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Sommario

Il lavoro presentato in questa tesi si focalizza sul miglioramento di un nuovo
modello numerico, utile per la stima del coefficiente di damping in MEMS iner-
ziali. Questo modello supera quelli già esistenti in letteratura, poiché risulta
essere più accurato, computazionalmente più efficiente e di vasta applicazione.
È da far notare che il nuovo modello è stato formulato a partire da un modello
precedente valido, però, solo per basse frequenze di risonanza, mentre il mo-
dello su cui si è lavorato vale anche per le alte frequenze e può quindi essere
applicato a un esteso range di frequenze.

In questo lavoro, sono stati inizialmente corretti gli errori trovati nella pre-
cedente implementazione, che causano una sottostima della dissipazione. Il
modello perciò è più accurato rispetto al vecchio. In un secondo momento, la
parte di codice inerente alla visibilità delle strutture, viene migliorata imple-
mentando routine aggiuntive che aiutano nel risparmiare tempo computazio-
nale e nel velocizzare il calcolo complessivo delle forze dissipative che agiscono
sulle superfici del MEMS. Dunque il modello presentato risulta essere anche
più efficiente dal punto di vista computazionale, soprattutto se comparato con
quelli presenti in letteratura che fanno uso del metodo Test Particle Monte
Carlo che è un algoritmo lento per natura.

Successivamente viene validato sperimentalmente conducendo due campa-
gne di misure nel Laboratorio di MEMS e microsensori del Politecnico di Mi-
lano, su otto categorie diverse di dispositivi forniti da STMicroelectronics ca-
ratterizzati da differenti frequenze di risonanza e differente distanza verticale
tra MEMS e substrato.

Confronti tra i risultati sperimentali, ottenuti con le due campagne di cui
sopra, e i risultati numerici, forniti sia dal vecchio che dal nuovo modello,
permettono di validare quest’ultimo.



Abstract

The present work focuses on the improvement of a new numerical model for
the prediction of gas damping in inertial MEMS. This model overcomes those
existing in literature, since it results to be more accurate, more computation-
ally efficient and of wide application. Note that it has been formulated starting
from an existing one, which is valid only for low resonance frequencies, while
the model under study holds even at higher frequencies and can be applied to
an extended frequency range.

In this work, errors from the previous implementation, which lead to the
underestimation of damping, are firstly corrected. It is therefore more accu-
rate with respect to the old model. In a second moment, the visibility part of
the code is improved by implementing additional routines, which help in sav-
ing computational time and speeding up the whole computation of damping
forces acting on MEMS surfaces. Therefore the presented model results also
to be more computationally efficient, especially if compared to those existing
in literature which make use of the Test Particle Monte Carlo method, that is
inherently a slow algorithm.

Then it is experimentally validated, by conducting two measurements cam-
paigns in the Laboratory of MEMS and microsensors of Politecnico di Milano,
on eight types of devices provided by STMicroelectronics and characterized by
different resonance frequencies and different vertical gap.

Comparisons between experimental results, obtained from the two cam-
paigns above, and numerical results, provided both by the old model and by
the new one, lead to the validation of the latter.



Chapter 1

Introduction

1.1 Introduction to MEMS

The recent developments in smart electronics are characterized by MEMS:
“MEMS” is the acronym standing for Micro Electro Mechanical Systems. As
the name implies, they are devices composed by electrical and mechanical parts
with characteristic dimension in the order of micrometers (µm). Thanks to
the combination of electrical and mechanical parts, MEMS can easily interact
with the surroundings: this allows the investigation of physical phenomena
such as linear motion, rotation, propagation of acoustic waves, ecc. Indeed
sensors collect information from the environment measuring such phenomena.
Then the electronics processes signals from sensors and guide the actuators in
order to react and control the external environment to achieve a specific goal.

Thus MEMS can be exploited in a large number of situations and nowadays
consumer and automotive are the main sectors for their applications.

Among MEMS sensors, those employed in almost every area are inertial
MEMS: accelerometers and gyroscopes.

In general inertial sensors exploit inertial forces acting on an object to
determine its dynamic behaviour. External forces acting on a body cause an
acceleration (resulting in the displacement of the body) and/or a change of its
orientation (and thus of its angular position).

The same working principle applies for inertial MEMS. Their mechanical

1
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part includes a seismic mass, which is attached to a fixed substrate by means
of anchor points and suspended through springs that are partially free to move
under the action of external forces. The electrical part is instead composed by
electrodes to apply and readout signals.

Then, if an external force moves the suspended frame, its displacement can
be detected by the electrodes and it is thus possible to quantify the force acting
on the device.

1.2 Microfabrication of MEMS devices

Beside the fact that MEMS sensors can be exploited in various fields, as men-
tioned in the previous section, they have a unitary low-cost due to the con-
solidated CMOS-like fabrication technique. This represents a great advantage
since a unitary low cost allows a large-scale production for the same type of
device.

This is indeed the paradigm which the success of microelectronics is based
on: the fabrication of a large number of components on wafer, each one iden-
tical to the others. Therefore the production techniques of these components
should be extremely precise, in order to fabricate micro structures, and re-
peatable, in order to produce a huge number of copies of the same type of
device.

This innovative technique used for the fabrication of 3D and 2D structures
on the micrometer scale is called micromachining and it was introduced by
Peterson in 1982. The structural element which micromachining is based on
is a silicon wafer, usually characterized by a diameter of 25 − 300mm, where
layers of material are deposited or etched. Indeed the creation of moving parts
within planar structures is inevitably linked to removal of materials around
the target object and this explains the need of etching.

Different micromachining techniques have been developed by MEMS com-
panies, but each of these processes is in general characterized by the same
steps: deposition and etching of material.

Since the devices studied in this work are provided by STMicroelectronics,
which uses the ThELMA (Thick Epitaxial Layer for Micro-gyroscopes and
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Accelerometers) surface micromachining process to produce MEMS, a detailed
explanation of this technique is given in the following [1]. As suggested by
the acronym, the ThELMA technique combines variably thick and thin poly-
silicon layers for structures and interconnections, enabling the integration of
accelerometer and gyroscope mechanical elements in a single chip. It consists
of the following steps:

1. First thermal oxidation of the substrate: it occurs at high temperatures
(1100 °C) and in an O2 environment; it is operated on a Silicon substrate
to create a first sacrificial SiO2 layer.

2. Depositation of interconnections: a thin layer of polysilicon is deposited;
it is then selectively etched to create paths, which will later form buried
electrical interconnections to bring signals to the mechanical parts.

3. Second thermal oxidation: it increases the sacrificial layer thickness,
which is selectively etched to give access to electrical interconnections.

4. Epitaxial growth of the structural layer : polysilicon has been grown on
top of the sacrificial layer reaching a 25− 30 µm thickness.

5. Trench etch: the structural layer is deeply etched until the oxide layer
is reached; by means of this process suspended and anchored parts are
created.

6. Etching of the sacrificial layer and metal deposition: it leads to the re-
lease of the suspended structures. Then the metal contact (tipically
alluminium or gold) is deposited to define the access pads. In the end all
the structure is encapsulated by a cap to protect it from the environment.

See Fig.1.1 to better understand each step of the ThELMA micromachining
process.

1.3 The Spring-Mass-Damper Model

Since in most MEMS devices there is the need to measure displacements and
rotations induced by external forces, it is necessary to fix the formalism to
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Figure 1.1: The ThELMA micromachinig process by STMicroelectronics. (1) First thermal
oxidation. (2) Depositation and modellization of interconnections. (3) Second thermal
oxidation. (4) Epitaxial growth of the structural layer. (5) Trench etch. (6) Etching of the
sacrificial layer and metal deposition.

describe the working principle of MEMS. Thus in the following it is provided
a model which is at the basis of the solution of any problem related to MEMS:
the spring-mass-damper model.

First of all it is useful to give a definition of an inertial reference system:
it is a frame where the first Newton’s law applies.

“In an inertial frame of reference, an object either remains at rest or
continues to move at a constant velocity, unless acted upon by a force”.

All inertial frames are coherent one to the others, in the sense that they
are in a state of constant, rectilinear motion one another. Physical laws take
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the same form in all inertial frames.
When dealing with non-inertial reference frames instead, the laws of physics

depend upon the particular frame of reference and the usual physical forces
must be supplemented by fictitious forces.

Thus in practical situations Earth can be considered as the inertial (ab-
solute) reference frame; the package where the device is mounted in (such as
the mobile phone, the car...) as the non-inertial (relative) reference frame;
while the suspended mass, which is partially free to move relative to the non-
inertial frame, can be considered as the sensing element reference frame and is
approximated with a point-like mass.

The two reference frames and the point-like mass newly introduced can be
schematized by the following quantities (see Fig.1.2):

• Oxyz: inertial (absolute) reference frame;

• O′x′y′z′ : non-inertial (relative) reference frame;

• P: point-like mass;

• rO′
a
: vector describing the position of O′ with respect to the absolute

reference;

• rPr : vector describing the posistion of point P with respect to the relative
reference;

• rPa : vector describing the position of point P with respect to the absolute
reference;

• Ωa: vector describing the angular velocity of the relative reference frame;

• vO′
a
, aO′

a
, vPr , aPr , vPa and aPa : vectors of the corresponding velocities

and accelerations.

Now the complete expressions for position, velocity and acceleration of P
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Figure 1.2: Rapresentation of the absolute and the relative frames with the point-like mass
P.

with respect to the absolute reference frame are given by:

rPa = rPr + rO′
a
,

vPa = vPr + vO′
a

+ (Ωa × rPr) ,
aPa = aPr + aO′

a
+ (Ω̇a × rPr) + Ωa × (Ωa × rPr) + 2(Ωa × vPr) ,

where (Ωa×rPr) is the tangential velocity, Ωa× (Ωa×rPr) is the angular accel-
eration, which together with aO′

a
+ (Ω̇a× rPr) is the dragging acceleration, and

aPr is the initial acceleration. In this general formulation effects of fictitious
forces have been taken into account too, indeed 2(Ωa × vPr) is the Coriolis
acceleration.

In order to derive the equation for the spring-mass-damper system, it is
necessary to calculate the motion of the non-inertial system with respect to
the absolute one. To do so, the motion of P relative to O′, described through
fictitious forces, is exploited. For the sake of initial simplicity the rotation
and the associated velocity, acceleration and Coriolis terms can be neglected
(Ωa = 0). Thus O′ is in conditions of translational motion only with respect to
O and the acceleration of the non-inertial system with respect to the absolute
frame results to be: aO′

a
= aPa − aPr .

In every inertial reference system a force acting on the mass P can be evaluated
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as:
FPa = maPa , (1.1)

while in the non-inertial frame it becomes:

FPr = maPr = maPa −maO′
a

= FPa + Finertial , (1.2)

where FPa is a real Newton force and Finertial is a fictitious force due to the
relative motion of O′.

Since the suspended mass P is confined in small dimensions sensor package,
its maximum allowed displacement is in the order of 10µm. Thus it is more
realistic to imagine it attached to the non-inertial frame by means of a spring
of stiffness k [N/m]. Therefore as the mass displaces only by a small amount
from the frame, it is subject to a reactive elastic force:

Fel = −kxPr .

Besides a damper is also introduced in the system configuration in order to
make it as similar as possible to real situations. A damper generates a reac-
tive force proportional to the mass velocity through the damping coefficient b
[N/m· s]:

Fb = −bẋPr = −bdxPr

dt
.

