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Sommario

Nel mio elaborato vengono esaminati dei metodi con lo scopo di calcolare e miglio-

rare stime di densità relative alla massa invariante in un determinato framework e

alla distribuzione angolari dell’elettrone e muone nel sistema di coordinate conosci-

uto come Rest Boson Frame attraverso l’utilizzo dell’analisi funzionale. Queste

analisi sono state fatte su diversi dataset generati tramite Phantom, un simula-

tore di eventi basato sul metodo di Montecarlo, i quali eventi sono generati dal

fenomeno di collisione che di verifica al Large Hadron Collider (LHC).

La tesi è strutturata in due parti.

La prima parte dell’elaborato è dedicata al calcolo della massa invariante delle

coppie muone-neutrino (µ, νµ) e dei quark legati al decadimento del bosone W.

Uno degli obiettivi della tesi é quello di riuscire ad identificare la coppia di quark

sopracitata attraverso algortimi differenti e, succesivamente, di stimare queste dis-

tribuzioni, basando l’analisi su tecniche di Density Estimation, quali le spline.

Nella tesi sono quindi proposti diversi metodi di analisi, sfruttando in ultima anal-

isi le Free Knot Splines.

La seconda parte del lavoro è dedicata allo studio del prodotto del decadimento dei

bosoni W+ e W− nel Vector Boson Scattering (VBS) con differenti polarizzazioni.

In particolare l’analisi si concentra sulle stime delle distribuzioni angolari relative

all’elettrone e al muone. Il fine dell’analisi comprende la stima di densitá multi-

variate, dove la ricostruzione di quest’ultime viene fatta attraverso l’utilizzo della

teoria della Copula. Infine, sfruttando i risultati ottenuti, vengono riportate le

analisi eseguite con lo scopo di determinare la cross-section degli eventi polarizzati

tramite regressione lineare.

Parole Chiave: Large Hadron Collider, Vector Boson Scattering, Analisi Fun-

zionale, Spline a nodi liberi, Copula, Copula non parametrica, Sezione d’urto
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Abstract

In this thesis I will examine a number of methods to improve the estimates of the in-

variant mass distributions in a particular framework and the angular distributions of

the electrons and muons in the W+W− bosons rest frame through functional analysis,

working with different datasets generated by Phantom, a Monte Carlo event generator,

simulating the collisions that occur in the Large Hadron Collider (LHC).

This thesis is divided into two different parts.

In the first part my efforts were dedicated to the computation of the invariant mass dis-

tributions with different algorithms and the analysis of those distributions via Density

Estimation, relying on splines. I will then propose different methods to achieve the best

estimated ending up using a technique called Free Knot Splines.

The second part focuses on the analysis of the products of the decay of W+ W− in Vector

Boson Scattering (VBS) in order to analyze and find the best approximation of the den-

sity of the angular distributions of the two bosons, initially finding the uni-dimensional

distribution related to each one of the bosons and then working with bi-dimensional

distributions. In this section I have used different approaches concerning the Copula’s

Theory.

By using the aforementioned estimates, the last part of the thesis will shown the results

leading to the reconstruction of the cross-section of the polarized distributions.

Keywords: Large Hadron Collider, Vector Boson Scattering, Functional Analysis,

Free Knot Splines, Copula, Non parametric Copula , Cross-section
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Chapter 1

Introduction

This chapter aims to explain the context of the work and the physical background.

1.1 Context

The Standard Model of Particle Physics (SM) is a Quantum Field Theory (QFT) de-

scribing the interactions of the smallest building blocks of the universe that are accessible

to current particle physics experiments. As a QFT it describes systems in the relativistic

and the microscopic limit. Particles are introduced as quantized fields acting according

to a Lagrangian density formulation. The Lagrangians governing the interactions of the

fields are required to obey a set of local gauge symmetries.

The development of QFT started in the late 1920s with the formulation of Dirac’s equa-

tion and continued with the foundation of the ingredients of the SM: Quantum Elec-

trodynamics, electroweak symmetry breaking electroweak theory (EWK) and Quantum

Chromodynamics (QCD).

Today, the Standard Model is largely accepted as it provides precise predictions for data

at the current and precursory high-energy experiments, such as the Large Hadron Col-

lider (LHC), Tevatron, and LEP.

The SM includes a unified description of the electromagnetic and weak interactions, re-

ferred to as the electroweak interactions. The EW sector and Quantum chromodynamics

(QCD) are unified in a framework (the SM) that does not introduce any dependence of

their coupling constants.

A crucial prediction of the model is the presence of three vector bosons, W+, W− and

Z0, which are the mediators of the weak interaction.



Figure 1.1: The Standard Model particles

Figure 1.1 summarizes the known fundamental particles, the four vector bosons, and

the recently discovered Higgs boson.

The solutions of the problems remain still open and might be found at the heart of the

SM, the breaking of the electroweak symmetry: with this mechanism, vector bosons

acquire mass through their coupling to the Higgs field. At the same time, the breaking

of the electroweak symmetry also rules the vector bosons scattring (VBS), avoiding its

divergence at high energy.

1.2 Physics Problem

The principle behind the LHC is pretty simple. First, two beams of particles are fired

along two pathways, one going clockwise and the other going counterclockwise. You

accelerate both beams to near the speed of light. Then, you direct both beams toward

each other leading to the collision of the protons. When the collision happens they break

apart into even smaller particles, that include subatomic particles called quarks and a

mitigating force called gluon.

W particles are produced in different ways during the proton-proton collision. They are

heavier and they decay immediately after the collision, which makes it almost impossible

to study them.

Usually in two-thirds of decays, a pair of jets is produced, i.e. quarks in final state. In

one third of the W decays, a lepton and a neutrino are produced. However the possible

output of a process can vary greatly, as I will discuss later in the elaborate.
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1.3 State of art

While the first part is not related to any previous work, at least from a statistical point

of view, the second part is a continuation of a previous work [1], which aimed to create a

parser for LHE files, see SubSection 2.1, to compute distributions of cos θe, with respect

to the W− boson, and to estimate these distributions and the estimation of the cross-

sections of the unpolarized signal, in addition to other statistical analysis not relevant

to the analysis carried out by me.

The purpose of my work is to compute those distributions for both the bosons present

in the process achievement of the joint distribution between them in order to find the

best estimate of a bi-dimensional distribution and to be able to make several different

analysis in the future. In particular the idea behind this part of the project is to be

able to isolate a specific polarization of the couple of bosons. Therefore a bi-dimensional

distribution is required since it is related to both bosons present in the process.

Then all the estimates found will be used to estimate the cross-sections of the bivariate

unpolarized signal.

1.4 Main Issues

All the datasets provided to me are generated using Phantom, a Monte Carlo event

generator for six parton final states at high energy colliders. The different datasets

are made up of a large number of events, ranging from 500000 to 4000000. Those

represent the behaviour of the phenomenon caused by the collision of the two protons

in a peculiar format for this kind of data, known as Les Houches Event (LHE). Thanks

to the previously aforementioned work, [1], a parser is already existing, which is able to

translate this data into a more comfortable format, readable by the program R[19], used

for the majority of the analysis.

Thus in the first part of the project I managed with the computation of the invariant

mass distribution related to the muonic-leptons and the quarks related to the decay of

the bosons. However no algorithms allow me to determine which quark couple is linked

to the decay of the bosons, so I had to implement four different methods and choose the

more effective one.

The second part of the work focused on the computation and representation of the bi-

dimensional distribution formed by the angular distribution on both the electrons related

to either W− and W+, which is not obvious because after the computation of the two

marginals distribution the main problem was to achieve the joint distribution and the

best estimate thereof.
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1.5 Outline

The thesis is structured as follows :

• Chapter 2 focuses on a brief explanation of the LHE files, the presentation of

the various datasets used in the work with a quick introduction of the underlying

physics and a summary of the main variable used during the process and the

preprocessing analysis.

• Chapter 3 deals with the first part of the work, containing the explanation of

problems and goals and the description of the analysis, the tests and the algorithms

implemented on the data, the presentation of the different techniques used and

the results accomplished.

• Chapter 4 focuses on the estimation of multivariate densities, which concerns

the preprocessing made on the data in order to reach a suitable and different

coordinate system, the computation of the marginal distribution and the analysis

made in order to find the joint distribution and the subsequent investigation carried

out, which includes the trials made with parametric Copulas and non-parametric.

• Chapter 5 aims to describe the work made in order to rebuild the unpolarized

signal coming from the dataset noHiggs by using the estimation made on the

bivariate distributions of the cosine coming from the polarized datasets. Then

it focuses on the comparison between the results obtained and he results coming

from the reconstruction of the Standard Model dataset.

• Chapter 6 summarizes the results obtained and tries to pave the way for future

analysis or possible improvements on the one presented in this paper.
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Chapter 2

Datasets and Preprocessing

2.1 Les Houches Event Files

The Les Houches Event Files are used routinely to pass information from matrix element-

based generators to general-purpose ones, in order to generate complete events for a

multitude of processes (see [2], [3]). The original standard was based on two Fortran

common blocks, while the actual usage has tended mainly to focus on files with parton-

level events and will increasingly be used by C++ generators.

The format of these event files is not specified by the standard, different format are

currently being used requiring a considerable effort when such files are to be parsed.

Based on the parser that was given to me, I made some minor adjustments in order

to be able to process correctly all the different data and to convert them into csv files,

readable by R [19].

A LHE file contains the output of the calculation of a Monte Carlo program, it is

encoded in the XML format and is divided into a header section, a init section and the

body containing the list of events. In the init section and in the event listing, physical

quantities are identified by variables with a predefined name. The header section content

depends on the generator which has been used for the event production, which usually

fills it with the parameters that have been used for the event generation (not shown in

Figure 2.1). The init section contains information to be read only once and valid for

all the events stored in the LHE file.

It is then followed by a set of lines, which describe the processes generated by the Monte

Carlo program. Each of these lines contains the information relative to one single process,

therefore there are as many lines as processes generated by the Monte Carlo program.

Hence, the total cross-section is the sum of the the cross-sections of the single processes.

The init section is followed by the list of events. In this list, each event is stored in

an XML event tag, which has one first line containing information valid for the entire



event, followed by several lines, one for each particle present in the event.

Below, Figure 2.1, it is shown an example of event in the LHE file, comprising the init

section and the event simulated.

Figure 2.1: Example of event in the LHE file

2.1.1 Events

The main part used for the analysis is divided into two common blocks called init and

event.

Here I describe the various parts of an event in the LHE file.

1. Initialization block :

◦ one line with process-number-independent information.

2. Event block :

◦ one line with common event information, including the number of particles

(NUP);

◦ NUP lines, one for each particle i:

– IDUP(i), identity code for particle i, each label corresponds to a physical

particle.

– ISTUP(i), status code of particle i:

∗ −1 = incoming state;

∗ 1 = final state;

∗ 2 = intermediate state.

– MOTHUP(1,i), the first particle from which the particle studied comes

from.
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– MOTHUP(2,i), the second particle from which the particle studied comes

from.

– ICOLUP(1,i), the ”colour” of the first mother.

– ICOLUP(2,i), the ”colour” of the second mother.

– PUP(1,i), momentum along x-axis (px).

– PUP(2,i), momentum along y-axis (py).

– PUP(3,i), momentum along z-axis (pz).

– PUP(4,i), energy (E)

– PUP(5,i), mass (M)

– VTIMUP(i), invariant lifetime.

– SPINUP(i), spin information.

We must emphasize that the variables in the LHE files are identified by their position;

the ”colour” variable mentioned before is a property related to the particles’ strong in-

teraction.

Table 2.1 shows the legend of the IDUP labels.

1 d 11 e− 21 g

2 u 12 νe 22 γ

3 s 13 µ− 23 Z0

4 c 14 νµ 24 W+

5 b 15 τ− 25 h0

6 t 16 ντ

Table 2.1: Legend of IDUP labels

The first column describes the different quarks, the second concerns the leptons and,

in the end, while the third relates to the Gauge and Higgs Bosons.

After using the parser the files are translated and ready for use.

2.2 Physical Concepts

The data on which the analysis were performed aims to simulate what happened with the

collision of the quarks whose products are a pair of W bosons of opposite sign (W+,W−)

along with two quarks, by the effect of the electroweak interaction. One issues is that

the bosons are not visible due to their short half-life, thus the analysis are conducted on
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the quarks and leptons found in the final state.

In the following pages I will define the main physical variables I dealt with in my com-

putations.

2.2.1 Variables of interest

When the two beams of the particles are fired along two pathways, a special axis is

defined through the geometry of particle physics experiments, namely the beam axis, i.e

the axis parallel to the incoming beams. This particular axis should be uniquely defined

and it’s common practice to choose the z-axis and also to fix the origin of the coordinate

system where the beams collide.

The variables used for these analysis are :

• Quadri Momentum

p = (E, px, py, pz) (2.1)

is the generalization of the classical three-dimensional momentum to four-dimensional

spacetime; in the first position we can find the energy followed by the components

of the momentum with respect to the x,y,z axes.

• Invariant Mass

m2
0 = E2 − ‖p‖2 (2.2)

is the mass in the rest frame of the particle; it’s calculated by using the energy E

and its momentum p as measured in any frame.

• Pseudorapidity

η = tanh−1
(
pz
‖p‖

)
(2.3)

is a spacial coordinate used to describe the angle of a particle trajectory with

respect to the beam axis.

• Transversal Momentum

pt =
√
p2x + p2y (2.4)

is the component of momentum perpendicular to the beam line.

• Polar Angle

θ = 2 arctan(e−η) (2.5)

angle of a particle with respect to the z-axis.

• Azimuthal Angle

φ = arctan

(
py
px

)
(2.6)

angle around the beam axis.
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• Velocity

β =
‖p‖
E

(2.7)

is the velocity of the particle, normalized with respect to the velocity of light.

• Relativistic Factor

γ =
1√

1− β2
(2.8)

is the factor by which time, length, and relativistic mass change for an object

while that object is moving.

where ‖p‖ =
√
p2x + p2y + p2z.

The first part of the work will focus on the first variable, i.e invariant mass, quadri-

momentum, pseudorapidity and transversal momentum, while, during the second part,

all the variables will be used for different purposes.

2.2.2 Boson Rest Frame

During the computation of the angular distribution I was interested in the electrons and

muons produced by the decay of, respectively, boson W− and W+. This process cannot

be performed in the frame provided by the laboratory, as it is necessary to change the

coordinate system. The frame in which all the three momentum (px, py, pz) for the boson

are null, namely the Boson Rest Frame.

First of all I had to perform a rotation of −φ along the z-axis, φ being the azimuthal

angle. Then I did a rotation of −θ along the y-axis, with θ representing the polar angle.

Lastly there is a boost along the z-axis, that is a traslation without rotation, as in (2.9).

M =


γ 0 0 −βγ
0 1 0 0

0 0 1 0

−βγ 0 0 γ

 (2.9)

After these particular transformations we reach the searched frame, related to the

W− boson. Since the same procedure must apply to the other boson, analogous trans-

formations have been made in order to reach the Boson Rest Frame concerning the W+

boson.

It is important to remember that after each transformation the variable of interest must

be computed again.

In Figure 2.2 below you can see the transformations that must be made.

9



Figure 2.2: Production and decay angles of W bosons

2.2.3 Polarization

The polarization of an electromagnetic wave is determined by a quantum mechanical

property, the spin. It is known that a massless 1-spin boson can exist in two transverse

polarization states, labeled right and left. On the other hand, a massive 1-spin boson,

such as W−, besides the right and left polarization states is characterized by a third

one, denoted as longitudinal. A boson is simply called polarized when its polarization is

known and it is named unpolarized when it remains unknown.

