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Abstract

DNA microarray datasets are characterized by a large number of features with very
few samples, which is a typical cause of overfitting and poor generalization in the
classification task. In this thesis we introduce a novel feature selection (FS) ap-
proach which employs the distance correlation (dCor) as a criterion for evaluating
the dependence of the class on a given feature subset. The dCor index provides a
reliable dependence measure among random vectors of arbitrary dimension, with-
out any assumption on their distribution. Moreover, it is sensitive to the presence
of redundant terms. The proposed FS method is based on a probabilistic repre-
sentation of the feature subset model, which is progressively refined by a repeated
process of model extraction and evaluation. A key element of the approach is a
distributed optimization scheme based on a vertical partitioning of the dataset,
which alleviates the negative effects of its unbalanced dimensions. The proposed
method has been tested on several microarray datasets, resulting in quite compact
and accurate models obtained at a reasonable computational cost.
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Italian Abstract

I dataset di microarray di DNA sono caratterizzati da un grande numero di features
e pochi campioni che sono la tipica causa di overfitting e povera generalizzazione
nei processi di classificazione. In questa tesi introduciamo un nuovo metodo di
features selection (FS) che utilizza l’indice di distance correlation (dCor) come cri-
terio per valutare la dipendenza di una classe rispetto un gruppo di features dato.
L’indice dCor fornisce una misura affidabile di dipendenza rispetto vettori casuali
con dimensioni arbitrarie, senza nessuna assunzione sulla loro distribuzione. Inoltre,
l’indice è sensibile alla presenza di termini ridondanti. Il metodo di FS proposto
si basa sulla rappresentazione probabilistica del modello del sottoinsieme di fea-
tures, che è progressivamente migliorato con un processo ripetitivo di estrazione
del modello e valutazione. Un elemento chiave del metodo è uno schema di ottimiz-
zazione distribuito basato sul partizionamento verticale del dataset, che riduce gli
effetti negativi delle sue dimensioni sbilanciate. Il metodo proposto è stato testato
su numerosi dataset di microarray, risultando in un modello compatto e accurato
ottenuto con un costo computazionale ragionevole.





Chapter 1

Introduction

The high dimensional nature of bioinformatic data poses a severe challenge

on machine learning methods. For example, microarrays allow to simulta-

neously measure the expression levels of a large number of genes, so that

the resulting datasets are characterized by a large number of features (more

than 50 thousand genes) and a very limited sample size [64]. Most of the

genes provide little or no information useful for classification purposes, and

it is particularly important to detect the smallest subset of features (re-

ferred to as biomarkers), that provide sufficient information to separate the

classes represented in the dataset (which could distinguish cancerous and

noncancerous samples, or identify different types of cancer [34]). This cru-

cial task is referred to as feature selection (FS), which is a combinatorial

optimization problem aiming at selecting from a set of available features

only the relevant ones, in order to build a classifier with the required per-

formance. FS reduces the computational cost of the classifier design and

simplifies its structure, thus facilitating model interpretation and data un-

derstanding, and ultimately improving both accuracy and robustness of the

designed classifier [16]. Indeed, the presence of redundant features may ad-

versely affect the classification accuracy, as they can add more noise than

useful information [42].

The highly unbalanced dimensions of microarray datasets greatly compli-

cate the FS task, and unsatisfactory classification performances are often

reported with standard methods [37], [1]. Indeed, large feature vectors sig-

nificantly slow down the learning process, since the complexity of the FS

problem grows exponentially with the number of features. At the same



time, the small number of samples may cause the classifier to overfit the

training data, thus compromising model generalization [42]. In addition,

microarray data are often affected by noise, which further aggravates the

analysis. For all these reasons, specialized FS techniques must be developed

to appropriately handle this type of datasets.

FS methods can be characterized as filter, wrapper or embedded methods.

Filter methods select features based only on data-related properties, i.e.

independently of the classifier design. Wrapper methods are more costly

but potentially more accurate than filter-based ones, as they condition the

FS process to the performance of the resulting classifier. Finally, embed-

ded methods combine the benefits of both explained approaches: a feature

screening is initially performed using a filter-based approach, followed by the

application of a wrapper method to refine the final solution. In the following

we focus on filter methods, which are the predominant choice in microar-

ray problems. Indeed, the added cost of classifier design may be significant

for large size problems. In addition, the classifier bias resulting from the

relatively small number of samples can negatively affect the FS process [44].

Univariate filter methods are a common choice in view of their computational

advantages. These methods are based on individual feature assessment, i.e.

they rank the features based on their individual capabilities to discriminate

among the classes. Once the features have been ranked, the top ones in the

ranking are selected, according to some criterion. As interactions among

features (in our case, the correlations among genes) are not taken into ac-

count, it is not infrequent that redundant terms might be selected in this

way [45]. Furthermore, features that are individually not significant are dis-

carded, although they may actually reveal strong discriminatory power in

combination with others [42].

Multivariate filter methods overcome this problems by evaluating subsets

of features according to some scoring function. Multivariate methods pose

greater complexity than univariate ones in that, besides requiring a method

to evaluate groups of features, they also involve a search mechanism in the

space of all possible feature subsets. Regarding the first issue, many works

employ correlation-oriented criteria based on the concept of mutual informa-

tion (MI). Indeed, the MI between the features and the output reveals their

discriminating capabilities, whereas the correlation among features indicates

possible redundancy issues (see, e.g., the Minimal Redundancy Maximal Rel-

evance (MRMR) algorithm [18], and the Correlation Based Filtering (CFS)

method [31]). It is important to note that the mentioned correlation-based
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criteria operate on pairs of variables, so that their usage to assess subsets of

features of arbitrary size requires some form of aggregation of the pairwise

computed indices (e.g., averaging), which does not necessarily capture the

actual value of a given subset [75]. Ranking criteria natively designed for

groups of variables of arbitrary size, as opposed to pairs, are highly desirable

for the problem at hand.

The second crucial element in multivariate filter methods is the strategy for

selecting feature subset candidates to be evaluated and ranked. Indeed, in

view of the exponential complexity of the underlying combinatorial problem,

the exhaustive approach is barely applicable with large feature sets. The

space of feature subsets is typically explored with heuristic rules. A typical

choice is the incremental strategy, due to its simplicity. For example, the

sequential FS (SFS) approach incrementally builds the model, by adding at

each step the feature that yields the maximum marginal improvement. This

strategy has several drawbacks both conceptual and computational. First

of all, the decision on which feature to add or remove at a given step of the

selection process depends locally on the currently selected feature subset.

In this respect, it can be easily seen that the marginal utility of a feature

can greatly vary depending on the feature subset with respect to which it is

evaluated. In other words, the relevance of a specific feature is not evaluated

as a global property, but rather as a local one. This may stray the selection

process from the optimal path. Also, what is optimized at every step is only

the local improvement of the current feature subset with an elementary fea-

ture variation. In this way selection errors are propagated throughout the

process. Finally, the incremental strategy depends critically on the thresh-

old adopted as a stopping criterion. For all these reasons, methods based on

greedy policies such as the SFS are subject to redundancy and overfitting is-

sues, especially if applied to datasets with extremely unbalanced dimensions

such as microarrays [42].

We here propose a novel multivariate filter-based FS method that can effec-

tively tackle the two mentioned issues and is therefore suitable for classifi-

cation problems with high data dimensionality and complex data distribu-

tions. The proposed method is based on the combination of the following

three factors:

1. A selection criterion based on the distance correlation index (dCor);

2. A distributed combinatorial optimization approach;

3. A randomized FS procedure;

3



which are briefly explained below.

The dCor index [73, 74] provides an ideal criterion for the evaluation of

feature subsets. Indeed, the dCor is a generalization of the correlation con-

cept that provides a reliable dependence measure between random vectors

of arbitrary dimension (not just pairs of random variables), without any

assumption on their distribution. The higher the correlation between vec-

tors, the higher the dependence measure. In the presented approach the

dCor is employed to evaluate a feature subset by measuring the correlation

of the latter with the target output. The dCor is inherently robust to re-

dundancy and overfitting issues, and provides satisfactory performance even

in the presence of nonlinear dependencies [86]. The dCor has been studied

for variable selection in regression problems [86], where it was employed in

combination with an incremental model building strategy. It has also been

applied for feature screening purposes in ultrahigh-dimensional data [47],

where it proved more effective than a classical screening procedure based on

the classical Pearson’s correlation coefficient.

The distributed combinatorial optimization scheme allows to efficiently tackle

the prohibitive complexity of the combinatorial problem underlying the clas-

sification task on microarrays, as a result of the large number of features

combined with the small number of samples. It is based on a divide et im-

pera strategy that breaks the FS problem into smaller and more balanced

subproblems, which are typically more tractable by classification methods.

More in detail, the original set of features is partitioned into several smaller

subsets (denoted feature bins) and an FS algorithm is run independently on

each of them. Then, the features belonging to the best among the obtained

local solutions are added to all feature bins, and the local FS processes are

repeated. This sharing of the most promising features with all the local FS

problems allows each of them to improve the local solution by combining the

old features with the new ones. The algorithm stops when all local prob-

lems converge over the same solution. A noticeable benefit of the suggested

distributed approach is the inherent parallelizability of the procedure.

The third contribution of the presented approach is to employ a randomized

FS method to address the local FS problems, in which the utility of each

feature is evaluated in a global fashion, as opposed to the local evaluation

adopted in incremental methods. More in detail, the FS selection problem is

reformulated in a probabilistic framework, where a probability distribution

characterizes the likelihood that each feature belongs to the target model.

The FS procedure alternates a generation phase, where different feature

4



subsets are extracted from the current distribution, to an assessment phase,

where the distribution is updated based on an aggregate performance anal-

ysis carried out for each feature over all the extracted subsets. Features

appearing more often in highly ranked feature subsets are re-enforced, and

viceversa. Unlike incremental selection strategies the proposed method is

occasionally capable of escaping local optima, and is also reported to be less

prone to redundancy and overfitting issues [9].

The rest of the thesis is organized as follows. Chapter 2 provides some

preliminary notions concerning the microarray datasets, feature selection

and classification formulations, and briefly reviews the related literature.

Then it introduces the dCor index, emphasizing the properties that make

it particularly suited to the FS task. The proposed method is discussed

in Chapter 3. Chapter 4 provides different experimental studies carried

on well-known microarray datasets from the literature. Finally, Chapter 5

presents some concluding remarks.

5
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Chapter 2

Preliminaries

In this chapter, we provide the reader with the basic theoretical frameworks

and concepts used in this thesis. First, we introduce a fundamental ter-

minology necessary to understand the microarray technology and the gen-

eral characteristics of the microarray datasets used for diagnostics purposes.

Then, it is discussed why FS is a prerequisite for obtaining good results

in classification problems, especially in high-dimensional problems such as

microarrays. In Section 2.3, a general introduction to classification in the

context of supervised machine learning is provided, as well as the principles

on which well-established classification algorithms are based. Finally, Sec-

tion 2.3.8 and 2.3.9 provide different metrics used for model evaluation, and

an introduction to the distance correlation (dCor) index as a dependence

measure for random variables.

2.1 Microarrays

Since 2001, the year that the human genome sequence was completed, mi-

croarray technology has been largely used for new fields of research and

experiments in biology, and so far abundant works regarding the detection,

treatment and prevention of diseases have been carried out based on this

technology. Microarrays datasets are actually the quantitative measure-

ment of gene expression levels in humans and they are used for different

purposes. In this document we are interested in their use to diagnose can-

cers and tumors. Short explanation of some basic concepts is provided in

this section, before exploring microarray technology. Then, some of their



genaral characteristics, applications and challenges along with the datasets

that have been analyzed in this thesis are discussed.

2.1.1 Genome, Chromosomes, Genes and DNA

According to Oxford Dictionary, the term genome has been created in 1930s

to mix the words gene and chromosome [13]. In modern molecular biology

and genetics terminology, a genome is all of a living thing’s genetic mate-

rial. It carries all the needed instructions for constructing, functioning and

preserving an organism, and also information for passing life on to the next

generation. Not only different species, but also every single individual on

earth has its own distinctive genome, (with the exception of identical twins),

although the variance among the genomes of two different humans is much

less than the difference between a human genome and a chimpanzee’s.

Figure 2.1: The human genome

Chromosomes are packages that organize and compact large amount of ge-

netic information inside a cell. The number of these packages (chromo-

somes) depends on the size of the organism’s genomes. For example, in

bacteria the whole genome is packaged just into one chromosome, while for

humans, where the genomes are a thousand or even a million times larger

than bacteria, this number is 46. There are no specific rules on the number

of chromosomes in genomes of living things, but in general, more complex

organisms have more chromosomes and closely related species have a com-

parable number of chromosomes.

Each chromosome contains genes. Genes are similar to atoms in genetic

terminology and are the fundamental unit of heredity and include enough

DNS sequence to code for one protein. They characterize the features of each

individual such as skin color. Like chromosomes, the number of genes that

exist in a species is in direct relationship with the complexity of the organism.

For instance, bacteria have only several hundred to several thousands of

genes, while the number of genes in humans has been estimated to be from

8



Figure 2.2: The human chromosome

25,000 to 30,000. In figure 2.3 a human gene containing some DNA sequences

is displayed.

Figure 2.3: The human gene

Finally, DNA sequences are molecules that are actually responsible for build-

ing, maintaining and passing all the necessary genetic information in all liv-

ing cells. In terms of shape, DNA is a very large molecule, consisting of

a long row of nucleotide units and because of that the length of DNA is

thousands of times longer than its width. More specifically, its structure is

similar to a twisted spiral ladder. Moreover, each nucleotide in the DNA has

two molecules and a structure. The molecules are sugar and phosphate, and

the structure is known as nitrogenous base, referred to as nucleotide or base

in this context. This structure is capable of carrying genetic information and

can be of four types: adenine, cytosine, guanine, and thymine, abbreviated

as A, C, G, and T, respectively.

In summary, the genome consists of chromosomes, chromosomes include

genes, and genes contain DNA sequences. A visual illustration of these

elements’ hierarchy is reflected in 2.5.

9



Figure 2.4: Human DNA Overview

Figure 2.5: Hierarchy of genetic material

2.1.2 Microarray Technology

Up to 2000, research in Molecular Biology relied upon some well established

technologies such as Northern blot and reverse transcriptase-polymerase

chain reaction (RT-PCR), that were able to record only a small number

of genes. However, with the technological improvement, these techniques

are no longer adequate for recent researches, considering that even a minor

diversity in individual characteristics could cause variations in their DNA

sequence, and a comprehensive study of not preselected genes is required

to capture all those characteristics. Microarray or global expression profil-

ing technology has paved the way to investigate and address the issues that

were not traceable before. Besides, gene microarray technology is a tool to

capture a complete set of genes, orders of magnitude more than previous

methods, by facilitating an approach to deposit distinct tens of thousands

of human DNA sequences on a solid substrate, called chip which is usually a

10



glass slide or silicon thin-film cell and arrange them in a 2D array fashion in

rows and columns. This is the reason this technology is called microarray.

The position of fragments in the array is used to identify the identity of

those fragments [28].

There are two main types of microarrays: Gene expression microarray and

tissue microarray (TMA).

Both TMAs and gene expressions are arrays organized in rows and columns

on the chip. Their difference is that TMAs offer the assessment of multiple

patients in one experiment, in that different elements on the slide correspond

to different patients’ specific molecular markers, whereas gene expression

arrays represent all the molecular markers for a single patient and all the

elements belong to one sample.

The microarray technology principle involves mRNA and cDNA. mRNA is

an intermediary molecule responsible for protein synthesis and carries all the

needed genetic information from the cell nucleus to the cytoplasm. Several

copies of mRNA corresponding to genes are generated in case of gene expres-

sion. This process in which mRNAs synthesize the corresponding protein is

known as transcription. Consequently, genetic information is measurable by

examining different mRNAs as substitute markers. Likewise, the processes

involving genetic expressions can be understood using them. However, since

they are degraded easily, it is necessary to convert them into more stable

cDNA forms. Then cDNAs should be labeled through fluorochrome dyes

Cy3 (green) and Cy5 (red) [28].

After that, by applying restriction endonucleases, the unknown DNA molecules

are cut into fragments, to which fluorescent markers from the previous stage

are able to attach, so that they can react with the probes of the DNA chip.

Since complementary sequences will bind to each other, the target DNA

fragments will stick to the DNA probes too. In the next step, the remain-

ing DNA fragments are removed from the slide. Finally, the identification

process of the target DNA fragments is done through the fluorescence they

emit by passing a laser beam and recording the pattern of emission in a

computer.

