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Abstract

A chatbot is a software agent with the objective of helping humans to solve
problems by using natural language to interact with them. This thesis has
both the goal of investigating the most interesting methods to build such
kind of models and of showing their application in a real-world use case.
This work aims at describing these methodologies both from a theoretical
and a practical point of view, taking as an example a technical case study
coming from a project developed together with Loop AI Labs. In particular,
we explain how to deal with a real-world Conversational AI problem, from
data exploration to data preprocessing, normalization and standardization.
After these preliminary steps, we explain how to choose, train and validate
a model in a real-world setting.

We describe the two most successful architectures, retrieval and gener-
ative models, and after showing their pros and cons, we select the second
family and we discuss how its most problematic issue is the integration of
the conversational context. We select a model that can help to solve this
problem and we quantitatively compare a curriculum learning, Bengio et
al (2009) [6], based approach powered by a dedicated learning rate decay,
with a traditional approach based on the learning rate decay proposed by
Vaswani et al (2017) [100]. After this phase, we qualitatively evaluate the
best performing model. In the quantitative analysis we present how the
performance changes by varying some parameters of the model, while in the
qualitative study we show the actual results that the best model obtains
in two settings: off-line, where we evaluate a set of cases coming from an
evaluation set, and on-line, where we inspect how the model behaves during
a chat with a real client.
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Sommario in Italiano

I chatbot sono software che hanno lo scopo di utilizzare il linguaggio naturale
per guidare gli utenti nella risoluzione di problemi tecnici. Intuitivamente,
le aziende che offrono un servizio di assistenza clienti tramite chat generano
una grande quantità di dati sotto forma di conversazioni tra agenti reali
e clienti. Registrare queste conversazioni apre una grande possibilità di
creare valore. Questi dati possono infatti essere usati per costruire i chatbot,
agenti di supporto virtuali che permettono agli agenti reali di lavorare più
velocemente facendo meno fatica.

È in questo ambito che si colloca la IA conversazionale, la scienza che
studia come utilizzare l’intelligenza artificiale e gli storici delle conversazioni
dei centri di assistenza per costruire i chatbot.

Questa tesi ha il duplice obbiettivo di proporre una analisi che confronti i
più recenti e innovativi metodi che la letteratura propone per costruire questi
assistenti virtuali, e di mostrare come questi software si comportano in un
caso reale. In particolare, dopo aver analizzato le due famiglie di architet-
ture maggiormente utilizzate, gli algoritmi generativi e quelli di recupero,
selezioniamo la prima e spieghiamo come il principale problema di questi
modelli sia renderli consapevoli del contesto della conversazione. In seguito,
proponiamo una validazione sperimentale nella quale confrontiamo quanti-
tativamente un approccio basato sull’apprendimento a curriculum, basato
sul Bengio et al (2009) [6], con un approccio più tradizionale che utilizza
alcune intuizioni proposte da Vaswani et al (2017) [100].

Una volta selezionata una architettura appropriata, spieghiamo come
affrontare un problema reale di IA conversazionale descrivendo le fasi che
precedono l’effettiva creazione del modello, vale a dire quelle di esplorazione,
di standardizzazione e di normalizzazione dei dati. Nell’ ambito di questo
caso di studio presentiamo una analisi quantitativa nella quale selezioniamo
un insieme di metriche e mostriamo come il loro valore cambi al variare di
alcuni parametri del modello. Nella analisi qualitativa invece studiamo il
comportamento che il modello quantitativamente migliore presenta in due
situazioni: una prima nella quale valutiamo come il software risponde ad
una serie di casi provenienti da un set di validazione, e una seconda dove
analizziamo le risposte generate durante simulazioni di conversazioni con i
clienti.
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di crearsi nuovi obbiettivi e la voglia di mettersi in discussione. Mi hanno
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Chapter 1

Introduction

Humans use natural language to communicate. Among the vast variety of
tasks communication is used for, one of them is finding solutions to problems.
In this scope, an example are customer services support departments that
have the objective of helping clients with the products maintenance. Usually,
these realities are structured as chatting centres where the first available
agent answers questions related to a very narrow domain.

It is intuitive to understand that recording the conversations between
clients and agents opens a great business spot, in fact these data could be
used to build software modules that can empower and help agents to be
more efficient, allowing them to perform more tasks with less effort.

Here is where Conversational AI comes into the picture: it is the science
that studies how to build these software solutions, also called chatbots, that
do this job by exploiting historical conversational data. If Conversation
refers to the type of data this science handles, AI instead relates to the fact
that these modules usually exploit artificial intelligence in order to catch
patterns between question and answers and to mimic how humans behave,
learning from them.

There is a very problematic issue developers have to face while developing
such kind of solutions: not always the direct question is enough to generate
a meaningful answer. For this reason one of the most hot research trends
in the community is to find a smart way to incorporate the conversational
context into the model.

Chatbots have a wide range of applicability, in fact on the long term they
will significantly help companies to save money and to exploit at most their
knowledge bases, and for this reason they are a trending topic receiving a
lot of interest.

System integrators constantly monitor this field with interest because,
even if they do not yet propose a proprietary solution, they consider this
topic as a real and valuable business spot.

On the other hand big companies, such as Google, are heavily contribut-
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Chapter 1. Introduction 6

ing to this field with their teams by pushing the boundaries of research.
They develop new techniques with a single day pace and they leverage on
proprietary huge datasets using unbounded computational resources. They
can thus develop great demos, such as the one presented by Sundar Pichai,
CEO at Google, at Google IO about the new Google assistant [102].

Then there are start-ups, some of which have their own research branch
implementing proprietary solutions. At Loop AI Labs, one of those start-ups,
we had the opportunity to work on very interesting projects and Chapters
4, 5, 6 describe how, during this collaboration, we faced the development of
a Conversational AI tool.

1.1 Aims and goals of the thesis

This thesis on the one hand is a synthesis of the technical and practical
knowledge gained during the collaboration with Loop AI Labs, on the other
hand it has the objective of presenting a critical analysis of literature mod-
els performance on a real use case, in order to shade light and clarify the
controversial topic of Conversational AI.

At first, this work structures the various research trends in an organized
document, wrapping the state of art technologies in a compact summary in
order to allow future works to have a solid base on which start to build upon.
Secondly, we want to show the application of these models in a real world
case, in order to transmit how much distance there is between the classical
datasets used by the research community [60] and practical scenarios, such
as the one described in Chapter 4. We discuss how the switch between
research and real datasets is problematic and what is the way the developer
has to head in order to help the model to learn the complex patterns behind
conversations. In fact, we want to provide a smooth and clear path from the
theory to a practical use case that could help to build deep learning models
for natural language understanding.

1.2 Contribution

This work proposes some insights about how to structure a Conversational
AI project in a real world setting and it shows the best practices we devised
at Loop AI Labs.

In particular, it wants to be a journey through dataset assignment, study
of the state of art and both qualitative and quantitative analysis. In Chapter
4 we carefully study how much crucial and tricky is the the integration of the
conversational context into the model architecture. To solve this issue, our
quantitative analysis compares a novel curriculum learning approach, that
uses an innovative learning rate decay to support such incremental training,
with a more traditional approach.



7 1.3. Overview

One of the contributions of this thesis is the idea of designing a learn-
ing paradigm that takes into consideration the incremental complexity of
conversations to define a procedure that could help the model to generalize
better. Also, we believe that through this work we opened a new branch
of research that, if further deepened, could potentially give important im-
provements in the design of generative models.

Another contribution of this work is the idea of training generative con-
versational models with the learning rate decay proposed by Vaswani et al
2017, [100].

This quantitative analysis shows how the performance changes by vary-
ing some hyper-parameters of the model, while the qualitative analysis is
meant to show the results that the best approach obtains in two settings:
the first is a set of success and bad cases picked from an evaluation set, while
the second is the result of an interactive chat between the developer and the
chatbot, showing how tricky it is to put such models in production.

In addition, we precisely describe the preprocessing pipeline, and in par-
ticular the development of a novel spell checker, a very important module to
normalize raw text that we designed to ensure the integration only of safe
corrections.

1.3 Overview

From a high level point of view, the structure of this thesis reflects the
research plan we followed: we started by studying retrieval models and
we discussed their pros and cons, finding out that their architecture was
not intuitive and too much constrained. For this reason, we decided to
move towards generative models, a more complex but recent, intuitive and
fascinating solution. In the scope of generative models, we selected and
validated a set of important hyper-parameters. As a last step, we selected
the best performing model and we qualitatively analysed its performance
both from an off-line and on-line point of view.

All this work was targeted at a real working reality, and for this reason
oriented to save resources and to exploit at most available data and compu-
tational power, and this is the reason why we used distributed training and
an ad-hoc preprocessing chain.

In particular, we organized this work in seven chapters:

• Chapter 2 is a high level overview of Conversational AI. It presents
the main differences that characterize conversational models, describ-
ing them from a general perspective and showing their pros and cons.
In addition, we discuss open issues and design choices such as Long
vs Short conversations (Section 2.3.1) and Open vs Closed domain
(Section 2.3.2), and challenges such as Incorporating context (Section
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2.3.3), Coherent personality (Section 2.3.4) and Intention and diver-
sity (Section 2.3.5). In Section 2.4 we add an interesting discussion
about conversational ethic and in Section 2.1 we discuss the relation-
ship between Conversational AI and natural language processing.

• In Chapter 3 we present an organized, complete, updated and tech-
nical analysis of the most successful Conversational AI algorithms,
together with their foundations. We start by describing the retrieval
approaches, Section 3.1, showing them along the two dimensions of
matching measure and feature extraction. Then we consider genera-
tive models, Section 3.2, with a particular attention to sequence to
sequence architectures ([95], [19]).

• While Chapter 2 is a high level overview of Conversational AI and
Chapter 3 is a technical description of the algorithms, Chapter 4 is a
precise report on how to approach a real world Conversational AI prob-
lem. It contains a detailed description of the preprocessing pipeline,
where its most important tool is a novel statistical spell checker, which
behaviour is carefully presented. We demonstrate how, specially for
text, real world data is very problematic. It is full of typos, it is dirty
and irregular and usually intractable as it is. For this reason, we show
how the most of the work of the developer is usually dedicated to
design an appropriate preprocessing chain that is able to reduce the
entropy of the dataset.

• Chapter 5 describes the learning paradigm and the training set-up
that we decided to adopt to learn a conversational model. We briefly
outline the hardware setting that we used and the programming envi-
ronment that we decided to adopt. In addition, we discuss which are
the evaluation metrics of Conversational AI and we study when these
metrics represent a signal correlated with the human evaluation.

• In Chapter 6 we show how to train and validate a generative model,
both in terms of qualitative and quantitative metrics, demonstrating
the difficulty of evaluating such algorithms with the current model
independent metrics.

• In Chapter 7 we derive our conclusions and we point out which are
the most promising research directions for future work.



Chapter 2

Conversational AI

Conversational AI is a controversial and fast growing branch of AI research.
Its aim is to build software agents, also called chatbots, able to handle a
conversation with a human being by using natural language.

Common AI powered assistants have the main objective of supporting
the user in solving a problem, and big companies are investing in this field.
For instance, Microsoft is making big bets on chatbots, and so are compa-
nies like Facebook (M) [20], Apple (Siri) [1], Google (Google assistant) [58],
WeChat [63], Amazon (ALEXA) [2], Microsoft (Tay) [42] and Slack [10].

In this picture, a new wave of startups is trying to change how con-
sumers interact with services by building consumer applications that use
conversational agents to drive the user into their offert. To help the integra-
tion of this feature into applications, Microsoft recently released their own
bot developer framework. Many companies are hoping to develop bots able
to produce natural conversations indistinguishable from human ones, and
many are claiming to be using NLP (Natural Language Processing) and DL
(Deep Learning) techniques to make this possible.

In this thesis the term utterance will refer to everything exchanged dur-
ing the conversation, being either a question or an answer. Specifically, a
contiguous pair of question and answer is called turn, and the context is then
defined by a number of turns back into the history of the conversation. In
this scope, there are two types of settings, single-turn and multi-turn: the
first one refers to the case in which the context is made only of the direct
question, while in the other case the context is made of the direct question
together with a number of turns taken from the conversation.

2.1 Conversational AI and NLP

Conversational models handle contexts made of possibly multiple utterances,
a data format that is very similar to text documents, where the sentences
represent the exchanged utterances. In order to generate meaningful an-
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swers, it is necessary to provide the agent with methods to understand these
conversational documents, and chatbots strongly rely on this skill. Here is
where Natural Language Processing (NLP) techniques come in handy. NLP
is a fast growing field of computer science and it had a fast growth in the
last years. It is concerned about how to program computers to process
and analyse large amounts of natural language data. Challenges in natural
language processing frequently involve speech recognition, natural language
understanding, and natural language generation.

Referring to Conversational AI, there are many factors in which chat-
bots can vary, and one of the biggest differences is whether or not a bot
is equipped with Natural Language Processing. Bots without NLP rely on
buttons and static information to guide a user through a bot experience,
and they are significantly more limited in terms of functionality and user
experience than bots equipped with NLP. However, even if these algorithms
are useful and currently used in most of the production environments, the
community is heading in the direction of building conversational models that
use NLP because this last kind scales better.

Linguistic based NLP methods are very different from the ones used
nowadays, and this is mainly due to the prominent raise of Deep Learning
(DL), a methodology that completely changed this field. Conversational
models are horizontal with respect to NLP. They involve speech recognition
in order to format sounds into text, natural language understanding to rea-
son on text, and natural language generation to produce the answer. In
the majority of the cases, understanding text refers to having the ability to
assess semantic similarity. This usually means having a way to take unsu-
pervised raw text data and structure it in a meaningful and compact form.
On the other hand, the task of generating language can be accomplished in
two ways: generating already assembled answers, and this is the approach
adopted by retrieval chatbots, or assembling the answer word by word, and
this is how generative conversational agents solve the problem.

In particular, nowadays NLP techniques are of three kinds:

• Vector space model based: This approach aims at developing a
vectorial geometric representation for text data. Considering a set of
documents, the first step is to extract the set of the unique words in
them, called vocabulary or feature set. In particular, documents are
represented by means of these features as vectors with size equal to the
vocabulary size. Starting from this abstract representational concept,
there are several models that propose how to compute the values of
each element in the vector.

Having this vectorial representation, it is possible to perform mathe-
matical operations on documents and in particular to compute simi-
larity. An example is shown in figure 2.1.
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Figure 2.1: By using this model it is possible to map sentences into vector representa-
tions in a latent space. Figure coming from ”Bitsearch” article [83] .

Figure 2.2: Learnt word vectors for common words. Semantically similar
words are placed in the same part of the latent space. Figure coming from
”http://www.samyzaf.com/” blog [81] .

• Deep learning based: Having the possibility to express documents
as vectors, it is natural to think that it should also be possible to rep-
resent words as vectors and “Efficient Estimation of Word Representa-
tions in Vector Space ” by Mikolov at al 2013 [64] was in this direction.
They proposed a neural network architecture, called Word2Vec, able
to learn a vector representation, also called word embedding, for each
distinct word in a raw text (Figure 2.2). The great result of this model
was that the learnt vectorial representations reflected the semantic re-
lationships between words.
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This method was a cornerstone in NLP because it allowed to learn
semantic information in an unsupervised way without the need of an
ontology. In fact, this algorithm does not need an explicit supervised
signal.

This embedding technique is particularly useful to understand text.
In particular, having a text and a mapping between each unique word
in the text and a vector in a semantic learnt space, it is possible to
aggregate the embeddings related to the words in the document and
to abstract a document vector from them.

• Linguistic based: This approach is a defined as a set of methods
with the goal of extracting structured information form unsupervised
raw text data. Among them there are POS-tagging, NER extraction,
Stemming and Lemmatization methods. All the above methodologies
have two goals: the first is to reduce the complexity and the variance
of text in order to reduce the scope of the problem, while to second
one is to extract meaningful entities. At the bottom of this pipeline,
literature has usually proposed the use of an ontology to pair tokens
with a semantic meaning. While in theory this approach is pretty
strong, in practice the problem is the reliability and the quality of the
these ontologies.

Human language is more complex than humans could perceive. Besides
its underlining logic, it is full of ambiguities and spell typos. Modelling
natural language conversations is one of the most challenging artificial intel-
ligence problems and for this reason Conversational AI needs several NLP
methods such as text cleaning, typos fixing, language understanding, rea-
soning, and the utilization of common sense knowledge.

2.2 Retrieval vs Generative models

As already mentioned, from an high point of view, chatbot models are of two
kinds, retrieval or generative. Even if they are two completely different ways
of dealing with the same task, they mainly differ in the way they assemble
the answer, either word by word, this is the case of generative models, or
retrieving a historical answer, as happens in retrieval models.

2.2.1 Retrieval models

Retrieval models work by taking the incoming query and have the goal of
finding the most similar question in an historical set of question-answer pairs
to return the answer that the human agent gave to the retrieved question.
In particular, retrieval chatbots employ NLP techniques in order to extract
features to identify and compare questions.



13 2.2. Retrieval vs Generative models

Essentially, these models can be considered as clever chat assistants that
perform an efficient semantic search in a space of historical question-answer
pairs. Roughly speaking, the result is a model that learns how to assess
similarity of text documents.

Because of their reliability, is better for production systems to be re-
trieval for now.

Procedure

In order to implement a retrieval-based software assistant, it is necessary
to define a matching measure telling how much an answer a is suited for a
question q. This measure can be stochastically or deterministically defined.

Stochastic measures can be seen as the prediction of a machine learning
or a deep learning model trained to predict the matching score. Their input
is the query-question pair, while the label can be a discrete, continous or
discretized score between 0 and 1. Using stochastic measures usually gives
better results because of the data driven nature of the process. As a draw-
back, because of their supervised nature, they need a labelled dataset and
this is not often available.

Deterministic measures instead do not need any kind of supervision.
These architectures exploit NLP techniques to extract a vectorial represen-
tation for documents and compute their similarity using a non-learnt func-
tion. This makes them more appetible to get baseline results with respect
to the previous ones, even if, because of their nature, they usually results in
very high level predictions, and this often turns into a poor performance.

Given an unseen customer question, these models use the matching mea-
sure to retrieve the top-k most similar historical questions. To overcome
the memory issues that can arise if the model has to handle a very large
dataset, this step can be enhanced with a clustering algorithm. In this case
the dataset has to be organized into clusters with an off-line procedure.
Then, the algorithm extracts the set of the centroids, one per cluster, and
at inference time it compares the incoming sample with the centroids, finds
the most similar one and returns the top-k most similar samples inside the
selected cluster.

Considering only the previously retrieved subset of k questions, as the
final step it returns the answer a related to the question-answer pair with
the maximum matching score among the k retrieved ones.

Pros and Cons

Retrieval models has some pros and cons. In fact, they give grammatically
correct answers, as the model output is coming directly from an historical
repository. This way they are a starting point to build immediate customer
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engagement, in fact they show perfectly grammatically built answers and
they can be considered an off-the-shelf baseline.

Unfortunately, these models may not be able to provide a precise match
with the context and this often results in dull responses. Their main problem
is that answers lack any novelty because the process is deterministic. In
fact the model is not either assembling the predictions or reasoning on the
context. This results in an inefficient exploitation of the dataset. Indeed,
while a generative models massively combines data coming from different
training samples to answer to a specific question, retrieval models do this
only in a very little part.

Further, given that they are not suited for open domain conversations,
their scope usually restricts to conversations that have the objective of pur-
suing a small set of simple goals. Retrieval models may be unable to handle
unseen cases for which no appropriate predefined response exists. For the
same reason, these models can not refer back to contextual entity informa-
tion like names mentioned earlier in the conversation.

Even by using the context, they do not consider the evolving state of the
conversation, so subsequent answers can be inconsistent with each other.

2.2.2 Generative models

If retrieval agents use NLP techniques to extract explicit features, genera-
tive ones instead use NLP to extract implicit, learnt features, in fact, while
retrieval chatbots bias the feature extraction phase by exploiting a straight-
forward architecture, on the other hand generative models do not bias the
architecture and let the model learn the features.

Deep Learning techniques can be used both in retrieval and generative
models, but research seems to be moving towards the generative direction.
These architectures, for example Sequence to Sequence models, firstly intro-
duced by Sutskever et al in 2014 with their “Sequence to Sequence Learning
with Neural Networks ” [95] and by Cho et al in 2014 with “Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Trans-
lation ” [19], are uniquely suited for generating text and researchers are
hoping to make rapid progress in this area.

Procedure

These models fit an algorithm that automatically learns how to represent the
conversational context, while the retrieval architectures build this represen-
tation by using traditional NLP methods that extract hand crafted features.
This irremediably makes the retrieval process biased by the choices of the
developer.