To measure the polarization of a vector boson we need to reconstruct the four-momenta

of its decay products and measure their distribution with respect to a polarization axis.

In general, the polarization of a gauge boson can be determined from the angular distri-

bution of its decay products (see [25]). The differential cross section of a leptonically-

decaying W boson is related to the polarization fractions. According to the theory, for

any model M, the unpolarized cos(θe) distribution is a linear combination of 4 terms: 3

polarized and 1 additional.

Let x be equal to cos(θe)

dσ

d cos θe
= fMNP (x) = αM0 f

M
0 (x) + αML f

M
L (x) + αMR f

M
R (x) + αMI f

M
I (x) (2.10)

where the indices NP,0,R,L,I indicate unpolarized, longitudinal, left, right and interfer-

ence, respectively.

The same can be said about the boson W+, by setting y equal to cos(θµ), we have :

dσ

d cos θµ
= fMNP (y) = αM0 f

M
0 (y) + αML f

M
L (y) + αMR f

M
R (y) + αMI f

M
I (y) (2.11)
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using the same indexes as before.

W bosons can have helicity ±1 or 0. A W boson with helicity ±1 is said to be transversely

polarised and one with zero helicity is longitudinally polarized, where helicity is the

projection of the spin onto the direction of momentum. This means that there are

four possible final polarized states of the W boson pair: transverse-transverse (TT),

longitudinal-longitudinal (LL), transverse-longitudinal (TL) and longitudinal-transverse

(LT), see [18].

The unpolarized distribution can be written as:

d2σ

d cos θed cos θµ
= fMNP (x, y) =

∑
i,j=0,T

αMij f
M
ij (x, y) + αMI f

M
I (x, y) (2.12)

where x = cos θe, y = cos θµ and all the other indices have the same notation as in 2.10.

2.3 Datasets

As I was mentioning before, I had to work with several different datasets related to

different phenomena, which can be shown by using the Feynman diagram.

Below, Figure 2.3, you can see an example of a Feynman diagram, that is the graphi-

cal representation of the mathematical expressions describing the behavior of subatomic

particles.

Figure 2.3: Example of Feynman’s diagram

After the collision of the two quarks a pair of Boson W has been produced.

In the first part of the work I studied three different datasets linked with particular

phenomena : Electroweak and Quantum Chromodynamics.
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2.3.1 Electroweak & Quantum Chromodynamics

The electroweak theory comprises the description of electromagnetic and weak interac-

tions, combined in one gauge theory. Here electromagnetic and weak interactions are

combined by embedding the symmetry groups SU(2)I and U(1)Q into the new group

SU(2)L ⊗ U(1)Y according to the newly introduced weak hypercharge Y = 2(Q− I3).
The theory known as Quantum Chromodynamics describes the strong interaction of

quarks, important features of this particular research field are asymptotic freedom and

confinement (for more details [24]).

The third dataset is a coherent sum of the two processes, that is supposed to be compared

with the incoherent sum coming from the other two datasets previously mentioned.

In Figure 2.4 below, you can see a Feynman diagram related to the Electroweak theory.

Figure 2.4: Feynman diagram of Electroweak Vector Boson Scattering

Each event is characterized by the presence of six fermions at the final state, which

can be written as pp → WW → lvqqqq, where p are protons and lv represents the

lepton-neutrino couple. In a nutshell, at the final state we will find:

• 2 tag quarks,

• 2 quark related to the decay of one Boson,

• a lepton-neutrino pair, related to the decay of the other Boson.
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2.3.2 Standard Model and No Higgs

In all the work made I am dealing with simulation related to the Vector Boson Scatter-

ing. The difference between the first and the second part is that the six fermions at the

final state are different. Therefore, in the second part, I will work with the following

process: pp → WW → jj e−νe µ+νµ, where p stands for proton and j stands for jet.

The elementary process is qq → qq e−νe µ+νµ, where q stands for quark, as men-

tioned before.

The pair (e−, νe) is the product of the decay of the boson W−, while the couple (µ+, νµ),

in a very rough approximation, is the product of the decay of the other boson. To bet-

ter understand the problem, one can imagine that the boson will be irradiated by the

quarks extracted from the protons and, after the scattering between themselves (W+W−

→ W+W−), they will decay leptonically.

From a theoretical point of view, the simulation of this particular process underlines

a precise dynamics related to the Standard Model, which expects the presence of the

Higgs Boson, which is also able to regulate the asymptotic behaviour of the scattering

W+W− → W+W−. Each of the four datasets, the ones related to the Standard Model,

is characterized by a specific double polarization, i.e each of the boson will be polarized.

As mentioned before there are four possible final polarized states of the boson W. In

addition to the four datasets which include the Higgs Boson, there is another different

dataset, called noHiggs, which displays the same characteristics, without those of the

aforementioned famous boson. This particular set of data is a complete generation of

the process and it is not polarized.

2.4 Preprocessing

As mentioned before, given the magnitude of the data, the parser was not able to con-

vert instantaneously the LHE files, so I have to factor the initial file into smaller files

containing a tenth of the data, in order to make the conversion feasible without having

an exaggerated computational effort.

Given the amount of datasets on which I had to work on, the procedure has been repeated

for each of them.

2.4.1 Cuts

Since the data were simulation by using the Phantom generation, some cut have to be

imposed even in the creation part, since we should be able to recreate a phenomenon

that could actually appear in the reality and that goes in accord to the related theory

developed in this particular field of physic.

13



Many of them are related to the geometry and the ability of the detector to reveal the

particles. For instance, at the LHC, it is not be possible to see a jet (quark) with η > 5.5

or pt < 20 GeV so this cut have to be imposed.

Other cuts are imposed in order to define the signals that we want to find. In this case,

since the idea is to work the Vector Boson Scattering, cut on Mjj and ∆ηjj are used.

Entering more in the details, from a experimental point of view, jets with |η| > 5 are

not built because it does not exist the detector, so it is consider 5.5 as limit point, with

the addition of 0.5 for security policy.

On the transversal momentum is required due to the impossibility to distinguish the of

the real jets from the ones generated from the contamination sources (whose represents

noise or the ones not coming from the principal collision). In this case there is more

freedom of choice, since the value chosen for the cut is related to how much contamination

we are willing to accept.

Below, Table 2.2, you can find the legend of the variables on which the cut where made

:

Variable Explanation

pWt transversal momentum for W boson

pjt transversal momentum for jet particles

plt transversal momentum for lepton particles

pνt transversal momentum for neutrino particles

MWW invariant mass for W+W-

Mjj invariant mass for jet particles

ηj pseudorapidity for jet particles

ηe pseudorapidity for electron particles

ηµ pseudorapidity for muon particles

∆ηjj variation of η for jet particles

Table 2.2: Legend of cut variables

The first part of the work is characterized with some imposed cut, i.e used in order

to create the datasets :

• plt > 25 GeV;

• pνt > 25 GeV;

• pjt > 20 GeV;
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• Mjj > 30 GeV;

• ηj < 5.4 ;

• ηj < 3.

Even in the second part of the work the data has been generated with some imposed

cut, summarized as follows :

• pjt > 20 GeV;

• Mjj > 600 GeV;

• |ηj | < 5 ;

• |∆ηjj | > 3.6 .

2.4.2 Additional cut

Regarding the second part of the work an additional cut was used in the analysis :

• pet > 20 GeV;

• pµt > 20 GeV;

• |ηe| < 2.5 ;

• |ηµ| < 2.5.

It is important to remind that after having imposed the additional cut just mentioned,

I have move from the laboratory rest frame and to compute once more the variables of

interest (i.e cos θe and cos θµ).

After applied the constraints on the datasets, they have been reduce, on average, to

almost 60% of the original sampling size.
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Chapter 3

Density Estimation: Invariant

Mass Distribution

This chapter aims to describe the first part of the work, before analyzing it and describing

the main results concerning the density estimation of the various distributions computed.

3.1 Goal of the analysis

The main goal, as mentioned before, of this part is to be able to estimate correctly the

invariant mass distribution computed from the datasets.

I can rely on three datasets, referring to a specific process in quantum physics, known as

Electroweak theory and Quantum Chromodynamics, plus a dataset made by the coherent

sum of these two particular phenomena. To this end the datasets will be labelled as

follows :

• EWK, for the Electroweak dataset,

• QCD, for the Quantum Chromodynamic dataset,

• EWK + QCD, for the coherent sum of the two above.

Each of them comprises 500000 events, made up of 10/11 particles, divided in the three

possible states, as discussed before.

For each dataset, the analysis deals with the computation of several different distribu-

tions related to the couple formed by the muon (µ) and the muon neutrino (νµ), the

quark decaying from the other boson (from now on defined as decay quark) and, ulti-

mately, the computation of the distribution related to the total system of the two bosons,

i.e the system comprising the muonic-lepton and the decay quark. All the figures related

to this last part will be in Appendix A since there are not useful to the main statistical



analysis.

The events are a simulation of a process performed at LHC whose final state is the

creation of six fermions, two tag quarks, two decay quarks and couple muonic-lepton. It

can write as pp→WWq1q2 → lνq1q2q3q4, where qi is the quark, l is the lepton and ν is

the neutrino.

In Figure 3.1, you can see how an event of the dataset is composed.

Figure 3.1: Event from Electroweak dataset

This is the result of the work made by the parser, which copies all the variables that

were also in the Les Houce file. The only variable of interest in this stage of the work

are the quadri-momentum, IDUP, ISTUP (see Subsection 2.1.1), that were used in

order to diversify various particles in different states, and the variable EVENT, which

is necessary to obtain the final distribution.

3.2 Searching for the Decay Quarks

The muonic-lepton pair is easily traceable just by looking at the IDUP variable and it

is related to the decay of one of the bosons.

Unfortunately there is no way to find the decay quarks, because for the quantum fields

theory there is only a certain probability that the quarks are decaying from the boson

W. In fact, there is the chance that those quarks are decaying from other boson, for

example Z boson or a Higgs Boson, and there is no way to distinguish the jets from each

other. So it is indispensable to choose an algorithm a priori in order to define which

define the source of the jets. Furthermore is possible to choose first the decay quark pair

instead of the tags couple.

In order to proceed with the analysis a step is required where I have to evaluate and

choose these specific pairs. The idea is to test four different methods and compare the

different distributions of the invariant mass calculated in order to find a difference be-

tween the methods or to validate one of them or more.

From now on the different procedures will be called Method, followed by a number, for
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the sake of simplicity.

3.2.1 Muonic-Lepton

As mentioned before the computation of the invariant mass distribution related to the

muonic-lepton pair is trivial. In Figure 3.2 you can see the results, represented with an

histogram for each of the datasets, from left to right EWK, QCD, EWK +QCD.

Figure 3.2: Invariant Mass: (µ, νmu)

It is very clear that the behaviour of this particular pair is almost the same in

each framework used. It is a very evident mode in the neighborhood of 80 GeV,

which corresponds to the mass of the W boson, as we could expect by looking at

the theory.
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3.2.2 Methods

As mentioned, the first step with these methods is to choose the selection order

of the tags or the decay quark couple. With the first two methods the jet couple

has been selected as the first step, followed by the V couple, whereas with the last

two methods the opposite strategy is retained. Therefore the first pair selected is

the variable of interest.

After choosing the different couples, it was possible to evaluate the distribution

for each of the method, relying on different variables used to distinguish different

methods.

The algorithms used are the following:

• Method 1 :

◦ the couple with maximum ∆ηjj as tag jets

◦ the remaining couple is the V jets.

• Method 2 :

◦ the couple with maximum invariant mass mjj as tag jets

◦ the remaining couple is the V jets.

• Method 3 :

◦ the couple with maximum transversal momentum Pt as V jets

◦ the remaining couple is the tag jets.

• Method 4 :

◦ the couple with an invariant mass closer to 80 GeV (the W mass) as V

jets

◦ the remaining couple is the tag jets.

Due to the large dimension of each dataset the computation of the distributions re-

quired several hours, even using parallel computation, by relying on the parallel

package in R [20].

Some of the plots made are visible in Figures 3.3, 3.4, 3.5 below.

Since the Methods 1,2 and 4 return more or less the same results, as detailed in

3.3, in this section I have decided to show only two plots for each method, the first

Method and the third Method that is the only one that seems to have different
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results with respect to the others. For the sake of completeness all the other plots

will be shown in the Appendix A.

Figure 3.3: Invariant Mass Distribution (EWK): Method 1, Method 3
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Figure 3.4: Invariant Mass Distribution (QCD): Method 1, Method 3

Figure 3.5: Invariant Mass Distribution (EWK +QCD): Method 1, Method 3

As I already said, the main goal behind the computation of these histograms is
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to find the best method to determine which quarks can be linked to the decaying

of the boson W and which can be considered as tags. Knowing the process we can

guess that two W bosons will be produced in the intermediate state, between the

initial state (two protons p) and the final state (charged lepton, neutrino and the

four quarks). However since quantum mechanics theory does not allow to make

this assumption, we can only be sure that there will be a certain probability on

which we will have at the intermediate state.

By looking at the different distributions, in most cases we can notice a particular

behaviour, that is the presence of three different modes at 80 GeV, 90 GeV and

125 GeV. This is very important because those peaks correspond to the mass of

the boson W (≈ 80 GeV), the boson Z (≈ 91 GeV) and the Higgs Boson (≈ 125

GeV), thus we can assume that in the intermediate state we can find not only the

usual W boson but also the other two, with a given probability. By looking at

those odds we can see that the probability to find a W boson is much higher than

the others and also the presence of the peak with respect to the invariant mass of

Higgs Boson is another prove of its existence.

They seem to be reliable methods that can be used to find the decay quarks in

those type of events.

The only differences can be seen looking at the third method, which seems not

to be a efficient method, as it is underlined in Figure 3.4, which represents the

histogram of the invariant mass related to the QCD dataset.

Each distribution will be limited to the [50, 130] GeV range, at least in this part

of the analysis. For the computation of the total system of the two bosons, the

range will be set to [100, 1000] GeV in order to have a better image of the results

since beyond a certain amount the behaviour tends to zero and thus is not useful

to the analysis. Furthermore it has been decided that the histograms will have a

bins equal to 100. This is important in order to be able to reproduce a particu-

lar behaviour typical of the distribution of the Boson W. In fact it has a peculiar

behaviour, such as a Cauchy distribution function,also knows as Lorentz(ian) func-

tion, because it is an unstable particle that decays inside the cinematic variability

allowed by the Heisenberg’s uncertainty principle. The width of the resonance

curve is a property of each singular particle. For the Higgs Boson in particular it

is 4 MeV (with respect to its mass, 125 GeV), therefore we should have an impulse

in the plots as shown with the bin used.
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3.3 Testing equality between distributions

One of the goals of the analysis was to be able to evaluate the different methods in

order to understand which one is different from the others or if there is a difference

between them.

The idea is quite simple: to evaluate a distance between the measured distributions

in order to understand which one is actually different. To do so I have decided,

for each of the three datasets, to evaluate the Earth Mover’s Distance (EMD),

see Subsection 3.3.1, by mixing up the methods. This will result into six different

distances related to the mutual comparison.

In order to make a more robust analysis I have decided to bootstrap, from each

one of the datasets, 500 times taking, at each simulation a sample of 20000 ele-

ments. At each step I have computed the invariant mass distribution, thus the

density shown before Figure 3.3, and then I have calculated the distance between

the distributions obtained by using different methods.