DNA chips used in this approach make this technique efficient, fast, sensitive

and suitable for capturing multiple DNA pieces at the same time [28]. On the

other hand, TMAs are generated by transferring cores of paraffin-embedded

tissue to pre-cored holes in a recipient paraffin block. A single block has the

capacity for over 500 cores applying this technique [28].

11



Figure 2.6: An overview of microarray technology

2.1.3 General Characteristics of Microarrays

The data containing microarray gene expression levels have some intrinsic

characteristics which are listed below:

• Large number of features: The number of features provided by mi-

croarrays usually ranges from a few thousands to tens of thousands of

gene expressions.

• Very limited sample size: Sample sizes in microarrays are typically

very small compared to the number of features.

• Class-imbalance: Another property of microarrays is that the positive

and negative classes, (e.g., the number of healthy and cancerous tested

samples) are not equal and typically there are many more samples of

healthy patients.

• Noise: Expression levels registered for genes are often noisy, corrupted

or with missing data.

• Irrelevant features: Most of the genes provide little or no useful infor-

mation for classification purposes.

12



2.1.4 Applications of microarrays

DNA microarrays can be used as a tool in very large studies or for some

clinical purposes and in areas such as classification of diseases, or molecu-

lar phenotyping, the study of gene function in relation to gene regulatory

networks, or functional genomics, pharmacogenomics and developmental bi-

ology. It is also possible to establish a new molecular taxonomy of cancer,

clustering cancers according to prognostic groups on the basis of gene ex-

pression profiles [28].

Cancer related applications:

Cancer is the simultaneous variation of lots of cells and genes and microar-

rays serve a suitable platform to investigate several genetic samples at the

same time.

Scientists can identify the gene associated with a specific cancer by analyzing

gene expression levels in a group of samples, consisting of patients having

that particular cancer and healthy patients, and seek for the underlying

patterns in regions of the DNA which control disease states. These patterns

can be used to distinguish these patients from the healthy ones. Besides, it

can help to investigate the process through which a non-invasive tumor can

turn into an invasive tumor.

Microarrays can be also used to identify single-nucleotide polymorphisms

(SNPs) and mutations, classify different types of tumors, recognize target

genes of tumor suppressors, identify cancer biomarkers, find the genes re-

lated to chemoresistance, and develop drugs. The sensitivity and toxicity

of some drugs on specific patients or in particular situations can also be

assessed using microarrays in early clinical trials. Moreover, it is now possi-

ble to characterize gene categorization as well as recognize notable cellular

and molecular events that might be involved in complex processes such as

metastasis [28].

Antibiotic treatment

Antibiotics failure is as a result of the increase of resistant bacteria and su-

peradded infections and affects the outcome of the disease process. DNA

microarray analysis is useful, for instance, in the oral cavity where anaer-

obic bacteria might be the infective agent, and they usually are not easily

culturable, while bacterial genomic DNA often persist more. Besides, there

would be no need to a large number of bacteria DNA for culturing and a

small amount of DNA is adequate to make diagnosis [28].
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Early detection of oral precancerous lesions

The effectiveness of treatments of oral cancer is critically dependent on the

early detection and management of it. Consequently, analyzing and identify-

ing premalignant and early cancerous oral lesions could be another valuable

use of microarrays. This is crucial for clinicians to distinguish between harm-

less white lesions and precancerous lesions or very early cancer, because the

conditions might be reversible. However, discriminating among them and

locating the lesions that lead to oral cancer is not possible using microscopic

examination, while gene expression profiles or genomic fingerprints allows

clinicians to differentiate these lesions [28].

2.1.5 Microarrays Challenges

In this work, we address the problem of cancer related applications, i.e.

diagnosis or illness detection through classification in order to distinguish

among healthy and cancerous patients based on their gene expression lev-

els. Conventional learning algorithms are hardly applicable on this type of

data. The reason is that all the microarray natural characteristics presented

in 2.1.3 actually pose difficult challenges for machine learning methods in

obtaining acceptable results. For example their high dimensionality com-

bined with the makes it impossible to train a classifier without performing

dimensionality reduction. Simultaneously, these properties make microar-

rays popular benchmarks for the evaluation of machine learning algorithms.

Some important particularities of microarray datasets, concerning the clas-

sification problem we address in this work are listed below.

Curse of dimensionality

The term ”curse of dimensionality” refers to the negative effect of high

dimensional inputs on machine learning techniques. It occurs when the

problem complexity grows exponentially with the problem size. Large di-

mensions (features) in the input would make many algorithms inapplicable,

whereas they work well with low dimensional inputs. More broadly, cor-

rect generalization difficulty increases exponentially when the dimensional-

ity grows [20]. The rationale behind many algorithms is directly or indirectly

based on comparing similarity, a mechanism which breaks down in high di-

mensions. For example constructing a classifier when the dimension is two or

three is easy, even just by visual inspection, but understanding the pattern
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in high dimension is not intuitive. Besides, high dimensionality often results

in overfitting. Although some might assume that having more features is

always better because of the more information they provide, the drawbacks

sometimes outweigh their advantages [20].

Microarray data intrinsically suffer from significantly high number of di-

mensions and, due to the abundance of human genes, they usually contain

a large number of features (up to several hundreds of thousands of gene

expressions). This is a major obstacle when analyzing microarray datasets.

Small sample size

The task of diagnosis, i.e. distinguishing among healthy and cancerous

patients should be achieved using very small size of observations (usually

less than 100) which are provided by microarray datasets. This amount

is considered very small compared to the large amount of recorded gene

expressions and as a result, serious issues affect the data analysis and the

performance and reliability of the classification results. Two main difficulties

are the definition of the classification rule and error estimation.

To construct the classification rule, many classifiers estimate the conditional

probability of samples belonging to existing class labels, given the value

of genes. However, these conditional probabilities are not deterministically

known, and the classifier uses the values provided by observations to estimate

that. The larger the training data, the more certain would be the final

classification rule. Consequently, the reliability, consistency and accuracy of

the classifier’s decision boundary directly depend on the size of the data and

also on how well distributed are the pairs of samples and labels, since the

consistency and generalization capability of a learning algorithm increase

as the number of samples grows. On the other hand, the performance of

the classifiers which segment the feature space into disjoint areas is also

in direct relationship with data size and distribution of sample and label

pairs, since their decision is based on the ratio of the number of majority

labels in a cell to all observations in it. For a distribution to be consistent,

the cells should consider the local structure of the distribution and there

should be enough labels in each cell so that the classifier’s decision reflects

the true conditional probability. Consequently, the cells and in turn, the

classification rule depend on the number of samples [21].

There also should be enough test samples in order to evaluate the perfor-

mance of the method. However, in many microarray datasets, no test part
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is provided. Even when such section exists, the number of test samples is

so small that each misclassified sample considerably reduces the accuracy.

Apart from obtaining a high error rate, the result reflects only an approxi-

mation of the method’s performance, since with few samples the error rate

is quantized into a limited number of levels. The fewer the levels, the more

deviated is the obtained performance from the real capabilities of the algo-

rithm.

Class imbalance

In the classification of a dataset, the class distribution i.e. the proportion of

samples belonging to each class, is one of the key points [24]. A dataset is

said to be imbalanced if there are more instances of a certain class than the

others. This imbalance or skewness in the class distribution is also referred

to as small or rare class learning problem, and the degree of imbalance in

the class distribution is the ratio of the minority to the majority class [70].

Since observations belonging to certain class labels are much fewer, classifica-

tion rules aiming at predicting them are negatively weighted, and those rules

are usually not discovered, ignored or considered as noise. Many well-known

classifiers such as decision trees, support vector machines, neural networks

and nearest neighbors are reported to be inadequate in the presence of class

imbalance problems. They are usually biased towards the majority class,

because more general rules are preferred. As a result, test observations from

the minority class are misclassified more often than those of the majority

class [7] [70].

This represents a major issue in some domains where the main interest is

learning rare classes. An example is cancer detection in microarray datasets

where predicting and preventing the disease plays a major role. Here, the

number of normal patients (negative class) outnumbers the amount of sick

ones [24]. The problem is even more severe when the imbalance appears in

the test data more than in the training set, i.e. the test data do not follow

the training set distribution. One example can be seen in the Lung test set

in which the ratio between classes is 15:134, while this ratio in the training

set is 16:16. This phenomenon is also called dataset shift problem [7]. Table

2.1 reports the degree of imbalance in the datasets that are being used in

this work.

One of the factors that deteriorates the class imbalance problem is the small

sample size. Due to the limited number of observations in microarrays, dis-
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Table 2.1: Degree of imbalance in microarray datasets

Dataset Degree of imbalance
Training Set Test Set

Breast 34:44 7:12
CNS 21:39 n.a
Colon 22:40 n.a
DLBCL 19:58 n.a
Leukemia 13:25 10:24
Lung 16:16 15:134
Ovarian 91:162 n.a
Prostate 50:52 9:25

covering the patterns inherent in the rare class is difficult [70] and the size of

the training data has a direct relation to the error rate caused by poorly dis-

tributed classes. Moreover, the absence of a highly discriminative pattern to

distinguish among classes increases the complexity of the classification rules.

Especially when the underlying patterns among classes overlap in some part

of the feature space, inducing discriminative rules is hard. In fact, the exper-

iment done by Prati et al. [59] concludes that the imbalance problem does

not pose a problem by itself, but in the case of highly overlapping classes it

can significantly decrease the number of correctly classified samples of the

minority class. Also, in [36] it is claimed that linearly separable data are not

sensitive to any level of imbalance [70]. On the other hand, the presence of

noise in the data negatively impacts the performance of the classifier. Many

real world datasets inherently involve various types of noise and the classifier

usually treats the rare samples as background noise and fails to distinguish

these two cases [70].

Noise

The noise in datasets is caused by errors in measurements or the features’

natural variation and is called the error in the variance of a measured vari-

able [34]. Microarray gene expression datasets are also believed to be ex-

tremely noisy because of many imperfections inherent in the sample prepa-

ration and the hybridization processes during the application of microarray

technology [40] [77]. Noisy data pose a difficult challenge for machine learn-

ing methods since noise adds some unnecessary complexity to the inferred

model and decreases the efficiency of the algorithm [69]. To avoid these

problems, the method should be able to differentiate among informative
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and noisy data.

There are generally two types of noise in this context. It is either attribute

noise, i.e. there are wrongly measured variables or missing values in the

data resulting in errors in the attribute values, or class noise, caused by

mislabeled samples and/or labelled to belong to more than one class [88].

Irrelevant or redundant data

In the context of supervised learning, irrelevant features are those that carry

no useful information for distinguishing among different classes. Due to the

abundant number of gene expression levels that are provided as features

in microarray datasets, there is a high probability that many of them are

irrelevant with respect to the class label. These should be discarded before

applying classification among cancerous and healthy patients, in order to

avoid unnecessary complexity of the model and overfitting [17].

On the other hand, redundant features carry useful information, but the

information they convey has been expressed by other features. Redundant

features are typically highly correlated to each other. However, adding one

of them in presence of another does not significantly improve the perfor-

mance. The more features are correlated to each other, the less additional

information is gained by adding them [17].

These two kinds of features should be detected and separated using feature

selection algorithms, before employing any learning task, and considering

that microarray datasets typically contain thousands of gene expression val-

ues, this poses a difficult challenge in analyzing them.

2.1.6 Microarray Databases

DNA Microarray data repositories are databases that measure gene expres-

sion coefficients which reflect the value of ribonucleic acid (mRNA) for a

number of observations. They usually contain a large number of features,

ranging from 2000 to hundreds of thousands while providing a few number

of samples. In recent years the number of these datasets has been increasing

for wide range of cancer types and these datasets are accessible to the public

and the scientific community.

In this thesis, eight well-known biclass microarray cancer databases have

been explored: Breast, CNS, Colon, DLBCL, Leukemia, Lung, Ovarian and
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Prostate cancers. In the following, a short summary of their characteristcs

along with some technological details about their construction is provided.

Breast:

Up to now several binary and multiple class Breast cancer microarray datasets

have been introduced in the literature [78] [53] [33]. In this document the

dataset first announced in 2002 in [78] has been used1.

The construction of the dataset involved analysing the DNA microarray of

primary breast tumours of all sporadic young patients under the age of 55

with negative lymph node. From each observation, the RNA was separated

from snap-frozen tumor material in order to obtain the complementary RNA

(cRNA). Then using the fluorescent dye reversal technique, hybridization

was carried out on the microarray. Around 25,000 human genes have been

synthesized, scanned and normalized.

The Breast cancer dataset is originally divided into training and test sets.

The training data consist of 78 samples, 34 of which corresponding to pa-

tients who developed distant metastases within 5 years (relapse samples) and

the rest (44 non-relapse patients) are the ones who remained disease-free 5

years after the primary diagnosis. Additional 19 samples have been added

as the test set, among which 12 observations are relapsed and the remaining

7 are non-relapse samples. The total number of features (gene expression

levels) measured in all these patients is 24481. Table 2.2 summarizes the

Breast cancer dataset characteristics.

# features 24481

classes number class labels
2 Relapse/non-Relapse

Training set Total NP NN
78 34 44

Test set Total NP NN
19 12 7

Table 2.2: Breast cancer dataset characteristics

1Download link: http://datam.i2r.a-star.edu.sg/datasets/krbd
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CNS:

Medulloblastoma is the most common malignant brain tumour of childhood.

In this regard, a dataset consisting of a gene expression microarray for the

Central Nervous System2(CNS) embryonal tumour has been assembled by

Pomeroy et al. [58] in 2002. The dataset comes in several versions, among

which we selected version C. To prepare this version, a group of 60 young

children with medulloblastoma were treated with chemotherapy. All the

samples were obtained before starting the treatment, at the time of ini-

tial surgery, then they were frozen in liquid nitrogen and homogenized in

guanidinium. Then the RNA was isolated by performing centrifugation,

and a transcription reaction was carried out to generate and fragment the

cRNA for 35 minutes. Then, they were hybridized. Arrays were washed and

scanned on Affymetrix scanners so that the expression value for each gene

could be calculated. Afterwards, a linear scaling method was performed to

correct minor changes in microarray intensity.

The CNS/Embrional-T - Dataset C presented in [58] - includes the inten-

sity level for 7129 gene expressions (features). It is a binary dataset and

the samples are labeled as class0 and class1, class0 being the label for 39

medulloblastoma survivors and class1 representing 21 patients for whom the

treatment had failed (non-survivors). Table 2.3 reports the general proper-

ties of this dataset.

# features 7129

classes number class labels
2 class0/class1

Training set Total NP NN
60 21 39

Test set Total NP NN
- - -

Table 2.3: CNS dataset characteristics

Colon:

The Colon dataset3 has been first introduced in a study conducted by Alon

et al. [3] in 1999. The result of their experiment is a binary dataset of-

fering gene expression patterns of different cell types and composed of 40

2Download link: http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
3Download link: http://www.molbio.princeton.eduycolon
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tumor and 22 normal colon tissue observations. It was first analyzed with an

Affymetrix oligonucleotide array complementary to more than 6,500 human

genes and Expressed Sequence Tags (ESTs). Then the genes were normal-

ized in terms of intensity to obtain a zero mean distribution across the tissues

while having the magnitude equal to 1. This normalization is necessary to

emphasize their relative intensity level as opposed to their absolute inten-

sity. Then they applied a two-way clustering method to the gene expression

dataset and produced a matrix in which groups of genes whose expression

is correlated across tissue types are distinguishable. The final 2000 genes

(features) presented in the dataset are the ones with the highest minimal

intensity across the samples. Each gene is normalized such that the average

intensity across the samples is 0 and the standard deviation is 1.

As illustrated in Table 2.4, this binary dataset is not originally divided into

training and test set. As a whole, it provides gene expression levels for 62

patients, 22 of which were diagnosed cancer.

# features 2000

classes number class labels
2 Tumor/Normal

Training set Total NP NN
62 22 40

Test set Total NP NN
- - -

Table 2.4: Colon cancer dataset characteristics

DLBCL:

Lymphochip4 is a specialized microarray, first designed and constructed in

2000 by Alizadeh et al. [2].

A biopsy sample was obtained from a group of de novo DLBCL patients that

had not obviously arisen from pre-existing lowgrade malignancies such as

follicular lymphoma, before starting their treatment. In the sampling, they

preferentially expressed gene levels in lymphoid cells along with the known

or suspected gene expressions having roles in processes which are notable

in immunology or cancer and genes repressed or induced during B- and

T- lymphocyte activation. In this experiment, they compared the relative

abundance of genes in each observation with respect to a reference mRNA

4Download link: http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
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pool to reflect the fluorescence ratio for each gene. Due to the presence of

a common pool, it was possible to measure the relative expression levels of

genes in each experimental sample across all other samples [2].