See Fig.1.3 for a representation of the spring-mass-damper system and a schematic
drawing of forces acting on the suspended mass.

Considering now forces acting on the suspended mass, one ends up with
the following equality in the absolute reference:

FPa = m
d2xPa

dt
= −kxPr − b

dxPr

dt
. (1.3)

Thanks to eq.(1.2) it becomes:

m
d2xO′

a

dt
+m

d2xPr

dt
= −kxPr − b

dxPr

dt
, (1.4)
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(a) Representation of the spring-mass-damper
system

(b) Scheme of the forces acting on
the suspended mass

Figure 1.3: The Spring-Mass-Damper system

thus
m
d2xPr

dt
+ b

dxPr

dt
+ kxPr = −md2xO′

a

dt
= −maO′

a
= Finertial . (1.5)

In conclusion the general equation for the spring-mass-damper system is given
by:

mẍ+ bẋ+ kx = Finertial = Fext . (1.6)

The whole discussion can be extended to the torsional motion by taking
into account the Coriolis force.

1.3.1 Torsional Spring-Mass-Damper

It is valuable to notice that some MEMS operate through torsions of structural
elements, rather than through deflections. Therefore the torsional spring-mass-
damper system is presented in the following. The already shown linear spring-
mass-damper model still holds, but now one has to deal with different variables
than in the previous case: an angular displacement θ [rad] instead of a linear
one x, the moment of inertia I [kg· m2] instead of the mass of the device m
and the torque M [N·m] instead of the force F acting on the mass.
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Then the previous model becomes:

Iθ̈ + bθθ̇ + kθθ = Mext . (1.7)

Note that the stiffness kθ [N·m] and damping coefficient bθ [kg/s·m2]
become their torsional counterparts. Therefore, as a consequence, their units
of measurement are different.

1.4 The damping coefficient b

In order to evaluate MEMS performances, a relevant parameter is the quality

factor Q, given by Q = ω0m

b

(
Q = ω0I

bθ
in case of a torsional device

)
. It is

inversely proportional to the damping coefficient b, which provides the rate of
energy dissipation in MEMS. Thus it is important and useful (and also quite
challenging) to give a closed form expression of b.

The analysis of the damping coefficient may be complicated due to different
interacting geometries in MEMS structure (such as springs, frames, plates...)
and different sources of energy dissipation. Thus depending on different dis-
sipation mechanisms, it results that the main types of damping are: fluid
damping, thermoelastic damping (TED) and damping due to anchor losses
(propagation and consequent dissipation of elastic energy outside the device).
A detailed description of these three will be given in the following.

The focus now is in the understanding of the physical origin of the quality
factor and thus of b.

In resonators, Q is defined as the energy stored in the system divided by
the energy dissipated per radiant of vibration cycle:

Q = 2π· Ustored in the system

Udissipated per cycle
. (1.8)

Thus in order to have a low energy loss, the quality factor should be as high
as possible [2].

To understand which phenomena yield to low Q, it has to be considered
that energy dissipation is the combination of intrinsic energy losses Uint within



CHAPTER 1. INTRODUCTION 10

Figure 1.4: Thermo-elastic dissipation due to temperature gradient in a spring.

the structure (TED and anchor losses) and losses due to the interaction of the
device surfaces with the surrounding fluid Us:

Q = 2π· Ustored in the system

Uint + Us
= 1

1/Qint + 1/Qs
. (1.9)

Note that losses due to surface phenomena become more and more rele-
vant in comparison with volumetric effects, as the device shrinks, because the
volume-to-surface ratio scales down with linear dimension. Thus in MEMS
devices the impact of surface effects increases accordingly. This is why in this
work the focus has been kept on fluid damping. Nonetheless a description
of those mechanisms responsible for intrinsic energy losses Uint (thermoelastic
damping and anchor losses) is provided.

1.4.1 Thermo-elastic damping (TED)

Now that all the initial observations have been made, it can be explained what
TED consists of (make reference to Fig.1.4).

Energy losses can occur in vibrating structures when an internal tempera-
ture gradient arises. Indeed when a solid body, for example a sustaining spring,
is deformed, then a strain gradient is produced (higher temperature for com-
pressed parts and lower for stretched ones) leading to a temperature gradient.
This induced temperature gradient generates an irreversible heat flow through
the vibrating structure with a consequent loss of energy.

This phenomenon was first observed by Zener in his work [3] for the rect-
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angular cross-sectional beam-type geometry:

QTED =
(
f 2
M + f 2

T

fMfT

)
· Cpρ

α2TE
, (1.10)

where fM and fT are the mechanical and the thermal resonance frequencies
respectively, Cp is the specific heat capacity, α is the thermal expansion coef-
ficient, ρ is the solid density, while T and E are the absolute temperature and
the Young’s modulus. Thus the energy loss due to TED is characterized by the
relative magnitude of two frequencies: if these frequencies are close, then the
damping is maximum as the heat exchange is facilitated by the combination
of two resonant phenomena. If they are distant, then b is minimized.

1.4.2 Anchor losses

The other phenomenon which causes intrinsic energy dissipation in MEMS
devices is represented by anchor losses. Indeed in a MEMS resonator, while the
resonator structure vibrates, the harmonic load excites elastic waves, which can
propagate through the elements used to anchor the resonator to the substrate.
Thus the elastic wave that propagates into the supporting media dissipates
part of the vibration energy. It is desirable that the anchors are nodes on the
waves propagation. If so, they would have null energy and thus there would
be no waves transmission to the substrate. For more details see [2].

1.4.3 Fluid damping

As already mentioned above, besides intrinsic energy dissipation by TED and
anchor losses, energy can be lost also by interactions of the device surfaces
with the surrounding fluids. This phenomenon is called fluid damping.

Its modelling is more complicated than the previous damping mechanisms
because of:

• different interacting fluid-structure geometries generated by the elements
(suspended or fixed) constituting the MEMS device, such as springs,
frames, plates, electrodes;
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• different types of surface-to-fluid interactions: slide-film damping and
squeeze-film damping;

• different nature of the fluid according to the Knudsen number, as dis-
cussed below.

The Knudsen number

In order to give a detailed description of slide-film damping and squeeze-film
damping, it is necessary to distinguish between different natures of the fluid
flow. Thus it is worthwhile to introduce the Knudsen number.

Denoting by L one characteristic length of the device (or of the portion of
the device of interest for a partial damping calculation) and by λ the mean free
path of the molecules of the gas in the considered {T,p} operating conditions,
the Knudsen number is defined as:

Kn = λ

L
. (1.11)

Different Knudsen numbers may exist for one device, depending on which
fluid regime is modelled:

• if λ << L −→ Kn << 1: each molecule of the fluid interacts mainly
with other molecules and not with the device walls. The fluid can be thus
considered and treated as continuum, therefore the molecular nature of
the fluid can be neglected. This regime is well described by the complete
Navier-Stokes equation.

• if λ >> L −→ Kn >> 1: the fluid can be considered in its molecu-
lar structure, thus only collisions of gas particles with device walls are
taken into account, since particles have a very low probability to inter-
act one another. This regime is described by the Boltzmann equation
for particles.

Transition zones exist between continuum and free molecular flow. They are
characterized by an intermediate status where features of continuum and free
molecular behaviour are simultaneously present.
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To select the correct flow model when describing a portion of MEMS a
structure, four regions have been highlighted according to the corresponding
Knudsen numbers:

• Kn ≤ 0.01: continuum flow with no-slip boundary condition (that is
no relative movement between the surface and the adjacent fluid at the
boundary);

• 0.01 ≤ Kn ≤ 0.1: continuum flow with slip boundary condition;

• 0.1 ≤ Kn ≤ 1: transitional flow;

• Kn > 1: free molecular flow.

Note that the mean free path λ is inversely proportional to the pressure.
Therefore, being P0 the atmospheric pressure (P0 = 1.01325 bar) and λ0 the
mean free path of molecules in air under standard conditions, which is about
λ0 = 65 µm, λ can be expressed as [4]:

λ = λ0
P0

P
. (1.12)

Since MEMS resonators used in this work operate under low-pressure con-
ditions, about P = 0.7 mbar in package, λ results to be 92.6 µm. More-
over these devices (as later discussed in Chapter 4) are distinguished into two
groups according to their vertical gap between the suspended holed mass and
the substrate: a first group of test devices is characterized by a vertical gap
g1 = 1.2 µm, while the second groups has a gap g2 = 1.8 µm. Thus their
Knudsen number can be evaluated:

Kn1 = λ

g1
= 77.16 (1.13)

Kn2 = λ

g2
= 51.44 . (1.14)

For both classes of devices the Knudsen number results to be greater than 1
indicating the regime of free molecular flow.
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Figure 1.5: Slide film damping between a fixed substrate and a moving plate.

Slide-film damping

One of the two main types of fluid damping in inertial MEMS is slide-film
damping. It occurs when two separated surfaces slide parallel to each other.
The flow around an object follows the object’s movement due to normal (pres-
sure) and tangential (shear) forces acting on the fluid.

The damping coefficient in this case can be found as [4]:

bslide = A

g
µ , (1.15)

where A is the overlapping area between the two separated surfaces, g is the
vertical gap between them and µ is the viscosity coefficient of the surrounding
gas.

For low values of the Knudsen number (thus in the continuum flow regime),
the fluid closed to a fixed part tends to remain still due to the absence of slip
boundary conditions (see Fig.(1.5)).

With the Knudsen number growing larger, thus for larger mean free paths
λ, a slip between the fixed wall and the adjacent fluid layer appears. In other
words, the flow velocity vx(z) of a moving fluid layer is not zero at the bound-
ary with a stationary wall, while the flow velocity of the boundary layer is
proportional to the velocity gradient in the z−direction and the mean free
path.
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As the Knudsen number grows larger, a switchover from the transitional
regime to the free molecular regime occurs. In this last case, slip means that
particles approaching the fixed wall have different velocities from particles
leaving it.

The slip of a boundary layer can be accounted for by introducing a reduced
effective viscosity µeff given by:

µeff = µ

1 + f(Kn) , (1.16)

where f(Kn) is a function of the Knudsen number which does not have a
determined expression. However for the slide-film damping case, an empirical
approximation of f(Kn) is given by Veijola et al. in [5]:

µeff = µ

1 + 2Kn+ 0.2Kn0.788e−Kn/10 . (1.17)

Note that if Kn → 0, then f(Kn) → 0 and therefore µeff → µ. Thus the
effective viscosity is a generalization of the viscosity µ. Indeed, since there are
accepted and functioning models for damping in the continuum flow regime (see
equation 1.15), the idea behind the effective viscosity is to extend these existing
models towards higher Knudsen numbers in order to give an estimate for the
damping coefficient also in the transitional and the free molecular regimes.

Thus a relation for the slide damping coefficient, which holds in almost
every regime, is given by:

bslide = A

g
µeff , (1.18)

where the viscosity µ has been replaced by its effective counterpart µeff [6].
However this is not a general model: it holds only for finite surfaces which

are a particular case of “ideal” geometries (infinite surfaces). Besides, for
high levels of gas rarefaction the concept of viscosity becomes meaningless, as
explained in details in the following.
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Figure 1.6: Squeeze film damping between a moving plate and the substrate.