3.3.1 Earth Mover’s Distance

The EMD (see for more details [5]) is a method used to evaluate dissimilarity be-

tween two distributions in some feature space where a distance measure between

single features is given. The EMD ”lifts” this distance from individual features to

full distributions. In mathematics it is also known as the Wasserstein metric.

Intuitively, given two distributions, one can be seen as a mass of earth properly

spread in space, the other as a collection of holes in that same space. Thus, EMD

measures the least amount of work needed to fill the holes with earth. A unit of

work corresponds to transporting a unit of earth by a unit of ground distance, i.e

the metric used to evaluate distances between features.

One way to represent a distribution is to see it as a set of clusters where each clus-

ter is represented by its mean (or mode), and by the fraction of the distribution

that belongs to that cluster. We call such a representation the signature of the

distribution.

The computation of EMD is based on the solution of the transportation problem.

The main idea is the following: we can think that we have several suppliers, each

with a given amount of goods, are required to supply several consumers, each with

a given limited capacity. For each supplier-consumer pair, the cost of transport-

ing a single unit of goods is given. The transportation problem is then to find a
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least-expensive flow of goods from the suppliers to the consumers that satisfies the

consumers’ demand. Matching signatures can be naturally cast as a transportation

problem by defining one signature as the supplier and the other as the consumer,

and by setting the cost for a supplier-consumer pair to equal the ground distance

between an element in the first signature and an element in the second. Thus, the

solution is the minimum amount of ”work” required to transform one signature

into the another.

This idea leads us to a formalization of the following linear problem : let P =

{(p1, wp1), . . . , (pm, wpm)} be the first signature with m clusters, where pi is the

cluster representative and wpi is the weight of the cluster.

Let Q = {(q1, wq1), . . . , (qn, wqn)} be the second signature. Let D = [dij] be the

ground distance between the signatures, that can be any distance chosen in ac-

cording to the problem.

Let F = [fij] be the flow that we want to minimizes the overall cost. Below, equa-

tion 3.1, you can find the linear program problem.

minimize
m∑
i=1

n∑
j=1

fijdij (3.1)

with the following constraints :

fij ≥ 0 ∀m,∀n (3.2)
n∑
j=1

fij ≤ wpi ∀m (3.3)

m∑
i=1

fij ≤ wqj ∀n (3.4)

m∑
i=1

n∑
j=1

fij = min(
m∑
i=1

wpi ,

n∑
j=1

wqj) (3.5)

Constraint (3.2) allows the movement of the supplies from P to Q and not the

other way around. The purpose constraint (3.3) limits the amount of supplies that

can be sent by the clusters in P to their weights. Vice versa for constraint (3.4).

Constraint (3.5) forces to move the maximum amount of supplies possible.

Once the transportation problem is solved and we have found the optimal flow F,

the earth mover’s distance is evaluated by normalizing the objective function with

the total flow, thus:

EMD(P,Q) =

∑m
i=1

∑n
j=1 fijdij∑m

i=1

∑n
j=1 fij

(3.6)
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The total flow, i.e the normalization factor, is the total weight of the smaller sig-

nature, because of constraint (3.5). This factor is needed when the two signatures

have different total weight, in order to avoid favoring smaller signatures.

By relying on the R package earthmovdist [13] I was able to compute the afore-

mentioned distances between the methods, for each dataset. The package considers

the L1 distance as ground distance and the results are visible in Table 3.1 below.

EWK QCD EWK +QCD

Method 1 vs 2 1.121 2.242 1.627

Method 1 vs 3 9.363 14.698 14.186

Method 1 vs 4 2.416 4.602 3.404

Method 2 vs 3 10.059 16.863 15.660

Method 2 vs 4 2.789 2.515 2.037

Method 3 vs 4 10.468 19.251 17.559

Table 3.1: EMD comparison between Methods

The results summarized in the table seem to show that each distance related to

Method 3 is larger than the others not related to that proving what stated before,

see Subsection 3.2.2.

3.4 Density Estimation

The last step of this first part is the estimation of the density. In this section I will

introduce and show the results obtained with two different proceedings : Kernel

Density Estimate and Free Knot Splines.

All the plots shown will be related to two methods, thus there will not be plots

of the muonic-lepton couple of the plots or the total system, that can be found in

Appendix A.

3.4.1 Kernel Density Estimate

Kernel Density Estimation (KDE) is a non-parametric way to estimate the proba-

bility density function of a random variable. Kernel density estimation is a funda-
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mental data smoothing problem where inferences about the population are made,

based on a finite data sample.

Let (x1, x2, . . . , xn) be a univariate i.i.d sample drawn from some distribution with

an unknown density f . The idea is to estimate the shape of a given function.

Its kernel density estimator is, as follows :

f̂h =
1

nh

n∑
i=1

K

(
x− xi
h

)
(3.7)

where K is the kernel, i.e a non-negative real-valued integrable function which sat-

isfies Normalization and Symmetry properties, h(> 0) is a smoothing parameters

called bandwidth, that controls the degree of smoothing applied to the data.

The analysis were made relaying on the R package KernSmooth [29] which allows

different choices of kernel and a function that tackles the bandwidth selection

problem.

In order to have a more complete analysis, besides using the kernels available I

decided to test a estimation based on local polynomials, still granted by the pack-

age. To compare the results and choose the best one I have used Mean Squared

Error.

The first step was the bandwidth selection (see [17]). To try and solve this prob-

lem I chose the bandwidth that minimizes the asymptotic mean integrated square

error, or AMISE.

min
h

AMISE = min
h

∫ +∞

−∞

[(
1

2
h2f

′′
k2

)2

+
f(x)

nh

∫ ∞
−∞

K2(x)dt

]
dx (3.8)

where the first addendum is the Bias f̂(x) and the second one is the variance

Var [f̂(x)].

I have decided to test more than one kernel, the Gaussian kernel, the Epanech-

nikov kernel, based on the centered B(2, 2) distribution and the triweight kernel,

i.e centered B(4, 4) distribution.

Below, Tables 3.2, 3.3, 3.4, it is shown the Mean Squared Error related to the

different estimate made with different kernel and local polynomial.

26



Gaussian Triweight Epanechnikov Polynomial

Method 1 0.0000700870 6.866614e− 05 8.079531e− 05 0.0002267953

Method 3 0.0001834522 1.835892e− 04 9.050061e− 06 0.0001713488

Table 3.2: MSE with different Kernels(EWK)

Gaussian Triweight Epanechnikov Polynomial

Method 1 8.287853e− 05 6.124896e− 05 3.589318e− 05 1.056905e− 04

Method 3 1.064558e− 04 7.938261e− 06 7.482146e− 06 1.157013e− 05

Table 3.3: MSE with different Kernels(QCD)

Gaussian Triweight Epanechnikov Polynomial

Method 1 1.039075e− 04 7.758953e− 05 4.831625e− 05 1.304585e− 04

Method 3 7.856417e− 04 5.849997e− 06 5.709710e− 06 1.119277e− 05

Table 3.4: MSE with different Kernels(EWK +QCD)

The results seem to suggest that the use of a triweight kernel or the Epanech-

nikov kernel will bring the same results, while the use of Gaussian kernel or local

polynomials will carry out worse results, especially concerning the last option men-

tioned.

Taking into account the analysis just shown I have computed all the estimate using

the Epanechnikov kernel.

Below, Figures 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, there are the plots of the distributions

followed by the figures of the first and second derivatives.
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Figure 3.6: Density Estimation (KDE) : Method 1 (EWK)

Figure 3.7: Kernel Density Estimation : Method 3 (EWK)
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Figure 3.8: Kernel Density Estimation : Method 1 (QCD)

Figure 3.9: Kernel Density Estimation: Method 3 (QCD)
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Figure 3.10: Kernel Density Estimation: Method 1 (EWK +QCD)

Figure 3.11: Kernel Density Estimation: Method 3 (EWK +QCD)

By looking overall at all the pictures seems that the estimates are valuable.
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The fit on the observed data makes it possible to reproduce almost the same

behaviour in almost all the cases, only in few plots seems that the estimates are

not able to capture the shapes, especially in the neighborhoods of the peaks or in

the neighborhood of the boundaries.

The same can be said for the derivatives; although bounded they are still able to

follow the wanted behaviour.

3.4.2 B-splines with Free Knot

Another common choice to face this kind of problem is the use of Splines. They

are used to make an approximation of non-periodic functional data or parameters.

Splines are piecewise polynomial functions, where polynomial segments are joined

end to end. Splines combine the fast computation of polynomials with substantial

greater flexibility and are preferred to polynomial interpolation because they yields

similar results, even when using low degree polynomials, while avoiding Runge’s

phenomenon for higher degrees.

The basic idea behind the construction of the splines is pretty straightforward. Let

the spline be defined as S : [a, b]→ R. The first step is to divide the interval [a, b],

where the estimated function is defined, into K sub-intervals such as to create a

partition [ti, ti+1] such that [a, b] = [t0, t1]∪ [t1, t2]∪ · · · ∪ [tk−2, tk−1]∪ [tk−1, tk] and

a = t0 ≤ t1 ≤ · · · ≤ tk−1 ≤ tk = b. Each of these intervals is associated with a

polynomial Pk : [tk, tk+1]→ R such that S(t) = Pk(t) in the interval tk−1 ≤ t ≤ tk.

Each polynomial will have a given degree n and an order that is the number of

constants required to define it. The given k + 1 points tj 0 ≤ j ≤ k) are called

knots.

As mentioned I have decide to use a free knot spline, by relying on a particular

type of spline, namely B-Splines (see [7]). These are spline functions that have

minimal support with respect to a given degree, smoothness, and domain partition.

Any spline function of a given degree can be expressed as a linear combination of

B-splines of that degree. A B-spline of order n is a piecewise polynomial function

of degree n− 1 . It is defined over n + 1 locations tk, i.e the knots. The B-spline

function is a combination of bands that passes through the number of points,

namely control points, and creates smooth curves.

A p-degree B-spline is defined as:

Sn,t(x) =
∑
i

piBi,n(x) (3.9)
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where pi represents the control point and Bi,p is the B-spline basis function, defined

as follows by the Cox-de Boor recursion formula, see [7]:

Bi,0(x) =

{
1, if tk ≤ t ≤ tk+1

0, otherwise
(3.10)

Bi,k(x) =
x− ti
ti+k − ti

Bi,k−1(x) +
ti+k+1 − x
ti+k+1 − ti

Bi+1,k−1(x) (3.11)

where (3.10) is piecewise constant one or zero indicating which knot span it is in,

while in (3.11) shows the recursive part of the equation.

Usually a knot vector is defined in advance, however the choice of the knots is

crucial in order to get the best estimate. For example, uniform spaced knots,

such as Chebyshev points, might result in an overshooting problem when the

curves contain non-trivial cases, e.g discontinuous points. In order to overcome

the problem, a non-uniform knot space is introduced, i.e Free Knot Splines (FKS).

Knowing the number and the locations of the knots is critical for spline estimation.

Such knowledge is typically unavailable in practice however.

Ideally, knot selection should be performed jointly instead of marginally, to obtain

the global optimal knots. Unfortunately, this task is unfeasible even for small

datasets, because the number of numerical evaluations grows exponentially with

the number of knots.

One idea to overcome this issue and to reduce the computational cost (see [30],

[15]) can be found by exploiting special local properties of the spline estimators:

• Knot addiction of a single point does not change the value of the spline

outside a local neighborhood.

• The value of the spline estimate at a particular point can be well approxi-

mated by a locally fitted spline.

The B-Splines are useful in this particular framework because they are relatively

well conditioned and yield an estimate that is numerically more stable than the

power series representations alongside the low computational cost.

Without entering into the details, the basic idea behind the algorithm can be

expressed in four step, as follows :

• Knot Initialization

• Knot Search
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• Knot Relocation and Deletion

• Refinement

In order to perform the analysis I end up relying on the R package freeknotspline

[26] that is able to elaborate the algorithm mentioned and, using fda [12] package,

to create the first and second derivatives of the distributions. Below you can find

the the plots related to the different datasets.

Figure 3.12: Free Knot Splines : Method 1 (EWK)
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Figure 3.13: Free Knot Splines : Method 3 (EWK)

Figure 3.14: Free Knot Splines : Method 1 (QCD)
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Figure 3.15: Free Knot Splines : Method 3 (QCD)

Figure 3.16: Free Knot Splines : Method 1 (EWK +QCD)
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Figure 3.17: Free Knot Splines : Method 3 (EWK +QCD)

All the estimates seem to be valuable, except perhaps in the Figure 3.15 where,

given the concentration of the data, it seems that the algorithm is not able to cap-

ture the behaviour shown. The same can be said about the derivatives which are

surely bounded and do not show any unusual behaviour.

The function used to find the knot requires some variables : order, degree, mini-

mum and maximum number of nodes and a goodness of the fit criterion used to

evaluate the different estimates made with various numbers of knots. To this end,

after some trials, I have decide to opt for cubic splines, i.e degree 3 and order 4,

a range of 15 possible knots, i.e from 1 to 15, and the adjusted generalized cross-

validation as index to look at the goodness of the fits. For the sake of completeness

the order entered into the function is considered as real degree plus 1, therefore

order 5 will appear instead of 4.

Below, Tables 3.5, 3.6, 3.7 , the are some results summarized.
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GCV # Knot Order

Method 1 6.08033382019761e-06 8 5

Method 3 4.35664503057913e-06 9 5

Table 3.5: Free Knot Splines Parameters (EWK)

GCV # Knot Order

Method 1 2.14462463204209e-06 9 5

Method 3 1.48137056974069e-07 1 5

Table 3.6: Free Knot Splines Parameters (QCD)

GCV # Knot Order

Method 1 2.60172092925441e-06 8 5

Method 3 3.24936515558523e-07 10 5

Table 3.7: Free Knot Splines Parameters (EWK +QCD)

3.4.3 Goodness of Fit

Since both methods, i.e Free Knot Splines and Kernel Density Estimation with

Epanechnikov kernel, end up giving good and valuable estimates I have decided

to make a comparison between them. In order to be able to evaluate which one is

better I compared the Mean Squared Error of each estimates.

Below are the results divided into datasets, algorithms and methods.
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Free Knot Splines Kernel Density

Method 1 4.393041e-06 8.079531e-05

Method 3 3.147676e-06 9.050061e-06

Table 3.8: MSE of the algorithms (EWK)

Free Knot Splines Kernel Density

Method 1 1.549491e-06 3.589318e-05

Method 3 1.308939e-07 7.482146e-06

Table 3.9: MSE of the algorithms (QCD)

Free Knot Splines Kernel Density

Method 1 1.879743e-06 4.831625e-05

Method 3 2.347666e-07 5.709710e-06

Table 3.10: MSE of the algorithms (EWK +QCD)

By looking at these results seem to indicate that the algorithm relying on the

B-Splines is better than the other ones, which also return good results either.
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Chapter 4

Multivariate Density Estimation

using Copulas

This chapter aims to describe the second part of the work, firstly analyzing it and

describing the main results concerning the computation of the desired distribu-

tions: the bi-dimensional density estimation of the various estimates.

4.1 Goal of the analysis

The main goal of this part, as mentioned before, is to correctly estimate the bi-

dimensional distribution of the cosine of the θ angle, where θ is the polar angle

previously mentioned, see Subsection 2.2.1.

By looking at the natural decay of the bosons I expect to see a decay to the electron

(e−) for the boson W− and to the muon (µ+) for the boson W+, thus the variable

of interest will be the cos θe and the cos θµ
The analysis focuses on 5 different datasets, which describe the following kind of

event: qq → qq e−νe µ+νµ.

