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<< Today’s the day my life begins. […].  

Today I become a grown up.  

Today I become accountable to someone other than myself and my parents. 

Accountable for more than my grades. 
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 To all the possibilities that life has to offer. 

Starting today, my job is to show up wide eyed and willing and ready.  

For what, I don’t know.  

For anything. For everything. 

 To take on life.  

To take on love. 

 To take on the responsibility and possibility.  

Today, my friends, our lives begin. And I for one can’t wait. >> 

Becca 

 



 



I 

 

Abstract 
 

Genomics is the study of all the elements composing the genomic material within an organism. The 

genes and their role on the expression of human traits are one of the main focuses of modern medical 

research. Alteration of gene expression and of its regulation is associated with disease, including cancer.     

Gene expression is the process by which information encoded in a gene is interpreted and used for 

synthetizing a functional gene product. Regulation of gene expression is quite a complex process, 

involving multiple participating factors with a different impact, such as specific regulatory genes that 

encode for transcription factors, and epigenetic modifications like DNA methylation. 

This thesis aims at inferencing gene regulation networks in ovarian cancer patients, by building a 

predictive model for the regulation of the expression of specific target genes belonging to relevant 

pathways for the ovarian tumor, on the basis of their methylation and expression values, and of the 

expression of genes encoding for transcription factors with binding sites located in the target gene 

promoters. 

From a computational standpoint, multiple linear regression models are built for each gene of 

interest, according to an incremental approach that progressively analyze all the potential regulatory 

features of interest. 

Results are validated using other relevant and already known computational methods and a set of 

samples extracted from basal-like breast cancer, a tumor biomolecularly equivalent to ovarian cancer. 

Thus, with this project it is possible to describe ovarian cancer related gene regulation systems, by 

identifying not only the main biological relationships between a gene and its already known regulators, 

but also additional possible associations, which may unveil still unknown and potentially interesting 

biological connections. 

 

 

 

 

 

 

 

 

 

 

 

 

 





III 

 

Sommario 
 

La genomica è lo studio di tutti gli elementi che costituiscono il materiale genetico di un organismo. I 

geni e il ruolo che hanno sull’espressione dei tratti umani rappresentano uno dei principali punti su cui 

si concentra la ricerca medica moderna. Proprio l’alterazione dell’espressione di un gene e il suo processo 

di regolazione risultano associati a malattie, tra cui il cancro. 

L’espressione di un gene è il processo attraverso cui l’informazione contenuta nel gene viene 

interpretata e convertita in una macromolecola funzionale. La regolazione dell’espressione genica è un 

processo piuttosto complesso che dipende da numerosi fattori, ciascuno avente un impatto regolativo 

diverso: tra questi vi sono specifici geni regolatori che codificano fattori di trascrizione, ma anche 

alterazioni epigenetiche, come ad esempio la metilazione del DNA. 

Questa tesi si propone di inferire reti per la regolazione dell’espressione genica in pazienti con 

tumore dell’ovaio, costruendo un modello predittivo per la regolazione dell’espressione di specifici geni 

target, appartenenti a pathways rilevanti per il tumore ovarico, sulla base dei loro valori di espressione 

e metilazione, e dell’espressione di altri geni che codificano fattori di trascrizione aventi siti di binding 

all’interno dei promotori dei geni di interesse.  

Dal punto di vista computazionale, per ogni gene di interesse si costruiscono vari modelli di 

regressione lineare, sulla base di un approccio incrementale che analizza progressivamente tutti i 

potenziali regolatori di interesse.     

I risultati sono infine validati, prima sfruttando altri già noti e validi metodi computazionali, poi su 

un gruppo di pazienti con cancro al seno di tipo basale, un tumore biomolecolarmente equivalente al 

tumore dell’ovaio. 

Con questo progetto è quindi possibile descrivere al meglio i sistemi di regolazione di geni rilevanti 

per il tumore dell’ovaio, identificando non solo le relazioni biologiche tra un gene e i suoi già noti 

regolatori, ma anche nuove associazioni in grado di svelare correlazioni biologiche ancora sconosciute 

e potenzialmente interessanti. 
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1. Introduction

<< Sometimes, the key to making progress is to recognize how to take that very first step. 

Then you start your journey. You hope for the best and you stick with it, day in, day out. >> 

Meredith 

Carcinogenesis is the process that leads to the formation of cancer, where normal cells are transformed 

into cancer cells. This process is strictly dependent not only on gene mutations, but also on alterations 

in the gene expression, i.e., the activity of genes. 

Some proteins, known as transcription factors (TFs), together with other multiple genetic and 

epigenetic influences, such as DNA methylation, are fundamental factors in regulating this activity. As 

a consequence, a misregulation of these TFs or of other regulatory elements may lead to the acquisition 

of specific tumor-related properties. 

However, the way in which the gene expression is regulated and controlled within tumors is 

complex and related knowledge is limited. An example is represented by an extremely interesting tumor 

that is unfortunately the most common cause of death in women with gynecologic malignancies, the 

Ovarian Serous Cystadenocarcinoma (OV), a particularly aggressive type of epithelial ovarian cancer.  

This thesis focuses on this specific tumor because of its still limited knowledge and a very poor 

related prognosis, with the objective of deeply understanding how regulation process works, in order 

to increase knowledge and hopefully improve cancer therapies. 

In this project we analyze and describe the regulation systems of a set of tumor-specific target 

genes, using heterogeneous data that comprise both DNA methylation and candidate TFs, which  may 

be responsible of defining tumor-specific gene expression profiles that ease tumor development and 

progression. 

This experimental work develops an analytic, statistical and computational method that mainly 

aims at inferencing gene expression regulation in cancers, integrating heterogenous information from 

multiple sources.  

In chapters 2, 3 and 4 we better explain the context in which this thesis is developed, defining the 

main biological concepts that are necessary for a correct interpretation and deep understanding of this 

work, carefully illustrating the main goals of the project and describing the materials and the tools used 

to perform the analysis. Next, chapters 5, 6 and 7 comprise the detailed description of the actual work, 

i.e., the data extraction process and the data analysis, as well as the discussion and validation of the

results. Finally, In chapter 8 and 9 we present the main conclusions of the work and its related future 

potential developments. 
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2. Background

<< Biology determines much of the way we live. From the moment we are born, we know how to breathe and eat. 

As we grow older, new instincts kick in. We become territorial. We learn to compete. We seek shelter. […] 

Biology says that we are who we are from birth. That our DNA is set in stone. >> 

Meredith 

2.1  Genomics, genome and genes

Genomics [1, 2, 3] is a branch of molecular biology that is related to the structure, function and evolution 

of genomes, whose main goal is the study of all the elements composing the genetic material within an 

organism. The genome is commonly defined as the total amount of hereditary information 

characterizing an organism and it is exactly identical in all its cells, with the exception of germ cells. 

The main chemical structure that is studied in genomics is the DNA (Deoxyribonucleic Acid) [4], 

where the hereditary information is encoded: DNA is a molecule containing all the information needed 

for the growth, development, functioning and reproduction and, in general, for supporting the life of 

all the living organisms. 

DNA is the biggest macromolecule in the cell and it is contained in every cell of the organism. It is 

a polymer composed by four different types of monomers, called nucleotides: each nucleotide is 

characterized by a sugar (i.e., deoxyribose) with five atoms of carbon, linked to a phosphate group and 

a nitrogenous base (Adenine, Timine, Cytosine or Guanin). 

DNA, however, doesn’t appear as a single chain of nucleotides: it has a specific 3D structure 

composed by two twisting anti-parallel (i.e., that run in opposite directions) and complementary 

strands, paired together thanks to specific bonds between nitrogenous bases of different nucleotides 

composing the strands (A bonds with T, while C bonds with G). In particular, the two nucleotide chains 

roll-up together in a right-handed coil, such that the nucleotide bases are arranged in the internal part 

of the helix, while the sugar-phosphate backbone constitute the external part (Figure 2.1). 

The information is encoded in the DNA by the order in which these bases are located in the 

molecule. Then, it wraps twice around a group of eight histones (small nuclear proteins) to form a 

specific structural unit, called nucleosome. Nucleosomes are packed together to form chromatin that, 

in turn, generates chromosomes within the nucleus of the eukaryotic cells, as illustrated in Figure 2.2. 

Chromosomes are usually paired together and the total number of chromosomes is peculiar of each 

species (e.g., the humans have 23 pairs of chromosomes). 

In order to simply make these biological concepts clear, a metaphor can be used, comparing the 

human genome to the instructions stored in a cookbook: just as a cookbook gives the instructions needed 

to prepare a range of meals, the human genome contains all the instructions that are needed to make 

the full range of human cell types, including muscle cells and neurons. In case of the human organisms, 
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the book (i.e., the genome) contains 23 chapters (i.e., chromosomes) and each chapter contains from 48 

to 250 million letters (A,C,G or T) without spaces. In total, the book contains over 3.2 billion letters and 

approximately 20,000 different recipes (i.e., the genes).  

A gene (Figure 2.3) is a segment of DNA, i.e., a specific region of the genome, that carries the 

information used for synthetizing one or more proteins. Proteins are large molecules carrying out a lot 

of different functions within the organisms and they are one of the most important molecular structures 

for living beings. The genes and their role on the expression of human traits are one of the main focuses 

of modern medical research, mainly because the alteration of the gene expression and of its regulation 

has been proved to be associated with disease, including cancer. 

Figure 2.1:  DNA double-helix structure. Taken from [5]. 

Figure 2.2:  Full DNA structure. Taken from [6]. 
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The study of tumors is one of the main branches of genomics, which is nowadays mainly taking 

advantages of the new possibilities provided by new advanced digital technologies regarding Big Data, 

Artificial Intelligence and machine learning algorithms, and Next Generation Sequencing (NGS) [7]. 

Contributing to the development of these technologies it is the Human Genome Project, an 

international scientific research project carried out from 1990 to 2003 with the goal of determining the 

sequence of nucleotide base pairs that make up human DNA and of identifying and mapping all the 

genes of the human genome, from both a physical and a functional standpoint. 

The project was a great success and it led to the development of the new sequencing paradigm of 

NGS, which is changing both biological research and medical practice, thanks to a set of new 

technologies enabling a high-throughput, high-precision, time-limited and low-cost sequencing 

process, making the DNA mapping a standardized process. 

 

 

2.2.  Gene expression and its regulation 

Gene expression is the process by which information encoded in a gene is interpreted and used for 

synthetizing a functional gene product [8]. A schematic representation of this whole process is shown 

in Figure 2.4. The gene expression process comprises two main steps: 

1. TRANSCRIPTION, where a particular segment of DNA is converted into a segment of mRNA 

by a specific enzyme, called RNA polymerase (Figure 2.5); 

2. TRANSLATION, where the mRNA is translated to produce an amino acid chain that then folds 

into an active protein performing its functions in the cell. 

Since not all the genes are active (i.e., expressed) at the same time or in the same cells, the process of 

the gene expression regulation allows the cell to decide which groups of genes to express according to 

the specific context it lives in, in order to increase or decrease the production of gene products, such as 

proteins or RNA, and thus to respond to different needs and external requirements. If a gene produces 

mRNA, it is said to be “ON” (i.e., expressed), otherwise it is “OFF”. 

However, the regulation of the gene expression is quite a complex process, because it involves 

multiple participating factors having a different impact on the regulation process itself, such as 

transcription factors or DNA methylation, which are explained in the next paragraphs. 

 

 

 

Figure 2.3:  Gene structure. Taken from [2]. 
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2.3.  Measurement of gene expression: RNA-sequencing 

Measuring the gene expression means quantifying the level at which a particular gene is expressed 

within a specific cell, tissue or organism, i.e., measuring the gene activity in particular conditions. 

Besides traditional DNA microarray analysis, which uses DNA spots attached to a solid surface to 

measure the expression levels of large numbers of genes simultaneously, NGS uses the RNA-sequencing 

process to measure gene expression [10]. 

RNA-sequencing allows to quantify the amount of RNA that is present in a biological sample at a 

given time, by analyzing all the gene transcripts. This is the usual process to analyze the continuously 

Figure 2.5:  DNA transcription process. Taken from [9]. 

Figure 2.4:  Gene Expression. Taken from [3]. 
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changing cellular transcriptome (i.e., the set of all RNA molecules contained in a single cell of an 

organism), allowing to look at all the transcripts resulting from alternative splicing, genetic mutation 

and changes in the gene expression over time. 

Figure 2.6 illustrates the RNA-seq process: mRNA is extracted from the organism, fragmented and 

copied into stable complementary DNA (cDNA), which is sequenced using high-throughput and short-

read sequencing methods. These sequences can then be aligned to a reference genome sequence to 

reconstruct the genome regions that were being transcribed. Basically in RNA-sequencing, the RNA is 

fragmented, DNA is synthetized complementary to RNA fragments and then it is amplified to form a 

cluster that is finally sequenced. 

A “read” is the sequence of a cluster obtained at the end of the sequencing. More precisely, a read 

can be defined as an inferred sequence of base pairs corresponding to all or to a part of a DNA fragment. 

We can say that when a set of fragments, derived from DNA fragmentation, is sequenced, then it 

produces a set of reads. 

So, RNA-seq analysis quantifies protein-coding genes expression on the basis of the reads aligned 

to each genes. The common unit of measurement for the amount of the gene expression as a result of 

the RNA-seq process is the Fragments Per Kilobase per Million reads (FPKM), computed after aligning 

the reads to the reference genome and quantifying the mapped reads: 

FPKM = 
RCg ∙ 109

RCpc ∙ L

where:   RCg = number of reads mapped to the gene 

  RCpc = total number of reads mapped to all protein-coding genes 

  L = gene length (in base pairs), calculated as the sum of the length of all the exons in the gene 

  (i.e., the actual regions in the gene encoding information) 

Figure 2.6:  Summary of RNA-seq. Taken from [11]. 
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2.4.  Transcription factors 

A Transcription Factor (TF) [12] is a specific protein that binds to DNA in a specific region of a promoter 

which has the ability to control the transcription process and, as a consequence, it may have a main role 

in regulating the level of gene expression, by turning on and off specific genes (Figure 2.7). 

A promoter is the region of DNA initiating the transcription of a particular gene, which is 

conventionally defined as that area around the gene Transcription Start Site (TSS), with genomic 

coordinates from -2k to +1k base pairs from the TSS itself. 

Genes that encode for transcription factors can be referred to as “regulatory genes”, because they 

may be directly involved in the regulation of the expression of other genes. 

One of the main techniques used for mapping and identifying all the transcription factors binding 

sites is the ChIP-sequencing, which is the one used in this work. 

 

 

2.5.  ChIP-sequencing 

ChIP-sequencing is a method used to analyze protein interaction with the DNA. Due to its ability to 

rapidly decode millions of DNA fragments simultaneously, with high efficiency and relatively low cost, 

it is nowadays the most popular and commonly used ChIP variation method. 

ChIP-seq is a very powerful technique which combines the traditional chromatin 

immunoprecipitation (ChIP) techniques for investigating the protein-DNA interaction in the cell, with 

parallel DNA sequencing, in order to identify genome-wide binding sites of the DNA-associated 

proteins. In particular, ChIP-seq is primarily used to determine how transcription factors and other 

proteins interact with DNA to regulate the gene expression [13].  

Figure 2.7:  TFs and their potential effects on the regulation of gene activity. Taken from [3]. 
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The computational method used by ChIP-seq to identify these binding sites is the so called peak 

calling. Its role is to infer the actual binding loci from the positional distribution of tags, i.e., sequenced 

DNA fragments mapped onto a reference genome sequence. These areas of the genome, enriched with 

aligned reads following a ChIP-seq experiment and identified by the peak calling method, are the ones 

where a protein interacts with the DNA.  

Figure 2.8 shows the peak in correspondence of a transcription factor. 

Clearly, different data types have different peak shapes. In particular, ChIP-seq analysis algorithms 

are specific for identifying two possible types of enrichment: BROAD peaks (regions of signal 

enrichments, i.e., histone modifications that cover entire gene bodies) or NARROW peaks (peaks of 

signal enrichments, i.e., a transcription factor bound to an enhancer). Figure 2.9 displays the complete 

workflow of a ChIP-sequencing analysis. 

Figure 2.9:  ChIP-sequencing workflow. Taken from [3]. 

Figure 2.8:  Peak calling in correspondence of a TF located in the gene promoter. Taken from [3]. 
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2.6.  Epigenetics and DNA methylation 

In addition to transcription factors, the gene activity may be also determined by epigenetic factors, 

leading to epigenetic modifications. 

Epigenetics is the study of heritable changes in gene expression that do not involve any structural 

alteration of the underlying DNA sequence; basically, epigenetic factors are responsible for changes in 

the phenotype without a related change in the genotype. 

The epigenome regulates the expression of the genome by deciding which genes to activate, in 

which cell and in which context, according to external stimuli coming from environment, physical 

activity, lifestyle, stress and other conditions generating a genetic expression signal. 

Genetic mutations directly alter the DNA changing its nucleotide sequence: in some cases, 

changing the genetic code means changing the final gene products, and so the results of transcription 

and translation steps. 

Epigenetic mutations do not alter the DNA from a structural standpoint: they do not change its 

sequence, they simply influence it, either promoting or suppressing transcription.  

The remaining part of the paragraph explains how this works in deeper details. DNA wraps around 

nucleosomes to form chromatin, a complex of macromolecules, consisting of DNA, protein and RNA. 

Chromatin has a key function in the process of gene expression: in particular, the so called 

“euchromatin” (a lightly packed and relaxed form of chromatin) promotes the binding between DNA 

and transcription factors and facilitates transcription, while “heterochromatin” (a tightly packed and 

condensed form of chromatin), because of its “closed” structure, is barely accessible to polymerases and 

therefore hard to be transcribed (a comparison between the two types of chromatin is reported in Figure 

2.10). 

Epigenetic mutations are able to change the chromatin structure, either generating euchromatin 

and promoting gene transcription, or producing heterochromatin and repressing gene transcription. 

One of the main epigenetic mechanisms regulating gene expression is the DNA methylation, detailed 

in Figure 2.11.  

DNA methylation [15] is a biochemical process which consists in the addition of a methyl group 

(CH3) to a nitrogenous base of the DNA: in particular, this binding occurs in cytosines of CpG sites, 

those regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear 

sequence of bases. 

 

Figure 2.10:  Comparison between euchromatin and heterochromatin. Taken from [14]. 
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DNA methylation is one of the main events responsible for carcinogenesis [16]. Figure 2.12 

illustrates DNA methylation effects in both normal and cancer cells. 

CpG sites are involved in the methylation process and regions with a high frequency of CpG sites 

are called “CpG Islands”. These islands are usually not methylated and they are mainly located near the 

transcription start site (TSS) or inside the gene itself. Their methylation may have different effects on 

the gene expression: if methylation occurs in the gene promoter, then the gene expression is surely 

reduced (i.e., hypermetilation is strongly related to down-regulation of the gene), while if it involves 

islands located inside the gene, then transcription may be promoted and the gene expression potentially 

increases. 

However, this is only one side of the story, since methylation is not the only feature acting on the 

gene expression regulation.  Methylation may either increase or decrease gene expression, depending 

on the location of methylated cytosines, although this expression-methylation correlation may not be 

found. 

As an example, the discovery of reduced levels of DNA methylation in tumors is strongly associated 

with the identification of hypermethylated regions in tumor suppressor genes. A tumor suppressor gene 

is a gene that protects a cell from potential uncontrolled growth leading to cancer; when this gene 

mutates, with a loss or a reduction of its functionality, the cell is exposed and it can progress to cancer, 

usually in combination with other genetic changes. This repression of tumor suppressor genes can 

happen not only because of mutations, but also through DNA methylation. 

Thus, DNA methylation causing carcinogenesis can act either directly in the tumor-related gene 

promoters, or indirectly by suppressing inhibition of oncogenes (i.e., those genes having the potential 

to cause cancer). 

Figure 2.11:  Regulation of gene activity: DNA methylation. Taken from [3]. 
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Figure 2.12:  Global changes in DNA methylation in both normal and cancer cells. In normal cells, CpG islands   
 in active promoters are not methylated, thus allowing transcriptional activation. CpG islands 
 within coding regions are often methylated. Reverse patterns are observed in cancer cells.  
 Taken from [16]. 
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3. Goals

<< Make a plan. Set a goal. Work toward it. >> 

Meredith 

This thesis deals with the analysis and regulation of the behavior of specific human genes within cancer 

patients, investigating the biological relationships which hold among each other and the effect 

heterogeneous regulatory elements have on their expression. 

In particular, this project is focused on one of the most common tumors in women worldwide, for 

which still a poor prognosis exists: the ovarian cancer, specifically the Ovarian Serous 

Cystadenocarcinoma (OV), as said, a particularly aggressive type of epithelial ovarian cancer. As for any 

other type of cancer, there are some specific human genes that are mainly related to the ovarian tumor: 

their mutations and their activity (i.e., expression) are strongly involved in the origin process and the 

gradual development of this tumor. 

We identified 3 relevant pathways for the ovarian tumor, i.e., 3 groups of genes of interest with 

related functional behavior (whose functions may depend on each other), that are proved to be crucial 

for the study of ovarian cancer: 

✓ a set of genes particularly relevant to cancer stem cells, i.e., those cells that are able to 

differentiate into other types of cells and divide to produce more of the same type of stem cells 

(STEM_CELLS pathway); 

✓ another set of genes involved in the glucose metabolism, i.e., the process by which simple sugars 

are produced, processed and used to produce energy in the organism (GLUCOSE_ 

METABOLISM pathway); 

✓ a third set containing genes involved in DNA repair mechanisms, i.e., those processes by which 

a cell is able to identify and correct damages to the DNA molecules of its genome 

(DNA_REPAIR pathway). 

This thesis on inference of gene expression regulation and gene regulation networks in ovarian 

cancer patients has been conceived as a collaboration between Politecnico di Milano and “Mario Negri” 

Institute. This work examines the gene expression regulation process, using data on genes whose 

expression was measured at first by The Cancer Genome Atlas consortium (TCGA) through RNA-

sequencing techniques.  

The objective is building a predictive and possibly explicative model for the regulation of gene 

expression of the considered genes of interest belonging to the relevant pathways for the OV tumor, on 
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the basis of their methylation and expression values, as well as of the expression of their candidate 

regulatory genes, i.e., those genes that encode for transcription factors (TFs) having binding sites located 

in the promoter regions of the genes of interest. 

Among all the existing factors affecting gene expression, we analyze only a specific subset of 

regulatory elements and post-evaluate which are relevant at the single gene level. So, within the ovarian 

cancer scenario, we focus on a limited set of target genes, integrating heterogenous information from 

other genes expression, DNA methylation and TFs binding sites with data measured on OV tumor 

patients. 

The matter is understanding the relationships between the activity of each target gene and the 

genes belonging either to the same pathway or to the other related pathways, and the relationships 

between all such target genes and their candidate regulatory genes: this may lead to identify potential 

common regulators along each pathway, or frequent regulators with a key role in the regulation systems 

of the genes of interest, eventually predicting their possible oncogenic role. Whenever a correlation 

exists, an assessment of the potential influence that the gene methylation may have on its expression is 

also made. 

Thus, the aim is not comparing different genes, but instead it is identifying the correlations among 

them and understanding all the relations between each gene and its related biological processes. This 

finally leads to building a large and explicative gene expression network that displays the main 

biological relationships between a gene and its already known regulators, along with other possible 

associations, which may unveil still unknown aspects of the impact of transcriptional regulation on 

tumor progression and either known or putative other interesting biological connections.  

From a computational standpoint, the main goal is performing a thorough and as accurate as 

possible data analysis on samples coming from ovarian tumor patients. According to the hypotheses 

defined at the beginning of the project, this thesis deals with a feature selection problem in linear 

regression models. In particular, a linear regression model is built for each single gene of interest, 

assuming its expression can be predicted as a linear combination of its methylation and the expression 

values of the other genes. The analysis of all these potential regulators (i.e., features) allows to define all 

the existing statistically and especially biologically significant connections among these genes and the 

impacts they have on each other.  