Squeeze-Film Damping

Squeeze-film damping is a second type of fluid damping. It occurs when two
parallel surfaces move towards or away from each other and squeeze or expand
the fluid film in between. If two plates move towards each other the pressure
increases and the gas is squeezed out of the gap, otherwise if two plates move
away from each other, then the pressure decreases and gas is drawn into the
gap. See Fig.1.6.

In this case the same argument of the previous paragraph holds: in the
equations for squeeze-film damping in rarefied gas, the coefficient of viscosity µ
should be replaced by an effective one µeff , which is dependent on the pressure
via Knudsen number. As in the previous case, Veijola et al. in [5] give an
empirical approximation of it:

µeff = µ

1 + 9.638Kn1.159 . (1.19)

However in [7] Bao and Yang argue that for a pressure much lower than an
atmospheric pressure, the collisions among the gas molecules are so reduced
that the gas can hardly be considered as a viscous fluid. Indeed if P � P0,
then Kn� 1 (by equations (1.11) and (1.12)) and the continuum flow model
is no more valid. As a consequence, the concept of viscosity would become
questionable. For this reason they propose a new model for squeeze damping in
free molecular flow regime. Their work starts from that of Christian presented
in [8]: the interaction between gas molecules is neglected and the damping
force on an oscillating plate is found by the momentum transfer rate from the
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(a) Head on collisions of an oscillat-
ing plate with molecules.

(b) Multiple collisions with a molecule enter-
ing the gap between a moving plate and a fixed
substrate.

Figure 1.7: Types of collisions between molecules and a plate.

vibrating plate to the surrounding gas through the collisions between the plate
and the molecules.

Consider the gas damping force acting on a plate of area A oscillating in its
normal direction (z-direction) as shown in Fig.1.7(a). It experiences head-on
collisions with molecules of mass mg. The velocity component responsible for
the momentum transfer of molecules to the plate is vz. Collisions on the front
side of the plate cause a momentum transfer of ∆P+ = 2mg(vz + ż) and on the
back side of ∆P− = 2mg(vz − ż), where ż is the velocity of the moving plate.

If the number of molecules in a unit volume is N , then the fraction of them
with velocities in the range of vz to vz + dvz is dNvz . Therefore the number of
molecular collisions on a unit area and in unit time is

(vz + ż)dNvz = N(vz + ż)f(vz)dvz , (1.20)

where f(vz) is the Maxwellian distribution:

f(vz) =
√

mg

2πkT exp
(
− mgv

2
z

2kT

)
. (1.21)

Thus the pressure caused by the collisions on the front plate surface is

P+ = 2mgN
∫ ∞
−ż

(vz + ż)2f(vz)dvz , (1.22)
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while on the back is

P− = 2mgN
∫ ∞
ż

(vz − ż)2f(vz)dvz . (1.23)

The net acting pressure can be easily calculated as (P+ − P−) and results to
be:

P = 4
√

2
π

√
M

RT
paż , (1.24)

where M is the molar mass, R the universal gas constant and pa the ambient
pressure. The damping coefficient is therefore:

b = A
P

ż
= 4paA

√
2
π

√
M

RT
. (1.25)

However this is a general model for gas damping of an isolated object and
not for squeeze-film damping. Thus to overcome this problem, Bao and Yang
extend Christian’s model proposing the Energy Transfer model.

They introduced energy loss of the plate caused by molecules entering the
gap between the moving plate and the substrate with some lateral velocity
component and colliding multiple times with the plate, as shown in Fig.1.7(b).
The extra energy gained by a molecule travelling through the gap is given by:

∆E = 1
2mg

[
2wv2

z0
(D0 − z)vxy0

ż + w2v2
z0

(D0 − z)2v2
xy0
ż2
]
, (1.26)

where vz0 and vxy0 are the velocity components of the molecule entering in
the z-plane and in-plane respectively; D0 is the maximum allowed oscillation
amplitude; w is the width of the considered plate.

Thus the damping coefficient for squeeze-film damping in free molecular
flow regime is:

bsqueeze = (2π) 2
3
wL2pa
D0

√
M

RT
. (1.27)

It results to be greater than that of Christian’s by a factor L/(16πD0).
This perfectly makes sense since Chiristian’s model would underestimate the
damping if used to calculate it in the squeeze case, because it concerns only
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(a) Flow in a perforated plate (b) Holes arranged in periodic lat-
tices

Figure 1.8: Squeeze film damping in a holed mass.

an isolated object and not two facing surfaces. Bao and Yang’s model instead
correct its estimate.

Note that in presence of a holed mass a lowering in the damping coefficient
occurs. Indeed if the plate is moving down, fluid underneath is pushed into the
holes and creates a pipe flow as illustrated in Fig.1.8(a). If the plate is very
thin, then pressure at the hole’s entry is equal to the ambient pressure and as
a result there is no pressure difference. This means that boundary conditions
periodically change over the plate.

Sometimes etching holes are implemented purposely to reduce squeeze-film
damping and usually they are arranged in periodic lattice structures as shown
in Fig.1.8(b) [4].

1.4.4 The Test Particle Monte Carlo method

Other approaches, different from the one presented in this work, make use of
the Test Particle Monte Carlo (TPMC) method. This probabilistic numerical
method has been exploited to predict the damping coefficient in free-molecular
flows in [9]. A large number of typical molecular trajectories is computed and
these collectively predict the behaviour of the real system. Since intermolec-
ular collisions can be neglected in free-molecular regime, the trajectories are
independent one another. However this is a statistical approach and therefore
a statistical noise is introduced, which affects the precision on damping pre-
diction. In order to filter it out long analysis are required, slowing down the
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Figure 1.9: Example of a typical geometry of a MEMS gyroscope.

calculation.

1.5 Conclusions

Summarizing what has been presented so far, models based on the modified
viscosity [5] result to be inaccurate when a gas is highly rarefied: the con-
cept of viscosity becomes meaningless and thus the effective viscosity. On the
other hand the different proposed formulations [7] provide satisfying results
only in very specific conditions of rarefaction of gas and with somewhat ideal
geometries, far from the typical geometries of MEMS. An example of a MEMS
gyroscope is depicted in Fig.1.9: one can see that its geometry is composed
by different structures (parallel plates, comb finger, springs and holes) which
interact one another and therefore complicate the modelling.

On the contrary, an approach which makes use of the TPMC method can
be exploited with more complicated and realistic geometries of MEMS and
in every condition of gas rarefaction. However it is a very time consuming
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approach which introduces a statistical noise.
Therefore there is the need to propose a new method which holds for every

condition of rarefaction of a gas, contrary to effective viscosity methods, and
results to be more computationally efficient than TPMC method. Such model
will be presented in the following chapter.



Chapter 2

Numerical model: theory and
implementation

In this chapter the derivation of the numerical model formulated to overcome
the limitations of the models presented in Chapter 1 is provided.

In order to evaluate mechanical dissipation in micro-systems working at low
pressures, a boundary integral elements approach has been proposed (details
can be found in [10]).

A BIE technique has been found to be a suitable approach for estimat-
ing MEMS dissipation since micromechanical structures are too geometrically
complicated to analyze analytically, therefore a numerical approach is needed.
Moreover, mechanical dissipation is mainly due to pressure and drag forces
generated by the gas surrounding the mechanical structure. Thus only forces
on the structure surfaces are taken into account, leading to surface-only inte-
gral equations.

2.1 Numerical model for free-molecule flows

According to the kinetic theory of gases ([11], [12], [13]), macroscopic quan-
tities like density ρ and mean velocity v can be expressed as moments of the

22
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distribution function f(x, ξ, t) in the velocity space:

ρ(x, t) =
∫
R3
f(x, ξ, t) dξ , (2.1)

ρ(x, t)v(x, t) =
∫
R3
f(x, ξ, t)ξ dξ , (2.2)

where x denotes the position and ξ denotes the molecular velocity.
In the free-molecule regime collisions among molecules are neglected, thus

the total material derivative of f along the molecular trajectory vanishes:

∂f

∂t
+ ξ·∇xf = 0 , (2.3)

which represents the Boltzmann equation with null right-hand side since in-
termolecular collisions are neglected.

In the applications envisaged herein, the micro-system is immersed in a
gas domain extending to infinity where rest conditions are assumed and f is
expressed by the Maxwellian distribution at the equilibrium:

f(x, ξ, t) = f0(ξ) = ρ0

(2πRT0)3/2 exp
(
− |ξ|2

2RT0

)
. (2.4)

Note that temperature T0 and density ρ0 are far-field average conditions andR
is the universal gas constant divided by the molar mass. Here the case where
a package is present is only a specific case of this general situation.

Focusing on a specific position x on the boundary of the micro-system: its
unit normal vector n(x, t) is assumed to point into the fluid domain, while
w(x, t) is its velocity, thus it represents the wall velocity. With these assump-
tions the distribution function f(x, ξ, t) for any ξ such that (ξ−w(x, t))·n(x, t) <
0 corresponds to molecules impinging on the surface at time t. If molecules
are coming from the far region, then f(x, ξ, t) = f0. Otherwise they have been
emitted from a specific position y on the boundary at time t− r/ξ, where r is
the distance between x and y and ξ = |ξ|.

As a consequence of Eq.(2.3), one has:

f(x, ξ, t) = f(y, ξ, t) , (2.5)
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where
y = x+ r, r = −rξ

ξ
(2.6)

for any couple x, y.
Each molecule impinging on the surface ((ξ −w)·n < 0) interacts with it

and is eventually re-emitted ((ξ−w)·n > 0) according to a specific distribu-
tion function which depends on the surface properties. Since silicon surfaces
are originated from etching procedures (as described in Sec.1.2), they are very
rough and at common temperatures microscopically rough surfaces are charac-
terized by diffuse reflections of molecules: therefore the diffuse reflection model
will be assumed in the following. This means that molecules are re-emitted
from a given solid surface SR according to the following distribution function:

f(x, ξ, t) = ρw(x, t)
(2πRTw(x, t))3/2 exp

(
− |ξ −w(x, t)|2

2RTw(x, t)

)
, (2.7)

for (ξ −w)·n > 0. It represents a half-space isotropic reflection of re-emitted
molecules whose velocity is independent of incident velocity.

In the distribution function above Tw is the wall temperature, while w(x, t)
is the wall velocity.

The function ρw in (2.7) is proportional to the flux of incoming molecules:

ρw(x, t) =
( 2π
RT0

)1/2 ∫
R3,(ξ−w)·n<0

|(ξ −w(x, t))·n(x, t)|f(x, ξ, t) dξ . (2.8)

This last relation represents a mass balance at every point of the surface and
is the starting point of the integral formulation.

Now using Eq.(2.7) and denoting by y the point corresponding to x ac-
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Figure 2.1: A moving wall accelerates molecules increasing the number of collisions.

cording to relation (2.6), the wall density results to be:

ρw(x, t) =−
( 2π
RT0

)1/2 ∫
R3

0

(ξ −w(x, t))·n(x, t)f0(ξ) dξ +

− 1
2π(RT0)2

∫
R3

S

(ξ −w(x, t))·n(x, t)ρw
(
y, t− r

ξ

)
×

× exp
−

∣∣∣∣ξ −w(y, t− r

ξ

)∣∣∣∣2
2RT0

 dξ .