Four datasets are related to the Standard Model and have different polarization,

summarized below:

• W+W- longitudinal-longitudinal polarization (LL).

• W+W- longitudinal-transversal polarization (LT),

• W+W- transversal-longitudinal polarization (TL),

• W+W- transversal-transversal polarization (TT).



Instead the last dataset is unpolarized and does not contain the Higgs boson (from

now on noHiggs).

The estimation techniques will be tested on all datasets.

4.2 Preprocessing and preliminary analysis

As for the previous analysis, the first part was made by relying on the parser in

order to have a format readable by R.

In Figure 4.1, you can see how an event is composed.

Figure 4.1: Event from LL dataset

The main difference, with respect to the datasets in Chapter 3, is that these

events are characterized by the presence, in the final state, of just one couple of

quarks and the pairs of interest, electron - electron neutrino (e, νe) and muon -

muon neutrino (µ, νµ).

The second step of the preprocessing is to change the coordinates system, which

means switching from the Laboratory Rest frame to the Boson Rest Frame, as

mentioned in Subsection 2.2.2.

In order to apply this particular change of framework it is necessary to :

• rotation of −φ along z-axis,

• rotation of −θ along y-axis,

• boost along z-axis (traslation).

The same transformation will be applied for each of the bosons, independently one

from each other, in order to be able to compute correctly the distributions.

After this, remain only the calculation of cosine of the angle θ for both the bosons.

Below, in Figures 4.2, 4.4, 4.6, 4.8, 4.10, you can find a 3-D histogram (with 100
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bins selected) concerning the densities for each datasets and the contour plots,

Figures 4.3, 4.5, 4.7, 4.9, 4.11.

Figure 4.2: Histogram of the distribution (LL)

Figure 4.3: Image of the distribution (LL)
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Figure 4.4: Histogram of the distribution (LT)

Figure 4.5: Image of the distribution (LT)
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Figure 4.6: Histogram of the distribution (TL)

Figure 4.7: Image of the distribution (TL)
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Figure 4.8: Histogram of the distribution (TT)

Figure 4.9: Image of the distribution (TT)
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Figure 4.10: Histogram of the distribution (noHiggs)

Figure 4.11: Image of the distribution (noHiggs)
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In each plot the x-axis represents the cosine distribution with respect to the

Boson W−, whereas the y-axis is the cosine distribution with respect to the boson

W+.

Since the transformation used to change the coordinate system was made inde-

pendently for both the bosons, I have tested the independence between the two

distributions computed so that I could be able to have a better understanding

of the process and the phenomenon that I was dealing with. In order to achieve

that, I have decided to compare the results of two statistical test: Kendall’s Rank

Correlation test and the Hoeffding’s Independence test.

Let X = x1, . . . , xn and Y = y1, . . . , yn be the observations on which we want to

establish the independence, based on a random sample of size n.

As regards the Kendall’s test (for more details see [14]), it relays on two assump-

tions : Independence assumption and Continuity assumption.

It has as hypothesis :

H0 : τ = 0 (4.1)

H1 : τ 6= 0 (4.2)

where H0 meaning is the independence between variables.

It uses as test-statistic :

τ =
1

n(n− 1)

∑
i 6=j

sign(xi − xj) sign(yi − yj) (4.3)

Since it appears that in the distribution there are some ties the test-statistic, the

estimation used for τ it will be τ̂b :

τ̂b =
1√

([n(n− 1)/2]− nx)([n(n− 1)/2]− ny)
(4.4)

where :

• K =
∑n−1

i=1

∑n
j=i+1 Q

∗
ij,

• n = # of observations,

• nx =
∑

i ti(ti − 1)/2 with ti denoting the size of i-th group of ties on X,

• ny =
∑

i ui(ui − 1)/2 with ui denoting the size of i-th group of ties on Y .
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while the matrix Q∗ can be built by looking at the following scheme :

Q∗[(a, b), (c, d)] =


1, if (d− b)(a− c) > 0

0, if (d− b)(a− c) = 0

−1, if (d− b)(a− c) < 0

(4.5)

Regarding the Hoeffding’s test (for more details see [10]) is a non parametric test,

thus it does not make any assumptions on the functional form of the population

distribution. The test aims to prove the independence of two random variables

assumed to have continuous distribution. Furthermore the test is consistent with

the class Ω′′, i.e the class of density function having continuous joint and marginal

probability density.

Let F (x, y) be the continuous joint distribution. In case of independence we can

say that F (x, y) = F (x,∞)F (∞, y).

The test-statistic D(x, y) depends only on the rank order of the observation and

it has the following form:

D(x, y) = F (x, y)− F (x,∞)F (∞, y) (4.6)

and it can be proved that it has normal limiting distribution for any parent dis-

tribution.

In case of independence it is shown that the limiting distribution is degenerate

and nD has no normal limiting distribution.

The hypothesis of the test H0 can be seen as : the random variable are indepen-

dent, and that can be summarized as follows:

H0 : D = 0 (4.7)

H1 : D 6= 0 (4.8)

The estimated test-statistic Dn can be written as follows:

Dn =
A− 2(n− 2)B + (n− 2)(n− 3)C

n(n− 1)(n− 2)(n− 3)(n− 4)
(4.9)

where:

• A =
∑n

α=1 aα(aα − 1)bα(bα − 1),

• B =
∑n

α=1(aα − 1)(bα − 1)cα,

• C =
∑n

α=1 cα(cα − 1),
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• aα =
∑m

β=1C(Xα −Xβ)− 1,

• bα =
∑m

β=1C(Yα − Yβ)− 1,

• cα =
∑m

β=1C(Xα −Xβ)C(Yα − Yβ)− 1

For the sake of completeness, aα (bα) is the rank of Xα (Yα), while cα is the number

of observations of sample members (Xβ,Yβ) for which both Xβ < Xα and Yβ <

Yα (since they are assumed to be continuous we can say that they are at least

different from each other).

In order to make a more robust analysis, I have decided to bootstrap, from each

one of the datasets, by taking at each simulation a sample of 100000 elements, and

cycled on it 200 times. Then, on each simulation, I have computed the p-value.

Below, Table 4.1, you can see the results.

LL LT TL TT

Kendall 0.25884 0.50551 0.45172 0.00000

Hoeffding 0.10544 0.14436 0.20984 0.00000

Table 4.1: P-value of the independence test

By looking at the p-value seems that almost all the marginal distributions can

be considered independent.

The only dataset where an independence relationship cannot be accepted is TT.

4.3 Copula’s analysis

In this section there will be a brief introduction of the Copula’s theory (for more

details [27]) and of the Non-parametric Copula theory (for more details [16]), which

will be used to find the better density estimation of the distribution previously

mentioned. Moreover there will be listed all the results achieved both the complete

datasets and the datasets submitted to the cuts. More details on the bandwidth

selection method used see [27].
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4.3.1 Copula’s Theory

Let X = {X1, . . . , Xn} be a random vector with distribution F and with marginal

distribution functions Fi, Xi ∼ Fi, 1 ≤ i ≤ n. A distribution function C with

uniform marginals on [0, 1] is called Copula of X if :

F = C(F1, . . . , Fn) (4.10)

for the case that the marginal distributions are continuous the copula, C is the

distribution function of (F1(X1), . . . , Fn(Xn)). Since Fi(Xi) ∼ U(0, 1), C is a

copula and furthermore we obtain the following representation :

C(u1, . . . , un) = P{(F1(X1) ≤ u1, . . . , (Fn(Xn) ≤ un)} (4.11)

= FX(F−11 (u1), . . . , FX(F−1n (un)) (4.12)

where F−1i (t) = inf{x ∈ R1;Fi(x) ≤ t} is the generalized inverse of Fi.

It is important to remark that any continuous random variable can be transformed

to be U(0, 1) by its probability integral transformation, thus copulas can be used

to provide multivariate dependence structure separately from the marginal dis-

tributions. Therefore a more general representation of a copula can be written

as:

F (x1, . . . , xn) = P{X1 ≤ x1, . . . , Xn ≤ xn} (4.13)

= C(F1(x1), . . . , Fn(xn)) (4.14)

The most important theorem of the Copula’s theory is the Sklar’s theorem which

states that:

Theorem 4.3.1 (Sklar’s theorem) Let F ∈ F(F1, . . . , Fn) be an n-dimensional

distribution function with marginals F1, . . . , Fn. Then exist a copula C ∈ F(U , . . . ,U)

with uniform marginals such that F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

Moreover if each Fi is continuous then the copula C is continuous.

It states that any multivariate joint distributions can be written in terms of uni-

variate marginal distribution functions and a copula which describes the depen-

dence structure between the variables. It allows us to separate the modeling of the

marginal distribution Fi from the dependence structure, which is expressed in C.

Furthermore if F (·) and C(·) are differentiable the probability density function

satisfies:
f(x1, . . . , xn)

f(x1) · · · · · f(xn)
= c[F1(x1), . . . , Fn(xn)] (4.15)
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where c is the probability density function of C and it can be defined as follows:

c(u1, . . . , un) =
∂n

∂u1 · · · · · ∂un
C(u1, . . . , un) (4.16)

An Independence copula is defined as follows. Let’s have U1, . . . ,
i.i.d∼ U [0, 1], we

have :

P (U1 ≤ u1, . . . , Un ≤ un) =
n∏
j=1

uj = Π(u1, . . . , un) (4.17)

where Π is called Independence copula.

Sklar’s theorem gives us a simple way to construct copula functions. Thus, by

inverting the independence copula, we get :

C(u1, . . . , un) = F (F−1(u1), . . . , F
−1(un)). (4.18)

From this formula we can also obtain a representation of the corresponding copula

density c(u1, . . . , un) :

c(u1, . . . , ud) =
f(F−11 (u1), . . . , F

−1
n (un))∏n

j=1 fi(F
−1
j (uj))

(4.19)

In order to fit the best parametric copula for our data we can use any parametric

distribution functions F , such as Gaussian, Elliptical or Archimedean .

4.3.2 Non-Parametric Copulas

As mentioned before, the copula C : [0, 1]2 → [0, 1] is a bivariate of the random

vector (X, Y ) which has uniform marginal distribution.

Let’s assume that we have i.i.d. observations (Xi, Yi) from a bivariate copula C

and we are interested in the estimation of the corresponding density c(x, y).

The easiest way is to apply the usual kernel density estimator to this kind of

problem :

ĉn(x, y) =
1

n

n∑
i=1

Kbn(x−Xi)Kbn(y − Yi) (4.20)

where Kb(·) = K(·/b)/b is the kernel function and Bn > 0 is the bandwidth

parameter.

However, in this particular analysis, this will be a problem because it will put a

considerable amount of probability mass outside of the unit square. This implies

that ĉn is not a density function on [0, 1]2, since it does not integrate to one.

Moreover the estimator will suffer from bias at the boundaries.

Many different approaches are used to tackle this problem, among which :
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• Mirror-Reflection method (MR),

• Transformation method (T).

The MR method is an intuitive way to adapt the estimator ĉn to make sure that

it is a density on the domain of definition.

The idea is the following: gather all the probability mass that was put outside of

the unit square and redistribute it back to [0, 1]2.

Thus all data are reflected at the corners and the edges of the boundary region and,

by doing this, also the probability mass outside of the unit square gets reflected

back to the interior.

The augmented dataset containing all the reflections is given by :

(X̃ik, Ỹik) = {(Xi, Yi), (−Xi, Yi), (Xi,−Yi), (−Xi,−Yi), (Xi, 2− Yi),
(−Xi, 2− Yi), (2−Xi, Yi), (2−Xi,−Yi), (2−Xi, 2− Yi)} (4.21)

and the mirror-reflection estimator is defined as follows :

ĉ(MR)
n (x, y) =

1

n

n∑
i=1

9∑
k=1

Kbn(x− X̃ik)Kbn(y − Ỹik) (4.22)

The idea behind the T method is to transform the data so that it is supported on

the full R2, instead of the unit cube as stated by the theory.

On this transformed domain, standard kernel techniques can be used to estimate

the density. An adequate back-transformation then yields an estimate of the cop-

ula density. The most common choice for elaborate this transformation is the

inverse of the standard Gaussian cumulative density function.

Denote Φ as the standard Gaussian cumulative density function and φ as its deriva-

tive. Then (Ui, Vi) = (Φ−1(Xi),Φ
−1(Yi)) is a random vector with Gaussian margins

and copula C. By Sklar’s theorem, the density f can be written as follows :

f(u, v) = c(Φ(u),Φ(v))φ(u)φ(v) (4.23)

and this density can be estimated with a standard kernel estimator (f̂n).

Thus Transformation estimator is defined as follows :

ĉTn (x, y) =
f̂n(Φ−1(x),Φ−1(y))

φ(Φ−1(x))φ(Φ−1(y)))
(4.24)
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4.3.3 Density Estimation

Here I will show all the results obtained by using parametric copulas and non-

parametric copulas.

I have decided also to use non parametric copulas since the marginal distribution

are not referable to a classic distribution, thus the estimation of the marginal in

the model can cause difficulty and lead to biased estimations.

Since the tests made clearly show and independence in some cases I have decided

to use Copulas only in the case where the aforementioned the H0 hypothesis is

rejected, since it is not necessary in order to evaluated the joint distribution given

the independence of the distributions.

All the analysis were made by using once again R [19] and relaying of the packages

copula [11], VineCopula [23] and kdecopula [16], which handle the non paramet-

ric analysis.

In order to build the parametric model the first step is to be able to identify the

copula family, which will be used in the next computation. Since the datasets have

too large dimensions the built-in functions in the packages are not able to evaluate

the model, it will take too much time and the functions cannot allocate the vector

due to memory issues.

So I have decided first to split the datasets into 10 parts and on those evaluate the

families that can lead to the best approximation, choosing then the family that

appears with more frequency.

After that, using the chosen family, I have evaluated on each chunk of data the

Copula and I have averaged the estimated parameters in order to get the best

estimates for the parameters that are about to be used to fit the copula.

Regarding the TT dataset, the chosen family is the Rotated BB8 copula (90 de-

grees). This particular copula belongs to the family of the Archimedean copula,

which are defined as follows :

C(u1, u2) = ϕ[−1]((u1) + ϕ(u2)) (4.25)

where ϕ : [0, 1] → [0,∞] is a continuous strictly decreasing convex function such

that ϕ(1) = 0 and ϕ[−1] is the pseudo-inverse :

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ (0)

0, ϕ(0) ≤ t ≤ ∞
(4.26)

Moreover ϕ is called generation function of the copula C.

The BB8 copula, also known as Joe-Frank, is an Archimedean copula with two
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parameters, θ and δ. The 90 degree rotation is needed since it allows the he

modeling of negative dependence which is not possible with the standard non-

rotated version.

Let’s take c(u1, u2) as copula density, thus the densities of the rotated version of

this copula is given by c90 = c(1− u1, u2).
The generation function has the following structure:

ϕ(t) = − log

[
1− (1− δt)θ

1− (1− δ)θ

]
(4.27)

where θ ∈ (−∞,−1] and δ ∈ [−1, 0).

Below, Table 4.2 , it is shown the summary of the estimated copula :

Family θ δ τ AIC

30 −6 −0.13 −0.08 −37213.69

Table 4.2: Copula characteristics TT dataset

where τ is the value of Kendall’s tau computed along with the copula.

After the family has been chosen the next step consists in choosing of the marginal

that has to be used in order to create the random generator for the joint distribu-

tion.

I have decided to try with three different choices:

• uniform marginals : U [0, 1],

• beta marginal : B(α, β),

• non parametric marginals.