A sample network representing what we expect from the results of the linear regression is shown 

in Figure 3.1: the nodes represent the genes of interest and their relevant features selected by the linear 

regression model. Each gene is connected to its features through directed incoming edges; so, by 

retrieving one gene incoming edges, it is possible to extract all the relevant features participating in the 

regulation of its expression. In addition, each edge is labelled with the estimated linear regression 

coefficient assigned to the related feature in the model, quantifying the either positive (red edge) or 

negative (grey edge) effect the feature has in the model gene regulation system. 
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Figure 3.1:  Sample network visualizing linear regression results. 
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4. Materials and Tools

<< This is your starting line. This is your arena. How well you play... that's up to you. >> 

Richard 

4.1  Ovarian cancer relevant pathways and their genes

The starting point of this thesis is the list of genes of interest to be analyzed: 177 genes, each one 

associated with its own official name (i.e., Gene Symbol), its numerical ID (i.e., Entrez Gene ID) and 

the genomic pathways it belongs to. As already reported in previous studies [17 , 18, 19, 20], the 73 genes 

of STEM_CELLS (Table 4.1), the 84 genes of GLUCOSE_METABOLISM (Table 4.2) and the 20 genes of 

DNA_REPAIR (Table 4.3) pathways are extremely important for ovarian cancer: 

➢ tumor stem cells represent one of the main tumor relapsing mechanisms, regulating tumor’s either 

sensitive or resistant response to Taxol and Platinum chemotherapeutic drugs; in particular, most 

stem cells pathway genes allow to predict cancer cells response to cisplatin and how that specific 

tumor may react to a chemotherapeutic treatment [17]; 

➢ among the major metabolic alterations of cancer cells, there is the so called Warburg effect, which 

causes an enhanced glycolysis under aerobic conditions and an increased glucose uptake via over-

expression of glucose transporters. This led to in vitro experiments, either in the presence or in the 

absence of glucose, for an in-depth study of the putative association between patients response to 

chemotherapy and the metabolic properties of their cancer cells. 

In particular, it has been proved [18] that there is a strict correlation between glucose addiction 

and cancer platinum-based therapy and that the resistance of some cancer cells to this type of therapy 

may be associated to an alteration in their metabolic profile. So, an in vitro analysis of cancer cells 

behavior in the absence of glucose or a measurement of their level of glucose addiction turns out to 

be a good parameter to predict patients sensitivity to platinum-based therapies; 

➢ genomic instability due to DNA damages is one of the main causes of different types of cancers, 

including ovarian tumor . Cells are able to face these damages and preserve DNA integrity thanks to 

a complex network of pathways, known as DNA Damage Response (DDR). 

The role that DNA integrity and genomic stability have within tumors is very peculiar, since on one 

hand, deactivation of DDR may easily lead to carcinogenesis, but, on the other hand, defects in this 

response may also be positive elements, making cancer more sensitive to the therapy [19]. 

For example, the role and the therapeutic potential of gene CDK12 is particularly important [20]: 

CDK12 is mainly involved in breast cancers, but its expression and related alteration have a 

fundamental role in different types of tumors, particularly within the ovarian cancer, making it a 

new candidate tumor suppressor gene in ovarian carcinoma. 
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Table 4.1:  List of genes of interest in the STEM_CELLS pathway. 

GENE_SYMBOL ENTREZ_GENE_ID PATHWAY

ABCB5 340273 STEM_CELLS

ABCG2 9429 STEM_CELLS

ALCAM 214 STEM_CELLS

ALDH1A1 216 STEM_CELLS

ATM 472 STEM_CELLS

ATXN1 6310 STEM_CELLS

AXL 558 STEM_CELLS

BMI1 648 STEM_CELLS

BMP7 655 STEM_CELLS

CD24 100133941 STEM_CELLS

CD34 947 STEM_CELLS

CD38 952 STEM_CELLS

CD44 960 STEM_CELLS

CHEK1 1111 STEM_CELLS

DACH1 1602 STEM_CELLS

DDR1 780 STEM_CELLS

DKK1 22943 STEM_CELLS

DLL1 28514 STEM_CELLS

DLL4 54567 STEM_CELLS

DNMT1 1786 STEM_CELLS

EGF 1950 STEM_CELLS

ENG 2022 STEM_CELLS

EPCAM 4072 STEM_CELLS

ERBB2 2064 STEM_CELLS

ETFA 2108 STEM_CELLS

FGFR2 2263 STEM_CELLS

FLOT2 2319 STEM_CELLS

FOXA2 3170 STEM_CELLS

FOXP1 27086 STEM_CELLS

FZD7 8324 STEM_CELLS

GATA3 2625 STEM_CELLS

GSK3B 2932 STEM_CELLS

HDAC1 3065 STEM_CELLS

ID1 3397 STEM_CELLS

IKBKB 3551 STEM_CELLS

CXCL8 3576 STEM_CELLS

ITGA2 3673 STEM_CELLS

ITGA4 3676 STEM_CELLS

ITGA6 3655 STEM_CELLS

ITGB1 3688 STEM_CELLS

JAG1 182 STEM_CELLS

JAK2 3717 STEM_CELLS

KIT 3815 STEM_CELLS

KITLG 4254 STEM_CELLS

KLF17 128209 STEM_CELLS

KLF4 9314 STEM_CELLS

LATS1 9113 STEM_CELLS

LIN28A 79727 STEM_CELLS

LIN28B 389421 STEM_CELLS

MAML1 9794 STEM_CELLS

MERTK 10461 STEM_CELLS

MS4A1 931 STEM_CELLS

MUC1 4582 STEM_CELLS

MYC 4609 STEM_CELLS

MYCN 4613 STEM_CELLS

NANOG 79923 STEM_CELLS

NFKB1 4790 STEM_CELLS

NOS2 4843 STEM_CELLS

NOTCH1 4851 STEM_CELLS

NOTCH2 4853 STEM_CELLS

PECAM1 5175 STEM_CELLS

PLAT 5327 STEM_CELLS

PLAUR 5329 STEM_CELLS

POU5F1 5460 STEM_CELLS

PROM1 8842 STEM_CELLS

PTCH1 5727 STEM_CELLS

PTPRC 5788 STEM_CELLS

SAV1 60485 STEM_CELLS

SIRT1 23411 STEM_CELLS

SMO 6608 STEM_CELLS

SNAI1 6615 STEM_CELLS

SOX2 6657 STEM_CELLS

STAT3 6774 STEM_CELLS
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Table 4.2:  List of genes of interest in the GLUCOSE_METABOLISM pathway. 

GENE_SYMBOL ENTREZ_GENE_ID PATHWAY

ACLY 47 GLUCOSE_METABOLISM

ACO1 48 GLUCOSE_METABOLISM

ACO2 50 GLUCOSE_METABOLISM

AGL 178 GLUCOSE_METABOLISM

ALDOA 226 GLUCOSE_METABOLISM

ALDOB 229 GLUCOSE_METABOLISM

ALDOC 230 GLUCOSE_METABOLISM

BPGM 669 GLUCOSE_METABOLISM

CS 1431 GLUCOSE_METABOLISM

DLAT 1737 GLUCOSE_METABOLISM

DLD 1738 GLUCOSE_METABOLISM

DLST 1743 GLUCOSE_METABOLISM

ENO1 2023 GLUCOSE_METABOLISM

ENO2 2026 GLUCOSE_METABOLISM

ENO3 2027 GLUCOSE_METABOLISM

FBP1 2203 GLUCOSE_METABOLISM

FBP2 8789 GLUCOSE_METABOLISM

FH 2271 GLUCOSE_METABOLISM

G6PC 2538 GLUCOSE_METABOLISM

G6PC3 92579 GLUCOSE_METABOLISM

G6PD 2539 GLUCOSE_METABOLISM

GALM 130589 GLUCOSE_METABOLISM

GBE1 2632 GLUCOSE_METABOLISM

GCK 2645 GLUCOSE_METABOLISM

GPI 2821 GLUCOSE_METABOLISM

GSK3A 2931 GLUCOSE_METABOLISM

GSK3B 2932 GLUCOSE_METABOLISM

GYS1 2997 GLUCOSE_METABOLISM

GYS2 2998 GLUCOSE_METABOLISM

H6PD 9563 GLUCOSE_METABOLISM

HK2 3099 GLUCOSE_METABOLISM

HK3 3101 GLUCOSE_METABOLISM

IDH1 3417 GLUCOSE_METABOLISM

IDH2 3418 GLUCOSE_METABOLISM

IDH3A 3419 GLUCOSE_METABOLISM

IDH3B 3420 GLUCOSE_METABOLISM

IDH3G 3421 GLUCOSE_METABOLISM

MDH1 4190 GLUCOSE_METABOLISM

MDH1B 130752 GLUCOSE_METABOLISM

MDH2 4191 GLUCOSE_METABOLISM

OGDH 4967 GLUCOSE_METABOLISM

PC 5091 GLUCOSE_METABOLISM

PCK1 5105 GLUCOSE_METABOLISM

PCK2 5106 GLUCOSE_METABOLISM

PDHA1 5160 GLUCOSE_METABOLISM

PDHB 5162 GLUCOSE_METABOLISM

PDK1 5163 GLUCOSE_METABOLISM

PDK2 5164 GLUCOSE_METABOLISM

PDK3 5165 GLUCOSE_METABOLISM

PDK4 5166 GLUCOSE_METABOLISM

PDP2 57546 GLUCOSE_METABOLISM

PDPR 55066 GLUCOSE_METABOLISM

PFKL 5211 GLUCOSE_METABOLISM

PGAM2 5224 GLUCOSE_METABOLISM

PGK1 5230 GLUCOSE_METABOLISM

PGK2 5232 GLUCOSE_METABOLISM

PGLS 25796 GLUCOSE_METABOLISM

PGM1 5236 GLUCOSE_METABOLISM

PGM2 55276 GLUCOSE_METABOLISM

PGM3 5238 GLUCOSE_METABOLISM

PHKA1 5255 GLUCOSE_METABOLISM

PHKB 5257 GLUCOSE_METABOLISM

PHKG1 5260 GLUCOSE_METABOLISM

PHKG2 5261 GLUCOSE_METABOLISM

PKLR 5313 GLUCOSE_METABOLISM

PRPS1 5631 GLUCOSE_METABOLISM

PRPS1L1 221823 GLUCOSE_METABOLISM

PRPS2 5634 GLUCOSE_METABOLISM

PYGL 5836 GLUCOSE_METABOLISM

PYGM 5837 GLUCOSE_METABOLISM

RBKS 64080 GLUCOSE_METABOLISM

RPE 6120 GLUCOSE_METABOLISM

RPIA 22934 GLUCOSE_METABOLISM

SDHA 6389 GLUCOSE_METABOLISM

SDHB 6390 GLUCOSE_METABOLISM

SDHC 6391 GLUCOSE_METABOLISM

SDHD 6392 GLUCOSE_METABOLISM

SUCLA2 8803 GLUCOSE_METABOLISM

SUCLG1 8802 GLUCOSE_METABOLISM

SUCLG2 8801 GLUCOSE_METABOLISM

TALDO1 6888 GLUCOSE_METABOLISM

TKT 7086 GLUCOSE_METABOLISM

TPI1 7167 GLUCOSE_METABOLISM

UGP2 7360 GLUCOSE_METABOLISM



20 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, a more detailed sub-classification is provided, defined according to the specific 

biological function these genes are involved in within their pathway. Genes that are not present in this 

classification are grouped together into an additional user-defined subclass for each pathway, called 

“Unclassified”. 

These subclasses are used to generate gene expression networks from the results of the data analysis, 

in order to investigate unveiled relationships between genes with similar biological functions. The 

names of the subclasses and the number of genes they contain are reported below. A gene carrying out 

multiple functions can be contained in multiple subclasses.  
 

➢ STEM_CELLS (73) 

✓ AKT & PI3 Kinase – mTOR Signaling (2) 

✓ Asymmetric Division (4) 

✓ Cancer Stem Cells Markers (23) 

✓ Cancer Therapeutic Targets (17) 

✓ Cell Migration & Metastasis (7) 

✓ Cell Proliferation (5) 

✓ Hedgehog Signaling (2) 

✓ Hippo Signaling (3) 

✓ Loss of Stemness (6) 

✓ Notch Signaling (6) 

✓ Pluripotency (6) 

✓ Self-Renewal (3) 

✓ STAT-NFkB Signaling (3) 

✓ WNT Signaling (2) 

✓ Unclassified (0) 
 

➢ GLUCOSE_METABOLISM (84) 

✓ Gluconeogenesis (7) 

✓ Glycogen Degradation (6) 

Table 4.3:  List of genes of interest in the DNA_REPAIR pathway. 

GENE_SYMBOL ENTREZ_GENE_ID PATHWAY

BRCA1 672 DNA_REPAIR

CDK12 51755 DNA_REPAIR

ERCC1 2067 DNA_REPAIR

FANCA 2175 DNA_REPAIR

FANCC 2176 DNA_REPAIR

FANCD2 2177 DNA_REPAIR

FANCF 2188 DNA_REPAIR

MLH1 4292 DNA_REPAIR

OGG1 4968 DNA_REPAIR

PALB2 79728 DNA_REPAIR

PARP1 142 DNA_REPAIR

POLB 5423 DNA_REPAIR

POLE 5426 DNA_REPAIR

POLQ 10721 DNA_REPAIR

RAD51 5888 DNA_REPAIR

TP53BP1 7158 DNA_REPAIR

XPA 7507 DNA_REPAIR

ERCC2 2068 DNA_REPAIR

ERCC4 2072 DNA_REPAIR

ERCC5 2073 DNA_REPAIR
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✓ Glycogen Synthesis (4) 

✓ Glycolysis (12) 

✓ Pentose Phosphate Pathway (11) 

✓ Regulation of Glucose Metabolism (6) 

✓ Regulation of Glycogen Metabolism (6) 

✓ Tricarboxylic Acid Cycle (29) 

✓ Unclassified (6) 
 

➢ DNA_REPAIR (20) 

✓ BER (3) 

✓ DSB (8) 

✓ NER (5) 

✓ Gene CDK12 Group (1) 

✓ Gene MLH1 Group (1) 

✓ Unclassified (2) 

 

The total number of genes of interest is 177: 176 distinct, plus gene 2932 [GSK3B] present in both 

STEM_CELLS and GLUCOSE_METABOLISM. This duplicated gene can be treated as a unique gene 

during the data extraction process, since its methylation level or expression value in each patient is 

always the same, regardless of the pathway. However, during the analysis it is managed separately, 

according to the pathway under analysis: the fact that this gene belongs to different pathways means 

that it is involved in multiple biological functions and, as a consequence, the regulation of its expression 

is different according to the pathway it participates in. 

 

 

4.2  Breast cancer PAM50 data samples 

This second file comprises the list of PAM50 data samples, each identified by the ID of the patient it 

refers to, extracted at “Mario Negri” from the complete set of breast cancer (BRCA) data samples. 

PAM50 is a test that helps classifying the different types of breast cancers into a set of clinically 

significant molecular subtypes that are important for the management of the disease, by performing a 

Real Time Quantitative PCR (RT-qPCR) analysis: in general, Polymerace Chain Reaction (PCR) is a 

molecular biology technique used to amplify and detect DNA and RNA sequences, comprised in RT-

qPCR, which is commonly used to detect, characterize and quantify nucleic acids. 

The PAM50 test consists in measuring the expression of a group of 50 classifier genes and five 

control genes to identify the intrinsic subtypes known as Luminal A, Luminal B, HER2-enriched and 

Basal-like. This file provides 1043 BRCA patient data samples with the following attributes: 
 

- PAM50 represents the BRCA subtypes classification (i.e., LumA, LumB, Her2, Basal); 
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- ER, PR and HER2 respectively denote the status of the estrogen receptors, the progesterone 

receptors and the human epidermal growth factor receptor-2, which represent three predictive 

biomarkers in breast pathology. If breast cancers are either “ER-positive” or “PR-positive”, it means 

the cancer cells grow in response to hormones estrogen and progesterone, respectively. 

Tumors that are ER/PR-positive are much more likely to respond to hormone therapy than ER/PR-

negative tumors, which can help preventing a return of the disease by blocking the effects of 

estrogen. “HER2-positive” breast cancers, instead, are characterized by cells that produce too much 

of a protein known as HER2, making these cancers much more aggressive and fast-growing. 

If these markers are all negative, the tumors are classified as Triple-Negative Breast Cancers, (TN 

BRCA) because they do not have estrogen and progesterone receptors and do not overexpress the 

HER2 protein, which makes them more difficult to treat, usually requiring the combination of 

different therapies; 

- TRIPLE indicates whether the sample is classified as a triple negative cancer or not; 

- TNBCTYPE represents different subtypes of triple negative cancers. 

Table 4.4 shows how this file is organized. 

Table 4.4:  A subset of samples contained in the BRCA_PAM50  file. 
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Since no other ovarian cancer data samples are available and the whole set of BRCA data samples 

is highly heterogeneous, we use PAM50 information during the validation process for selecting and 

analyzing only a BRCA subtype that is biomolecularly equivalent to OV, the Basal-like Breast Cancer 

(PAM50 = Basal), which has proved to be genetically similar to ovarian tumor [21]: they share similar 

genetic origins and features, which may allow to treat these two difficult-to-treat cancer types with the 

same therapies.  

 

 

4.3  Human gene nomenclature and human transcription factors 

Some data come from the main biological and genomic resources that are open and available on the 

Web, providing material on both genes and proteins. In particular, we use this information to build an 

integrated and comprehensive spreadsheet containing the list of human genes with all their names, IDs 

and, if so, the transcription factors they encode: this becomes a very powerful tool for this project, 

specifically during the process of extraction and manipulation of data of interest. 

 

4.3.1  UniProt 

UniProt [22, 23] is a high-quality, non-redundant and freely accessible repository of protein sequences 

and functional information (Figure 4.1 pictures its structure). It is the world most comprehensive catalog  

Figure 4.1:  UniProt structure. Taken from [23]. 
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of information on proteins, created by joining the information contained in Swiss-Prot (a manually 

curated and annotated protein sequence databank), TrEMBL (a computer-annotated protein sequence 

database) and PIR (a complete, integrated, cross-referenced and public resource of functional annotated 

protein sequences). 

 

4.3.2  ENCODE 

The Encyclopedia of DNA Elements (ENCODE) [24, 25] is a comprehensive resource of the main 

functional elements in the human genome, such as the elements acting at the protein and RNA levels 

or the regulatory elements controlling cells and circumstances in which a gene is active. 

Only 1.5% of DNA in the human genome, in fact, is composed by protein-coding genes (around 

20,000 in total): the primary goal of the ENCODE  project is to determine the role of all the remaining 

components of the genome. The different types of information contained in ENCODE are represented 

in Figure 4.2. 

 

4.3.3  HUGO Gene Nomenclature Committee 

The HUGO Gene Nomenclature Committee (HGNC) [26] is a committee of the Human Genome 

Organization that sets the standards for human gene nomenclature. It is responsible for approving 

unique symbols and names for human loci, including, for example, protein-coding genes, ncRNA genes 

or pseudogenes, to allow unambiguous scientific communication, according to the following main 

naming guidelines: 

- gene symbols (i.e., gene name abbreviations) must be unique; 

- symbols only contain Latin letters and Arabic numerals; 

- symbols do not contain punctuation or letter “G” for gene; 

- symbols do not contain any reference to the species they belong to. 

 

Figure 4.2:  A graphical representation of the ENCODE information. Taken from [25]. 
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4.4  Transcription factor dataset from ENCODE 

The first main dataset used for the extraction of data of interest is ENCODE, for selecting all the human 

transcription factors having binding sites located within the promoters of genes of interest. 

ENCODE contains a huge amount of both original and processed data with different quality levels 

and often characterized by noise. In particular, there are multiple processing levels defined according 

to different filtering qualitative parameters, either with a higher number of enriched binding regions, 

but with a lower quality (i.e., lower confidence that regions are actually correct), or with fewer but 

more reliable and higher-quality regions. 

This work uses NARROW (Point-Source) conservative thresholded idr Peaks regions data from 

ENCODE (updated in November 2017), obtained through ChIP-seq experiments regarding the 

localization of human transcription factor binding sites. These filters allow to select high quality data 

and to execute a reliable data analysis. 

The cell lines are instead selected on the basis of the specific biological relevance to the study: since 

ENCODE does not contain data of the same exact tissue where OV tumor patients data come from, 

MCF7 cell line is selected, as the most significant biological and molecular item to our goal. However, 

since MCF7 available data are limited, we include also cell line K562 in the analysis, because of its 

biological similarity with MCF7 and its huge amount of available data. 

It is important to underline that these are simply candidate transcription factors and they are then 

weighted according to the expression of their encoding genes in the different specific patients. 

The complete data extraction process is described in Chapter 5. 

 

 

4.5  Methylation and gene expression datasets from TCGA 

The Cancer Genome Atlas (TCGA) [27, 28] is a catalogue of all the genetic mutations that are responsible 

for cancer. The TCGA project has generated comprehensive and multi-dimensional maps of the key 

genomic changes in  33 types of cancer (Figure 4.3). TCGA mission is accelerating the understanding of 

the molecular basis of cancer through the application of genome analysis technologies, such as large-

scale genome sequencing, with the objective of improving everyone’s ability to diagnose, treat and 

prevent cancer. 

We use TCGA for extracting methylation and gene expression data related to OV and BRCA tumors 

for assembly GRCh38 (i.e., the Genome Reference Consortium Human Build 38). In particular, two 

main TCGA datasets are used to extract this information: 

• the TCGA methylation dataset, containing DNA methylation sites for all the different types of 

tumors provided by TCGA, with their methylation values expressed through the so called 

beta_values (values within a [0-1] range), having a unique value for each methylation site (i.e., 

methylated cytosine base). Methylation data from two different sequencing platforms are 

provided (Illumina HumanMethylation 27 and Illumina HumanMethylation 450 ), which differ  
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for the number of methylation probes that are used for the measurement (27k and 450k probes 

respectively). As for tumors of interest, the platform with the highest amount of data available 

is selected (i.e., 27k for OV and 450k for BRCA); 

• the TCGA gene expression dataset, containing human gene expression values in all the different

types of tumors provided by TCGA, derived from RNA-seq techniques and expressed in

Fragments Per Kilobase per Million reads (FPKM).

Each data sample corresponds to a specific patient, whose cancer information has been collected 

through specific measurements, observations and analyses from TCGA. 

Each patient is identified by a unique identifier, called TCGA Aliquot Barcode (Figure 4.4), 

composed by a collection of attributes identifying specific TCGA data elements [29, 30]: 

▪ project, the name of the project data belongs to (i.e. ‘TCGA’, in this case);

▪ TSS, the tissue source site;

Figure 4.3:  TCGA statistics. Taken from [28]. 
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▪ participant, a numerical ID that identifies the patient participating in the study; 
 

▪ sample, a numerical code identifying the type of sample (01-09 codes mean “tumor” types, 10-

19 codes mean “normal”, 20-29 codes mean “control”); 
 

▪ vial, the order of a sample in the sequence of samples considered (possible values from A to Z); 
 

▪ portion, the order of a portion in a sequence of 100-120 mg sample portions (possible values 

from 01 to 99, where 01 is the first portion of the sample); 
 

▪ analyte, the molecular type of the component for the analysis (for example, D indicates a DNA 

sample, while R indicates an RNA sample); 
 

▪ plate, a 4-digit alphanumeric value that specifies the order of a plate in a sequence of 96-well 

plates (for example, 0182 indicates the 182nd plate); 
 

▪ center, the sequencing or characterization center that will receive the aliquot for the analysis. 

Each center is identified by a specific code. 

 

 In this work we simply refer to the first part of this barcode (i.e., the Sample Barcode) as “TCGA 

Aliquot”, which is the identifier used to recognize and classify the patients in the TCGA methylation 

and expression data of interest.  

 

 

4.6  Genomic annotations from GENCODE 

GENCODE is a scientific project producing high-quality reference gene annotations and experimental 

validation for human and mouse genomes [31, 32, 33]. It aims at building an encyclopedia of genes and 

genes variants, by identifying all gene features in the human and mouse genome, using a combination 

of computational analysis and manual annotation, in order to create a comprehensive set of annotations, 

Figure 4.4:  How a TCGA aliquot barcode can be broken down into its components. Taken from [29]. 
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including genes, transcripts, exons, protein-coding and non-coding loci, as well as variants coming from 

alternative splicing and pseudogenes. 

Over time, different versions of the annotations have been released as a response to the progress of 

genetic researches and their related findings: in particular, this thesis is based on version 22 of the 

GENCODE genomic annotations, released in 2015 [34], as the same annotation file is also used by TCGA 

for processing methylation and expression data of interest [35]: in this way consistency with the TCGA 

data is preserved, minimizing all the potential inconsistencies that may occur using a different 

reference. Starting from this annotation file, we build two datasets containing the following types of 

data: 

• data about the localization of human gene promoters in assembly GRCh38, used in combination

with TFs data from ENCODE;

• data about regions of the genes in which the methylation sites of interest are located, i.e., from

4000 bases upstream to 1000 bases downstream around the gene TSSs, used in combination with

the TCGA methylation dataset.