Finally, in the resulting binary dataset, as reported in Table 2.5, the number

of recorded features is 4026 for 77 patients, 58 of which were diagnosed as

cancerous after the treatment (Fatal class label), while the remaining 19

patients were disease-free (Cured class label).

# features 4026

classes number class labels
2 Fatal/Cured

Training set Total NP NN
77 58 19

Test set Total NP NN
- - -

Table 2.5: DLBCL dataset characteristics

Leukemia:

The Leukemia DNA microarray5 has been first introduced in 1999 by Golub

et al. [26] for the purpose of tumor class discovery in order to distinguish

among acute myeloid leukemia (AML) and acute lymphoblastic leukemia

(ALL), as the differentiation between ALL and AML is critical for suc-

cessful treatment. To prepare the dataset, they obtained 38 bone marrow

samples (27 ALL, 11 AML) from acute leukemia patients at the time of di-

agnosis. Using bone marrow mononuclear cells, the RNA was prepared and

hybridized to high-density oligonucleotide microarrays, then it was gener-

ated by Affymetrix. The probes contained 6817 human genes, and a quan-

titative expression level was measured for each of them. Afterwards, an

additional independent collection consisting of 34 Leukemia patients, which

included a much broader range of samples, was added to the experiment.

Among them, 24 observations were obtained from bone marrow and 10 from

peripheral blood samples [26].

The final Leukemia binary dataset is composed of 38 observations in the

training and 34 in the test set respectively, and presents 7129 gene expression

levels. The characteristics of this dataset are summarized in Table 2.6.

5Download link: http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
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# features 7129

classes number class labels
2 ALL/AML

Training set Total NP NN
38 13 25

Test set Total NP NN
34 10 24

Table 2.6: Leukemia cancer dataset characteristics

Lung:

The Lung cancer dataset6 has been originally produced by Gordon et al. [27]

in 2002. To prepare the dataset, they collected 245 discarded Malignant

Pleural Mesothelioma (MPM) and lung Adenocarcinoma (ADCA) surgi-

cal specimens from patients who underwent surgery. Then, the samples

were snap-frozen and the RNA was prepared and processed. Afterwards,

the cRNA was hybridized to human U95A oligonucleotide probe arrays

(Affymetrix, Santa Clara, CA [27]). After inspection, 64 out of 245 samples

were dropped due to the presence of some artifacts in the scanned samples.

Among the rest, 31 observations were Mesothelioma (MPM) and 150 sam-

ples were Adenocarcinoma (ADCA). Then, gene expression measurements

were scaled and a zero mean normalization was applied.

The Lung cancer dataset comes with separate training and test data. The

training set contains 32 samples with equal distribution of MPM and ADCA

patients, while the test set presents 149 observations, among which 15 are

classified as Mesothelioma and 134 samples as ADCA. The total number of

provided gene expression data is 12533. A summary of the descriptions is

reported in Table 2.7.

# features 12533

classes number class labels
2 Mesothelioma/ADCA

Training set Total NP NN
32 16 16

Test set Total NP NN
149 15 134

Table 2.7: Lung cancer dataset characteristics

6Download link: http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
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Ovarian:

The Ovarian cancer dataset7 was first published in 2002 by Petricoin et

al. [57]. To construct this dataset, an initial set of spectra obtained from

serum from 50 unaffected women and 50 patients with ovarian cancer were

analyzed. Then a masked validation set, containing 116 observation has

been added to the initial set, from which 50 samples belonged to cancerous

patients, and the remaining 66 samples were unaffected women or those

with non-malignant disorders. The serum samples were obtained prior to

any examination, diagnosis, or treatment. Then, they were frozen in liquid

nitrogen and manually analyzed on a C16 hydrophobic interaction protein

chip [57].

As shown in the Table 2.8, the final binary dataset consists of a total of 253

observations, for which 15154 gene expression levels have been measured.

Among these, 162 patients are diagnosed as cancerous while the rest (91)

were unaffected.

# features 15154

classes number class labels
2 Cancer/Normal

Training set Total NP NN
253 162 91

Test set Total NP NN
- - -

Table 2.8: Ovarian cancer dataset characteristics

Prostate:

The Prostate dataset8 construction experiment was undertaken originally by

Singh et al. [67] in 2002. The samples were obtained from prostate tumors

and normal tissues from a group of patients undergoing radical prostatec-

tomy. Out of 235 observations, 65 patients were cancerous. After that the

RNA were extracted, then the labeled cRNA were generated, fragmented

and hybridized to Affymetrix arrays. The expression values were measured

and normalized based on the median array intensity. Among all genes, the

ones with variations greater than 5-fold between any two samples were kept.

7Download link: http://datam.i2r.a-star.edu.sg/datasets/krbd
8Download link: http://datam.i2r.a-star.edu.sg/datasets/krbd
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Finally, high-quality expression profiles were derived using oligonucleotide

microarrays which contained approximately 12,600 genes and ESTs.

The present dataset provides separate training and test datasets. Training

data contain 102 observations, 52 of them corresponding to tumor (Relapse)

and the remaining 50 normal (non-Relapse). On the other hand, the test

data amounts to 34 samples, 25 of which are tumor while the rest (9) are nor-

mal. The general characteristics of the Prostate cancer dataset are reported

in Table 2.9.

# features 12600

classes number class labels
2 Relapse/non-Relapse

Training set Total NP NN
102 52 50

Test set Total NP NN
34 25 9

Table 2.9: Prostate cancer dataset characteristics

2.2 The Feature Selection

Feature selection is one of the most crucial steps in the pre-processing of

data, especially when the the number of features is large, such as with

bioinformatic data, which pose severe challenges on machine learning meth-

ods, due their high dimensional nature. For example, microarrays allow to

simultaneously measure the expression levels of a large number of genes,

so that the resulting datasets are characterized by a large number of fea-

tures (more than 50 thousand genes) and a very limited sample size [64].

Most of the genes provide little or no useful information for classification

purposes, and it is particularly important to detect the smallest subset of

features (referred to as biomarkers), that provide sufficient information to

separate the classes represented in the dataset (which could distinguish can-

cerous and noncancerous samples, or identify different types of cancer [34]).

This highly crucial task is referred to as feature selection (FS), which is a

combinatorial optimization problem aiming at selecting from a set of avail-

able features only the relevant ones, in order to build a classifier with the

required performance. FS reduces the computational cost of the classifier

design and simplifies its structure, thus facilitating model interpretation and

data understanding, and ultimately improves both accuracy and robustness

25



of the designed classifier [16]. Indeed, the presence of redundant features

may adversely affect the classification accuracy, as they can add more noise

than useful information [42].

The highly unbalanced dimensions of microarray datasets greatly compli-

cate the FS task, and unsatisfactory classification performances are often

reported with standard methods [37], [1]. Indeed, large feature vectors sig-

nificantly slow down the learning process, since the complexity of the FS

problem grows exponentially with the number of features. At the same

time, the small number of samples may cause the classifier to overfit the

training data, thus compromising model generalization [42]. Besides their

unbalanced dimensions, microarray data are often affected by noise, which

further aggravates the analysis. For all these reasons, specialized FS tech-

niques must be developed to appropriately handle this type of datasets.

In the context of supervised learning, where the labels of samples are a priori

known, as with microarray datasets, the goal of FS is to find all the relevant

and non-redundant features among other irrelevant or noisy information in

the training set, in order to eventually process the data faster and obtain

more accurate and interpretable results [43].

Yu and Liu in [87] classified features into four categories: (i) irrelevant fea-

tures, (ii) weakly relevant but redundant features, (iii) weakly relevant and

non-redundant features, (iv) strongly relevant features. An optimal subset

should contain features of type iii and iv. To fulfill this condition, a desir-

able feature selection algorithm should be capable of searching for a reduced

subset of the feature space, such that if using only that subset to train a

certain classifier, not only classification performance would not deteriorate,

but it might also improve in some cases [23]. In this procedure the im-

portance or performance of each feature or subset of features is measured

using some specific criteria. In machine learning terminology, this problem

is also referred to as variable selection, attribute selection, or variable subset

selection [23] [43]. The FS problem is formally defined as follows:

Let the original set of features be S and L(.) be an evaluation criterion that

should be maximized (optimized) and defined as L : S ′ ⊆ S −→ R. The

optimal subset of features S∗ is a subset of S such that L(S∗) ≥ L(S ′),
meaning that the optimal subset maximizes the criterion. 9 Note that this

definition does not imply the uniqueness of the optimal solution.

FS algorithms have four basic steps (see Figure 2.7): 1) subset generation,

9To avoid overfitting, model is evaluated on the validation part of the dataset.
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Figure 2.7: Main steps of the feature selection procedure

2) subset evaluation, 3) stopping criterion 4) validation. The first two steps

are discussed in the following, the validation step is presented in 2.3.10 and

the stopping condition(s) will be commented in section 3.1.

Subset Generation

Subset generation algorithms or search strategies are originally designed

to achieve a trade-off between result optimality and computational effi-

ciency [87], and they seek for a candidate subset [43]. For a Nf -dimensional

dataset with a set of Nf features R = {ϕ1, . . . , ϕNF }, there exist 2NF − 1

candidate subsets of features and as the number of features grows, the search

space increases exponentially. Therefore, it is impractical for a FS algorithm

to consider all the possible subsets and it needs to resort to some heuris-

tic strategy. In general search mechanisms can be divided into sequential,

exponential and randomized. In the following, the basic idea behind each

strategy is discussed.

Sequential or Incremental Search are greedy procedures that progressively

generate a candidate subset, either by adding or removing features starting

from the subset obtained at the previous iteration. Some famous methods

in this category include Sequential Forward Selection (SFS) and Sequential

Backward elimination/Selection (SBS). In SFS, at the first iteration the

subset is empty. Then, at each time, one uncollected feature is added to

the subset, such that the classifier accuracy would be maximum compared

to other uncollected features that could possibly be added. In SBS, starting

from the full feature set, at each step the less important feature in the

existing subset is selected to be removed. Different combination of these

methods are also possible, for example the bi-directional selection or adding
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or removing multiple features at a time instead of a single one [43] [81].

Sequential algorithms visit only a small portion of the search space, and

consequently they do not guarantee optimality, since the optimal solutions

might never be visited [19]. Moreover, the decision made at each step in

these algorithms to remove or add features is dependent on the current

subset, so their initialization significantly impacts the visited subsets and

consequently the outcome [61]. On the other hand, in simple datasets with

few features, they are easy to implement and relatively fast.

Exponential Search or best subset selection [35] searches for each possible

combination of the features. In Nf -dimensional space it searches the whole

2NF − 1 options. It has computational limitations and for Nf ≥ 40, this ap-

proach is practically unfeasible. However, to reduce the search space, it may

employ such methods as Branch and bound [54] and Beam search [19]. Nev-

ertheless, employing exponential search algorithms might lead to overfitting,

especially when the criterion to evaluate the subset is classifier performance,

because selecting more features and more flexible models always results in

better performance on the training set, so the algorithms are biased towards

selecting large sized models.

Randomized Search methods choose the potential subsets by introducing

some degree of randomness in the search strategy. As a consequence, they

can avoid local minima and converge closer to global optimal solutions [19].

In some randomized search algorithms, a random subset is selected at the

first step, then at the next iterations other completely random subsets are

selected or extra features are added to the first selected subset until the

optimal solution is obtained [43]. For example, the Las Vegas algorithm [50]

at each step selects a random subset of features from the whole features,

then evaluates it using an inconsistency criterion. If the size of the selected

subset is smaller than the best subset identified so far and the inconsistency

criterion holds, it will replace the obtained subset as the optimal solution.

Also, if the size of the obtained solution is the same as the optimal solution

and the inconsistency criterion is less than a threshold, it will keep the

current answer as an equally good solution and this procedure continues

until the algorithm reaches the maximum number of predefined rounds [60].

Applying random algorithms requires some level of knowledge about the

underlying feature space. For example, randomization may not be effec-

tive enough, specifically in high dimensional spaces where only a very small

subset of features is desirable or relevant, in which case the probability of

converging to that particular subset is too small [60]. Also, randomized al-
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gorithms are extremely sensitive to their tuning parameters [19]. Another

issue is the stopping condition, since there is no a priori knowledge about the

optimal solution, and the algorithm can stop when a performance threshold

is met or a time or iteration counter is reached [60]. Some well-known subset

generation algorithms are presented in Section 2.10.

Strategy Algorithm name

Exponential Exhaustive search
Branch and bound
Beam search

Sequential Greedy forward selection or backward elimination
Best-first
Linear forward selection
Floating forward or backward selection
Beam search (and beam stack search)
Race search

Randomized Random generation
Simulated annealing
Evolutionary computation algorithms (e.g. genetic,
ant colony optimization)
Scatter search

Table 2.10: Algorithms in different search strategies

Subset Evaluation

After generating candidate subsets, their goodness should be measured ac-

cording to some certain criterion. There are two main subset evaluation

metrics, according to whether they are independent from or dependent on

the FS algorithm.

Independent metrics are filters that measure the importance of a single or a

subset of features, solely based on the essential characteristics of the training

data, and do not involve the underlying FS algorithm [43]. Some of them

include distance measures, information or uncertainty measures, dependency

measures, inter-class distance measures, and consistency measures.

The distance measure computes the probabilistic distance among the class

conditional probability densities. It is also known as divergence, discrimi-

nation and separability criterion. Information or uncertainty measures use

the concept of entropy to calculate the information gain. In dependency or

similarity measures, the features that are strongly correlated to the output
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are preferred. Consistency metrics search for the smallest subset of fea-

tures that separates the classes as consistently as the whole set. Inter-class

distance evaluation methods measure the distance (usually Euclidean) be-

tween each classes’ observations and then the distance between two classes

is computed [43].

On the other hand, dependence criteria evaluate the goodness of a subset

based on the performance of the classifier. Although their final outcome is

better than other algorithms, they are computationally expensive since for

each subset one has to calculate and evaluate the classifier.

FS algorithms are divided into three main categories: filter, wrapper and

embedded methods. Typically, independent metrics are used in filter-based

FS methods, and dependence measures are used in combination with wrap-

pers. The three types of FS algorithms are discussed next.

2.2.1 Filter Methods

Filter or open-loop methods assess the importance of individual features (or

subsets of features) by evaluating their intrinsic characteristics in terms of

some criteria i.e., dependency, information, distance, consistency and sta-

tistical measures [4] [38]. They are computationally very effective and fast,

and can be easily scaled to large-sized datasets such as microarrays. Be-

sides, since the process of measuring the criteria is done independently from

any learning task, they can provide a general solution for every classifier.

Filter methods are categorized into univariate and multivariate methods

based on whether the goodness of a single feature is evaluated or a subset

of features [4].

Univariate filter methods rank a single feature according to their degrees of

relevance, without considering their mutual interaction [6]. Therefore, these

algorithms remove only the irrelevant features, but not the redundant ones,

because it is likely that similar features have similar rankings [87]. Besides,

they ignore that a single feature may be irrelevant, but it can contain highly

relevant information in combination with other features [4].

To address the first issue, several methods employ correlation-oriented crite-

ria based on the concept of mutual information (MI) (see [52], [55], [56], [18],

[68] and [75]). As it is the case in Redundancy Maximal Relevance (MRMR)

algorithm [18] and in Correlation Based Filtering (CFS) method [31], the MI

between the features and the output displays the features’ discriminatory
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powers, while the correlation among features reveals possible redundancy

issues. It is essential to mention that correlation-based criteria operate on

pairs of variables, so applying them for assessing subsets of features of arbi-

trary size requires some form of aggregation of the pairwise computed indices

(e.g., averaging), which does not necessarily reflect the actual importance of

a given subset [75]. Some methods using this type of approximated calcu-

lation of the group mutual information are presented in [31], [41], [5], [71]

and [72]. It is apparent that the ranking criteria that are originally designed

for the evaluation of groups of variables of arbitrary size are more desirable

than those designed for pairs of features. This is the case in multivariate

filter methods, in which, a subset of features is evaluated as opposed to a

single feature, to account for the interaction among features and to capture

the features that are valuable in the presence of other ones.

Unlike univariate methods, which provide a ranked list of features to select

from, multivariate filter methods pose greater complexity, because in addi-

tion to the evaluation process, they also involve a search strategy for can-

didate subsets in the space of all possible feature subsets. Different search

strategies proposed in the literature have been described in the previous

section.