The parameters in the beta distribution were computed by transforming the mean

and the variance of the two cosine distributions into the parameters requested by

a beta random variable.

The non parametric marginals, instead, were created by using a spline in order to

get an approximation of the marginal distributions.

Below, Figures 4.12, 4.14, 4.16, show the 3D histograms and , Figures 4.13, 4.15,

4.17, the contour plots.
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Figure 4.12: Histogram of the distribution (TT), Uniform marginals

Figure 4.13: Image of the distribution (TT), Uniform marginals
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Figure 4.14: Histogram of the distribution (TT), Beta marginals

Figure 4.15: Image of the distribution (TT), Beta marginals
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Figure 4.16: Histogram of the distribution (TT), NonParam marginals

Figure 4.17: Image of the distribution (TT), NonParam marginals
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As you can see the non parametric method is able to simulate almost correctly

the joint distribution related to this dataset (see Figure 4.8).

As regards the estimation made by using the uniform marginals, the behaviour is

almost correctly estimated, except for the peak in the north-west corner, which is

not replicated in the results obtained.

Instead, the simulation obtained with Beta marginals is not able to replicate the

original distribution.

In addition to those three results I have decided also to test the two non para-

metric method previously mentioned, Subsection 4.3.2, i.e Mirror-Reflection and

Transformation method.

Below, Table 4.3, shows the summary of the fitted models:

τ AIC BIC

MR −0.056 −31654.95 −31430.16

T −0.055 −32367.41 −32019.28

Table 4.3: Non Parametric Copula TT dataset

Below, Figures 4.18, 4.20, there are histograms of the estimates and, Figures

4.19, 4.21 , the contour plots.
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Figure 4.18: Histogram of the distribution (TT), MR method

Figure 4.19: Image of the distribution (TT), MR method
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Figure 4.20: Histogram of the distribution (TT), T method

Figure 4.21: Image of the distribution (TT), T method
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As expected by looking at Table 4.3, the estimated are very similar. In par-

ticular they show the same behavior as the simulation made with the Uniform

marginals, i.e an adequate estimate of the general pattern and the inability to

recreate the aforementioned peak in the north-west corner.

4.3.4 Cuts

Below I will show the results obtained in the analysis of the cut dataset, which are

shown in Subsection 2.4.2.

Below, Figures 4.22, 4.24, 4.26, 4.28, 4.30 , you can find the 3D histograms and,

Figures 4.23, 4.25, 4.27, 4.29, 4.31, the contour plot of the joint distribution built

starting from the marginals, cos θe and cos θµ, as before.

Figure 4.22: Histogram of the distribution (LL)
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Figure 4.23: Image of the distribution (LL)

Figure 4.24: Histogram of the distribution (LT)
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Figure 4.25: Image of the distribution (LT)

Figure 4.26: Histogram of the distribution (TL)
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Figure 4.27: Image of the distribution (TL)

Figure 4.28: Histogram of the distribution (TT)
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Figure 4.29: Image of the distribution (TT)

Figure 4.30: Histogram of the distribution (noHiggs)
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Figure 4.31: Image of the distribution (noHiggs)

The analysis will follow the procedure of the previous one, thus the first step

will be the analysis of the independence of the distributions’ variables of interest.

I have decided to compare the p-value of the same tests used before, so Kendall’s

Rank Correlation test ad Hoeffding’s Independece test.

Below, Table 4.4, you can see the results.

LL LT TL TT

Kendall 0.25884 0.50551 0.45172 0.00000

Hoeffding 0.10544 0.14436 0.20984 0.00000

Table 4.4: P-value of the independence test

The conclusion are the same found in the previous case, i.e the independence of

the marginals in the first three cases and the presence of a dependence relationship

in the Transversal-Transversal polarization datasets and in the Non-Polarized one,

i.e noHiggs.
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I have used once again the copula theory in order to evaluate the joint distribution.

As before, since in case of independence the use of Copulas is useless, I have

analyzed with it only the datasets that do have dependent marginals.

I have used the same techniques as before: firstly the selection of the fittest family

and then the simulation of the parametric copula by relying on the same families

for the marginals.

Below, Table 4.5, shows the statistics for the chosen family, once again the BB8

copula, 90 degrees rotation.

Family θ δ τ AIC

30 −3.15 −0.26 −0.08 −17298.27

Table 4.5: Copula characteristics Cut TT dataset

Below, as before, there are the histograms and contour plots, Figures 4.32,

4.34, 4.36 , made by relying on the parametric algorithms.

Figure 4.32: Histogram of the distribution (TT), Uniform marginals
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Figure 4.33: Image of the distribution (TT), Uniform marginals

Figure 4.34: Histogram of the distribution (TT), Beta marginals
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Figure 4.35: Image of the distribution (TT), Beta marginals

Figure 4.36: Histogram of the distribution (TT), NonParam marginals
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Figure 4.37: Image of the distribution (TT), NonParam marginals

As in the previous analysis seems that the method that is able to replicate the

behavior shown in Figure 4.28 is the one in which I have used the non parametric

marginals.

Regarding the other two estimates, they are not able to recreate completely the

target distribution. The Uniform marginals seems not to be able to concentrate

enough mass in the north-west corner, and the Beta marginals are simply ineffi-

cient.

Moreover I have tested also the non parametric copulas, using the same method

presented before.

Below, Table 4.6, there are shown the summary of the fitted models:

τ AIC BIC

MR −0.064 −18864.2 −18694.68

T −0.055 −17340.83 −17202.23

Table 4.6: Non Parametric Copula Cut TT dataset
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Below, Figures 4.38, 4.40, there will be listed the histograms and, Figures 4.39,

4.41, the contour plots.

Figure 4.38: Histogram of the distribution (TT), MR method
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Figure 4.39: Image of the distribution (TT), MR method

Figure 4.40: Histogram of the distribution (TT), T method
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Figure 4.41: Image of the distribution (TT), T method

Both the estimates seems to show the same pattern, i.e the behaviour for the

most of the domain is similar to the original, with the exception of the aforemen-

tioned peak in the north-west corner.
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Chapter 5

Determination of the cross-section

The fifth chapter deals with the estimation of the unpolarized signal, i.e the bi-

variate distribution evaluated on the noHiggs datasets and the comparison with

the reconstructed Standard Model dataset.

5.1 Linear Regression

As mentioned in the outline of the thesis, the last chapter will show the estimate

found for the non-polarized. The bivariate distribution is found by computing the

cosine of θe and θmu, respectively for the W− and W+ boson, starting from the

dataset made with the unpolarized event.

As told before, this signal can be computed by a linear combination of the four

possible final polarized states of the W boson pair: transverse-transverse (TT),

longitudinal-longitudinal (LL), transverse-longitudinal (TL) and longitudinal-transverse

(TL), thus the signal can be evaluated as follows:

fMNP (x, y) =
∑

i,j=0,T

αMij f
M
ij (x, y) + αMI f

M
I (x, y) (5.1)

where x = cos θe and y = cos θµ.

After obtaining the estimated for each bivariate densities, Section 4, I was finally

able to compute the aforementioned distributions.

Since the signal is a linear combination of the three polarized distribution plus

an interference term, the easiest way to reach the goal is to fit a linear regression

model in order to evaluate the four coefficients, αMij , using the estimated found as

regressors.

It is important to remark that the coefficients are normalized with respect to the



cross-section of the unpolarized events.

Since the covariates and the response are matrices, in order to avoid computational

complications, I have decided to transform them into vector, and after having fit-

ted the models, to build them up again as matrices, so that I could be able to

replicate the real form of the output variable to compare them with the data com-

puted from the noHiggs datasets.

Moreover since I have found more than one estimate of the TT distribution I have

decided to test them all as covariate, i.e I have fitted five linear models using as co-

variates the estimations carried out from the previous analysis and I have switched

the covariates related to the estimation obtained regarding the TT dataset. This

means that each of the models will have the same three first covariates (xLL, xLT,

xTL) that are related to the dataset in which it is shown an independence between

the marginal distributions, see Table 4.1 for more details, and a forth covariate

(xTT) related to one of the different estimations obtained by using the results

concerning the Copulas.

After that, I have compared these models in terms of Mean Squared Error, Akaike

Information Criterion and Bayesian Information Criterion in order to select the

best model.

5.1.1 Complete data results

Below, Tables 5.1, you can find the summary of the main characteristics of the

estimated coefficients for each one of the models fitted:

NonParam Uniform Beta MR T

MSE 0.002008 0.002123 0.002524 0.002257 0.002251

AIC −33718.40 −33162.78 −31432.31 −32546.84 −32573.22

BIC −33682.35 −33126.73 −31396.26 −32510.79 −32537.17

Table 5.1: Statistics from the fitted models : Complete dataset

As expected, the best method is the one relying on the Non Parametric marginals,

despite there is a small difference between the evaluated values.

Below, Tables 5.2, there are the statistics regarding the coefficients of the selected

linear model:

74



Coefficients Estimate Std.Error t value p-value

αLL −0.121573 0.003517 −34.56 < 2e− 16

αLT 0.387242 0.003752 103.22 < 2e− 16

αTL 0.425659 0.003459 123.06 < 2e− 16

αTT 0.315849 0.003921 80.56 < 2e− 16

Table 5.2: Estimated Coefficients for noHiggs: Complete dataset

Below, Figure 5.1, there is shown the histogram of the fitted distribution from

the regression model, and, Figure 5.2, there is the contour plot of the same fitted

values, remembering that these estimation refers to the complete dataset, i.e the

one without any cut applied.

Figure 5.1: Histogram of the Estimated Distribution: Complete dataset
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Figure 5.2: Image of the Estimated Distribution: Complete dataset

5.1.2 Cut data results

I have replicated the same analysis also for the Cut dataset, where the cuts are

shown in Subsection 2.4.2.

Therefore, firstly, will be shown a Table regarding the estimation carried out from

five different linear regression models in which, as before, the only covariate that

changes is the one related to the TT dataset (xTT), since I want to test the

goodness of the different estimations (see Subsection 4.3.4).

Below, Table 5.3, you can see the comparison of some statistics of the fitted model:

NonParam Uniform Beta MR T

MSE 0.000433 0.001829 0.001709 0.001872 0.001867

AIC −49062.29 −34649.46 −35326.97 −34418.03 −34446.69

BIC −49026.24 −34613.40 −35290.92 −34381.98 −34410.64

Table 5.3: Statistics from the fitted models: Cut dataset
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As expected the best model, in terms of all the statistics computed, is the one

built by using the Non Parametric marginals.

The analysis will follow, using the regression model selected.

Below, Tables 5.4, there are the results obtained for the selected model:

Coefficients Estimate Std.Error t value p-value

αLL 0.004820 0.002115 2.278 0.0227

αLT 0.301055 0.002113 142.493 < 2e− 16

αTL 0.276960 0.002153 128.611 < 2e− 16

αTT 0.430845 0.002158 199.645 < 2e− 16

Table 5.4: Estimated Coefficients for noHiggs: Cut dataset

Below, Figure 5.3, it is shown the histogram of the fitted distribution from

the regression model, and, Figure 5.4, there is the contour plot of the same fitted

values.

Figure 5.3: Histogram of the Estimated Distribution: Cut dataset
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Figure 5.4: Image of the Estimated Distribution: Cut dataset

5.2 Comparison with the SM dataset

In order to evaluate the goodness of the estimated coefficients, I have decided to

reconstruct the Standard Model dataset.

Therefore, since the data were not available, I have built the dataset starting

from the value of the cross-sections given with the LHE files and the datasets

characterized by the double polarization (see Section 4.1).

Since by (5.1), the unpolarized signal is described by the sum of the different

polarized signal, I have extracted from each of the polarized datasets a certain

amount of samples.

The size of these extractions is given by the percentage of the cross-section with

respect to the normalized total cross-section.

Below, Table 5.5, you can see the aforementioned percentages:
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LL LT TL TT

Cross-section percentage 0.05115813 0.16321047 0.17049171 0.61513969

Table 5.5: Cross-section percentages

The analysis are made with the complete and the data with the cut applied

(see Subsection 2.4.2).

5.2.1 Complete data comparison

Therefore, by using the above results, I have built the SM dataset.

Below you can see the histogram, Figure 5.5, and the contour plot, Figure 5.6, of

the distribution.

Figure 5.5: Histogram of the distribution (SM)
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Figure 5.6: Image of the distribution (SM)

Once I have built the model I have used this distribution as response variable

in the linear regression model, using the same covariates as before.

I have fitted the model using only the best estimate of the Transversal-Transversal

distribution, i.e the one carried out with non parametric marginals.

Below, Table 5.6, you can see the results obtained:

Coefficients Estimate Std.Error t value p-value

αLL −0.192109 0.003796 −50.61 < 2e− 16

αLT 0.408629 0.004049 100.93 < 2e− 16

αTL 0.451037 0.003733 120.83 < 2e− 16

αTT 0.340475 0.004231 80.47 < 2e− 16

Table 5.6: Estimated Coefficients for SM: Complete dataset

Below you can see the histogram, Figure 5.7, and the contour plot, Figure 5.8,

of the distribution.
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Figure 5.7: Histogram of the Estimated Distribution (SM): Complete dataset

Figure 5.8: Image of the Estimated Distribution (SM): Complete dataset
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By looking at the results and comparing them with the ones obtained by using

the noHiggs dataset, it seems that all the estimates are very similar and they share

the same behavior.

However, in both the cases, the coefficients related to the longitudinal-longitudinal

polarized dataset (αLL) are simply not correct.

In fact all the estimates should be at least positive and, in general, should be

similar to the results show in Table 5.5.

Therefore this result highlights an error of the estimations carried out from the

fitted linear regression model.

5.2.2 Cut data comparison

The same analysis were replicated for the Cut data.

As before, I have extracted the number of samples suggested by the percentage of

the cross-section from the polarized datasets and built the Standard Model dataset

for the Cut data.

Below you can see the histogram, Figure 5.9, and the contour plot, Figure 5.10, of

the distribution estimated from the linear model.

Figure 5.9: Histogram of the distribution (SM)
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Figure 5.10: Image of the distribution (SM)

As before, I have fitted the model using only the best estimate of the Transversal-

Transversal distribution, i.e the one carried out with non parametric marginals.

Below, Table 5.7, you can see the results obtained :

Coefficients Estimate Std.Error t value p-value

αLL 0.078364 0.002249 34.85 < 2e− 16

αLT 0.236443 0.002246 140.18 < 2e− 16

αTL 0.225829 0.002289 132.89 < 2e− 16

αTT 0.474931 0.002294 207.04 < 2e− 16

Table 5.7: Estimated Coefficients for SM: Cut dataset

Below you can see the histogram, Figure 5.11, and the contour plot, Figure

5.12, of the distribution estimated from the linear model.
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Figure 5.11: Histogram of the Estimated Distribution (SM): Complete dataset

Figure 5.12: Image of the Estimated Distribution (SM): Cut dataset
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By comparing these estimates with the one found by using the noHiggs dataset

(Table 5.4), it seems that, using the two different response variable, the estimates

do not show substantial modifications: all the estimates are positive, they seems

to follow the cross-section percentages and they show the same behavior between

them.

Thus it seems reasonable to conclude that, regarding the Cut dataset, the linear

model is able to give an accurate estimate of the bivariate distributions.
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Chapter 6

Conclusions

As regarding the first part, the choice of the free knot splines method seems very

helpful in order to estimate the distributions of the invariant mass, but also the

kernel density estimation approach has been proved to be valuable. Both the pack-

ages freeknotsplines[26] and KernSmooth[29] give us promising results, either in

terms of goodness of fit and computational time, where the second package excels.