The complete datasets creation process is described in Chapter 5. 

4.7  Computational tools

From a computer science standpoint, four main computational tools are used for performing the data 

extraction, analysis and validation processes. 

4.7.1  GenoMetric Query Language 

The GenoMetric Query Language (GMQL) [36] is a declarative language used to perform queries on big 

genomic data, structured according to the Genomic Data Model (GDM) [37, 38, 39, 40, 41]. 

The GDM is a formal framework used for representing in a uniform way genomic data with 

different formats. This model is mainly based on the notions of datasets, defined as collections of 

samples, and samples, representing different genomic data. 

Each sample consists of two main parts: 

• Region data, describing the physical coordinates of the genome areas and their features, encoded

as specific fields having different values for each region;

• Metadata: descriptive attributes of a sample, describing its biological, clinical and experimental

properties.

Regions are data format independent and provide an interoperability framework for comparing 

data on mutations, expression or regulation; while metadata are system independent and provide an 

interoperability framework for comparing samples based upon their biological aspects. 
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In GDM, metadata are modeled as attribute-value pairs, while region data have to follow some 

rules defining their structure in order to be comparable among different datasets: these rules are 

encoded in a schema. Different datasets have different schemas, but each schema must include at least 

the following information: the chromosome, the start and end positions of the region and the strand, 

which represents the direction of DNA reading. 

Formally, the atomic unit of a GDM dataset is the genomic region, a portion of the genome defined 

by a set of coordinates (represented in Figure 4.5)     

c = < chr, left, right, strand > 

and a set of features 

f = < feature1, feature2, …, featureN > 

The concatenation of these two sets of values creates the region:  r = < c, f >. 

The order of the coordinates and the features is fixed in all the regions of a dataset and it is dictated 

by the schema and each one of these fields is typed (e.g., we have respectively string, integer, integer, 

char for the coordinates). Metadata, instead, are arbitrary attribute-value pairs < a, v >. 

A set of regions, i.e., a sample, is defined as: 

s = < id, {r1, r2, …}, {m1, m2, …} > 

Each sample is identified by a specific id, which is unique in the whole dataset, and has multiple regions 

ri and multiple attribute-value pairs of metadata mi. 

A dataset is therefore a set of samples with the same region schema. 

Having genomic data represented according to the Genomic Data Model, it is possible to query 

them using the suitably designed and easy-to-learn query language mentioned here above: GMQL, a 

high-level and declarative query language inspired by the classical languages for database management, 

such as SQL. It uses conventional algebraic operations (e.g., selection, projection, join) together with 

domain-specific operations targeting bioinformatics applications. 

A GMQL query is defined as a sequence of statements (i.e., algebraic operations) with the following 

syntax: 

<variable> = operation(<parameters>) <variables> 

Figure 4.5:  Graphical representation of genomic region coordinates. Taken from [3]. 
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where <variable> is a GDM dataset and operation(…) specifies the procedure to be executed, with all 

its required and optional parameters. Operations can be either unary or binary, according to the input 

dataset, and they all return one dataset as a result. A complete description of all the GMQL operations 

can be found at [42]. 

The GMQL system [43] can be used online through a specific Web interface (Figure 4.6), to be 

accessed as a guest user or as an authenticated user, after setting up a personal account. 

We use this system to extract all the necessary biological and genomic data provided by big 

consortia (ENCODE, TCGA, GENCODE or RefSeq) due to the following: 

- it is an integrated resource that provides a comprehensive and public set of datasets, comprising 

all the biological and genomic data extracted from their original sources; 

- it allows to easily filter and download data of interest simply by compiling and executing user-

defined SQL-like queries, following the syntax of the GMQL language; 

- data are well-organized and easier to use than the ones in the original web portals, since they 

are cleaned, processed and modelled according to the pre-defined GDM framework, which 

provides both resulting genome areas and additional descriptive attributes, into a 

straightforward table-like format. 

 

4.7.2  Python libraries 

Most computations are performed using the Python programming language [44]. 

Python is an interpreted language executing direct instructions, without the need of compiling the 

scripts into machine language instructions, and it allows to easily execute a lot of complex tasks, thanks 

to the availability of standard libraries and of a large number of resources. 

 

Figure 4.6:  Excerpt of the GMQL Web interface. Taken form [43]. 
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Python has been conveniently selected as it offers a wide set of functions for statistical modeling 

and machine learning analysis and it is the only programming language integrated with GMQL. Here 

Python is used through Anaconda, an open source distribution for large-scale data processing and 

scientific computing and the most convenient framework for Python data science and machine 

learning, including at the installation more than 250 popular data science packages. The main libraries 

used for the computations are detailed in the following paragraphs. 

4.7.2.1  PyGMQL 

PyGMQL [45, 46] is a Python module that enables the user to execute GMQL queries and perform all 

the available operations on genomic data in a scalable way and directly from Python. 

PyGMQL translates the GMQL paradigm to the interactive and script-oriented Python 

environment, enabling the integration of genomic data with classical Python packages for machine 

learning and data science. Figure 4.7 shows an example of a GMQL query (a) translated according to the 

syntax of PyGMQL (b), which can be remotely executed from Python on the GMQL server. 

a) 

Figure 4.7:  A GMQL query to be executed directly on the system through the Web interface (a) and the 
  corresponding query written in Python, to be executed remotely through the PyGMQL library (b). 

b)
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This library is used to extract all the data needed for this project, in order to have them already 

encoded as specific Python data structures (i.e., pandas dataframes), ready to be used and manipulated. 

 

4.7.2.2  Pandas 

Pandas [47] is a Python package for data manipulation and analysis. It provides specific data structures 

and operations for manipulating tables and time series, with relational or labelled data easy to work 

with. This is the library mostly used in this work, because it easily allows to import and export any kind 

of data in a tabular format (Figure 4.8), from Excel spreadsheets to tab-delimited or comma-separated 

files. 

 

4.7.2.3  Statsmodel 

Statsmodel [48] is a Python module for data analysis, data science and statistics, providing classes and 

functions for exploring data, estimating statistical models and performing statistical tests. 

 This library allows to build linear regression models for each gene of interest during the data 

analysis phase: a linear model is fitted to the input dataset by adjusting a set of unknown parameters, so 

that the dependent variable Yi, in each observation i, is a linear combination of these parameters: 

Yi  = β0 +  β1 Xi1 + β2 Xi2 +  … + βp XiP + εi 

where:  

Xij : predictors, the i-th observation (i.e., the different patient samples identified by different  

       TCGA aliquots) on the j-the independent variable (i.e., target gene regulatory features) 

       (i ∈ [1,n], j ∈ [1,p])  

 Yi : target variable (i.e., the expression of the target gene) 

 β1, β2, …, βp : regression coefficients, parameters 

(they quantify the effect of the features on the output: the higher is    

 the estimated coefficient, the higher is the contribution of the feature  

 on the prediction of the target variable) 

 εi : error term, observation noise 
 

The most common estimation method, used through the Statsmodel library, is the ordinary least 

squares, where regression parameters are estimated such that the Residual Sum of Squares is minimized:  

RSS = e12 + e22 + … + en2 = (y1-ŷ1)2 + (y2-ŷ2)2 + … + (yn-ŷn)2 

where: 

ei = Yi -Ŷi is the residual, i.e., the difference between the value of the dependent variable 

predicted by the model (Ŷi) and the true value of the dependent variable (Yi). 
 

Once the regression model is constructed, Statsmodel evaluates its accuracy and establishes the 

accuracy of the fit (i.e., how well the defined statistical model fits the given set of observations),  
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computing the R-squared (R2), ranging between 0 (poor) and 1 (excellent): 

R2 = 1–(RSS/TSS) 

where: 

TSS = (y1-y̅)2 + (y2-y̅)2 + … + (yp-y̅)2  is the Total Sum of Squares. 

An R2 score close to 1 indicates that a large proportion of the variability in the response has been 

explained by the regression. 

In addition, the library assesses the quality of the model also focusing on the Adjusted R2, an 

extension of the original R2, which takes into consideration the number of independent variables (i.e. 

features) used to fit the model, adjusting for the number of explanatory variables in the model relative 

to the number of data points:  

Adj_R2 = 1-(1-R2) 
n-1

n-p-1

where: 

p = number of predictors in the model 

n = number of observations 

The complete data analysis is described in Chapter 6. 

4.7.2.4  Scikit-learn 

Scikit-learn [49] is a Python library providing various classification, regression and clustering algorithms 

for performing machine learning operations and it is used in this project for normalizing input data of 

the linear regression process, using the StandardScaler class in the preprocessing module [50], 

consistently helping to compare results across models . 

4.7.2.5  Mlxtend 

Mlxtend [51] is a Python library that extends traditional machine learning packages, providing useful 

tools for data science tasks. In particular, this library is used to perform the feature selection process 

Figure 4.8:  Example of how data are organized in Pandas. A Pandas table is commonly called Dataframe. 
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before fitting the actual linear regression model, thanks to the Sequential Feature Selector (SFS) 

component in the feature_selection module [52], implementing Forward Feature Selection. 

4.7.2.6  NetworkX 

NetworkX [53] is a Python library for creating, manipulating and studying graphs and networks, used 

for graphically visualize linear regression results as networks. 

4.7.3  Cytoscape 

Cytoscape [54] is a bioinformatics software platform for creating, manipulating, analyzing and 

visualizing molecular interaction networks, integrating them with gene expression profiles and other 

types of data. This software is used for importing and comprehensively visualizing the networks of the 

linear regression models, previously created in Python through the NetworkX library, and for 

performing computational analysis through ARACNe. 

4.7.4  ARACNe 

ARACNe [55, 56] is a computational algorithm for the reconstruction of gene regulatory networks in a 

mammalian cellular context, identifying all direct transcriptional interactions. It can be used either as 

a standalone software or as a Cytoscape plugin [57], in order to directly visualize the analysis results 

within the Cytoscape platform. Here this algorithm is used from Cytoscape during the validation phase, 

in order to computationally validate the results of the data analysis. The complete validation process is 

described in paragraph 7.2 of Chapter 7. 
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5. Data Extraction and Manipulation

<<Now, pick up your scalpels, place them below the xiphoid process, press firmly … no regrets, and let’s begin! >> 

Meredith 

This chapter gives the details about all the data used for the project and how they are extracted and 

manipulated. 

5.1  Genes – transcription factors mapping

As comprehensive information on human genes is available online through multiple heterogeneous 

sources, it may be useful to have it integrated into a unique spreadsheet to be queried whenever required 

during the data extraction process and their manipulation. 

Combining known information about genes and transcription factors from the main biological and 

genomic Web resources, we create a comprehensive table (a restricted set of rows is reported as an 

example in Table 5.1) which maps 41,343 genes (downloaded from the HGNC website) with all their 

names and, when available, their identifiers, and in case of protein-coding genes, with the transcription 

factors they encode (lists of TFs with their encoding genes are taken from ENCODE and UniProt 

websites, updated in April 2018): 

- the Gene Symbol is the official current abbreviated name of the gene, approved by the HGNC 

and publicly available, used to uniquely identify all human genes; 

- the Entrez Gene ID is the unique numerical identifier of the gene at NCBI Gene, a databank 

integrating descriptive information about genetic loci, including official nomenclature, 

synonyms, phenotypes, map locations and additional related external resources; 

- the Ensembl Gene ID is the alphanumeric identifier of the gene within Ensembl, a genome 

browser for the retrieval of genomic information; 

- the HGNC ID is a unique ID for the gene provided by HGNC; 

- the RefSeq ID is the reference sequence identifier provided by NCBI RefSeq, a comprehensive 

and integrated collection of sequences, including genomic DNA, transcripts and protein 

products, whose identifiers are designed to provide a stable reference for gene identification and 

characterization, mutation analysis or expression studies; 

- Transcription Factors are the proteins encoded by the genes; this means that those specific genes 

contain the genetic information useful for synthetizing those proteins. It is possible to find some 
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TFs marked with an additional prefix, indicating they come from different experiments: either 

eGFP- or FLAG- are used, i.e., two protein tags that can be attached to native proteins to 

improve data quantification. Even if a TF and its tag-labelled version represent the same 

transcription factor, they are here considered to be distinct TFs, allowing to recognize whether 

a gene encodes a TF with or without an additional marking protein attached to it; 

- the UniProt ID is the unique alphanumeric identifier of the transcription factor within the 

UniProt database.  

5.2  Selection of transcription factors

Starting from the ENCODE transcription factors dataset and the gene promoters dataset derived from 

GENCODE annotations, for each gene of interest we extract the list of TFs binding to its promoters.   

Data are selected through a GMQL query, which is reported below and illustrated in the block 

diagram of Figure 5.1, executed remotely from Python on the GMQL server, using the PyGMQL library 

(for the sake of clearness, the query is here reported according to the original GMQL syntax): 

# Extraction of Transcription Factors: 

# Extract NARROW conservative thresholded idr peaks regions from ENCODE ChIP-seq experiments, 

# for assembly GRCh38 and cell lines K562 and MCF7, removing low quality data samples. 

NARROW = SELECT(assay == "ChIP-seq" AND output_type == "conservative idr thresholded peaks" AND 

(biosample_term_name == "K562" OR biosample_term_name == "MCF-7") AND 

assembly == "GRCh38" AND project == "ENCODE" AND file_status == "released" AND 

(NOT(audit_error == "extremely low read depth" OR  audit_error == "extremely low read 

length" OR audit_warning == "insufficient read depth" OR  audit_not_compliant == 

"insufficient read depth" OR audit_not_compliant == "insufficient replicate  

concordance" OR audit_not_compliant == "missing input control" OR audit_not_compliant 

Table 5.1:  Excerpt of the final genes – transcription factors mapping table (GenesMapping.xlsx). 

GENE_SYMBOL ENTREZ_GENE_ID ENSEMBL_GENE_ID HGNC_ID RefSeq_ID Transcription Factors UniProt_ID

ACLY 47 ENSG00000131473 115 NM_001096 ACLY-human P53396

AES 166 ENSG00000104964 307 NM_001130 AES-human, eGFP-AES-human Q08117

BCRP4 616 ENSG00000215456 1017 NG_000002

BRCA1 672 ENSG00000012048 1100 NM_007294 BRCA1-human, eGFP-BRCA1-human, FLAG-BRCA1-human P38398

BRCA2 675 ENSG00000139618 1101 NM_000059 BRCA2-human P51587

BRCA3 60500 18617

CDK12 51755 ENSG00000167258 24224 NM_015083 CDK12-human Q9NYV4

CHEK1 1111 ENSG00000149554 1925 NM_001114121 CHK1-human O14757

CRYZL2P 730102 ENSG00000242193 52164 NR_037167

DLL1 28514 ENSG00000198719 2908 NM_005618 DLL1-human O00548

FAM239C 107987330 ENSG00000205662 53416 XR_001755780

HDAC1 3065 ENSG00000116478 4852 NM_004964 HDAC1-human, eGFP-HDAC1-human Q13547

HTC1 3341 5277

MLH1 4292 ENSG00000076242 7127 NM_000249 MLH1-human P40692

MLLT1 4298 ENSG00000130382 7134 NM_005934 ENL-human, eGFP-MLLT1-human, MLLT1-human Q03111

MYC 4609 ENSG00000136997 7553 NM_001354870 MYC-human, eGFP-MYC-human P01106

PTPRC 5788 ENSG00000081237 9666 NM_001267798 PTPRC-human P08575

RAD51 5888 ENSG00000051180 9817 NM_001164269 RAD51-human, eGFP-RAD51-human Q06609

SDHD 6392 ENSG00000204370 10683 NM_001276503 DHSD-human O14521

USP17L9P 391627 ENSG00000251694 12615 NR_046416
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== "severe bottlenecking" OR audit_not_compliant == "unreplicated experiment"))) 

GRCh38_ENCODE_NARROW_NOV_2017; 

# Merge all the possible replicas of the same TF combining them in a single sample: 

# the FULL_ENCODE dataset contains a data sample for each transcription factor extracted. 

FULL_ENCODE = COVER(1, ANY; groupby: experiment_target) NARROW; 

# Create the dataset of promoters: PROM dataset contains all the promoters of all the genes  

# listed in the GENCODE version 22 annotation file. Each promoter is computed as the region  

# going from 2000 bases upstream to 1000 bases downstream from the Transcription Start Site (TSS), i.e.,  

# the first base of each transcript. Clearly multiple promoters correspond to multiple TSSs, which in turn 

# correspond to multiple transcripts. Only known protein-coding gene transcripts are considered. 

# Extract the known protein-coding transcripts from GRCh38 GENCODE annotation (version 22). 

CODING_TRANSCRIPTS = SELECT(release_version == "22" AND annotation_type == "transcript"; 

region: transcript_type == 'protein_coding' AND 

(tag == 'basic' OR tag == 'CCDS’)) GRCh38_ANNOTATION_GENCODE; 

# Compute for each transcript its promoter region. 

PROM_REG = PROJECT(gene_id, gene_name, entrez_gene_id; 

region_update: start AS start - 2000, stop AS start + 1000) CODING_TRANSCRIPTS; 

# Remove potential duplicated promoters (this happens when two transcripts with a different  

# length, but belonging to the same gene, have the same TSS). 

PROM = GROUP(region_keys: gene_name; region_aggregates: ensembl_ id AS BAGD(gene_id), 

 gene AS BAGD(gene_name), entrez_id AS BAGD(entrez_gene_id)) PROM_REG; 

# Extract the transcription factors that overlap with at least one promoter region. 

RES_0 = MAP(count_name: count_prom_TF) PROM FULL_ENCODE; 

RES_1 = SELECT(region: count_prom_TF > 0) RES_0; 

# Encode, for each promoter region, the TF that binds to it into a region attribute. 

SET_TF = PROJECT(region_update: TF AS META(FULL_ENCODE.experiment_target, STRING)) RES_1; 

Figure 5.1:  Diagram of the GMQL query for the extraction of TFs binding to human genes promoters. 
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# Merge all the samples into a dataset with a single sample, containing all the promoter  

# regions associated with their binding TFs and remove regions belonging to unknown genes. 

MERGED = MERGE() SET_TF; 

KNOWN_GENES = SELECT(region: NOT(entrez_id == '')) MERGED; 

# Group the regions by name, setting in the region attribute 'TFs' the list of transcription factors 

# binding to that gene promoters. 

RES = GROUP(region_keys: gene; region_aggregates: ensembl_gene_id AS BAGD(ensembl_id), 

gene_symbol AS BAGD(gene), entrez_gene_id AS BAGD(entrez_id), 

TFs AS BAGD(TF)) KNOWN_GENES; 

# The final dataset is created and saved in the system. 

MATERIALIZE RES INTO RES; 

The first step of the query selects transcription factors in cell lines K562 or MCF7 relative to 

NARROW data resulting from ChIP-seq experiments, retrieving only higher quality regions 

(conservative idr thresholded peaks parameter) and removing low quality samples (the negative 

audit parameters).  

Since multiple replicated samples, relative to different experiments, are possible for each TF, all the 

replicas are merged, using the GMQL operation COVER(1, ANY; groupby: experiment_target): for 

each TF, all possible replicas are combined into a single sample: the regions of this samples are defined 

as the ones with at least one base in one of the experiments. In this case, the COVER operation considers 

all those areas defined by a minimum of one overlapping region in the input samples, up to any amount 

of overlapping regions. An example is reported in Figure 5.2.  

In general, COVER parameters (minACC,maxACC) can vary and they can be customized according to 

the user’s needs: minACC and maxACC respectively define the minimum and the maximum number of 

overlapping regions to be considered during COVER execution (i.e., the minimum and the maximum 

number of replicas where a region has to be contained). As a result, our FULL_ENCODE dataset contains 

as many samples as the number of transcription factors in the considered cell lines (nTF = 276). 

In the second step of the query, the human gene promoters dataset is built (PROM, nPROM = 43529). 

Since no GENCODE annotations are initially present in the GMQL system, we implement a specific 

and parametric Python script for converting any type of GENCODE genomic annotation file into a set 

of GMQL data samples according to the GDM framework, and we finally upload them on the GMQL 

system. Specifically, versions 10 and 19 for assembly HG19 and versions 22, 24 and 27 for assembly 

GRCh38 are now publicly available in the system for all the end users, within the two datasets 

HG19_ANNOTATIONS_GENCODE and GRCh38_ANNOTATIONS_GENCODE. 

Starting from all known protein-coding transcripts of annotated genes, the PROJECT operation is 

able to automatically manage the strand and correctly compute the promoter regions around each gene 

TSSs, i.e., those regions going from 2000 bases upstream to 1000 bases downstream from the TSSs 

(multiple gene transcripts mean multiple TSSs, and multiple TSSs mean multiple promoters): 

- if strand == ‘+’, then the coordinates of the promoters are [TSS – 2000, TSS +1000] 

- if strand == ‘-‘, then the coordinates of the promoters are [TSS + 2000, TSS - 1000] 

Figure 5.3 shows a representation of the genomic coordinate system used for identifying regions of the 

genome and illustrates how gene promoters are computed according to the DNA strand. 
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The last step of the query compares TFs data and promoter regions, with the objective of extracting 

the transcription factors with binding sites overlapping with at least one promoter. This is done using 

the MAP operation (explained in Figure 5.4), which allows to map all the regions of an experiment dataset 

over the regions of a reference dataset, by automatically counting the number of experiment regions 

intersecting a certain reference region. In this case, TFs are mapped on promoters: for each TF sample, 

this operation counts the values of TF regions intersecting with a promoter region, for any promoter of 

each sample in the PROM dataset, generating dataset RES_0 with nTF samples, each one containing nPROM 

regions. Finally, only TFs with at least one intersection are selected (RES_1).  

At the end, the TF binding to each promoter region is encoded as a region attribute through the 

PROJECT operation and the regions of the resulting dataset are merged into a single sample. Promoters 

are grouped by gene, collecting the list of its associated TFs in a single region attribute, and the dataset 

is finally “materialized” (i.e., created and saved). 

Thanks to the PyGMQL library, the output dataset, containing all gene promoters, together with 

their associated TFs, is directly stored into a specific data structure (res_df), called GDataframe, which 

Figure 5.3:  Description of the genomic coordinates system and computation of gene promoters. 

Figure 5.2:  COVER(1,ANY) example. 
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comprises two pandas dataframes, one for the regions (GeneTF_df) and one for the metadata. Figure 

5.5 shows the lines of code used for “materializing” the query and extracting the region dataframe. 

In order to extract the lists of TFs, we simply perform an iteration along the region dataframe and 

select, for each gene of interest, the row of the dataframe associated to it, retrieving its list of TFs from 

the proper column. We store the results into a Python dictionary, a data structure mapping a set of keys 

(i.e., the target genes) to a set of values (i.e., the list of transcription factors, with two additional 

parameters storing the gene ID and its pathways), with the following structure: 

{GENE_SYMBOL_1: [TF1_1, TF1_2, …, [ENTREZ_GENE_ID_1],[PATHWAY1_1, …]], 

 GENE_SYMBOL_2: [TF2_1, TF2_2, …, [ENTREZ_GENE_ID_2],[PATHWAY2_1, …]], ..., 

 ... 

 GENE_SYMBOL_176: [TF176_1, TF176_2, …, [ENTREZ_GENE_ID_176],[PATHWAY176_1, …]]} 

Figure 5.6 displays the Python code implemented for extracting the complete list of transcription 

factors associated to each gene of interest: iterating along the GeneTF_df dataframe, regions belonging 

to target genes are identified, their TFs are retrieved and finally stored in the dictionary. Since each 

gene may have more than one promoter bound to the same TF, we consider only distinct values for 

each transcription factors, ensuring that all TFs of interest are retrieved, with no useless duplicates.  

Figure 5.5:  Python materialization of the RES dataframe and structure of the GeneTF_df dataframe. 

Figure 5.4:  Example of the GMQL MAP operation between two datasets containing one single data sample each. 
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5.3  Identification of candidate regulatory genes 

Rather than the transcription factors themselves, we are actually interested in the set of candidate 

regulatory genes of the genes of interest, i.e., the set of genes synthetizing these proteins. 

Regulatory genes are extracted by integrating the dictionary of TFs with the genes-transcription 

factors mapping table previously created. Figure 5.7 displays the Python code implemented for 

identifying the set of candidate regulatory genes: for all genes, the implemented script looks up each 

protein stored in its TFs list and retrieves the name of the corresponding encoding gene from the 

mapping table. 