(2.9)

R3
0 denotes the space of molecular velocities such that (ξ −w)·n < 0, where

ξ corresponds to molecules coming from the far field.
R3
S instead denotes the space of molecular velocities such that (ξ−w)·n < 0,

where ξ corresponds to molecules coming from other solid surfaces.
Note that the Maxwellian distribution is centered at w and that implies:

• if w·n > 0: molecules re-emitted by the surface will be in the average
faster than those impinging on the surface.

• if w·n < 0: molecules re-emitted will be in the average slower than those
impinging on the surface.

If a moving wall approaches a fixed one the consequence is that molecules
entering the gap get accelerated and the number of collisions increases, as
depicted in Fig.2.1.

This seems to complicate the calculation of energy dissipation, however
some simplifying assumptions can be assumed according to MEMS properties
leading to the integral formulation.
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2.2 Simplifying assumptions

Small perturbation condition

For a large class of MEMS the velocity of shuttle surfaces w is generally small
with respect to the average thermal molecular speed, hence |w̃| = |w|√

2RT
� 1.

Since a perturbation of the equilibrium of gas is small, the problem can be
linearized.

Defining a new variable u = ξ − w, the first term in equation (2.9) is
linearized as:

( 2π
RT0

)1/2 ∫
R3

0

(ξ −w(x, t))·n(x, t)f0(ξ) dξ

' 2ρ0

π

∫
R3

0

ũnexp(−ũ2)(1− 2ũnw̃n(x, t)− 2ũt·w̃t(x, t)) dũ ,
(2.10)

where quantities with tilde are normalized with respect to
√

2RT0; n and t

subscripts indicate respectively the normal and the tangential component of a
vector.

Thus by means of the definition of Maxwellian distribution f0 and of the
hypothesis of small perturbation |w̃| � 1, f and ρw are linearized as:

f(x, ξ, t) ' f0(ξ)(1 + f1(x, ξ, t)) , (2.11)

ρw(x, t) ' ρw0(1 + ρw1(x, t)) . (2.12)

Moreover, making reference to [10], ρw1(x, t) in (2.12) is given by:

ρw1(x, t) =
√
πw̃n(x, t)− 2

π

∫
S+

(r·n(x))(r·n(y)) ×

× 1
r4

( ∫ ∞
0

ρw1
(
x, t− r

u

)
u3exp(−u2) du

)
dS +

− 4
π

∫
S+

(r·n(x))(r·n(y)) ×

× 1
r5

( ∫ ∞
0
r·w̃

(
x, t− r

u

)
u4exp(−u2) du

)
dS .

(2.13)

In several applications MEMS response is proportional to the fundamental
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mode g(x). As a consequence it is assumed that only a weak coupling between
the structural response q(t) and the fluid action exists, in the sense that fluid
dynamics does not influence the shape of the displacement field s(x, t) or the
velocity w(x, t), which are of the form:

s(x, t) = g(x)q(t), w(x, t) = g(x)q̇(t) . (2.14)

Taking now the Fourier transform of eq.(2.13) and simplifying F(q̇) one
has:

J(x, t) =
√
πg̃(x)·n(x) +

− 2
π

∫
S+
J(y, t)(r·n(x))(r·n(y)) 1

r4T3(iω̃r) dS +

+ 4
π

∫
S+

(r·g̃(y))(r·n(x))(r·n(y)) 1
r5T4(iω̃r) dS ,

(2.15)

where quantities with tilde are normalized by a factor
√

2RT ; J(x) is the
complex function such that the Fourier transform of ρw1 is F(ρw1) = J(x)F(q̇)
and

Tn(iω̃r) =
∫ ∞

0
unexp

(
− u2 − iω̃r

u

)
du (2.16)

are transcendental functions.
With a similar procedure an integral equation can be found for the pressure

acting on every MEMS surface p(x). Thus by a post-processing of J(x) one
has:

π3/2

2ρ0RT
p(x) =

(
1 + 1

2J(x)
)
π3/2

2 n+ πg̃n(x)n(x) + π

2 g̃t(x) +

−
∫
S+
rJ(y)(r·n(x))(r·n(y) 1

r5T4(iω̃r) dS +

+ 2
∫
S+
r(r·g̃(y))(r·n(x))(r·n(y)) 1

r6T5(iω̃r) dS .

(2.17)

The distribution p(x) is a very important parameter since it allows the
calculation of the damping coefficient b and of the quality factor Q as a con-
sequence. Indeed the equivalent damping term in the 1D reduced order model
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(1.6) can be seen as:

bq̇ =
( ∫

S
g(x)·p(x) dS

)
q̇ , (2.18)

where the integral is extended over the whole surface S of the MEMS. The
constant b can be conveniently expressed as:

b = b̃ρ0

√
2RT0 = b̃p0

√
2
RT0

, (2.19)

where b̃ is a coefficient with the dimensions of a surface depending only on the
problem geometry and the existing relation between density ρ0 and pressure
p0 is p0 = ρ0RT0.

Therefore by computing the integral equations (2.15) and (2.17), b can be
calculated as (2.18) and thus Q is obtained straightforward (as explained in
Sec.1.4). Details of the whole discussion presented so far can be found in [10]
and [14].

Note that in equations (2.15) and (2.17) the trascendental functions Tn(z)
occur with different values of n. In order to evaluate them, one can proceed
employing recursive formulas as explained in [15].

In the current implementation the asymptotic expansions are exploited:

Tn(z) '
√
π

3 3−n/2un/2exp(−u)
∞∑
k=0

ak
zk

, (2.20)

where

u = 3
(
z

2

)2/3

a0 = 1

a1 = 1
12(3n2 + 3n− 1)

12(k + 2) ak+2 = − (12k2 + 36k − 3n2 − 3n+ 25) ak+1 +

+ 1
2(n− 2k)(2k + 3− n)(2k + 3 + 2n) ak, k ≥ 0 .
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First one starts generating T1 according to the following relation:

2 T1(z) =
∞∑
k=0

(aklnz + bk) zk , (2.21)

where
a0 = a1 = 0, a2 = −b0, b0 = 1, b1 = −

√
π, b2 = 3

2(1− γ),

ak = −2ak−2

k(k − 1)(k − 2) , bk = −2bk−2 − (3k2 − 6k + 2) ak
k(k − 1)(k − 2) .

Then T0 and T2 can be calculated knowing that

T
′

n(z) = −Tn−1

and
4 T2(0) =

√
π .

Finally all required Tn are generated by recursion according to

2 Tn(z) = (n− 1)Tn−2 + z Tn−3, for n ≥ 3 .

The calculation of asymptotic expansions can be avoided if the quasi-static
condition holds, as explained in the following.

Quasi-static condition

It is worthwhile stressing that, at low frequencies, the transcendental functions
Tn(z) can be easily evaluated by means of the quasi-static condition.

Indeed, in many applications, MEMS are subject to sinusoidal electrostatic
forces and the response of the MEMS can be computed through the Spring-
Mass-Damper second order differential equation (1.6). The response itself con-
sists of an oscillation with maximum amplitude A of the type q(t) = Asin(ωt).
The small perturbation condition |w̃| � 1 can be expressed as cL � 1, where
coefficient cL is given by cL = ω̃A. Moreover if L is the characteristic length
of the flow (that is the maximum distance between two visible points), then
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cQ = ω̃L� 1 represents the quasi-static condition.
This means that the time-of-flight of a molecule between two different sur-

faces is small with respect of the duration of one oscillation. If this condition
is met the transcendental functions Tn can be evaluated in zero:

T3(0) =
∫ ∞

0
u3exp

(
− u2

)
du = 1

2 , (2.22)

T4(0) =
∫ ∞

0
u4exp

(
− u2

)
du = 3

√
π

8 , (2.23)

T5(0) =
∫ ∞

0
u5exp

(
− u2

)
du = 1 . (2.24)

However, as already mentioned above, this assumption holds only at low
resonance frequencies. Indeed, with increasing frequencies, the term ω̃L be-
comes comparable with the thermal velocity of molecules and the quasi-static
condition is no longer satisfied. Thus, in order to have a model as general as
possible, which holds also at high frequencies, in this work the implementation
is carried out assuming small perturbation only, and so the Tn functions are
evaluated through asymptotic expansions.

2.3 Numerical implementation

It can be noticed that equation (2.15) is very similar to the radiosity equation
of Computer Graphics, which is a tool for the generation and manipulation of
images on computer screens. One of the key elements is the presence of the
visibility operator limiting the integration to the visible portion of surfaces.
Basically, given a set of 3D objects and a viewing point, the objective is to
determine which lines or surfaces of the objects are visible. Thus, inspired by
this analogy, in [16] is implemented an efficient way to compute the domain of
integration adapting some typical techniques of computer graphics, where the
viewing points correspond to source objects.

Since due to technological constraints the vast majority of MEMS is com-
posed by piecewise planar surfaces, the structure is initially schematized as a
collection of non-overlapping large planar “parent” quadrangles. Each quad-
rangle is then meshed with “children” triangles using the software GMSH. In
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the present implementation J is modelled as piecewise constant over each tri-
angle. Equation (2.15) is then collocated at the centre of each triangle and
the system of equations is solved by means of an iterative GMRS (Generalized
Minimal Residual Method) solver. The final output of the simulation is the
constant b̃ obtained through a post-processing of the force p(x); b̃ will be then
exploited in order to compute the damping coefficent b as prescribed by the
relation (2.19).

2.3.1 Testing the visibility condition

(a) Invisible. (b) Invisible. (c) Partially
visible.

(d)
Totally
visible.

Figure 2.2: Classification of surfaces according to their visibility.

In this section a description of the part of the code concerning the testing
of the visibility of surfaces is provided. This part has to be fast and reliable
in order to have a globally computationally efficient method.

Given a source point x, the integral equations (2.15) and (2.17) must be
limited to portion S+ of the surface which is visible from x.

Each quadrangle (and its triangles) is endowed with an outward normal
vector n defining the positive sides of the surfaces. Visibility is tested only for
the positive sides of quadrangles and eventually of triangles.

Two quadrangles can be invisible (Figg.2.2(a)-2.2(b)), partially visible (Fig.2.2(c))
or totally visible (Fig.2.2(d)). In the code a symmetric square matrix is built
in order to keep a record of the mutual visibility of surfaces: entries are set to
0 if two quadrangles are invisible; set to 2 if they are totally visible and set to
1 if they are partially visible.



CHAPTER 2. NUMERICAL MODEL: PART 1 32

Since the number of quadrangles is much smaller than the number of tri-
angles, establishing the visibility between quadrangles has a limited cost and
visibility or invisibility directly transfers to the children. On the contrary if
two parents are only partially visible, then visibility has to be tested for every
child triangle with a much higher cost.

Thus the goal of this work has been that of improving the visibility part
so as to reduce tests on triangles or, better, to completely avoid them.

The already implemented visibility part in the code (fully described in
[17]) consists of 4 levels of tests: Level 1 and 2 detect the invisible surfaces;
Level 3 looks for the totally visible surfaces; Level 4 performs visibility tests
on triangles. In the following more detailed descriptions of these levels are
provided.

Level 1: Hidden surface removal

This first level rapidly detects quadrangles which are clearly invisible. Consid-
ering a given source quadrangle, its plane divides the space into two half-spaces
according to its positive side, as shown in Fig.2.3(a).

If a target quadrangle has the four vertices in the negative half-space, then
it is marked as invisible from the source and both entries of the visibility matrix
are filled with zero.