Then, generative models use the extracted context to generate the answer
word by word. This is the second big difference between the two approaches.
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Indeed, generative models have been designed to autonomously assemble
the answer by choosing its words in a vocabulary while being conditioned
on the current conversational context. It is interesting and fascinating how
this process completely mimics the way humans answer to a question.

Pros and Cons

While this approach can seem more human-like, and for this reason more
suitable for a real use case, there are pros and cons in using it.

In fact, the answer generation process mimics how humans behave. The
job of the brain during the answering process can be seen as two phases
made: an encoding one where the mind extracts the meaning from a ques-
tion and a decoding step where it generates the answer. In the same way,
generative models read the input data and build a compact representation of
it. In the human parallelism, the result of the encoding phase is the thought
that the brain generates while reading or hearing a question, that is used
in the decoding phase to generate a coherent answer by assembling words
belonging to a vocabulary set. This is what humans do when they gener-
ate an answer, the brain keeps the encoded question into consideration and
chooses the words of the answer one at the time by taking into consideration
the encoded question and the generated words.

In addition, these models can refer back to entities in the input. They
give the impression of talking to a human agent and answers are novel by
model construction, in fact the model learns how to combine words.

Once the model learns both the grammar and the language specific sen-
tence generation process, it is possible achieve more customer engagement
than in the case of using a retrieval based approach and when it makes
mistakes, those mistakes are often human-like.

On the other hand, these models are hard to train and they need a huge
amount of training data. Integrating world knowledge can be difficult. In
fact, in order to do this, it is often necessary to completely change the model
architecture introducing a proper bias. Their performance strongly depends
on the preprocessing stage, together with data quality, data quantity and
data distribution over the topic space.

Also, if the text is not accurately cleaned and corrected, the size of the
vocabulary increases exponentially and as a result, on one side the model
has to learn a lot of parameters with a fixed data amount and on the other
side the hardware has to be able to handle the computational pressure. As
training proceeds, sometimes it is quite likely to make grammatical mistakes
and this may generate sentences that are not completely correct even once
the model has been trained, especially when handling long contexts. In case
a question has been seen in many different contexts it usually generates
very common answers. This behaviour usually leads to software agents that
prefer very general sentences with respect to specific ones.
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Another problem is that these kind of models may not be able to handle
a conversational topic if the dataset does not contain enough examples to
learn it.

Even if carefully trained, the resulting model can be very general, propos-
ing semantically meaningful answers that unfortunately are useless to drive
the conversation towards really specific goals. This can be a problem if the
model has to be used in a customer service environment, or in general where
the conversational goal is to assist the user in complex and very particular
procedures.

Nowadays, there not exist a reliable method to correctly evaluate the
results of generative models and this is due to the fact that there is not a
metric, differentiable or not, taking into account all the requirements that
a successful human interaction has. In fact, current models have two very
problematic vices: first of all they optimize a conceptually bad-posed on
line error loss function, and secondly they are evaluated with wrong metrics.
Among these two aspects, the one that mostly affects the quality of the final
model is the conceptually wrong optimization procedure that is performed
to train them. Cross entropy loss, the one that is usually adopted, does
not model effectively the quality of an answer with respect to a certain
question. The reason why this happens is that optimizing cross entropy
means driving the model to favourite answers that, merely from the word by
word perspective, are similar to the ground truth one. The problem here is
that there are several answers {a0, a1, ..., an}, in general sharing few words,
that can be considered as appropriate for a question q and they express
different points of views, ways of solving a problem, or, maybe, opinions
about a fact.

For this reason answer-utility should be taken into account in a goal
based manner and cross entropy loss, being a supervised metric, does not
teach correctly the model how to behave in a so complex and ambiguous
scope. Liu et al published in 2016 a paper named “How NOT To Evalu-
ate Your Dialogue System: An Empirical Study of Unsupervised Evaluation
Metrics for Dialogue Response Generation ” [59] where they found that none
of the commonly used metrics really correlate with human judgement. In-
tuitively, using supervised techniques should bring to an inconsistent model
that is not able to converse. On the contrary, the results are impressively
good and often stunning for their correctness.

Another problem is that, once trained, generative models are determin-
istic. In particular they model a probability distribution over answers condi-
tioned by the questions and this distribution is then used during the inference
phase to make predictions. For this reason, given a certain input sequence
of words:

{w1, w2, ...wquestion length}
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the model will always map it to a certain sequence of words:

{w1, w2, ..., wanswer length}

This is a big difference with the human behaviour, in fact human beings
are stochastic in their answer generation process. In particular, if they are
asked to answer to a certain question {w1, w2, ...wquestion length} multiple
times they will probably give different answers and not always the same
one. Luckily, generative models can be augmented with modules that allow
them to partially overcome this problem.

2.3 Challenges in Conversational AI

There are some challenges when building conversational agents, most of
which are active research areas. Specifically:

• Handling long rather than short conversations.

• Managing open or closed domain settings and what changes in the two
cases.

• Choosing how to organize the conversational context.

• Ensuring cross-answer coherence.

• Assessing the quality of the answers that the proposed models gener-
ate.

2.3.1 Long vs Short conversation

The longer the conversation, the more difficult is to automate it.
On one side of the spectrum we have Short-Text Conversations, where

the goal is to create a single response to a single input. For instance, an
agent that receives a specific question from an user and has to reply with a
single appropriate answer.

Then there are Long Conversations, where the dialogue goes through
multiple turns and the agent needs to keep track of what has been said. Cus-
tomer service conversations are typically long conversational threads with
multiple questions.

2.3.2 Open vs Closed domain

Everyday conversations are made of several topic switches, and the space of
the possible topics is infinite.

On the other hand, while talking to a customer service assistant to fix
a problem, the user wants to reach a goal, and the set of the possible top-
ics, here intended as conversational goals, is small and finite. Due to the
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dichotomous essence of this setting, during the model selection phase it is
necessary to understand the nature of the problem, that can respectively be
an open domain or a closed domain one.

In an open domain setting the user can take the conversation anywhere.
It is not necessary to have a well-defined goal or intention. Conversations on
social media sites like Twitter and Reddit are typically open domain, they
can go into all kinds of directions. The infinite number of topics and the fact
that a certain amount of world knowledge is required to create reasonable
responses, makes this a hard problem. As could be imagined, generative
models are suited for these tasks, even if, to work reasonably well, they
need to be provided with enough and well topic-distributed data. Retrieval
ones, instead, are not appropriate in this setting. In fact it is likely that the
question relates to a topic that is not present into the historical repository.

In a closed domain setting instead, the space of possible inputs and out-
puts is somewhat limited because the system is trying to achieve a very
specific goal. Technical customer support or shopping assistants are exam-
ples of closed domain problems. These systems do not need to be able to talk
about very specific topics, they just need to accomplish their specific task as
efficiently as possible. Sure, users can still take the conversation anywhere
they want, but the system is not required to handle all these cases, and the
users do not expect it to.

2.3.3 Multi vs Single turn

To produce sensible responses, it may be necessary to incorporate both
linguistic and physical context. In long dialogs people keep track of what
has been said and what information has been exchanged. That’s an example
of linguistic context.

The most common approach is to embed the whole conversation into a
vector, as it was proposed by Serban et al in 2015 in their “Building End-
To-End Dialogue Systems Using Generative Hierarchical Neural Network
Models ” [86] and by Yao et al in 2015 in “Attention with Intention for
a Neural Network Conversation Model ” [111]. Unfortunately, doing that
with long conversations is challenging, especially if one may also need to
incorporate other kinds of contextual data such as date/time, location, or
information about a user.

In the scope of context handling, it is important to describe two families
of algorithms. The first is called single-turn models, and represents the set of
architectures that predict the answer only by using the incoming question.

In this case, the problem is formulated this way:

• Input: question q0, a sequence of words.

• Target: answer a0, a sequence of words.
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This approach is poor and usually does not work well because the informa-
tion needed to answer the current question may be back in the conversation.
To continue the human-Conversational AI software parallelism it is the same
as if there was a group of people talking about a topic and, after joining
their already started conversation, a person was asked to answer a question
related to a topic, that is unknown to her.

On the other hand, models belonging to the second family, called multi-
turn models, are fed not only with the incoming question but they also take
as their input a number of precedent conversational turns.

The problem, in the case of 2-turn modelling, is formulated as:

• Input: context q1-a1-q0, a sequence of utterances, each one being a
sequence of words.

• Target: a0 , a sequence of words.

Unfortunately, this way the model will be overwhelmed by the amount of
information that is asked to process and usually the answer will be generic.

To overcome this problem, the research community came up with some
mechanisms that could allow to pay attention (Bahdanau et al 2014 “Neural
Machine Translation by Jointly Learning to Align and Translate ”[4]) on
different parts of the context, in order to build the context representation.

2.3.4 Coherent personality

When generating responses, the agent should ideally produce consistent an-
swers to semantically identical inputs.

For instance, we should get the same reply to How old are you? and
What is your age?. This may sound simple, but incorporating such fixed
knowledge or coherence into models is a research problem. Many systems
learn to generate linguistic plausible responses, but they are not trained to
generate semantically consistent ones.

Usually, that happens because they are trained on a lot of data from
multiple different users. Models like the one in“A Persona-Based Neural
Conversation Model” Li et al 2016 [54], are making first steps into the di-
rection of producing models that show coherence in their answers.

2.3.5 Intention and Diversity

A common problem with generative systems is that they tend to produce
generic responses like That’s great! or I don’t know that work for a lot of
input cases. Early versions of Google’s Smart Reply, a sofware based on
the work published by Kannan et al in 2016 in“Smart Reply: Automated
Response Suggestion for Email” [47] tended to respond with I love you to
almost anything.
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That is partly a result of how these systems are trained, both in terms of
data and in terms of actual training objective/algorithm. Some researchers
tried to artificially promote diversity through various objective functions.
However, humans typically produce responses that are specific to the input
and carry an intention.

Because generative systems, and particularly open-domain systems, are
not trained to have specific intentions, they lack this kind of diversity. A
success story in this field is represented by the study made by Li et al in
2015, published in “A Diversity-Promoting Objective Function for Neural
Conversation Models ” [53], where they tried to artificially promote diverse
answers.

2.4 How well does it actually work?

As shown in Sections 2.2 and 2.3, a Conversational AI problem can be framed
in several different ways, some of which are very difficult to be faced. For
instance:

1. A retrieval open-domain system is impossible nowadays, because of the
complexity of hand-crafting enough responses to cover all the cases.

2. A generative open-domain system is almost Artificial General Intelli-
gence (AGI) because it needs to handle all possible scenarios. Research
is very far away from that as well, but a lot of work is going on in that
area.

Given that it is difficult to build an agent able to behave properly in
an open domain situation, the usual practice is to restrict the scope of
Conversational AI to problems in close domains, where both generative and
retrieval methods are usually appropriate. In this setting, the longer the
conversations, the more important the context and the more difficult the
problem becomes.

In a recent interview for The Seattle Times [97], Andrew Ng, now chief
scientist of Baidu, puts it well:

“Most of the value of deep learning today is in narrow domains
where you can get a lot of data. Here’s one example of something
it cannot do: have a meaningful conversation. There are demos,
and if you cherry-pick the conversation, it looks like it’s having
a meaningful conversation, but if you actually try it yourself, it
quickly goes off the rails.”

These systems work well if they operate in a narrow domain where the
conversational topics are few. If instead it is necessary to have a more
complex tool with the ability of handling conversations that are a little bit
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Figure 2.3: Example of how these models can result in uncontrollable behaviours. Figure
coming from ”Business Insider” article [42] .

more open domain, it is pretty difficult to generate meaningful answers with
the current research models. What instead these models can do is to propose
answers to real human workers.

Another crucial point is that, in production systems, grammatical errors
are very costly and may quickly drive users away. For this reason production
systems usually adopt a retrieval based solution, as it is grammar typos free
and in general more reliable.

Unfortunately, generative models may bring to embarrassing situations.
In fact, given they are trained on real data, they automatically learn to
answer like humans. If feeding them with data coming from a customer
service maybe is not a big deal, providing instead data coming from Twitter
or Reddit can show very bad behaviours. This is what happened to Tay [42],
Microsoft ’s chat assistant.

Tay was put on line as a Twitter user and after some days of normal
behaviour it showed a very racist bias. In Figure 2.3 it is possible to see
how it supports the holocaust denial.

This is what happens when training a software agent with real world
data without carefully filtering it. Learning agents are like few years old
babies, and they will learn also the biases contained in data, even if they
are bad.

Conversational AI is a fascinating science. In fact, building a perfect
conversational software agent would mean to create an artificial general in-
telligence (AGI) able to reason on concepts, and this is one of the final goals
of artificial intelligence. Unfortunately, nowadays research is far away from
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building such a kind of agent, and this is due to two reasons: at first, the
technologies are very recent and have to be further studied and improved,
secondly there is a lack of big datasets to work on. These are the reasons
why the current models, even if they show promising behaviours, are not
suited to be put in productions, and this is especially true for generative
agents.



Chapter 3

Conversation modelling

Modelling how humans interact is a fascinating task. To tackle this problem,
a set of very diverse models can be adopted. The most interesting ones
employ Natural Language Processing (NLP) to extract knowledge to drive
the agent behaviour. The current chapter investigates, from a technical
point of view, the various NLP-based approaches that the developer can
embrace when tackling a Conversational AI task.

3.1 Retrieval approaches

Retrieval conversational models can be defined along two dimensions:

• The nature of the matching measure they adopt, either stochastic or
deterministic.

• The way they extract the features to characterize the document, either
with traditional NLP methods, with a Bag Of Words (BOW) model
or with Deep Learning (DL) methods.

A retrieval chatbot can be built in three ways:

1. Deterministic matching measure and aggregation feature extraction.
This is the case of the BOW-based retrieval conversational agents.

2. Stochastic matching measure and learnt feature extraction. This case
is treated by Wu et al. 2016 in“Response Selection with Topic Clues
for Retrieval-based Chatbots” [106].

3. Deterministic matching measure and learnt feature extraction. This
configuration can be achieved by using an auto-encoder and it is treated
in“Deconvolutional Paragraph Representation Learning” by Zhang et
al 2017 [113] and in“A Structured Self-attentive Sentence Embedding”
by Lin et al 2017 [57].

23
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3.1.1 Feature extraction

In the scope of BOW models, the document features can be extracted in
several ways: count vectorizer, normed count vectorizer and TFIDF vector-
izer. All these methods assign a score wij for each word i and document
j and they treat text as a set of unordered words; these methods have the
strong limitation of being completely not aware of word order.

In its simplest version, called count vectorizer, the BOW model assigns
a document vector dj with elements (w1j , w2j , ..., wTj) to document j, where
T is the size of the feature set, i.e. the possible words in the vocabulary.
The score wij for feature i in document j is computed as:

wij = nij (3.1)

where nij is the number of occurrences of word i in document j.
The normed count vectorizer instead computes the score wij as:

wij =
nij
|dj |

(3.2)

where |dj | is the number or words in doc j.
With count vectorizers, all the words are considered as if they had the

same informative content. On the contrary language has several tokens,
such as articles, prepositions, adverbs or the be verb which are not infor-
mative. In fact, they are used in many different contexts and in documents
of very different kinds. For this reason, some approaches assume that those
tokens, also called stop-words, are not meaningful to characterize a specific
document. Following this idea, document representations should be built
by an algorithm that assigns stop-words a score as low as possible. In order
to achieve this goal, these algorithms usually adopt one of the following two
approaches:

• Predefine a list of stop-words and filter them when building the Count
vectorizer.

• Adopt a more general and data driven approach. In this case, it is
needed to come up with a method that automatically assigns a high
score to informative words and a low score to ”pseudo” stop-words.

In“A vector space model for automatic indexing” [80], published in 1975
by Salton, Wong and Yang, the authors proposed an approach to overcome
the impact of the stop-words in vector representation, without explicitally
filtering them out. This approach is called TFIDF and the idea consists in
assigning, to each feature in the document vector, a weight that is related
with the informative content of that word.

The score wij , related to feature i in document j, is computed as:
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wij = tfij ∗ idfi (3.3)

where:

tfij =
nij
|dj |

idfi = log
|D|

|{d : i ∈ d}|
and:

• nij is the number of occurrences of word i in doc j.

• |dj | is the number or words in doc j.

• |D| is the number of documents.

As a result, the final TFIDF score will be high if two conditions hold; first,
word i has to be present many times in doc j and, second, it should not be
present in many other documents. Under these conditions, very informative
words will be assigned an high score.

Word embedding

Deep learning architectures work by applying several matrix transforma-
tions and non linearities sequentially to vectors of real numbers. While this
numerical feature does not create any problem if we handle numerical data,
such as financial or report data, a few more problems arise in the case of
text.

Given a raw piece of text T , first a vocabulary v is extracted. It can be
seen as an ordered set containing all the unique words in T and it is usually
sorted by word occurrence and it has a size, that is v s. By means of the
vocabulary, each word is assigned of an index i, a number between 0 and
v s. With this index, we build a vector v(w) of shape (1, v s) (Equation
3.4). Practically, considering a word w, its vectorial representation has the
following form:

v(w) = (0, 0, ..., 0, 0, 1, 0, 0, ..., 0, 0) (3.4)

having only one 1 in position i.
This representation is called 1-hot-encoding. Even if this method is able

to assign a vector to each word in a vocabulary, the extracted features are
very sparse, and this is not a nice property. For this reason, usually a second
step is performed, with the goal of using the 1-hot-encoded sparse vectors to
a get a more handy dense representation. Usually this task is accomplished
through a lookup function:
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lookup(word, v)

This function takes as its input a word word in a vocabulary v, performs its
1-hot encoding and returns a dense vector of shape (1, dmodel), where dmodel
is a chosen dense vector size, usually between 300 and 500.

In general, the returned vector is the i-th row of an embedding matrix
W with shape:

(v s, dmodel)

where v s is the vocabulary size.

The vector assigned to word w is computed as:

lookup(word, v) = ohe(word) ∗W (3.5)

resulting in a vector of shape (1, dmodel), called word vector, that can be fed
into a DL architecture as the word representation.

These word representations can be combined with the document vector
built with BOW methods to extract a more meaningful document vector.
In fact, BOW based document vector have a clear limitation; they do not
consider word order and for this reason they can not include any semantic
information in the document vector. To overcome the just explained issue,
document vectors built with vectorizers, count vectorizer, normed count vec-
torizer and TFIDF vectorizer, are considered as made of weights and not
as actual vectors in a space. From this point of view, we can built the
document vector as a weighted sum of word vectors driven by the weights
provided by the vectorizers. This gives the possibility to build document
vectors that could catch the semantic of words in text. In particular, con-
sidering a document j containing n unique words, the following steps are
required:

• Extract a TFIDF vector importancej with shape (voc size, 1).

• Exploit a technique among the ones presented in Section 2.1 to extract,
for each word in the vocabulary, a word vector and pack them in a
matrix W of shape (voc size, dmodel).

• Build the document vector

dj =

voc size∑
i=1

importancej [i] ∗W [i] (3.6)

where dj has dimensionality dmodel.
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Figure 3.1: Word2Vdec training modes. Figure coming from“Efficient Estimation of
Word Representations in Vector Space”by Mikolov at al in 2013 [64]

If importance scores are provided by the vectorizers, the embedding ma-
trix W is usually built by using a Deep Learning (DL) model. Among these
models, the simpler one is called Word2Vec and it was designed in“Efficient
Estimation of Word Representations in Vector Space” by Mikolov at al in
2013 [64]. In their paper, Mikolov at al [64] proposed two novel model archi-
tectures for computing continuous vector representations of words from very
large data sets. The first one is called Continuous Bag Of Words, Figure
3.1 on the left. It proposes to learn word vectors by predicting the current
word from a window of words around it. The second approach instead is
called Skip Gram, Figure 3.1 on the right, where the training procedure is
designed by predicting the context words by starting from the current one.

Referring to Figure 3.1, an example of how the algorithm works is rep-
resented by taking the sentence I like playing football in the backyard with
my cousin. Considering CBOW mode, a training sample is constructed by
picking an index between the 0 and num words in sentence, for example
t = 3, and by extracting the relative word, that is w(t = 3) = football.
The training task then consists in generating w(t = 3) from the context
words: {like, playing, in, the}. For Skip-gram mode instead, there is a
specular situation where the network has to generate the context words
{like, playing, in, the} from w(t = 3) = football.

The method proposed by Mikolov et al. [64] is not the only way to train
a word embedding model, in fact, as it has been published in“From Machine
Learning to Machine Reasoning” by Bottou et al. in 2011 [11], another way
to learn semantically consistent word vectors consists in training a network
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Figure 3.2: This figure shows, for each word in a set, which are the top-10 nearest
neighbours in the latent space. Figure coming from“Natural Language Processing
(almost) from Scratch”published by Collobert et al in 2011 [23]

for predicting whether a 5-gram, sequence of five words, is valid. The model
is trained by taking several 5-grams from Wikipedia and then breaking half
of them by switching a word with at random word, making the 5-grams
nonsensical. For example, considering the 5-gram cat sat on the mat, it is
possible to break it to get cat sat song the mat.

