

In the following Section an analysis of the GNC algorithm will be performed. The
results presented are always affected by both uncertainties in the states estimation,
Section 4.1, and by wind action.

The wind is not presented in the modeling section because it was an already
build-in suite in the model. The wind profile is made up of an altitude linear-
dependent profile plus a gust modeled as a normal distribution, as shown in Fig-
ure 5.7. The wind is stronger at lower altitudes, this is counter intuitive but it is
considered even a worst case scenario so it is acceptable.

The wind is supposed to be read on board in real-time by the system. It is how-
ever affected by the errors mentioned in Section 4.1.

5.2.1 Dynamic analysis of the system response to control action

To have an idea of how the system behaves when control action is activated, simula-
tions are performed for each control strategy. It is an open loop control cycle aimed
to check that the behavior of the system is physically feasible.
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As shown in Figure 5.8 the system turns left when undergoes to a left aileron
deflection. It shows how the system is turning with a skid steering mode. The
trajectory is affected by asymmetric deflection as shown in Figure 5.10.

The system response is studied also in case of longitudinal control action in the
case of rigging angle change, Figures from 5.11 to 5.12.

As shown in Figure 5.12 the system response is consistent to what is usually
experienced: lowering the leading edge of the canopy leads the system to lower its
FpA, to have a more pitch down attitude and consequently to gain speed.

5.2.2 Longitudinal control analysis

The longitudinal control is very useful in the last stages of the flight to reduce the
landing error. The non-linear rigging control law presented in Section 4.3.2 is ana-
lyzed.

As shown in Figure 5.13 the non-linear control is more effective of the classical
linear strategy. The proportional law continues to oscillate around the desired con-
dition, a more complex controller is needed (with also a integrative and derivative
part). In any case a PID controller is not well suited as a non-linear controller because
it does not take into account the non-linear dynamic of the system.

Even if at steady state the term θ̇ is close to zero, its importance can be seen in
Figure 5.14. When the system encounters a gust, the presence of the θ̇ allows to
damp quickly the oscillations caused by the gust itself, while its absence leads the
system to a divergent oscillatory motion.

As said in Section 2.1.4 a linear parafoil aerodynamic model was also imple-
mented. This was useful to check the flexibility of the longitudinal control law guar-
anteed by its Lyapunov stability. Figure 5.16 shows how the longitudinal control
worked well even when applied to different parafoils.
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In the control law showed in Equation 4.8 the term Kµ is present, it is the gain of
the control law and it can be an arbitrary value more than zero. An example on how
this term is going to affect the dynamic of the system is shown in Figure 5.18.
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Control laws effectiveness can be evaluated mainly looking at two parameters:
settling time and amplitude oscillations before the desired conditions are reached.
Having this in mind an evaluation of the control law can be performed with respect
to different gains.
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FIGURE 5.20: 2D T-based trajectory

As shown in Figure 5.19 the optimal gain Kµ value could be 5. In this way it
maintains the γ oscillations below 5% of error and it has also a settling time below
10 seconds.

5.2.3 Adaptive control

Figures from 5.20 to 5.22 show the results obtained applying an adaptive control
guidance with a T-based approach.

The landing error of the reported simulation is 22 meters. The error is very small,
considering that it is a large canopy with 200 meter turning radius, thanks also to the
glide slope control in the terminal phase of the flight. Figures from 5.23 to 5.24 show
how the system realizes to be too high to land at the desired point, thus it commands
a rigging angle change.

An additional reduction of the glide slope could not be possible only by rigging
angle control means because it reached saturation, Figure 5.24. Removing the satu-
ration, it will lead to a mathematically feasible solution without physical meaning:
the canopy would collapse.

A combined action of δs and µ could be exploited instead: the use of the rigging
angle to control the FpA while the ailerons symmetric deflection is used to control
the velocity profile.