Level 2: Shadow volume

In this second level another test to identify invisible quadrangles is imple-
mented. Those which have not been detected in the previous level are analyzed
in this one using a shadow volume technique.

Considering a source quadrangle and a target quadrangle, obstacles (that
is quadrangles between the source and the target) can hide the target from
the source. In order to recognize obstacles, their shadow volume is built as
follows: a ray is projected from each vertex of the source to each vertex of the
obstacle. These projections will together form a set of four “pyramids”, one
for each source vertex, and their intersection is the total-shadow volume. See
Fig.2.3(b). If a target has all the vertices inside the shadow volume, then it is
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(a) Level 1: Hidden surface removal. (b) Level 2: Shadow volume.

(c) Level 3: Delaunay triangulation.

Figure 2.3: Levels of the visibility test: Levels 1 and 2 detect invisible surfaces, while Level
3 looks for visible surfaces.

invisible to the source.

Level 3: Delaunay triangulation

In this third level a test to detect if two quadrangles are totally visible is im-
plemented. Thus those quadrangles which have not been identified as invisible
in the first two phases are addressed in this level.

An algorithm based on 3D Delaunay triangulation (or tetrahedralization)
is implemented. Triangulation of a given set P of n points in 3-dimensional
space is a decomposition into tetrahedra of the convex hull of P such that:

1. vertices of tetrahedra belong to P ;

2. intersection of two tetrahedra is either a vertex or an edge or a face.

Given a source quadrangle S1 and a target quadrangle S2, the set P is popu-
lated with their 8 vertices and the Delaunay triangulation is built, as depicted
in Fig.2.3(c). If none of the other quadrangles intersect the convex hull, then



CHAPTER 2. NUMERICAL MODEL: PART 1 34

the source and the target are fully visible and their entries in the visibility
matrix are set to 2.

Level 4: Triangles visibility

All the quadrangles not identified are considered partially visible (thus their
entries are set to 1) and the visibility is consequently tested on their triangles
by means of a point-to-point test visibility. Two triangles are said to be visible
if the segment connecting their centers of mass does not encounter obstacles.
As already mentioned, since the number of triangles is high, visibility test on
triangles is time consuming, thus computationally inefficient.

The goal of the thesis is to speed up the total visibility computation of
surfaces. Thus in the next chapter the improvements introduced in the code
are presented.

2.4 Bugs in the previous implementation

Besides the low speed which characterizes the test in Level 4, it is worthwhile
to briefly explain some bugs found in the original implementation of the code
which were identified and fixed during the thesis.

2.4.1 A false-positive in the identification of visible quad-
rangles

The first discovered problem concerns an imperfect implementation of the test
in Level 3. In the original implementation, after having built Delaunay’s con-
vex volume between a target and a source surface, it is only verified that
triangular boundary faces of the volume do not intersect other quadrangles.
This control has been conceived thinking about wide surfaces which evidently
are obstacles between the source and the target, but whose vertices and sides
do not intersect the volume, as depicted in Fig.2.4(a) where A and C are the
source and the target quadrangles and B is the wide obstacle between them. If
this control had not been implemented, source and target quadrangles would
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(a) (b)

Figure 2.4: (a): a wide surface B completely covers surfaces A and C. (b) Example of
configuration where surfaces A and C are wrongly detected as “totally visible” in Levels 3
though B partially covers them.

be marked as “totally visible” while they are not.
However such implementation is not complete since it does not take into

account situations where boundary sides of other quadrangles intersect the
Delaunay’s volume, that is cases where an obstacle (B) partially covers two
quadrangles (A and C), see Fig.2.4(b). The lack of the implementation of this
second control leads to false-positive visible quadrangles.

2.4.2 Change of status for triangles

Contrary to quadrangles case, in the original implementation of the code any
symmetric matrix has been built in order to keep a record on triangles visibility.
Because of the lack of such data structure, if a target triangle Ti results to be
invisible to a source triangle Tj, then they are both marked as “invisible” one
to the other. However when the target triangle Ti becomes the source one,
its visibility against all the other triangles is tested, including the ex-source
triangle Tj which now is a target triangle. Therefore with a second control
on the same two triangles with inverted roles, their status may change from
“invisible” to “totally visible”.

In Fig.2.5(b) is reported an example of what highlighted so far: the green
triangles at the top of the hole were classified as “invisible” to triangles of the
substrate (at the bottom of the hole) and thus coloured in red; but if a triangle
of the bottom becomes a source triangle (coloured in blue in the picture) a
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(a)

(b)

Figure 2.5: Example of geometry where some triangles wrongly changed their status to
“visible”, when a triangle goes from “source triangle” to “tested triangle” and viceversa.

wrong computation of the scalar product between their normal vectors leads to
a wrong result: triangles at the top of the hole, already classified, are detected
as completely visible by those on the substrate and their attribute is changed
from “invisible” to “visible” (thus re-coloured in green).

2.5 Failure in identifying some invisible quad-
rangles

Besides the two bugs just introduced, the old implementation suffers from a
big imprecision: the non-identification of clearly invisible surfaces with the
two tests in Level 1 and Level 2. As an example, making reference to Fig.2.6,
quadrangle D is completely hidden by B and C to the sight of A. However D
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Figure 2.6: Top view of an example of geometry where an invisible surface (D) is not
recognized by tests in Levels 1 and 2.

has all of its four vertices in the positive half-space of source surface A, thus
it passes test in Level 1 (Hidden Surface Removal). Moreover, in Level 2, the
total shadow volume is built considering one obstacle surface at a time. By
doing so it is evident that, once again, surface D does not have all of its four
vertices either in the shadow volume generated by B or in that generated by
C. Thus it passes also Level 2 without being recognized as invisible surface.

Though tests in the first two levels are correctly implemented, there are
situations, as the one just highlighted, where quadrangles are not recognized as
invisible by the code. This is not properly an error, since not-identified surfaces
will be marked with 1 (partially/potentially visible) in the visibility matrix
and processed at triangles level and marked as “invisible” later. However
test on triangles is time consuming and affects code performance, as already
mentioned, and therefore should be avoided. Thus if a target surface is clearly
not partially visible, then it would be better if it is detected as “invisible” with
the first shot.

2.6 Structures geometry

As mentioned in Sec.2.3, the vast majority of MEMS is composed by piecewise
planar surfaces. Thus the elementary structural element is a quadrangular sur-
face. The combination of quadrangles results in more complicated geometries:
comb fingers, parallel plates and holed mass. Code performance are tested
over each of these configurations: for each of them an input file on GMSH is
created.
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In Fig.2.7 the just introduced geometries are shown (from the simplest to
the most complicated):

• parallel surfaces with a substrate: a very simple configuration used to
verify if the code works fine in trivial situations (Fig.2.7(a));

• hole: since studied devices in this work are constituted by a tilting holed
mass, a schematization of a single hole is needed (Fig.2.7(b));

• comb fingers (Fig.2.7(c));

• parallel plates (Fig.2.7(d));

• three holes in a row: each hole of the tilting mass is said to be a Level
1 hole, a Level 2 hole or a Level 3 hole according to its distance from
the boundary of the mass. Thus, in order to take into account boundary
effects, distinguishing between holes is useful. In Fig.2.7(e) the structure
of three different levels holes is schematized.

Solutions implemented to fix the bugs introduced so far are presented in
the following chapter. Besides performance of the new implementation are
provided as well.
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(a) Parallel surfaces on a substrate. (b) Single hole of a holed
mass.

(c) Comb fingers. (d) Parallel plates.

(e) Three holes in a row.

Figure 2.7: Structures geometry used as inputs of the code.



Chapter 3

Numerical model: implemented
improvements

As already mentioned in the previous chapter, the goal of this work is to
develop an efficient model to estimate the damping coefficient b, in order to
predict devices performance.

While trying to improve the existing code, some bugs, introduced in Sec.2.4,
have been found. Thus at first the focus has been on fixing these bugs.

3.1 Improvements on the code: fixing of the
bugs

3.1.1 False-positives in the identification of visible quad-
rangles

Let us start dealing with the first bug: false-positives in visible surfaces detec-
tion. In the original implementation, after the built of Delaunay’s triangulation
(Level 3) between two quadrangles, the sides of the boundary faces of the vol-
ume are given as inputs to the vol_boundary routine. This routine is exploited
to control if some of these faces intersect other quadrangular surfaces, but such
an implementation does not take into account situations where other quadran-
gles partially cover the source and the target ones, as explained in Sec.2.4.1.

40
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To avoid this problem, the new implementation considers all the vertices used
to build Delaunay’s volume and, for each pair of vertices, it traces a segment;
then, by means of the routine intrett, it is verified whether this segment inter-
sects another quadrangular surface or not. If so, controls between the current
source and target surfaces interrupt and the two quadrangles are marked as
“partially visible” by filling their entries in the surfaces visibility matrix with
1. If controls have a negative outcome, then the two surfaces are considered
“totally visible” and their entries are set to 2.
Note that the vol_boundary and the intrett routines belong to a library, de-
veloped by Joe in [18], which is available online at [19].

3.1.2 Change of status for triangles

In order to fix the second bug, presented in Sec.2.4.2, it is worthwhile noticing
that the change of status in the mutual visibility of two triangles is caused by
a wrong calculation of the scalar product between their normal unit vectors.
Thus they can be wrongly not recognized as invisible (see Fig.2.5(b)). To avoid
this problem a different test, similar to the one in Level 1 for surfaces, has been
implemented: Hidden Elements Removal. The new routine hiddenelems takes
as input two triangles, a source triangle Ti and a target one Tj; it computes the
plane where the source lays and, according to the direction of its normal vector,
considers if the target Tj has all of its three vertices in the negative semi-half
space of the source or not. If so, both the target and the source are marked as
“invisible”. An excerpt of this routine is shown in Fig.3.1. A loop is performed
on the vertices of the test triangle. Then for each vertex its coordinates are
stored in the record point and the parameter checkp is the scalar product
with the normal vector n of the plane, where the source triangle lays. Then
checkp is checked: if it is negative or at least null, the target triangle stands
behind the source one or at least in its same plane. Thus, if all the three
vertices provide the same result for the variable checkp, then the boolean inv
is set to 1 and the two triangles are effectively marked as invisible.

Besides the implementation of this new routine, to prevent that the same
pair of triangles is tested twice with inverted roles, a data structure similar
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Figure 3.1: Excerpt of the hiddenelems routine, where the main parameter, which discrimi-
nates if a test triangle is behind or on the same plane of the source triangle, is highlighted.

to the one for quadrangles has been introduced: a symmetric square matrix
which keeps a record of the mutual visibility between triangles. Indeed, thanks
to the symmetry of the matrix, once visibility of triangles Ti and Tj has been
verified, both entries mij and mji of the visibility matrix are filled with 0
(invisible triangles) or 1 (partially visible triangles).

This solution performs a first examination on triangles which helps in re-
ducing the number of elements that must be processed in the point-to-point
test of Level 4 (see Sec.2.3.1).
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3.2 Improvements on the code: overcoming of
the imprecisions

As already declared, the previous version of the code fails in the identification
of clearly invisible quadrangles, which leads to the processing of those missed
invisible surfaces at triangles level. As already stressed more than once, con-
trols on triangles are highly time consuming and must be avoided or at least
reduced. Although this failure is rather an imprecision than an error, since it
does not provide a wrong result in the classification of quadrangles, it has to
be fixed as well as the bugs analyzed and solved above.