This way it is possible to obtain two training samples:

1. Input: cat sat on the mat, Target: correct.

2. Input: cat sat song the mat, Target: incorrect

The architecture in this case is composed by a prediction function R,
and an embedding function, actually a matrix, W .

For, the previous samples will be parsed in such a way:

• R(W (cat),W (sat),W (on),W (the),W (mat)) = 1

• R(W (cat),W (sat),W (song),W (the),W (mat)) = 0

In order to accomplish the previous task, the network needs to learn good
parameters for both W and R.

Once trained, the matrix W contains, for each word in a vocabulary, a
fixed size word vector. The interesting property is that, in the learnt latent
space, similar words are close together and this can be visualized by looking
at the top-k most similar tokens for a given word.

In 2011 Collobert et al published a study called “Natural Language Pro-
cessing (almost) from Scratch ” [23] where they discuss this property. In
Figure 3.2 we shown how the network learns to place semantically similar
words close together in the latent space.
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3.1.2 Matching measures

Once we have the document vector, the second step consists in defining
a matching measure. Considering deterministic measures, usually cosine
similarity is exploited to compare two different document vectors. It aims at
measuring the similarity between two non-zero vectors and it computes the
cosine of the angle between them. It is thus a judgement of the orientation
and not of the magnitude of the two vectors.

In particular, the similarity between two documents represented by the
vectors a and b, it is defined this way:

c(a, b) =

∑
i=1,..,n ai ∗ bi∑

i=1,..,n a
2
i ∗
∑

i=1,..,n b
2
i

, (3.7)

where a and b are vectors of shape (1, n).

When an unseen document comes in, the goal is to retrieve the most
similar document in a knowledge base and to do that we usually need to
compare its document vector with all the historical document vectors. This
is feasible for small knowledge bases, not for big ones, e.g. those having
more than one million documents.

In order to make this procedure feasible also for big historical sets of
documents, we propose another step where we efficiently organize the knowl-
edge base into clusters of similar documents, with the goal of speeding up
the retrieval process. To do this, a clustering algorithm is applied to the
historical set of document vectors. The grouping algorithm needs to respect
two important properties. Firstly, objects in a cluster have to be very simi-
lar and is called the compactness property. The second claims that objects
in different clusters have to show to be different one with each other and
is called separateness property. This step can be faced with several algo-
rithms such as KMeans, Hierarchical clusering or DBSCAN. The last one
was published in“A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise” by Ester et al 1996 [27]. DBSCAN, be-
cause of its density based property, does not work well with sparse vectors
such as document ones, so the choice usually falls on one of remaining.

Once run, this unsupervised learning algorithm provides the developer
with a label for each training sample, representing the assigned cluster.
Another significant speed up could be to physically store the clusters into
different partitions. If we organize the knowledge base in such a way, an
incoming document vector is processed by comparing it with the cluster
centroids.

After this step, the second one usually consists in computing the sim-
ilarity between the unseen document and each historical document inside
the selected cluster to return the the one related with the higher similarity
score.
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Another interesting approach is to consider the matching measure as a
learnt function that takes as its inputs two documents and returns a score
between 0 and 1. By formulating the problem this way, we have several
advantages:

• Speed up during inference time, in fact it is not necessary to loop over
all the historical samples. We only have to compute the similarity
between the unseen document and the centroids of the clusters.

• Possibility to tweak the similarity function and to incorporate a more
complex logic.

• Move the solution toward a more data driven result, and so a more
fine grained prediction.

The usual approach is to learn a deep learning model that estimates the
matching function and an example is the architecture proposed by Wu et
al in 2016“Response Selection with Topic Clues for Retrieval-based Chat-
bots”[106], also called TACNTN, a model that is able to efficiently rank a
set of candidates answers.

In particular, TACNTN [106] was designed to boost responses with rich
content in retrieval-based chatbots. In fact, the matching between a mes-
sage and a response is not only computed by considering the message and
response vectors, but it also leverages extra topic information encoded in
two topic vectors. The two topic vectors are computed as linear combina-
tions of the topic words of the message and the response, where the topic
words are obtained from a pre-trained LDA model, e.g. the one proposed
by Blei et al in 2003 named“Latent Dirichlet Allocation” [8].

The architecture shown in Figure 3.3, works by feeding the message
vector, the response vector, and the two topic vectors to a neural tensor
network [91] that calculate a matching score.

Precisely, the model is defined in such a way. It exploits a dataset D =
{yi,mi, ri}i=1,..,N , where respectively mi and ri represent an input message
and a response candidate, while yi ∈ 0, 1 denotes a class label. In particular,
yi = 1 means ri is a proper response for mi, otherwise yi = 0. Moreover,
each mi in D is assigned to a topic word set Wmi = {w1

mi
, ..., whmi

}, while
each ri with Wri = {w1

ri ..., w
k
ri}.

The final goal is to learn a matching model fθ for an inference sample
(m, r):

fθ(m, r|{yi,mi, ri}i=1,..,N , {
N⋃
i=1

Wmi ,
N⋃
i=1

Wri}). (3.8)

With this model, at inference time the retrieval algorithm takes an unseen
question q and extracts a set Ck of K response candidates. In the base case
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Figure 3.3: In this figure it can be seen the model of Wu et al. The message and the
response, together with their topic words, are encoded by using a CNN. The extracted
feature vectors are then parsed by a NTN to obtain the score. Figure coming from Wu
et al, 2016“Response Selection with Topic Clues for Retrieval-based Chatbots”[106]

Ck is made by all the possible answers in the knowledge base, while in a
most advanced model this set is the result of a filtering procedure over all
the possible answers:

{c1, ..., cK}.

Then, by using this scoring model, we generate the following set of scores,
one for each message-response pair (q, ci):

{fθ(q, ci)}i=1,...,K .

This way, at the end the selected answer q∗ will be:

q∗ = argmax({fθ(q, ci)}i=1,...,K). (3.9)

In order to compute the scoring function fθ, the model exploits Convolu-
tional Neural Networks(CNNs) and Neural Tensor Networks(NTNs).

The last architecture was proposed in“Reasoning With Neural Tensor
Networks for Knowledge Base Completion” by Socher et al in 2013 [91].

3.2 Generative approaches

Generative single turn conversational models have been treated by Vinyals
et al (2015) in“A Neural Conversational Model” [101], Shang et al (2015)
in“Neural responding machine for short-text conversation” [88], Li et al
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(2015) in“A Diversity-Promoting Objective Function for Neural Conversa-
tion Models”[53], Xing et al (2016) in“Topic aware neural response gener-
ation” [107] and by Li et al (2016) in“A persona-based neural conversation
model” [54].

These models converses by predicting the answer given the question and
their strength is that they are a generative model trainable end-to-end re-
quiring a small number of hand-crafted rules. A single training sample is
made of a sequence of words and the model processes them one at the time
by keeping in memory a conversational state that is dependent on the just
processed tokens. In order keep a state, usually these models make use of
recurrent cells, a natural generalization of feed-forward neural networks for
sequences.

3.2.1 Recurrent models

The major limitation of Feed-Forward Neural Network is that they can not
keep memory of the past, and so they can not condition their output on the
previous inputs. Recurrent Neural Networks (RNNs) instead augment the
framework provided by feed-forward neural networks (FFNNs) to address
this issue.

A glaring limitation of FFNNs, also of CNNs, is that their API is too
constrained: they accept a fixed-sized vector as input, for example an image,
and produce a fixed-sized vector as output, containing the probabilities of
different classes. In addition, these models perform this mapping by using
a fixed amount of computational steps, the number of layers in the model.

The core reason that makes RNNs completely different is that they oper-
ate over sequences of vectors of variable length. They are basically networks
with loops in them, allowing information to persist. Even if RNNs have
a loop and they do not seem to be a standard directed neural network, it
is possible to interpret them as a dynamic neural network with the same
module repeated multiple times, each time sharing the same set of weights
(Figure 3.4).

In the last few years, there has been incredible success applying RNNs to
a variety of problems, for example speech recognition, language modelling,
translation, image captioning and Conversational AI. One of the appeals of
RNNs is the idea that they might be able to connect previous information
to the present task, such as using previous video frames might inform the
understanding of the present frame. If RNNs could do this, they would
be extremely useful. But can they? It depends. Sometimes, only recent
information is needed to perform the present task. For example, consider
a language model trying to predict the next word based on the previous
ones. If the task is to predict the last word in the clouds are in the sky,
it is pretty obvious the next word is going to be sky. In such cases, where
the gap between the relevant information and the place that it is needed is
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Figure 3.4: Unrolled RNN. It is possible to notice that it is always possi-
ble to unroll an RNN block and obtain a neural network with the same block
repeated in series. Figure coming from“Understanding LSTM Networks”, web
blog“http://colah.github.io”published in 2015. [21]

small, RNNs can learn to use the past information.

But there are also cases where more context is needed. Consider trying to
predict the last word in the text I grew up in France... I speak fluent French..
Recent information suggests that the next word is probably the name of a
language, but narrowing down which language, needs the context of France,
that is stored further back. It is entirely possible for the gap between the
relevant information and the point where it is needed to become very large.
Unfortunately, as that gap grows, RNNs become unable to learn to connect
the information.

In theory, RNNs are absolutely capable of handling such long-term de-
pendencies. Sadly, in practice, RNNs do not seem to be able to learn them.
In general, given a sequence of inputs (x1, ..., xT ), a standard RNN com-
putes a sequence of outputs of the same length (y1, ..., yT ) by iterating the
following equations:

ht = tanh(Wh ∗ [ht−1, xt]), (3.10)

yt = Wy ∗ ht. (3.11)

RNNs combine the input vector and their state vector with a function to
produce a new state vector. This can be interpreted as running a fixed
program with certain inputs and some internal variables.

Viewed this way, RNNs essentially describe programs. In fact, it is
known that RNNs are Turing-Complete in the sense that, in theory, they
can simulate arbitrary programs with proper weights. In this sense it is
interesting the study made by Siegelman et al in 1992 published with the
title ”On the computational power of neural nets” [89].

To overcome the problem of long term dependencies, several recurrent
cells have been proposed. One of them is called Long Short Term Memory,
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Figure 3.5: The repeating module in a standard RNN contains a sin-
gle layer. Figure coming from“Understanding LSTM Networks”, web
blog“http://colah.github.io”published in 2015. [21]

Figure 3.6: The repeating module in an LSTM contains four interact-
ing layers. Figure coming from“Understanding LSTM Networks”, web
blog“http://colah.github.io”published in 2015. [21]

shortly LSTM. They are a special kind of RNN, capable of learning long-
term dependencies and they were introduced by Hochreiter and Schmidhu-
ber in 1997 with their“LONG SHORT-TERM MEMORY” [40]. LSTMs are
explicitly designed to avoid the long-term dependencies problem.

All recurrent neural networks have the form of a chain of repeating mod-
ules of neural network. LSTMs also have this chain like structure, the dif-
ference is that the repeating module has a different architecture. Instead of
having a single neural network layer, there are four, interacting in a very
special way, as it is shown in Figure 3.5.

At each time step, the cell computes the current state Ct by combining
several values:

ft = σ(Wf ∗ [ht−1, xt] + bf ), (3.12)
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it = σ(Wi ∗ [ht−1, xt] + bi), (3.13)

ot = σ(Wo ∗ [ht−1, xt] + bo), (3.14)

c′t = tanh(Wc ∗ [ht−1, xt] + bc), (3.15)

ct = ft ∗ ct−1 + it ∗ c′t, (3.16)

ht = ot ∗ tanh(ct), (3.17)

yt = Wy ∗ ht. (3.18)

At time step t the cell state ct−1 flows horizontally on the top of the
architecture and the network, by tweaking the parameters that affect the
value of the two gates ft and it, is able to decide how much of ct−1 is going
to be maintained in ct and how much of the new information c′t will be part
of ct. This mechanism allows the network to learn what is needed to be
kept and what is allowed to be thrown away, resulting in a better, more
informative and cleaner state representation.

In 2015, Sergey Ioffee and Christian Szegedy came up with a technique
called Batch Normalization and they published it in“Batch Normalization:
Accelerating Deep Network Training by Reducing Internal Covariate Shift”
[43]. The idea of Batch Normalization is that with neural networks, the
inputs to each layer are affected by the parameters of all the preceding
layers, so as the network gets deeper, small changes to these parameters get
amplified by the later layers.

This causes a problem because it means that the inputs to the various
layers tend to shift around a lot during training, and the network spends a
lot of time learning how to adapt to these shifts as opposed to learning the
ultimate goal which is the relationship between the input of the networks
and the training labels.

What Ioffe and Szegedy came up with was a way to normalize the input
data while the network is being trained, in such a way as that a more
constant statistical distribution of layer inputs is ensured. This in turn
accelerates training of the network. They basically did this by normalizing
the summed inputs to each hidden neuron in the network on a batch by
batch basis. The Batch Normalization approach worked very well and has
become the state of the art for training CNNs, but it did not apply very
well to Recurrent Networks, or when the batch size is needed to be small,
such as in an online learning scenario.
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For this reason Ba et al in 2016 published“Layer Normalization” [3], a
technique to stabilize the training of RNNs. With Layer Normalization,
instead of normalizing the inputs to each hidden neuron at batch level, the
normalization is performed at each time step across the inputs on a layer-by-
layer basis. Like batch normalization, this procedure stabilizes the dynamics
of the hidden layers in the network and accelerates training, without the
limitation of being tied to a batched implementation.

In particular, for an RNN at the tth time step:

• ht is the state at time step t.

• at is the activation at time step t .

• W h is the weight matrix.

• f(.) is an element-wise non-linear function, usually tanh.

Layer normalized cells at time step t compute:

• µt = 1
H ∗

∑H
i=1 a

t
i, being the average value of the activations at time

step t.

• σt =
√

1
H ∗

∑H
i=1(a

t
i − µt)2, being the variance of the activations at t.

With those statistics, it is possible to compute the normalized hidden state:

• at = Wh ∗ [ht−1, xt] the activation vector at time step t

• ht = f( gσt ∗ (at − µt) + b) the hidden state at time step t

where, b is the bias term while g is the gain parameter, both of them with
the same dimension of ht.

In a standard RNNs, we have the tendency for the average magnitude
of the summed input of the recurrent units to either grow or shrink at
every time-step, leading to exploding or vanishing gradients. In a layer
normalized RNN, the normalization terms make it invariant to re-scaling all
of the summed inputs to a layer, which results in much more stable hidden-
to-hidden dynamics. In conclusion, RNN, but also LSTM, cells equipped
with layer normalization often result in a faster and more stable training.

3.2.2 RNNs topology

Recurrent models are complex and can vary a lot in their architectures; it
is possible to define them along two dimensions: Type and Depth.

In general, a recurrent model consists of a hidden state h and of an op-
tional output y and it operates on a variable length sequence x = (x1, ..., xT ).
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Figure 3.7: Multilayer RNN is a neural network with multiple
RNN layers. Figure coming from“Recurrent Neural Network”, web
blog“http://http://sqlml.azurewebsites.net”published in 2017. [93]

At each time step t, the hidden state ht of a general recurrent model is
updated by using the general equation:

ht = f(ht−1, xt). (3.19)

In equation 3.19, f is a non-linear activation function that may be as sim-
ple as an element wise logistic sigmoid function and as complex as a long
short-term memory (LSTM) unit. In particular, there are several different
implementations of fθ, i.e. the cell type, such as:

• RNN

• LSTM: Introduced by Hochreiter et al, 1997“LONG SHORT-TERM
MEMORY” [40]

• GRU: Introduced by Cho et al, 2014“Learning Phrase Representa-
tions using RNN Encoder-Decoder for Statistical Machine Translation”
[19]

Recurrent models also differ in terms of depth. Increasing the depth of
the architecture (Figure 3.7) means adding several recurrent layers on top
of the first one and make the information flow from the input to the target
deeper.

In presence of several layers, each layer l computes the hidden state hlt
in such a way:
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Figure 3.8: In this picture, each rectangle represent a vector and each arrow represent a
function, for example a matrix multiply. Input vectors are in red, output vectors in blue
and green vectors hold the network state. Figure coming from“The Ubuntu Dialogue
Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems”,
Lowe et al 2015.[60]

hlt = f(hlt−1, h
l−1
t ), (3.20)

and h0t = xt. This variant increases the complexity of the network and
usually allows to catch hierarchical features.

3.2.3 Retrieval recurrent dual encoder

In the scope of recurrent models, it is important to point out the archi-
tecture proposed by Lowe et al (2015) [60]. They designed a model able
to score a pair of question and answer by using a dual encoder architecture
(Figure 3.8). The result is a recurrent retrieval chatbot with the objective of
estimating a matching measure that, differently from TACNTN [106], uses
recurrent cells to encode the question answer pair.

In particular, this model makes use of two RNNs with which it respec-
tively computes the vector representation of a pair c, r ∈ Rn of question c
and an answer r. The model then calculates the probability that the given
response r is the ground truth response given the question c, and does this
by taking a weighted dot product:

p(r is correct|c, r,M) = σ(cTMr + b), (3.21)

where M is a matrix of learned parameters and b is the bias. The model
is trained using negative sampling to minimize the cross-entropy error of all
context-response pairs.
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Figure 3.9: In this picture, each rectangle represent a vector and each ar-
row represent a function, for example a matrix multiply. Input vectors are in
red, output vectors in blue and green vectors hold the network state. Figure
coming from“The Unreasonable Effectiveness of Recurrent Neural Networks”, web
blog“http://http://karpathy.github.io/”published in 2015. [48]

3.2.4 Deep learning architectures

What makes RNNs special is that, while other deep learning architectures
work with fixed size vectors as inputs and generate fixed size vectors as
output, recurrent models instead can work with sequences of vectors both
in input and in output. In particular, Andrey Karpathy in 2015 published a
blog post named“Unreasonable Effectiveness of Recurrent Neural Networks”
[48] where he said that deep learning architectures can be categorized in five
main categories:

As it is shown in Figure 3.9, going from left to right there are five main
families of Deep Learning (DL) architecture:

• The first one is the vanilla processing mode without RNNs, from fixed
size input vector to fixed size output vector. Among these models
there are the CNNs and FFNNs.

• The second represents the case in which there is a
and a variable size sequence as the output. This is the case of auto-
captioning where the input is an image and the output is a variable
size sequence of words.

• The third one represents the case when there is a variable size sequence
as input and a fixed size vector as the output. This is the case of
sentiment analysis.

• The fourth one instead represents the most interesting case where both
the input and the output are sequences of variable size. This is the case
of sequence to sequence models, first introduced by Cho et al [19] and
by Sutskever et al [95]. In particular, the most intuitive application
of them is the machine translation task where a first module reads a
sequence in English and another module generates another sequence
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Figure 3.10: An example RNN with 4-dimensional input and output layers, and a hid-
den layer of 3 units (neurons). This diagram shows the activations in the forward
pass when the RNN is fed the characters hell as input. The output layer contains
confidences the RNN assigns for the next character (vocabulary is ”h,e,l,o”); Intu-
itively, green numbers should to be high and red numbers should to be low. Fig-
ure coming from“The Unreasonable Effectiveness of Recurrent Neural Networks”, web
blog“http://http://karpathy.github.io/”published in 2015. [48]

in French. Beside this case, these models, because of their extreme
flexibility, can be applied to a vast variety of tasks, and one of them
is Conversational AI.

• The last case represents the situation where the input and output
sequences have the same length. This is the case of video classification
where the goal is to classify each frame in a video. Another example
of these models is represented by language models.

Language models, firstly designed by Mikolov et al., 2010 [65] and here
shown in Figure 3.10, are one of the most important foundations on which
generative chatbots rely.

In the categorization of Figure 3.9, generative Conversational AI models
are represented by the fourth set of models, many to many task with input
and output having different lengths. This architectures are heavily based on
the fifth models of Figure 3.9, simpler many to many algorithms handling
input and output sequences with the same length. Language modelling is a
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typical application belonging to the fifth family of architectures. Our objec-
tive is to study language models in order provide foundations to understand
how more complex architectures, such as the ones used to build generative
chatbots, behave.

Language models take a sequence of words as their inputs and they
attach a prediction task to each element in the list. In particular for each
input word they are trained to predict the next one while being conditioned
on all the processed words. As it is shown in Figure 3.10, the selected
architecture is a single RNN which state, the green vector, is updated while
the tokens are processed.

Furthermore, this task can be explained this way:

1. It takes an input sequence, that is hello, splitted it into characters.

{h, e, l, l, o}.