The most common strategies when using multivariate methods are exponen-

tial algorithms, sequential algorithms and randomized algorithms. Exponen-

tial algorithms search for candidate subsets exhaustively and as a result the

number of subsets, as well as the computational complexity, increase expo-

nentially when the feature space grows, so they are not practical solutions for

large-sized datasets. On the other hand, heuristic or sequential algorithms

are more practical in these situations. Two well-known approaches of this

kind are Sequential Forward Selection (SFS) and Sequential Backward Se-

lection (SBS) [18] [31] [65]. They add in or remove from the candidate

subset one or more features sequentially such that the improvement in that

stage would be maximized. Despite its simplicity, this strategy has several

drawbacks both conceptual and computational. First of all, the decision

regarding which feature should be added or removed at a given step de-

pends locally on the currently selected feature subset. A feature with great

discriminatory capabilities when combined with other features that are not

present in the current subset would be neglected. In other words, the rele-

vance of a specific feature is not evaluated as a global property, but rather

as a local one. Thus, an unsuitable initialization would stray the selection

process from the optimal path and lead the algorithm to a local minimum.

Also, what is optimized at every step is only the local improvement of the
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current feature subset with an elementary feature variation. In this way

selection errors are propagated throughout the process. Finally, the incre-

mental strategy depends critically on the threshold adopted as a stopping

criterion. For all these reasons, methods based on greedy policies such as the

SFS and SBS are subject to redundancy and overfitting issues, especially if

applied to datasets with extremely unbalanced dimensions, such as microar-

rays. However, randomized algorithms overcome these issues and have the

possibility of escaping from local minima, by selecting subsets of features

randomly, such that the initialzation does not affect the future states since

the selection of features at the next iteration does not completely rely on the

initialization and they involve some degree of randomness [38]. Although if

the desirable solution is a unique subset of features, the chance to find it is

probably not high. After this stage, each obtained subset is assessed by a

certain criterion and compared to other subsets according to the same crite-

rion. This would prevent redundant features to appear in the same subset,

as opposed to univariate methods, in which there is a high probability that

redundant features have similar ranking measurements. However, despite

the overall better performance of multivariate algorithms, they need more

computational time to generate and compare subsets [6].

Due to their simplicity and speed, filter methods are widely used in analyz-

ing microarray datasets. The following are some well-known filter methods

proposed in the literature.

Correlation-based Feature Selection (CFS) [30] is a multivariate filter

method that uses a correlation-based heuristic to measure the goodness of

features, according to the hypothesis that a good feature subset includes the

features highly correlated with the output (those with high predictive abil-

ity), but mutually uncorrelated, so that irrelevant and redundant features

should be discarded. The search strategy in this method is an incremental

one [30] [7].

Information Gain is another univariate filter method that makes an or-

dered ranking list of features, putting first those whose values in the obser-

vations provide more information to predict the class. The method works

by approximating the conditional distribution Pr(Y |X) where Y is the class

and X is the feature vector [85] [34]. Like other ranking methods, a thresh-

old can be used to select the best features among all, by evaluating each

feature’s discriminating ability, independently of other features [7].

Relief is a multivariate filter method for biclass problems inspired by in-

stance learning. It randomly picks instances, then finds their nearest neigh-
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bor from the same class and also from the other class. Then the values of

features of these two samples are compared to the randomly selected sample,

then used in updating the rank of each feature. In fact, it progressively picks

observations and gives higher ranks to the features that have the same value

in the same classes but different in the opposite class [7] [34]. So the features

are not directly selected, but their weights are gradually updated [41]. Re-

liefF is an extension of Relief which adds the ability to deal with more than

two classes [7]. These two filter methods are widely used in gene selection

problems. However, in spite of their noise tolerant property, low bias and

simplicity, they are often unable to find an optimal feature set size [39].

Minimal-Redundancy Maximal-Relevance (MRMR) [18] is another

multivariate filter method that selects the features at maximum dissimilarity

in terms of their mutual Euclidean distances or other correlation-based met-

rics to ensure minimum redundancy, and at the same time, highly correlated

features to the output using relevance criteria such as mutual information

to ensure maximum relevance. MRMR employs an incremental strategy to

search for candidate subsets, thus it is not guaranteed to converge to the

global optimum.

Markov Blanket Filtering (MBF) [41] is an iterative greedy multivari-

ate filter method, that at each step eliminates weakly relevant redundant

features, whose removal causes the least change in the distribution and

also the least decrease in accuracy. It employs the concept of conditional

independence between feature subsets and the class labels to determine

the variables carrying the least amount of information to be removed at

next stage. The set of other variables is called Markov blanket of that

feature [41] [34] [38].MBF lacks a global evaluation of subsets, due to its

incremental strategy for finding feature subset candidates.

2.2.2 Wrapper Methods

Wrapper methods are another major type of FS algorithms. In wrapper

techniques, subsets are generated based on the search strategies similar to

filter methods. However, the assessment and comparison of feature subsets

is done in terms of the performance of the classifier. In contrast to filters,

they can detect feature dependencies. [34].

Increasing the problem size increases the feature subset space, and since the

process of evaluation should be repeated for each subset, it dramatically

slows down the algorithm compared to filter methods. This is critical in
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analyzing microarray datasets, which have thousands of features. Moreover,

subset evaluation is done through a classifier, therefore the subsets that pro-

vide more accurate classification results employing that specific classifier are

considered better and consequently their importance are biased towards the

classifier. Also, due to the small sample size there is the risk of overfitting.

Their performance is generally better than filter methods [7]. Two famous

wrapper methods (SFS and GA-KDE-Bayes) are discussed below:

Sequential Feature Selection (SFS) is applied on microarrays by Sharma

et al. [66] to overcome the existing problem in many FS algorithms, i.e. that

some weakly ranked genes are not selected despite their informative nature

in classification if they are combined with appropriate subsets of features.

The algorithm first divides the features into small subsets. Then in each

subset it selects informative smaller subsets of genes according to the classi-

fication accuracy and merges them together to update the optimal solution.

The process of selection and merging is repeated until a single subset is

obtained [7].

GA-KDE-Bayes [79] is an evolutionary wrapper algorithm, which uses a

non-parametric density estimation method in combination with a Bayesian

classifier, suggesting that in sparse and scarce data such as microarrays,

non-parametric methods are favorable alternatives, since they do not make

any assumption about the distribution and structure of the data, and all the

information are extracted directly from the data itself. The experimental

study of this method shows that local modeling selects small and relevant

subsets of features and results are competitive in terms of classification ac-

curacy [7].

2.2.3 Embedded Methods

Embedded methods are designed such that FS is embedded in the learning

process. They are more efficient than wrapper methods in terms of time and

computation, as they do not train the classifier for measuring the importance

of each subset, but employ the classifier to establish a criterion for ranking

the features. The probability of overfitting in embedded methods is less than

with wrapper methods. However, they still suffer from computational com-

plexity, especially when the size of the dataset grows and, similar to wrapper

methods, they are dependent on the specific classifier they employ [4] [7].

Recently, most FS algorithms tend to combine the above mentioned algo-

rithms to overcome their inherent drawbacks and combine their advantages.
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Some of them are introduced in the following:

Support Vector Machines based on Recursive Feature Elimination

(SVM-RFE) [29] is an iterative embedded method that, at each step trains

an SVM classifier using the genes in the current subset, then computes the

ranking criterion for all the features (or for all the subsets), and finally

eliminates the least important one. This method is capable of removing re-

dundant features and ranking the features based not only on their individual

relevance, but also to their importance in the presence of other features [7].

Kernel Penalized SVM (KP-SVM) [51] is another SVM-based embed-

ded method which embeds the FS task in the dual formulation of SVMs. In

the dual problem formulation, a penalization function is added to optimize

the shape of the Gaussian kernel and remove the less relevant features from

the classifier [7].

FOIL Rule based Feature subset Selection algorithm (FRFS) [80]

is an alternative embedded FS method, which uses FOIL rules (First Order

Inductive Learner rules) for classification. First, it uses a modified proposi-

tional implementation of the FOIL algorithm in order to generate the FOIL

classification rules. It then combines the features that appear in the an-

tecedents of all rules to achieve a candidate feature subset that excludes

redundant terms and maintains the interactive ones. Finally, the algorithm

evaluates the relevance of each feature in the candidate subset using the

CoverRatio [80] metric to remove the irrelevant features [7].

2.3 Classification

Classification is the process in which a learner or classifier aims to find the

underlying relationship between the input and the output data in a given

training set, and according to that makes a concise model of the distribution

of the class labels in terms of the features, so that in the future it can predict

the outcome of any other test set based only on the values of the features

in the input data and accordingly assign a class label to that instance.

Let D = {d(1), . . . , d(N)} be a set of N available observations, each consisting

of an input-output pair d(k) = (f (k), c(k)), where f = [f1, . . . , fNf ] denotes

the vector of features, and c ∈ {1, . . . , Nc} the classes, with k = 1, . . . , N . D
is used to build a classifier, capable of predicting the class label of previously

unseen samples of the features. The general form of the classifier is thus
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given as:

ĉ = h(f), (2.1)

where ĉ denotes the predicted class associated to the vector of features f

and h is a suitable function of the feature values.

In this thesis, some well-known classifiers have been employed to evaluate

the performance of the studied FS algorithms, which are listed below:

2.3.1 k-Nearest Neighbors

k-Nearest Neighbors or k-NN is a non-parametric lazy classifier. Being lazy

means that it does not learn a particular model from the training dataset,

but memorizes the data to use in the test stage in which it assigns the obser-

vation to a particular class label by estimating the conditional probability

that the observation belongs to the class. It considers the k data points in

the training set nearest to the observation and assigns the observation to

the class label yc, that is most common label amongst its k nearest neigh-

bors [35]. Formally, if Ni is the neighborhood containing k samples whose

distance to data point d(i) = f (i) is the least, the probability of d(i) belonging

to class label c = c(j) is given by:

Pr(c = c(j)|d(i) = f (i)) =
1

k

∑
c(j)∈Ni

I(c = c(j)) (2.2)

where I is the identity matrix.

Since k-NN is non parametric, it does not make any prior assumption about

the distribution of the data. This is quite helpful, especially in case of

microarray datasets. However, since there is a minimal learning phase due

to its laziness and absence of generalization, it tends to perform poorly in

the presence of high dimensional data and irrelevant features. Moreover,

the performance is significantly dependent on the appropriate choice of k,

which balances the bias and variance tradeoff in the method. Increasing

k reduces the bias and noise impact, but also the risk of ignoring small

but important patterns increases as well, due to the fact that the decision

boundary becomes less flexible. On the other hand, a small k introduces

bias and an increase in the probability of overfitting [76]. The best choice

of k is typically tuned using cross validation (see section 2.3.10).
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2.3.2 Support Vector Machine

The support vector machine classifier (SVM) [35] is a generalization of the

maximal margin classifier. In the binary classification setting, the SVM

aims to classify the samples by solving an optimization problem in order to

divide the Nf -dimensional space into two subspaces by a hyperplane that

almost separates the classes, using a so-called soft margin. This hyperplane

(maximal margin hyperplane) has the farthest minimum distance to the

training observations. The optimization problem is formalized as follows:

maximize
β0,β1,...,βNf ,ε

(1),...,ε(N)
M

subject to

Nf∑
l=1

β2
l = 1

c(j)(β0 + β1fj1 + β2fj2 + ...+ βNf fjNf ) ≥M(1− ε(i))

ε(i) ≥ 0,
N∑
i=1

ε(i) ≤ C

(2.3)

where M defines the width of the margin. The goal is to keep it as large as

possible, such that the second constraint holds.

In aNf -dimensional space, a hyperplane is a flat affine subspace of dimension

Nf , defined by:

β0 + β1f1 + ...+ βNf fNf = 0 (2.4)

Any Nf -dimensional point d = (f1, f2, ..., fNf )T for which (2.5) holds is a

point on the hyperplane. If point d does not satisfy the equation (i.e. does

not reside on the hyperplane in equation 2.5), then the sign of β0+β1f1+...+

βNf fNf tells us on which side of the hyperplane the point lies. In the binary

setting, if we assume that all the observations fall into two classes {1,−1}
(c(j) ∈ {1,−1} for all class labels), if c(j) = 1, then β0 +β1fj1 +β2fj2 + ...+

βNf fjNf > 0, and if c(j) = −1, then β0 + β1fj1 + β2fj2 + ...+ βNf fjNf < 0.

Evidently, this separating hyperplane has the property that

c(j)(β0 + β1fj1 + β2fj2 + ...+ βNf fjNf ) > 0 (2.5)

However, M(1 − ε(i)) in the second constraint of equation (2.3) would let

some training data reside on the wrong side of the hyperplane or along the
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margin in the process of learning, depending on the ε(i) value being greater

than 1, or not. The ε(i) s are called slack variables to make the soft margin

possible.

C is a non-negative tuning parameter which bounds the sum of the ε(i) s,

to determine the number and severity of the violations. In fact C is the

tolerance level that controls the bias-variance trade-off in the learning.

The data points residing along the margin or between the margin and the

hyperplane are called support vectors, since they are Nf -dimensional vectors

that support the maximal margin hyperplane. If these points were moved,

the maximal margin hyperplane would move as well. The optimization

problem depends directly only on the support vectors.

Figure 2.8: Support vector classifier

Interestingly, in equation (2.3) only the data points that violate the margin

will affect the optimization solution. This implies that the decision rule is

based only on a potentially small subset of the training observations (the

support vectors), so it is quite robust to the behavior of observations that

are far from the hyperplane.

2.3.3 Nonlinear SVM

In case a linear boundary between two classes does not exist, the perfor-

mance of linear classifiers such as linear SVM would drop. In these condi-

tions one should resort to nonlinear decision boundaries. This is typically

addressed by enlarging the feature space by involving also functions of the

features, e.g. adding quadratic or higher-order polynomial terms of the

feature space. In nonlinear SVM, however, enlarging the feature space is
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performed in a computationally efficient way, using kernels.

Figure 2.9: Enlarging feature space overview in nonlinear SVM

The inner product of two Nf -dimensional vectors f (i) and f (i′) is defined as:

〈f (i), f (i′)〉 =

Nf∑
j=1

f
(i)
j f

(i′)
j (2.6)

It can be shown that the solution to the linear SVM illustrated in equation

(2.3) involves only the inner products of the observations as opposed to the

observations themselves and can be represented as:

g(x) = β0 +

N∑
i=1

αi〈f (i), f (i′)〉 (2.7)

where N is the number of observations, αi s are the parameters that should

be estimated using the inner product of each pair of samples and is non

zero only for support vectors. To accommodate non-linearity, instead of the

inner product 〈f (i), f (i′)〉, a general nonlinear function called kernel can be

used.

g(x) = β0 +
n∑
i=1

αiK(f (i), f (i′)) (2.8)

The kernel function quantifies the similarity of two observations. The inner

product is the linear special case of the kernel.

Two well-known nonlinear kernels are the polynomial and the radial ones:
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The polynomial kernel of degree d in Nf -dimensional space is as follows:

K(f (i), f (i′)) = (1 +

Nf∑
j=1

f
(i)
j , f

(i′)
j )d (2.9)

and the radial kernel is constructed by:

K(f (i), f (i′)) = exp(−γ
p∑
j=1

(f
(i)
j − f

(i′)
j )2) (2.10)

Using kernels instead of adding functions of original predictors for enlarging

the feature space is computationally much more effective, since otherwise

computations in the enlarged feature space become intractable [35]. In fact

SVMs first map the training data into a higher dimensional feature space

using some predefined nonlinear function, then construct a linear decision

surface in that space to ensure maximum generalization [14].

2.3.4 Logistic Regression

Logistic regression is extensively used as a classifier to model the outcomes

of a categorical dependent variable, in which linear regression cannot be

used since its response values are not expressed in ratio scale, and the range

of its predicted values can be any real number, while in the classification

setting, the output is only a limited number of discrete values. Besides, in

linear regression error terms are not normally distributed [15].

In linear regression the expected value of a dependent variable c is a linear

combination of independent variables and parameters and the output is

the probability of a class label (conventionally the default class, shown as

p(f (i)) = Pr(c = 1|f (i))). For the logistic regression, this function is called

the logit transform:

log
( p(f (i))

1− p(f (i))

)
= β0 +

Nf∑
j=1

βjf
(i)
j (2.11)

This ensures that the probability will fall between 0 and 1 for all values of

Nf -dimensional samples f (i) = [f
(i)
1 , f

(i)
2 , ..., f

(i)
Nf

], i ∈ {1, ..., N} as inputs:
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p(f (i)) =
e
β0+

Nf∑
j=1

βjf
(i)
j

1 + e
β0+

Nf∑
j=1

βjf
(i)
j

(2.12)

Function (2.12), also known as logistic function, forms an S-shaped curve in

the desirable range.

The maximum likelihood method is used to estimate the parameters βj such

that the probability of the observed data is greatest [15].

The drawback of the logistic regression is that when the classes are well-

separated, the parameter estimation process is surprisingly unstable. [35].

Also, if the number of samples are small, the logistic regression is less stable.