Therefore in this section the proposed solution, which mainly contributes
in improving the performance of the original code, is described.

3.2.1 Failure in identifying some invisible quadrangles

The idea which solves this imprecision and, at the same time, reduces the
number of triangles that must be processed with the point-to-point test in
Level 4, is that of partitioning the starting surfaces in four sub-surfaces. In
this way, all the quadrangles which have not been identified as invisible or
totally visible at the end of the test in Level 3, are split in four in the new
routine freeB_splitting_sup (better described in the following). Then tests in
Levels 1, 2 and 3 are performed again on each “children” quadrangle.

By splitting surfaces, smaller portions of them are processed in the visibility
tests. For an unidentified surface (that is for a surface which is not classified
as “invisible” or “totally visible” and therefore is marked as “partially visible”)
this process makes easier the detection of which portion of it is totally visible
and which is instead invisible from a given point of view.

Note that visibility of surfaces is inherited by their triangles, therefore
classifying as much quadrangles as possible helps in reducing the number of
triangles to be classified later.

Moreover the procedure of splitting the surfaces and processing the new
quadrangles does not require much time, thus it is even more preferable to the
point-to-point test on triangles performed in Level 4.
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A brief description of the working of this routine is now provided.

A close up of the splitting routine

In the new implemented routine, as already mentioned above, quadrangular
surfaces are partitioned in four.

At first, each entries of the visibility matrix for surfaces is analyzed by rows:
at the first occurrence of a 1, surface related to that row is partitioned by the
routine and the scan of the matrix goes on analyzing the following row. Indeed,
as already explained in the previous chapter, since the matrix is a square one,
founding at least a 1 in a row means that the surface under consideration is
partially visible to another surface and viceversa. Thus it needs to be split.

Once a surface-to-be-split is detected, it is passed as input to a subroutine
named split which, starting from the properties of the surface, computes all
the parameters useful when performing the visibility tests on its “children”
subsurfaces (such as vertices, barycentres, normal unit vectors, etc.).

After the surface is partitioned into its four subsurfaces, each of its elements
must be assigned to one of the “children” quadrangles and this is accomplished
by means of the subroutine els_partition.

The exploited logic to decide how to assign triangles to the subsurfaces,
considers the barycentre of the triangle under analysis and all the barycentres
of the four subsurfaces. Then for each couple barycentre (of the triangle) -
barycentre (of a subsurface) it computes the distance in between. The cou-
ple with the lowest distance is selected and the element is assigned to the
subsurface which the selected barycentre belongs.

An excerpt of the code of the splitting routine is depicted in Fig.3.2:
where two “do” loops are performed in order to scan the visibility matrix
sup_visible by rows. When an entry 1 is found, the code enters the “if”
condition and the surface is split in four. At the end of the two loops, the
already introduced els_partition routine is called.

As mentioned above (and confirmed in the next section), the procedure of
splitting surfaces does not require much time, therefore it has been thought
also to iterate the splitting until the area of a subsurface would have been
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Figure 3.2: Excerpt of the code of the splitting routine: the calls to the subroutines split
and els_partition are highlighted in yellow.

comparable to that of the triangles of the mesh. However such idea is not
reasonable in terms of occupied memory: indeed consider, for example, the
simplest structure geometry constituted by four parallel surfaces, depicted in
Fig.2.7(a). By splitting each of them into four sub-surfaces one obtains 16 new
quadrangles. Assuming that, after the visibility tests, half of the sub-surfaces
remains of unknown visibility, then, at the second iteration of the splitting
procedure, there would be 8 sub-surfaces to be split in 4, with an amount of
32 total new sub-surfaces. Since the data structure which keeps track of the
mutual visibility of the surfaces is a square matrix, one would have a 32× 32
matrix, which results to be unaffordable.

Nonetheless, with only one subdivision of the surfaces, the obtained re-
sults are satisfactory in terms of saved computational time, as shown in the
following.
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3.3 Performance of the new implementation

To better clarify, the whole new implemented procedure can be summarized
as follows:

1. tests in Levels 1 (Hidden Surface Removal), 2 (Total Shadow Volume)
and 3 (Delaunay’s triangulation) are performed on quadrangles;

2. all the unidentified surfaces, that is the partially visible quadrangles char-
acterized by entries 1 in the visibility matrix, are partitioned by means
of the routine freeB_splitting_sup;

3. their “children” sub-quadrangles are processed again with tests in Levels
1, 2 and 3;

4. once sub-surfaces have been analyzed, triangles of those portions of quad-
rangles still unidentified are addressed in the Hidden Elements Removal
test;

5. finally, the point-to-point test in Level 4, described in Sec.2.3.1, is per-
formed on the remaining triangles still unclassified.

3.3.1 Visibility performance

In the figure above, evidence of the reduction of the number of triangles to
be processed in the point-to-point test with the new implemented routines
is shown. Invisible surfaces are coloured in red, totally visible surfaces are
coloured in green, partially visible surfaces are coloured in yellow, while the
source surface (the point of view) is the one in blue.

Consider the comb fingers geometry as an example. After the three tests on
surfaces, some quadrangles constituting the walls of the comb and the entire
substrate remain unclassified, thus coloured in yellow. In the original code,
triangles belonging to yellow surfaces are directly addressed in the point-to-
point test, but, as one can see in Fig.3.3(a), without any further analysis on
them, the total amount of yellow triangles is large.
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(a) Output of the original implementation af-
ter tests on surfaces (Levels 1, 2 and 3).

(b) Output after tests on partitioned quad-
rangles (freeB_splitting_sup + Levels 1, 2
and 3).

(c) Output after Hidden Triangles Removal
(hiddenelems).

(d) Final output after point-to-point test
(Level 4).

Figure 3.3: Steps of the surfaces visibility. For each step, the source surface or the source
triangle is highlighted in white.
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With the implementation of the splitting routine, half of the substrate and
some walls of the comb are detected as “invisible” and are coloured in red;
while the remaining walls of the comb have a totally visible portion which is
coloured in green. It is clearly evident that, in this case, the number of yellow
(unclassified) triangles is lower than in the previous step. See Fig.3.3(b).

After having subdivided the surfaces and having processed the resulting
sub-surfaces, the Hidden Elements Removal test is performed and its output
is shown in Fig.3.3(c). Some triangles on each of the two remaining yellow
portion of comb walls are now detected as “invisible” and coloured in red.

The remaining yellow triangles are then processed in the point-to-point test
in order to have them, once for all, classified as “totally visible” or “invisible”.
The final output is shown in Fig.3.3(d).

It is worthwhile stressing again that the old code directly proceeds with the
point-to-point test on triangles after the visibility tests on surfaces. Thus from
the situation depicted in Fig.3.3(a) it directly goes to the situation illustrated in
Fig.3.3(d), without any intermediate step. This is inconvenient since it affects
time performance. The new code, instead, passes through those intermediate
steps (Figg.3.3(b)-3.3(c)) saving computational time. Evidence of the time
performance mentioned so far are provided in the following paragraph.

Finally, note that the outcomes of the visibility tests of the improved im-
plementation are more accurate and always correct than those of the old code,
since all the bugs have been fixed and improvements have been made.

3.3.2 Time performance

In this paragraph comparisons between the time performance of the two im-
plementations are provided.

Prior to proceed with the evaluation of the overall computational time spent
by the two codes, the timing on each block of the two codes is performed, so
as to confirm that the routine performing tests on elements is the one which
takes longer.

Times of each block of the old code are stored in Tab.3.1, which has on
the rows the geometries presented in Sec.2.6, from the simplest to the most
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complicated, and on the columns the considered blocks. Thus on the first
column is reported the overall time taken by the three routines of the first three
levels, which perform visibility tests on surfaces; while on the second column
is reported the time spent by the only routine of Level 4, which performs the
test on elements.

Table 3.1: Computational time taken by each block of the old code, for each of the five
considered geometries.

Visibility on
surfaces

(Levels 1, 2, 3)

Visibility on
elements
(Level 4)

Parallel
Surfaces < 1 ms 0.078 s

Hole 0.016 s 0.875 s
Comb
Fingers 0.047 s 19.391 s

Parallel
Plates 0.078 s 36.062 s

3 Holes 0.031 s 28.656 s

This preliminary test confirms what stated above: the test in Level 4 on
triangles is the one demanding the largest computational time.

The same measurements are also performed on the new code and the results
are reported in Tab.3.2.

Comparing now values in the two tables, one can notice that timing of tests
on quadrangles (first column in both tables) provides the same results for both
the implementations, as expected. Besides the timing of tests on triangles
is higher in the old implementation, than in the new one (last column in
both tables). Indeed intermediate steps (second and third columns in Tab.3.2)
implemented in the new model help in saving computational time.

Moreover it is worthwhile observing that the freeB_splitting_sup routine
is truly fast, therefore the splitting procedure has revealed to be a highly
convenient introduction in the code. At last one can notice also that timing of
the visibility test on elements, in the case of the simplest geometry (Parallel
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Table 3.2: Comutational time taken by each block of the new code, for each of the five
considered geometry.

Visibility on
surfaces

(Levels 1, 2, 3)

Splitting of
surfaces

Visibility on
subsurfaces
(Levels 1, 2, 3)

Visibility on
elements

(H.E.R + Level 4)
Parallel
Surfaces < 1 ms < 1 ms < 1 ms 0.078 s

Hole 0.016 s < 1 ms 0.031 s 0.594 s
Comb
Fingers 0.047 s < 1 ms 0.281 s 10.9 s

Parallel
Plates 0.078 s < 1 ms 0.828 s 17.5 s

3 Holes 0.031 s < 1 ms 0.281 s 25 s

Surfaces, corresponding to first row in each tables), provides the same identical
result. This is not surprising since the concerned geometry represents a trivial
case.

General comparisons on the overall performance of the two code are then
performed and in the following one can find the results.

First the total amount of computational time spent by the two implemen-
tations, with all the structures geometry (introduced in Sec.2.6), is compared.
Making reference to Fig.3.4(a), time is reported on the y−axis, while the type
of tested geometry is reported on the x−axis. The red line represents the time
spent by the old implementation, while the blue line shows the computational
time required by the new implementation.

As one can see, for simple geometries (parallel surfaces and single hole) the
two implementations take approximately the same time. For more complex
geometries, the required computational time of the new implementation is
about half of the time required by the old implementation.

A second comparison is provided considering mesh with varying number
of elements. As an example the comb finger geometry is taken into account,
since it is neither too simple nor too complex. Then the number of triangles
which constitutes the mesh has been changed from approximately 5000 (coarse
mesh) to 17000 (refined mesh) elements. In Fig.3.4(b) one can notice that, as
expected, with the number of elements in the mesh growing larger (x−axis),
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(a) Comparison between simulation times of the old (red) and the new (blue) code with
increasing geometry complexity.

(b) Comparison between simulation times with increasing number of elements in the mesh.

Figure 3.4: Comparisons between time performance of the old code with bugs (red) and the
new and improved one (blue).
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the required computational time to compute the visibility of the geometry
increases (y−axis). However, the new proposed implementation always takes
less time than the old implementation. Especially with more refined mesh,
the gap between the computational time of the two implementations becomes
relevant.

In conclusion, the proposed modified code results to have better time per-
formance both with increasing complexity in the geometry, but fixed number
of elements in the mesh, and with fixed type of geometry, but varying number
of triangles in the mesh.