2. For each character defines a prediction task with the next character
as the target.

3. The input tokens are organized into a character vocabulary and the
lookup(char, v) function assigns them a vector. This step is performed
by the red arrow, while the red rectangle represents character vector
and Wx,h represents the character embedding matrix, which weights
are learnt during the training process.

4. The hidden state ht is computed with equation 3.19.

5. Considering an output distribution made of K classes, the next goal
of this step is to predict a class from the hidden state ht. This is done
by computing the logits vector at time t, specifically:

logitst = g(ht), (3.22)

where g(.) is usually a matrix multiplication, also called output pro-
jection. In this case:

g(ht) = ht ∗Wh,y. (3.23)

Practically, it projects the vector ht of dimension dmodel to another
vectorial space of dimension K by exploiting a learnt matrix Wy,t of
dimension (dmodel,K). Moreover, the vector logitst, the blue vector in
Figure 3.10, contains a confidence score for each one of the K classes.

6. To predict the next letter, a softmax activation function is applied to
the scores vector logitst, obtaining a vector of probabilities probst, one
for each class:
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probst = softmax(logitst) = pθ(xt|xt−1, ..., x1). (3.24)

In particular, the j-th element of the softmax vector σ(z) is computed
this way:

σ(z)j =
exp(zj)∑K
k=1 exp(zk)

. (3.25)

Specifically, each element of the vector probst is computed by applying
the softmax function to g(ht).

pθ(xt,j |xt−1, ..., x1) =
exp(g(ht)j)∑K
j′=1 exp(g(ht)j′)

, (3.26)

where g(ht)j is the j-th element of the g(ht) vector, so the score of
the j-th class. Usually, the function g(.) is computed with a matrix
multiplication:

g(ht)j = wj ∗ ht,

where wj is the j-th row of the projection matrix W .

7. By combining these probabilities, the probability of a sequence {xi}i=1,...,T

is computed as:

pθ({xi}i=1,...,T ) =

T∏
t=1

pθ(xt|xt−1, ..., x1). (3.27)

3.2.5 Seq2Seq models

Generative conversational agents make use of the fourth architecture, called
Sequence to Sequence models. They are a natural extension of the fifth
architecture, in the sense that they allow to have variable length sequences
as their input and output.

Sequence to sequence models, firstly introduced by Sutskever et al in
2014 with their“Sequence to Sequence Learning with Neural Networks” [95]
and by Cho et al in 2014 with“Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation” [19] are deep learning
architectures that had great success in a variety of tasks such as machine
translation, speech recognition, text summarization and Conversational AI.

At an high level, they are made of two main modules:

• The encoder that learns to build a meaningful vectorial representation
of a variable-length sequence (x1, ..., xT ) and encodes it into a fixed-
length vector representation c of size dmodel.
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Figure 3.11: Encoder-decoder architecture, an example of a general approach for Neural
Machine Translation(NMT). An encoder converts a source sentence into a meaning
vector which is passed through a decoder to produce a translation. Figure coming from
the github turorial called“Neural Machine Translation (seq2seq) Tutorial”[96].

• The decoder that learns to decode a given fixed-length vector represen-
tation, the encoding c, back into yet another variable-length sequence
(y1, ..., yS).

These models were firstly introduced to tackle machine translation tasks
where the input sequence is a sentence in a language and the model is trained
to generate the translation in a target language. Considering the case of
translating between English and French, the training task can be defined as
generating the sentence Je suis éstudiant after reading the sentence I am a
student. In this setting the model architecture can be visualized as in Figure
3.11.

The encoder is an recurrent model that reads each symbol of an input
sequence x sequentially. As it reads them, the hidden state of the model
changes according to Equation 3.19. After reading the end of the sequence,
the encoder contains a summary c of the whole input sequence. The de-
coder, on the other hand, works as a recurrent language model and com-
putes a probability that is very similar to the one in Equation 3.27. The
only difference is that, when it computes the probabilities of the target to-
kens (y1, ..., yS), it is conditioned on the context vector c extrapolated by
the encoder. Considering the language model probability formulation:

pθ(yt|yt−1, ..., y1),

Sequence to Sequence models can be extended this way:

pθ(yt|c, yt−1, ..., y1).

For, at each decoding time step the decoder module computes:

• The decoder hidden state at time step t :

ht = f(ht−1, yt−1), (3.28)

with h0 = c.
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• The probability that the model assigns to the correct class yt:

pθ(yt|c, yt−1, ..., y1) = softmax(g(ht)), (3.29)

with g(.) being the output projection over the classes.

In the base architecture, like the one proposed by Sutskever et al in 2014 in
their“Sequence to Sequence Learning with Neural Networks” [95] and by Cho
et al in 2014 with“Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation” [19], c is computed as the last
state of the encoder. In more complex settings instead, like the one proposed
by Bahdanau et al in 2014 with the name“Neural Machine Translation by
Jointly Learning to Align and Translate” [4] and by Luong et al 2015 in
their“Effective Approaches to Attention-based Neural Machine Translation”
[62], for each decoding step t ∈ [1, ..., S], the decoder is fed with a different
context vector ct.

This mechanism, called Attention, greatly empowers sequence models.
In particular, the decoder state ht computation is not changed:

ht = f(ht−1, yt−1), (3.30)

with h0 = c.
On the other hand, equation 3.29 is updated with the following one:

pθ(yt|ct, yt−1, ..., y1) = softmax(g(v(ht, ct))), (3.31)

being g(.) an output projection over the classes and v(.) an aggregation
function.

Machine translation parallelism

As it is shown, sequence to sequence models are suited for tasks with both
input and target with variable length. The sequential nature of this task is
challenging, and this is due to the dependencies that can happen between
input and target tokens. The more complex the dependencies, the harder is
the task.

One way researchers have tried to ease this problem is to use LSTMs cells
in order to better model long term dependencies. Even with this technical
tool, the performance of these architectures heavily depend on the type of
dependencies that the task requires to handle. For its basic dependencies,
machine translation is the task that is usually adopted to present results in
this setting.

The dependencies between two sequences can be classified into three sets:

1. Directly tok2tok aligned : The output token ot′ can be generated by
only considering xt′′ and t′ == t′′.
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2. Indirectly tok2tok aligned : The output token ot′ can be generated by
only considering xt′′ and t′! = t′′.

3. multitok2tok or tok2multitok : The output token ot′ is mapped to a
set (xt′′−D, ..., xt′′ , ..., xt′′+D) of input elements or the input token xt′

refers to a set (ot′′−D, ..., ot′′ , ..., ot′′+D) of output tokens.

The interesting part about translation is that the dependencies between
the generated tokens and the input tokens are usually, but not always,
tok2tok aligned, in the sense that single input elements are usually trans-
lated into single output tokens.

Conversational AI is a very challenging task to be faced with sequence to
sequence models because the dependencies it underlines cannot be defined
a priori. In fact there are a lot of cases in which also an even infinitely long
context does not contain the correct information to give the proper answer,
and for the dependency is intractable.

Even if it is quite impossible to achieve perfect answer quality in this
setting, feeding the model with as much context as possible seems the correct
way to go. Unfortunately, this way the model will be overwhelmed by a
gigantic amount of information and can result in a pretty confuse module.
The best solution is usually to feed a reasonably big amount of context and
in parallel to provide the model with a mechanism with which it could be
able to pick to the correct information among the provided input data. A
solution that tries to do this is called multi-turn attention-based chatbot
and it exploits complex kinds of attention mechanisms ([4], [62] and [108]).

Probabilistic View

From a probabilistic perspective, Sequence to sequence models are a general
method to learn a conditioned distribution over a variable-length sequence
(y1, ..., yS) conditioned on yet another variable-length sequence (x1, ..., xT ),
encoded as c:

pθ(y1, ..., yS |x1, ..., xT ) =
S∏
t=1

pθ(yt|c, yt−1, ..., y1),

where pθ(yt|c, yt−1, ..., y1) is the represented as a softmax over the words
of a vocabulary. It is important to notice that the input and output se-
quence lengths T and S may be different. Once the this Encoder-Decoder
architecture is trained, the model can be used:

• To generate a target sequence given an input sequence.

• To score a given pair of input and output sequences, where the score
is the probability pθ(y|x)
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Loss

One of the many nice properties of Sequence to sequence models is that they
can be trained end-to-end. In fact, from a training sample (x1, ..., xT ), (y1, ..., yS)
it is possible to propagate the updates across all the matrices that are in-
volved in the probability computation, from the embedding matrix passing
through the recurrence parameters and arriving to the output projection.
This can be done by computing a loss function dependent on the input data
and on the model parameters J(x, y, θ). This loss function is usually build
by using the cross-entropy function, a measure of dissimilarity between two
probability distributions p and q:

xentropy(p, q) = −
K∑
i=1

pi ∗ log(qi). (3.32)

In this case, at decoding time step t, for sample n the cross-entropy is
computed in such a way:

xentr(n, t) = xentr(y1n, ..., ytn, x1n, ..., xTn) =

xentropy(trueprobs(ytn), probs(y1n, ..., yt−1n, x1n, ..., xTn). (3.33)

Nicely, it is always possible to infer a probability distribution trueprobs(ytn)
from the true labels and the number K of distinct classes. In particular,
knowing that:

ytn = l with l ∈ (1, ...,K),

meaning that at time step t of the the n-th sample the true label is l, the
probability distribution trueprobs(ytn) can be defined in such a way:

trueprobs(ytn) = (0, 0, ..., 0, 0, 1, 0, 0, ..., 0, 0). (3.34)

It is a vector of shape (1,K), made of all 0s and only one 1 placed in the
l-th position.

Moreover, also probs(y1n, ..., yt−1n, x1n, ..., xTn) is a vector of shape (1,K)
that assigns a probability to each class k ∈ {1, ...,K} and given that its ele-
ments sum up to 1, it represents a probability distribution over the classes.
Going back to Equation 3.32, for the n-th training sample for time step t
the cross-entropy function is computed in such a way:

xentr(n, t) = −
K∑
i=1

trueprobs(ytn)[i]∗log(probs(y1n, .., yt−1n, x1n, .., xTn))[i].

(3.35)
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that is:

xentr(n, t) = −1 ∗ log(pθ(yt|c, yt−1, ..., yt)) = − log(pθ(yt|c, yt−1, ..., yt)).

The final loss function can be defined as:

J(θ|D) =
1

N

N∑
n=1

Sn∑
t=1

xentr(n, t) =

− 1

N

N∑
n=1

Sn∑
t=1

log pθ(yt|c, yt−1, ..., yt) =

− 1

N

N∑
n=1

log

Sn∏
t=1

pθ(yt|c, yt−1, ..., yt) =

− 1

N

N∑
n=1

log pθ(y1, ..., ySn |x1, ..., xTn).

Obtaining:

J(θ|D) = − 1

N

N∑
n=1

log pθ(y1, ..., ySn |x1, ..., xTn), (3.36)

where:

• θ is the set of parameters of the model

• N is the size of the dataset

• Tn is the number of tokens in the n-th source sequence

• Sn is the number of tokens in the n-th target sequence

• D the dataset, {(x1n, ..., xTn), (y1n, ..., ySn)}Nn=1

The optimization procedure is then defined as finding the minimum of
the error function J(θ|D) with respect to the parameters. For, the goal is
to find θXE such as:

θXE = argmin
θ

J(θ|D). (3.37)

The optimization procedure can also be defined from the point of view of
the maximum log-likelihood estimation. In fact, the two components of the
proposed Encoder-Decoder module can be jointly trained to maximize the
conditional log-likelihood and θML is estimated this way:
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θML = argmax
θ

1

N

N∑
n=1

log pθ((x1n, ..., xTn), (y1n, ..., ySn)), (3.38)

but:

1

N

N∑
n=1

log pθ((x1n, ..., xTn), (y1n, ..., ySn)) = −J(θ|D).

And so:

θML = argmax
θ
−J(θ|D) = argmin

θ
J(θ|D) = θXE . (3.39)

Meaning that maximizing the log-likelihood or minimizing the cross entropy
brings to the same optimal value of θoptimal.

3.2.6 Seq2Seq models with Attention

In a recent interview, Ilya Sutskever, research director at OpenAI, mentioned
that attention mechanisms are one of the most exciting recent advancements
in deep learning, and they are here to stay.

In particular, these techniques in neural networks are loosely based on
the visual attention mechanism found in humans. Human visual attention
is well-studied and while there exist different models, all of them essentially
come down to being able to focus on a certain region of an image with high
resolution while perceiving the surrounding image in low resolution, and
then adjusting the focal point over time.

Attention mechanisms have a long story, particularly in image recogni-
tion. Examples include“Learning to combine foveal glimpses with a third-
order Boltzmann machine” published by Larochelle et al in 2010 [52] and“Learning
where to Attend with Deep Architectures for Image Tracking” by Denil et
al (2011) [25]. But only recently these architectures have made their way
into recurrent neural networks (RNNs) architectures that are typically used
for NLP. More formally, in this framework the encoder processes the input
sequence (x1, .., xT ) into a sequence of vectors (he1, ..., h

e
T ). From this se-

quence of vectors, the hidden state of the decoder at time step t, that is
hdt , is updated with the equation 3.28 and the probability for decoding time
step t is computed with equation 3.29.

In general, the vector c on which the decoding is conditioned is computed
as:

c = q(he1, ..., h
e
T ). (3.40)

In the basic case proposed by Sutskever et al in 2014 in their“Sequence
to Sequence Learning with Neural Networks” [95] and by Cho et al in 2014
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with“Learning Phrase Representations using RNN Encoder-Decoder for Sta-
tistical Machine Translation” [19], the vector c is computed this way:

c = heT . (3.41)

From this perspective can be seen how the basic sequence to sequence with-
out attention architecture throws away a very big amount of information
during the switch from the encoder to the decoder.

In their paper“Neural Machine Translation by Jointly Learning to Align
and Translate”, Bahdanau et al (2014) [4]) assert that using such a fixed-
length vector c is an information bottleneck in improving the performance of
these models. For this reason, the work of Bahdanau et al (2014) [4] and of
Luong et al (2015) [62] is mainly focused in improving the basic architecture
in order to exploit the full amount of information coming from the encoder.
In particular, the idea that stays behind the attention mechanism is that
not all the information coming from the encoder is needed to produce the
decoding token at time step t.

Indeed, the attention module empowers the decoder with a way to learn
automatically to soft-search for the parts of the source sentence that are
needed to predict a target word, without having to form these parts explicitly
as hard segments. The intuition behind this idea is very promising. In fact,
this module mimics a very important and peculiar characteristic of the brain;
during each moment of their life, humans are subjected to a gigantic amount
of stimula, the input, and have to come up with a decision, the output for
that specific moment. Even if the processing stage that goes from inputs
to outputs is complex and nowadays partially unknown, it is likely for the
brain to be provided with a mechanisms allowing to throw away the inputs
that are useless for the current task. It can be seen as a sort of defensive
approach humans adopt to not be overwhelmed by the enormous amount
of inputs they receive and to pay attention only on what is relevant for the
current goal.

The attention mechanism is a way to switch from Equation 3.29 to Equa-
tion 3.31. As can be noticed, the only difference is that if Equation 3.29 is
conditioned on a static vector c, independent from the time step t, equation
3.31 is instead conditioned on a dynamic context vector ct. This is a crucial
difference and here stays much of the contribution that attention provides.
In fact, in the attention based case, each decoding step t is provided with
a different context vector ct, computed with Equation 3.40. While in the
basic case of Sutskever et al 2014 [95] and by Cho et al 2014 [19], c is com-
puted with Equation 3.41 and is constant, with attention ct is a dynamic
aggregation of the encoder states.

The context vector ct can be computed in several different ways. Among
them, the most used have been proposed by Bahdanau et al 2014 [4] and by
Luong et al 2015 [62]. While they differ in how the vector is derived, they
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share the same subsequent steps. Specifically, at time step t the hidden
state of the decoder hdt , and the dynamic context vector ct are combined as

follows to produce an attentional hidden state ĥdt :

ĥdt = tanh(Wc ∗ [ct;h
d
t ]). (3.42)

Equation 3.42 specifies how the function v(.) of equation 3.31 works.

The attentional vector ĥdt is then fed through a softmax layer to produce
a probability distribution over the classes:

pθ(yt|ct, yt−1, ..., y1) = softmax(g(ĥdt )). (3.43)

As detailed by Luong et al 2015 [62], there are two classes of attention: global
attention and local attention. While global attention considers all the source
words, the local one instead, at each time step, looks at a different subset
of them.

In particular, global attention considers all the hidden states of the en-
coder when deriving the context vector ct (Figure 3.12). In this model type,
for sample n a variable length alignment vector αt, whose size equals the
number of time steps of the source sentence, is derived by comparing the
current decoder hidden state hdt with each encoder hidden state hes, with
t ∈ 1, ..., Tn and s ∈ 1, ..., Sn.

In particular, following the notation proposed by Luong et al 2015 [62],
for decoding step t and encoding step s, the alignment between hdt and the
hidden state hes is:

αt,s = align(hdt , h
e
s) =

exp(score(hdt , h
e
s)∑Tn

s′=1 exp(score(h
d
t , h

e
s′)))

. (3.44)

This way the computational path to generate ĥdt is:

hdt → αt → ct → ĥdt .

Bahdanau et al 2014 [4] proposed to use a different computational path to

extract ĥdt . In their version, the alignments are computed this way:

αt,s = align(hdt−1, h
e
s) =

exp(score(hdt−1, h
e
s)∑Tn

s′=1 exp(score(h
d
t−1, h

e
s′))

. (3.45)

Resulting in a different computational path to generate ĥdt , that is:

hdt−1 → αt → ct → ĥdt

Both of the above cases have a peculiar interpretation. In the former one,
the probability αt,s reflects the importance of the s-th source token to decode
the t-th target token, while in the latter it represents the importance that
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the s-th source token has with respect to the previous hidden state of the
decoder hdt−1 in deciding what the next state hdt is. One nice property is
that the alignment is not considered as a latent variable and so the model
can directly compute a soft alignment, which allows the gradient of the cost
function to be backpropagated through. This gradient can be used to train
the alignment model as well as the whole sequence model jointly.

In the above cases, score(.) is referred as a content-based function that
can be implemented in several ways. The way score(.) is implemented de-
termines which attention mechanism is used. In particular, the most famous
ones are:

score(hdt , h̄
e
s) =


hdth

e
s dot

hdtWah
e
s Luong et al 2015, [62]

vTa tanh(Wa[h
d
t ;h

e
s]) Bahdanau et al 2014, [4]

Wa[s, :]h
d
t Luong et al 2015, [62]

(3.46)
where it is possible to use either hdt or hdt−1. Given an alignment vector of
weights, the context vector ct is computed as a weighted average over the
source hidden states:

ct =

Tn∑
s=1

αt,sh
e
s. (3.47)

Local attention

Global attention has the drawback that it has to attend to all words on
the source side for each target word, which is expensive and can potentially
render impractical to handle long sequences. To address this issue, in 2015 in
their“Effective Approaches to Attention-based Neural Machine Translation”
[62] Luong et al propose a local attentional mechanism (Figure 3.13) that
chooses to focus only on a small subset of the source positions per each
target word. This model takes inspiration from the trade-off between soft
and hard attentional models proposed by Xu et al. 2015 [109] to tackle
the image generation task. In their work, soft attention refers to the global
attention approach in which weights are placed over all patches in the source
image.

The hard attention instead, selects one patch of the image to attend to
at a time. While less expensive at inference time, the hard attention model
is non-differentiable and requires more complicated techniques such as vari-
ance reduction or reinforcement learning to train. Local attention instead
selectively focuses on a small window of context and is differentiable. This
approach has an advantage of avoiding the expensive computation incurred
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Figure 3.12: Global attention model where at each time step t the model infers a
variable length alignment weight vector αt based on the current decoder state hdt
and all the source states ĥs. A global context vector ct is computed as a weighted
average. according to αt. Figure coming from Luong et al 2015,“Effective Approaches
to Attention-based Neural Machine Translation” [62]

in the soft attention and at the same time, is easier to train than the hard
attention approach.

Concretely, the model first generates an aligned position pt for each
decoding time step t. The context vector ct is then derived as a weighted
average over the set of source hidden states within the window [pt−D, pt+D]
where D is empirically selected. Unlike the global attention approach, the
local alignment vector αt is now fixed-dimensional and belongs to the space
R2D+1. There are two variants of this model:

• Monotonic alignments: This variant assumes that source and target
sequences are monotonically aligned and sets pt = t. The alignments
are computed with equation 3.44.

• Predictive alignments: On the other hand, this approach predicts
an aligned position:

pt = Tn ∗ sigmoid(vTp ∗ tanh(Wp ∗ hdt )), (3.48)

where Wp and vp are model parameters which will be learned to predict
positions and S is the source sentence length. As a result, pt will be
∈ [0, Tn]. To favor alignments to be closed to pt, they placed a gaussian
distribution centered around pt. Specifically, the alignment weights are
now defined as:
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Figure 3.13: Local attention model where the model first predicts a single aligned
position pt for the current target word. Figure coming from Luong et al 2015,“Effective
Approaches to Attention-based Neural Machine Translation”. [62]

αt = align(hdt , h
e
s) ∗ exp

(
−(s− pt)2

2σ2

)
, (3.49)

where align(.) is specified in equation 3.44 and σ = D
2 .