CEP computation

To have an idea of the accuracy of the employed GNC algorithm an estimation of the
CEP is needed. Circular error probability (CEP) is defined as the radius of the circle
where it is expected a determined probability of the population will land. In order
to do this estimation some little Monte Carlo simulations are to be performed. Once
enough simulations are performed the CEP can be compute with Equations from 5.1
to 5.3. Equation 5.3 can be used only in case xLND ≈ yLND ≈ 0 and σy ≈ σx, that
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means a no bias and circular probability distribution is observed. So the probability
distribution can be assumed to be a Rayleigh one. The term P% in Equation 5.3 is the
level of desired confidence for the CEP computation: in case the CEP must include
50% of the population P% will be equal to 0.5, in case of 90% is searched P% will be
equal to 0.9.

xLND =
∑n

i=1 xi

n

yLND =
∑n

i=1 yi

n

(5.1)

σ2
x =

(∑n
i=1(xi − xLND))

2

n

σ2
y =

(∑n
i=1(yi − yLND))

2

n

(5.2)

CEPx =

√
2 ln

(
1

1− P%

)
σx

CEPy =

√
2 ln

(
1

1− P%

)
σy

(5.3)

The first analyzed case foresees variable wind direction but always with the same
intensity and profile shown in Figure 5.7. The probability the wind came from one
direction is equal for each direction, it is a square probability. This because no in-
formation on the weather is known yet so there is no "preferential" wind direction
known. The T-approach will change the way-point positions accordingly, as shown
in Figure 5.25. The CEP is around 60 meters of radius at 50% of probability while
it is around 150 meters of radius at 99% of probability, Figure 5.26 and Table 5.2.
This is an acceptable result considering the very slow dynamic of large parafoil (the
minimum turning radius in this case is of 200 meters). Also, it is a precision error
compatible with the X-38 tests [4] and with the literature for large canopies [29].
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FIGURE 5.25: 30 different trajectories with different wind directions
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FIGURE 5.26: Landing dispersion for a T-based approach with differ-
ent wind directions

The design requirement for the SpaceRider mission is a CEP99% less or equal to
150 meters, so the GNC enables to satisfy this requirement.

An analysis is performed to look at the landing dispersion when the wind has
a constant heading but its intensity changes. The wind intensity can assume values
from 0 to 1.5 times the value of the wind profile reported in Figure 5.7 (a part from
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the gust that is not considered here). These values should be tuned on the weather
at the landing zone.

Results are shown in Figure 5.27 and Table 5.2. Computing the mean values of
landing error as shown in Equation 5.1 it can be noted that along x there is a bias
of 40.8 meters but this is negligible with respect to the magnitude of the standard
deviation. Also, it would seem rotated with respect to the X-axis but, performing
the computation to highlight any correlation between x-y data, it is clear that the
latter conclusion is wrong. Indeed, if the value of ρ computed in Equation 5.4 is
equal to 0, there is no correlation between x-y dispersion.

ρ =
∑n

i=1(xi − xLND)(xi − xLND)

σxσy
= 5.7164e− 30 ≈ 0 (5.4)

Table 5.2 shows how in this case the landing dispersion has an elliptic shape.
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FIGURE 5.27: Landing dispersion for variable wind intensity

Figure 5.27 shows how the dispersion of the landing points is closer to the bound-
ary than in the previous case. That is because wind is in some cases too strong to
be compensated by the system with the altitude margin considered in Equation 4.2.
Indeed, if the wind intensity is close to the maximum allowable, it is going to be
close to 15m/s while the system flight velocity is around 20m/s.

Another possibility is analyzed: T-approach is fixed in space and the wind varies
randomly. This is a more realistic scenario, indeed if SpaceRider is going to land on
a runway as an aircraft it can not change its approach path due to wind: the runway
is of course fixed in space even if the wind moves.

Simulation results are shown in Figure 5.28 and Table 5.2. In addition, along x
there is a bias of 20.8 meters but, as in the previous case, the bias is negligible.

It is interesting to note that, as shown in Table 5.2, the landing error dispersion
has an elliptic shape with standard deviation values that are compatible with com-
mon runways dimensions. This demonstrates that for SpaceRider is feasible to land
on a runway in the same fashion of an aircraft.
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An interesting case to be analyzed is the one with turbulence presence. The tur-
bulence has been modeled with a simple white Gaussian noise [29] directly applied
to the wind components, Figure 5.30. The standard deviation along each component
is 1m/s, this value should be tuned on the expected weather conditions on the land-
ing zone designed, in any case it seems to represent the worst case scenario: wind
magnitude and direction vary in decimal of seconds. As shown in Figure 5.29 the
dispersion from the desired position is increased with respect to the case of the linear
wind. This is in line with literature: parafoil are very susceptible to turbulence. The
degradation on the landing accuracy due to turbulence is such that the CEP value
does not meet the design requirements.