To stay consistent with the procedure performed for the selection of TFs and save this data into a 

convenient structure, we store candidate regulators into another Python dictionary as follows: 

{GENE_SYMBOL_1: [REGULATORY_GENE_SYMBOL1_1, REGULATORY_GENE_SYMBOL1_2, …], 

 GENE_SYMBOL_2: [REGULATORY_GENE_SYMBOL2_1, REGULATORY_GENE_SYMBOL2_2, …], ..., 

 ... 

 GENE_SYMBOL_176: [REGULATORY_GENE_SYMBOL176_1, REGULATORY_GENE_SYMBOL176_2, …]} 

Finally, we summarize all information extracted so far into a comprehensive table (its structure is 

illustrated in Table 5.2): for each gene of interest, identified by its own Gene Symbol, there is a 

progressively enumerated list of all the TFs binding to its promoters, where each TF is associated with 

its encoding gene, in turn reported with both its own Gene Symbol andEntrez Gene ID. The table is  

Figure 5.6:  Main loop used for extracting each target gene list of TFs from the initial dataset. 

Figure 5.7:  Main loop used for identifying candidate regulatory genes for each gene of interest, starting from 
                     the list of TFs previously extracted. 
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completed by the target gene Entrez Gene ID and pathways, plus the total number of its associated TFs 

and distinct encoding genes (since a gene may encode for multiple TFs, the number of distinct candidate 

regulatory genes is generally smaller, or equal, to the number of distinct TFs). This chart is very useful 

for the biologists, because it allows them to easily keep track of those candidate regulatory genes 

encoding for multiple TFs and to identify all the different gene-TF associations, discerning among TFs 

attached to a protein tag from the ones that are not. 

Figure 5.8 shows the complete flowchart of the Python script used for the extraction of candidate 

regulatory genes (“Extraction RegulatoryGenes.py“). A flowchart for each Python script is then 

reported in Appendix A. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2:  Excerpt of the summary table with final results of TFs and candidate regulatory genes extraction phases 
                      (Full TFs-RegulatoryGenes SUMMARY Table.xlsx). 

GENE_SYMBOL # Transcription Factors Regulatory Genes Entrez_Gene_IDs ENTREZ_GENE_ID PATHWAYS #TFs #RegulatoryGenes (distinct)

1 ATF2-human ATF2 1386

2 CEBPB-human CEBPB 1051

3 CTCF-human CTCF 10664

4 eGFP-CEBPG-human CEBPG 1054

1 DDX20-human DDX20 11218

2 eGFP-PBX2-human PBX2 5089

3 FLAG-PBX2-human PBX2 5089

4 FOS-human FOS 2353

5 PKNOX1-human PKNOX1 5316

6 RFX1-human RFX1 5989

7 RFX5-human RFX5 5993

8 ZBTB33-human ZBTB33 10009

1 ARID1B-human ARID1B 57492

2 ARNT-human ARNT 405

3 ATF2-human ATF2 1386

4 ATF3-human ATF3 467

5 ATF7-human ATF7 11016

6 BCLAF1-human BCLAF1 9774

7 … … …

340273 STEM_CELLS 4 4

5232 GLUCOSE_METABOLISM 8 7

BRCA1 672 DNA_REPAIR 132 126

ABCB5

PGK2
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Figure 5.8:  Flowchart for the extraction of candidate regulatory genes of the genes of interest. 
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5.4  Extraction of methylation and gene expression values 

The next step consists in extracting target gene methylation and gene expression values, in both ovarian 

and breast cancers, retrieving them from the GRCh38_TCGA_methylation and GRCh38_TCGA_gene_ 

expression datasets in the GMQL system. 

Measures on ovarian cancer are collected for the analysis, while the subset of breast cancer 

information is later used for validating the ovarian cancer data analysis results. 

 

5.4.1  Ovarian cancer 

Tumor-specific patients data for ovarian cancer is the most interesting dataset for our analysis. We 

collect these data by filtering the original TCGA datasets with the following query (illustrated in the 

block diagram of Figure 5.9), remotely executed from Python on the GMQL system, using the PyGMQL 

library: 

 
# Extract methylation and expression information for OV tumor: 

 

# Initial datasets: 

# Extract all the samples for tumor OV and platform 27k and exclude, if present, either normal or 

# metastatic samples, retrieving only primary or recurrent appearance tumor samples. 

ALL_OV_METHYL = SELECT(manually_curated__cases__disease_type == "Ovarian Serous  

Cystadenocarcinoma" AND manually_curated__platform == "Illumina Human Methylation 27" AND 

(biospecimen__bio__sample_type == "Primary Tumor" OR biospecimen__bio__sample_type == 

"Recurrent Tumor") AND clinical__shared__history_of_neoadjuvant_treatment == "No") 

GRCh38_TCGA_methylation; 

 

# Extract all the gene expression data for tumor OV and exclude, if present, either normal or metastatic 

# samples, retrieving only primary or recurrent appearance tumor samples. 

ALL_OV_EXPR = SELECT(manually_curated__cases__disease_type == "Ovarian Serous 

Cystadenocarcinoma" AND (biospecimen__bio__sample_type == "Primary Tumor" OR 

biospecimen__bio__sample_type == "Recurrent Tumor") AND 

clinical__shared__history_of_neoadjuvant_treatment == "No") GRCh38_TCGA_gene_expression; 

 

# Keep only those region attributes that are useful for the scope of the project, in order to lighten the 

# computational time complexity of the query, and select the common samples by extracting only those aliquots  

# for which both methylation and expression values are available. 

 

# Gene Expression (OV): 

OV_EXPR_0 = PROJECT(ensembl_gene_id, entrez_gene_id, gene_symbol, fpkm) ALL_OV_EXPR; 

OV_EXPR = SELECT(semijoin: biospecimen__bio__bcr_sample_barcode IN ALL_OV_METHYL) OV_EXPR_0; 

# The final dataset is created and saved in the system. 

MATERIALIZE OV_EXPR INTO OV_EXPR; 

 

# Methylation (OV): 

OV_METHYL_0 = PROJECT(beta_value) ALL_OV_METHYL; 

OV_METHYL = SELECT(semijoin: biospecimen__bio__bcr_sample_barcode IN ALL_OV_EXPR) OV_METHYL_0; 

# The final dataset is created and saved in the system. 

MATERIALIZE OV_METHYL INTO OV_METHYL; 

 

# These output datasets are then used in Python to extract methylation sites located in regions -4000/+1000  

# around the TSSs of the genes of interest and to extract target genes and their candidate regulatory genes  

# expression values. 
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Specifically, we focus on primary tumor samples that were not previously treated with any neo-

adjuvant treatment and, if present, samples coming from patients with recurrent tumor, excluding both 

metastatic tumor and normal samples, which may alter the results of our analysis. 

In order to minimize the number of missing values selected from TCGA, which would represent 

only additional noise for the analysis, we select only common samples having both methylation and 

expression values in the two initial TCGA datasets. This filtering is executed by setting the semijoin 

parameter in the SELECT operation: it executes the selection operation on the basis of the existence of 

one or more metadata attributes and the matching of their values with the ones associated with at least 

one sample in another dataset. 

The output datasets are finally “materialized” using PyGMQL into two GDataframes (methyl_Gdf 

and expr_Gdf), so that their corresponding region (methyl_df_regs and expr_df_regs) and metadata 

(methyl_df_meta and expr_df_meta) dataframes are immediately available in the Python environment 

for completing the extraction procedure. 

As for methylation data, we are only interested in methylation sites falling within target genes 

promoters or in a slightly wider area, because, as previously mentioned, the methylated promoter 

mostly influences the gene expression regulation, by considerably reducing the expression (methylation 

sites localized in other regions of the genes are not relevant for this project). This is the reason why we 

only retrieve methylations located in genomic areas going from 4000 bases upstream to 1000 bases 

downstream from the TSSs of the genes of interest.  Figure 5.10 illustrates an example of methylation 

sites of interest (represented as red circles). 

Figure 5.9:  Diagram of the GMQL query for the extraction of OV tumor data. 
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These areas, identified as methyl_areas for the sake of convenience, are extracted through the 

following GMQL query (illustrated in the block diagram of Figure 5.11): 

 

# Computation of methyl_areas: 

 

# Extract the known protein-coding transcripts from GRCh38 GENCODE annotation (version 22). 
CODING_TRANSCRIPTS = SELECT(release_version == "22" AND annotation_type == "transcript"; 

   region: transcript_type == 'protein_coding' AND 

(tag == 'basic' OR tag == 'CCDS’)) GRCh38_ANNOTATION_GENCODE; 

 

# Compute the 'methyl_areas' for each transcript of each annotated gene 

METHYL_AREAS_REG = PROJECT(gene_id, gene_name, entrez_gene_id; region_update: start AS 

      start - 4000, stop AS start + 1000) CODING_TRANSCRIPTS; 

 

# Remove potential duplicated methy_areas (this happens when two transcripts with a different  

# length, but belonging to the same gene, have the same TSS). 

GENCODE_GRCh38_METHYL_AREAS = GROUP(region_keys: gene_name; region_aggregates: ensembl_gene_id 

AS BAGD(gene_id), gene_symbol AS BAGD(gene_name), entrez_id  

AS BAGD(entrez_gene_id)) METHYL_AREAS_REG; 

# The final dataset is created and saved in the system. 

MATERIALIZE GENCODE_GRCh38_METHYL_AREAS INTO GENCODE_GRCh38_METHYL_AREAS; 

 

Iterating along the GENCODE_GRCh38_METHYL_AREAS dataset (once filtered for the target genes) and 

combining it with the methyl_df_regs dataframe, for each gene of interest and for all its TCGA aliquot, 

we select all the beta_values quantifying the methylation level of the CpG sites in its methyl_areas. If a 

gene is associated with more than one beta_value in the same aliquot, its mean value is computed, in  

Figure 5.10:  Example of methylation sites (red circles) considered in the analysis. 
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order to have one single value approximating the absolute level of methylation for every target gene in 

each aliquot.  
 

We use a Python script quite similar to the one written for the methylation, in order to extract 

gene expression values of target genes and of their candidate regulatory genes, in each TCGA aliquot, 

by iteration along the expr_df_regs dataframe. 

Finally, extracted methylation and expression values are stored and exported in three distinct data 

matrices, with the set of TCGA aliquots (372 OV tumor patients) as rows and either the full list of 

distinct genes of interest (176) or candidate regulatory genes (249) as columns. Additional information, 

such as the gene IDs, the data samples names, the tumor label and the patient ID, is also added, for any 

future needs whatsoever. Table 5.3 shows an excerpt of the final tables containing TCGA data for all the 

ovarian cancer patients under observation. 
 

In the end, there are only 12 genes of interest with no methylation values in TCGA: 
 

▪ gene 5091 [PC] has indeed null methylation values (i.e. mean_beta_value = 0) when measured 

in the patients of interest; however, for the sake of simplicity, these null regions are removed 

from the TCGA data uploaded to the GMQL system. Thus, they are actually zero when it comes 

to the data analysis; 
 

▪ genes 100133941 [CD24], 54567 [DLL4], 3065 [HDAC1], 3099 [HK2], 3717 [JAK2], 389421 

[LIN28B], 79923 [NANOG], 4853 [NOTCH2], 55066 [PDPR], 10721 [POLQ] and 8801 

[SUCLG2] have no methylation probes at all in the TCGA data. This means that their 

methylation is not measured in the TCGA tumor patients and so their beta_values are not 

available (i.e. NaN). 
 

Information on gene expression is complete for all the target genes and their candidate regulators, with 

the only exception of regulatory gene 56947 [EMSY], that has no available values in the TCGA samples. 

     Therefore, before carrying out the complete data analysis, we discard features corresponding to the 

expression of EMSY and to the methylation the 11 genes listed before. 

 

 

 

 

 

 

Figure 5.11:  Diagram of the GMQL query for the extraction of methyl_areas. 
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b) Target genes expression (GeneExpression - InterestGenes.xlsx).

ABCB5 ALDH1A1 BMI1 BMP7 CD24 CHEK1 PC … Sample_ID Tumor Patient_ID

ENTREZ_GENE_ID 340273 216 648 655 100133941 1111 5091 …

TCGA-04-1364-01A 0.02291 1.998453 13.651514 1.692225 299.441479 5.987776 2.356133 … S_00000.gdm OV 1364

TCGA-61-2002-01A 0.009571 3.692858 3.418337 1.150803 246.010375 10.449857 2.711215 … S_00001.gdm OV 2002

TCGA-57-1586-01A 0.027514 7.151855 5.012184 11.090795 293.09535 1.927998 2.078006 … S_00002.gdm OV 1586

TCGA-61-2097-01A 0 5.631069 12.604977 9.842409 220.883809 1.374333 1.571335 … S_00003.gdm OV 2097

TCGA-23-1122-01A 0.005616 6.071856 7.816883 35.919864 724.546495 3.107495 3.780404 … S_00004.gdm OV 1122

TCGA-24-1470-01A 0.001497 3.764909 6.917762 0.365766 58.36363 6.007744 4.047326 … S_00005.gdm OV 1470

TCGA-24-1552-01A 0.019144 2.273179 8.278887 0.074336 262.532741 3.962442 3.144839 … S_00006.gdm OV 1552

TCGA-29-1776-01A 0.010634 3.068088 10.420312 31.205439 192.025111 5.976915 6.872311 … S_00007.gdm OV 1776

TCGA-29-1784-01A 0 11.938886 14.020578 20.217522 140.167166 4.794879 6.11142 … S_00008.gdm OV 1784

TCGA-36-1576-01A 0.036987 8.189365 9.612057 24.826643 156.883801 5.176216 3.59262 … S_00009.gdm OV 1576

TCGA-13-1505-01A 0.018376 15.178873 13.891931 10.134051 153.286014 3.20198 2.519232 … S_00010.gdm OV 1505

TCGA-10-0933-01A 0.026474 15.251822 24.441218 0.563663 201.296503 5.289196 0.744259 … S_00011.gdm OV 0933

TCGA-61-1738-01A 0.018394 1.600411 14.519727 3.303383 2532.3069 2.232936 4.318866 … S_00012.gdm OV 1738

TCGA-04-1347-01A 0.309587 1.660109 17.785528 124.095932 2105.55512 2.395861 1.829276 … S_00013.gdm OV 1347

TCGA-25-1635-01A 0.010763 11.575235 11.162415 14.910754 242.402065 2.430764 7.127303 … S_00014.gdm OV 1635

TCGA-10-0927-01A 0.071264 9.067047 11.251924 56.938212 84.78876 1.969504 0.714678 … S_00015.gdm OV 0927

TCGA-25-1313-01A 0.001689 18.468666 6.783292 9.307512 252.538749 1.361469 2.706795 … S_00016.gdm OV 1313

TCGA-61-2009-01A 0.014768 9.08691 12.069058 14.713253 408.593683 1.592084 1.46462 … S_00017.gdm OV 2009

TCGA-30-1862-01A 0.025827 5.635403 17.888518 0.268158 362.058013 1.937804 7.763464 … S_00018.gdm OV 1862

TCGA-23-1029-01B 0.02423 11.374037 15.53838 50.445761 258.662538 7.309248 4.198416 … S_00019.gdm OV 1029

… … … … … … … … … … … …

Table 5.3:  Excerpt of the final tables containing data about DNA methylation and gene expression for each TCGA  
     aliquot under analysis. 

a) Target genes methylation (MethylationValues.xlsx).

ABCB5 ALDH1A1 BMI1 BMP7 CD24 CHEK1 PC … Sample_ID Tumor Patient_ID

ENTREZ_GENE_ID 340273 216 648 655 100133941 1111 5091 …

TCGA-36-1569-01A 0.88004863 0.08121697 0.01768676 0.01620633 0.03973334 0 … S_00000.gdm OV 1569

TCGA-36-1568-01A 0.80510806 0.06154271 0.01616918 0.01563498 0.05202452 0 … S_00001.gdm OV 1568

TCGA-04-1332-01A 0.85770674 0.17624142 0.01054901 0.01294314 0.06774251 0 … S_00006.gdm OV 1332

TCGA-23-1809-01A 0.89217838 0.0920498 0.01157163 0.00792197 0.0517871 0 … S_00007.gdm OV 1809

TCGA-23-1030-01A 0.88117329 0.13621047 0.00891415 0.01029035 0.05390399 0 … S_00010.gdm OV 1030

TCGA-61-1998-01A 0.91447765 0.1339391 0.0295399 0.01213231 0.06598633 0 … S_00011.gdm OV 1998

TCGA-20-1686-01A 0.67479441 0.23423499 0.01265658 0.09237621 0.04534391 0 … S_00012.gdm OV 1686

TCGA-13-0727-01A 0.85419375 0.09855298 0.00980201 0.01306752 0.08505444 0 … S_00014.gdm OV 0727

TCGA-25-1312-01A 0.892138 0.07964036 0.01159257 0.00707971 0.04597742 0 … S_00016.gdm OV 1312

TCGA-13-0905-01B 0.91930939 0.06060005 0.00851126 0.01182553 0.04274153 0 … S_00017.gdm OV 0905

TCGA-09-1666-01A 0.79116528 0 0.02504361 0.01464563 0.11030122 0 … S_00018.gdm OV 1666

TCGA-24-1546-01A 0.84589247 0.04815934 0.00998333 0.01502781 0.04566988 0 … S_00019.gdm OV 1546

TCGA-29-2414-01A 0.86408993 0.10254702 0.01723743 0.00926446 0.05604113 0 … S_00020.gdm OV 2414

TCGA-36-1576-01A 0.87646228 0.09154352 0.01151242 0.0283414 0.04300342 0 … S_00022.gdm OV 1576

TCGA-24-1435-01A 0.56241766 0.22121593 0.02533332 0.02246621 0.12276458 0 … S_00023.gdm OV 1435

TCGA-24-1416-01A 0.79059439 0.20998184 0.01735423 0.0180661 0.10238849 0 … S_00024.gdm OV 1416

TCGA-09-1665-01B 0.76770618 0.23475299 0.01425861 0.00747348 0.10529026 0 … S_00025.gdm OV 1665

TCGA-24-2254-01A 0.7842761 0.09594699 0.02247552 0.02142992 0.06503955 0 … S_00027.gdm OV 2254

TCGA-13-1487-01A 0.70895062 0.31496744 0.01737893 0.02254837 0.16830201 0 … S_00029.gdm OV 1487

TCGA-24-1417-01A 0.59887862 0.29289423 0.02089882 0.02645135 0.08981947 0 … S_00031.gdm OV 1417

… … … … … … … … … … … …
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5.4.2  Breast cancer 

Finally we use BRCA tumor for the biological and computational validation of the OV tumor analysis 

outcomes. As already stated in the previous chapter, only a limited set of samples related to a 

biomolecularly specific subtype of breast cancer, i.e., the Basal-like Breast Cancer, is considered. 

The data extraction process uses a GMQL query having a similar structure of the one used for the 

OV tumor data. Its block diagram is reported in Figure 5.12. The only difference is that no PAM50 Basal 

tag or identifier is encoded in TCGA metadata, making impossible to recognize the tumor samples of 

interest without providing more external information. For this reason, we implement a Python script 

for converting “Basal” tumor samples in the PAM50 data table (Table 4.4 in Chapter 4), according to the 

GDM framework, into a GMQL-like dataset to be uploaded to the GMQL system (BRCA_PAM50_BASAL 

dataset). The complete code of this script is reported in Figure 5.13. 

Using both the TCGA aliquot sample barcode and the ID of the patient identifying PAM50 samples, 

we can select basal-like breast cancer samples having both methylation and expression data available in 

TCGA. The GMQL query we used is reported below: 

 
# Extract methylation and expression information for BRCA tumor: 

 
# Initial datasets: 

# Extract all the samples for tumor BRCA and platform 450k and exclude, if present, either normal or 

# metastatic samples, retrieving only primary or recurrent appearance tumor samples. 

ALL_BRCA_METHYL = SELECT(manually_curated__cases__disease_type == " Breast Invasive Carcinoma" 

AND manually_curated__platform == " Illumina Human Methylation 450" AND (biospecimen__ 

bio__sample_type == "Primary Tumor" OR biospecimen__bio__sample_type == "Recurrent 

Tumor") AND clinical__shared__history_of_neoadjuvant_treatment == "No") 

GRCh38_TCGA_methylation; 

 

ATF2 CEBPB CTCF KLF1 ZNF687 DPF2 EMSY … Sample_ID Tumor Patient_ID

ENTREZ_GENE_ID 1386 1051 10664 10661 57592 5977 56946 …

TCGA-04-1364-01A 8.626486 105.782551 15.050922 0.461137 14.433112 11.065619 … S_00000.gdm OV 1364

TCGA-61-2002-01A 10.510457 86.270449 15.799646 0.159999 12.744001 8.77075 … S_00001.gdm OV 2002

TCGA-57-1586-01A 8.066589 146.126198 9.986646 0.125702 70.810176 12.384597 … S_00002.gdm OV 1586

TCGA-61-2097-01A 18.936805 192.852163 13.376466 0.301939 14.503313 13.294428 … S_00003.gdm OV 2097

TCGA-23-1122-01A 18.481601 83.243196 19.868367 0.114293 15.13596 10.013334 … S_00004.gdm OV 1122

TCGA-24-1470-01A 9.212276 166.113877 15.333887 0.235032 14.31 13.807878 … S_00005.gdm OV 1470

TCGA-24-1552-01A 7.118054 59.968358 8.150597 0.121433 14.270525 8.459142 … S_00006.gdm OV 1552

TCGA-29-1776-01A 9.092053 87.816039 17.732396 0.111295 18.145805 10.755706 … S_00007.gdm OV 1776

TCGA-29-1784-01A 7.928575 192.260107 10.800649 0.264238 12.41611 10.790263 … S_00008.gdm OV 1784

TCGA-36-1576-01A 10.710793 114.813848 15.709174 0.112656 13.677253 16.29588 … S_00009.gdm OV 1576

TCGA-13-1505-01A 11.883956 104.204626 14.238084 0.094978 16.798894 9.449083 … S_00010.gdm OV 1505

TCGA-10-0933-01A 14.37373 201.370561 15.095133 0.059207 12.924882 7.885083 … S_00011.gdm OV 0933

TCGA-61-1738-01A 9.829785 148.037349 9.589454 0.166376 23.475641 8.953291 … S_00012.gdm OV 1738

TCGA-04-1347-01A 4.878672 68.739427 7.515916 0.579071 16.849624 7.005869 … S_00013.gdm OV 1347

TCGA-25-1635-01A 7.031113 148.267617 18.382765 0.107284 15.533219 6.822243 … S_00014.gdm OV 1635

TCGA-10-0927-01A 9.249128 77.996766 9.751757 0.872373 11.117764 8.397714 … S_00015.gdm OV 0927

TCGA-25-1313-01A 12.61316 84.866241 14.553219 0.127686 17.153735 11.769521 … S_00016.gdm OV 1313

TCGA-61-2009-01A 9.888627 200.908539 11.994709 0.203942 8.784982 8.981544 … S_00017.gdm OV 2009

TCGA-30-1862-01A 15.701506 149.562462 16.890046 0.242594 18.532845 14.126315 … S_00018.gdm OV 1862

TCGA-23-1029-01B 6.680773 48.931378 12.503842 0.198906 16.608442 12.840061 … S_00019.gdm OV 1029

… … … … … … … … … … … …

c)  Candidate regulatory genes expression (GeneExpression - RegulatoryGenes.xlsx). 
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# Extract all gene expression data for tumor BRCA and exclude, if present, either normal or metastatic 

# samples, retrieving only primary or recurrent appearance tumor samples. 

ALL_BRCA_EXPR = SELECT(manually_curated__cases__disease_type == " Breast Invasive Carcinoma" AND 

(biospecimen__bio__sample_type == "Primary Tumor" OR biospecimen__bio__sample_type ==  

"Recurrent Tumor") AND clinical__shared__history_of_neoadjuvant_treatment == "No") 

GRCh38_TCGA_gene_expression; 
 
# Extract all the 'basal' PAM50 samples for tumor BRCA. 

PAM50_BASAL = SELECT() BRCA_PAM50_BASAL; 
 

# Keep only those region attributes that are useful for the scope of the project, in order to lighten the 

# computational time complexity of the query, and select the common samples by extracting only those aliquots  

# for which both methylation and expression values are available. 

# Gene Expression (BRCA): 

BRCA_EXPR_0 = PROJECT(ensembl_gene_id, entrez_gene_id, gene_symbol, fpkm) ALL_BRCA_EXPR; 

BRCA_EXPR_1 = SELECT(semijoin: biospecimen__shared__bcr_patient_barcode IN PAM50_BASAL) 

    BRCA_EXPR_0; 

BRCA_EXPR = SELECT(semijoin: biospecimen__bio__bcr_sample_barcode IN ALL_BRCA_METHYL) 

    BRCA_EXPR_1; 

# The final datasets are created and saved in the system. 

MATERIALIZE BRCA_EXPR INTO BRCA_EXPR; 
 

# Methylation (BRCA): 

BRCA_METHYL_0 = PROJECT(beta_value) ALL_BRCA_METHYL; 

BRCA_METHYL_1 = SELECT(semijoin: biospecimen__shared__bcr_patient_barcode IN PAM50_BASAL) 

  BRCA_METHYL_0; 

BRCA_METHYL = SELECT(semijoin: biospecimen__bio__bcr_sample_barcode IN ALL_BRCA_EXPR) 

  BRCA_METHYL_1; 

# The final dataset is created and saved in the system. 

MATERIALIZE BRCA_METHYL INTO BRCA_METHYL; 

Figure 5.12:  Diagram of the GMQL query for the extraction of BRCA tumor data. 
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Figure 5.13:  Python script for converting BRCA PAM50 Basal set of samples into a GMQL dataset. 
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5.5  Data matrix construction 

We have to organize the selected data to let them be used as input for the data analysis, such that we 

can analyze the single regulation system of each gene of interest, by identifying the role of its possible 

regulatory features quantified as for their impact on the target gene expression, whatever the feature is, 

i.e., the gene methylation, the expression of a gene in the same pathway or in another pathway and the 

expression of genes encoding for transcription factors. 