Cost of attention

By looking a bit more closely at the equations 3.44 and 3.45 for global at-
tention can be noticed that this feature comes at a cost. It is necessary to
compute an attention value for each combination of input and output word
and having a 50-word input sequence and a 50-word generated output se-
quence would mean to have 2500 attention values. In this case the situation
is not too bad, but in other cases the computation can easily explode and be-
come intractable. This is what happens in the character-level computations
that deal with sequences consisting of hundreds of tokens. In this situation
global attention can become prohibitively expensive.

Actually, that is quite counter intuitive. Human attention is something
that is supposed to save computational resources. By focusing on one thing,
the human brain can neglect many other things. But that is not really what
the above model does. It essentially looks at everything in detail before
deciding what to focus on. Intuitively that is equivalent to outputting a
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Figure 3.14: Attentional vectors are fed as inputs to the next time step to inform the
model about past alignment decisions. The weights αt are inferred from the current
decoder state hdt and those source states hes in the window. Figure coming from Luong
et al 2015,“Effective Approaches to Attention-based Neural Machine Translation” [62]

translated word, and then going back through all of the internal memory of
the text in order to decide which word to produce next.

That seems like a waste, and not at all what humans are doing. In
fact, it is more a kind of memory access, not attention. As often happens
in deep learning, that has not stopped global attention mechanisms from
becoming quite popular and performing well on many tasks, such as machine
translation and question answering.

An alternative approach to global attention is either to use Reinforce-
ment Learning to predict an approximate location to focus on or to use
the local attention proposed by Luong et al 2015 [62]. That sounds a lot
more like human attention, and that is what is done in“Recurrent Models of
Visual Attention” by Mnih et al 2014 [68].

Revised input feeding

In addition, Luong et al (2015) in“Effective Approaches to Attention-based
Neural Machine Translation” [62] proposed a different input feeding proce-

dure (Figure 3.14). It works by feeding the attentional vectors ĥdt back as
new inputs of the decoder. The difference here is that, while in the previous
architecture the decoder accepted only the input, now it takes a vector that
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is the concatenation of the input with the attention vector.

Bidirectional encoder

Usual RNN models read an input sequence x starting from the first symbol
x1 to the last one xTn . However, it is often necessary to have the encoder hid-
den state at time s, hes, to be aware of both the preceding and the following
words.

Hence, Bahdanau et al (2014) proposed to use a BidirectionalRNN, firstly
introduced by Schuster et al (1997) [82]. This architecture consists of a
forward and a backward RNNs. The forward one reads the input sequence
as is it ordered and calculates a sequence of forward hidden states:

(
�
he1, ...,

�
heTn). (3.50)

The backward RNN instead reads the sequence in the reverse order resulting
in a sequence of backward hidden states:

(
�
he1, ...,

�
heTn). (3.51)

The final hidden state for input token at position s will be:

hes = [
�
hes;

�
hes]. (3.52)

This way the annotation hes is a summary of both the preceding words and
the following words and due to the tendency of RNNs to better model recent
inputs the encoder hidden state will contain information related to the words
around xs, resulting in a local information summary.

As it is shown in Figure 3.15, this extension of the encoder is particularly
useful when powering the decoder with attention, in fact attending on the
encoder states would mean to focus on chucks of the input sequence.

Attention visualization

Nicely, sequence to sequence models empowered with attention allow the de-
veloper to visualize what is the network learning. This visualization learning
feature is really powerful and it is useful to inspect how the model aligns
the generated sequence with the input data. In particular, given an input
(x1, ..., xTn) and a predicted sequence (o1, ..., oOn), in the scope of global
attention it is always possible to retrieve an alignment matrix of shape
(On, Tn). This alignment matrix contains the result of equation 3.43, that
are numbers between 0 and 1. In particular, for each decoding step, that is
for each row of the matrix, the elements of the row are computed through
a softmax and for this reason the elements in each row sum up to 1. This
means that, for alignment matrix AL:
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Figure 3.15: The encoder uses BiRNNs to process the input sequence and the decoder
exploits attention to extract a dynamic context vector. Figure coming from Bahdanau
et al 2014,“Neural Machine Translation by Jointly Learning to Align and Translate” [4]

Tn∑
j=0

AL[i, j] = 1 ∀i ∈ {0, ..., On}. (3.53)

The hello world application of these models is usually machine translation.
In this case, the input sequence is a sentence in a language, for example En-
glish, while the target sequence is another sequence in a different language,
that can be French.

Given that, in machine translation, the dependencies are mainly Directly
tok2tok aligned and Indirectly tok2tok aligned, the alignment matrix should
be easily interpretable. In fact, some words are translated directly into other
words, without the necessity to have information about the sentence itself.
This is the case of the translation between agreement and accord for which
intuitively the model, while generating accord, should assign an alignment
close to 1 to the source word agreement and nearly 0 to the alignments with
all the other input tokens. This is what happens in the results shown by
Bahdanau et al 2014 [4] (Figure 3.16 and 3.17).

3.2.7 Beyond pure recurrence in Seq2Seq models

In generative chatbots, the conversational context it is meant to be the
sequence of utterances exchanged between the actors of the conversation
before the actual question that has to be answered. The depth of the context
back into the historical conversation is called num turns and is an hyper-
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Figure 3.16: The x-axis and the y-axis of each plot correspond to the words in the source
sentence (English) and the generated translation (French). Part 1. Figure coming from
Bahdanau et al 2014,“Neural Machine Translation by Jointly Learning to Align and
Translate” [4]

Figure 3.17: The x-axis and the y-axis of each plot correspond to the words in the source
sentence (English) and the generated translation (French). Part 2. Figure coming from
Bahdanau et al 2014,“Neural Machine Translation by Jointly Learning to Align and
Translate” [4]

parameter, usually very difficult to be tuned.

As an example, by using num turns = 2, the conversational context
used to predict the answer ai would be abstracted this way:
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contexti = (qi−2, ai−2, qi−1, ai−1, qi) . (3.54)

Then, the set of utterances are concatenated to form a long sequence of
tokens and are sent to the encoder to be processed in a sequential way.

Concatenating the elements of contexti usually results in a very long
sequence of tokens:

encoder input = ti−2,0, ..., ti−2,li−2
,#, ...,#, ti,0, ..., ti,li , (3.55)

where th,k can be either the a word or a character, depending on the design
choice, and # is a change turn delimiter. This way, the input sequence
can potentially be very large and usually there are serious problems for the
recurrent models to handle its long term dependencies.

Also, many other text mining problems, such as text classification and
text summarization, have to handle a very long input sequence and suffer of
the same issue. This problem was explored in depth by Hochreiter in 2001
[39] and by Bengio et al in 1994 [7], who found some pretty fundamental
reasons why it might be difficult to learn those dependencies with pure
RNN networks. However, in 2018 Trinh et al, with their“Learning Longer-
term Dependencies in RNNs with Auxiliary Losses” [98], explained that
it is possible to capture long term dependencies in RNNs by adding an
unsupervised auxiliary loss to the original objective. In practice, the problem
still persists, even when using more complex recurrent cells such as LSTM
[40] or GRU [4]. In addition to this convergence issue, standard recurrent
models take a long time to train if fed with such long sequences. This is due
to the fact that these networks are limited in two aspects: the sequentiality
of the encoder, that makes it impossible to parallelize the computation of
the input, and the autoregressive decoder, resulting in very slow inference
procedures. This computational issue is very serious, and in real cases it
also affects the possibility of doing a strong and wide cross-validation. For
this reason, a lot of the research of the last year focuses on finding ways to
overcome these two limitations.

To solve this issue, Gehring et al 2017 [31] proposed a way to perform
sequence learning by using Convolutional Neural Networks (CNNs) in both
the encoder and the decoder. As it can be seen in Figure 3.18, the perfor-
mance achieved by this model is competitive and the time to converge is
way less with respect to the fully recurrent GNMT (Google Neural Machine
Translation) architecture (Wu et al 2016 [105]). Also, this approach is the
one currently (June 2018) implemented by the automatic translation feature
that is present in Facebook and Instagram.

Another very promising architecture, described in Section 3.2.9, is the
one that Vaswani et al presented at NIPS 2017 with their paper“Attention
Is All You Need” [100], also known as the Transformer. As it can be seen in



59 3.2. Generative approaches

Figure 3.18: CPU and GPU generation speed in seconds on the development set of
WMT’14 English-French. Figure coming from Gehring et al 2017,“Convolutional Se-
quence to Sequence Learning” [31]

Figure 3.19: The Transformer achieves better BLEU scores than previous state-of-the-
art models on the English-to-German and English-to-French newstest2014 tests at a
fraction of the training cost. Figure coming from Vaswani et al 2017,“Attention Is All
You Need” [100]

Figure 3.19, the performance of this last model is even better than the one
obtained by the previous fully convolutional one. In addition, the training
cost is an order of magnitude less, 3.3 ∗ 1018 FLOPs on both EN-DE and
EN-FR, while ConvS2S needs 9.6 ∗ 1018 FLOPs on EN-DE and 1.5 ∗ 1020

FLOPs on EN-FR, and GNTM requires 2.3 ∗ 1019 FLOPs on EN-DE and
1.4 ∗ 1020 FLOPs on EN-FR.

If the above two architectures, in order to tackle the fact that recurrent
cells are very time consuming, exploit completely RNN-free architectures,
some other approaches, called hierarchical sequence models, define fast and
competitively performing algorithms by incorporating the notion of hierar-
chy into their architecture.

In fact, while the Transformer is a very general model that can be used
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to perform a wide variety of tasks, from image captioning to machine trans-
lation (Kaiser et al 2017,“One model to learn them all” [44]), hierarchical
sequence models are specifically made for hierarchically organized data, such
as text. In fact, text can be seen as an hierarchically organized input. It is
made of characters wrapped into words that together form sentences, placed
into a document.

Biasing the traditional sequence to sequence models to efficiently process
this hierarchical structure opens the possibility to let the model understand
better the input and to make the training process faster and more paral-
lelizable even by using recurrent based models. Two interesting examples
have been presented by Yang et al in 2016 in“Hierarchical Attention Net-
works for Document Classification” [110] and by Xing et al in 2017 with
their“Hierarchical Recurrent Attention Network for Response Generation”
[108].

3.2.8 Seq2Seq models with Hierarchical attention

Considering Conversational AI, in 2017 Xing et al published“Hierarchical
Recurrent Attention Network for Response Generation” [108], a paper de-
scribing a sequence to sequence architecture to process conversational multi
turn data. In particular, a multi turn input shows a clear hierarchical struc-
ture: the context is made of utterances and each utterance is composed of
words.

Even if other existing works model the hierarchy of the context, they
do not pay enough attention to the fact that words and utterances in the
context are differentially important. In the architecture of Xing et al [108]
instead, a hierarchical attention mechanism drives the context extraction
phase and allows to find the information that is important at word and at
sentence level. In particular, with the word level attention and the utterance
level attention respectively, the model attends to important parts within and
among utterances. With word level attention, hidden vectors of a word level
encoder are synthesized as utterance vectors and are fed to an utterance
level encoder to construct the hidden representations of the context. These
hidden vectors are then processed by the utterance level attention and trans-
formed in context vectors used to decode the response. In practice, building
a model that processes multi-turn conversations is complex because of the
conversational context is hierarchically organized and not all the parts of
the context are equally important to response generation. Words are differ-
entially informative and important, and so are utterances.

State of the art models, such as HRED (Serban et al 2016a [87]) and
VHRED (Serban et al 2016c [87]) focus on modelling the hierarchy of the
context, whereas there is only little exploration on how to select important
parts of the context, although it is often a crucial step for generating a
proper response. Without this step, existing models may loose important
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Figure 3.20: An example of multi turn conversation. Figure coming from Xing et al
2017,“Hierarchical Recurrent Attention Network for Response Generation” [108]

information in context and generate irrelevant responses.

An interesting example is shown in Figure 3.20. The conversational
context is about height and boyfriend and so, to generate and answer, words
like girl and boyfriend and numbers indicating height such as 160 or 175
seem to be more important than not good-looking.

For this reason, utterances u1 and u4 convey main semantics of the
context, and are more important than the others for generating a proper
response. Without modelling the importance of words and utterances, the
state of the art model VHRED (Serban et al 2016c [87]) misses important
points and gives a response which is fine with a context made of only u3,
but not that good having the whole context. After paying attention to the
important words and utterances, HRAN by Xing et al 2017 [108] generates a
better response. In particular, the model proposed by Xing et al (2017) [108]
is inspired by the success of the attention mechanism in single-turn response
generation (Shang et al 2015 [88]) and proposes a hierarchical attention
recurrent model to dynamically highlight important parts of sequences of
words and of utterances when generating the response.

To do this, HRAN [108] exploits a word level recurrent neural network
that encodes each utterance into a sequence of hidden vectors then the de-
coder is generating a specific word in the response, a word level attention
mechanism assigns a weight to each vector in the hidden sequence of an ut-
terance and forms an utterance vector by linearly combine the vectors where
important hidden vectors correspond to important parts in the utterance for
the generation of the utterance vector. The utterance vectors are then fed
into an utterance level encoder which constructs hidden representations of
the context and, different from classic attention mechanism, the word level
attention is dependent on both the decoder and the utterance level encoder.
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As a third level, an utterance attention mechanism attends to important
utterances in the high level sequence and summarizes them as a context
vector. Finally, on the top of HRAN [108], a decoder takes the context vec-
tor as input and generates the word in the response working as a language
model in the same way sequence to sequence decoders do.

Similarly to HRAN [108], other models tackled multi turn response gen-
eration in a similar way. For example, in DCGM of Sordoni et al (2015) [92]
the context is encoded with a multi layer perceptron (MLP). Also, Serban
et al (2016) proposed HRED [86], VHRED [86] and MrRNN [85], where
the last two models introduce latent variables into the generation process.
Differently from these approaches, HRAN [108] simultaneously models the
hierarchy of contexts and the importance of words and utterances in a uni-
fied framework.

Practically, another interesting application of hierarchical attention net-
works is the one of Yang et al (2016) [110]. They proposed to use an archi-
tecture, similar to the encoder of HRAN [108], for document classification.
In this work they use two levels of attention mechanisms to model the con-
tributions of words and sentences in the classification decision.

Architecture

As it is shown in Figure 3.21, with the two levels of attention, HRAN [108]
works in a bottom-up way: the hidden vectors of utterances are processed by
the word level attention and uploaded to an utterance level encoder to form
hidden vectors of the context, that are further processed by the utterance
level attention to form a context vector to be uploaded to the decoder in
order to generate the word.

Considering a dataset D = (Ui, Yi)
N
i=1, each (Ui, Yi) represents a pair of

ground-truth context Ui and response Yi. In particular:

Yi = (yi,1, ..., yiTi ), (3.56)

Ui = (ui,1, ..., ui,mi), (3.57)

where yi,j is the j-th target word of sample i, ui,mi is the direct question to
be answered and (ui,1, ..., ui,mi−1) is the remaining conversational context.
To ensure that there is at least one utterance in the conversational context,
it is required to have mi >= 2. Specifically, each utterance ui,j in U can be
hierarchically decomposed as:

ui,j = (wi,j,1, ..., wi,j,Ti,j ), (3.58)

where wi,j,l is the l-th word in utterance j of sample i. The goal is to
estimate the probability:
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p(y1, ..., yT |U). (3.59)

By exploiting an historical dataset D, a model of the above probability is
fitted with a gradient descend method. Having a new conversational context
U , is then possible to generate a novel response Y = (y1, ..., yT ).

Word level encoder

Given U of equation 3.57, the word level encoder processes each utterance
ui,j of sample i in parallel. A bidirectional RNN with Gated Recurrent Units
(GRU [4]) is exploited to encode each ui,j = (wi,j,1, ..., wi,j,Ti,j ) j ∈ 1, ...,mi

into a sequence of hidden vectors (hi,j,1, ..., hi,j,Ti,j ). It is important to notice
that each hi,j,l is only dependent on ui,j and its computation does not involve
any other utterance in the context U . In particular:

hi,j,l = f(ui,j). (3.60)

For each l ∈ (1, ..., Ti,j) the word level encoder produces an hidden vector
hi,j,l by using the following recurrent equation:

hi,j,l = concat(
�
hi,j,l ,

�
hi,j,l). (3.61)

In particular, the forward GRU computes its hidden state
�
hi,j,l by processing

the sequence ui,j in its order, from wi,j,1 to wi,j,Ti,j , by using the following
equations:

zi,j,l = σ(Wz ∗ ei,j,l + Vz ∗
�

hi,j,l−1), (3.62)

ri,j,l = σ(Wr ∗ ei,j,l + Vr ∗
�

hi,j,l−1), (3.63)

si,j,l = tanh(Ws ∗ ei,j,l + Vs ∗ (
�

hi,j,l−1 ∗ ri,j,l)), (3.64)

�
hi,j,l = (1− zi,j,l) ∗ si,j,l + zi,j,l ∗

�
hi,j,l−1. (3.65)

In the above equations,
�

hi,j,0 is initialized with an isotropic Gaussian dis-
tribution and ei,j,l is the embedding of wi,j,l. The GRU [4] cell is then
parametrized by the matrices Wz, Wr, Ws, Vz, Vr, Vs. In the same way

the backward GRU computes its states
�
hi,j,l by processing the sequence ui,j

in reverse order from wi,j,Ti,j to wi,j,1 and is parametrized as the forward
GRU. In Figure 3.21, the word level encoder is the purple module on the
bottom. There, it can be seen how the different utterances of the context
are encoded in parallel for each decoding step. This means that this archi-
tecture can be parallelized of a factor equal to the number of utterances in
the context.
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Figure 3.21: Hierarchical recurrent attention network. Figure coming from Xing et al
2017,“Hierarchical Recurrent Attention Network for Response Generation” [108]

Nicely, in this step can be exploited a dynamic batching procedure. To
clarify, consider that the batch size is h and each sample is made of k utter-
ances. This way the encoder input would have shape (h, k,max words, d model).
Thanks to the independence of the encoding process, it is possible to reshape
the input tensor as (h∗k,max words, d model) and to reformulate the prob-
lem into a standard sequence to sequence one. This way, the batch of the
encoder will be way bigger than the declared batch size and the computation
of the encoder can be performed in parallel. At the end, the output of the
encoder will also have shape (h ∗ k,max words, d model) and after being
reshaped back into (h, k,max words, d model), could be processed by the
word level attention.

Word level attention

In the basic version, the word level attention will generate, for each decoding
step t, an attention vector αt,i,j for each utterance ui,j in the context U .
This vector is computed with equation 3.45, where for each l ∈ 1, ..., Ti,j the
encoder’s state hi,j,l is compared with hi,t. In particular, for each utterance
j, the attention vector αt,i,j is computed this way:

αt,i,j = (αt,i,j,1, ..., αt,i,j,Ti,j ), (3.66)

specifically with shape (1, Ti,j). This vector is then used to perform a
weighted sum of the word level encoder states, driven by the attention
weights. Then, it is extracted an utterance representation rt,i,j , as it is
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specified by equation 3.47. The same is done for all the other utterances in
U , and the output of the word attention is:

(rt,i,1, ..., rt,i,mi). (3.67)

After stacking it, this set can be seen as a 3D tensor, called WLAi of shape
(batch size,mi, d model).

Utterance level encoder

At this step, the representation of each utterance does not know anything
about the other sentences that compose the context. It is only aware of the
words that compose the specific sentence. To make these vectors also aware
of the other parts of the context, an utterance level encoder is exploited. It
works as the word level one and can be a bidirectional or an unidirectional
encoder. The output of this module, is a set of vectors:

(lt,i,1, ..., lt,i,mi). (3.68)

After stacking them, this set can be seen as a 3D tensor, called SLEi, again
of shape (batch size,mi, d model), where each sentence vector is aware of
the utterance level context.

Utterance level attention

Moreover, an utterance level attention mechanism computes a set of atten-
tion weights, each one attached to a contextualized utterance vector. In
particular, the attention vector βt,i is computed this way:

βt,i = (βt,i,1, ..., βt,i,mi), (3.69)

where each attention weight is computed with equations 3.42 and 3.43
by using the tensor SLEi and the decoder state. Its output has shape
(batch size, d model).