Looking at Table 5.2 it is clear that the most critical parameters are turbulence
intensity and wind intensity. They could lead to impose some operational limits to
SpaceRider in order to meet the design requirements: above a determined value of
wind and turbulence intensity the atmospheric re-entry should be delayed.
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FIGURE 5.30: Turbulence modeled as white Gaussian noise

TABLE 5.2: Different CEP values depending on the operating condi-
tions

Variable wind direction Variable wind intensity
Probability value 50% 99% 50% 99%

CEPx radius 60 m 150 m 63 m 83 m
CEPy radius 60 m 150 m 20 m 26 m

Fixed T with variable wind direction Turbulence case
Probability value 50% 99% 50% 99%

CEPx radius 68 m 176 m 200 m 400 m
CEPy radius 10 m 25 m 200 m 400 m
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5.2.4 SpaceRider parafoil controlled flight

As stated in Section 4.2 the user has the possibility to make the system follow an
input trajectory. This is particular useful to test the GNC algorithms to follow a 3D
trajectory given by Thales Alenia Space, it could be representative of the real oper-
ational environment of SpaceRider. Figure 5.31 shows the 2D trajectory simulated,
that is close to the given one (not displayed here for secrecy policy) within a dis-
tributed error of 200m.

The simulation was performed with the nominal parafoil of SpaceRider: canopy
surface 250m2 and the same aerodynamic characteristics reported in Tables 2.3 and
2.2.
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FIGURE 5.31: SpaceRider parafoil-only 2D trajectory

The rigging control is useful to follow a velocity profile, Figure 5.32. The dis-
tributed error is below 4%, it is an astonishing result because no parafoil aerody-
namic property used to compute the reference trajectory was available.

Figure 5.33 represents a possible complete 3D trajectory of SpaceRider starting
from the ballistic parachutes deployment and ending with the parafoil landing.

5.3 Alternative configurations

An alternative configuration to the parafoil landing gear is here analyzed for the
SpaceRider mission, Figure 5.34. The MAR (Mid-Air Retrieval) strategy is exploited
[9]. Avoiding the system to land by itself it does not only saves weight due to landing
gear removal but it also simplifies the GNC system (loiter, terminal guidance and
flare phases are discarded) allowing a canopy dimension reduction too.
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FIGURE 5.34: MAR system concept of operations for the Space Rider
vehicle [9]

The system design requirements are compatible with an helicopter flying at 3 km
of altitude. It means:

• to have a system total velocity around 20 m/s at 3 km of altitude

• to have a vertical velocity around -9 m/s at 3 km of altitude

• a maximum deceleration at the opening of the parafoil less than 3g s
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As shown in Figures 5.35 and 5.36 the mission requirements are met with a
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canopy surface of 100m2. Even if the subsonic ballistic parachute has around 0% of
safety margin from the design requirement, a slightly bigger supersonic parachute
should be considered to be safer. Figure 5.37 shows the canopy surface with respect
to time, the 100m2 parafoil canopy allows a saving of 60% with respect to the nominal
surface canopy of 250m2 for an aircraft landing-like configuration. This configura-
tion would also save complexity for the GNC system: only the homing phase of the
flight would be implemented without loitering, terminal guidance and flare phases.
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FIGURE 5.37: Parachutes and parafoil area

Evaluating the MAR configuration, the complexity of this configuration should
be considered: the possible aerodynamic interactions between the rotor of the he-
licopter and the canopy of the parafoil before the system is hooked, the additional
safety certifications needed if SpaceRider operates combined with a manned heli-
copter and so on.



77

Chapter 6

Conclusions & future work

6.1 Conclusions

The present work focused on two aspects that were not deeply analyzed by litera-
ture: the inflation analysis and the non-linear Lyapunov stable rigging control law
applied to parafoil-payload systems.