Therefore, we adopt an additive approach to build five different data matrices for each gene of 

interest (that we call M1, M2, M3, M4 and M5), including TCGA data extracted in the previous phases. 

We can keep track of each gene regulation system step by step, according to the different types of 

biological features. This means that, starting from the gene expression and methylation value of the 

model gene, the columns of each gene data matrix are gradually incremented, according to specific pre-

defined rules. Table 5.4 shows the structure of the five set of features used during the data analysis. 

By gradually adding new features, i.e., genes that may positively or negatively influence the 

regulation of the model gene expression, we can broaden the set of regulation hypotheses, until we 

reach an accurate prediction of the expression of the model gene. 

Gene 2932 [GSK3B] belongs to both STEM_CELLS and GLUCOSE_METABOLISM pathways: since 

its regulation can be different depending on the pathway it participates in, and thus to its biological 

functions, it must be considered twice in the analysis, with two data matrices of each type. In total, 885 

data matrices (177 genes * 5 set of features) with 372 rows (i.e., OV patients samples) and up to 419 

columns (i.e., features, potential candidate regulators) are built. Their content is detailed in the 

following paragraphs. 

 

5.5.1  M1: genes belonging to the same pathway of the model gene 

Matrix M1 contains the expression of the model gene (measured in fpkm), its methylation (expressed 

as the mean of its beta_values) and the expression of the genes belonging to the model gene pathway. 

Therefore, the number of possible features of this matrix (its columns, excluding the target) is 

different, depending on the pathway the model gene belongs to: 20 features for DNA_REPAIR genes, 

73 features for STEM_CELLS genes and 84 for GLUCOSE_METABOLISM genes. 

 

5.5.2  M2: M1 + candidate regulatory genes of the model gene 

Matrix M2 adds the expression of all the candidate regulatory genes of the model gene to matrix M1. 

The number of columns of this matrix clearly depends on the number of candidate regulatory genes 

which each gene of interest is associated to: the number of features is approximately in the range of 67-

194 for DNA_REPAIR genes, 73-208 for STEM_CELLS genes and 84-258 for GLUCOSE_ 

METABOLISM genes. 

Each new feature is added avoiding repetition with respect to M1: this means that if a candidate 

regulator of the model gene is already present in M1 as a gene of the model gene pathway, it is discarded. 
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5.5.3  M3: M2 + candidate regulatory genes of the model gene pathway genes 

Matrix M3 adds the expression of the candidate regulatory genes of all the genes in the model gene 

pathway to matrix M2. The number of columns of this matrix also depends on the number of these new 

candidate regulatory genes: 246 for DNA_REPAIR genes, 310 for STEM_CELLS genes and 324 for 

GLUCOSE_METABOLISM genes. 

This number is intuitively the same for all genes belonging to the same pathway, because all the 

genes of the pathway and all their candidate regulatory genes are examined and added at least in one of 

the three iterations. Furthermore, the amount of new features to be examined from this step on is 

exactly the same for all the genes in each pathway, so the number of columns of the next two matrixes 

remains identical for all the genes belonging to the same pathway. 

Also in this case, new features are added avoiding repetition: if a candidate regulatory gene of some 

gene in the pathway is already present in M2 (i.e. it is either a gene of the model gene pathway or a 

candidate regulatory gene of the model gene), it is discarded. 

5.5.4  M4: M3 + genes belonging to other pathways 

Matrix M4 adds the expression of the genes belonging to the other pathways with respect to the model 

gene considered to matrix M3, avoiding repetitions. 

However, biologists say that predicting STEM_CELLS and DNA_REPAIR genes expression on the 

basis of genes belonging to GLUCOSE_METABOLISM pathway is confusing, because the functions they 

perform are quite different and poorly interrelated; including glucose metabolism involved genes 

within the regulation systems of either stem cells or DNA-repair genes would be misleading for the 

analysis. For this reason, we build M4 matrixes of genes belonging to DNA_REPAIR and STEM_CELLS 

pathways by adding only features from STEM_CELLS and DNA_REPAIR, respectively, while M4 

Table 5.4:  Structure of the data matrixes for the data analysis process. 

TARGET
(regression output variable)

Model Gene

EXPRESSION

Model Gene

METHYLATION

SAME

PATHWAY

GENES

Model gene

CANDIDATE 

REGULATORY

GENES

Same pathway

CANDIDATE

REGULATORY

GENES

OTHER

PATHWAYS

GENES 

Other Pathways

CANDIDATE

REGULATORY

GENES

TCGA_Aliquot_1

TCGA_Aliquot_2

TCGA_Aliquot_3

…

TCGA_Aliquot_N

M5

M4

M3

M2

M1

FEATURES
(regression input variables)
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matrixes of genes belonging to GLUCOSE_METABOLISM pathway contain both DNA_REPAIR and 

STEM_CELLS potential regulators. 

As already stated before, the number of columns of matrix M4 is identical for all the genes 

belonging to the same pathway: in particular, they are in total 314 for DNA_REPAIR genes, 329 for 

STEM_CELLS genes and 410 for GLUCOSE_METABOLISM genes. 

5.5.5  M5: M4 + candidate regulatory genes of other pathway genes 

Finally, matrix M5 adds the expression of the candidate regulatory genes of all the genes belonging to 

the other pathways to matrix M4, avoiding repetitions. 

The number of columns of this matrix is intuitively the same for genes belonging either to the 

DNA_REPAIR or to the STEM_CELLS pathway (332), while it is higher (419) for GLUCOSE_ 

METABOLISM genes, since both other pathways are evaluated for identifying gene expression 

regulators. 
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6. Data Analysis

<< We’ve all heard the buzz words: streamline, optimize, integrate, adapt. 

Everyday someone comes up with a new strategy or tool or technology to increase our efficiency. […] 

To really be efficient, you have to eliminate what doesn’t work. You have to figure out what is important 

and hold on tight to the things that matter the most.>> 

Meredith 

This is the most important phase of the project: processing all the data arranged in the previous phases 

through a suitable machine learning algorithm [58, 59], in order to investigate the behavior of the target 

genes to meet our goals. 

According to our regulation hypotheses, we build a linear regression model for each target gene 

and for each set of features (i.e., data matrices from M1 to M5). 

The five matrices are constructed according to pre-defined rules we have established at the 

beginning of the project. Progressively broadening the set of potential regulatory features associated 

with each target gene in a well-defined order is just matter of convenience, first to keep track of the 

regulatory influence of each different type of factors on the target gene expression and secondly to 

design a computationally sustainable data analysis procedure. However, there are no specific biological 

rules stating that, for each target gene, genes in the same pathway have to be analyzed before its 

candidate regulatory genes. Therefore, these two set of features are given as inputs to our regression 

model all at once, by considering the whole M2 (that includes M1) as the starting point of the data 

analysis. The same applies for M5 (that includes M4), following the analysis on M3. 

In a word, we perform only three regression processes for each gene of interest, using data in 

matrices M2 (genes in the same pathway and model gene candidate regulators), M3 (including also 

candidate regulatory genes of the model gene pathway) and M5 (including also genes in the other 

pathways and their candidate regulators). So, we overcome potential issues related to the order in which 

features are added to the models: in fact, adding to the regression model genes in the same pathway first 

and then candidate regulators of the model gene produces different results than considering the features 

in the opposite order (i.e., candidate regulators first, followed by genes in the same pathway). 

The full data analysis is divided into two main processes, executed per pathway (DNA_REPAIR, 

STEM_CELLS and GLUCOSE_METABOLISM) and per set of features (M2, M3 and M5): for each target 

gene in the pathway, we first perform a feature selection on the whole set of its possible regulatory 

features, and then we execute the linear regression algorithm. 

Feature selection identifies a subset of the original predictors (i.e., the set of potential regulatory 

features) believed to be related to the response (i.e., the expression of the target gene) and allows to fit 

the regression models by reducing their sets of inputs and, as a consequence, to apply least squares on 

the reduced set of variables.  
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We adopt this approach to overcome computational issues deriving from handling more than 500 

models, from a set of 372 observations (i.e., the patient-specific ovarian tumor samples) and from up to 

419 potential features. Besides reducing computational complexity, we also get a better statistical 

accuracy: otherwise, too many predictors would lead to an overfitting of the model, causing no longer 

unique least squares coefficient estimate which would drastically increase the variance, making the 

linear method inaccurate. 

Therefore, as matter of computational efficiency, data analysis on each gene is split in three steps, 

one for each set of features, and each step comprises two main processes: a preliminary feature selection 

for removing non-significant features and for reducing the set of inputs of the regression model, and 

the linear model fitting, which keeps only relevant features selected in the previous step for each next 

step. Considering the whole set of possible features, in fact, would be completely unreasonable from a 

computational standpoint, uselessly causing an execution taking days to complete. 

Both feature selection and the subsequent linear regression are executed on each target gene and 

for each of the three sets of features, using two parametric Python scripts executed per pathway: at the 

beginning of each script, it is enough to initialize two specific parameters defining the pathway and the 

number of the model to be processed. Figure 6.1 shows the Python code used for initializing these 

parameters. 

As shown in Figure 6.2, so far we have described the set of operations for extracting and handling 

data for each gene; the following paragraphs detail the feature selection and the linear regression 

procedure used for the data analysis. 

 

Figure 6.1:  Initialization step in the Python scripts for performing feature selection and linear regression. 



57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1  Feature / gene selection 

The first step for each target gene consists in selecting the best subset of features for that gene, according 

to a specific metric. In fact, it would be useless to keep inputs that are known to be non-significant for 

the regulation of the model gene expression beforehand. In addition, this feature selection process 

allows to perform a more accurate analysis for each gene in a reasonable time, reducing the dimensions 

of the set of features with respect to the set of observations. 

The Python script implementing the feature selection process iterates along the list of target genes 

belonging to the pathway selected for the analysis and for each of such genes executes the following 

operations: 

 

a. the current gene data matrix is imported (M2, M3 or M5) and all its empty columns are removed, 

since they surely do not contribute to the regression model (e.g., columns with NaN methylation 

Figure 6.2:  Full set of operations performed on each gene of interest during the course of the project. 
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values, corresponding to genes for which no probes are measured in TCGA, or genes with missing 

expression values in TCGA); 

b. if the matrix selected is either M3 or M5, all those features belonging to the previous set of features 

of the same gene (M2 for M3 and M3 for M5) which are not selected by the feature selection process 

before, are removed. We assume those same features cannot be selected in the current feature 

selection process, since they have already been discarded once. This implementation also 

contributes to design a more scalable process, always keeping a limited number of considered 

features at each step of the data analysis. The features retrieved from the previous model, along 

with the new features in the current matrix, are involved in the new feature selection process; this 

means that one or more features selected in the previous model may potentially be discarded as a 

result of the current feature selection, because some of the new added features better explain the 

output variable; 

c. at this point, for each input matrix, the feature selection is performed five times, as follows: in order 

to reduce the bias, we randomly split the set of TCGA aliquots into five, possibly equal, groups of 

samples which are used to create five different testing sets. This partition is indeed performed only 

once at the beginning of the data analysis, and then the same five subsets of aliquots are used for 

processing all the genes. Therefore, we execute the feature selection five times, once for each 

generated testing set (using the remaining aliquots as training set), according to a k-fold cross-

validation process, setting k=5. Finally, the intersection of the five sets of extracted features is 

computed to obtain the final array of selected features for the current gene in the current matrix. 

Figure 6.3 summarizes the complete feature selection procedure.  

Here, feature selection follows the forward feature selection paradigm that analyzes the performance of 

all the possible sets of features, starting from a single feature and progressively adding the others one at 

a time, finally returning the subset with the best cross-validation performance. This means that if n is 

the number of considered features, n is also the number of the analyzed sets of features, with a 

dimension going from 1 (the first subset) to n (the last subset). 

Different criteria can be used to decide which subset of features and how many features are best to 

be extracted: in this case, the k_features parameter of the selector is set to ‘best’, which means that 

the returned subset of the initial features is the one that minimizes the mean of cross-validation scores. 
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a)  Selection of features in M2, containing the methylation of the model gene, the expression of the genes in  

      the currently analyzed pathway and the expression of candidate regulatory genes of the model gene. 

b)  Selection of features in M3, adding to the previous matrix the expression of the candidate regulatory genes  

     of all the other genes in the currently analyzed pathway. 
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Figure 6.4 shows the piece of code in the feature selection Python script where the feature selector 

is used, while in Figure 6.5 we report the complete flowchart displaying the detailed operations of the 

“Feature_selection.py” Python script. 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Feature selection for matrix M2 (a), M3 (b) and M5 (c).   
 

c)  Selection of features in M5, adding to the previous matrix the expression of the genes in the other pathways  

     and of their candidate regulatory genes. 
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Figure 6.4:  Feature selection process, repeated five times for each target gene and for each selected data matrix. 
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Figure 6.5:  Flowchart of the feature selection script. 
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6.2  Linear regression of individual genes on ovarian tumor samples 

The second step of our data analysis consists in fitting a linear model on each individual target gene and 

its data matrices, starting from the set of features selected in the previous step.  

Just as what done for the feature selection, we implement a Python script that iterates along the 

list of target genes belonging to the pathway under analysis, fitting a linear model as specified in the 

data matrix parameter at the beginning of the script. Here are the details: 

 

a. data are normalized to allow results comparisons; assessing the regulation of the model gene 

expression starts from heterogenous data, hence normalization is needed for consistently 

comparing results both in individual models and across models.  

The Z-score normalization is applied to convert each variable into a variable with a “standard” 

distribution, with mean_value=0 and variance=1, using the following formula: 

Normalized(v) = 
v - mean_value

std_dev
 

This is achieved by using the Standard Scaler from the sklearn.preprocessing model (Figure 

6.6 shows how this function works). This normalization process allows comparing the regression 

coefficients assigned to the different features within the same model and establishing which one 

has the highest impact on the output variable; 

 

b. we build the linear model using function OLS from statsmodels.regression.linear_model 

module to fit a simple ordinary least squares model. Figure 6.7 shows the script implemented for 

the ordinary least squares regression. 

This Python library conveniently presents the results of the regression procedure to the user: 

besides computing the regression coefficients for each input feature, it also automatically calculates 

R2, Adjusted R2, confidence intervals and other quality-related parameters, to let the user 

immediately assessing the quality of the fit and the accuracy of the model. An example of this 

summary statistics is reported in Figure 6.8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6:  Z-score normalization (or standard normalization) in scikit-learn. 
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Figure 6.7:  Ordinary least squares regression in Statsmodel. 

Figure 6.8:  Linear regression summary statistics in Statsmodel. 
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For each gene and in each model, we extract and evaluate only the relevant features for the regulation 

of its expression, according to the values of the confidence intervals: relevant features are the ones 

whose regression coefficients have a confidence interval not containing 0 (“zero”). 

A confidence interval represents an interval estimate which is supposed to contain the true value 

of an unknown parameter. It has an associated confidence level (usually 95%) quantifying the 

probability that the parameter (i.e., the estimated regression coefficient) lies in the interval: so, if a 

feature is very unlikely to be zero (i.e., the confidence interval does not contain 0), then it is relevant 

for the model. This means that the actual set of relevant features involved in the regulation of the gene 

expression is either smaller or equal to the set of fetaures selected by the initial feature selection process 

and used as input for the regression model (Figure 6.9 shows how this identification of relevant features 

works, by considering gene TKT as an example). 

Therefore, it may happen that a feature f  selected in M3 is not relevant in the results of the 

corresponding model, while it becomes significant for M5. This is possible because f  is selected in M3 

and so it also participates in the feature selection process of M5: the relevance of a selected feature is 

evaluated as a result of the linear model fitting. 

Figure 6.9:  Example of linear regression for matrix M3 of gene TKT and identification of relevant features. 
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The flowchart in Figure 6.10 shows the detailed operations of the “Linear_regression.py” Python

script. 

Figure 6.10:  Flowchart of the linear regression script. 
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Table 6.1 shows the details about the execution times required for the data analysis, executed on a 4 

cores CPU machine, 2.80 GHz, 16GB RAM. 

Table 6.1:  Data analysis: execution times. 

OV Tumor

Data Analysis
M2 M3 M5

DNA_REPAIR 2 hours and 30 minutes 2 hours 50 minutes

STEM_CELLS 12 hours and 30 minutes 17 hours and 30 minutes 20 minutes

GLUCOSE_METABOLISM 21 hours and 40 minutes 17 hours 6 hours and 30 minutes
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7. Results and Discussion

<< Knowing is better than wondering. Waking is better than sleeping. 

 It can change your perspective, color your thinking. >> 

Meredith & Cristina 

In this chapter the main results of the data analysis are presented and discussed, along with their 

interpretation and visualization as network graphs, and their validation on breast cancer data. 

7.1  Analysis of regression results and networks generation

As specified in the previous chapter, we adopt a “computationally feasible” approach: we are not 

interested in all possible relationships between the target genes and their features, but we care about 

the associations that most efficiently contribute to the prediction; however, some existing specific aspect 

may be discarded during the analysis, because less relevant than other features. Our results are limited 

by design to the best-predicting sets of features, leaving out potential regulators with important 

biological functions, but with a lower predicting power. 

Among the three models built for each gene of interest, we specifically focus on results of model 

M5, because this is the most comprehensive model, considering all the possible features that may 

participate in the regulation of the target gene expression. 

However, some genes may have a more accurate model for M3 rather than for M5 (i.e., R2M3 > 

R2M5): this is due to the fact that its behavior is better explained by genes within their own pathway and 

genes encoding for transcription factors binding to them, rather than genes involved in the other 

pathways. Therefore, the evaluation and the interpretation of the final results are focused on both M3 

and M5 models, in order to identify the set of features mainly correlated to each target gene. 

The effect of each feature on the target gene expression is quantified by its regression coefficient: 

a positive regression coefficient means that the regulatory element up-regulates the target gene (i.e., it 

contributes positively to the regulation of its activity, increasing its expression), while a negative 

regression coefficient means that the regulatory element down-regulates the target gene (i.e., it 

contributes negatively to the regulation of its activity, suppressing its expression). 

The score assigned to each model is of great importance, too: we use the Adjusted R2 for assessing 

the quality of the fit, because it is an unbiased estimator that takes the number of features used in the 

model fitting into consideration, on the basis of the sample size and the number of the estimated 

coefficients. Adjusted R2 is always smaller than the R2, but this difference is usually very small, unless 

we try to estimate too many coefficients from too small a sample in presence of too much noise. 

In general, upon analyzing the score of a regression model we can assess if the model actually meets 

the initial objectives and it is adequate to the requirements. As available data are highly heterogeneous, 
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we cannot expect that the target genes have values close to 1. Moreover, several other mechanisms of 

gene expression regulation are possible, that we did not addressed in this project, such as miRNAs, 

lncRNAs, other putative TFs not found in the ChIP-seq experiments from ENCODE, transcription 

factors subcellular localization and post-translational modifications: the fact that our R2 scores are 

usually lower than 1 reflects the lack in our models of these other regulatory elements, since this project 

only focuses on a specific subset of factors regulating the expression of target genes. 

Assessing how good or bad the score is for a regression model is a difficult matter, because it is 

strictly related to the objectives of the analysis and how the dependent variable is defined.  In particular, 

this score highly depends on whether the main objective for the linear regression is predicting the 

response variable or it is describing the relationship between the predictors and the target. The main 

objective of this project is clearly the second one: analyzing the regulatory system of each target gene, 

upon assessing which are the features that are more correlated to its expression, quantifying their impact 

on the output and describing how changes in these predictors relate to changes in the expression of the 

target gene. 

In this case, lower scores are not particularly bad, because the relevance of a feature on the output 

is not related to the value of R2. If the results of the analysis indicate that one-unit increase in the input 

is associated with an average of 0.5 increase in the output (i.e., the regression coefficient assigned to 

that feature is 0.5), this interpretation is correct regardless whether the R2 value is 0.4 or it is 0.9. 

However, if the main goal is to produce precise predictions, then the R2 becomes a concern, because 

lower values of R2 indicate a poor fit and a higher error. 

We evaluate all the relationships between the predictors and the target and focus on the most 

relevant features, by visualizing the results of our analysis as a set of different networks: for each 

pathway, genes and the revealed correlations are graphically represented in networks, defined by 

grouping the genes according to their function-specific classification (defined in Chapter 4 at the end 

of paragraph 4.1).  

Relevant features are ordered according to their regression coefficients, which quantify the effect 

of each feature on the target gene expression: the higher is the estimated coefficient, the higher is the 

contribution of that feature on the gene expression and its relevance in the target gene regulation 

system. If gene methylation is selected as a relevant feature, its regression coefficient must correctly 

reflect the theory about methylation: gene hypermetilation is associated with a suppression of its 

expression, which means that the corresponding coefficient is negative.  

We also evaluate which models better behave in terms of prediction of the output variable (i.e., 

models with the best linear fit), highlighting for each pathway the genes with a “good” value for either 

model M3 or model M5, setting a threshold of 0.6 (i.e., models with Adjusted R2 >= 0.6). These best 

fitting genes form the set of regulations to be validated by the biologists during the experimental 

laboratory analysis following this work. 
 

The next paragraphs detail the results obtained for each pathway, highlighting genes with a better 

linear model fit and their estimated regulatory elements, genes correlating with their own methylation, 
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which contributes to suppressing their expression, and more frequent regulators selected along the 

pathway, which may have a more relevant biological role within the whole genetic pathway. 

7.1.1  DNA_REPAIR pathway 

The genes involved in the DNA repair mechanisms overall showing the best linear fit in the regression 

models are 9: BRCA1, ERCC1, ERCC2, FANCC, FANCD2, POLB, POLE, POLQ and TP53BP1 (Table 7.1). 

In general, models accuracy increases while adding new features: this gradual development proves 

that adding features increasingly means progressively broadening the set of regulation hypotheses, until 

reaching a point where there is a set of features allowing an accurate prediction of the expression of the 

model gene. However, it is possible that some genes (BRCA1, ERCC2, POLE, TP53BP1) better behave in 

either the first (M2) or the second model (M3), rather than the last one (M5), showing their regulation 

systems mainly depend on the activity of genes in the same pathway and on their regulatory genes. 

Model M2: the expression of each target gene is regulated by genes in the DNA_REPAIR pathway and 

genes encoding for transcription factors binding to the target gene promoters. 

The Adj. R2 score is higher than 0.6 only for 3 genes of the pathway (POLE, TP53BP1 and FANCD2) 

and it reaches a maximum value of around 0.67 for gene POLE. The only features discarded a priori are 

the ones corresponding to missing values in TCGA, i.e., in this case only methylation of POLQ. 

For 6 genes of the pathway, the gene methylation is selected as one of the relevant features involved 

in the regulation of their expression: 

- BRCA1, with a regression coefficient of -0.3940; 

- CDK12, with a regression coefficient of -0.1907; 

- ERCC1, with a regression coefficient of -0.1214; 

- FANCF, with a regression coefficient of -0.2287; 

- ERCC4, with a regression coefficient of -0.2574; 

- ERCC5, with a regression coefficient of -0.1430. 