All the tests on time performance have been run on a computer with an
Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz processor, 8 GB RAM and
Windows 10 as operating system.



Chapter 4

Experimental validation

In this chapter are presented the experimental results which validate the new
model for the prediction of the damping coefficient b for MEMS operating in the
fluid damping regime in near-vacuum and in a range of frequencies going from
10 kHz to higher frequencies, up to 100 kHz. Such frequency range is expected
to be of interest for next-generation inertial sensors. Besides, with increasing
frequency, the “quasi-static” approximation (presented in Sec.2.2) gradually
becomes invalid, hence the need for new modelling tools. The proposed method
has been validated through eight different structures with varying resonance
frequency and air gap.

4.1 Test structures

The test structures, shown in Fig.4.1, are formed by a holed proof mass with
area equal to (270)2µm2, anchored through two torsional springs attached to
the lower side, whose out-of-plane thickness is 30 µm.

This basic structure is replicated eight times, according to the four different
target frequencies (10 kHz, 20 kHz, 50 kHz and 100 kHz) and the two vertical
gaps (1.2 µm and 1.8 µm).

The difference in the resonance frequency is ensured by the different ge-
ometry of the torsional springs. As one can notice in the figure, from top to
bottom, springs gradually becomes shorter and thicker. Thus devices whose
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Figure 4.1: Optical top view of the 30-µm-thick test structures fabricated to validate the
proposed damping modelling. Rows represent varying frequency, columns represent different
vertical gaps.
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resonance frequency is equal to 10 kHz are characterized by the thinnest and
longest springs, while devices vibrating at 100 kHz have the thickest and short-
est springs.

The eight structures are encapsulated in a package, into which the pressure
is nominally 0.7 mbar. One can actuate the structures and acquire the response
signal by means of access pads on the package.

Each structure can be electrostatically actuated on its first torsional res-
onant mode, and capacitively sensed through electrodes designed underneath
the proof mass.

Prior to start measurements, it has been necessary the calculation of the
pull-in potential of each structure. That is, the maximum allowed potential
which can be used to actuate the proof mass, without incurring in a mechanical
instability that can damage the device. Indeed, if the provided voltage is too
high, the proof mass will displace too much from its rest position colliding with
the package walls. The pull-in voltage is given by the relation:

Vpull−in =

√√√√ kg3

2ε0Aeqd2 , (4.1)

where:

• k = ω2
0I is the springs stiffness, where ω0 = 2πf0 and I is the momentum

of inertia;

• g is the vertical gap [m];

• ε0 = 8.854·10−12 is the vacuum permittivity [F·m−1];

• d is the distance between the center of mass and the rotation axis of the
structure [m];

• Aeq = Atot − 400 ·Ahole is the equivalent area of the holed mass [m2],
where factor 400 represents the total number of holes on each proof mass.

In Tab.4.1 the calculated pull-in voltages are indicated.
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Table 4.1: Pull-in voltages of each type of structure.

Vpull−in [V]
Frequency [kHz] gap = 1.2 µm gap = 1.8 µm

10 7 13
20 14 26
50 35 64
100 70 129

4.2 Numerical results on damping estimation

As already highlighted in Sec.2.2, the existing “quasi-static” formulation, im-
plemented in [20]-[21], is based on the assumption that the time-of-flight of a
molecule between two different surfaces of the structures is small with respect
to the duration of one oscillation. If this condition is met and if other sources
of dissipation can be neglected, the quality factor Q is expected to have a
linear evolution as a function of the working frequency.

However, as the frequency f increases, its product f·L with a typical
dimension of the flow becomes comparable to the thermal velocity of molecules:
(2RT0)1/2. Therefore it is adopted the formulation put forward in [10] and
explained in Sec.2.1. The new proposed model can be considered exact and
fully 3D and it makes the only assumption of small perturbation (see Sec.2.2).

For modelling purposes and numerical damping estimation, the MEMS
structure is split into elementary units, already presented in Sec.2.6. In this
case, the elementary units for the holed mass are formed by a vertical hole an
its boundary pitch, with the electrode underneath.

Note that holes are classified into levels according to their distance from
the proof mass. As explained in [21], cells are organized in levels in order to
account for edge effects. According to this classification, level 1 cells are those
closest to the boundary, while cells with levels larger than 3 are considered to
be at regime and treated imposing perfectly periodic boundary conditions. In
Fig.4.1 different hole levels are highlighted on a structure: holes in level 1 are
coloured in blue, holes in level 2 are yellow and holes in level 3 are red.
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Figure 4.2: Predicted damping force on elementary holed blocks as a function of frequency
and gap.

In Fig.4.2 are reported simulation results of the damping force acting on
each hole, for different hole levels.

The numerical predictions of damping are reported for both the gap values
(1.2 µm represented by circles, 1.8 µm represented by squares). It is clearly
shown that damping force depends on the frequency, especially from 50 kHz
frequencies and higher: damping b results to decrease more than linearly with
increasing frequency, therefore, since b and Q are inversely proportional (see
Sec.1.4), it is expected that the quality factor Q increases more than linearly
with increasing frequency.

For the sake of completeness, other possible sources of dissipation have
been considered for high frequencies. Anchor losses have been simulated as
suggested in [22]; according to obtained estimations, they can be safely ne-
glected since Qanc > 105 for all the considered configurations. Thermoelastic
analysis have also been performed, with the following material parameters:

• coefficient of linear thermal expansion α = 2.6·10−6 K−1;

• thermal conductivity λ = 148 W/(m·K);

• heat capacitance Cp = 700 J/(kg·K).
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The thermoelastic quality factor Qted is mainly associated to bending in the
anchors and decreases with increasing frequency (stiffer springs). At 100 kHz,
one gets a Qted = 46000 which can be thus neglected as well. Indeed, as already
explained in Chapter 1, the overall quality factor can be calculated as:

Q = 1
1/Qfluid + 1/Qted + 1/Qanc

, (4.2)

therefore, since Qted and Qanc have high values, relation 4.2 can be approxi-
mated as

Q ≈ Qfluid . (4.3)

Thus the main contribution to Q is given by the fluid quality factor.

4.3 Description of the instrumentation

The experimental setup is based on a probe station, a MEMS characterization
platform (MCP-G by ITmems) and a waveform generator (33250a by Agilent).

Tests on MEMS devices have been carried out, at first, on the probe station
in the clean room of the Laboratory of MEMS and microsensors, Politecnico di
Milano. It consists mainly in microscopic needles (shown in Fig.4.3(b)) which
easily contacts the access pads of a package in order to actuate the MEMS in
it and acquire their signals. Actuation and acquisition are made with the help
of the MCP. For this purpose, the probe station is attached to it by means of
cables (as depicted in Fig.4.3(a), where the MCP is on the left and the probe
station is on the right).

With the help of the MCP, one can study the dynamics of MEMS by track-
ing the capacitance variations of their moving parts (rotors) with respect to
those at rest (stators). MEMS capacitances are measured through a sinusoidal
probe-signal of frequency much higher than the resonance frequency of the
device under test. By doing so, the motion of the MEMS is not perturbed.
Then the unknown capacitance is determined by measuring the current iC(t)
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(a) MCP attached to the probe station. (b) Close up of the probe station.

Figure 4.3: Picture of the setup used for measurements in the clean room.

flowing across it, which is given by:

iC(t) = dQ(t)
dt

= C(t)dV (t)
dt

+ V (t)dC(t)
dt

, (4.4)

where V (t) represents the voltage drop existing between rotor and stator.
Considering the voltage V (t) as a combination of a continuous bias voltage

VO and an alternate voltage vp(t) (which is the sinusoidal high-frequency probe-
signal), one obtains:

iC(t) = C(t)dvp(t)
dt

+ (VO + vp(t))
dC(t)
dt

. (4.5)

Thus, since vp(t) has a much higher frequency than the capacitance C(t) fre-

quency, then dvp(t)
dt

� dC(t)
dt

and the following approximation holds:

iC(t) ≈ C(t)dvp(t)
dt

. (4.6)

Therefore it is possible to detect the relative motion between rotor and stator
by evaluating the current iC(t) as it is proportional to C(t), (which in its turn,
as already mentioned, is proportional to the rotor displacement). In practical
terms, making reference to Fig.4.4, an actuation voltage is provided to stator
A, a signal for current modulation is applied to the rotor and an amplifier,
which reads the current, is attached to stator B, that is consequently polarized
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Figure 4.4: Scheme of the functioning of the MCP.

to the correct voltage [23].
In a second moment of the experimental campaign, due to problems in the

measurements (explained in details in the following), the test dies have been
glued and wire bonded on LCC68 ceramic carriers, which can be mounted
on a plastic socket that directly interfaces with the MCP and the waveform
generator. Therefore pads are no more contacted with the probe station and
the second campaign of measurements has been carried out outside the clean
room.

4.4 First campaign of measurements: probe
station

Each package contains the eight structures shown in Fig.4.1. The experimen-
tal campaigns are carried out on 11 packages, with an amount of 88 chips
tested. For sake of simplicity the 11 packages are named progressively with
alphabetical letters (therefore from A to M), while the eight structures in each
package are named as reported in Tab.4.2.
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(a) Square wave excitation and consequent ring-
down response.

(b) Pulse-train excitation and consequent ring-
down response.

(c) Burst signal excitation and consequent ring-down
response.

(d) Example of non-accurate fitting, obtained
after the square wave excitation.

(e) Example of a very good fitting, obtained
after short-burst signal excitation.

Figure 4.5: Summary of the three adopted measurements approaches.
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Table 4.2: Identifier codes of the eight devices in a package.

frequency
10 kHz 20 kHz 50 kHz 100 kHz

gap = 1.8 µm S4 S3 S2 S1
gap = 1.2 µm S8 S7 S6 S5

4.4.1 Step approach

The first technique used to experimentally measure the Q factor of the test de-
vices consists in the application of a 4 V slow square wave, shown in Fig.4.5(a).
The square wave excites all the tilting masses in the package, then the ring-
down response is fitted in order to estimate the quality factor. The fitting is
performed both in time and in frequency (Fig.4.5(d)) with the aim of verifying
that the two fittings agree one another.

However, since all the eight structures feature a single electrode for the
drive and rotor pads, this complicates the actuation of the structures at high
frequency. In other words, the structure with the lowest pull-in voltage (about
6-7 V) limits the actuation with ring-down methods to about 4 V for all struc-
tures. As a consequence, devices with higher resonance frequencies require a
too long acquisition time in order to have a good Signal-to-Noise ratio (SNR).

4.4.2 Pulse-train approach

In order to speed up the simulation and to avoid the simultaneously excitation
of all the structures in a package, the pulse-train technique has been adopted.

A 4 V slow square wave is supplied as well to the structures, but the
resulting spectrum is fitted on the expected peak, just to estimate the nominal
resonance frequency of the MEMS of interest.

Then a 3.5 V train-pulse (Fig.4.5(b)) is applied at an odd divider of the
found resonance f0, according to the following relation:

ft = f0

1024· 10
Nodd

, (4.7)
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where 1024 at the denominator (equivalent to 10 bit) are the levels for the
train codification and 10, at the numerator, is a rescaling factor to adapt to
the component which generates the pulse-train. In this way the odd harmonics
of the pulse-train will only excite the resonance frequency of interest. In the
end, the spectrum is fitted both in time and in frequency again to extract
resonance and Q factor.