The inflation analysis is usually treated with very simplified models aimed to
find the correct peak value only (3 DoFs [13] [29]). Using a 12 DoFs model, it was
showed a better representation of the inflation loads, representing correctly the ex-
perimental data of the X-38 drop test at the inflation, Section 3.2.2. Not only the
peak load values were found very accurately but also the general trend of the loads
was represented (i.e. the peak load is encountered at the pitch-down movement of
the canopy Section 2.1.3). The presence of additional DoFs required the definition
of some parameters during the analysis of inflation loads, such as Cmq τ0, that could
affect results even of one order of magnitude, Section 3.2.2. The aerodynamic pa-
rameters most important are usually the ones related to the longitudinal motion of
the system (CL, CD and Cm) must be accurately modeled and considered even at
high angles of attack. The representation of the attitude though the quaternions is
mandatory to avoid the Euler singularity.

The deep analysis of the inflation loads also showed how the highly dynamic
and non-linear phase of parafoil inflation could be exploited to optimize the parafoil
reefing technique, Section 5.1.1. This procedure helps to reduce as much as possi-
ble the inflation loads with a grid-search technique, using reefing percentage of the
stage and time to full deployment as variables. The validity of this methodology
was proven by the optimization of the X-38 reefing configuration that found out the
values used by Pioneer.

As far as GNC is concerned, the innovation of the present work was the devel-
opment of non-linear Lyapunov stable longitudinal control laws for the flight path
angle control, especially in the terminal guidance phase. Usually PID controllers
[29] are used but their linear functioning could lead to instabilities in a non- linear
system, Section 5.2.2. The Lyapunov stability demonstration enables the control law
to be independent from the parafoil-payload system at which it is applied. Also the
non-linear stability proved to be useful when the system encounters a gust. The
analytic demonstration, Section 4.3.2, is also a trail for further development of the
control law that could be refined in order to meet requirements depending on the
dynamic properties of the system and the desired performances.

In the frame of SpaceRider mission the multibody model will be used to design
both the aerodynamic decelerator system and the GNC algorithms.
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6.2 Future work

Any future work should be aware of the important assumptions made so far: the
rigid body assumption for both the canopy and the payload, the limitations in the
DoFs of the canopy during inflation, the considered reference system and the right-
hand rule regard. Once the model assumptions and limits are clear some improve-
ments can be done to the model itself.

Looking at the droptests report of the X-38 program [4] the percentage of non-
nominal canopy aperture tests is striking. One of the biggest improvements in the
model would be the possibility to model this kind of failures at dynamic level, even
if the model is a rigid body one, and the introduction of random failures in simula-
tions.

To design the GNC system it could be useful to translate the aileron deflection in
length of the lines to be pulled. In this way the aileron deflection could be translated
in work (knowing the force by the equations used to model the suspension lines) to
obtain a certain control action on the system. The work to deflect ailerons can also
be used to size the motors of the hinges in order to control the system trajectory.

An improvement of the landing accuracy could be gained if both the rigging
control and symmetric ailerons deflection are exploited. Indeed the rigging control
could be used to control the FpA profile while the symmetric ailerons deflection
could be used to follow a predetermined velocity profile.

The Monte Carlo simulations showed in Section 5.2.3 should be performed with
a more significant pool (more than a thousand of runs). For the SpaceRider applica-
tion the parameters to be changed and their probable distribution should be tuned
on the operational scenario identified as nominal: the wind direction and intensity
should have a probable distribution that is representative of the weather conditions
experienced at the landing zone designated.

The use of gains in the control laws, Equations 4.8 and 4.9, can be considered an
additional and useful degree of freedom in the hands of an expert GNC engineer.
But, to reduce the parameters to be defined by the user and also to have a good
performance of the GNC system, the system could be linearized in the around of
the actual states and then a Riccati equation solved to find the optimal gains for the
fitness function chosen.

As far as the inflation analysis is concerned, a better definition of the τ0 and Cmq

should be performed, via experiments and/or CFD analysis. Indeed the literature
gives a wide range of possible values but these values, changing from parafoil to
parafoil, affect heavily the obtained results. The Cmq value for example can assume
a value from −6.1 [24] to 0 [26].