HRAN Xing et al. (2017) [108]

Starting from the basic version described above, Xing et al proposed a sim-
ilar architecture called“Hierarchical Recurrent Attention Network” (HRAN
[108]). More specifically, the utterance level encoder is a backward GRU
which processes WLAi backwardly. Also, the word level attention depends
on both the hidden states of the decoder and the hidden states of the utter-
ance level encoder. In order to do this, practically, the implementation works
in reverse order by first applying this particular variation of the attention
layer to the last utterance in the context, that is the set of vectors:

{hi,mi,1, ..., hi,mi,Ti,mi
}, (3.70)
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and then moving towards the first utterance represented as:

{hi,1,1, ..., hi,1,Ti,1}. (3.71)

Specifically, the attention weights of equation 3.64 are now computed with
a new score function:

et,i,j,k = η(hdt−1, lt,i,j+1, h
e
i,j,k), (3.72)

αt,i,j,k =
exp(et,i,j,k)∑Ti,j
o=1 exp(et,i,j,o)

. (3.73)

Equation 3.72 returns the not normalized importance score of the token k
in sentence j of sample i and can be seen as another fancy score function to
be added to the ones in equation 3.46. Its data flow can be seen in the top
left part of Figure 3.21.

It is worth to notice that the word level encoder and the utterance level
encoder are dependent one on each other and are alternatively conducted,
respectively first the attention then the encoder. This strange data flow
makes the computation not parallelizable and this is a difference with the
basic version of hierarchical attention. Moreover, η() is a multi-layer per-
ceptron with tanh as its activation function. The reason why they added
the dependency between the word level coefficient αt,i,j,k and the utterance
level state lt,i,j+1 is that the content from the context could help to identify
important information in utterances, especially when the state hdt−1 is not
informative enough.

They also required the utterance level encoder and the word level at-
tention to work reversely because they assumed that, compared to history,
conversation that happened after an utterance in the context is more likely
to be capable of identifying important information in the utterance for gen-
erating proper response to the context.

Hierarchical attention visualization

In the same way of attention, also hierarchical attention can be visualized.
This is done by inspecting the values that the model assigns to the normal-
ized attention scores.

Nicely, hierarchical attention can be exploited for a lot of deep learn-
ing models, for example document classification and question answering. If
Xing et al 2017 [108] proposed to use this mechanism for QAs, Yang et al
2016 [110] used it for document classification. Both of them also showed a
visualization of what the network learnt, that is reported in picture 3.22,
3.23, 3.24 and 3.25. In every figure, each line represents an utterance, with
blue indicating word importance, red representing utterance importance,
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Figure 3.22: Hierarchical recurrent attention network for document classification. Fig-
ure coming from Xing et al 2017,“Hierarchical Attention Networks for Document Clas-
sification” [110]

Figure 3.23: Hierarchical recurrent attention network for document classification. Fig-
ure coming from Xing et al 2017,“Hierarchical Attention Networks for Document Clas-
sification” [110]

and darker colours referring to higher scores. Figure 3.22 shows that a doc-
ument classification model powered with hierarchical attention can select the
words carrying strong sentiment like delicious, amazing, terrible and their
corresponding sentences. Sentences containing many words like cocktails,
pasta, entree are disregarded.

Note that the model can not only select words carrying strong sentiment,
it can also deal with complex across-sentence context. For example, there are
sentences like i don’t even like scallops in the first document of Figure 3.22
that, if looking purely at the single sentence, could be a negative comment.
However, the model looks at the context of this sentence and figures out this
is a positive review and chooses to ignore this sentence.

The hierarchical attention mechanism also works well for topic classifi-
cation in the Yahoo Answer data set. For example, for the left document
in Figure 3.23 with label 1, which denotes Science and Mathematics, the
model accurately localizes the words zebra, strips, camouflage, predator and
their corresponding sentences. In fact for the document on the right, hav-
ing ground truth label 4, which denotes Computers and Internet, the model
focuses on web, searches, browsers and their corresponding sentences.
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Figure 3.24: Hierarchical recurrent attention network for Conversational AI. Figure
coming from Xing et al 2017,“Hierarchical Recurrent Attention Network for Response
Generation” [108]

Figure 3.25: Hierarchical recurrent attention network for Conversational AI. Figure
coming from Xing et al 2017,“Hierarchical Recurrent Attention Network for Response
Generation” [108]

In the first example of Figure 3.24, words including girl and boyfriend
and numbers including 160 and 175 are highlighted, and u1 and u4 are
more important than the others and the result matches the intuition.

In the first case of Figure 3.25, HRAN [108] assigned a large weight to u1,
u4 and to words like dinner and why. In conclusion, these figures provide
insights about how HRAN [108] understands contexts during generation.

Error analysis

Xing et al [108] also nicely investigated how to improve HRAN in the future
by analyzing errors. The errors can be summarized as: 51.81% logic con-
tradiction, 26.95% universal reply, 7.77% irrelevant response, and 13.47%
others. Most of the bad cases come from universal replies and responses
that are logically contradictory with contexts. This is easy to understand
as HRAN [108] does not explicitly model the two characteristics.

The result also indicates that, although contexts provide more informa-
tion than single messages, multi-turn response generation still has the safe
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response problem as the single-turn case; in fact attending to important
words and utterances in generation can lead to informative and logically
consistent responses for many cases, it is still not enough for fully under-
standing contexts due to the complex nature of conversations. Specifically,
the irrelevant responses might be caused by wrong attention during genera-
tion. Although this analysis might not cover all bad cases, it sheds light on
the future directions, that should cover:

• improving the diversity of responses, for example by introducing extra
content into generation like Xing et al. 2017 [107] and Mou et al 2016
[69] did for single-turn conversation.

• modelling logics in contexts.

• improving attention.

3.2.9 Seq2Seq models with Self Attention

The dominant sequence transduction models are based on complex recur-
rent or convolutional neural networks that include an encoder and a decoder.
The best performing ones also connect the encoder and decoder through an
attention mechanism. In this scope, Vaswani et al (2017) [100] proposed a
new network architecture, the Transformer, based solely on attention mech-
anisms, dispensing with recurrence and convolutions entirely. Experiments
on two machine translation tasks showed that their model is both superior
in quality and more parallelizable, requiring significantly less time to train.

Further, they also showed that the Transformer generalizes well to non
machine translation tasks and works well for limited data. The main aspect
that characterizes this architecture is that it relies entirely on an attention
mechanism to draw global dependencies between input and output, eschew-
ing recurrence and convolution.

High level overview

As has been said in Section 3.2.7, the deep learning community is heading
in the direction of reducing sequential computation in sequence to sequence
models. To this end, several models have been designed, for example Ex-
tended Neural GPU [45], ConvS2S [31] or Bytenet [46].

The above architectures have in common the fact that they use convo-
lutional neural networks (CNNs) as basic building blocks, computing hid-
den representations in parallel for all input and output positions. In these
models, the number of operations required to relate signals grows with the
distance between positions, linearly for ConvS2S [31] and logaritmically for
Bytenet [46], and this makes more difficult to learn long dependencies be-
tween distant positions. The Transformer [100] instead, reduces the number
of operations to a constant number.
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Figure 3.26: Transformer model architecture. Figure coming from Vaswani et al
2017,“Attention is all you need!” [100]

In fact, this model is based solely on self-attention, as the name of the
paper,“Attention is all you need !” suggests. Self attention is an atten-
tion mechanism relating different positions of a single sequence, in order to
compute an aggregated representation. It has been successfully used in a
variety of tasks including reading comprehension [18], abstractive summa-
rization [72], textual entailment [73] and learning task-independent sentence
representation [57]. The Transformer is the first sequence to sequence ar-
chitecture relying entirely on self-attention to compute representation of its
input and output, without using sequence aligned RNNs or convolution.

As explained from Section 3.2.5 on, most competitive neural sequence
transduction models have an encoder-decoder structure where the encoder
maps an input sequence of symbol representations (x1, ..., xn) to a sequence
of continuous representations z = (z1, ..., zn). Given z, the decoder then gen-
erates an output sequence (y1, ..., ym) of symbols one element at a time. At
each step the model is auto-regressive, consuming the previously generated
symbols as additional input when generating the next. The Transformer
follows this overall architecture using stacked self-attention and point-wise,
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fully connected layers for both the encoder and decoder, as it is shown in
the left and right halves of Figure 3.26, respectively.

Positional embeddings

Since this model contains no recurrence and no convolution, in order to
inject the notion of word order, it is necessary to provide some information
about the relative or absolute position of the tokens in the sequence.

To this end, Vaswani et al (2017) [100] added positional encodings to the
input embeddings at the bottoms of the encoder and decoder stacks. This
interesting trick allows the model, completely unaware of the order of the
tokens in the sequence, to make pure word embedding vectors aware of the
position in the sequence. In particular, positional encodings have the same
dimension dmodel of the embeddings, so that the two can be summed. There
are many choices of positional encodings, learned and fixed [31]. In their
work, the choice was to use sine and cosine functions of different frequencies:

• PE(pos,2i) = sin(pos/100002i/dmodel))

• PE(pos,2i+1) = cos(pos/100002i/dmodel))

where pos is the position in the sequence and i is the dimension. That is,
each dimension of the positional encoding corresponds to a sinusoid.

Encoder

The encoder is composed of a stack of N = 6 identical layers. Each layer has
two sub-layers. The first is a multi-head self-attention mechanism, and the
second is a fully connected feed-forward network with a residual connection
[36] around each of the two sub-layers, followed by layer normalization [3].
That is, the output of each sub-layer is LayerNorm(x+Sublayer(x)), where
Sublayer(x) is the function implemented by the sub-layer itself.

Decoder

The decoder is also composed of a stack of N = 6 identical layers. In
addition to the two sub-layers in each encoder layer, the decoder inserts a
third sub-layer, which performs multi-head attention over the output of the
encoder stack.

Similar to the encoder, residual connections are used around each one
of the sub-layers, followed by layer normalization. They also modify the
self-attention sub-layer in the decoder stack to prevent positions from at-
tending to subsequent positions. This masking, combined with fact that the
output embeddings are offset by one position, ensures that the predictions
for position i can depend only on the known outputs at positions less than
i.
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Figure 3.27: Scaled Dot-Product Attention. (right) Multi-Head Attention (left) con-
sists of several attention layers running in parallel. Figure coming from Vaswani et al
2017,“Attention is all you need!” [100]

Attention

In general, an attention function can be described as mapping a query and
a set of key-value pairs to an output, where the query, the keys, the values,
and the output are all vectors.

The output is computed as a weighted sum of the values, where the
weight assigned to each value is computed by a compatibility function (Equa-
tion 3.46) of the query with the corresponding key. In particular, the atten-
tion mechanism of Vaswani et al [100] is fancy because it performs in par-
allel different kinds of attention on different versions of the same sequence.
Specifically, they use:

• Scaled dot product attention: It is a particular variation of mul-
tiplicative Luong attention [62], called Scaled Dot-Product Attention,
Figure 3.27. The input consists of two sets of queries and keys of di-
mension dk, and a set of values of dimension dv. As was explained in
Section 3.2.6, it is performed the dot products of the query with all
keys. After that, each element in the vector is divided by

√
dk, and a

softmax function is applied to obtain the set of weights α.

In practice, they compute the attention function on a set of queries
simultaneously, packing them together into a matrix Q. The keys and
values are also packed together into matrices K and V . The matrix of
outputs is then computed as:
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Attention(Q,K, V ) = softmax(
QK ∗ T√

dk
)V. (3.74)

The two most commonly used attention functions are additive atten-
tion [4] and dot-product attention [62]. Dot-product attention is iden-
tical to Vaswani et al [100] algorithm, except for the scaling factor of√
dmodel.

• Multi head attention: Another trick they implemented is that, in-
stead of performing a single attention function with dmodel-dimensional
keys, values and queries, they found it beneficial to linearly project the
queries, keys and values h times with different, learned linear projec-
tions to dq, dk and dv dimensions, respectively.

On each of these projected versions of queries, keys and values they
then perform the attention function in parallel, yielding dv-dimensional
output values. These are then concatenated and once again projected,
resulting in the final values, as depicted in Figure 3.27. Conceptually,
multi-head attention allows the model to jointly attend to information
coming from different representation subspaces.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W o, (3.75)

where:

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ), (3.76)

where WQ
i ∈ Rdmodel,dk , WK

i ∈ Rdmodel,dk , W V
i ∈ Rdmodel,dv and Wo ∈

Rhdv ,dmodel They used h = 8 and dk = dv = dmodel/h = 64 and due to
the reduced dimensionality of each head, the total computational cost
is similar to the one of single head attention.

3.3 Data preparation for Generative models

Considering a mini-batch training procedure, for each training step t the
model consumes a batch of tokenized input and target sequences:

raw batcht = {wy1n, ..., wySn, wx1n, ..., wxTn}batch sizen=1 ,

where:

• wyij represents the i-th word in the target sequence of sample j

• wxij represents the i-th word in the input sequence of sample j
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By holding an input vocabulary and a target vocabulary that assign an id
to the set of the top-k most common words in the input and target corpora,
each wyij and wxij is mapped to an id, respectively yij and xij . If it is
necessary to assign an id to a word that is not present in the vocabulary the
UNK token is used, a special element defined to handle out of vocabulary
tokens, called OOV .

Furthermore, it is necessary to define two other special tokens:

• SOS, that marks the start of a sequence and its id is SOSid.

• EOS, that marks the end of a sequence and its id is EOSid.

After translating the sequences from text tokens into ids, the training batch
has the following form:

batcht = {y1n, ..., ySn, x1n, ..., xTn}batch sizen=1 .

From this object, three elements are extracted:

• The augmented input sequence:

{x1n, ..., xTn, EOSid}batch sizen=1 .

• The augmented target input sequence:

{SOSid, y1n, ..., ySn}batch sizen=1 .

• The augmented target output sequence: This is the list of the
labels and, given that the decoder works as a language model, it is
made of the shifted decoder inputs:

{y1n, ..., ySn, EOSid}batch sizen=1 .

The model is then fed with a batch object containing these elements:

• Encoder inputs: This object holds {x1n, ..., xTn, EOSid}batch sizen=1 . It
has the form of a list of lists, where the first list has length batch size
and the inner lists have lengths Tn for n ∈ (1, ..., batch size). To feed
this heterogeneous data structure to the model input data has to be or-
ganized it in a tensor. This tensor will have shape (batch size,max(Tn))
and will contain the input word ids assigned by the input vocabulary.
Intuitively, in order to fit in the above shape, some input sequences in
the batch will be padded until max(Tn) with a token id of another spe-
cial token, PAD. This token abstracts the concept of padding. Given
that lookup(word id) returns a vector of shape (1, dmodel), looking up
all the ids contained into the 2D tensor results in having the encoder
input tensor with shape (batch size,max(Tn), dmodel).
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• Encoder lengths: In order to not perform useless computation, that
is to not effectively process those PADid tokens, it is needed to provide
the model with the list of the effective lengths of the sequences wrapped
in encoder inputs, that is the number of non-pad tokens per each input
sequence in the batch. This object has shape (1, batch size).

• Decoder inputs: This is the object that holds the input to the de-
coder. It wraps {SOSid, y1n, ..., ySn}batch sizen=1 in the same way the en-
coder inputs does. For this reason it has 3D shape (batch size,max(Sn), dmodel).

• Decoder outputs: This object holds the expected output that the
decoder should generate. It is the label set for the current batch and
it has 3D shape (batch size,max(Sn), dmodel).

• Decoder lengths: It has the same role of the encoder lengths and it
has shape (1, batch size).

For, the effective vocabulary will be made of the top-k most common unique
words in the dataset augmented by the four special tokens: UNK, PAD,
SOS and EOS.

Training and inference

There is a big difference between the training and the inference phase. While
during training the model is fed with encoder inputs, decoder input and
decoder output, during inference the only available data are the encoder
inputs. This is due to the fact that training can be seen as an off line
procedure in which the target sequence is already known. During inference
instead, only the input sequence is available. For this reason, Sequence to
Sequence models ([19], [95]) need to be able to work in two modalities. In
particular, considering the base case of using it for machine translation, its
training mode can be visualized in picture 3.28:

The architecture of Figure 3.28 uses a multi layer recurrent network both
for the encoder (blue) and for the decoder (red).

To summarize, the basic building blocks of a sequence model in training
phase are:

1. Initialization: The initial states of the layers are initialized as zero-
vectors and embedding matrices are used in both encoder and decoder
and can be either initialized as 0 tensors, or can be pre-trained with a
word2vec model.

2. Encoder-Decoder: The encoder does not produce any output, while
the decoder produces an output per time step that is then projected
over the classes space.
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Figure 3.28: Sequence to Sequence model in training phase used for machine transla-
tion. Figure coming from Loung thesis,“Neural Machine Translation”. [96]

3. Loss: A loss value is computed by applying a function to the predicted
probabilities for the correct classes.

4. Stopping criteria: The decoding process ends when it has generated
a number of tokens equal to the number of elements in the target
sequence.

While the encoder architecture is independent on having or not the cor-
rect target sequence, the decoder architecture needs the target sequence to
work. For this reason, during inference a new architecture has to be de-
fined. The simplest strategy is to perform greedy decoding, as it is shown
in picture 3.29.

In particular:

• Encoder-Decoder: The source sentence is encoded in the same way
as in the training process. The decoding process is started as soon as
a start of sentence marker SOS is fed as a decoder input.

• Greedy-Decoding: For each time step on the decoder side, the most
likely word is picked as a greedy choice. For example, in the picture
3.29, for the first time step the greedy choice is moi given that it has
the highest translation probability. Then, the just generated word is
used as the input for the next time step.
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Figure 3.29: Sequence to Sequence model in inference phase used for machine transla-
tion. The network performs greedy decoding. Figure coming from Loung thesis,“Neural
Machine Translation”. [96]

• Stopping criteria: The decoding process continues until the end-of-
sentence marker EOS is produced as an output symbol.

What makes inference different from training is that, while during training
correct target words are always fed as inputs, during testing instead the
model uses the words it has predicted in an autoregressive way. Several
studies have been done on removing this autoregressive property.

Without it, the model could produce its outputs in parallel, allowing an
order of magnitude lower latency during inference.
Among them, the most interesting one is“NON-AUTOREGRESSIVE NEU-
RAL MACHINE TRANSLATION”, published by Gu et al in 2017 [34].

3.4 Training Generative models

In Sequence to sequence models the output of the decoder, starting from
the input, is differentiable, and gradient-based algorithms can be exploited
to estimate the parameters of the model.

Considering the most traditional gradient method, gradient descend,
there are three variants of it. They differ in how much data is used to
compute the gradient of the loss function. Depending on the amount of
data, a trade-off is made between the accuracy of the parameter update and
the time it takes to perform an update step.

A very interesting study about this trade-off was presented by Ruder in
2016 in his“An overview of gradient descent optimization algorithms“ [78].
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In particular, there are three approaches:

• Batch gradient descend computes the gradient of the cost function
with respect to the parameters θ for the entire training dataset.

θ(t) = θ(t− 1)− η ∗ ∇θJ(θ|{xj , yj}Nj=1),

where:

– θ(t − 1): It represents the values of model parameters used to
compute the current value of the error with the current set of
weights, that is J(θ|{xj , yj}Nj=1)

– ∇θ: It represents the derivative of the error function with respect
to the model parameters. The goal is to find the minimum of the
error function, and the derivative is an indication of the direction
in which the function is decreasing.

– η: the learning rate, it specifies how much the optimization fol-
lows the derivative direction.

Given that calculating the gradients for the whole dataset would result
in just one update, batch gradient descent can be very slow and is
intractable for datasets that do not fit in memory.

• Stochastic gradient descend in contrast performs a parameter up-
date for each training example xi and label yi.

θ(t) = θ(t− 1)− η ∗ ∇θJ(θ|xi, yi).

SGD performs frequent updates with a high variance and that cause
the objective function to fluctuate heavily.

• Mini-batch gradient descend finally takes the best of both worlds
and performs an update for every mini-batch of n training examples.

θ(t) = θ(t− 1)− η ∗ ∇θJ(θ|{xj , yj}i+Bj=i ).

By adopting this technique, the model is dependent on another hyper-
parameter that is the batch size. While the other hyper-parameters
are mainly setting the complexity, batch size, together with the learn-
ing rate, are particularly important for the correctness and the speed
of the optimization procedure. A very interesting study about how to
handle their values has been published by Smith et al in 2017 in“Don’t
Decay the Learning Rate, Increase the Batch Size”[90].
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Given that SGD has trouble navigating areas where the surface curves much
more steeply in one dimension than in another, researchers have found sev-
eral other optimizers that could improve the convergence. In particular it is
worth to point out:

• Momentum optimizer [74].

• Adam optimizer [49].

• RMSProp optimizer [38].





Chapter 4

Case Study and data
preprocessing

In order to provide a real world example of how to apply generative models
in Conversational AI, our case study refers to a project developed together
with Loop AI Labs, an American text mining company that provided us with
the dataset and that supported us during the design phase.