2.3.5 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) develops an approximation of a Bayes

classifier by modeling the distribution of each of the predictors in f (i) in

different classes, and then using Bayes’ theorem to estimate Pr(c = c(j)|f (i))

[35].

Let Nc be the number of class labels (Nc ≥ 2) and πcj be the prior probabil-

ity that a randomly chosen observation f (i) belongs to the class cj . We define

gcj (f) ≡ Pr(f = f (i)|c = cj) as the density function of f (the probability

that an observation in the cjth class has f ≈ f (i)) and pcj (f) = Pr(c = cj |f)

is the posterior probability that an observation f = f (i) comes from the cjth

class. Bayes theorem states that:

Pr(c = cj |f = f (i)) =
πcjgcj (f)
Nc∑
l=1

πlgl(f)

(2.13)

πcj is estimated as the fraction of the training observations that belong to

the cjth class,
Ncj
N where Ncj is the number of observations belonging to

class cj and N is the sample size. Now we can plug in the estimates of πcj
and gcj (f) into equation (2.13).

To estimate gcj (f), we assume that f has a multivariate Gaussian distribu-

tion (f ∼ N (µ,Σ)) , so in an Nf -dimensional space, gcj (f) would be:
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gcj (f) =
1

2πNf/2 |Σ|Nf/2
exp
(
− 1

2
(f (i) − µ)TΣ−1(f (i) − µ)

)
(2.14)

where µ = E(f) is a Nf -dimensional vector, and Σ = Cov(f) a Nf × Nf

covariance matrix of f which is common to all Nc classes.

An observation f = f (i) is assigned to the class for which (2.15) is the

largest.

δcj (f
(i)) = f (i)TΣ−1µcj −

1

2
µTcjΣ

−1µcj + log(πcj ) (2.15)

In fact, the LDA method approximates the Bayes classifier by plugging

estimates for µ,Σ and πk from the training data into δcj (f
(i)), which is

called discriminant function and is a linear function with respect to f (i).

2.3.6 Näıve Bayes

Näıve Bayes is a simplae linear probabilistic classifier based on the Bayes

probability theorem, which constructs simple yet efficient and well perform-

ing models in many real world problems, such as disease prediction. It ap-

plies the mutual independence assumption among features for given a class

label. It is called näıve, because to compute the probability that each obser-

vation belonging to a class, it considers the contribution of each predictor

unrelated to the contribution of others. However, unless this assumption

is strongly violated or the decision boundaries among classes are inherently

nonlinear, this classifier is accurate, easy to implement and fast, and works

surprisingly well in many cases, especially for small sample size data, outper-

forming the more powerful classifiers. It is also robust to noise and irrelevant

attributes [6] [62] [63].

The core of NB is the Bayes’ theorem concept:

posterior probability =
conditional probability× prior probability

evidence
(2.16)

The posterior probability is the probability that a particular observation

belongs to the class cj given its observed feature values. It can be presented

as Pr(c = cj |f = f (i)) and the classifier assigns that observation to the most

likely class according to the Bayes decision boundary, which in the binary
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classification case is the line on which the probability of both classes are the

same.

The posterior probability can be written as:

Pr(c = cj |f = f (i)) =
Pr(f = f (i)|c = cj)× Pr(c = cj)

Pr(f = f (i))
(2.17)

The NB objective is to maximize the a posteriori probability (MAP) given

the training data in order to formulate the decision rule.

Predicted class label←− argmax
c=1,...,Nj

Pr(c = cj |f = f (i)) (2.18)

In equation (2.17) Pr(f = f (i)) is identical for all classes, and can thus be

ignored in the solution. However, a direct estimation of Pr(f = f (i)|c = cj)

from a given set of training observations is difficult when the feature space is

high dimensional. Therefore, usually some approximations are applied, such

as the mentioned assumption about the independence of the features [63].

The resulting discriminant functions indicating the decision boundaries among

classes are:

gNBcj =
n∏
j=1

Pr(f = f (i)|c = cj)Pr(c = cj) (2.19)

2.3.7 Tree Based Classifiers

Tree based methods are simple and intuitive approaches and are suitable for

regression or classification. In the classification setting, they employ a data

structure called classification tree, which is usually described in graphical

terms. Classification trees are usually constructed upside down from the

root of the tree [11], using splitting rules which evaluate the quality of a

particular split. Each parent node is split into two child nodes, and the

child nodes will, in turn, be split, unless they are terminal nodes. The goal

is to partition the Nf -dimensional feature space into a set of R distinct non-

overlapping regions called leaves using the explanatory variables, such that

each leave contains the most homogeneous labels possible [11] [35].

More in detail, at the top of the tree (root), all the observations belong to a

single region, then the algorithm successively splits the predictor space into
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two new branches based on some splitting rules.

Formally, the predictor fj and the cutpoint s should be selected such that

the resulting regions R1 = {f (i)
j |f

(i)
j < s}, and R2 = {f (i)

j |f
(i)
j ≥ s}, ∀i ∈

{1, .., N} and ∀j ∈ {1, .., Nf}, lead to the greatest possible reduction in

impurity as measured through a criterion called Gini index. It roughly

indicates the total variance across the Nc classes and is defined by:

G =

Nc∑
l=1

p̂ml(1− p̂ml) (2.20)

where p̂mk is the proportion of training observations in the mth region that

are from the lth class. The more p̂mk s are closer to zero or one, the less is the

Gini index, indicating that a specific region contains mostly the observations

from a single class, which is desirable. Each of the resulting regions from

the previous split are then split in turn based on the same criterion until

the point where a further division is not possible or according to some user

defined stopping condition (for example that no node should contain more

than five observations). Then some subset of the original tree can be built

by pruning, which prevents overfitting [11].

To predict the class of an observation, it is carried down the tree and when

encountering the nodes, its next direction is decided based on its explanatory

predictors’ values, until it reaches a terminal node, namely region Rj . The

predicted class for the observation would be the most commonly occurring

class for the existing observations in Rj .

Another common splitting rule is the classification error rate which is em-

ployed when the final goal is to maximize the classification accuracy. It is

the fraction of the training observations in that region that do not belong

to the most common class. The problem of using the classification error

rate as a splitting rule is that it is not sufficiently sensitive for tree-growing.

Another natural alternative to purity is cross entropy.

Tree based algorithms are very easy to interpret and capable of being il-

lustrated graphically. However, they typically have less accuracy rate com-

pared to the best supervised learning approaches. Besides, they are not

robust to variation in samples and a small change would structurally change

the tree [35].

44



2.3.8 Performance Evaluation

Model evaluation criteria are categorized into two main groups: The first

category includes model evaluation metrics which are based on model pre-

dictive capabilities such as the classification error rate (PE). These type of

metrics are employed by wrapper methods. The second group are statistical

based indices, such as mutual information (MI) and correlation which are

typically used within the FS algorithm (filter methods) to assess the ob-

tained model as presented in [18] and [31]. In both, the Pearson correlation

coefficient has been used, which not only assumes the data have a normal

distribution, but is also applicable only on two-dimensional feature vectors.

These shortcomings led to resort to other statistical indices proposed in the

literature, namely the distance correlation (dCor) statistic presented in [73].

In this work, some model evaluation criteria specifically designed for imbal-

anced data such as microarrays, along with various validation techniques

are employed to measure the performance of the method. In the following,

some of them are described:

Clasification error rate/Accuracy/PE(Percentage Error) measures the pro-

portion of true results among all, and is defined by the ratio of misclassified

samples over the total number of tested samples. Specifically in binary

classification problems, the definition is as follows:

Accuracy =
TP + TN

N
(2.21)

in which N is the number of tested samples and TP and TN are the number

of true positive and true negative classified samples. N can be reformulated

as the sum of misclassified and correctly classified samples, i.e. N = TP +

TN + FP + FN, where FP and FN are the number of false positive and

false negative samples, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.22)

Sensitivity/recall/True Positive Rate (TPR) of the classifier defines the ex-

tent to which true positives are not missed with the rationale that a highly

sensitive test should not overlook a positive sample. This is important par-

ticularly in medical applications, since detecting a positive sample and avoid-

ing false negatives is crucial in the treatment process. In a sense, it can be

said that in the set of misclassified samples, false negatives weigh more than
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false positive ones. It is defined by the ratio of the number of true positive

classified samples to all true samples.

Sensitivity/TPR =
TP

TP + FN
(2.23)

Specificity/True Negative Rate (TNR) reveals the extent to which a classifier

precisely detects positive samples, i.e. how much positively classified sam-

ples are really positive. Therefore, a highly specific test rarely misclassifies a

negative sample as a positive one. It is defined by the ratio between correctly

classified negative samples over the total number of negative samples.

Specificity/TNR =
TN

TN + FP
(2.24)

Precision/positive predictive value is the fraction of true positives (i.e. the

number of samples correctly classified as positive) among the total number

of samples labeled as belonging to the positive class.

Precision =
TP

TP + FP
(2.25)

F-score/F-measure combines precision and recall and is actually the har-

monic mean of them.

F-score = 2 · Precision× Recall

Precision + Recall
(2.26)

Gmean is the geometric mean of TPR and TNR as is defined as:

Gmean =
√

TPR× TNR (2.27)

One statistical based metric is the Pearson product-moment correlation co-

efficient/Pearson correlation coefficient denoted by r, that measures the

strength of the possible linear relationship between two variables, by fitting

the best model using data points and determining how well the points ac-

tually fit the resulted model. It ranges from -1 to +1. A value of 0 signifies

that there is no linear association between two variables and as the value

is getting closer to +1 or -1, it indicates that the linear relationship, either

positive or negative, is stronger. The formula for computing r among two

feature vectors f1 and f2 is provided by 2.28.
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r(f1, f2) =

n
( n∑
i=1

f1if2i

)
−
( n∑
i=1

f1i

)( n∑
i=1

f2i

)
√[

n
n∑
i=1

f2
1i −

( n∑
i=1

f1i

)2][
n

n∑
i=1

f2
2i −

( n∑
i=1

f2i

)2] (2.28)

In which n is the number of samples, and f1i and f2i are the values of

features f1 and f2 for the ith sample.

For Pearson’s correlation to be a true indication of the relationship among

variables, the following properties should hold:

1) The two variables should be continuous.

2) The data should not be significantly noisy, because the fitted model is

highly sensitive to outliers. Due to the presence of noise in microarrays, this

factor may cause issues regarding the ranking of variables containing noisy

data.

3) Variables should approximately follow a normal distribution. However,

this assumption hardly holds in microarray datasets.

4) The index is computed only for pairs of variables, so in case of feature sub-

set evaluation in multivariate methods, some pairwise comparisons should

be employed.

Because of the discussed shortcomings of metrics such as Pearson’s, another

statistical based criterion called distance correlation index (dCor) has been

employed throughout this thesis to test the dependence of random vectors.

It is proposed in [74] and refined in [73]. Unlike Pearson’s correlation, dCor

provides a reliable correlation-based dependence measure, between random

vectors of arbitrary dimensions. It is also applicable to both continuous and

discrete random variables, and does not require any a priori assumption on

data distribution. It ranges from zero (for zero dependency) to 1 (a linear

dependency) among vectors. In the next section, a brief assessment of the

dCor criterion based on [74] is provided.

2.3.9 Distance Correlation Index (dCor)

Various statistical tests have been developed in the literature to test the

dependence of random vectors. In this thesis, we exploit the distance cor-

relation index which is a recently proposed approach by Szekely et al. [74],
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for measuring the dependency between two arbitrary dimensional random

variables.

Unlike Pearson’s correlation coefficient, dCor can be applied on both discrete

and continuous random variables with finite moments, and does not require

any priori assumption about the underlying data distribution. For the sake

of completeness, we here briefly report the main results of [74].

The basic dCor index

Let x = [x1, . . . , xp]
T and y = [y1, . . . , yq]

T be two random vectors, such

that E(‖x‖ + ‖y‖) < ∞, where ‖ · ‖ denotes the Euclidean norm. Let also

x(1), . . . ,x(N) be N i.i.d. realizations of x, and y(1), . . . ,y(N) the corre-

sponding i.i.d. realizations of y. Now, the empirical distance covariance

(briefly, dCov) is defined as

ν2
N (x,y) =

1

N2

N∑
k, l=1

AklBkl, (2.29)

where

Akl = akl − āk· − ā·l + ā··,

Bkl = bkl − b̄k· − b̄·l + b̄··,

with

akl = ‖x(k) − x(l)‖, bkl = ‖y(k) − y(l)‖,

and

āk· =
1

N

N∑
l=1

akl, ā·l =
1

N

N∑
k=1

akl, ā·· =
1

N2

N∑
k, l=1

akl,

b̄k· =
1

N

N∑
l=1

bkl, b̄·l =
1

N

N∑
k=1

bkl, b̄·· =
1

N2

N∑
k, l=1

bkl.

Then, the empirical dCor is the square root of

R2
N (x,y) =


ν2N (x,y)√
ν2N (x)ν2N (y)

, ν2
N (x)ν2

N (y) > 0

0, ν2
N (x)ν2

N (y) = 0
(2.30)
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In the assumption that E(‖x‖+‖y‖) <∞, it holds that the sampled version

of the dCor tends to the corresponding probabilistic quantity, denoted R:

lim
N→∞

R2
N (x,y) = R2(x,y). (2.31)

It also holds that 0 ≤ R(x,y) ≤ 1, and R(x,y) = 0 iff x and y are

independent. Similarly, 0 ≤ RN (x,y) ≤ 1, and if RN (x,y) = 1, then there

exist a vector ζ, a nonzero real number τ and an orthogonal matrix C such

that Y = ζ + τxC.

In view of the last property, RN (x,y) can be indeed used as a measure of

the linear dependence between random vectors. It can be verified that the

proposed index is also sensitive to nonlinear input-output relationships.

The Unbiased dCor Index

It is worth mentioning that the bias of the dCor index increases with the

dimension of the random vectors. As discussed in [73], for fixed number

of samples N the dCor tends to 1 as p, q → ∞. Thus, it might be hard

to interpret the obtained index in high dimensional cases. This problem is

investigated in [73] where an unbiased version of the dCor index is intro-

duced, which is amenable to high dimensional problems. Here, the following

quantities A∗kl and B∗kl are used instead of Akl and Bkl:

A∗kl =

{
N
N−1(Akl − akl

N ), k 6= l
N
N−1(āk· − ā··), k = l

(2.32)

B∗kl =

{
N
N−1(Bkl − bkl

N ), k 6= l
N
N−1(b̄k· − b̄··), k = l

(2.33)

Let

U∗N (x,y) =

N∑
k 6=l

A∗klB
∗
kl −

2

N − 2

N∑
k=1

A∗kkB
∗
kk. (2.34)

The modified dCov and dCor indices are given respectively by:

ν∗N (x,y) =
U∗N (x,y)

N(N − 3)
, (2.35)
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R∗N (x,y) =
ν∗N (x,y)√
ν∗N (x)ν∗N (y)

. (2.36)

For simplicity, in the rest of document, we will drop the asterisk symbol and

use the notation RN to denote the unbiased dCor index.

Sensitivity of the dCor to redundant terms

In this section we present some illustrative simulations that emphasize the

robustness of the dCor index in the presence of redundant terms. Let

x = [x1, . . . , x6]T be a random vector and y = 3x1, and assume that N

i.i.d. realizations of both x and y are available. All elements of the x vector

are independently drawn from the same distribution. Table 2.11 reports

the dCor value calculated for different subsets of inputs on average over

1000 Monte Carlo tests performed for data generated with different distri-

butions (Normal, Poisson and Lognormal). The evaluated input subsets are

{x1, . . . , x1+k}, for k = 0, . . . , 5, corresponding to the exact model and 5

redundant models with increasing number of redundant terms. While the

dCor equals 1 for the true model (including only x1), its value decreases as

we introduce further terms, regardless of the distribution of the data.

Number of Data distribution
redundant terms Normal Poisson Lognormal

0 1.0000 1.0000 1.0000
1 0.9873 0.9835 0.9765
2 0.9778 0.9729 0.9573
3 0.9697 0.9640 0.9406
4 0.9623 0.9560 0.9262
5 0.9555 0.9488 0.9130

Table 2.11: Average dCor measure over 1000 Monte Carlo tests for increasingly re-
dundant models (true model: y = 3x1).

A similar result holds even if the input-output relationship is nonlinear, e.g.

y = 3x2
1, although this time the dCor associated to the model containing

only x1 is less than 1: any further term added to the model decreases the

dCor. The results are reported in Table 2.12.