The main issues with that part of the work was related to the selection of the

quarks decaying from the boson, distinguishing them from the other couple, not

relevant for these purposes.

By looking at the results, both plots and statistical tests used, seems that, in gen-

eral, the methods were able to select the right pair of jets, i.e we can find in the

computed distributions three peaks, corresponding to the mass of the three known

bosons, W,Z, Higgs, highlighting the fact that the methods are able to correctly

select the couple of quarks coming from the decay of the boson.

The only issues are shown with the third method and the QCD dataset, where it

is shown that the algorithm fails to reach the goal of the analysis.

However the result shown is interesting for a purpose different than the one in-

tended. In fact, besides claim that the transversal momentum is not able to divide

correctly the couple of jets, it shows that the pt of the products of the decay boson

vector is basically higher in the case of signal, while this is not always the higher

in the case of noise. This could be an indirect way to say that we have a variable

that is able to distinguish the noise signal.

Thus, despite the inefficiency of the algorithm, this could lead to a new instru-

ments that can be used for separating the signal from the contamination one.

One other issues was the computational time regarding the selection of the pair

couple. All four methods take very long time to complete the algorithms, even



relying on a parallel version of them. I think that one possibility is to write down

the code on a different language such as C++, in order to create the right object

that could be able to store correctly the data and computes all the calculations

relying on a MPI version of the problem, in order to speed up the process. A

different solution could be to implement with RSpark the function needed.

The main goal of the second part of the thesis was to correctly estimate the un-

polarized signal and the estimation of the cross-section related to them.

All the analysis were made by considering the decay of each of the boson that

characterized the process, thus this leads to a statistical analysis with bivariate

distributions, in which the marginal distributions are the cosine of the polar angle

for the electron and the muon, i,e the particles in which the W− and the W+

naturally decay.

In order to estimate the joint distribution between the variables of interest I have

used Copula’s theory, which is a technique used to estimate joint distributions.

Both the packages copula[11] and VineCopula[23] are reliable tools to this analy-

sis, since they provided a large sample of functions useful to select the best copula

family and establish the goodness of fit of the selected family. For these particular

datasets, it was difficult to find a estimation that could simulate the correct be-

havior of the target distributions, given the unusual marginal distributions. How-

ever the use of non parametric marginals seems to overcome this difficulty. The

kdecopula[16], despite the fact that they relay on a non parametric approach, has

shown the same difficulty remarked before for the other packages. In addition to

this it was not efficient in terms of computational time, since the functions need

all the data used at the same time, leading to several hours of computations.

The estimation of the cross-section gives us conflicting results.

As regards the Cut data, all the estimate seems to be reliable and also the com-

parison between the nohiggs dataset and the Standard Model dataset gives us

very similar results.

Instead, the analysis made on the complete data, highlight an important error

in the estimation of the coefficients, despite the goodness of the statistics use to

evaluate the models. All the coefficients should be similar to the cross-section

percentage given by the double polarized datasets, but this is not shown for the

coefficients related to the LL dataset (αLL). This coefficients is actually negative

which is a nonsense for the analysis that were made. This results is shown in each

model fitted, for both the noHiggs and the SM dataset.

This could lead us to use another approach, different from the standard linear
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regression model, in order to correctly estimate the cross-sections.
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Appendix A

Figures

In Appendix A, I will list a series of plots that were not introduced during the

chapter before (see Subsection 3.2.2), in order to make more linear the elaborate

and because there were not meaningful to the description of the work.

Figure A.1: Invariant Mass Muonic-Lepton couple (EWK)



Figure A.2: Invariant Mass Distribution (EWK): Method 1

Figure A.3: Invariant Mass Distribution (EWK): Method 2
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Figure A.4: Invariant Mass Distribution (EWK): Method 3

Figure A.5: Invariant Mass Distribution (EWK): Method 4
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Figure A.6: Invariant Mass Muonic-Lepton couple (QCD)

Figure A.7: Invariant Mass Distribution (QCD): Method 1
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Figure A.8: Invariant Mass Distribution (QCD): Method 2

Figure A.9: Invariant Mass Distribution (QCD): Method 3
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Figure A.10: Invariant Mass Distribution (QCD): Method 4

Figure A.11: Invariant Mass Muonic-Lepton couple (EWK +QCD)
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Figure A.12: Invariant Mass Distribution (EWK +QCD): Method 1

Figure A.13: Invariant Mass Distribution (EWK +QCD): Method 2
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Figure A.14: Invariant Mass Distribution (EWK +QCD): Method 3

Figure A.15: Invariant Mass Distribution (EWK +QCD): Method 4
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Figure A.16: Invariant Mass Distribution Total System (EWK) : Method 1

Figure A.17: Invariant Mass Distribution Total System (EWK) : Method 2
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Figure A.18: Invariant Mass Distribution Total System (EWK) : Method 3

Figure A.19: Invariant Mass Distribution Total System (EWK) : Method 4
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Figure A.20: Invariant Mass Distribution Total System (QCD) : Method 1

Figure A.21: Invariant Mass Distribution Total System (QCD) : Method 2
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Figure A.22: Invariant Mass Distribution Total System (QCD) : Method 3

Figure A.23: Invariant Mass Distribution Total System (QCD) : Method 4
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Figure A.24: Invariant Mass Distribution Total System (EWK +QCD) : Method 1

Figure A.25: Invariant Mass Distribution Total System (EWK +QCD) : Method 2
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Figure A.26: Invariant Mass Distribution Total System (EWK +QCD) : Method 3

Figure A.27: Invariant Mass Distribution Total System (EWK +QCD) : Method 4
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Appendix B

Codes

In Appendix B, I will show all the main functions needed to realized described in

the thesis.

Firstly I will show the code used as parser, that uses a simple script made on

Python[22] and then the main part of the code realized with R[19] (see Section

2.1.1).

The second script will list all the function used for the computation of the variables

of interest used in the analysis (see Section 2.2.1).

The third script will include the functions in the third Chapter 3.

The forth script will introduced the analysis made on the second part of the elab-

orate (see Chapter 4).

1 f i = open ( ’ t o t a l . l he ’ , ’ r ’ )

fo1 = open ( ’ tenth1 . txt ’ , ’w ’ )

3 f o2 = open ( ’ tenth2 . txt ’ , ’w ’ )

fo3 = open ( ’ tenth3 . txt ’ , ’w ’ )

5 f o4 = open ( ’ tenth4 . txt ’ , ’w ’ )

fo5 = open ( ’ tenth5 . txt ’ , ’w ’ )

7 f o6 = open ( ’ tenth6 . txt ’ , ’w ’ )

fo7 = open ( ’ tenth7 . txt ’ , ’w ’ )

9 f o8 = open ( ’ tenth8 . txt ’ , ’w ’ )

fo9 = open ( ’ tenth9 . txt ’ , ’w ’ )

11 fo10 = open ( ’ tenth10 . txt ’ , ’w ’ )

13 i t = 0 ;

f o r l i n e in f i . r e a d l i n e s ( ) :

15 i f ”<event>” in l i n e :

i t +=1

17 cont inue

e l i f ”</event>” in l i n e :

19 cont inue

e l i f ”#pdf ” in l i n e :

21 cont inue



e l i f ”Les” in l i n e :

23 cont inue

e l i f ”<weights>” in l i n e :

25 cont inue

e l i f i t > 0 and i t <=400000:

27 f o1 . wr i t e ( s t r ( i t ) + l i n e )

e l i f i t > 400000 and i t <=800000:

29 f o2 . wr i t e ( s t r ( i t ) + l i n e )

e l i f i t > 800000 and i t <=1200000:

31 f o3 . wr i t e ( s t r ( i t ) + l i n e )

e l i f i t > 1200000 and i t <=1600000:

33 f o4 . wr i t e ( s t r ( i t ) + l i n e )

e l i f i t > 1600000 and i t <=2000000:

35 f o5 . wr i t e ( s t r ( i t ) + l i n e )

e l i f i t > 2000000 and i t <=2400000:

37 f o6 . wr i t e ( s t r ( i t ) + l i n e )

e l i f i t > 2400000 and i t <=2800000:

39 f o7 . wr i t e ( s t r ( i t ) + l i n e )

e l i f i t > 2800000 and i t <=3200000:

41 f o8 . wr i t e ( s t r ( i t ) + l i n e )

e l i f i t > 3200000 and i t <=3600000:

43 f o9 . wr i t e ( s t r ( i t ) + l i n e )

e l i f i t > 3600000 and i t <=4000000:

45 fo10 . wr i t e ( s t r ( i t ) + l i n e )

f i . c l o s e ( )

47 f o1 . c l o s e ( )

fo2 . c l o s e ( )

49 f o3 . c l o s e ( )

fo4 . c l o s e ( )

51 f o5 . c l o s e ( )

fo6 . c l o s e ( )

53 f o7 . c l o s e ( )

fo8 . c l o s e ( )

55 f o9 . c l o s e ( )

fo10 . c l o s e ( )
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c r e a t e csv f i l e complete <− f unc t i on ( path , name , save , t o t a l , p a r t i t i on , part , big ,

smal l ) {
2 i f ( . Platform$OS. type != ”unix ” ) stop ( ”Linux requ i r ed ! ” )

# se t the working d i r e c t o r y

4 setwd ( path )

# check i f the f i l e s needed f o r the ope ra t i on s are in the cur rent d i r e c t o r y

6 i f ( ! f i l e . e x i s t s ( ” d i v i d e t o t a l . py” ) & ! f i l e . e x i s t s ( ” t o t a l . l he ” ) &! f i l e . e x i s t s ( ”

d i v i d e t o t a l 2 . py” ) )

{
8 stop ( ”Miss ing r equ i r ed f i l e s ! ” )

}
10 i f ( mis s ing (name) ) { save = FALSE}

i f ( mis s ing ( part ) ) { pa r t i t i o n = FALSE}
12 i f ( ( t o t a l == TRUE) & ( p a r t i t i o n == TRUE) ) { stop ( ”Only one opt ion i s a v a i l a b l e in

one execut ion ” ) }
i f ( ( smal l == TRUE) & ( big == TRUE) ) { stop ( ”Only one opt ion i s a v a i l a b l e in one

execut ion ” ) }
14 i f ( mis s ing ( t o t a l ) ) { t o t a l = FALSE}

i f ( mis s ing ( p a r t i t i o n ) ) { pa r t i t i o n = FALSE}
16 # crea t e the p a r t i t i o n o f the ∗ . l h e f i l e

p r i n t ( ”Bui ld ing . txt f i l e s ” )

18 d iv id e t o t a l ( big , smal l )

# c r ea t e and save the complete datase t

20 i f ( t o t a l == TRUE)

{
22 data f i l e <− c ( ” tenth1 . txt ” , ” tenth2 . txt ” , ” tenth3 . txt ” , ” tenth4 . txt ” , ” tenth5 . txt

” ,

” tenth6 . txt ” , ” tenth7 . txt ” , ” tenth8 . txt ” , ” tenth9 . txt ” , ” tenth10 .

txt ” )

24 datase t <− complete data ( data f i l e )

i f ( save == TRUE) { save ( f i l e = paste0 (name , ” . RData” ) , datase t ) }
26 }

28 i f ( p a r t i t i o n == TRUE)

{
30 data f i l e <− paste0 ( ” tenth ” , part , ” . txt ” )

datase t <− read tenth ( data f i l e )

32 i f ( save == TRUE) { save ( f i l e = paste0 (name , ” . RData” ) , datase t ) }
}

34 # e l im ina t e the sma l l e s t f i l e c r ea ted

opt ions (warn = −1 )

36 pr in t ( ”De l e t ing . txt f i l e s ” )

f i l e . remove ( ” tenth1 . txt ” , ” tenth2 . txt ” , ” tenth3 . txt ” , ” tenth4 . txt ” , ” tenth5 . txt ” ,

38 ” tenth6 . txt ” , ” tenth7 . txt ” , ” tenth8 . txt ” , ” tenth9 . txt ” , ” tenth10 . txt ” )

opt ions (warn = 1)

40 r e turn ( datase t )

}
42 d iv id e t o t a l <− f unc t i on ( big , smal l ) {

# the func t i on c a l l s the pyhton s c r i p t used d iv id e the . ∗ l h e f i l e i n to ∗ . tx t
f i l e s

44 # big : noHiggs event

# smal l : p o l a r i z ed event

46

i f ( b ig == TRUE) { r e t i c u l a t e : : py run f i l e ( ” d i v i d e t o t a l . py” ) }
48 i f ( smal l == TRUE) { r e t i c u l a t e : : py run f i l e ( ” d i v i d e t o t a l 2 . py” ) }
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}
50 read tenth <− f unc t i on ( f i l e ) {

# the func t i on reads the uncomplete ∗ . tx t f i l e and ex t r a c t s the data that w i l l

be used

52

# read the f i l e c r e a t e with python ( ∗ . tx t )
54 df <− data . t ab l e : : f r e ad ( f i l e , f i l l =TRUE)

# se t the comlumns names

56 colnames ( df )<− c ( ”EVENT” , ”IDUP” , ”ISTUP” , ”MOTHUP1” , ”MOTHUP2” , ”ICOLUP1” , ”ICOLUP2” ,

”Px” , ”Py” , ”Pz” , ”E” , ”M” , ”VTIMUP” , ”SPINUP” )

58 # remove the l i n e s with NA

df <− df [ complete . c a s e s ( df ) , ]

60 df <− as . data . frame ( df )

# s e t the r i g h t order o f the columns

62 df <− df [ , c ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 1 ) ]

r e turn ( df )

64

}
66 complete data <− f unc t i on ( f i l e ) {

# the func t i on w i l l take a l l the p a r t i a l f i l e s c r e a t e with python an w i l l r e turn

the complete datase t

68 data l i s t <− l i s t (NA)

data l i s t <− l app ly ( f i l e , read tenth )

70 datase t <− do . c a l l ( rbind , data l i s t )

r e turn ( as . data . frame ( datase t ) )

72 }
help par s e r complete <− f unc t i on ( ) {

74 pr in t ( ”Create csv f i l e complete <− f unc t i on ( path , name , save , t o t a l , p a r t i t i on , part

, big , smal l ) ” )

p r i n t ( ”The func t i on w i l l c r e a t e a readab le datase t from the ∗ l h e f i l e s ” )

76 pr in t ( ” In order to use t h i s f unc t i on you must have three f i l e s in the cur rent

d i r e c t o r y : ” )

p r i n t ( ” 1 . d i v i d e t o t a l . py ( i t s p l i t s the main ∗ l h e f i l e s in 10 par t s ) ” )

78 pr in t ( ” 2 . d i v i d e t o t a l 2 . py ( i t s p l i t s the main ∗ l h e f i l e s in 5 par t s ( to be used

f o r po l a r i z ed datase t ) ) ” )

p r i n t ( ” 3 . t o t a l . l he ” )

80 pr in t ( ”−−−−−−−−−−−−−−−−−−Input Var iab les−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
p r i n t ( ” Input v a r i a b l e s : ” )

82 pr in t ( ”path : working d i r e c t o r y to be s e t ” )

p r i n t ( ”name : name choose f o r the f i l e ( i f save enabled ) ” )

84 pr in t ( ” save : enab l e s save opt ion ” )

p r i n t ( ” t o t a l : enab l e s the c r e a t i on o f the complete datase t ” )

86 pr in t ( ” p a r t i t i o n : enab l e s the c r e a t i on o f 1 o f the p a r t i t i o n c rea ted with

python ” )

p r i n t ( ” part : name o f the part to be saved” )