There are 4 most frequent regulators, selected as relevant regulatory features for 4 DNA-repair genes: 

➢ POLQ (gene of the DNA_REPAIR pathway) is selected as: 

- 1st (out of 6 features) for FANCD2 with a regression coefficient of 0.5649; 

- 2nd (out of 4 fetaures) for BRCA1 with a regression coefficient of 0.3057; 

- 5th (out of 5 features) for MLH1 with a regression coefficient of -0.1146; 

- 10th (out of 10 features) for OGG1 with a regression coefficient of -0.3507; 

➢ POLE (gene of the DNA_REPAIR pathway) is selected as: 

- 1st (out of 5 features) for FANCA with a regression coefficient of 0.5217; 

- 2nd (out of 5 features) for FANCC with a regression coefficient of 0.2999; 

- 2nd (out of 8 fetaures) for FANCF with a regression coefficient of 0.2506; 

- 6th (out of 6 fetaures) for XPA with a regression coefficient of -0.2565; 
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➢ FANCD2 (gene of the DNA_REPAIR pathway) is selected as: 

- 1st (out of 5 features) for MLH1 with a regression coefficient of 0.4074; 

- 1st (out of 10 features) for OGG1 with a regression coefficient of 0.4532; 

- 1st (out of 4 features) for POLQ with a regression coefficient of 0.6733; 

- 1st (out of 8 features) for RAD51 with a regression coefficient of 0.4551; 
 

➢ HCFC1 (regulatory gene of the DNA_REPAIR pathway) is selected as: 

- 1st (out of 6 features) for PARP1 with a regression coefficient of 0.3347; 

- 2nd (out of 10 features) for POLE with a regression coefficient of 0.1900; 

- 2nd (out of 9 features) for ERCC2 with a regression coefficient of 0.3464; 

- 11th (out of 11 features) for PALB2 with a regression coefficient of -0.1770. 

 

Model M3: the expression of each target gene is regulated by genes in the DNA_REPAIR pathway and 

genes encoding for transcription factors binding to the target gene promoters or to the promoters of 

other genes in this pathway. 

The Adj. R2 score is higher than 0.6 for 6 genes of the pathway (FANCC, TP53BP1, ERCC2, FANCD2, 

POLQ and BRCA1) and it reaches a maximum value of around 0.64 for gene FANCC. The only fetaures 

discarded a priori are the ones corresponding to missing values in TCGA, i.e., the methylation of POLQ 

and the expression of the regulatory gene EMSY. 

For 5 genes of the pathway the gene methylation is selected as one of the relevant features involved 

in the regulation of their expression: 

- BRCA1, with a regression coefficient of -0.3442; 

- ERCC1, with a regression coefficient of -0.1347; 

- FANCF, with a regression coefficient of -0.1314; 

- ERCC4, with a regression coefficient of -0.1817; 

- ERCC5, with a regression coefficient of -0.1630. 
 

Differently from the previous model, gene CDK12 loses its methylation from the set of relevant 

features, because more relevant regulators are found among the set of candidate regulatory genes of the 

Table 7.1:  DNA_REPAIR genes with either M3 or M5 model score higher than the 0.6 threshold. 

R2 Adj.R2
Most

Relevant

Feature

Coefficient R2 Adj.R2
Most

Relevant

Feature

Coefficient R2 Adj.R2
Most

Relevant

Feature

Coefficient

POLB 0.20 0.19 HDAC2 0.3399 0.55 0.54 THAP1 0.7135 0.69 0.68 THAP1 0.5420

FANCC 0.58 0.57 XPA 0.3814 0.65 0.64 XPA 0.3988 0.68 0.67 XPA 0.3552

POLQ 0.49 0.49 FANCD2 0.6733 0.63 0.62 FANCD2 0.4926 0.67 0.66 FANCD2 0.4779

TP53BP1 0.68 0.67 ZSCAN29 0.4986 0.64 0.63 ZSCAN29 0.4772 0.66 0.65 ZSCAN29 0.4646

FANCD2 0.61 0.60 POLQ 0.5649 0.63 0.62 POLQ 0.5386 0.63 0.63 POLQ 0.5799

ERCC2 0.52 0.51 ERCC1 0.5923 0.64 0.63 ERCC1 0.5457 0.64 0.63 ERCC1 0.5332

POLE 0.68 0.68 FANCA 0.3224 0.58 0.57 FANCA 0.4439 0.63 0.62 FANCA 0.3124

ERCC1 0.57 0.55 ERCC2 0.5905 0.60 0.59 ERCC2 0.6395 0.61 0.60 ERCC2 0.5420

BRCA1 0.55 0.54 FANCC 0.3077 0.63 0.62 FANCC 0.2643 0.60 0.59 FANCC 0.2336

M2 M3 M5
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pathway: in particular its methylation, along with the contribution of its regulatory gene TAF15 and the 

gene BRCA1 of the current DNA_REPAIR pathway, is improved by selected regulatory genes SUZ12, 

BCLAF1, RUNX1 and ZNF217.  

 

There are 4 most frequent regulators, selected as significant regulatory features for 4 DNA-repair genes:  
 

➢ POLQ (gene of the DNA_REPAIR pathway) is selected as: 

- 1st (out of 7 features) for FANCD2 with a regression coefficient of 0.5386; 

- 2nd (out of 8 fetaures) for BRCA1 with a regression coefficient of 0.2603; 

- 7th (out of 9 features) for MLH1 with a regression coefficient of -0.2060; 

- 9th (out of 9 features) for OGG1 with a regression coefficient of -0.4165; 
 

➢ FANCD2 (gene of the DNA_REPAIR pathway) is selected as: 

- 1st (out of 8 features) for POLQ with a regression coefficient of 0.4926; 

- 1st (out of 9 features) for OGG1 with a regression coefficient of 0.4220; 

- 2nd (out of 9 fetaures) for MLH1 with a regression coefficient of 0.2916; 

- 2nd (out of 11 fetaures) for RAD51 with a regression coefficient of 0.3216; 
 

➢ SUZ12 (regulatory gene of the DNA_REPAIR pathway) is selected as: 

- 1st (out of 5 features) for CDK12 with a regression coefficient of 0.3550; 

- 2nd (out of 8 features) for BRCA1 with a regression coefficient of 0.1691; 

- 3rd (out of 9 features) for PALB2 with a regression coefficient of 0.1983; 

- 6th (out of 9 features) for OGG1 with a regression coefficient of 0.1212; 
 

➢ ZHX1 (regulatory gene of the DNA_REPAIR pathway) is selected as: 

- 2nd (out of1 features) for XPA with a regression coefficient of 0.2350; 

- 3rd (out of 7 features) for ERCC5 with a regression coefficient of 0.1853; 

- 7th (out of 11 features) for FANCF with a regression coefficient of 0.1212; 

- 11th (out of 13 features) for ERCC1 with a regression coefficient of -0.1759. 

 

Model M5: the expression of each target gene is regulated by genes in the DNA_REPAIR pathway, 

genes encoding for transcription factors binding to the target gene promoters or to the promoters of 

other genes in this pathway, genes in the STEM_CELLS pathway and their regulatory genes. 

The Adj. R2 score is higher than 0.6 for 8 genes of the pathway (POLB, FANCC, POLQ, TP53BP1, 

FANCD2, ERCC2, POLE and ERCC1) and it reaches a maximum value of around 0.68 for gene POLB. Table 

7.2 shows an excerpt of the whole set of relevant features in model M5 for some of the best genes in the 

DNA_REPAIR pathway. The only fetaures discarded a priori are the ones corresponding to missing 

values in TCGA, i.e., the methylation of POLQ and the expression of the regulatory gene EMSY. 

For 4 genes of the pathway the gene methylation is selected as one of the relevant features involved 

in the regulation of their expression: 

- BRCA1, with a regression coefficient of -0.3475; 
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- FANCF, with a regression coefficient of -0.1659; 

- ERCC4, with a regression coefficient of -0.2608; 

- ERCC5, with a regression coefficient of -0.1774. 
 

Differently from the previous model, gene ERCC1 loses its methylation from the set of significant 

features, because more relevant regulators are found among the set of candidate regulatory genes of the 

pathway: in particular its methylation, along with the contribution of its regulatory genes GATAD2B 

and TBP and the regulatory genes of the DNA_REPAIR pathway, ZC3H8 and ZMIZ1, is improved by 

selected regulatory genes of the STEM_CELLS pathway, HNRNPUL1 and NCOA3. 

The small set of genes in Table 7.2 highlights the strong interrelationship between the 

DNA_REPAIR and the STEM_CELLS pathway and the relevant impact that the genes in the latter 

pathway have in regulating the activity of genes involved in the DNA damages recovery mechanisms. 

As also reported in the networks at the end of the paragraph, these evaluation can be generalized 

on the whole set of genes in the DNA_REPAIR pathway. 

Table 7.2:  Model M5 best DNA_REPAIR genes and their features. 
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There is one single most frequent regulator, selected as a relevant regulatory feature for 5 DNA- 

repair genes:  

➢ XRCC3 (regulatory gene of the STEM_CELLS pathway) is selected as: 

- 2nd (out of 11 features) for POLQ with a regression coefficient of 0.1916; 

- 4th (out of 9 fetaures) for POLE with a regression coefficient of 0.1625; 

- 5th (out of 11 features) for POLE with a regression coefficient of 0.1098; 

- 9th (out of 11 features) for FANCC with a regression coefficient of 0.0985; 

- 9th (out of 12 features) for PARP1 with a regression coefficient of -0.0767; 

Finally, all the results are graphically represented through expression networks in Cytoscape, as 

described in Chapter 3. An example is reported in Figure 7.1, showing model M3 (a) and model M5 (b) 

networks for the genes of the DNA Double Strand Breaks (DSB) subclass. 

In general, all the drawn networks follow the same color-legend: in red genes in the DNA_REPAIR 

pathway, in orange genes in the STEM_CELLS pathway, in pink genes in the GLUCOSE_ 

METABOLISM pathway, in green gene methylations and in light blue regulatory genes, regardless of 

the pathway they belong to. The relationships are represented by directed edges starting in the 

regulatory element and incoming in the target gene: red edges correspond to positive regulations, while 

grey edges correspond negative regulations. This code of colors allows an easy reading of the results and 

gives us the possibility of assessing the effect of both methylation and transcription factors, as well as 

the interrelationships between pathways of interest (i.e., how each target gene is regulated and how it 

in turn participates, if so, in regulating other target genes). 

Networks pictured in Figure 7.1 describe the regulation systems of a subset of 8 genes from the 

DNA_REPAIR pathway (BRCA1, FANCA, FANCC, FANCD2, FANCF, PALB2, POLQ and RAD51), showing 

how the regulation of their expression changes from considering only target and regulatory genes of 

the DNA_REPAIR pathway, to including also activity related to genes of the STEM_CELLS pathway.  

As a whole, we could not find common transcription factors regulating the expression of genes 

involved in the same DNA_REPAIR pathway. This is partly unexpected, but there can be several 

reasons for this finding. A possible explanation could be that all these DNA repair pathways are 

multistep processes involving many different proteins having roles in other cellular processes. It may 

be that under specific conditions (i.e., DNA damage or other stress cellular conditions) different 

processes are activated. Our analysis relies on the expression of genes in basal conditions, not taking 

into consideration what occurs in activated/stress conditions or after therapy. 
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a)  DNA_REPAIR (M3) - DSB 

b)  DNA_REPAIR (M5) - DSB 

Figure 7.1:  Expression networks from linear regression models M3 (a) and M5 (b) of the DSB subclass.      
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7.1.2  STEM_CELLS pathway 

The genes involved in stem cells overall showing the best linear fit in the regression models are 11: AXL, 

CHEK1, DNMT1, ENG, ITGA4, JAK2, LATS1, MAML1, NOTCH2, PECAM1 and PTPRC (Table 7.3). 

Even for this pathway, in general, models accuracy increases while progressively adding new 

features. However, some genes (ENG, NOTCH2, PECAM1) better behave in either M2 model or M3 

model, showing their regulation systems mainly depend on the activity of genes in the same pathway 

and on their regulatory genes. 

 

Model M2: the expression of each target gene is regulated by genes in the STEM_CELLS pathway and 

genes encoding for transcription factors binding to the target gene promoters. 

The Adj. R2 score is higher than 0.6 for 5 genes of the pathway (PTPRC, ITGA4, PECAM1, ENG and 

LATS1) and it reaches a maximum value of around 0.77 for gene PTPRC. The only fetaures discarded a 

priori are the ones corresponding to missing values in TCGA, i.e., the methylation of CD24, DLL4, 

HDAC1, JAK2, LIN28B, NANOG, NOTCH2 genes. 

For 10 genes of the pathway the gene methylation is selected as one of the relevant features 

regulating their expression: 

- ATM, with a regression coefficient of -0.2246; 

- CD34, with a regression coefficient of -0.1010; 

- CHEK1, with a regression coefficient of -0.1121; 

- ENG, with a regression coefficient of -0.0896; 

- EPCAM, with a regression coefficient of -0.3359; 

- CXCL8, with a regression coefficient of -0.1422; 

- MAML1, with a regression coefficient of -0.1017; 

- PLAT, with a regression coefficient of -0.2656; 

- POU5F1, with a regression coefficient of -0.2565; 

- SAV1, with a regression coefficient of -0.2558. 
 

There is one single most frequent regulator, selected as a relevant regulatory feature for 9 stem cells 

target genes:  
 

➢ PTPRC (gene of the STEM_CELLS pathway) is selected as: 

- 1st (out of 4 feature) for CD38 with a regression coefficient of 0.4178; 

- 1st (out of 6 fetaures) for CD44 with a regression coefficient of 0.3582; 

- 1st (out of 5 features) for ITGA4 with a regression coefficient of 0.5299; 

- 1st (out of 10 features) for JAK2 with a regression coefficient of 0.3359; 

- 1st (out of 4 features) for MS4A1 with a regression coefficient of 0.4193; 

- 1st (out of 5 features) for PECAM1 with a regression coefficient of 0.4741; 

- 3rd (out of 5 features) for AXL with a regression coefficient of 0.1786; 

- 6th (out of 6 features) for DLL4 with a regression coefficient of -0.2629; 

- 7th (out of 8 features) for SMO with a regression coefficient of -0.2176. 
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Model M3: the expression of each target gene is regulated by genes in the STEM_CELLS pathway and 

genes encoding for transcription factors binding to the target gene promoters or to the promoters of 

other genes in this pathway. 

The Adj. R2 score is higher than 0.6 for 11 genes of the pathway (PTPRC, ITGA4, LATS1, DNMT1, 

JAK2, NOTCH2, MAML1, PECAM1, CHEK1, AXL and ENG) and it reaches a maximum value of around 

0.82 for gene PTPRC. The only fetaures discarded a priori are the ones corresponding to missing values 

in TCGA, i.e., the methylation of CD24, DLL4, HDAC1, JAK2, LIN28B, NANOG, NOTCH2 and the 

expression of the regulatory gene EMSY. 

For 10 genes of the pathway the gene methylation is selected as one of the relevant features 

regulating their expression: 

- ATM, with a regression coefficient of -0.1591; 

- CD34, with a regression coefficient of -0.1733; 

- CHEK1, with a regression coefficient of -0.0960; 

- DACH1, with a regression coefficient of -0.1215; 

- EPCAM, with a regression coefficient of -0.2276; 

- CXCL8, with a regression coefficient of -0.1628; 

- MAML1, with a regression coefficient of -0.0723; 

- PLAT, with a regression coefficient of -0.2482; 

- POU5F1, with a regression coefficient of -0.1984; 

- SAV1, with a regression coefficient of -0.1725. 
 

Differently from the previous model, methylation becomes relevant for gene DACH1, while gene 

ENG loses its methylation from the set of relevant features, because more relevant regulators are found 

among the set of candidate regulatory genes of the pathway: in particular its methylation, along with 

the contribution of its regulatory genes L3MBTL2 and ATF1 and the gene SMO of the current 

STEM_CELLS pathway, is improved by selected regulatory genes of the STEM_CELLS pathway, TEAD2 

and ZNF143.  

Table 7.3:  STEM_CELLS genes with either M3 or M5 model score higher than the 0.6 threshold. 

R2 Adj.R2
Most

Relevant

Feature

Coefficient R2 Adj.R2
Most

Relevant

Feature

Coefficient R2 Adj.R2
Most

Relevant

Feature

Coefficient

PTPRC 0.78 0.77 ITGA4 0.4530 0.82 0.82 IKZF1 0.5958 0.83 0.82 IKZF1 0.5857

ITGA4 0.70 0.69 PTPRC 0.5299 0.76 0.75 PTPRC 0.4427 0.77 0.76 PTPRC 0.4511

DNMT1 0.43 0.42 SIN3B 0.3627 0.69 0.69 SMARCA4 0.6022 0.71 0.70 SMARCA4 0.5505

LATS1 0.64 0.63 ARID1B 0.5622 0.72 0.71 ARID1B 0.4710 0.71 0.70 ARID1B 0.5248

MAML1 0.55 0.53 HCFC1 0.3149 0.68 0.67 ZNF354B 0.4484 0.70 0.69 ZNF354B 0.4257

JAK2 0.54 0.52 PTPRC 0.3359 0.69 0.68 TRIM22 0.3378 0.69 0.68 TRIM22 0.3314

CHEK1 0.56 0.55 NFRKB 0.4920 0.64 0.63 NFRKB 0.4643 0.67 0.66 NFRKB 0.4343

PECAM1 0.64 0.64 PTPRC 0.4741 0.65 0.65 PTPRC 0.3183 0.64 0.64 PTPRC 0.3595

NOTCH2 - - - - 0.68 0.68 CSDE1 0.7630 0.64 0.64 CSDE1 0.7441

AXL 0.49 0.48 ITGA4 0.504 0.64 0.63 TITGA4 0.358 0.64 0.63 ITGA4 0.3422

ENG 0.64 0.64 ZEB2 0.4696 0.63 0.62 ZEB2 0.4547 0.62 0.62 ZEB2 0.4504

M2 M3 M5
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There is one single most frequent regulator, selected as a relevant regulatory feature for 10 stem 

cells target genes:  

➢ PAX8 (regulatory gene of the STEM_CELLS pathway) is selected as: 

- 1st (out of 1 feature) for NOS2 with a regression coefficient of -0.1792; 

- 2nd (out of 8 fetaures) for BMP7 with a regression coefficient of 0.2424; 

- 2nd (out of 3 features) for NANOG with a regression coefficient of -0.1257; 

- 6th (out of 7 features) for LIN28B with a regression coefficient of -0.1251; 

- 6th (out of 6 features) for MYCN with a regression coefficient of -0.1533; 

- 7th (out of 7 features) for KLF4 with a regression coefficient of -0.1542; 

- 8th (out of 8 features) for CD44 with a regression coefficient of -0.1997; 

- 10th (out of 12 features) for MYC with a regression coefficient of -0.1491; 

- 11th (out of 13 features) for ETFA with a regression coefficient of -0.1424; 

- 11th (out of 11 features) for ITGA4 with a regression coefficient of -0.1075; 

Model M5: the expression of each target gene is regulated by genes in the STEM_CELLS pathway, genes 

encoding for transcription factors binding to the target gene promoters or to the promoters of other 

genes in this pathway, genes in the DNA_REPAIR pathway and their regulatory genes. 

The Adj. R2 score is higher than 0.6 for the same 11 genes of the pathway as in M3 (PTPRC, ITGA4, 

DNMT1, LATS1, MAML1, JAK2, CHEK1, PECAM1, NOTCH2, AXL and ENG) and it reaches a maximum 

value a little higher than 0.82 for gene PTPRC. Table 7.4 shows an excerpt of the whole set of relevant 

features in model M5 for some of the best genes in the STEM_CELLS pathway. The only fetaures 

discarded a priori are the ones corresponding to missing values in TCGA, i.e., the methylation of CD24, 

DLL4, HDAC1, JAK2, LIN28B, NANOG, NOTCH2 and the expression of the regulatory gene EMSY. 

For 9 genes of the pathway the gene methylation is selected as one of the relevant features 

regulating their expression, i.e., the same as in M3, with the exception of gene DACH1: 

- ATM, with a regression coefficient of -0.1591; 

- CD34, with a regression coefficient of -0.1733; 

- CHEK1, with a regression coefficient of -0.0960; 

- EPCAM, with a regression coefficient of -0.2276; 

- CXCL8, with a regression coefficient of -0.1628; 

- MAML1, with a regression coefficient of -0.0723; 

- PLAT, with a regression coefficient of -0.2482; 

- POU5F1, with a regression coefficient of -0.1984; 

- SAV1, with a regression coefficient of -0.1725. 

The same most frequent regulator is present, selected as a relevant regulatory feature for the same 10 

stem cells target genes as in model M3:  

➢ PAX8 (regulatory gene of the STEM_CELLS pathway) is selected as: 

- 2nd (out of 2 feature) for NOS2 with a regression coefficient of -0.1858; 
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- 2nd (out of 8 fetaures) for BMP7 with a regression coefficient of 0.2264; 

- 2nd (out of 3 features) for NANOG with a regression coefficient of -0.1257; 

- 6th (out of 9 features) for LIN28B with a regression coefficient of -0.1277; 

- 6th (out of 7 features) for MYCN with a regression coefficient of -0.1625; 

- 8th (out of 8 features) for CD44 with a regression coefficient of -0.1997; 

- 9th (out of 9 features) for KLF4 with a regression coefficient of -0.1344; 

- 10th (out of 12 features) for ETFA with a regression coefficient of -0.1213; 

- 11th (out of 13 features) for MYC with a regression coefficient of -0.1132; 

- 12th (out of 12 features) for ITGA4 with a regression coefficient of -0.0921; 

Table 7.4:  Model M5 best STEM_CELLS genes and their features. 

GENE Significant Feature Adj.R2 Regression Coefficient Feature Description

IKZF1 0.5857 Candidate regulatory gene of the STEM_CELLS pathway

ITGA4 0.2392 Gene of the STEM_CELLS pathway

CD38 0.1394 Gene of the STEM_CELLS pathway

CD44 0.1217 Gene of the STEM_CELLS pathway

AXL 0.0729 Gene of the STEM_CELLS pathway

ERCC2 -0.1169 Gene of the DNA_REPAIR pathway

ELF4 -0.1252 Candidate regulatory gene of the STEM_CELLS pathway

PTPRC 0.4511 Gene of the STEM_CELLS pathway

AXL 0.2539 Gene of the STEM_CELLS pathway

MEF2A 0.2216 Candidate regulatory gene of the STEM_CELLS pathway

ERCC2 0.1325 Gene of the DNA_REPAIR pathway

MERTK 0.1047 Gene of the STEM_CELLS pathway

ZZZ3 0.0966 Candidate regulatory gene of the STEM_CELLS pathway

MLH1 0.0961 Gene of the DNA_REPAIR pathway

SMAD1 0.0924 Candidate regulatory gene of the STEM_CELLS pathway

SKIL -0.0715 Candidate regulatory gene of the STEM_CELLS pathway

XPA -0.0735 Gene of the DNA_REPAIR pathway

NR2F2 -0.0804 Candidate regulatory gene of the STEM_CELLS pathway

PAX8 -0.0921 Candidate regulatory gene of the STEM_CELLS pathway

SOX6 -0.1051 Candidate regulatory gene of the STEM_CELLS pathway

SMARCA4 0.5505 Candidate regulatory gene of the STEM_CELLS pathway

POLE 0.1738 Gene of the DNA_REPAIR pathway

CHEK1 0.1565 Gene of the STEM_CELLS pathway

CC2D1A 0.1552 Candidate regulatory gene of the STEM_CELLS pathway

MTA2 0.1208 Candidate regulatory gene of the STEM_CELLS pathway

MCM3 0.1049 Candidate regulatory gene of the STEM_CELLS pathway

DEAF1 -0.1112 Candidate regulatory gene of the STEM_CELLS pathway

TEAD2 -0.1282 Candidate regulatory gene of the STEM_CELLS pathway

NFRKB 0.4343 Candidate regulatory gene of the model gene CHEK1

RAD51 0.2605 Candidate regulatory gene of the STEM_CELLS pathway

FANCA 0.2058 Gene of the DNA_REPAIR pathway

CBX5 0.1290 Candidate regulatory gene of the STEM_CELLS pathway

SRSF1 0.1290 Candidate regulatory gene of the STEM_CELLS pathway

DACH1 0.1073 Gene of the STEM_CELLS pathway

YBX3 0.0818 Candidate regulatory gene of the DNA_REPAIR pathway

METHYLATION (CHEK1) -0.1144 Methylation of the model gene CHEK1

MAFK -0.1611 Candidate regulatory gene of the STEM_CELLS pathway

ZNF384 -0.1680 Candidate regulatory gene of the STEM_CELLS pathway

RB1 -0.1680 Candidate regulatory gene of the model gene CHEK1

ZKSCAN1 -0.1872 Candidate regulatory gene of the STEM_CELLS pathway

PTPRC

ITGA4

DNMT1

0.82

0.76

0.70

0.66CHEK1
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Unlike what happens swapping the pathways, in this case it is interesting to notice the limited 

impact of the DNA_REPAIR pathway on these genes, whose regulation systems mainly depends on 

genes or regulatory genes of the STEM_CELLS pathway itself. 