Inspecting the results presented in Tables 2.11-2.12 leads to the conclusion

that the dCor index is highly sensitive to the presence of redundant terms,

and is maximal in the absence of redundant terms. This property proves to
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Number of Data distribution
redundant features Normal Poisson Lognormal

0 0.5731 0.9682 0.9221
1 0.5447 0.9570 0.9106
2 0.5261 0.9490 0.8997
3 0.5120 0.9419 0.8897
4 0.5008 0.9352 0.8808
5 0.4916 0.9289 0.8716

Table 2.12: Average dCor measure over 1000 Monte Carlo tests for increasingly re-
dundant models (true model: y = 3x21).

be crucial for the detection of redundant terms in the FS task.

dCor dependence test

The dCor index can be employed in order to design a statistical test for

measuring the dependence between two random vectors.

Let x and z be two random variables such that E = ‖x‖+ ‖z‖ <∞, where

‖ · ‖ denotes the absolute value. Let H0 : x and z independent be the null

hypothesis.

Then, the statistical test proposed in [74] rejects H0 if

N ν2
N (x, z)

S
> N−1

(
1− αd

2

)2
, (2.37)

where N (·) denotes the normal cumulative distribution function, αd is the

significance level of the test, and

S = ā··b̄··. (2.38)

This test can be employed fruitfully in FS, to retain only features for which

there is enough statistical evidence to reject the independence hypothesis.

2.3.10 Validation Methods

In order to evaluate the algorithm’s performance and its true generaliza-

tion capabilities, the model should be tested against some unseen data. For

datasets that do not provide a separated test set, several validation tech-
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niques have been suggested in the literature. Some well-known methods are

introduced in this part.

Hold-Out Cross Validation (HOCV) is a commonly used validation ap-

proach, specifically in datasets which are not originally separated into train-

ing and test sets. The hold out method reserves some samples as test data

and only the training part is used for the learning process. The performance

of the classifier is then computed based on the errors in the test part. Some

problems might arise in this approach. Indeed the error rate critically de-

pends on the data division. For example, the samples in the training or test

data might not be truly representative due uneven distribution of features

and/or labels. Of course it is possible to control the distribution of class la-

bels in the partitions, but the error is still biased due to the division. On top

of that, the classifier learning is done based on fewer samples which might be

insufficient. This approach can be improved by the repeated holdout method,

which consists in repeating the same process for different randomly selected

subsamples. It is more reliable since the final error rate is the average of

all iterations, but, still problematic. The divisions might overlap or some

samples might not be present in the test or training set at all.

K-Fold Cross Validation (KFCV) is another technique to evaluate the per-

formance of a classifier. In this method, the data are split into K disjoint

parts. Then, one part is reserved for testing the classifier and the rest for

training. This is repeated for K times, each time a different section serving

as the test data. Then the average error rate among the K iterations is

computed. This approach guarantees that all samples appear in the test

data once, but still the classifier is trained with fewer samples.

Leave One Out Cross Validation (LOOCV) is a special case of K-fold cross

validation in which K equals the number of samples. At each iteration, only

one sample is saved for testing and the rest are used to train the classifier.

The iterations are equal to the number of samples and the final result is

the average of all steps. This method not only removes the bias towards

divisions that existed in the hold out method, but also resolves the problem

of limitations in small size data, at a cost of an increased computational

complexity. Employing this method, learning is performed using larger sets

of data, so there is a higher chance of constructing a more accurate classifier.

It also offers more reliability because the evaluation at each iteration is based

on results on unseen data. Besides, the expected value of the error is closer

to the true value due to the increased number of iterations.
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Chapter 3

Distributed multivariate

filter-based probabilistic

framework

In this chapter, the distributed combinatorial optimization approach and the

probabilistic framework at the basis of the proposed FS algorithm are dis-

cussed. We introduced distributed optimization scheme and the D2CORFS

algorithm in the first section. Then in the next section the DCORFS algo-

rithm is explained.

3.1 Distributed optimization scheme

Feature selection is inherently a combinatorial problem and its complexity

grows rapidly, as the number of features increases, and in case of large-

sized data, it may become prohibitive. More importantly, in addition to the

growth in the FS method’s computational complexity, the ability of the FS

algorithms to reach the optimal feature subset diminishes with the increase

in the number of features, due to the corresponding exponential growth of

the search space. This is the case for all FS methods, although with different

levels. The number of possible feature subsets is equal to 2Nf − 1 and the

search strategy adopted to explore the feature subset space is crucial.

To increase the efficiency of the search process on the subset space, a dis-

tributed combinatorial optimization approach has been introduced, which



exploits vertical partitioning of features and the exchange of information

among these partitions. The main idea of the proposed scheme is to break

down the complexity of the FS task into smaller tasks, which are not as di-

mensionally unbalanced as the original problem. Indeed, FS turns out to be

more complicated when there are significantly more features than samples.

In this scheme, however, FS task can be separately run on each division

with much fewer features instead of the whole feature space. Besides, it is

important to note that this distributed optimization scheme is generic and

applicable with any FS method, meaning that the different feature selection

methods can be performed locally on partitions and the obtaining results

can be shared globally with other groups through an information exchange

stage. This distributed FS architecture has been first employed in [10], and

is also used in this thesis, to develop an applicable algorithm for distributed

feature selection named D2CORFS. To achieve this, different processors are

responsible for performing the FS tasks on smaller subset of features sepa-

rately and independently. Then the local results obtained in each partition

are shared and combined with other optimization processors. Consequently,

the original FS task can be improved by selecting and combining the features

obtained from local searches that were the most promising [10].

D2CORFS [8] is a novel multivariate filter method that exploits the distance

correlation (dCor) index introduced in section 2.3.9 as a model evaluation

metric to compare different feature subsets in each partition. Compared to

the situation where the whole feature space is explored, the suggested scheme

provides a more favorable framework for the application the dCor due to

more balance between the number of features and the number of samples

obtained from the vertical division. A sketch of the proposed scheme is

depicted in Fig. 3.1. In the first step, the data are vertically partitioned, i.e.

the full feature set F = {f1, ..., fNf } is (randomly) divided into a number

of non-overlapping subsets (denoted feature bins in the sequel) F (0)
b , b =

1, . . . , Nb of approximately the same size. The number of features in bins is a

critical parameter to set in the algorithm, especially regarding the robustness

with respect to the overfitting issue. The tuning of this parameter depends

on many factors such as the adopted FS algorithm (FS(·)), the number of

features (NF ) and the sample size (N).Hence, some level of trial and error

is required to tune it. In this work, following [6], we set Nb = 2Nf/N , which

results in N/2 features for each bin.

An independent FS task is carried out on each feature bin Fb = F (0)
b ,

according to the selection strategy of choice. The obtained solutions are

compared and the one with the best performance (denoted S∗) is shared
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Figure 3.1: Flowchart of the proposed distributed scheme.

among all feature bins through feed back in next iterations. In other words,

Fb = F (0)
b ∪ S∗, i.e. each feature bin is reset to its initial state F (0)

b and

then augmented with the features corresponding to the current local best

solution. The procedure is then repeated iteratively, alternating the execu-

tion of the independent FS tasks with the information exchange phase until

convergence.

The information exchange phase guarantees that each feature bin contains

the features of the best solution found so far, so that the new solution can

only improve over the previous best (at least in principle). At the same

time the dimension of the feature bins is kept low during all the selection

process, so that the individual FS problems have appropriate feature-sample

balancing. The procedure terminates when it is not possible to find a better

solution than the previous best in any feature bin and all problems yield

the same solution (alternative termination conditions can be applied, as

explained later on).

A pseudocode of the proposed scheme is given in Algorithm 1. The local

FS method applied at each processor is denoted DCORFS algorithm (see

Section 3.2). The input parameters Np, Ni, µ
(0), µ̄, and ε are actually input

arguments of the DCORFS function and will be explained later. The other
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inputs are the set of input/output observation pairs D = {(u(k)
s , c(k)), k =

1, . . . , N}, the full set of featuresR, the number of feature bins Nu, the max-

imum number iterations Ni, and the maximum number of allowed rounds of

algorithm NF . The algorithm returns the selected feature subset E? ⊆ R,

along with its dCor value R?N .

The main loop goes from line 3 to 22. The vertical partitioning in Nb

bins is carried out at line 1, i.e., the original feature set F = f1, ..., fNf is

divided into Nb disjoint subsets (denoted feature bins in the sequel F (0)
b , b =

1, . . . , Nb), which are selected randomly, and their sizes are approximately

the same. The number of feature bins Nb is a critical parameter, especially

regarding the robustness with respect to the overfitting issue. In this work,

following [6], we set Nb = 2Nf/N , which results in N/2 features for each

bin.

In lines 5 to 12 an independent local feature selection is carried out on each

feature bin Fb = F (0)
b , according to the selection strategy of choice. The

obtained solutions are compared and the one with the best performance (de-

noted S∗) is shared among all feature bins. In other words, Fb = F (0)
b ∪ S

∗,

i.e. each feature bin is reset to its initial state F (0)
b and then augmented with

the features corresponding to the current local best solution. The procedure

is then repeated iteratively, alternating the execution of the independent FS

tasks with the information exchange phase until convergence.

The information exchange phase guarantees that each feature bin contains

the features of the best solution found so far, so that the new solution can

only improve over the previous best (at least in principle). At the same

time the dimension of the feature bins is kept low during all the selection

process, so that the individual FS problems have appropriate feature-sample

balancing.

Finally, the termination conditions are given from line 13 to 21 which are

explained in section 3.1.1. To avoid the overloading of irrelevant terms, the

algorithm provides the option to share only the top ranked local best models

at each iteration among the processors in the subsequent iteration. At the

end, the algorithm returns the selected feature subset S? along with the

corresponding classification performance R?.
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Algorithm 1 D2CORFS

Input: D, F , Nb, Nr, Ni, Np, µ
(0), µ̄, ε.

Output: S?, R?.
1: F = F (0)

1 ∪ · · · ∪ F (0)
Nb

2: S = ∅, S? = ∅, R? = 0
3: for r = 1 to Nr do
4: S ← S?
5: for b = 1 to Nb do
6: Fb = F (0)

b ∪ S
7: (Sb,Rb) = DCORFS(D, Fb, Ni, Np, µ

(0), µ̄, ε)
8: if Rb > R? then
9: S? ← Sb, R? ← Rb

10: if R? = 1 then return end if
11: end if
12: end for
13: if ∪bSb = ∩bSb then return end if
14: R?vec(r) = R?
15: if r = Nr then
16: return
17: else if r ≥ 3 then
18: if (R?vec(r − 1) = R?vec(r − 2) = R?) then
19: return
20: end if
21: end if
22: end for

3.1.1 Termination Conditions

The termination conditions for the procedure are stated in line 10, 13, 16

and 19.

The first condition (line 10) states that if a model with maximum possible

dCor value (i.e, it achieves perfect classification) is obtained at any local

processor, the algorithm will be stopped because that solution is also a

global optimizer.

An alternative condition stated in line 13 checks if all the local processors

converge on the same solution.

Another condition that terminates the algorithm prematurely is the ex-

ceeding of the maximum number of rounds (rmax) which is a user defined

parameter as an input and is shown in line 15.
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The last enforced condition is when the algorithm fails to improve the current

best solution over a number (e.g., 3) of subsequent rounds (line 18).

3.2 The DCORFS algorithm

Multivariate filter methods based on sequential search strategies are proba-

bly the most popular approaches in dealing with large datasets because they

are capable of removing redundant terms, at least partially. As already men-

tioned, however, sequential strategies have significant drawbacks, essentially

originating from the fact that model variations are enforced based on a local

assessment of the features (e.g., a new term is added because it significantly

improves the current model). For this reason, in this thesis, we introduce a

novel multivariate filter FS algorithm based on the unbiased dCor criterion

which employs a different search strategy, in that it implements model vari-

ations based on a global assessment of the features. In other words, unlike

other (multivariate) filter methods, the importance of the features is evalu-

ated not just individually or in pairs, but based on populations of extracted

models.

The FS problem amounts to solving an optimization problem, whose objec-

tive is to find the subset of features S∗ ⊆ F that maximizes the dCor index

RN (fS , c). A convenient way to tackle the problem above exploits the prob-

abilistic reformulation of [22] (used to develop a wrapper FS method in [9])

obtained by associating a discrete random variable φ to the feature subsets

S according to a probability distribution Pφ, which expresses the probabil-

ity of each feature subset S to coincide with the target one. Accordingly,

the dCor index becomes a function of fφ and is therefore a random variable

with expectation given by

E[RN (fφ, c)] =
∑
S⊆F
RN (fS , c)Pφ(S). (3.1)

The expected value (3.1) is maximal if the mass of distribution Pφ is all

concentrated on the feature subset with highest dCor S?. Therefore, the

problem of finding S? can be reformulated as that of finding the target limit

distribution

P?φ = arg max
Pφ

E[RN (fφ, c)], (3.2)

such that P?φ(S?) = 1.
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To model the probability that a feature fj ∈ S?, we parameterize Pφ by

associating a Bernoulli random variable ρj to each feature fj :

ρj ∼ Be(µj), µj ∈ [0, 1]

j = 1, . . . , Nf , where µj denotes the feature inclusion probability (FIP) of

the jth feature. The FIP represents how likely it is that a given feature

is included in the solution. Initially, the FIPs are set to values which may

reflect the prior knowledge on the most promising features or simply assign

an equal probability to all of them. Then, the distribution is iteratively

refined by taking into account the information gathered by sampling it.

More in detail, at every iteration a population of feature subsets is extracted

using the current Bernoullian distributions. The greater ρj , the more it is

probable that fj will be selected to be in the solution. Then each obtained

feature subset is evaluated with the dCor criterion. After that, all features

are assessed individually using (a sampled version of) the index Ij given by

Ij = E[RN (fφ, c)|fj ∈ φ]− E[RN (fφ, c)|fj /∈ φ], (3.3)

for j = 1, . . . , Nf . Index Ij compares the dCor criterion of the features

subsets that include fj with that of the remaining ones and thus can be

interpreted as a global measure of the feature’s importance. The greater the

dCor value for the population of models containing a feature with respect to

the remaining ones, the greater is the importance of that feature. Finally,

the probability distribution is updated according to the update rule given

by

µj(i+ 1) = sat(µj(i) + γIj) (3.4)

where i is the current iteration and sat(·) is a saturating function that en-

sures that µj remains within the [0, 1] interval. Parameter γ in (3.4) is an

adaptive step-size defined as:

γ =
1

λ(Rmax − R̄) + 0.1
, (3.5)

where λ is a design coefficient that inversely affects the step size of the FIP

update rule. Rmax and R̄ are the maximum and the average of the dCor

values of the extracted feature subsets. If Rmax is much larger than R̄,

the extracted model population does not convey sufficient information to

evaluate the feature importance, so γ should be smaller. In other words,

59



the rationale behind γ is that it should be larger if the averaged index Ij is

reliable (small variance of the dCor values), and smaller otherwise.

The iterative procedure terminates upon convergence of the probability dis-

tribution (or if the maximum number of iterations is exceeded). The selected

feature subset is given by S? = {fj |µj ≥ µ̄}, where µ̄ is the prescribed ac-

ceptance threshold. A pseudocode of the proposed DCORFS algorithm is

given below (see Algorithm 2).

Algorithm 2 DCORFS

Input: D, Fb, Ni, Np, µ
(0), µ̄, ε

Output: S?, R?