In any case before using the model in the real mission environment it should be
noted that validation showed in Chapter 3 is not enough. Mainly because most of
the comparison was performed with lower DoFs model. A drop test to validate both
the GNC algorithms and the loads predicted is therefore mandatory.
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Appendix A

Lyapunov stability demonstration
of symmetric ailerons deflection

Similar to the rigging angle control, the symmetric ailerons deflection is intended to
adjust the FpA too. So it is quite reasonable to assume the same Lyapunov function,
4.10. The difference from the previous case will be on the interaction between the
control law (Equation 4.9) and the condition on the Lyapunov derivative.

Equation 4.12 gives the Lyapunov function derivative. Knowing that γ is related
to lift-to-drag ratio, Equation 4.6, the term γ̇ in Equation 4.12 can be written as Equa-
tion A.1.

γ̇ = − 1
(tg( L

D ))2

1
cos2( L

D )

d
dt

(
L
D

)
(A.1)

The time derivative of the lift-to-drag ratio can be written as Equation A.2.

d
dt

(
L
D

)
=

DL̇− LḊ
D2 (A.2)

Lift and drag variations in time could be supposed to be mainly connected to
their variation of aerodynamic proprieties due to ailerons deflection, variation of
speed will take place too but this is considered negligible with respect to the CL and
CD variations.

L̇ = CLδs
δ̇s

Ḋ = CDδs
δ̇s

(A.3)

Thus the derivative of the Lyapunov function can be rewritten as Equation A.4.
Where acoe f f represents all quantities that are positive because they are powers of 2,
such as − 1

(tg( L
D ))2

1
cos2( L

D )
.

V̇ = acoe f f δ̇s(γ− γdes)
DCLδs

− LCDδs

D2 (A.4)

As already mentioned the FpA control can act only when γdes < γ (they are both
negative), so γ− γdes is more than 0, therefore the definition of the control action δ̇
reported in Equation 4.9 guarantees the product δ̇s(γ− γdes) to be major than 0.

The term enabling the Lyapunov stability is DCLδs
− LCDδs

< 0, it implies the
conditions reported in Equation A.5. This condition is automatically satisfied by the
aerodynamic coefficients from Table 4.3 but it is usually a general satisfied condition,
because the symmetric ailerons deflection is going to diminish the lift-to-drag ratio
but also to increase the AoA. The increment of AoA value will increase the lift-to-
drag ratio, if linear aerodynamic assumption is valid. Considering this, the decrease
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FIGURE A.1: Variation of the FpA due to symmetric ailerons control

of lift-to-drag ratio will be always lower than the ratio of their aerodynamic control
derivatives.

CLδs

CDδs

<
L
D

(A.5)

Figures from A.1 to A.2 show how the symmetric ailerons deflection can be used
to control the FpA in the same way of the rigging angle with the control law Equation
4.9.

It can be noted how the velocity of the system decreases, this is the reason why
during the flare maneuver a full symmetric aileron deflection is commanded.
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Appendix B

Flare

The flare maneuver is initialized few dozen of meters above the ground. It is a very
dynamic maneuver: its tuning will change if the dynamic properties of the system
change.

The aim of this last control stage is to reduce as much as possible the touch-
down velocity, especially the vertical one (that must be dissipated by landing gears
or skids). In order to achieve the desired condition an open loop strategy is imple-
mented: the rigging control is set to zero and the ailerons deflection is imposed to be
symmetric at 90 degrees.

The symmetric deflection of ailerons aims to reduce the total velocity, the way
it will affect the FpA will depend on the values of CDδs

and CLδs
. The rigging con-

trol instead is set to 0 in order to have the system not to accelerate and also not to
increment the FpA. All that would lead to higher values of vertical velocity, Section
5.2.1.

As shown in Figures from B.1 to B.4, the Terminal Guidance increases the γ with
the rigging control because the system is too high with respect to the landing zone.
As soon as the flare is initialized, when the system is lower than 75 meters, the
velocity decreases and also the absolute value of the FpA. This means that not only
the overall landing velocity is lower but, most importantly, the vertical velocity is
lowered.