 

Finally, all the results are graphically represented through expression networks in Cytoscape. An 

example for this pathway is reported in Figure 7.2, showing model M3 (a) and model M5 (b) networks 

for the genes of the Cancer Therapeutic Targets subclass: it describes the regulation systems of a subset 

of 17 genes from the STEM_CELLS pathway (ABCG2, ATM, AXL, CHEK1, DDR1, DKK1, EPCAM, FZD7, 

GSK3B, ID1, IKBKB, JAK2, KLF17, NFKB1, PTCH1, SMO and STAT3), showing how the regulation of their 

expression changes from considering only target and regulatory genes of the STEM_CELLS pathway, to 

including also activity related to genes of the DNA_REPAIR pathway, whose impact is here limited. 

 

7.1.3  GLUCOSE_METABOLISM pathway 

The genes involved in glucose metabolism overall showing the best linear fit in the regression models 

are 10: ACLY, ACO2, ALDOA, DLAT, HK3, MDH1, PHKA1, PRPS1, SDHD and TPI1 (Table 7.5). 

Even for this third pathway, models accuracy increases while progressively adding new features, 

except for MDH1 which better behave in model M3. 

 

Model M2: the expression of each target gene is regulated by genes in the GLUCOSE_METABOLISM 

pathway and genes encoding for transcription factors binding to the target gene promoters. 

The Adj. R2 score is higher than 0.6 only for 3 genes of the pathway (SDHD, DLAT and ACO2) and 

it reaches a maximum value of around 0.78 for gene SDHD. The only fetaures discarded a priori are the 

ones corresponding to missing values in TCGA, i.e., the methylation of HK2, PDPR, SUCLG2 genes. 

For 14 genes of the pathway the gene methylation is selected as one of the relevant features 

involved in the regulation of their expression: 

- AGL, with a regression coefficient of -0.2198; 

- ALDOC, with a regression coefficient of -0.3634; 

- DLD, with a regression coefficient of -0.2418; 

- IDH3A, with a regression coefficient of -0.1198; 

- IDH3B, with a regression coefficient of -0.2608; 

- MDH2, with a regression coefficient of -0.1573; 

- PCK1, with a regression coefficient of -0.3248; 

- PCK2, with a regression coefficient of -0.1278; 

- PDHA1, with a regression coefficient of -0.1490; 

- PDK4, with a regression coefficient of -0.1237; 

- PGM3, with a regression coefficient of -0.2025; 

- PYGM, with a regression coefficient of -0.1122; 

- RPE, with a regression coefficient of -0.1445; 

- SDHA, with a regression coefficient of -0.2296. 
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Figure 7.2:  Expression networks from linear regression models M3 (a) and M5 (b) of the Cancer Therapeutic  
                      Targets  subclass.      

a)  STEM_CELLS (M3) – Cancer Therapeutic Targets 

b)  STEM_CELLS (M5) - Cancer Therapeutic Targets  
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There are 2 most frequent regulators, selected as relevant regulatory features for 10 glucose 

metabolism target genes:  

➢ SUCLG1 (gene of the GLUCOSE_METABOLISM pathway) is selected as: 

- 1st (out of 10 features) for FH with a regression coefficient of 0.1944; 

- 1st (out of 8 fetaures) for PDK2 with a regression coefficient of 0.2395; 

- 1st (out of 10 features) for SDHC with a regression coefficient of 0.3659; 

- 2nd (out of 5 features) for RPIA with a regression coefficient of 0.2701; 

- 2nd (out of 8 features) for SDHD with a regression coefficient of 0.1968; 

- 3rd (out of 10 features) for SDHB a regression coefficient of 0.1796; 

- 3rd (out of 5 features) for SUCLA2 with a regression coefficient of 0.1769; 

- 4th (out of 11 features) for MDH1 with a regression coefficient of 0.2055; 

- 5th (out of 13 features) for ACO2 with a regression coefficient of 0.1116; 

- 7th (out of 7 features) for ENO2 with a regression coefficient of -0.3067; 

➢ PHKB (gene of the GLUCOSE_METABOLISM pathway) is selected as: 

- 2nd (out of 3 features) for PDP2 with a regression coefficient of 0.1832; 

- 2nd (out of 9 fetaures) for SUCLG2 with a regression coefficient of 0.2254; 

- 3rd (out of 10 features) for SDHC with a regression coefficient of 0.2183; 

- 4th (out of 6 features) for H6PD with a regression coefficient of 0.2405; 

- 4th (out of 4 features) for PDPR with a regression coefficient of 0.0921; 

- 4th (out of 5 features) for PKLR with a regression coefficient of -0.1542; 

- 5th (out of 9 features) for IDH3A with a regression coefficient of 0.0977; 

- 6th (out of 11 features) for MDH1 with a regression coefficient of -0.0955; 

- 6th (out of 9 features) for PHKG1 with a regression coefficient of -0.0912; 

- 10th (out of 10 features) for PDHB with a regression coefficient of -0.1710; 

Table 7.5:  GLUCOSE_METABOLISM genes with either M3 or M5 model score higher than the 0.6 threshold. 

R2 Adj.R2
Most

Relevant

Feature

Coefficient R2 Adj.R2
Most

Relevant

Feature

Coefficient R2 Adj.R2
Most

Relevant

Feature

Coefficient

SDHD 0.78 0.78 DLAT 0.7363 0.79 0.78 DLAT 0.7314 0.79 0.79 DLAT 0.7345

TPI1 0.61 0.60 ENO2 0.4773 0.72 0.71 PHB2 0.3495 0.76 0.76 ENO2 0.2825

DLAT 0.69 0.68 SDHD 0.7490 0.73 0.72 SDHD 0.8270 0.76 0.75 SDHD 0.7804

HK3 0.55 0.54 FBP1 0.6465 0.59 0.58 FBP1 0.6356 0.71 0.71 FBP1 0.5655

ACO2 0.69 0.68 L3MBTL2 0.5472 0.65 0.64 L3MBTL2 0.5814 0.70 0.69 L3MBTL2 0.5854

ACLY 0.51 0.49 SUZ12 0.3391 0.56 0.55 SUZ12 0.3655 0.68 0.67 STAT3 0.2612

PRPS1 0.59 0.57 PGK1 0.3770 0.64 0.63 PDK3 0.2626 0.64 0.63 PDK3 0.2945

PHKA1 0.41 0.40 PRPS1 0.2500 0.52 0.50 TAF1 0.3303 0.65 0.63 TAF1 0.3758

ALDOA 0.50 0.49 PHKG2 0.3397 0.53 0.52 PHKG2 0.3136 0.64 0.62 PHKG2 0.3420

MDH1 0.57 0.55 UGP2 0.4278 0.66 0.65 UGP2 0.3906 0.57 0.56 SRSF7 0.3855

M2 M3 M5
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Model M3: the expression of each target gene is regulated by genes in the GLUCOSE_METABOLISM 

pathway and genes encoding for transcription factors binding to the target gene promoters or to the 

promoters of other genes in this pathway. 

The Adj. R2 score is higher than 0.6 for 6 genes of the pathway (SDHD, TPI1, DLAT, MDH1, ACO2, 

and PRPS1) and it reaches a maximum value of around 0.78 for gene SDHD. The only fetaures discarded 

a priori are the ones corresponding to missing values in TCGA, i.e., the methylation of HK2, PDPR, 

SUCLG2 and the expression of the regulatory gene EMSY. 

For 12 genes of the pathway the gene methylation is selected as one of the relevant features 

involved in the regulation of their expression: 

- AGL, with a regression coefficient of -0.0917; 

- ALDOC, with a regression coefficient of -0.3614; 

- DLD, with a regression coefficient of -0.2463; 

- IDH3B, with a regression coefficient of -0.2262; 

- MDH2, with a regression coefficient of -0.1419; 

- PCK1, with a regression coefficient of -0.3192; 

- PDK3, with a regression coefficient of -0.1905; 

- PDK4, with a regression coefficient of -0.1139; 

- PGM3, with a regression coefficient of -0.1658; 

- PYGM, with a regression coefficient of -0.1122; 

- RPE, with a regression coefficient of -0.1595; 

- SDHA, with a regression coefficient of -0.2319. 

There is one single most frequent regulator, selected as a relevant regulatory feature for 8 glucose 

metabolism target genes:  

➢ ILK (regulatory gene of the GLUCOSE_METABOLISM pathway) is selected as: 

- 1st (out of 4 features) for ALDOC with a regression coefficient of 0.2099; 

- 2nd (out of 8 fetaures) for TALDO1 with a regression coefficient of 0.2258; 

- 3rd (out of 7 features) for DLST with a regression coefficient of 0.1962; 

- 5th (out of 7 features) for ACO2 with a regression coefficient of 0.1340; 

- 5th (out of 11 features) for ENO1 with a regression coefficient of 0.1271; 

- 5th (out of 9 features) for SUCLG1 with a regression coefficient of 0.1253; 

- 6th (out of 7 features) for DLAT with a regression coefficient of 0.1025; 

- 6th (out of 7 features) for RPIA with a regression coefficient of -0.1845. 

Model M5: the expression of each target gene is regulated by genes in the GLUCOSE_METABOLISM 

pathway, genes encoding for transcription factors binding to the target gene promoters or to the 

promoters of other genes in this pathway, genes in the DNA_REPAIR and STEM_CELLS pathways and 

their regulatory genes. 
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The Adj. R2 score is higher than 0.6 for 9 genes of the pathway (SDHD, TPI1, DLAT, HK3, ACO2, 

ACLY, PRPS1, PHKA1 and ALDOA) and it reaches a maximum value of around 0.79 for gene SDHD. Table 

7.6 shows an excerpt of the whole set of relevant features in model M5 for the best genes in the 

GLUCOSE_METABOLISM pathway. The only fetaures discarded a priori are the ones corresponding 

to missing values in TCGA, i.e., the methylation of HK2, PDPR, SUCLG2 and the expression of the 

regulatory gene EMSY. 

For 12 genes of the pathway the gene methylation is selected as one of the relevant features 

involved in the regulation of their expression (the same genes as in M3, with the exception of gene 

PDK4 and the addition of gene TKT): 

- AGL, with a regression coefficient of -0.0896; 

- ALDOC, with a regression coefficient of -0.3334; 

Table 7.6:  Model M5 best GLUCOSE_METABOLISM genes and their features. 

GENE Significant Feature Adj.R2 Regression Coefficient Feature Description

DLAT 0.7345 Gene of the GLUCOSE_METABOLISM pathway

SUCLG1 0.1897 Gene of the GLUCOSE_METABOLISM pathway

HCFC1 -0.0735 Candidate regulatory gene of the model gene SDHD

MERTK -0.0849 Gene of the STEM_CELLS pathway

MAZ -0.1266 Candidate regulatory gene of the GLUCOSE_METABOLISM pathway

TP53BP1 -0.1406 Gene of the DNA_REPAIR pathway

ACLY -0.1521 Gene of the GLUCOSE_METABOLISM pathway

ENO2 0.2825 Gene of the GLUCOSE_METABOLISM pathway

PHB2 0.2656 Candidate regulatory gene of the GLUCOSE_METABOLISM pathway

ZNF384 0.2360 Candidate regulatory gene of the GLUCOSE_METABOLISM pathway

PGM1 0.2176 Gene of the GLUCOSE_METABOLISM pathway

YBX3 0.1689 Candidate regulatory gene of the GLUCOSE_METABOLISM pathway

PTTG1 0.1673 Candidate regulatory gene of the GLUCOSE_METABOLISM pathway

ETFA 0.1334 Gene of the STEM_CELLS pathway

CREB3 0.1176 Candidate regulatory gene of the GLUCOSE_METABOLISM pathway

FOXP1 -0.0982 Gene of the STEM_CELLS pathway

NR2C2 -0.1001 Candidate regulatory gene of the GLUCOSE_METABOLISM pathway

ATM -0.1768 Gene of the STEM_CELLS pathway

SDHD 0.7804 Gene of the GLUCOSE_METABOLISM pathway

ATM 0.2195 Gene of the STEM_CELLS pathway

MAZ 0.1710 Candidate regulatory gene of the GLUCOSE_METABOLISM pathway

ACO2 0.1541 Gene of the GLUCOSE_METABOLISM pathway

MAML1 0.1416 Gene of the STEM_CELLS pathway

MERTK 0.1310 Gene of the STEM_CELLS pathway

ZBTB1 -0.0636 Candidate regulatory gene of the STEM_CELLS pathway

FBP1 0.5655 Gene of the GLUCOSE_METABOLISM pathway

PTPRC 0.4751 Gene of the STEM_CELLS pathway

MERTK 0.0898 Gene of the STEM_CELLS pathway

PLAT -0.0713 Gene of the STEM_CELLS pathway

ALDH1A1 -0.0812 Gene of the STEM_CELLS pathway

MS4A1 -0.0924 Gene of the STEM_CELLS pathway

ZHX1 -0.1459 Candidate regulatory gene of the GLUCOSE_METABOLISM pathway

L3MBTL2 0.5854 Candidate regulatory gene of the model gene ACO2

ESRRA 0.2703 Candidate regulatory gene of the model gene ACO2

IDH3A 0.2294 Gene of the GLUCOSE_METABOLISM pathway

ZHX2 0.1470 Candidate regulatory gene of the GLUCOSE_METABOLISM pathway

HNRNPUL1 0.1261 Candidate regulatory gene of the STEM_CELLS pathway

ILK 0.1245 Candidate regulatory gene of the GLUCOSE_METABOLISM pathway

SUCLG1 0.1078 Gene of the GLUCOSE_METABOLISM pathway

NOTCH2 0.0843 Gene of the STEM_CELLS pathway

CHEK1 -0.1221 Gene of the STEM_CELLS pathway

LATS1 -0.2098 Gene of the STEM_CELLS pathway

0.79

0.76

0.75

0.71

0.69

SDHD

TPI1

DLAT

HK3

ACO2



86 

 

- DLD, with a regression coefficient of -0.2559; 

- IDH3B, with a regression coefficient of -0.2132; 

- MDH2, with a regression coefficient of -0.1513; 

- PCK1, with a regression coefficient of -0.3547; 

- PDK3, with a regression coefficient of -0.2408; 

- PGM3, with a regression coefficient of -0.1134; 

- PYGM, with a regression coefficient of -0.1141; 

- RPE, with a regression coefficient of -0.1718; 

- SDHA, with a regression coefficient of -0.2191; 

- TKT, with a regression coefficient of -0.0819. 
 

Starting from the small set of genes in Table 7.6, it is clear the limited effect of the DNA_REPAIR 

pathway in the regulation of glucose metabolism involved genes and the higher interrelationship 

between GLUCOSE_METABOLISM and STEM_CELLS pathways, with the latter pathway having a key 

role in the regulation systems of the former one. 

As reported in the networks at the end of the paragraph, these evaluation can be generalized on 

the whole set of genes in the GLUCOSE_METABOLISM pathway. 
 

There is one single most frequent regulator, selected as a relevant regulatory feature for 10 glucose 

metabolism target genes:  
 

➢ TSC22D4 (regulatory gene of the STEM_CELLS pathway) is selected as: 

- 1st (out of 5 features) for PCK1 with a regression coefficient of 0.1532; 

- 4th (out of 9 fetaures) for MDH2 with a regression coefficient of 0.1929; 

- 5th (out of 8 features) for PFKL with a regression coefficient of 0.2117; 

- 6th (out of 12 features) for BPGM with a regression coefficient of 0.1340; 

- 6th (out of 10 features) for H6PD with a regression coefficient of -0.1458; 

- 7th (out of 13 features) for CS with a regression coefficient of -0.0804; 

- 8th (out of 12 features) for SUCLG2 with a regression coefficient of 0.1094; 

- 9th (out of 9 features) for AGL with a regression coefficient of -0.1076; 

- 12th (out of 12 features) for ENO with a regression coefficient of -0.1792; 

- 13th (out of 13 features) for PGM3 with a regression coefficient of -0.2090; 

 

Finally, all the results are graphically represented through expression networks in Cytoscape. An 

example for this pathway is reported in Figure 7.3, showing model M3 (a) and model M5 (b) networks 

for the genes of the Regulation of Glucose Metabolism subclass: it describes the regulation systems of a 

subset of 6 genes from the GLUCOSE_METABOLIM pathway (PDK1, PDK2, PDK3, PDK4, PDP2 and 

PDPR), showing how the regulation of their expression changes from considering only target and 

regulatory genes of the GLUCOSE_METABOLIM pathway, to including also activity related to genes 

of the DNA_REPAIR and STEM_CELLS pathways. 
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Figure 7.3:  Expression networks from linear regression models M3 (a) and M5 (b) of the Regulation of  
                     Glucose Metabolisms subclass.      

a)  GLUCOSE_METABOLISM (M3) – Regulation of Glucose Metabolism 

b)  GLUCOSE_METABOLISM (M5) – Regulation of Glucose Metabolism  
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Since the main purpose of this thesis is inferring the regulatory-based relationships among the 177 

ovarian cancer-related target genes and the set of their 249 distinct regulatory genes extracted, starting 

from the most comprehensive model M5 Table 7.7 summarizes the number of distinct features identified 

as relevant for genes in each pathway: this helps assessing the impact of each genetic pathway on the 

others. 

We recall that our computational approach defined oriented target/features relationships: this 

means that it is possible that gene G1 is a regulator of gene G2, but G2 is not a relevant feature for G1. 

As a consequence pathway P1 may have a relevant impact in the regulation of pathway P2, but the 

opposite is not necessarily true. 

7.2  Validation

Validating the models we generated and their related results is a key point for our analysis. The 

outcomes of the regression must be valid from both a computational and a biological standpoint. 

7.2.1  Computational validation 

Multiple computational methods exist for computing expression correlations among sets of genes and 

for computationally inferring mutual functional relationships, but no gold standards are defined. The 

most effective and relevant among these methods is ARACNe. 

Table 7.7:  Number of relevant features selected for each genetic pathway: target genes in the pathways (a) and  
     regulatory genes (b). 

a) 

DNA_REPAIR

Target Genes

STEM_CELLS

Target Genes

GLUCOSE_METABOLISM

Target Genes

DNA_REPAIR 13 29 -

STEM_CELLS 16 37 -

GLUCOSE_METABOLISM 18 55 61

Features (Genes in the genetic pathways of iterest)

b) 

DNA_REPAIR

Regulatory Genes

STEM_CELLS

Regulatory Genes

GLUCOSE_METABOLISM

Regulatory Genes

DNA_REPAIR 60 14 -

STEM_CELLS 3 154 -

GLUCOSE_METABOLISM 0 9 157

Features (Regulatory Genes enconding TFs binding to target genes promoters)
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ARACNe is a an algorithm for the reconstruction of gene regulatory networks in a mammalian 

cellular context: starting from DNA microarray data, it generates gene expression networks by 

considering triplets of genes and removing the weakest of the three relationships at each iteration, 

according to its assigned Mutual Information (MI) value and to an arbitrary threshold (I0) that is set a 

priori by the user (i.e., only relationships between genes quantified by a MI value higher than I0 are 

considered and, for each triplet, the edge with the lowest MI value is removed). The threshold allows 

to define the dimension of the generated network: the higher is I0, the smaller are the network and the 

number of displayed relationships. An example of how the dimension of the output network changes 

in relation to different values of the threshold is reported in Figure 7.4: nodes represent the human 

genes of interest, while edges identify their bidirectional correlations retrieved by ARACNe. 

ARACNe works under a specific set of initial approximations that, although they are proved to be 

reasonable, may lead the algorithm to fail. In general, this is a computational method and it does not 

guarantee reliable results, so we may fall into wrong or incomplete relationships. 

We use ARACNe for validating the associations and correlations found during the data analysis, by 

comparing our ovarian cancer regression models (i.e., M3 and M5) with corresponding networks 

generated by the ARACNe algorithm. 

Depending on how this comparison is made and due to the fact that the linear regression algorithm 

is a different computational procedure with respect to the ARACNe algorithm, differences are expected: 

specifically, according to our computational approach, the computed regression models usually detect 

less correlations than ARACNe, although some of them may not be found by ARACNe. In addition, 

ARACNe is made for building only gene expression networks without taking methylation into account, 

as allowed by our OV regression models, instead. 

Figure 7.4:  Example of different mutual information thresholds in ARACNe. 
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In the end, as a result of this comparison, for most target genes a set of common features between 

the two approaches is expected, i.e., a set of the main relationships revealed by the OV regression models 

which are also extracted by the ARACNe algorithm: this allows to verify that the initial plan and its 

implementation through a combined feature selection / linear regression approach leads to meaningful 

results that are worth investigating through a further biological experimental analysis. 

We also adopt a second computational validation approach: since a validation on another set of 

ovarian cancer samples cannot be performed, because no other samples are available, results are 

validated according to another biological model, as similar as possible to the OV tumor. Specifically, the 

focus is on a biomolecularly equivalent tumor, i.e., the basal-like breast cancer. 

Validation on breast cancer follows two different paths: on one hand, the OV tumor regression 

models are applied on this other tumor data, in order to evaluate if the same exact set of relationships 

may reasonably be valid also for this specific sub-type of breast cancer; on the other hand, considering 

each single gene independently, the objective is verifying if a similar set of relevant features may be 

found also in the basal breast cancer data, by re-running the same analysis procedure defined for the 

ovarian cancer (the full linear regression process is executed on this other tumor data and the 

corresponding set of BRCA models is generated, in order to assess if this approach is valid and the results 

are related to what obtained for ovarian cancer). 

Basal-like breast cancer mainly compares with the ovarian cancer, because they are both 

considerably affected by DNA damages. In general, common relevant features are expected for the same 

genes in both models, though differences may be there, due to peculiar properties typical of each tumor. 

In particular, since damages to the DNA have a key role in both tumors, a better result is expected from 

comparing OV models and BRCA models of genes involved in the DNA_REPAIR pathway. 

 

7.2.1.1  Comparison with the ARACNe processing 

Using ARACNe through the Cyni Toolbox in Cytoscape, we process information contained in both M3 

and M5 models, generating two corresponding networks. 

As already done for the OV linear regression procedure, this processing is performed for each 

pathway, i.e., two networks, respectively corresponding to M3 and M5, are generated using ARACNe 

and then used for the comparison: the former network takes the genes of the pathway and the complete 

set of their candidate regulators as input, along with their expression values in the different ovarian 

cancer TCGA samples, to allow a complete processing using the list of genes in the pathway as hubs of 

the network; the latter one adds expression information about genes of other pathways and their 

candidate regulators, to allow a complete processing by setting the list of genes in the considered 

pathway as nodes and the list of their candidate regulatory genes as transcription factors. 

The whole process is executed by setting the lowest possible Mutual Information threshold, i.e.,  

I0 = 0.001, in order to obtain the highest number of correlations. Generated networks are then compared 

with models M3 and M5 of the corresponding pathway. Figure 7.5 summarizes the set operations 

implemented for validating our regression models through ARACNe. 
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The results of the comparison show that for a high percentage of target genes common correlations 

in the two approaches are found and an average of 30% of the whole set of relevant features identified 

by the OV regression models is verified also by ARACNe, as reported in Table 7.8. 

The last step of the validation consists in evaluating the ranking of the common features. In 

particular, for each gene, relevant features found using both procedures are sorted in ascending order 

according to their regression coefficients in the OV models and their mutual information value in the 

ARACNe networks. The two rankings are compared: finding the same ranking is an additional 

validation of the regression results, indicating that these features and their relevance on the expression 

of the model gene are very likely correct. 

60% of the genes having common features according to the two approaches, also have the same 

feature ranking, while the other 40% are characterized by very slightly different rankings, where some 

pairs of feature are swapped in their order. 

Table 7.9 shows an example of the detailed M5 comparison for some genes, performed by matching 

relevant features found in the OV models and in the ARACNe network. 

Figure 7.5:  Validation of ovarian cancer regression models based on the ARACNe processing. 

Table 7.8:  Validation of ovarian cancer regression models based on the ARACNe processing: comparison results. 