1: for j = 1 to |Fb| do
2: µj ← µ(0) FIP initialization
3: end for
4: for i = 1 to Ni do
5: for p = 1 to Np do
6: φp ∼ Pφ Extract sample feature subset
7: Rp ← RN (fφp , c) Compute dCor with (2.36)
8: end for
9: Rmax ← max(R1, . . .RNp)

10: R̄ = 1
Np

∑Np
p=1Rp

11: γ = 1
λ(Rmax−R̄)+0.1

12: for j = 1 to |Fb| do

13: Ij ←
∑
p|fj∈φp

Rp∑
p|fj∈φp

1 −
∑
p|fj /∈φp

Rp∑
p|fj /∈φp

1

14: µj ← sat(µj + γIj) FIP update
15: end for
16: if max

j=1,...,|Fb|
|µj(i)− µj(i− 1)| ≤ ε then

17: break
18: end if
19: end for
20: S? ← ∅
21: for j = 1 to |Fb| do
22: if µj ≥ µ̄ then S? ← S? ∪ {fj} end if
23: end for
24: R? = RN (fS? , c)

The required inputs are the observations D, the set of features Fb on which

to perform the search, the maximum number of iterations Ni, the number

of feature subsets to be extracted from the current distribution at each

iteration Np, the initial value of the FIPs µ(0), the acceptance threshold µ̄,
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and a convergence threshold ε. The algorithm returns the selected feature

subset S?, along with its dCor value R?.
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Chapter 4

Experimental Results

In this chapter we report the results of a series of experiments carried out

to assess the performance of the proposed algorithm on eight well known

microarray benchmarks: Breast, CNS (Central Nervous System), Colon,

DLBCL (Diffuse Large B-Cell Lymphoma), Leukemia, Lung, Ovarian and

Prostate cancers. The Breast dataset provides gene information retrieved

from tumor material belonging to breast cancer patients, distinguishing

those that developed metastases within 5 years from the other ones. The

CNS dataset documents both failed and succeeded treatment cases of em-

bryonal CNS tumors. The Colon dataset contains expression levels of 2000

genes for several colon tissue samples including both normal and cancerous

ones. Gene analysis of diagnostic tumor specimens from DLBCL patients

having received a specific chemotherapy treatment is reported in the DL-

BCL dataset, distinguishing between cured and fatal or refractory disease

cases. The Leukemia dataset contains gene information extracted from bone

marrow and peripheral blood samples of several leukemia patients, corre-

sponding either to Acute Lymphoblast Leukemia (ALL) or Acute Myeloid

Leukemia (AML). The Lung dataset provides genetic information regarding

both Malignant Pleural Mesothelioma (MPM) and lung ADenoCArcinoma

(ADCA) cases. The Ovarian dataset aims to identify ovarian cancer from

proteomic patterns in serum. Finally, the Prostate dataset contains the ex-

pression level of 12600 genes for more than 100 tissue samples, a part of

which are taken from prostate tumors. The main characteristics of the con-

sidered microarray datasets are summarized in Table 4.1 (see [7] and section

2.1.6 for a comprehensive review of these and other microarray datasets and

specific references).



All eight datasets are biclass problems. The number of original features

ranges from a few thousands to almost 25000. To reduce the feature search

space, a dCor-based feature screening (with αd ≥ 0.9 1) was applied as

a preprocessing step to all the datasets except Colon and DLBCL, that

already have a sufficiently small feature set. The number of samples is

generally relatively small, with the exception of the Ovarian cancer dataset.

Table 4.1 also reports the distribution of the samples over the classes both

for the training test and the test set, when applicable (NP and NN are

the total number of samples belonging to class 1 and 2, respectively). The

class imbalance, measured as the skew ratio σ = NP
NN , is also given for both

the training (σtr) and the test (σte) data, respectively. This information is

important, since it is related to the achievable accuracy and reliability of

classification algorithms across classes [32].

Half of the datasets (Breast, Leukemia, Lung and Prostate) are provided

with a given training/test data subdivision, while the CNS, Colon, DLBCL

and Ovarian datasets are not. For this reason, we analyzed first the for-

mer group of datasets with a Hold-Out Cross Validation (HOCV) method,

using the training data to learn the model and the test data for its eval-

uation. Though the HOCV method is in principle applicable also to the

other datasets, the results would be impossible to compare with the liter-

ature, in the absence of a nominal training-test data subdivision (subsec-

tion 4.4 discusses the sensitivity of the identification results to variations of

the data subdivision). Therefore, a second analysis is performed, this time

evaluating all datasets with a Leave-One-Out Cross Validation (LOOCV)

approach, which is a particular case of k-Folds Cross Validation (k-FCV),

with k = N . Briefly, the dataset is split into k equal (or, at least, balanced

in size) and non-overlapping subsets (folds), possibly uniformly representa-

tive of all classes. Then, k− 1 folds are used for training and the remaining

ones for testing, the procedure being repeated k times so that all folds are

left once for testing. The algorithm performance is finally computed as the

average over the k independent runs.

1Different values of αd were used in the feature screening process depending on the
adopted validation method, since the latter influences the distribution of the samples.
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The original features have been normalized in the [0, 1] range according to:

f̄
(k)
j =

f
(k)
j − fpmin

fjmax − fjmin
, (4.1)

for k = 1, . . . , N , j = 1, . . . , Nf , where f̄
(k)
j is the normalized numeric value

of the kth observation of the jth feature in a given dataset, and fj,max and

fj,min denote the maximum and minimum values of the same feature in the

dataset, respectively.

To evaluate the performance of the proposed FS method we trained differ-

ent classifiers on the selected features, namely two support vector machines

(SVMs) with linear and nonlinear decision boundaries, a k-nearest neighbor

(kNN, with k = 5), a logistic regression, an LDA, a näıve Bayes (NB) and

a tree based classifier.

We employed various evaluation criteria especially designed to account for

class imbalanced data. The sensitivity of the classifier is measured by the

true positive rate TPR = TP
TP+FN , i.e. the ratio of the correctly classified

positive samples over the total number of positive samples. Conversely,

the specificity is captured by the true negative rate TNR = TN
TN+FP , i.e.

the ratio of the correctly classified negative samples over the total number

of negative samples. The Gmean G =
√
TPR · TNR and Fscore F =

2 TPR·TNR
TPR+TNR indices combine both criteria (see Section 2.3.8 for more details).

The initial parameter setup for the D2CORFS in the experiments is as fol-

lows: a maximum of Nr = 5 rounds is allowed for the distributed search

scheme and the size of the feature bins is set as close as possible to N/2,

so as to have ideally balanced datasets in the local FS problems. As for

the DCORFS algorithm operating on each feature bin, the number of iter-

ations is limited to Ni = 100, the number of feature subset extractions at

each iteration is set to Np = 100, the initial FIPs are set to µ0 = 1/|Fb|,
ε = 0.001, and the acceptance threshold is µ̄ = 0.98. The proposed al-

gorithm was implemented in Matlab (version 2016a) and executed on an

Intel(R) Core i7-3630QM machine, with 2.4GHz CPU, 8GB of RAM, and a

64-bit Operating System.

66



4.1 Performance analysis of D2CORFS with HOCV

We first analyze the four datasets with explicit training-test division which

can be addressed with the HOCV approach using the native training and

test sets. Table 4.2 reports the best subset of features selected for each

case, as well as the performances obtained with mentioned classifiers. A

brief description of the selected genes is given in appendix A. The results

are assessed in terms of the classification accuracy on the training (Jtr) and

the test data (Jte), as well as TPR, TNR, G, and F . Apparently, the FS

procedure selected very compact models in all cases, with 4 features at most,

and a high classification accuracy was obtained (the results compare quite

favorably with the literature, as shown later in Table 4.6).

Interestingly enough, though the Leukemia data are imbalanced in favor of

negative samples, the obtained classifiers score better on the TPR index,

than on the TNR. The computational time is sufficiently low, the lowest

computational cost being observed for the Lung dataset. Indeed, the Lung

dataset has the smallest number of samples, which in turn causes the size

of the feature bins to be particularly small resulting in a very high compu-

tational efficiency.
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4.2 Distribution of the feature values

A detailed analysis of the obtained models, with focus on the selected fea-

tures, reveals several interesting aspects. Fig. 4.1 shows the values of the

selected features for all samples, divided by class and training/test subset.
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Figure 4.1: Distribution of the feature values of the models presented in Table 4.2.
From top to bottom: Prostate, Lung, Leukemia, Breast

Models characterized by perfect performance on the training set have fea-

tures with little or no overlap between different classes (see, e.g., Lung and

Leukemia datasets). This indicates that a perfectly legitimate model selec-

tion was operated based on the available information (training set). Unfor-

tunately, the feature value distributions over classes turn out to be different

on the test set, typically resulting in some classification errors. Such im-

precision could not have been avoided based on the information gathered
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Dataset Classifier Feature subset RN Jtr Jte
Breast NB S? 0.6126 0.8590 0.8947

S? \ {f512} 0.6014 0.8333 0.7895
S? \ {f3224} 0.5858 0.7821 0.6842
S? \ {f5377} 0.5958 0.8205 0.8421
S? \ {f10889} 0.5450 0.7949 0.7895

Leukemia NB S? 0.9782 1.0000 1.0000
S? \ {f1924} 0.9749 1.0000 0.9118
S? \ {f3252} 0.9734 1.0000 0.8824
S? \ {f4847} 0.9770 1.0000 0.9412
S? \ {f5039} 0.9707 1.0000 1.0000

Lung KNN S? 0.9150 0.9688 1.0000
S? \ {f3334} 0.8833 0.9688 0.9732
S? \ {f6571} 0.8990 0.9688 0.9933
S? \ {f11841} 0.8755 0.9688 1.0000

Prostate SVM S? 0.8216 0.9216 0.9706
S? \ {f4282} 0.8108 0.9216 0.8529
S? \ {f6185} 0.7848 0.9020 0.9118
S? \ {f8965} 0.8008 0.9412 0.9706
S? \ {f10494} 0.8145 0.9020 0.9412

Table 4.3: Redundancy analysis on the best models (see Table 4.2) for data with given
training and test set.

from the training set, if not by luck. In other words, if a subset of features

provides good class discrimination on the training set, it will provide good

generalization only if the feature value distributions on the training and the

test subsets are similar. It may well happen that better generalization is

achieved through a model which is not optimal on the training set.

4.3 Redundancy analysis of obtained models

We performed an a posteriori analysis on the obtained models, both in

terms of the dCor measure and the classifier performance, to investigate

the presence of redundant biological information. The test is performed by

removing one gene at a time from S?, and re-evaluating the reduced feature

subset. Table 4.3 reports the obtained results.

By inspecting Table 4.3, it is apparent that the dCor index indicates the

absence of redundant terms in all selected models (the full model has the

highest dCor). If the performance index on the training set Jtr were used
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as a selection criterion (as would happen, e.g., with a wrapper method), a

smaller model would have been selected in the Prostate case, but without

any improvement on the test data. Observe that in all four cases the model

with the highest dCor achieves the best test performance. In general, the

dCor-based filter method provides a good guess of the optimal model both in

terms of size and performance, although additional accuracy improvements

could occasionally be obtained complementing it with a wrapper method

that optimizes directly on the classifier performance.

4.4 Model sensitivity on the data subdivision

To analyze the model sensitivity on the data subdivision in training and test

data, we took the best model (see Table 4.2) obtained using the nominal

training-test subdivision of the Leukemia dataset, and evaluated its perfor-

mance with a Monte Carlo test over 1000 random training-test data sub-

divisions (generated so as to preserve the distribution among classes). On

each run, the selected features are the same but the classifier is re-estimated

on the corresponding training subset and evaluated on the test subset. The

results are presented in Fig. 4.2, and show a non-neglectable sensitivity to

the training-test data subdivisions. Indeed, the same performance of the

nominal case is re-obtained less than 50% of the times, and on almost 10%

of the runs a performance as low as Jte = 0.91 is achieved (corresponding

to 3 errors over the 34 test samples). One possible explanation of this phe-

nomenon is that there are some isolated samples which cannot be learnt by

the model if they fall in the test portion of the data.

4.5 Performance analysis of D2CORFS with LOOCV

The previous analysis confirms that the data subdivision is extremely critical

and can greatly affect the quality of the results and ultimately the assessment

of an algorithm. Applying the HOCV approach in the absence of a nominal

training-test data subdivision would lead to results of questionable objec-

tivity, and difficult to compare with the existing literature. For this reason,

we carried out a different analysis on the available datasets using LOOCV,

which is a Cross Validation method that does not depend on a specific data

subdivision (as HOCV). Table 4.4 presents the results obtained following

the LOOCV approach on all the datasets (the results are averaged over 10

repetitions). For each dataset, the best selected model structure is reported,
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Figure 4.2: Accuracy of the Leukemia model obtained with the nominal training-test
data splitting over 1000 alternative data-splittings.

together with the average computation time. Both the performance of the

best model overall and the average performance of the best models over 10

runs are given, for the three types of classifiers considered.

It is interesting to note that where both the HOCV and LOOCV meth-

ods have been applied (i.e., for Breast, Leukemia, Lung, and Prostate), the

obtained models have a scarce overlap in terms of model structure. More

specifically, the models obtained for the Breast dataset have 2 mutual fea-

tures (but extremely different size), and the Lung and Prostate models have

just one feature in common, while a totally different model structure was

obtained in the remaining case. This is yet another indication of the impact

that data subdivision can have on the results.

4.6 Diversity analysis of high performance models

Due to the discrete nature of the classification problem, multiple optimal

(i.e., with the same maximal accuracy) models can be obtained, which can

make the model interpretation awkward. As an example, we explore this

phenomenon with reference to the Leukemia dataset, where a model with 0

classification errors was previously obtained with LOOCV and an NB clas-

sifier (see Table 4.4). We repeated the selection process multiple times, each

time forcing the exclusion of one of the regressors belonging to one of the

previously selected models. This procedure enforces that at each repetition

of the algorithm a different best model will be obtained. Table 4.5 shows
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several instances of models with different structure but equal accuracy that

are obtained in this way. These models contain combinations of two or three

regressors taken from a restricted set of seven. Notice that some of the mod-

els have no common regressor. This suggests that there are different groups

of the genes which contain the same amount of useful information to distin-

guish among the classes. This phenomenon could have several explanations,

ranging from the high correlation of features, to the insufficient information

carried by the training set.

4.7 Complexity analysis

We here analyze the computational complexity of the proposed algorithm as

a function of the problem size (i.e., the number of features Nf and samples

N), and of some crucial design parameters (e.g., the number of rounds Nr

of the D2CORFS algorithm, the number of iterations Ni of the DCORFS

algorithm, and the number of the feature bins Nb). Let F be the full set of

Nf features. Clearly, the model space to be explored grows exponentially

with the number of features (the number of possible non-empty subsets

of F is 2Nf − 1. At every iteration, each processor executes the DCORF

algorithm on its feature bin, which performs three tasks: feature subset

extraction and evaluation, regressor evaluation, and FIP update. The first

task requires NpN
′
f operations, where Np is the number of feature subsets

to be evaluated, and N ′f ' Nf/Nb is the number of features in each feature

bin. The evaluation of a feature subset by means of Equation (2.36) is of

order O(N2N ′f ), whereas the calculation of all the indices Ij , j = 1, . . . , N ′f
requires an order of NpN

′
f operations. Finally, the FIP update is linear in the

number of features in the bin, i.e. O(N ′f ). The complexity of the DCORFS

is then O(NiN
′
f (N2 +Np)), which is typically dominated by the first term.

The complexity of the overall distributed scheme D2CORFS is dominated by

its main cycle which repeats up to Nr times the DCORFS on Nb feature bins,

for an overall complexity of O(NrNbNiN
′
f (N2 +Np)) ' O(NrNfNiN

2)).

An experimental characterization of the algorithm time complexity has also

been carried out, the results of which are shown in Fig. 4.3. More precisely,

Fig. 4.3 (top) reports the elapsed time for the DCORF algorithm, averaged

over ten runs (the features are reshuffled at random in each run), as a func-

tion of the number of features in the bin and the number of iterations. The

curves are characterized by an initial increase of the computational time

with the growth of the feature space, followed by a saturation associated
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with the reaching of the maximum allowed number of iterations. Indeed, as

Ni increases, the saturation point shifts to the right. These curves can be

used to properly set Ni with respect to the number of features in the bin, in

order to obtain convergence prior to the saturation point. Fig. 4.3 (bottom)

analyzes the elapsed time of the overall D2CORFS algorithm, as a function

of the problem sizes Nf and the number of bins Nb. As can be seen from

the figure, it is quite apparent that the execution time decreases rapidly

as the number of bins increases, but at a certain point it starts increasing

again, though at a slower rate. This result emphasizes the importance of

the Nb design parameter. If the number of bins is chosen too sparingly, the

bin size will be too large, thus leading to insufficient search space reduction.

This ultimately defies the very purpose of the distributed scheme, i.e. to

break the problem complexity, and thus slows down the convergence of the

algorithm. Conversely, if one employs too many small bins, most of these

will initially not contain any useful feature and will presumably return inac-

curate results, whereas only the processors associated to bins that contain

features of the true model will typically produce meaningful results. As a

consequence of this, the algorithm will require more rounds and thus more

time to converge.

4.8 Comparative analysis with results in the liter-

ature

As already commented, a meaningful comparison can be obtained only if

the same training-test data distribution is employed. For this reason we

divided this comparative analysis into two parts depending on the cross val-

idation method employed. First, we consider the Breast, Leukemia, Lung,

and Prostate datasets using a HOCV approach. A reliable comparison is

possible, since these datasets are provided with a nominal training-test dis-

tribution. Then we consider all eight databases of Table 4.1 using a LOOCV

approach, which employs the data for training and testing in a unique and

consistent way.