88 pr in t ( ” big : used only f o r the b i g g e s t datase t ” )

p r i n t ( ” smal l : f o r sma l l e r dataset s , p o l a r i z ed ones ” )

90 pr in t ( ”−−−−−−−−−−−−−−−−−−Output Var iab les−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
p r i n t ( ” datase t : the datase t converted from the ∗ . l h e f i l e ” )

92 pr in t ( ”name . RData : the datase t w i l l be saved ( i f save == TRUE)” )

p r i n t ( ”−−−−−−−−−−−−−−−−−−Packages needed−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” )
94 pr in t ( ” 1 . r e t i c u l a t e ( python . load ( ) ) ” )

p r i n t ( ” 2 . data . t ab l e ( f r ead ( ) ) ” )

96 }
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normP<− f unc t i on ( df ) {
2 r e turn ( sq r t ( df $Pxˆ2+df $Pyˆ2+df $Pzˆ2) )

}
4

invmass event <− f unc t i on ( df )

6 {
# compute i nva r i an t mass d i s t r i b u t i o n f o r each event

8 mass <− f unc t i on ( . ) r e turn ( sq r t ( ( . $E) ˆ2−(. $Px) ˆ2−(. $Py) ˆ2−(. $Pz) ˆ2) )

vec <− df %>% s e l e c t (E, Px , Py , Pz , EVENT) %>%

10 group by (EVENT) %>%

summarise a l l ( funs (sum) ) %>%

12 mass

14 r e turn ( vec )

}
16

invmass p a r t i c l e <− f unc t i on ( df , ID) {
18 # Compute i nva r i an t mass d i s t r i b u t i o n given a s e t o f p a r t i c l e s

mass <− f unc t i on ( . ) r e turn ( sq r t ( ( . $E) ˆ2−(. $Px) ˆ2−(. $Py) ˆ2−(. $Pz) ˆ2) )

20

i f ( l ength ( ID) >= 5) { stop ( ”Too much p a r t i c l e s reques ted ” ) }
22

i f ( l ength ( ID) == 2)

24 {
vec <− df %>% s e l e c t (E, Px , Py , Pz , EVENT) %>%

26 f i l t e r (EVENT == ID [ 1 ] | EVENT == ID [ 2 ] ) %>%

group by (EVENT) %>%

28 summarise a l l ( funs (sum) ) %>%

mass

30

r e turn ( vec )

32 }
i f ( l ength ( ID) == 3)

34 {
vec <− df %>% s e l e c t (E, Px , Py , Pz , EVENT) %>%

36 f i l t e r (EVENT == ID [ 1 ] | EVENT == ID [ 2 ] | EVENT == ID [ 3 ] ) %>%

group by (EVENT) %>%

38 summarise a l l ( funs (sum) ) %>%

mass

40

r e turn ( vec )

42 }
i f ( l ength ( ID) == 4)

44 {
vec <− df %>% s e l e c t (E, Px , Py , Pz , EVENT) %>%

46 f i l t e r (EVENT == ID [ 1 ] | EVENT == ID [ 2 ] | EVENT == ID [ 3 ] | EVENT == ID [ 4 ] )

%>%

group by (EVENT) %>%

48 summarise a l l ( funs (sum) ) %>%

mass

50

r e turn ( vec )

52 }
}

54
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invmass l im i t <− f unc t i on ( df , l im i t = 80)

56 {
# used to compute the i nva r i an t mass d i s t r i b u t i o n c l o s e r to the s e t l im i t

58 # l im i t i s used to be s e t at 80 ( i nva r i an t mass o f the W boson )

mass <− f unc t i on ( . ) r e turn ( sq r t ( ( . $E) ˆ2−(. $Px) ˆ2−(. $Py) ˆ2−(. $Pz) ˆ2) )

60 vec <− df %>% s e l e c t (E, Px , Py , Pz , COUPLE) %>%

group by (COUPLE) %>%

62 summarise a l l ( funs (sum) ) %>%

mass

64 r e turn ( ( abs ( vec−l im i t ) ) )

}
66

eta <− f unc t i on ( df ) {
68 # Compute Pseudorap id i ty

70 i f ( i s . na ( df ) ) {df <− df %>% complete . c a s e s }
eta <− atanh ( df $Pz/normP( df ) )

72

# Replac ing NaN with 1 (Hp: limPz−−>0 Pz/normP=1)

74

eta [ which ( etavar==”NaN” ) ]<−I n f

76

r e turn ( eta )

78 }

80 t rans mom <− f unc t i on ( df )

{
82 # Compute t r an sv e r s e momentum

84 mom <− f unc t i on ( . ) r e turn ( sq r t ( ( . $Px) ˆ2+(. $Py) ˆ2) )

vec <− df %>% s e l e c t (IDUP, ISTUP,E,Px ,Py , Pz ,EVENT) %>%

86 group by (EVENT) %>%

summarise a l l ( funs (sum) ) %>%

88 mom

90 r e turn ( vec )

}
92

theta <− f unc t i on ( df , eta ) {
94 #Compute Polar ang le

re turn (2 ∗atan ( exp(−eta ) ) ∗ s i gn ( df $Px) )

96 }

98

phi <− f unc t i on ( df ) {
100 #compute azimuthal ang le

re turn ( atan ( df $Px/ df $Py) )

102 }

104 speed<−f unc t i on ( df ) {
# Compute the v e l o c i t y ( beta )

106 r e turn (normP( df ) / df $E)

}
108

gamma <− f unc t i on ( ve l ) {
110 # Compute the r e l a t i v i s t i c f a c t o r (gamma)
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ve l [ ve l >=1] <− 0.99999999999

112 r e turn (1 / sq r t (1− ve l ˆ2) )

}
114

r e s t boson <− f unc t i on ( df , ID)

116 {
# Change frame from Laboratory Rest Frame to Boson Rest Frame

118 i f ( ID == ”plus ” )

{
120 id <− c (−13 ,14)

p r i n t ( ”Computing Boson Rest Frame f o r W+” )

122 }
i f ( ID == ”minus” )

124 {
id <− c (11 ,−12)

126 pr in t ( ”Computing Boson Rest Frame f o r W−” )
}

128 i f ( mis s ing ( ID) ) { stop ( ”ID i s miss ing . You must choose on which Boson you want to

perform the ana l y s i s ! ” ) }

130 boson <− df %>% s e l e c t (IDUP,E, Px , Py , Pz , EVENT) %>%

f i l t e r (IDUP == id [ 1 ] | IDUP == id [ 2 ] ) %>%

132 group by (EVENT) %>%

summarise a l l ( funs (sum) ) %>%

134 as . data . frame %>%

s e l e c t (Px ,Py , Pz ,E)

136

temp<−matrix (NA, nrow=dim( df ) [ 1 ] , nco l=4)

138 windex<−unique ( df $EVENT) ## Let ’ s assume that the re w i l l be always id [ 1 ] or id

[ 2 ]

l en<−l ength ( windex )

140

phiW <−phi ( boson )

142 thetaW <−theta ( boson )

velW <−speed ( boson )

144 gammaW <−gamma(velW )

146 opb <− pboptions ( s t y l e = 1 , char = ”>” )

on . e x i t ( c l o s epb (pb) )

148 pb <− s ta r tpb (min = 0 , max = len )

150 f o r ( i in 1 : l en ) {
setpb (pb , i )

152 ind <− which ( df $EVENT==windex [ i ] )

cos phi <− cos(−phiW [ i ] )

154 s i n phi <− s i n (−phiW [ i ] )

cos theta <− cos(−thetaW [ i ] )

156 s i n theta <− s i n (−thetaW [ i ] )

158 S <− matrix ( c (gammaW [ i ] , 0 , 0 , −velW [ i ] ∗gammaW [ i ] ,

velW [ i ] ∗gammaW [ i ] ∗ s i n theta ∗ cos phi , cos phi ∗ cos theta , s i n phi ,

gammaW [ i ] ∗(− s i n theta ∗ cos phi ) ,

160 −velW [ i ] ∗gammaW [ i ] ∗ s i n theta ∗ s i n phi , −s i n phi ∗ cos theta , cos phi ,

gammaW [ i ] ∗ s i n theta ∗ s i n phi ,

−velW [ i ] ∗gammaW [ i ] ∗ cos theta , s i n theta , 0 , gammaW [ i ] ∗ cos theta )

,
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162 nrow=4, nco l=4,byrow = TRUE)

temp [ ind , ]<−as . matrix ( df [ ind , c ( ”E” , ”Px” , ”Py” , ”Pz” ) ] )%∗%S

164 }

166 i n v i s i b l e (NULL)

168 temp<−as . data . frame ( temp)

colnames ( temp)<−c ( ”E” , ”Px” , ”Py” , ”Pz” )

170 temp<−na . omit ( temp)

temp<−round ( temp , 6 )

172

t1 <− df [ , 1 : 6 ]

174 t2 <− df [ , 1 1 : 1 4 ]

f i n a l <− cbind ( t1 , temp$Px , temp$Py , temp$Pz , temp$E, t2 )

176 colnames ( f i n a l )<−c ( ”IDUP” , ”ISTUP” , ”MOTHUP1” , ”MOTHUP2” , ”ICOLUP1” ,

”ICOLUP2” , ”Px” , ”Py” , ”Pz” , ”E” ,

178 ”M” , ”VTIMUP” , ”SPINUP” , ”EVENT” )

180

r e turn ( f i n a l )

182 }
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pl method <− f unc t i on ( dataset , method name)

2 {
i f ( . Platform$OS. type != ”unix ” ) stop ( ”Linux r equ i r ed ! ” )

4 i f (method != c (1 , 2 , 3 , 4 ) ) { stop ( ”Error : only four method are a v a i l a b l e ” ) }
df <− datase t %>% s e l e c t (IDUP, ISTUP,E, Px , Py , Pz ,EVENT) %>% f i l t e r (ISTUP == 1 ,

abs (IDUP)<13) # only j e t , not l ep tons

6 data l i s t <− l i s t (NA)

data l i s t <− pbapply : : pblapply ( ( unique (method name) ) , f unc t i on (x ) methods ( df , x ) )

8 r e turn ( data l i s t )

10 }
methods <− f unc t i on ( df , method name)

12 {
i f ( mis s ing (method name) ) method name <− c ( ”method1” , ”method2” , ”method3” , ”method4

” )

14 no co r e s <− p a r a l l e l : : detectCores ( ) − 1

c l <− p a r a l l e l : : makeCluster ( no co r e s )

16 p a r a l l e l : : c l u s t e rExpor t ( c l ,

v a r l i s t = c ( ” df ” , ”method name” ,

18 ”method one” , ”method two” , ”method three ” , ”method four ”

) )

r e s u l t <− switch (

20 method name ,

”method1” = pbapply : : pblapply ( c l = c l ,X = unique ( df $EVENTS) , func t i on (x )

method one ( df , x ) ) ,

22 ”method2” = pbapply : : pblapply ( c l = c l ,X = unique ( df $EVENTS) , func t i on (x )

method two ( df , x ) ) ,

”method3” = pbapply : : pblapply ( c l = c l ,X = unique ( df $EVENTS) , func t i on (x )

method three ( df , x ) ) ,

24 ”method4” = pbapply : : pblapply ( c l = c l ,X = unique ( df $EVENTS) , func t i on (x )

method four ( df , x ) )

)

26 p a r a l l e l : : s t opClus t e r ( c l )

}
28 method one <− f unc t i on ( df , i )

{
30 dat <− df %>% f i l t e r (EVENT == i )

check <− t (combn( dat$IDUP, 2 ) )

32 de l t a <− combn( dat$ETA, 2 , d i f f )

max index <− which .max( abs ( de l t a ) )

34 to save <− dat [ which ( dat$IDUP == check [max index , 1 ] | dat$IDUP == check [max

index , 2 ] ) , ]

r e turn ( to save )

36 }
method two <− f unc t i on ( df , i )

38 {
dat <− f i nd event ( df , i )

40 check <− t (combn( dat$IDUP, 2 ) )

range <− 1 : nrow ( check )

42 l l l <− l app ly ( range , f unc t i on (x ) l i n k ( dat , check , x ) )

l l <− do . c a l l ( rbind , l l l ) %>% na . omit ( l l )

44 l <− add couple ( l l )

max index <− invmass event ( l ) %>% which .max

46 to save <− dat [ which ( dat$IDUP == check [max index , 1 ] | dat$IDUP == check [max

index , 2 ] ) , ]
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r e turn ( to save )

48 }
method three <− f unc t i on ( df , i )

50 {
dat <− f i nd event ( df , i )

52 check <− t (combn( dat$IDUP, 2 ) )

range <− 1 : nrow ( check )

54 l l l <− l app ly ( range , f unc t i on (x ) l i n k ( dat , check , x ) )

l l <− do . c a l l ( rbind , l l l ) %>% na . omit ( l l )

56 l <− add couple ( l l )

max index <− t rans mom( l ) %>% which .max

58 to save <− dat [ which ( dat$IDUP == check [max index , 1 ] | dat$IDUP == check [max

index , 2 ] ) , ]

r e turn ( to save )

60 }
method four <− f unc t i on ( df , i )

62 {
dat <− f i nd event ( df , i )

64 check <− t (combn( dat$IDUP, 2 ) )

range <− 1 : nrow ( check )

66 l l l <− l app ly ( range , f unc t i on (x ) l i n k ( dat , check , x ) )

l l <− do . c a l l ( rbind , l l l ) %>% na . omit ( l l )

68 l <− add couple ( l l )

index <− invmass l im i t ( df = l , l im i t = 80) %>% which . min

70 to save <− dat [ which ( dat$IDUP == check [ index , 1 ] | dat$IDUP == check [ index , 2 ] ) , ]

r e turn ( to save )

72 }
l i n k <− f unc t i on ( df , check , i )

74 {
# support func t i on

76 l l <− l i s t (NA)

l l [ [ i ] ] <− df %>% f i l t e r ( df $IDUP == check [ i , 1 ] | df $IDUP == check [ i , 2 ] )

78 l l <− do . c a l l ( rbind , l l )

r e turn ( l l )

80 }
add couple <− f unc t i on ( df )

82 {
# support func ion

84 df <− df [ 1 : 1 2 , ]

i <− rep ( 1 : 6 , each = 2 , l ength . out = 12)

86 df <− df %>% mutate (COUPLE = i )

re turn ( df )

88 }
mixup <− f unc t i on ( df1 , df2 )

90 {
# df1 : complete datase t to be re−s i z e d

92 # df2 : datase t r e l a t e d with a p a r t i c u l a r method

94 df1 <− df1 %>% f i l t e r (IDUP == 13 | IDUP == −14 | IDUP == −13 | IDUP == 14 , ISTUP

== 1) %>%

s e l e c t (IDUP, ISTUP, E, Px , Py , Pz , EVENT)

96 inv <− NA

inv <− rbind ( df1 , df2 ) %>%

98 invmass event

100 r e turn ( inv )
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}
102 p lo t d i s t <− f unc t i on ( item1 , item2 , item3 , item4 , item5 , breaks=100)

{
104 # item1 : lepmass

# item2 : mass1 (method1 )

106 # item3 : mass2 (method2 )

# item4 : mass3 (method3 )

108 # item5 : mass4 (method4 )

110 item <− c ( item1 , item2 , item3 , item4 , item5 )

112 a <− f l o o r (min ( item ) )

b <− c e i l i n g (max( item ) )

114

i f ( a==b) {
116 pass = 0

by = 1

118 } e l s e {
pass <− round ( ( b − a ) /breaks , 3 )

120 by <− seq (a , b , pass )