We developed a project with the goal of inspecting the performance of a
generative chatbot trained with an historical conversational knowledge base
made of real world interactions. The historical dataset we were provided
with came from an Italian service provider company, called here DICIOS,
and was the result of the properly anonymized recording of all the conversa-
tions that one of their chatting centers in the north or Italy produced during
one year of activity, from January 2016 to December 2016.

Being a completely unsupervised list of conversations between users and
agents coming from real world interactions, data used in this case study is
dirty, irregular and it touches a lot of different topics. Given that we wanted
to help the job of the model by feeding data as much clean as possible, we
spent a huge amount of work to standardize the conversations, designing
a custom preprocessing pipeline and showing the pros and cons of each
normalization step.

Data pre-processing is an important step in the data mining process.
The phrase garbage in, garbage out is particularly applicable to data min-
ing, in fact feeding a model with irregular data will usually succeed in bad
performance. If there is irrelevant and redundant information or noisy and
unreliable data, then knowledge discovery during the training phase is more
difficult. Data preparation and filtering steps can take considerable amount
of processing time and they include cleaning, instance selection, normaliza-
tion, transformation, feature extraction and selection. The product of data
pre-processing is the final training set.

The objectives of this chapter are both the ones of framing our case study,

81
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TYPE Single utterances
AMMINISTRATIVO INFO 950667
AMMINISTRATIVO SALDO 496725
ASSISTENZA TECNICA 1649416
CHAT PREVENTION 1335205
CHAT PREVENTION DWG 247964
CHAT UPSELLING CAR 255551
CHAT UPSELLING INFO 8484
CHAT UPSELLING KO 73854
CHAT UPSELLING OK 516076
NO VALUE 917840
PROMO PARITY CMN 339699
LOGIN 471531
RECUPERO ID 141988
TRASLOCA CMN 183
TRASLOCA INFO 110026

Table 4.1: DICIOS dataset.

this is presented in Section 4.1 about data exploration, and of describing
how to design a preprocessing pipeline able to extract, from a set of real
world irregular conversations, a clean and regular training set to be fed to
a generative model among the architectures exposed in Chapter 3. This
second part is treated in Section 4.2.

4.1 Data exploration

The dataset is encoded in fifthteen files, each one containing conversations
written in Italian and relating the different issues that a customer service
has to solve in the scope of a service provider company.

For instance, helping the user to change the password, supporting the
user in the remodulation of his plan or opening a request for a substitution
of a physical hardware platform.

With different files containing different kinds of conversations, as a first
step we merge the files of Table 4.1 into a single big unsupervised dataset,
and we do this with the goal of increasing the support of the statistics that
the preprocessing methods use to standardize the conversations.

As a starting point, we extract a vocabulary from the merged dataset
and we find out 970k unique words and 68M total words, and this gives
an idea of the complexity and of the entropy of the dataset. To visualize
this entropy, in Figure 4.1 we show the absolute frequencies of the 20k most
frequent tokens with their counts. The x-axis represents the id in the sorted
vocabulary while the y-axis represents the corresponding count. We can see
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Figure 4.1: On the y-axis there are the occurrences of the top-20k most frequent words
in the vocabulary extracted from the raw and not preprocessed text.

how the count quickly drops down to stay constant in the long tail, meaning
that the dataset is divided into two chunks, very frequent words and very
rare words. We can also notice that, among the 970k unique words, only 5k,
that is the 0.005% of the total, has a count that is more than 1k, and this
clarifies how much crucial is data normalization to make this data usable
and meaningful.

If in the previous analysis, Figure 4.1, we discussed how the most fre-
quent tokens are distributed, it is also interesting to check how much sparse
is the long tail of the vocabulary, that means inspecting the percentage of
tokens that have a very low count, their nature and so on, and we show this
in Figure 4.2, showing the cumulative frequencies.

To generate the plot shown in Figure 4.2 we first extract the vocabulary
voc, that is a big vector of size V , where V is the number of unique tokens in
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the raw text. After assigning to each unique token its count, we organize the
unique words in a list called voc list, sorted by count, where each element i
of the vector voc, that is voc[i], now represents the count for token voc list[i].
From this traditional vocabulary formulation, in Equation 4.1 we define the
cumulative count for token voc[i], voc cum[i], and in Figure 4.2 we show
voc cum[i], for each i.

voc cum(voc list[i]) =
i∑

k=0

voc[k]. (4.1)

Specifically, cumulative count for word i, voc cum[i], represents how much
of the corpus will be covered by taking a vocabulary of maximum length
equal to i.

Given the dataset has to be parsed into the conversational samples that
are then fed to a generative model, there are few crucial aspects to be con-
sidered, such as vocabulary distribution, length of the conversational context,
and unknowns percentage.

4.1.1 Vocabulary size

For tasks that use the output of a preprocessing stage, such as generative
models, it is necessary to choose a vocabulary size k, then all the tokens
that are not present in the vocabulary are considered as unknowns; this cut
has to be performed in a way that the most of the corpus is still covered by
the vocabulary. To ensure this property, it is often required to use a very
big vocabulary size k, and this results in an huge number of variables to be
estimated, a not desirable property.

To reduce the parameters of the model, there are several vocabulary
reduction policies that can be adopted, such as word and character level
cleaning. These techniques aim to shrink the vocabulary and to make it
more meaningful. For example, with 970k distinct tokens the cumulative
frequencies of Figure 4.1 show that, by using a vocabulary made of the
top 20k most frequent tokens, 3M of tokens will be unknown. The goal of
vocabulary reduction techniques is to allow to cut as much as possible the
vocabulary and at the same time to retain a good corpus coverage.

In table 4.2 we show the effect of retaining a vocabulary made of the top-
k most frequent tokens. In particular, we point out the tot cov, that is the
percentage of total words in the dataset covered by the specific vocabulary
cut, and the voc cov, that is the percentage of unique words retained. In
addition, we extract the k-th most frequent word in the vocabulary, the
sample column, together with its count, the count column, in order to give
an example of how the vocabulary is composed as the depth increases.

From Figure 4.2 and Table 4.2, we can notice that:
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Figure 4.2: Cumulative frequencies of the first 20k tokens in the vocabulary, showing
on the y-axis the corpus, in steps of ten millions, covered by a vocabulary holding the x
most frequent tokens. It can be seen how the top-20k tokens roughly cover the totality
of the data, that is 68M total words.

• The corpus coverage, tot cov, increases quickly to reach a plateau at
roughly 96%. This means that there is a very long tail that does
not allow to increase the corpus coverage by adding new words to the
vocabulary because the count, last column, decreases with a very fast
rate.

• The vocabulary coverage, voc cov, tells us that the tail is very long
and it is possible to understand why by inspecting the samples in
column sample of Table 4.2. In fact, as the depth increases, the tokens
become badly punctuation splitted, not lower-cased and in general not
normalized. This made us understand how much necessary was to
normalize the text. The long tail was mainly made of spell typos of
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Top-k n words tot cov voc cov sample count
50 25M 0.36% 0.0001% contratto 176k
100 32M 0.46% 0.0001% tua 106k
500 49M 0.72% 0.0005% attiva 17,6k
1k 54M 0.80% 0.0010% attesa 7k
2k 59M 0.86% 0.0021% costi, 2,7k
3k 61M 0.89% 0.0031% Considera 1,5k
4k 62,2M 0.91% 0.0041% e-mail. 966
5k 63M 0.92% 0.0052% comodamente, 674
5,5k 63,3M 0.93% 0.0057% AVREI 579
7k 64M 0.941% 0.0072% l&#39;attivazione, 387
8k 64,4M 0.946% 0.0082% pagarne 308
10k 64,9M 0.953% 0.0103% SOFT 214
12k 65,3M 0.959% 0.0124% storia, 157
13k 65,4M 0.961% 0.0134% ?!, 138
14k 65,5M 0.963% 0.0144% anticipato, 122
∞ 68,1M 1,00% 1,00% – –

Table 4.2: For each vocabulary cut k it is shown the corpus coverage (n words and tot
cov) and the vocabulary coverage (voc cov). In addition, it is extracted the k most
frequent word with its count, in order to qualitatively inspect the vocabulary at different
depths. It can be noticed how common words are clean and regular, while as the depth
is increased errors, typos and irregular words appear. In fact, the tail of the vocabulary
is made of not normalized tokens, and refers to roughly 99.9995% of the unique words.
This shows how much required is a normalization.

normal tokens and this phenomenon made the vocabulary size explode,
and consequently any NLP task pretty much impossible.

4.1.2 Length of conversational context

Another important value to be monitored is the length of the conversational
context. In Chapter 3 we showed how generative models suffer in handling
long sequences because of their long term dependencies. For this reason we
adopted a technique to abstract long repeated expressions into place-holder
tokens.

In particular, in Figure 4.3 we present the distribution of the lengths
of single utterances in the dataset. On the y-axis we present the absolute
percentage while on the x-axis there are the different values of the lengths.
There are 7M single utterances and their lengths are distributed with a
mean of 10.28, a variance of 12.2, a maximum value of 1882 and a minimum
one of 2. The percentiles are: 4 for the the 25-th, 6 for the 50-th, 12 for the
75-th, 17 for the 85-th, 23 for the 90-th and 33 for the 95-th. Also, from
this figure we can see how this distribution is irregular and typical of a real
world case.
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Figure 4.3: The distribution of the lengths, showing on the y-axis the absolute percent-
age.

Having outliers that are far away from the main percentiles means that
during training these samples will be batched together with normal ones
causing an huge amount of padding to be processed and this usually causes
memory errors and computation to be wasted. For this reason we had the
necessity of finding out a way to normalize the length of the utterances.

4.1.3 Unknown percentage

The last property that is required for a conversational dataset is to have a
low unknowns percentage. This can be achieved by making use of a spell
checker, a software module that, by exploiting unsupervised statistics, is
able to understand when a word is misspelled or if it is the result of two
words merged together.
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Figure 4.4: The unknown relative percentage per vocabulary size computed on the not
normalized dataset. It can be seen how for small vocabulary sizes, such as 10k or 15k,
the unknown rate is pretty high, in the order of 3.5%. The goal is to have a very small
unknown rate with a small vocabulary size, in order to reduce the number of model
parameters and normalize data.

Under the assumption that a misspelled token is rare, correcting them
with more frequent ones results in a big reduction of rare words. This way,
the count of the top-k elements in the vocabulary will increase, and this has
the effect of reducing the number of unknown tokens for a certain maximum
vocabulary size k. In Figure 4.4 we show how the unknown percentage
changes for different cuts to the vocabulary.
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4.2 Data preprocessing

As explained in the previous section, in real world text mining environments
it is necessary to perform a precise preprocessing step and this section de-
scribes how we decided to design our preprocessing pipeline, in order to
make data meaningful and usable.

4.2.1 Cleaning

At first, we perform a cleaning step, that consists in several sub-steps:

• Extracting regular expressions representing entities, for example URL ,
EMAIL , PERC , CREDIT CARD , MONEY , NUM , DATE ,
POSITIVE SMILE , NEGATIVE SMILE , IBAN , ZIP , STREET

and other task specific codes.

• Removing unprintable characters.

• Fixing when an apostrophe is used instead of accent.

• Remove everything inside brackets.

• Surround Italian punctuation with spaces.

• Removing digits inside group of only letters.

• Extracting entities from predefined categories. This is done by ex-
ploiting a pre-built set of Italian names, of Italian cities, of Italian
days and Italian months into the tokens NAME , PLACE , DAY
and MONTH .

• Fix edge cases.

After this steps, the dataset assumes a better form. In particular, the
number of unique words in the vocabulary becomes 265k, instead of 970k.
This datum made us notice how much important is this step, in fact we
reduced the number of unique tokens by 73%.

Another result of this stage is shown in Figure 4.5, which shows how the
unknown percentage per vocabulary cut now has a nicer trend, demonstrat-
ing again the importance of is this stage.

Cleaning does not affect heavily the lengths distribution. The only as-
pect that changes significantly is the maximum length, which arrives to
2027. This worsening is intuitive, in fact cleaning data could potentially
split words, transforming a token into several ones. This results in a shorter
vocabulary but the drawback is that there is an increase in the length of the
sequences.
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Figure 4.5: The unknown relative percentage per vocabulary size after cleaning. It can
be seen how for small vocabulary sizes, such as 10k or 15k, the unknown rate is better
than in Figure 4.4.

4.2.2 Fix typos

Table 4.3 shows how the top 30k words cover mostly the whole dataset,
leaving out 600K words, less than the 1%. The plateau we noticed in the
previous chapter disappeared, and is interesting to see that, going in depth
into the vocabulary, after the 14k most common words there are a lot of
typos, meaning that roughly 90% of the vocabulary is made of word mis-
spellings.

Examples are variazioen, typo of variazione, arivederci, typo of arrived-
erci, srevizio, typo of servizio, principlae, typo of principale, pormozioni,
typo of promozioni and validoper, typo of valido per. This is not too bad
because the corpus percentage related to these tokens is not huge, but a
module able to fix those errors could give a substantial improvement.
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Top-k # words Corpus cov Voc cov Sample count
50 29M 0.43% 0.0002% hai 205k
100 37M 0.54% 0.0004% on 121k
500 54M 0.81% 0.0019% inviato 16k
1k 59M 0.88% 0.0037% potete 5k
1,5k 62M 0.91% 0.0056% avrai 3k
2k 63M 0.93% 0.0074% software 2k
13k 66,6M 0.9868% 0.0484% chiedergli 49
14k 66,7M 0.9875% 0.0521% variazioen 42
15k 66,7M 0.9881% 0.0558% ricalcola 37
16k 66,7M 0.9886% 0.0595% arivederci 33
17k 66,8M 0.9891% 0.0633% srevizio 30
18k 66,8M 0.9895% 0.0670% visualizzandoli 27
19k 66,8M 0.9899% 0.0707% principlae, 24
20k 66,9M 0.99% 0.0744% validoper 22
25k 67M 0.9916% 0.0930% pormozioni, 15
30k 67,5M 0.9926% 0.1117% avvisandomi 12
∞ 67.5M 1,00% 1,00% – –

Table 4.3: Vocabulary analysis after cleaning.

The need of fixing word typos comes from the wish of reducing the
entropy of the vocabulary. In particular, our goal is also to let the model
learn cleaner patterns. In fact, without spell checking, the architecture
would have to learn also the implicit mapping between the words and their
typos, resulting in an waste of resources.

From the above examples, we can understand that there are two kinds
of typos: the ones that are the result of a character level perturbation and
the ones that come from the elimination of a space between two words, and
each one of them requires a different fixing procedure.

While fixing typos corrections have to be safe, meaning that the spell
checking module has to be able to correct errors and not to change the
meaning of the text by replacing a correct word with another one that is
statistically more frequent in that context. This is crucial, and a way to
control the safeness of a correction has to be integrated in the spell checking
procedure. Unfortunately, safeness comes at a cost. In fact, designing a
policy that avoids false positive means to accept at least some false negative,
but here the assumption is that the last kind is not statistically significant.

Even if spell checking can be seen as a character level sequence model
task [95], is not that clear how to build an appropriate dataset to train that
model on. A way could be to retrieve an huge amount of correct text data
from a reliable source, such as Wikipedia, and to perform artificial typos on
it. The model would be trained to predict the correct sequence from the
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artificially corrupted one. Even if it is an appealing solution, the problem
is that the model would learn to fix artificial typos that the humans never
do, resulting in a probably poor tool. For this reason, we choose to design
a statistical spell checker.

As a first step, we build a vocabulary holding each unique word and
its count. On top of that, we pass each word in the vocabulary through a
function that computes all its possible candidate corrections. This is done
by performing four character level transformations.

Specifically, the procedure starts by generating all the possible splits in
the word:

splits = [

(word[:i], word[i:]) \

for i in range(len(word) + 1)

]

Then, all the possible drops are generated:

deletes = [

L + R[1:] \

for L, R in splits if R

]

And all the possible transposes:

transposes = [

L + R[1] + R[0] + R[2:] \

for L, R in splits if len(R)>1

]

This set is integrated with all the replaces, where each replaced character is
substitute with one of its neighbours in the keyboard :

replaces = [

L + c + R[1:] \

for L, R in splits \

if R for c in self.replacement_dict.get(

R[0],

random.choice(self.letters)

)

]

And at the end, the inserts are generated:

inserts = [

L + c + R \

for L, R in splits for c in self.letters

]
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All the above variations of the original word are then put together into the
candidate set :

candidates = set(

deletes + transposes + replaces + inserts + set(word)

)

The idea behind the spell checker is to extract, for each word in the vocabu-
lary, the word in the candidate set candidates having the higher probability
of not being a typo. For the i-th word in the vocabulary, this probability is
defined in Equation 4.2.

p(voc list[i] is not a typo) =
voc[i]∑V
k=0 voc[k]

. (4.2)

In general, this policy is reasonable. Unfortunately, it would also correct
some words that are not a typo. This is the case of caso that may be paired
with casa, that is the result of a random insert, if casa had higher count
than caso.

To handle these situations, we design an algorithm that wraps the above
mechanism and calls the correction function only in some cases and, even in
those cases, it does not automatically accept the correction.

This is done by providing two thresholds, min count for not mistake
and min count for replacement. The first one is used to check whether or
not a word has to be corrected, in fact tokens with a count that is higher
than min count for not mistake are not passed through the spell checking
function, assuming that very frequent tokens are not a typo. This way the
behaviour explained above is partially avoided.

The second threshold, instead, is used to check whether the correction
proposed by the algorithm is safe or not. This means that, in case the count
of the best candidate is less thanmin count for replacement, the correction
is not accepted because its adoption raises the probability of inserting a false
positive.

Practically, this spell checking procedure is run five times over the vo-
cabulary generated by the cleaning procedure. Each time, the thresholds
are scaled, in order to perform a safe and progressive spell checking. In
particular, the thresholds vary in these sets: [10, 20, 50, 100, 150] for the first
one and [5000, 4000, 4000, 2000, 1000] for the second. The reason why the
first set is made of increasing numbers and the second of decreasing ones
is that at the first iteration it is better to be safe, and so to consider as
mistakes words with less than 10 occurrences, a very safe and pretty much
always true condition. In parallel, it is better to accept as corrections only
the words with more than 5000 occurrences, another very safe condition.

After this first iteration a dictionary of safe corrections is generated,
where the keys are the corrected words and the values are the selected cor-
rections. A new vocabulary based on this dictionary is built, with the words
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in the first part of the dictionary, the keys, that are dropped from the vocab-
ulary and the occurrences of the values that are increased by the occurrences
of the respective word they are correcting, that is the key. This way, by us-
ing a little bit less safe pair of thresholds, the process is performed again
and again in order to catch new typos with statistics that are stronger as
the process goes on.

Another useful spell checking feature is to detect merged words. To
tackle this problem, we adopted the following procedure. All the possible
splits are generated:

possible_splits = [

(word[:i], word[i:]) \

for i in range(len(word) + 1)

]

Then, only the splits where both the words are present into the vocabulary
are retained:

existing_splits = [

split \

for split in possible_splits

if len(self.known([split[0], split[1]])) == 2

]

The mechanism returns the existing split with the higher probability, if
present:

candidate = [

el for el in \

max(existing_splits, key=lambda x:

self.p(x[0]) * self.p(x[1])

)

] \

if len(existing_splits) >= 1 else [word]

]

Again, this is a candidate that is passed to a wrapping script that decides if
the correction has to be performed or not basing on the above thresholds.

The vocabulary, after performing the above procedures, arrives to hold
184k words, that is a reduction of the 19% with respect to the one coming
from the previous step, and for sure can be done something better with a
less conservative and safe set of thresholds. As we can see in Table 4.4 and
Figure 4.6, from 15k words on, the impact on the unknowns is less than the
0.06%.
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Top-k # words Corpus cov Voc cov Sample count
50 30M 0.44% 0.0003% servizio 238k
100 39M 0.56% 0.0005% ci 136k
1k 63M 0.90% 0.0054% bisogna 5.7k
2k 66M 0.95% 0.0108% compresi 1.8k
8k 69M 0.990% 0.0433% impagata 80
10k 69,1M 0.991% 0.0542% napoletano 46
15k 69,3M 0.994% 0.0813% pseudo 20
∞ 69,3M 1,00% 1,00% – –

Table 4.4: Vocabulary analysis after fixing typos.

4.2.3 Abstraction of long sentences

If the procedures described in Sections 4.2.1 and 4.2.2 have the goal of
reducing the entropy of the vocabulary, this section details how to bound
the sequence length.

We do this by abstracting long and repetitive agent scripts, and to this
end we build a dictionary holding long sequences that happen more than
one time.

After this phase, another one is performed with the goal of assigning
to very similar long sequences, called agent scripts, the same token. This
necessity comes from the cases when two sequences differ for few tokens, for
example they use a different greeting format or they do not share the same
subject.