Total N° Genes

in the pathway

% of genes

with common features

in OV Models and ARACNe

Mean %
OV Models features

found by ARACNe

% of genes

with common features

in OV Models and ARACNe

Mean %
OV Models features

found by ARACNe

DNA_REPAIR 20 90.0% 37.4% 95.0% 35.4%

GLUCOSE_METABOLISM 84 83.3% 27.4% 84.5% 27.8%

STEM_CELLS 73 72.6% 26.5% 73.9% 26.4%

M3 M5
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7.2.1.2  Models application on basal-like breast cancer data 

The first validation approach using breast cancer data consists in a simple computational procedure able 

to verify if the same OV models are exploitable on a different set of data that may share properties with 

the initial set of observations. 

Despite the smaller dimensions of this set (122 samples) with respect to the available ovarian cancer 

samples, some key correlations among the genes of interest are expected to be valid also for basal-like 

breast cancer. Thus, for each target gene, the set of its relevant features, along with their associated 

regression coefficients, is selected from the OV model and used on breast cancer methylation and 

expression data (Chapter 5, paragraph 5.4.2) to compute the estimated value of the target gene 

expression in each breast cancer TCGA aliquot, according to the definition of linear regression:  

EXPRG  = c1 vf1 + c2 vf2 +  … + cn vfn 

where: 

vfi : expression or methylation values in breast cancer data sample corresponding to relevant 

        features extracted in the considered OV regression model for gene G 

ci :  regression coefficients assigned to the n relevant features extracted in the considered OV 

 regression model for gene G 

Table 7.9:  Validation of ovarian cancer regression models based on the ARACNe processing: detailed 
     results for a sample set of genes. 

N° ARACNe

Features

N° OV Models

Features

Common

Features

Mutual

Information

Regression

Coefficient

ARACNe 

Ranking

OV Models

Ranking

%  OV Models features

found by ARACNE

POLE 0.2337 0.3805 1 1

E2F4 0.1112 0.2595 3 2

MYBL2 0.1796 0.218 2 3

ZBTB1 0.0425 0.0841 4 4

ZSCAN29 0.5494 0.4646 1 1

ZBTB40 0.3848 0.3737 2 2

MAML1 0.2499 0.1917 3 3

NFRKB 0.1022 0.4343 3 1

RAD51 0.15 0.2605 1 2

FANCA 0.1048 0.2058 2 3

CBX5 0.0937 0.129 4 4

SRSF1 0.0825 0.129 5 5

RB1 0.0132 -0.168 6 6

IKZF1 0.7776 0.5857 1 1

ITGA4 0.5026 0.2392 2 2

CD38 0.254 0.1394 4 3

CD44 0.2987 0.1217 3 4

SDHD 0.3366 0.7804 1 1

ATM 0.12 0.2195 2 2

Gene FANCA

19 6 66.7%

Gene TP53BP1

100%394

46 12 50%

Gene CHEK1

28.6%713

Gene DLAT

57.1%13 7

Gene PTPRC
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Finally, the values of R2 and Adjusted R2 are manually computed according to their formulas and 

compared with the ones from the original OV models. Figure 7.6 shows all the steps of the applied 

validation procedure, as implemented in a parametric Python script. 

From comparing Adjusted R2 values, we realize that OV models can be applied to BRCA data, 

obtaining reasonable results for some target genes and inferring a small set of key genes which appear 

to be similarly regulated in the two tumors (some even show a better performance in BRCA rather than 

OV), as reported in Table 7.10.  

Figure 7.6:  Ovarian cancer regression models application on basal-like breast cancer data: complete workflow. 
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Given the proved genetic similarity between these two types of cancer, but also their own 

peculiarities, the overall results of this computational step contribute to the positive validation of our 

OV regression models. 

7.2.1.3  Linear regression of individual genes on breast cancer samples 

The last computational validation is still performed on basal-like breast cancer data, but it involves a 

complete re-computation of the models. The same procedure described in this document is repeated 

considering the 122 TCGA aliquots that identify patients with basal-like breast cancers and the 

regression models M2, M3 and M5 are re-computed according to breast cancer data values. 

In general, lower quality results are expected, due to the limited number of available samples, 

which is about a third of those used for the ovarian cancer regression. BRCA models and OV models 

are finally compared by analyzing for each gene of interest the set of common relevant features and 

their regression coefficients in the two models, both for M3 and M5. 

Table 7.10:  Ovarian cancer regression models application on basal-like breast cancer data: 
     excerpt of the results comparison for model M5. 

.

R2 Adj.R2 R2 Adj.R2

PTPRC 0.90 0.89 0.83 0.82 STEM_CELLS

IKBKB 0.58 0.55 0.50 0.49 STEM_CELLS

TP53BP1 0.71 0.69 0.66 0.65 DNA_REPAIR

GSK3A 0.54 0.51 0.52 0.51 GLUCOSE_METABOLISM

FBP1 0.48 0.47 0.50 0.50 GLUCOSE_METABOLISM

DNMT1 0.69 0.67 0.71 0.70 STEM_CELLS

RPIA 0.31 0.26 0.35 0.33 GLUCOSE_METABOLISM

GSK3B 0.46 0.41 0.50 0.49 GLUCOSE_METABOLISM

NFKB1 0.54 0.49 0.59 0.58 STEM_CELLS

PECAM1 0.55 0.53 0.64 0.64 STEM_CELLS

BRCA1 0.51 0.48 0.60 0.59 DNA_REPAIR

JAK2 0.61 0.56 0.69 0.68 STEM_CELLS

LATS1 0.62 0.58 0.71 0.70 STEM_CELLS

MLH1 0.28 0.22 0.36 0.35 DNA_REPAIR

RPE 0.42 0.35 0.50 0.48 GLUCOSE_METABOLISM

PALB2 0.39 0.34 0.49 0.47 DNA_REPAIR

ITGA4 0.67 0.63 0.77 0.76 STEM_CELLS

TPI1 0.65 0.61 0.76 0.76 GLUCOSE_METABOLISM

GSK3B 0.48 0.42 0.60 0.59 STEM_CELLS

SDHD 0.61 0.59 0.79 0.79 GLUCOSE_METABOLISM

IDH3A 0.39 0.34 0.56 0.55 GLUCOSE_METABOLISM

HK3 0.51 0.47 0.71 0.71 GLUCOSE_METABOLISM

DLAT 0.55 0.51 0.76 0.75 GLUCOSE_METABOLISM

POLB 0.49 0.44 0.69 0.68 DNA_REPAIR

PGK1 0.39 0.32 0.60 0.58 GLUCOSE_METABOLISM

BRCA OVModel

M5
PATHWAY
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What turns out is extremely interesting and confirms the expectations: most relevant features in 

the OV models are found and most common outcomes involve genes in the DNA_REPAIR pathway. 

Biologists consider this to be a positive result, mainly because of the DNA-damages-related similarities 

of these two types of tumor. 

The regression coefficients assigned to common features in the two models are interesting too: in 

most cases, they almost have the same value, indicating the impact of that feature on the expression of 

the target gene is similar in both tissues, confirming tumors similarity and the opportunity to extend 

ovarian cancer results also to basal-like breast cancer. 

Instead, different regression coefficients for the same feature in the two models are potentially 

associated to tumor-related peculiarities. Comparison details are reported in Table 7.11 and Table 7.12. 

Table 7.11:  Ovarian - Breast cancer regression models comparison results. 

Total N° Genes

in the pathway

% of genes

with common features

in OV and BRCA Models

Mean %
OV features also

found in BRCA Models

Mean %
BRCA features also 

found in OV Models

% of genes

with common features

in OV and BRCA Models

Mean %
OV features also 

found in BRCA Models

Mean %
BRCA features also

found in OV Models

DNA_REPAIR 20 60.0% 10.0% 38.0% 55.0% 8.7% 33.8%

STEM_CELLS 84 17.8% 2.7% 16.0% 23.3% 4.7% 19.8%

GLUCOSE_METABOLISM 73 29.8% 4.6% 23.4% 34.5% 4.1% 20.3%

M3 M5

Table 7.12:  Ovarian - Breast cancer regression models comparison: detailed results for a sample set of genes. 

N° OV Models

Features

N° BRCA Models

Features
Common Features

OV

Coefficient

BRCA

Coefficient

SUZ12 0.2317 0.5717

METHYLATION (BRCA1) -0.3475 -0.3685

FANCD2 0.4351 0.4574

MEF2A -0.1581 0.1688

13 4 ERCC1 0.5332 0.4886

SMARCA4 0.5505 0.5592

POLE 0.1738 0.2994

SDHD 0.3366 0.7804

ATM 0.12 0.2195

7 1 IKZF1 0.5857 0.9495

RELA 0.2379 0.2773

IRF2 0.2096 0.4674

Gene DNMT1

Gene PTPRC

8 4

Gene NFKB1

11 3

Gene BRCA1

Gene OGG1

6 3

Gene ERCC2

11 4

713

Gene DLAT
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7.2.2  Biological validation 

The computational work of this project must be supported by a biological validation of the ovarian 

cancer models, through experimental analyses in laboratory, expected to be carried out as a natural 

follow-up. Nonetheless, some specific experiments conducted by the DNA Repair Unit of the Molecular 

Pharmacology laboratory at “Mario Negri” Institute have already confirmed some regression results. 

In addition, biological and genomic literature helps validating the data analysis, by proving a 

significant set of relationships revealed by the regression models. 

 

7.2.2.1  PCR data 

The DNA Repair Unit of the Molecular Pharmacology laboratory at “Mario Negri” Institute have 

measured the expression of all genes in the DNA_REPAIR pathway and their correlations, starting from 

ovarian Patient Derived Xenografts (PDX) and using the Polymerase Chain Reaction (PCR) technique 

[60]: portions of tumor tissues taken from different patients are implanted and left growing into 

immunodeficient mice. Measurements taken from these PDXs using the PCR technique show an 

important set of correlation between genes that are also present in our OV regression models. 

Table 7.13 shows which correlations of our models are validated by the PDXs experiment: some 

significant correlations in the PDXs (in orange) are present also in the M2 regression model of the 

corresponding target gene in the DNA_REPAIR pathway (in green), which is the model mainly taking 

genes of the same pathway into consideration, as potential relevant features. 

We do not expect a complete matching between the two approaches, since M2 model also 

comprises candidate regulatory genes for each target gene, while PDXs only investigates genes within 

the DNA_REPAIR pathway. 

This is a very consistent validation, because even if this PCR experiment is a totally different 

process than the regression approach adopted in this thesis, it still reflects most correlations highlighted 

for DNA_REPAIR genes. 

 

7.2.2.2  Literature-confirmed results 

For reasons of clarity and brevity, we limit the discussion of relevant literature to the pathway of DNA 

repair genes.  

As described in paragraph 7.2.2.1, our analysis on the expression of DNA repair genes in ovarian 

tumor samples reveals some associations that have been recently reported by the DNA Repair group at 

“Mario Negri”, that have evaluated the gene expression profile of the genes involved in the DNA repair 

pathways within a recently established biobank of Patients Derived Ovarian Xenografts. 

The prominent role of BRCA1 methylation on the regulation of the corresponding gene that we 

have found in our analysis is well supported by several studies. In fact, reduced BRCA1 expression as a 

result of promoter methylation has been reported in 5%–30% epithelial ovarian cancers [61, 62, 63, 64].  

A similar role of methylation is found in our study for ERCC1 gene. To the best of our knowledge, 

distinct ERCC1 DNA methylation profiles in ovarian tumors and subsequent silencing of the gene have  
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not been described yet. This observation, confirmed also in basal breast cancer samples, could be very 

interesting and could open the way to improve treatment strategies. 

Another important relationship highlighted by our models is the one between ERCC1 and ERCC2: 

their gene expression is highly positively correlated and such association is maintained also after the 

introduction of different traits (both in M3 and M5). Moreover, the same holds true when basal breast 

cancer samples are used for the analysis. Both genes belong to the Nucleotide Excision Repair (NER) 

pathway, involved in the repair of UV-induced DNA damage [65]. In addition, the pathway has a key 

role in the repair of DNA adducts induced by cisplatin, the current golden standard treatment for 

ovarian cancer.  

A similar correlation was observed when analyzing ERCC1 and ERCC2 gene expression in a 

number of triple negative breast cancer patients (but not in Luminal A breast cancers) [66], as reported 

in the graphs of Figure 7.7. This is interesting considering the fact that platinum-sensitive triple-

negative breast cancers (TNBC) and serous ovarian cancers have been reported to carry extensive 

genomic rearrangements and allelic imbalance, suggesting that these cancers may share similar defects 

in the DNA repair [67]. This observation deserves further validation in different experimental models 

and at the protein level. 

Table 7.13:  Correlations among the expression of the genes studied in the ovarian PDXs and their comparison with  
  ovarian M2 model. 

MLH1 OGG1 PARP1 POLB TP53BP1 BRCA1 RAD51 PALB2 POLQ POLH FANCA FANCC FANCD2 FANCF XPA ERCC2 ERCC4 ERCC5 ERCC1 CDK12

MLH1 1.00 0.35 0.05 -0.14 -0.12 -0.06 0.01 -0.01 0.22 0.11 0.15 0.11 0.26 0.31 0.03 0.07 0.08 -0.06 -0.04 0.12

OGG1 0.35 1.00 0.41 0.18 0.16 0.00 0.41 0.41 0.52 0.49 0.45 0.65 0.69 0.53 0.24 0.18 0.47 0.24 0.12 0.25

PARP1 0.05 0.41 1.00 0.15 0.32 -0.06 0.25 0.44 0.27 0.44 0.33 0.18 0.25 0.05 0.01 0.02 0.29 0.23 -0.04 0.29

POLB -0.14 0.18 0.15 1.00 0.30 -0.10 0.04 0.23 -0.02 0.02 -0.11 0.24 0.21 0.02 -0.15 0.56 0.13 0.05 0.18 0.43

TP53BP1 -0.12 0.16 0.32 0.30 1.00 0.50 0.24 0.38 0.14 0.18 0.10 0.08 0.09 0.16 -0.04 0.24 0.24 0.03 0.02 0.62

BRCA1 -0.06 0.00 -0.06 -0.10 0.50 1.00 -0.10 -0.03 0.03 -0.06 0.01 -0.11 -0.24 0.32 0.12 -0.11 -0.07 -0.12 -0.30 0.27

RAD51 0.01 0.41 0.25 0.04 0.24 -0.10 1.00 0.65 0.55 0.22 0.25 0.44 0.72 0.03 0.31 0.01 0.72 0.03 -0.11 0.33

PALB2 -0.01 0.41 0.44 0.23 0.38 -0.03 0.65 1.00 0.41 0.28 0.13 0.16 0.48 -0.08 -0.06 0.09 0.79 0.21 -0.05 0.45

POLQ 0.22 0.52 0.27 -0.02 0.14 0.03 0.55 0.41 1.00 0.13 0.42 0.37 0.71 0.45 0.34 0.38 0.46 0.28 0.24 0.17

POLH 0.11 0.49 0.44 0.02 0.18 -0.06 0.22 0.28 0.13 1.00 0.28 0.13 0.16 0.12 -0.04 -0.22 0.24 -0.07 -0.25 -0.07

FANCA 0.15 0.45 0.33 -0.11 0.10 0.01 0.25 0.13 0.42 0.28 1.00 0.54 0.29 0.37 0.34 -0.17 0.07 -0.05 -0.14 -0.01

FANCC 0.11 0.65 0.18 0.24 0.08 -0.11 0.44 0.16 0.37 0.13 0.54 1.00 0.59 0.44 0.45 0.23 0.29 0.16 0.24 0.24

FANCD2 0.26 0.69 0.25 0.21 0.09 -0.24 0.72 0.48 0.71 0.16 0.29 0.59 1.00 0.26 0.28 0.36 0.65 0.04 0.15 0.26

FANCF 0.31 0.53 0.05 0.02 0.16 0.32 0.03 -0.08 0.45 0.12 0.37 0.44 0.26 1.00 0.21 0.29 -0.04 0.06 0.25 0.19

XPA 0.03 0.24 0.01 -0.15 -0.04 0.12 0.31 -0.06 0.34 -0.04 0.34 0.45 0.28 0.21 1.00 -0.01 0.24 0.26 -0.10 -0.05

ERCC2 0.07 0.18 0.02 0.56 0.24 -0.11 0.01 0.09 0.38 -0.22 -0.17 0.23 0.36 0.29 -0.01 1.00 0.07 0.33 0.71 0.37

ERCC4 0.08 0.47 0.29 0.13 0.24 -0.07 0.72 0.79 0.46 0.24 0.07 0.29 0.65 -0.04 0.24 0.07 1.00 0.10 -0.11 0.42

ERCC5 -0.06 0.24 0.23 0.05 0.03 -0.12 0.03 0.21 0.28 -0.07 -0.05 0.16 0.04 0.06 0.26 0.33 0.10 1.00 0.61 0.03

ERCC1 -0.04 0.12 -0.04 0.18 0.02 -0.30 -0.11 -0.05 0.24 -0.25 -0.14 0.24 0.15 0.25 -0.10 0.71 -0.11 0.61 1.00 0.08

CDK12 0.12 0.25 0.29 0.43 0.62 0.27 0.33 0.45 0.17 -0.07 -0.01 0.24 0.26 0.19 -0.05 0.37 0.42 0.03 0.08 1.00
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Figure 7.7:  ERCC1 – ERCC2 correlation in Triple Negative breast cancer and in the breast cancer Luminal subtype. 
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8.  Conclusions 
 

<< Progress looks like a bunch of failures. And you can have feeling about that because it is sad, but you can't fall apart. 

And then one day we will succeed and we will save a person's life and we will walk on the moon. 

Figuratively, anyway. >> 

Meredith 

 

With this work we developed a computational and statistical analysis of the regulation systems of 177 

target genes involved in specific biological functions which are strictly related to ovarian cancer 

development progression. 

Ovarian cancer prognosis and therapy are nowadays still very poor and tumor-related knowledge 

limited. The key role in the process of acquisition of tumor-related properties is mainly played by a 

misregulation of gene expression that leads to significant changes in the activity of ovarian cancer 

relevant target genes. So, it is fundamental to understand how ovarian cancer gene expression is 

regulated, in order to improve knowledge and hopefully cancer therapies.  

We focused only on a restricted set of regulatory elements: there are several other factors that could 

affect gene expression that we did not account for in the present study. Our results are limited by design 

to the best-predicting sets of features, leaving out potential regulators with important biological 

functions, but with a lower predicting power. 

In the first part of the project, the sets of heterogenous data needed for the analysis were extracted 

from the main biological and genomic data sources (i.e., ENCODE and TCGA) using the GMQL engine, 

focusing on a set of 372 ovarian cancer patients. Data on transcription factors and on the expression of 

their encoding genes, along with expression and methylation values associated with target genes, were 

then arranged, for each target gene, in multiple data matrices with a fixed number of rows (i.e., the 

patients data samples) and a variable number of columns (i.e., the set of potential features affecting the 

model gene expression), gradually increasing according to pre-defined rules.  

In the second part of the project, we used these sets of features as inputs for building three 

predictive models for each target gene: a preliminary step of feature selection was followed by the 

application of the linear regression algorithm for inferring most relevant features, either up-regulating 

or down-regulating the expression of the model gene.  

The analysis of the 531 built models allowed to explain the relations between each gene and its 

related biological processes and the interconnections between the different genomic pathways, as well 

as to evaluate the relevant regulatory elements at the single gene level: this allowed to identify already 

known regulators or genes correlations (e.g., hypermethylation of BRCA1) and to unveil a set of still 

unknown and potentially extremely interesting biological relationships (e.g., hypermethylation of 

ERCC1, the correlation between ERCC1 and ERCC2 or the correlation between CHEK1 and DNMT1), 

as the basis for an experimental follow-up. 
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9. Future developments

<< In the practice of medicine, change is inevitable. New surgical techniques are created. 

Procedure are updated. Levels of expertise increase. Innovation is everything. 

Nothing remains the same for long. We either adapt to change or we get left behind. >> 

Meredith 

This thesis is only the computational part of a wider project that has main biological future 

developments. 

The most significant and newsworthy development involves laboratory work: conducting a deep 

experimental analysis to apply the present results on ovarian cancer to biological experiments, with the 

final goal of predicting the potential oncogenic role of target genes relevant regulators.  

Our project allows to directly observe various correlations between the expression of multiple 

genes; however, since the implemented method is mainly computational, the existence of a specific 

correlation suggests that genes involved in this relationship may be functionally related from a 

biological standpoint, although it does not prove it. 

The idea is trying to isolate the most interesting cases, mainly the ones showing a good fit in the 

model, and to verify whether the fact that one gene is correlated to another one means that it regulates 

this other gene; more precisely, biologists analyze the behavior of this latter gene when the expression 

of the former one is reduced or completely suppressed (i.e., the gene is turned off). 

In the “Mario Negri” Institute’s laboratory all the tools for suppressing  gene CHEK1 are already 

available: this is a great starting point, since this is one of the genes for which ovarian cancer regression 

models showed significant relationships according to the biologists. 

A second in-depth study can be conducted on gene PTPRC of the STEM_CELLS pathway, which 

showed a very interesting behavior while comparing the linear regression model results with the 

ARACNe processing, proving to have a correlation with a large set of genes in the whole human 

genome. Biologists believe this gene could be involved in the activation of cells of the immune system. 

Since TCGA provides mixed tissue samples, where both the tumor and its entire micro-environment 

are observed, this gene could be related to the immune system activation, highlighting the presence of 

T cells (i.e, lymphocytes that kill tumors) that are trying to kill the tumor. This is of great interest, 

because new antitumor therapies are immune therapies that block the immune system of cells T to 

enhance their activity, recognizing the tumor as an unwanted guest. 

Finally, a third possible development consists in focusing on the metabolomics (i.e., the study of 

chemical processes involving metabolites, the small intermediate end products of metabolism), in order 

to correlate gene expression data of GLUCOSE_METABOLISM pathway genes with the actual presence 

of metabolites. 
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Appendix A

Python scripts flowcharts 

A.1  Genes – transcription factors mapping 



110 

A.2  Selection of transcription factors 
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A.3  Identification of candidate regulatory genes 
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A.4  Extraction of methylation values 
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A.5  Extraction of gene expression values (genes of interest) 
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A.6  Extraction of gene expression values (candidate regulatory genes) 
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A.7  Data matrix construction: M1 
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A.8  Data matrix construction: M2  
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A.9  Data matrix construction: M3  
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A.10  Data matrix construction: M4  
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A.11  Data matrix construction: M5 
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A.12  Feature/gene selection 
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A.13  Linear regression of individual genes on ovarian tumor samples 
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Appendix B

Genetic expression networks from linear regression models 

Legend 

B.1  DNA_REPAIR (M3) 
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NER 

Gene CDK12 Group & Gene MLH1 Group 

Unclassified 
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B.2  DNA_REPAIR (M5) 
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B.3  STEM_CELLS (M3) 

AKT & PI3 Kinase – mTOR Signaling   
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Cancer Therapeutic Targets 
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Hedgehog Signaling & Hippo Signaling 
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Pluripotency 
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WNT Signaling 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.4  STEM_CELLS (M5) 

AKT & PI3 Kinase – mTOR Signaling 
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Cancer Stem Cells Markers 
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Cell Migration & Metastasis 
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Hippo Signaling 
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Pluripotency 
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B.5  GLUCOSE_METABOLISM (M3) 

Gluconeogenesis 
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Glycolysis 
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Regulation of Glycogen Metabolism 

Tricarboxylic Acid Cycle 

This network is almost unreadable on paper, due to the high number of genes of the GLUCOSE_METABOLISM 

pathway belonging to the TAC sub-class. The best way to visualize it is using the original network file and opening 

it with Cytoscape, in order to be able to retrieve all the correlations between the genes set as nodes. 
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B.6  GLUCOSE_METABOLISM (M5) 
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Glycogen Synthesis 

Glycolysis 

Pentose Phosphate Pathway 
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Regulation of Glucose Metabolism 

Regulation of Glycogen Metabolism 

Tricarboxylic Acid Cycle 

This network is completely unreadable on paper: what said for model M3 holds also for model M5 and its resulting 

network, which comprises more genes and a higher number of correlations. For this reason, TAC sub-class 

network for model M5 is not reported. 

Unclassified 





<< Whenever we think we know the future, even for a second, it changes. 

Sometimes the future changes quickly and completely. 

And we're left only with the choice of what to do next. 

We can choose to be afraid of it, to stand there, trembling, 

not moving, assuming the worst that can happen. 

Or we step forward, into the unknown, and assume it will be brilliant. >> 

 Cristina 
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