Table 4.6 reports a comparison with the results documented in [6], [46] and

[25], which consider the Breast, Leukemia, Lung, and Prostate datasets using

a HOCV approach based on the nominal training-test distribution of the

data. To account for the randomized nature of the D2CORFS algorithm (due

to the random distribution of the features in the bins and to the nature of

the DCORFS algorithm employed on each local FS sub-problem), we present
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Figure 4.3: Complexity analysis: Dependency of the DCORFS execution time on the
number of features in the bin and the number of iterations (top), dependency of the
D2CORFS execution time on the problem size and the number of bins (bottom).
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the averaged results of 5 independent runs besides the best ones. Both the

classification accuracy on the test set and the model size are reported (J̄te
and |S| denote the averages, and J?te and |S?| the values associated to the

best models, respectively).

Apparently, the proposed method achieves comparable performance with

respect to the best of the competitor methods. Moreover, the obtained

models are extremely compact in terms of the number of selected features,

which indicates the effectiveness of the FS approach in pointing out to the

expert the really important features.

Table 4.7 provides a comparison with the methods documented in the lit-

erature that study all the eight datasets considered in this work, using a

LOOCV approach. The proposed method systematically provides a promis-

ing performance, scoring better or equivalently to the competitor methods

on five out of eight datasets, and generally ranking among the best meth-

ods. In the case for which more documented results can be found in the

literature (Leukemia), it obtains perfect performance both on the training

and the test set, using only 2 features. It is also confirmed that the method

tends to provide a good trade-off between accuracy and compactness of the

selected model, which is important both for the robustness of the classifier

and for model interpretation purposes.
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Dataset Best model (S?) Time [s] Classifier J?te J̄te
Breast {f512, f1205, f1872, f3232, 8137.83 SVM 0.8969 0.8598

f3773, f4382, f5098, f6859, SVMn 0.8969 0.8567
f7127, f7997, f8776, f10827, KNN 0.8660 0.8392
f10889, f12275, f12437, f12572, LogReg 0.8969 0.8299
f13800, f17881, f19694, f19906, LDA 0.8866 0.8557
f20437, f22422, f23322} NB 0.8454 0.8083

Tree 0.7732 0.7113
CNS {f320, f1054, f2496, f2513, 123.89 SVM 0.9000 0.8583

f3320, f3731, f4484, f4509} SVMn 0.8667 0.8433
KNN 0.8833 0.8350
LogReg 0.8333 0.7867
LDA 0.8667 0.8517
NB 0.8833 0.8450
Tree 0.8500 0.6950

Colon {f249, f377, f765, f1482, 584.08 SVM 0.9032 0.8823
f1644, f1772} SVMn 0.9032 0.8871

KNN 0.8710 0.8581
LogReg 0.8548 0.8177
LDA 0.9032 0.8855
NB 0.9194 0.9065
Tree 0.8548 0.8258

DLBCL {f57, f209, f1807, 588.29 SVM 0.9870 0.9597
f2115, f2208} SVMn 0.9870 0.9675

KNN 0.9740 0.9584
LogReg 0.9481 0.8727
LDA 0.9870 0.9533
NB 0.9740 0.9468
Tree 0.9221 0.8727

Leukemia {f2288, f6041} 170.02 SVM 0.9722 0.9722
SVMn 1.0000 1.0000
KNN 0.9722 0.9722
LogReg 0.6806 0.6806
LDA 0.9722 0.9722
NB 1.0000 1.0000
Tree 1.0000 1.0000

Lung {f3334, f4336, f7200, f8370} 2239.40 SVM 1.0000 0.9939
SVMn 1.0000 0.9967
KNN 0.9945 0.9923
LogReg 0.9503 0.7536
LDA 0.9945 0.9884
NB 0.9779 0.9751
Tree 0.9834 0.9613

Ovarian {f182, f1680, f2236} 3383.12 SVM 1.0000 1.0000
SVMn 1.0000 1.0000
KNN 1.0000 1.0000
LogReg 1.0000 1.0000
LDA 1.0000 0.9976
NB 1.0000 1.0000
Tree 0.9802 0.9648

Prostate {f5314, f6185, f9850, f11052} 4042.18 SVM 0.8456 0.7728
SVMn 0.8677 0.7890
KNN 0.9338 0.8765
LogReg 0.9485 0.8243
LDA 0.8456 0.7971
NB 0.8456 0.7559
Tree 0.9191 0.8478

Table 4.4: Performance of the best models obtained with D2CORFS and LOOCV.

77



Feature S∗ S∗1 S∗2 S∗3 S∗4 S∗5
f2288 X X
f4052 X X X X
f4167 X X
f4230 X
f4328 X
f4847 X X
f6041 X X X X

Table 4.5: Diversity analysis of the models with maximum accuracy (0 classification
errors) for the Leukemia dataset, obtained with LOOCV and a NB classifier.

Dataset Method J̄te J?te |S| |S?|
Breast D2CORFS 0.67 0.89 6.8 4

DRF+SVM [6] – 0.84 – 97
DRF+kNN [6] – 0.79 – 52
DRF+NB [6] – 0.79 – 40

Leukemia D2CORFS 0.93 1.00 3.2 4
DRF+SVM [6] – 0.91 – 15
DRF+kNN [6] – 0.94 – 4
DRF+NB [6] – 0.94 – 6
ABC+DANN [25] 0.88 0.94 3.0 3
L1-norm SVM [46] 0.84 – 24.9 –
Elastic Net [46] 0.84 – 36.7 –
PAEN [46] 0.85 – 21.9 –
DrSVM [46] 0.85 – 67.7 –
WDRSVM [46] 0.86 – 19.9 –

Lung D2CORFS 0.97 1.00 2.9 3
DRF+SVM [6] – 0.96 – 2
DRF+kNN [6] – 0.98 – 4
DRF+NB [6] – 0.99 – 8
L1-norm SVM [46] 0.84 – 29.1 –
Elastic Net [46] 0.84 – 39.4 –
PAEN [46] 0.85 – 26.3 –
DrSVM [46] 0.86 – 54.4 –
WDRSVM [46] 0.86 – 23.8 –

Prostate D2CORFS 0.90 0.97 3.8 4
DRF+SVM [6] 0.97 – 30
DRF+kNN [6] 0.62 – 35
DRF+NB [6] 0.26 – 12

Table 4.6: Comparative analysis with the HOCV approach.
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Dataset Method J̄te J?te |S| |S?|
Breast D2CORFS 0.84 0.90 21.9 23

Local-learning based [72] – 0.78 – 4
α DD [82] 0.69 0.88 – –

CNS D2CORFS 0.84 0.90 6.7 8
α DD [82] 0.72 0.90 – –

Colon D2CORFS 0.88 0.92 8.0 6
α DD [82] 0.83 0.92 – –
Filter mRMR+SVM [68] – 0.89 – 4
Filter mRMR+RVM [68] – 0.94 – 7
RMIFS+NB [75] – 0.97 – 6
RMIFS+ID3 [75] – 0.95 – 6
RMIFS+Logistic [75] – 1.00 – 6
ERGS [12] – 0.84 – 100

DLBCL D2CORFS 0.95 0.99 7.1 5
Local-learning based [72] – 0.97 – 10
α DD [82] 0.71 0.88 – –
MOBBBO [48] 1.00 1.00 5.7 5
LSLS [49] – 0.82 – 10

Leukemia D2CORFS 0.98 1.00 2.0 2
α DD [82] 0.92 0.97 – –
Filter mRMR+SVM [68] – 0.97 – 4
Filter mRMR+RVM [68] – 1.00 – 3
RMIFS+NB [75] – 1.00 – 4
RMIFS+ID3 [75] – 1.00 – 4
RMIFS+Logistic [75] – 1.00 – 4
LSLS [49] – 0.81 – 50
ERGS [12] – 1.00 – 80
SL-RFE [83] – 0.94 – 20
FS-RFE [83] – 0.94 – 40
MRMR [18] 1.00 – 6.0 –
MBF [84] 1.00 – 9.0 –

Lung D2CORFS 0.99 1.00 4.4 3
α DD [82] 0.98 1.00 – –
LSLS [49] – 0.99 – 30
ERGS [12] – 1.00 – 100

Ovarian D2CORFS 1.00 1.00 3.0 3

Prostate D2CORFS 0.80 0.93 3.3 4
Local-learning based [72] – 0.84 – 6
α DD [82] 0.91 0.96 – –
MOBBBO [48] 0.98 1.00 11.9 12
LSLS [49] – 0.74 – 25
ERGS [12] – 0.94 – 10

Table 4.7: Comparative analysis with the LOOCV approach.
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Chapter 5

Conclusion

In this thesis a novel FS method has been developed that is especially de-

signed for large and dimensionally unbalanced classification problems, such

as those that arise in connection with microarrays. Its strength resides on

three pillars, namely an evaluation criterion for candidate feature subsets

based on the distance correlation concept, a distributed optimization ap-

proach, and a randomized selection procedure. The dCor index appears to

be a particularly robust criterion with respect to overfitting and redundancy

issues, which are common with multivariate filter methods. The distributed

combinatorial optimization scheme is used to handle the severe asymme-

try of microarray datasets, by dividing the feature set into several feature

bins and running independently the FS algorithm on each of them. The

best solutions are retained and shared among the feature bins and the pro-

cedure is iterated until convergence. Thanks to this “divide et impera”

approach, the FS algorithm is always employed on small and dimensionally

balanced datasets, for better accuracy and reliability of the results, as well

as a reduced computational complexity. The FS algorithm at the core of

the method introduces another factor that improves the reliability of the

method, in that it re-enforces the probability to select a feature based on an

aggregate performance evaluation of a population of feature subsets, which

allows for a more reliable assessment of the importance of that particular

feature. The overall method has been tested on several microarray bench-

mark datasets, with quite promising results. Indeed, the resulting classifiers

achieve high accuracy levels while using information only from an extremely

small number of features.
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[73] Gábor J Székely and Maria L Rizzo. The distance correlation t-test

of independence in high dimension. Journal of Multivariate Analysis,

117:193–213, 2013.
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94 Appendix A. List of gene accession numbers and descriptions

Feature Gene accession number Gene Definition

f512 D42044 HS KIAA0090 mRNA, partial cds
f1205 NM 003164 HS syntaxin 5 (STX5), transcript variant 1,

mRNA
f1872 Contig53223 Lymphoblastoid cell lines from CEPH/Utah

families
f3224 NM 020120 HS UDP-glucose glycoprotein glucosyltransferase 1

(UGGT1), transcript variant 1, mRNA
f3232 NM 020123 HS transmembrane 9 superfamily member 3

(TM9SF3) ,mRNA
f3773 Contig57586 RC Lymphoblastoid cell lines from

CEPH/Utah families
f4382 NM 004273† Homo sapiens carbohydrate sulfotransferase 3

(CHST3), mRNA
f5098 NM 020346 Homo sapiens solute carrier family 17 member 6

(SLC17A6), mRNA
f5377 Contig54742 RC Lymphoblastoid cell lines from CEPH/Utah

families
f6859 NM 021204 Homo sapiens enolase-phosphatase 1 (ENOPH1),

transcript variant 1, mRNA
f7127 NM 013262 Homo sapiens myosin regulatory light chain

interacting protein (MYLIP), mRNA
f7997 NM 020638† Homo sapiens fibroblast growth factor 23

(FGF23), mRNA
f8776 NM 006115 Homo sapiens preferentially expressed antigen in

melanoma (PRAME), transcript variant 1, mRNA
f10827 NM 004994† Homo sapiens matrix metallopeptidase 9

(MMP9), mRNA
f10889 AL080059 HS mRNA; cDNA DKFZp564H142 (from clone

DKFZp564H142)
f12275 NM 014567 Homo sapiens BCAR1, Cas family scaffold

protein (BCAR1), transcript variant 6, mRNA
f12437 NM 006584 Homo sapiens chaperonin containing TCP1

subunit 6B (CCT6B), transcript variant 1, mRNA
f12572 AF055033 Homo sapiens clone 24645 insulin-like growth factor

binding protein 5 (IGFBP5) mRNA, complete cds
f13800 Contig47544 RC NA
f17881 D13540† HS SH-PTP3 mRNA for protein-tyrosine

phosphatase, complete cds
f19694 NM 018354 Homo sapiens transmembrane protein 74B

(TMEM74B), transcript variant 1, mRNA
f19906 NM 016946 Homo sapiens F11 receptor (F11R), transcript

variant 1, mRNA
f20437 Contig2399 RC Egl nine homolog 1 (C. elegans)
f22422 Contig35256 Lymphoblastoid cell lines from CEPH/Utah

families
f23322 Contig32002 RC Lymphoblastoid cell lines from CEPH/Utah

families

Table A.1: Description of the selected genes for Breast cancer dataset.

Note. HS = Homo Sapiens, NA = Not Available. Symbol † stands for genes found in KEGG disease pathway.
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Feature Gene accession number Gene Definition

f320 D26561 cds3 at Human papillomavirus type 5b proviral genes for L1,
E6, E7, E1 proteins

f1054 J02611 at Human apolipoprotein D mRNA
f2496 S76475 at† trkC [human, brain, mRNA, 2715 nt]
f2513 S78296 at neurofilament-66 [human, fetal brain, mRNA, 3197 nt]
f3320 U50136 rna1 at Human leukotriene C4 synthase (LTC4S) gene
f3731 U78180 at Human sodium channel 2 (hBNaC2) mRNA,

alternatively spliced
f4484 X69398 at HS mRNA for OA3 antigenic surface determinant
f4509 X71348 at† HS vHNF1-C mRNA

Table A.2: Description of the selected genes for CNS cancer dataset.

Feature Gene accession number Gene Definition

f249 M63391† Homo sapiens desmin gene, complete cds
f377 Z50753 HS mRNA for GCAP-II/uroguanylin precursor
f765 M76378† HS cysteine-rich protein (CRP) gene,

exons 5 and 6
f1482 T64012 acetylcholine receptor protein, delta chain

precursor (Xenopus laevis)
f1644 R80427 147223 C4-DICARBOXYLATE TRANSPORT SENSOR

PROTEIN DCTB (Rhizobium leguminosarum)
f1772 H08393† collagen alpha 2(XI) chain (HS)

Table A.3: Description of the selected genes for Colon cancer dataset.

Feature Gene accession number Gene Definition

f57 GENE3991X dynein light intermediate chain 2, cytosolic
(PFI0315c)

f209 GENE3282X not yet annotated molecular function unknown
f1807 GENE2789X DBL containing protein, unknown function

(PFA0665w)
f2115 GENE1343X SNO glutamine amidotransferase family protein

(PF11 0169)
f2208 GENE1215X Plasmodium exported protein,unknown function

(PF10 0375 )

Table A.4: Description of the selected genes for DLBCL cancer dataset.



96 Appendix A. List of gene accession numbers and descriptions

Feature Gene accession number Gene Definition

f1924 M31158 at protein kinase, cAMP-dependent, regulatory,
type II, beta PRKAR2B

f2288 M84526 at† DF D component of complement (adipsin)
f3252 U46499 at microsomal glutathione S-transferase 1 MGST1
f4052 X04085 rna1 at† catalase(CAT)
f4167 X15414 at aldo-keto reductase family 1, member B1(aldose

reductase) AKR1B1
f4230 X52142 at CTP synthase (CTPS)
f4328 X59417 at proteasome (prosome, macropain) subunit, alpha

type, 6 (PSMA6)
f4847 X95735 at zyxin ZYX
f5039 Y 12670 at leptin receptor overlapping transcript LEPROT
f6041 L09209 s at APLP2 Amyloid beta (A4) precursor-like protein 2

Table A.5: Description of the selected genes for Leukemia cancer dataset.

Feature Gene accession number Gene Definition

f3334 33328 at heart development protein with EGF-like domains 1
(HEG1)

f4336 34320 at† polymerase I and transcript release factor (PTRF)
f6571 36533 at prostaglandin I2 (prostacyclin) synthase (PTGIS)
f7200 37157 at calbindin 2 (CALB2)
f8370 38315 at aldehyde dehydrogenase 1 family, member A2

(ALDH1A2)
f11841 41755 at COBL-like 1 (COBLL1)

Table A.6: Description of the selected genes for Lung cancer dataset.

Feature Gene accession number Gene Definition

f182 MZ2.8234234 NA
f1680 MZ245.24466 NA
f2236 MZ434.68588 NA

Table A.7: Description of the selected genes for Ovarian cancer dataset.
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Feature Gene accession number Gene Definition

f4282 41385 at erythrocyte membrane protein band 4.1-like 3
(EPB41L3)

f5314 34730 g at trophinin (TRO)
f6185 37639 at hepsin (HPN)
f8965 37720 at† heat shock 60kDa protein 1 (chaperonin, HSPD1)
f9850 40282 s at† complement factor D (adipsin, CFD)
f10494 32598 at neural EGFL like 2 (NELL2)
f11052 1664 at† insulin-like growth factor 2 (INS-IGF2)

Table A.8: Description of the selected genes for Prostate cancer dataset.