}
122

l ep <− h i s t ( item1 , breaks=by , p l o t=FALSE, r i g h t=FALSE)

124 m1 <− h i s t ( item2 , breaks=by , p l o t=FALSE, r i g h t=FALSE)

m2 <− h i s t ( item3 , breaks=by , p l o t=FALSE, r i g h t=FALSE)

126 m3 <− h i s t ( item4 , breaks=by , p l o t=FALSE, r i g h t=FALSE)

m4 <− h i s t ( item5 , breaks=by , p l o t=FALSE, r i g h t=FALSE)

128 a s c i s s e <− l ep $mids

i f ( pass==0){ a s c i s s e<− 0}
130

myl i s t<− l i s t ( ” l ep ” = lep , ”m1” = m1, ”m2” = m2, ”m3” = m3, ”m4” = m4, ” a s c i s s e ”

= a s c i s s e )

132

l ep dens <− myl i s t $ l ep $ dens i ty

134 m1 dens <− myl i s t $m1$ dens i ty

m2 dens <− myl i s t $m2$ dens i ty

136 m3 dens <− myl i s t $m3$ dens i ty

m4 dens <− myl i s t $m4$ dens i ty

138

f i n a l <− l i s t ( ” l ep dens” = lep dens , ”m1 dens” = m1 dens , ”m2 dens” = m2 dens ,

140 ”m3 dens” = m3 dens , ”m4 dens” = m4 dens , ” a s c i s s e ” = myl i s t $

a s c i s s e )

re turn ( f i n a l )

142

}
144 mse <− f unc t i on (x , x ) {

n <− 1/ l ength (x )

146 mse <− n∗sum ( ( ( x−x ) ˆ2) )

re turn (mse )

148 } # mean squared e r r o r

zoom <− f unc t i on ( item ) {
150 item <− item [ which ( item > 50 & item < 130) ]

r e turn ( item )

152 }
compare d i s t <− f unc t i on ( dat1 , dat2 , dimsample = 5000 , i t e r = 1000 ,

154 t e s t name = c ( ”EMD” , ” He l l i n g e r ” , ”Kolmogorov−Smirnov” , ”
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Total Var ia t ion ” ) )

{
156 # I t takes two d i s t r i b u t i o n and compare i t with the four choosen d i s t an c e s

158 i f ( . Platform$OS. type != ”unix ” ) stop ( ”Linux requ i r ed ! ” )

i f ( miss ing ( t e s t name) ) t e s t name <− c ( ”EMD” , ” He l l i n g e r ” , ”Kolmogorov−Smirnov” , ”

Total Var ia t ion ” )

160

s e t . seed (22061993)

162

df <− make data ( dat1 , dat2 )

164

no co r e s <− p a r a l l e l : : detectCores ( ) − 1

166 c l <− p a r a l l e l : : makeCluster ( no co r e s )

p a r a l l e l : : c l u s t e rExpor t ( c l , v a r l i s t = c ( ” df ” , ” bstrap d i s t ” , ” eva l d i s t ” ) )

168 d i s t df <− pbapply : : pbsapply ( c l , unique ( 1 : i t e r ) , f unc t i on (x ) bstrap d i s t (x ,

dimsample ) )

p a r a l l e l : : s t opClus t e r ( c l )

170 dd i s t <− apply (pv df , 1 ,mean)

d i s t an c e s <− data . frame ( ” d i s t ance ” = pv )

172 rownames ( d i s t an c e s ) <− t e s t name

return ( t ( d i s t an c e s ) )

174 }

176 make data <− f unc t i on ( dat1 , dat2 )

{
178 d1 <− dat1 %>% f i l t e r (EVENT %in% index ) %>% invmass event %>% zoom

d2 <− dat2 %>% f i l t e r (EVENT %in% index ) %>% invmass event %>% zoom

180

df <− data . frame (x = d1 , y = d2 )

182 r e turn ( df )

}
184 bstrap d i s t <− f unc t i on ( i , dimsample )

{
186 index <− s o r t ( base : : sample ( 1 : dimsample , dimsample , r ep l a c e = TRUE) )

dat <− df [ index , ]

188 pv vec <− sapply ( t e s t name , func t i on (x ) eva l d i s t (x , dat ) )

pv df <− do . c a l l ( rbind , l i s t ( pv vec ) )

190

r e turn (pv df )

192 }
eva l d i s t <− f unc t i on ( t e s t name , df ) {

194 r e s u l t <− switch (

t e s t name ,

196 ”EMD” = earthmovdist : : emdL1( df [ , 1 ] , d f [ , 2 ] ) ,

” He l l i n g e r ” = textmineR : : Ca l cHe l l i ng e rD i s t ( df [ , 1 ] , d f [ , 2 ] ) ,

198 ”Kolmogorov−Smirnov” = s t a t s : : ks . t e s t ( df [ , 1 ] , d f [ , 2 ] , exact = FALSE) $p . value ,

”Total Var ia t ion ” = t o t a l var d i s t ( df [ , 1 ] , d f [ , 2 ] )

200 )

}
202 p lo t s p l i n e s <− f unc t i on ( to plot ,NT) {

# p lo t s the sp l i n e s , f i r s t d e r i va t i v e , second d e r i v a t i v e

204 x11 ( )

par (mfrow=c (3 , 1 ) ,mar=c (6 , 5 , 2 , 1 ) ,mex=0.6 , mgp=c ( 2 . 2 , 0 . 7 , 0 ) , pty=”m” ,

206 f ont . main=1, f ont . lab=1, f ont . ax i s =1, cex . lab =1.3 , cex . ax i s=1)

layout ( matrix ( c ( 1 , 1 , 2 , 3 ) , 2 , 2 , byrow = F) )
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208 p lo t ( to p l o t [ [ 1 ] ] , to p l o t [ [ 2 ] ] , x lab=” Inv . Mass [GeV] ” , ylab=”observed data” )

po in t s ( to p l o t [ [ 1 ] ] , to p l o t [ [ 3 ] ] , type=” l ” , c o l=”blue ” , lwd=2)

210 p lo t ( ab s c i s s a [ 2 : (NT−1) ] , to p l o t [ [ 6 ] ] , x lab=” Inv . Mass [GeV] ” , ylab=” f i r s t

d i f f e r e n c e s x” , type=” l ” )

po in t s ( absc i s s a , to p l o t [ [ 4 ] ] , type=” l ” , c o l=” blue ” , lwd=2)

212 p lo t ( ab s c i s s a [ 2 : (NT−1) ] , to p l o t [ [ 7 ] ] , x lab=” Inv . Mass [GeV] ” , ylab=” second

d i f f e r e n c e s x” , type=” l ” )

po in t s ( absc i s s a , to p l o t [ [ 5 ] ] , type=” l ” , c o l=” blue ” , lwd=2)

214 }
s p e c i f y decimal <− f unc t i on (x , k ) {

216 # he lps to s c e c i f y the number o f dec imals in the r e s u l t s

trimws ( format ( round (x , k ) , nsmal l=k ) )

218 }
a l l s p l i n e <− f unc t i on ( absc i s s a , y , minknot , maxknot , knotnumcrit , degree , to plot ,GoF)

220 {
# cr e a t e s the f r e e knot sp l i n e , e l abo r a t e s the p l o t s and ana lyze s the goodness

o f f i t ( op t i ona l )

222 opt knot <− f i t . s earch . numknots ( absc i s s a , y , minknot = minknot , maxknot = maxknot ,

knotnumcrit = knotnumcrit , degree = degree )

224 Xobs0 <− y

NT <− l ength ( ab s c i s s a )

226 m <− opt knot@degree+1

degree <− opt knot@degree

228

breaks <− c (min ( ab s c i s s a ) , opt knot@optknot ,max( ab s c i s s a ) )

230 ba s i s <− c r e a t e . b sp l i n e . b a s i s ( breaks , norder=m)

func t i ona lPar <− fdPar ( fdob j=bas i s , Lfdobj=m−2, lambda=0)

232

rappincX1 <− (Xobs0 [ 3 :NT]−Xobs0 [ 1 : (NT−2) ] ) / ( ab s c i s s a [ 3 :NT]− ab s c i s s a [ 1 : (NT−2) ] )
234 rappincX2 <− ( ( Xobs0 [ 3 :NT]−Xobs0 [ 2 : (NT−1) ] ) /

( ab s c i s s a [ 3 :NT]− ab s c i s s a [ 2 : (NT−1) ] )−(Xobs0 [ 2 : (NT−1)]−Xobs0 [ 1 : (NT

−2) ] ) / ( ab s c i s s a [ 2 : (NT−1)]− ab s c i s s a [ 1 : (NT−2) ] ) ) ∗2/ ( ab s c i s s a [ 3 : (NT) ]− ab s c i s s a

[ 1 : (NT−2) ] )
236

238 Xss <− smooth . b a s i s ( ab s c i s s a , Xobs0 , func t i ona lPar )

240 Xss0 <− eva l . fd ( absc i s s a , Xss$ fd , Lfd=0)

Xss1 <− eva l . fd ( absc i s s a , Xss$ fd , Lfd=1)

242 Xss2 <− eva l . fd ( absc i s s a , Xss$ fd , Lfd=2)

244

i f ( to p l o t == TRUE)

246 {
t op l o t <− l i s t ( opt knot@x , opt knot@y , Xss0 , Xss1 , Xss2 , rappincX1 ,

rappincX2 , opt knot@optknot )

248 p lo t s p l i n e s ( to p l o t = top lot ,NT = NT)

}
250

i f (Gof == TRUE)

252 {
MSE <− mse( yr , Xss0 )

254 Goodness <− c (MSE, opt knot@GCV, s p e c i f y decimal ( l ength ( opt knot@optknot ) ,0 ) )

names (Goodness ) <− c ( ”MSE” , ” GCV” , ”#Knot” )

256 pr in t ( Goodness )
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}
258

output <− l i s t ( ” f i t ” = Xss0 , ” der1 ” = Xss1 , ” der2 ” = Xss2 ,

260 ”MSE” = MSE, ”GCV” = opt knot@GCV, ”#Knot” = sp e c i f y decimal ( l ength

( opt knot@optknot ) ,0 ) )

262 }
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indep p value <− f unc t i on ( df , i t e r = 10000 , dimsample = 1000 ,

2 t e s t name = c ( ”Pearson” , ”Kendall ” , ”Spearman” , ”Hoe f fd ing

” ) )

{
4 i f ( . Platform$OS. type != ”unix ” ) stop ( ”Linux requ i r ed ! ” )

i f ( any ( t e s t name != c ( ”Pearson” , ”Kendall ” , ”Spearman” , ”Hoe f fd ing ” ) ) )

6 stop ( ”Error : only these four t e s t are can be used ! ” )

i f ( miss ing ( t e s t name) ) t e s t name <− c ( ”Pearson” , ”Kendall ” , ”Spearman” , ”Hoe f fd ing

” )

8

no co r e s <− p a r a l l e l : : detectCores ( ) − 1

10 c l <− p a r a l l e l : : makeCluster ( no co r e s )

p a r a l l e l : : c l u s t e rExpor t ( c l , v a r l i s t = c ( ” df ” , ” bstrap ” , ” eva l pvalue ” ) )

12 pv df <− pbapply : : pbsapply ( c l , unique ( 1 : i t e r ) , f unc t i on (x ) bstrap (x , dimsample ) )

p a r a l l e l : : s t opClus t e r ( c l )

14 pv <− apply (pv df , 1 ,mean)

p value <− data . frame ( ”p value ” = pv )

16 rownames (p value ) <− t e s t name

return ( t (p value ) )

18 }
bstrap <− f unc t i on ( i , dimsample )

20 {
index <− s o r t ( base : : sample ( 1 : dimsample , dimsample , r ep l a c e = TRUE) )

22 dat <− df [ index , ]

pv vec <− sapply ( t e s t name , func t i on (x ) eva l pvalue (x , dat ) )

24 pv df <− do . c a l l ( rbind , l i s t ( pv vec ) )

26 r e turn (pv df )

}
28 eva l pvalue <− f unc t i on ( t e s t name , df ) {

r e s u l t <− switch (

30 t e s t name ,

”Pearson” = s t a t s : : cor . t e s t ( x = df [ , 1 ] , y = df [ , 2 ] , method = ”pearson ” ,

exact = NULL) $p . value ,

32 ”Kendall ” = Kendall : : Kendal l ( df [ , 1 ] , d f [ , 2 ] ) $ s l [ 1 ] ,

”Spearman” = Hmisc : : spearman . t e s t ( x = df [ , 1 ] , y = df [ , 2 ] ) [ 5 ] ,

34 ”Hoef fd ing ” = Hmisc : : hoe f fd ( df [ , 1 ] , d f [ , 2 ] ) $P [ 1 , 2 ]

)

36 }
boot S e l e c t Cop <− f unc t i on ( df , seed , i t e r , dimsample )

38 {
i f ( mis s ing ( seed ) ) seed <− (220061993)

40 i f ( mis s ing ( dimsample ) ) dimsample <− 100000

i f ( miss ing ( i t e r ) ) i t e r <− 2000

42 s e t . seed ( seed )

no co r e s <− p a r a l l e l : : detectCores ( )−1
44 c l <− p a r a l l e l : : makeCluster ( no co r e s )

p a r a l l e l : : c l u s t e rExpor t ( c l = c l , v a r l i s t = c ( ” cy c l e ” , ” df ” , ”BiCopSelect ” ) )

46 fam <− pbapply : : pblapply ( c l = c l ,X = unique ( 1 : i t e r ) , f unc t i on (x ) cy c l e (x ,

dimsample ) )

p a r a l l e l : : s t opClus t e r ( c l )

48 dat <− do . c a l l ( rbind , fam)

f i n a l <− e x i t r e s u l t ( dat )

50 r e turn ( f i n a l )

}
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52 e x i t r e s u l t <− f unc t i on ( df )

{
54 r e turn ( l i s t ( ” fami ly ” = getmode ( df [ , 1 ] ) , ”par” = mean( df [ , 2 ] ) , ” tau” = mean( df

[ , 3 ] ) ,

” se ” = mean( df [ , 4 ] ) , ”p value ” = mean( df [ , 5 ] ) , ” a l l f ami ly ” = df

[ , 1 ] ) )

56 }

58 cy c l e <− f unc t i on ( i , dimsample )

{
60 index <− s o r t ( sample ( 1 : dim( df ) [ 1 ] , s i z e = dimsample , r ep l a c e = TRUE) )

se l ec tedCopu la <− BiCopSelect ( df $u1 [ index ] , d f $u2 [ index ] , i ndep t e s t = TRUE, se =

TRUE, f am i l y s e t = NA, p r e s e l = TRUE)

62

f ami ly <− s e l ec tedCopu la $ fami ly

64 param <− s e l ec tedCopu la $par

param2 <− s e l ec tedCopu la $par2

66 tau <− s e l ec tedCopu la $ tau

se <− s e l ec tedCopu la $ se

68 t e s t s <− s e l ec tedCopu la $p . va lue . i ndep t e s t

70 r e turn ( data . frame ( ” fami ly ” = ( fami ly ) , ”par” = (param) , ”par2” = param2 ,

” tau” = ( tau ) , ” se ” = ( se ) , ”p value ” = ( t e s t s ) ) )

72 }
getmode <− f unc t i on (v ) {

74 uniqv <− unique (v )

uniqv [ which .max( tabu la t e (match (v , uniqv ) ) ) ]

76 }
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qualche semplice pensiero. Ai quali mi é davvero difficile trovare le giuste parole per

descrivere quanto siete stati importanti per me. Voi piú di tutti sapete conoscete
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