However problems arise also with this approach because time fitting some-
times is still not reliable due to cross-talk. Therefore another technique is
needed to carry out measurements.

4.4.3 Short-burst signal approach

In order to avoid issues encountered with the previous adopted techniques, an
external waveform generator is introduced in the setup. The waveform gener-
ator is used to provide a short-burst signal close to the resonance frequency of
the structure of interest with the following advantages:

• only a device among the eight in the package is excited at its own res-
onance. This enables to lower the applied voltage while holding a good
SNR for the considered structure (thanks to Q factor amplification),
without perturbing the other structures;

• the method provides the best signal amplification, as shown in Fig.4.5(c);

• the result is an optimum fitting, both in time and in the frequency do-
mains, as depicted in Fig.4.5(e).

Obviously, to be sure about the equivalence of the three excitation ap-
proaches for Q measurements described so far, a cross-check on a subset of
devices is performed by measuring the Q with all the described techniques.
The obtained results confirm the equivalence of the three techniques, within
reasonable deviations.
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Figure 4.6: Experimental results using the probe station. Red → 10 kHz, yellow → 20 kHz,
blue → 50 kHz and cyan → 100 kHz. Besides, in each color group: the highest curve with
markers → 1.8 µm gap; the lowest curve with markers → 1.2 µm gap.

4.4.4 First campaign results

In Fig.4.6 is depicted a summary of the experimental results obtained with the
probe station.

The x−axis reports the tested die, identified by a letter as already men-
tioned, while the y−axis reports the measured quality factor Q.

Each group of colors corresponds to a frequency range of the test structures,
according to the following color codes:

• red → 10 kHz;

• yellow → 20 kHz;

• blue → 50 kHz;

• cyan → 100 kHz.

Within each color group the following distinction holds:
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• the lowest curve with markers corresponds to measured data at 1.2 µm
vertical gap;

• the highest curve with markers corresponds to measured data at 1.8 µm
vertical gap;

• dashed lines are the corresponding measured average Q;

• solid lines are the theoretical predictions from the old numerical model
at 0.7 mbar.

Low frequency devices (10, 20 and 50 kHz) present a good matching be-
tween measured quality factors and the predicted values at low frequencies,
as expected. They have good repeatability in the measured Q, when mount-
ing the devices in different configurations on the probe station. Moreover the
quality factor Q for different dies presents a similar trend, which means that
Q correctly follows the pressure in the package and varies correspondingly on
different devices.

On the other hand, for high frequency devices (100 kHz), one can notice
in the plot that several devices are missing because of too unreliable Q values,
which vary between 1000 and 2500 in different measurements configurations.

Indeed it is observed that the Q factor significantly changes, for 100 kHz
devices, depending on how the die is mounted for testing at the probe station:
either fixed with adhesive tape, or fixed with alternative techniques. Moreover,
for the two former cases, if the die is removed and put again on the probe, the
quality factor may change unpredictably.

However, once a mounting is done, the chosen measurement technique has
no impact on measured Q, thus changes above are independent of the charac-
terization technique.

A possible explanation of the observed effect which generates differences
depending on the mounting conditions is that the system can not be modelled
as a single-degree-of-freedom spring-mass-damper system, since the coupling
to the substrate is not rigid enough. Therefore the system can be seen in
series with another spring-damper that connects the package to the probe.
Depending on how the mounting is done, this new spring and damper may
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Figure 4.7: Graphical explanation of the effect causing differences in measurements depend-
ing on the mounting.

change their values, changing the way energy is transmitted and lost through
and towards the substrate. Thus the measured Q is that of the entire two-
degrees-of-freedom system and no longer that of the designed MEMS alone.
See Fig.4.7 to better understand.

Hence the need to conduct a second experimental campaign, outside the
clean room, with structures mounted on a ceramic socket, wire bonded and
further fixed with non-conductive glue, in order to make the coupling between
the MEMS and the substrate sufficiently rigid.

4.5 Second campaign of measurements: socket

Figure 4.8: Ceramic carrier where the die is mounted. It is also connected to the pads by
means of wire bondings.

In this second campaign, dies are mounted on sockets as shown in Fig.4.8.
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Figure 4.9: Results of the repeatability measurements on a sample with 1.8 µm vertical gap
and 100 kHz resonant frequency.

Thanks to the bonding, actuation of devices and acquisition of signals are made
easier and there is no need to access the devices in the package by means of
the probe station. For this reason this second campaign is carried out outside
the clean room.

The adopted measurements technique is the last presented, the short-burst
signal approach, since it turned out, from the first campaign, to be the most
accurate and satisfying.

4.5.1 Measurement repeatability

In order to verify that this alternative mounting of the devices provides more
reliable results on Q factor extraction, contrary to the mounting on the probe
station, a repeatability campaign is firstly performed on samples mounted on
socket. For ten consecutive times, the MEMS glued on the carrier is disassem-
bled from the holding socket, reassembled and finally re-measured. Results
of one 100 kHz sample are reported in Fig.4.9, showing a repeatability in the
quality factor estimation better than ±1%. At lower frequencies, repeatability
is even better as the larger achievable structure motion delivers higher SNRs,
easing the fitting procedure.
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(a) Comparison between the results of de-
vices with 1.8 µm gap and 100 kHz reso-
nance frequency.

(b) Comparison between the results of
devices with 1.2 µm gap and 100 kHz res-
onance frequency.

Figure 4.10: Comparison between the results of the first campaign (cyan markers) and the
second campaign (blue markers). The dashed lines are the average measured Q, while the
red line is the theoretical value.

Since this new setup turned out to be more reliable than the first, in terms
of Q factor prediction, new measurements on the devices are performed and
their results are presented in the following.

4.5.2 Second campaign results

Among the tested dies in the first campaign, four of them (B, C, E and H)
have been selected to be mounted on the socket, with the following logic: B
and C have “well-functioning” MEMS vibrating at 100 kHz, in the sense that
their measurements of Q, during the first campaign, are satisfying; E and H,
on the contrary, are chosen because provide unreliable values of Q.

In Figg.4.10(a) and 4.10(b) is depicted the comparison between measure-
ments carried out in the first campaign (solid curve with cyan markers) and
measurements carried out in the second campaign (solid curve with blue mark-
ers) concerning 100 kHz devices with a vertical gap equal to 1.8 µm and 1.2 µm
respectively. The solid red line, in both figures, represents the theoretical value
of the quality factor, provided by the old numerical model. The dashed lines
represent the average of the measured quality factors. In both cases, average
Q is much higher than the theoretical quality factor. This clearly indicates the
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presence of errors in the measurements conduct with the probe station.
These results, therefore, validate the formulated hypothesis in Sec.4.4.3:

since dies are glued on socket, their coupling with the substrate is rigid enough
to allow the measurement of the quality factor of the only MEMS in the pack-
age, which results to be higher than the Q measured during the first campaign.

Besides they validate the new proposed model, which predicts a more than
linear growth of the quality factor with the resonance frequency, since measured
Q are sensibly higher than theoretical Q (red line in the figure) predicted by
the old model.

4.6 Summary

All the results obtained so far (theoretical, numerical and experimental) are
now compared. Making reference to Figg.4.11(a) and 4.11(b), measured Q

factors are reported on the y−axis as a function of the measured resonance
frequency, which is reported on the x−axis.

The dash-dotted curves shown with orange squares represent, in both fig-
ures, the numerical results obtained adopting the “quasi-static” prediction,
therefore provided by the old model. Note how this foresees a constant damp-
ing coefficient with frequency, and thus a linearly growing Q factor. The
dashed curves reported through yellow diamonds represent the numerical re-
sults obtained with the new model, from which the progressive divergence of
this prediction with respect to the “quasi-static” one is evident as the frequency
increases.

The experiments, here reported through solid curves and circle blue mark-
ers, confirm the model predictions: a deviation of the quality factor from the
low-frequency linear dependence with resonance is effectively observed at 50
kHz, becoming clearly evident at 100 kHz. Such behaviour well matches the
numerical results of the proposed tool, with Q−factor estimation errors lower
than 8% at the largest analyzed frequency, for both the gap values.

Devices vibrating at even higher frequencies (> 100 kHz) are currently
under investigation. In this case, progressive decrease of the fluid damping
contribution, as well as the corresponding increase of the thermoelastic damp-
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(a) Results comparison of devices with 1.2 µm gap.

(b) Results comparison of devices with 1.8 µm gap.

Figure 4.11: Experimental results of Q factor measurements (circles) compared to low-
frequency model (squares) and the new proposed model (diamonds), as a function of fre-
quency.
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ing, make the two contributions comparable.
The final simulation result sensibly depends on material parameters like

the thermal expansion coefficient, the heat capacitance and the conductivity,
which are not easily available for polysilicon in the literature and are, therefore,
under investigation.



Conclusions

The work of thesis presented so far, proposes, implements and validates a new
numerical model for the prediction of damping coefficient. Such a tool is of
paramount usefulness in the design of MEMS sensors, since it allows an a priori
estimate of the performances of such designed devices.

The work has been carried out into three phases: at first a research on ex-
isting models in literature and the analysis and comprehension of the proposed
model has been made; then improvements in the code are implemented in order
to make it efficient as much as possible; at last, experimental measurements
and numerical simulations have been performed.

The analysis on the existing models provided information about their draw-
backs and their limitations. Indeed, some of them hold only in particular phys-
ical conditions or for low resonance frequencies, while others, of wider validity,
result to be computationally inefficient. In order to overcome limitations of
the first category of existing models, the quasi-static hypothesis needed to be
relaxed, as explained in Chapter 2, and the only hypothesis of small pertur-
bations has been assumed in the formulation of the new model. Thus the
model presented herein can be considered a generalization of the others, since
it holds both for low and for high resonance frequencies, with a resulting range
of frequencies that extends from 10 kHz to 100 kHz, which is expected to be
of interest for next-generation MEMS inertial sensors.

On the other hand, our model needed to be improved in terms of com-
putational speed, so as to be competitive with the second category of models
which make use of the Test Particle Monte Carlo method. Hence the numerical
implementation, which constitutes the main part of this work, has focused on
the speeding up of the implemented model, as well as the overcome of some

72
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errors found in the previous implementation.
The speeding up activity has only concerned the visibility part of the code,

as explained in Chapters 2 and 3. Indeed, since MEMS devices have compli-
cated geometries, they can be split into elementary units which are additionally
partitioned into elementary quadrangular surfaces. Among all the surfaces,
only those “visible” are taken into account for the computation of damping
forces on the whole MEMS structure. This leads to the simulation of fully 3D
structures by means of surface integral relations.

Numerical simulations on time performances provided successful results.
In the end, experimental measurements have been conducted in order to

validate the proposed model. Their results confirm the reliability of the model
with errors in the quality factor Q estimation lower than 8%.

Further studies reveal that, with increasing frequency (> 100 kHz), damp-
ing sensibly depends on material parameters, which are not easily available
for polysilicon in the literature. Therefore the line of research, concerning the
study of polysilicon properties, is still open. The aim is that of understanding
if other sources of dissipation, like the thermoelastic damping, become com-
parable with the fluid damping at higher resonance frequencies. Such topic is
of interest for the company which provides us the devices. Therefore devices
vibrating at even higher frequencies are currently under consideration.

Nonetheless the model developed so far and presented in this work has
proved to be fast, reliable, of wide application and provides very satisfactory
results.
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