If symmetric ailerons deflection would not have been commanded, the system
would have landed at 24.5 m/s (with rigging control still active) or 20 m/s (with
rigging angle set to 0). It means a velocity diminish of 25% and 8% respectively,
without any flight hardware modification.
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Appendix C

Design features

Being the model very complex (12 DoFs), it is mainly suited for validation purpose.
But, in order to allow an higher flexibility and the exploitation of the model dur-
ing the design of the parafoil, some semi-empirical models are introduced. Semi-
empirical models are the ones reported by O. Yakimenko [29] and they can be used
to size the main parafoil geometrical properties (surface, aspect ratio and arch ra-
dius) relating them to the aerodynamic properties.

With this procedure it can be possible to decide a parafoil airfoil on the base of
its flight qualities. Indeed the input data needed for the computations are:

• the angle of attack (coming from the dynamic simulation)

• the aspect ratio of the parafoil wing (AR)

• the C2D
Lα

of the airfoil section

• the angle of attack at which the airfoil generates zero lift α0

• the semi-aperture angle of the canopy ε0

Starting from the quantities listed above, the aerodynamic properties of the full
3D parafoil can be computed with Equations from C.1 to C.7.

k = ARπ(C2D
Lα
)−1

k1 =

√
k2 + 1 + 1√
k2 + 4 + 2

k2 =

√
k2 + 4− 1√
k2 + 1 + 1

(C.1)

FIGURE C.1: Design process of the parafoil aerodynamic properties
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CLα =
πARC2D

Lα√
(πAR)2 + (C2D

Lα
)2 + C2D

Lα

CL = CLα(αcos(ε/2)− α0)cos(ε/2)

(C.2)

CDinduced =
C2

Lα

eπAR
(αcos(ε/2)− α0)

2

CD = CD0 + CDinduced

(C.3)

Cmq = −
CLα

12
(cos(ε/2))2

Cm = Cmq

qc
2V

(C.4)

CYβ
= −CLα k1

εsin(ε)
4

− CD0

1 + 2cos(ε)
3

CYp = CLα k1
sin(ε)

4

CYr =
1
2

CLα(sin(ε)α0 − 2sin(ε)(cos(ε))2α)

CY = CYβ
β + CYp

pb
2V

+ CYr

rb
2V

(C.5)

Cnβ
=

1
8

εCLα k1k2(sin(ε)α0 − 2sin(3ε/2)α)

Cnr = −
CD0

3

(
1− 1

5
ε2
)
+

(CLα)
2

πAR

(
1
2
− ε

24
α2

0

)
+ CLα

k1ε2

24 AR2

+

(
(CLα)

2

πAR

(
4− 7

12
ε2
)
− CLα

(
1− 5

12
ε2
)

α0

4

)
α

Cnp =
1
8ε

CLα k1k2(sin(ε)α0 − 2sin(3ε/2)α)

Cn = Cnβ
β + Cnp

pb
2V

+ Cnr

rb
2V

(C.6)

Clβ
= CLα k1

sin(ε)
8

Clr = −
1
4ε

CLα(sin(ε)α0 − 2sin(ε/2)(cos(ε/2))2α)

Clp = −CLα k1
sin(ε)

8ε

Cl = Clβ
β + Clp

pb
2V

+ Clr
rb
2V

(C.7)

In this way it is possible to tune the inputs to have the desired flight qualities of
the system: the parafoil airfoil and the canopy geometrical properties (AR,S,ε0) are
designed. The logic flow chart of the design process is shown in Figure C.1.

Examples of CL and CD with respect to the angle of attack found with these
model are given in Figure C.2 and C.3. It worths noting that even if CL at high an-
gle of attack has a very high value, in practice that value is never met for the no-lift
approximation during inflation Section 2.1.3.
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FIGURE C.3: CD vs α computed with the models presented and the
data in Table C.1

TABLE C.1: Canopy and airfoil data used for the model test

Quantity Value
Canopy surface 100 m2

Aspect ratio (AR) 3
Canopy radius (R) 0.6 b (span)

C2D
Lα

π

α0 -7 deg
CD0 0.084

e 0.8
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