This last proposed procedure essentially merges very similar agent scripts
by considering their n-grams overlap. We check all the n-grams, until the
four-grams, of any pair of extracted sequences and, if the percentage of
common n-grams, until four-grams, is more than 0.33%, qualitatively cross-
validated, we consider the two agent scripts as the same one, and the same
token is assigned to the two different scripts.

The goal of this last step is to ensure that the assignment of agent
scripts tokens to long sequences does not make the vocabulary explode, a
phenomenon that would happen when the dataset is full of very similar long
sequences. In this case basic procedure would add huge number of useless
tokens referring to similar concepts.

Unfortunately, even if this step makes the dataset on average made of
shorter sentences, in fact the mean goes from 10.39 to 8.39, it is only a
first step towards the solution of the long utterances problem. After the
application of this procedure, the maximum length is still 2040, as it is
shown in Figure 4.7, and this is due to the fact that long but not frequent
sequences are not considered by this method.

Indeed, there are two kinds of long sentences: the ones that are present
more than one time and the ones that instead happen a single time. The
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Figure 4.6: The unknown relative percentage per vocabulary size after fixing typos.

method explained in this section handles only the first case, while, regarding
the other case, it is difficult to find out a specific way to manage those kind
of utterances, and for this reason we decided to simply filtering them out,
under the assumption that they can be considered as edge situations that
are not useful for the model to get the final goal. Given that this step is
performed while the dataset is parsed in multi-turn samples, we explain it
in the next section.

4.2.4 Parsing into multi-turn

In the previous sections we considered a dataset of 7, 5M single utterances,
either coming from the agent or from the customer side. To generate a
training set that could be fed to the models presented in Chapter 3, we have
to parse those conversations into multi-turn samples.

How to build a meaningful conversational context is a very open problem.
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Figure 4.7: The bar-plot shows, for each value of sequence length, the number of single
utterances of that length after abstracting long sequences. The mean of the distribution
is 8.39, the variance 11.68, the maximum value 2040. The 25-th percentile is 2, the
50-th 5, the 75-th 10, the 85-th 14, the 90-th 18 and the 95-th is 25.

As said in Chapter 2, there are two cases: in the first one the context is made
of the immediate question while in the other one the context is made of a
set of historically exchanged utterances. The first case is called single-turn
while the last one is named multi-turn.

The longer the context, the more information will be provided to the
agent. While in general more information means better quality, in the case
of Conversational AI it also means an information explosion and this usu-
ally makes the model to be overwhelmed by the information contained in
the context. To face this problem, the community designed attention mech-
anisms ([4] and [62]) to provide the model with a way to handle such a big
amount of information.
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Figure 4.8: Bar-plot of the encoder’s lengths for the 1-turn dataset.

In any case, even with attention, choosing the nature of the conversa-
tional context to be fed to the model is a delicate design choice. It has
implications with the effective size of the model, making actually computa-
tionally infeasible to handle contexts that are too long.

In real use cases, a trade-off between information quantity and length
of the context is usually accepted. In the following experiments we use two
kinds of dataset, one where the context is made of one conversational turn,
called one turn dataset, and another one where the model is fed with two
turns.

The distribution of the lengths of the contexts of the dataset made of one
turn samples is shown in Figure 4.8, with the blue dotted line representing
the mean, 30, and red line being the percentiles. We can notice that the 95-
th percentile is 77 and the maximum length is 2095. This values show how
this distribution presents a very long tail. For this reason, we performed a
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Figure 4.9: Bar-plot of the lengths of the encoder for the 1-turn dataset after filtering
samples with a lenght that is above the 99-th percentile, for each distinct file.

preliminary filtering on the lengths. This filtering procedure considers the
distribution of the lengths at file level.

In fact, for each conversational file in Table 4.1, we computed the per-
centiles of the lengths of the utterances contained in that file and we retained
only the samples for which both the encoder length and the decoder lengths
were below the respective 99-th percentiles. Figure 4.9 shows the context
lengths after this step. The mean of the lengths is 26, 5 and the maximum
value is now 112. The number of samples is reduced from the 1.9M of the
non filtered dataset to the 1.75M of the filtered one, a reduction of 7.7%.

In Figure 4.9 we show the same data distribution of Figure 4.8 with the
only difference that it shows the samples with a length that is below the
99-th percentile. The long tail disappears, while the left part of the figure
is left unchanged.
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Figure 4.10: 3D bar-plot showing the joint length distribution.

We show a nice visualization of this filtered dataset in Figure 4.10. On
the x-axis there is the context length, on the y-axis there is the answer length
and for each pair of question-answer lengths the figure shows the number of
samples that are represented by that pair.

From Figure 4.10 is clear that there are still some outliers. This happens
because filtering the samples basing on the individual percentiles of the files
on one hand drops irregular samples, but on the other hand makes the
situation sparse, given that the percentiles could be different for each file,
and this is the reason why there are the outliers that we can see in Figure
4.10.

Having few samples with an outlier length means forcing the sequence
model, while processing these outlier samples, to use a lot of padding tokens
when batching them together with regularly distributed samples, causing
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Figure 4.11: 3D bar-plot of the training set for 1-turn parsed dataset.

both computational issues and useless computation. To tackle this problem,
after filtering the file level outliers, we compute the global percentiles on the
lengths and we retain a sample only if its lengths, both the context and the
answer ones, are less than the globally computed 99-th percentile.

After this step, we parse this dataset into train and test sets, that show
to be very regular. Figures 4.11 and 4.12 show the joint length distribution
of the one turn parsed train and test sets. Nicely, this last filtering procedure
drops only 35k samples over more than 1.7M .

In conclusion, the one turn parsed dataset contains 1701130 train sam-
ples and 8870 test samples, while the final number of samples for the two
turns dataset are 1492479 for train and 7521 for test.
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Figure 4.12: 3D bar-plot of the test set for 1-turn parsed dataset.



Chapter 5

Model learning and
evaluation

After the data processing steps explained in Chapter 4, in this chapter we
implement a simplified version of the model proposed by Xing et al [108], and
we study how it performs on the real world dataset described in Chapter 4.
This Chapter is both a description of how to practically tackle the develop-
ment of a Conversational AI software and a critical analysis of quantitative
and qualitative metrics.

5.1 Proposed approach

In order to build a generative model able to answer in an human like fashion,
we use the dataset described in Section 4.1 to train a generative model among
the ones of Section 3.2. In particular, we propose a solution similar to the
one proposed by Xing et al. (2017) [108], but with the difference that we
do not use the backward sentence encoder and that our word level attention
is not dependent on the last state of the utterance level encoder, as instead
Xing et al (2017) [108] propose.

We decided to adopt these simplifying choices because we had the ne-
cessity of building a practical but not trivial solution, that could allow to
build a solid baseline for future improvements. We assert that the two mod-
ifications that Xing et al. [108] proposed are not crucial to obtain baseline
results.

We implemented a model that can be used either in training or in infer-
ence mode; we designed an off-training Django based interface to serve the
model in inference mode with the weights loaded from its last train check-
point. This resulting interface makes possible to chat with the software in
an on-line way, and the examples of Section 6 come from an real interaction
with it.

103
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5.1.1 Practical setting

We run the experiments presented in this chapter on a machine with twelve
CPUs and four K80 GPUs, each one having 12MiB of memory and we
implemented the models by using the TensorFlow’s APIs. Having the pos-
sibility of accessing this physical setting was very useful because it allowed
us to experiment and to practically realize the limits of different approaches,
both in terms of memory errors and of saturating resources.

In particular, each cross-validation task consists in a distributed training
job run on the machine itself, where six processes are spawned: two workers,
one master, a parameter server, an evaluator and an inferencer. Both the
master and the workers are assigned to a dedicated GPU machine, while the
parameter server and the inferencer share the last GPU and the evaluator
works in a multi-process fashion on the CPUs.

5.1.2 Implementation details

We adopted Python as the programming language and TensorFlow, version
1.4, as the deep learning library. The reason why we chose Python is that it
is heavily used by the community, and for this reason is the most contributed
and maintained high level wrapper for building deep learning models.

We adopted TensorFlow because of the possibility it gives to modify low
level modules, a very important feature if the goal is building non standard
deep learning architectures. In fact, if in TensorFlow a very basic sequence
to sequence model can be built with not too much lines of code and in Keras,
another deep learning library, very few are enough, a particular architecture,
such as the hierarchical attention mechanism, is much more difficult to be
built in other languages with respect to using TensorFlow. This happens
because TensorFlow represents a good trade-off between the high complexity
of writing deep learning models directly in GPU optimized languages, such
as CUDA, and the too much high level nature of languages such as Keras.

5.1.3 Sequence models in TensorFlow

Sequence to sequence models in TensorFlow are made of two blocks, the
encoder and the decoder. The first one uses tf.nn.dynamic rnn to re-
turn encoder outputs and an encoder state while the second is built with
tf.contrib.seq2seq.dynamic decode that takes as its input a custom object
called tf.contrib.seq2seq.BasicDecoder.

The BasicDecoder component during training is built with the helper
object defined in tf.contrib.seq2seq.TrainingHelper, while in inference it
uses tf.contrib.seq2seq.GreedyEmbeddingHelper. The decoder returns outputs
and final context state, and the outputs are then projected on the classes
space by using an output projection.
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Recurrent models, such as the encoder and the decoder, are defined in
terms of recurrence type and Section 3.2.2 explains how the most used ar-
chitectures work. In addition to the ones reported in Section 3.2.2, recently
research proposed some new algorithms. One nice aspect of using Tensor-
Flow is that these architectures are implemented and made available in the
codebase after few months they are presented. An example is that there
is the possibility of using the regularized version of the LSTM proposed by
Zaremba et al. (2014) [112], implemented in tf.contrib.rnn.BasicLSTMCell.
This is invaluable during cross validation, and its power is shown in Section
6, where we test several different recurrent architectures.

In Tensorflow, sequence models can be run either in training and in in-
ference mode, respecting the architecture depicted in Loung thesis [96] and
described in Figure 3.28 and 3.29. Also, we decided to use TensorFlow itera-
tors, tf.data.Iterator, an efficient way to load data from disk that minimizes
the interaction between Python and Tensorflow optimized primitives, writ-
ten in C++. The iterator is shuffled with a seed equal to the number of
turns in which the data is parsed, in order to ensure reproducibility.

5.1.4 Extending a TensorFlow model

In TensorFlow, the attention mechanism is implemented by wrapping the
decoder cell with an attention wrapper, defined in the dedicated class called
tf.contrib.seq2seq.AttentionWrapper.

This code takes the recurrent cell and an attention mechanism that can
be either tf.contrib.seq2seq.LuongAttention, implementing Loung atten-
tion score function [62], or tf.contrib.seq2seq.BahdanauAttention, imple-
menting instead the Bahdanau attention scoring [4]. Nicely, the complex
implementation staying behind the high level APIs calls briefly mentioned
above is completely hidden to the eyes of the developer, that only has to
call the wrapper with the appropriate parameters.

Given that TensorFlow does not implement such a particular algorithm
as the hierarchical attention wrapper, in order to integrate it into an ex-
isting sequence model we had to dive into the code base, understand the
interfaces, and implement the required wrapper writing a compliant code
that could be pluggable in a working sequence to sequence architecture.
The Tensorflow development and the empirical evaluation of this wrapper,
called Hierarchical Attention Wrapper, is one of the biggest contributions of
this work.

5.1.5 Hierarchical attention

Sequence models empowered with hierarchical attention have a lot of hyper-
parameters. For example, the attention mechanism can be Loung [62] or
Badhanau [4] based. Then there are batch size, dropout, encoder type,
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initialization weights, initialization style, learning rate, maximum gradient
norm, number of layers in the encoder and in the decoder, number of hidden
units, number of epochs, and the optimizer to be used.

Important are also the choices of using or not lazy optimizers, the recur-
rent cell to be adopted, to use or not residual connections, to reverse or not
the source sentence, the decay schema, to either perform sequential or dis-
tributed training, the maximum length of the vocabulary, the length penalty
used with the BLEU score, to use or not pre-trained word embeddings, to
share or not the word embeddings, the sentence attention mechanism, the
number of units in the sentence encoder and the number of elements in the
sentence encoder. Also, it is crucial to define if it is necessary to initialize or
not the first state of the decoder with the last one of the encoder and into
how many turns the input has to be parsed into.

Even if each hyper-parameter is important and determinant for the final
performance, for some of them there are some typical values coming from the
machine translation experiments. The value assigned to other parameters
instead, such as batch size and hidden size, is bounded by the computa-
tional capacity of the machine and a minimum complexity that is necessary
to provide the model with. For this reason we performed cross validation
only for some hyper-parameters, assuming that the values coming from ma-
chine translation are portable also to Conversational AI and leaving their
validation to future work.

Specifically, in Table 5.1 we show some standard values for the typical
hyper-parameters of a hierarchical generative chatbot similar to the one
presented by Xing et al (2017) [108]. With such an architecture, the model
ends up having a number of variables between 18M and 27M .

5.1.6 Lazy adam optimizer

Additionally, the update of the variables is eased by the use of lazy Adam op-
timizer, implemented in TensorFlow in tf.contrib.opt.LazyAdamOptimizer,
a variation of the algorithm presented by Kingma et al (2014) [49] that per-
forms sparse parameter updates.

In fact, the original Adam algorithm maintains two moving-average ac-
cumulators for each trainable variable and the accumulators are updated at
every step. Lazy Adam instead provides lazier handling of gradient updates
for sparse variables. It only updates moving-average accumulators for sparse
variable indices that appear in the current batch, rather than updating the
accumulators for all indices.

Compared with the original Adam optimizer, it can provide large im-
provements in model training throughput for some applications, and future
work requires to experiment if this choice gives an improvement with respect
to the traditional algorithm of Kingma et al (2014) [49]. In fact, it provides
slightly different semantics than the original Adam algorithm, and may lead
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Hyper parameter name Standard value
word attention mechanism Badhanau et al. [4]
sentence attention mechanism Badhanau et al. [4]
dropout 0.2
encoder type bidirectional ( [82] and [4] )
initialization weight 0.1
initialization style variance scaling ( He et al. [35] )
learning rate 0.001
optimizer adam ( Kingma et al.[49] )
maximum gradient norm 10
number of encoder layers 4 bidirectional
number of decoder layers 4 unidirectional
number of units encoder and decoder 256
number of epochs per curriculum step 1
pass encoder hidden state to decoder True
training distributed and asynchronous
vocabulary max length 10k
BLEU length penalty 1.0
share vocabulary False
pre-train embeddings True
sentence encode layers 4
batch size 1-turn 128 (only data parallelism)
batch size 2-turn 42 (only data parallelism)
batch size 3-turn 25 (only data parallelism)
use lazy adam True
residual connections True
reverse source sentence False
number of units sentence encoder 256

Table 5.1: Standard hyper parameters for generative hierarchical attention based chat-
bot.

to different empirical results.

5.2 Learning paradigm

In training a Conversational AI tool, at least one that aims to be able to show
basic natural language understanding skills, the number of design choices are
many. First of all, it is important to define how much context we want to
consider, that is in how many turns we organize the training samples.

Given that this choice determines how much context the model is fed
with, it is crucial. In this scope, we decided to validate two approaches and
to make a comparison between them. The first one is named curriculum
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learning [6], and takes inspiration from the reinforcement learning com-
munity, while the second one is more traditional and adopts an intuition
presented by Vaswani et al (2017) [100].

5.2.1 Curriculum learning

This approach takes inspiration from a peculiar aspect of conversations. In
fact, while the hierarchical structure of dialogues is a property often used
to bias the model architecture, and an example is the algorithm presented
by Xing et al (2017) [108], another property that is usually not exploited is
that conversations can be seen as incremental in their complexity.

In this scope, generative answering can be seen as a task where the
complexity grows as the provided context gets longer, in fact answering to
one turn contextualized question is easier then doing it for two turns, and
curriculum learning is adopted because it is particularly suited to exploit
this property. In fact, it is usually chosen for problems where the agent
starts from simple tasks and abstracts the knowledge to solve more complex
tasks.

Specifically, a Conversational AI model trained with curriculum learn-
ing performs some epochs with one turn samples, then it changes dataset
and uses two turns data for some other epochs, and so on, increasing the
complexity of the training samples. In this setting, we perform cross vali-
dation procedure by taking a pool of configurations and we train them with
datasets that have an incremental complexity.

This approach is promising, but clearly has drawbacks if implemented
in this basic way. In fact, the learning rate has to be set carefully in order
to not support the overall convergence.

In the phase where the model uses one turn parsed training set, the
learning rate is set to lr0 and remains constant for half of the training steps.
Then, it is decayed during the second half of the training steps with staircase
style. When the training with one turn data ends, a second phase starts and
the dataset is changed with one parsed in two turns. The learning rate is
now set to lr0∗0.7 and the decay is the same used in the one turn phase. This
pattern goes on for all the steps of curriculum learning that the developer
wants to implement, and the initial learning rate for each step is computed
as lr0 ∗ 0.7num turns.

One of the contributions of this thesis is the idea of designing such a
learning paradigm that takes into consideration the incremental complexity
of conversations to define a procedure that could help the model to general-
ize better. Also, we believe that through this work we opened a new branch
of research that, if further deepened, could potentially give important im-
provements in the design of generative models.

Figure 5.1 shows the resulting learning rate for a hierarchical attention
model. It can be seen that roughly at 40k steps there is the end of the one
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Figure 5.1: Proposed learning rate decay for curriculum learning training.

Figure 5.2: Evaluation loss for a curriculum learning training computed on 1-turn
dataset.

turn training and the beginning of the second phase, where the model is fed
with two turns parsed samples. As can be seen in Figure 5.1, this second
phase ends at 140k steps, where it is started a third phase using three turns
parsed samples.

The assumption on which we rely in designing the learning rate decay
of Figure 5.1 is that, during the one turn training, the optimization should
arrive to a safe point and then, during the second phase, the optimization
is going to head to a minimum for the two turns function, and it does this
in a better way than in the case in which it started to train in two turns. A
side property would be that the final set of weights will be optimal for both
the one turn and two turns cases. It has to be noticed that, this way, the
function to be optimized slightly changes when a new curriculum learning
phase starts, and for this reason the loss value could fluctuate a bit when
the dataset changes.

Figures 5.2, 5.3 and 5.4 show an example where the training of a hi-
erarchical attention sequence model has been stopped after 20k iterations
of the three turns phase. In particular, in the three figures below, training



Chapter 5. Model learning and evaluation 110

Figure 5.3: Evaluation loss for a curriculum learning training computed on 2-turn
dataset.

Figure 5.4: Evaluation loss for a curriculum learning training computed on 3-turn
dataset.

is performed in an asynchronous way, as explained in Section 5.3.1, with
three workers each one using lazy adam optimizer [49]. The master uses
a constant learning rate of 0.0005 and a constant dataset parsed in three
turns, while the two workers use the decay proposed in Figure 5.1, with a
starting learning rate of 0.001, together with curriculum learning to sup-
port incremental training. Figures 5.2, 5.3 and 5.4 represent the per word
perplexities [101] computed on three different evaluation sets, respectively
containing one turn, two turns and three turns parsed samples.

We can see that, after step 40k, there is a fluctuation where the evalu-
ation perplexity increases, and this happens for each evaluation set. This
happens because at 40k steps starts the second step of curriculum learn-
ing, and a two turns parsed training set is used. The same phenomenon
happens at 140k steps, where the model starts to be fed with three turns
parsed samples. Interestingly, after this fluctuation, the perplexity arrives to
a value that is even better than the one obtained after the previous curricu-
lum learning step. We can also notice that, during the two turns training,
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the phase between 40k and 140k steps, the learning rate decay helps the
model to stabilize and to converge to the optimal value of 2.50, allowing it
to not have high variance and to decrease smoothly.

It is important to point out that, while the master is performing several
epochs with the three turns dataset, the workers perform only one epoch
for each curriculum learning step. In this last point we can see that there
is a great space for research. First of all the workers can be trained for
more than one epoch during each curriculum learning step, secondly the
batch size is an important limitation of this configuration and increasing it
could result in an even more smooth convergence. Another variation could
be to use more than two workers, some of them using the constant learning
rate and others using the proposed decay. Another important choice is the
dataset to be provided to the master: in the above examples it is made of
three turns samples but it can be one turn, two turns, three turns or maybe
also more than three turns. While the hidden size is pretty much in line
with the normal values used for machine translation, that is 256, and for
this reason the complexity could be considered enough, the batch size is way
less than the suggested one, that is 256, and this phenomenon gets worst
and adds variance to the loss as the number of turns increases.

For example, for three turns the adopted batch size is 25, that is small
and does not allow to perform safe updates. Even if this phenomenon is
partially overcome by the learning rate decay, keeping such a low batch size
and maybe going on with new curriculum learning steps with more than
three turns would not result in good performance. For this reason, in the
experiments of this chapter, the models trained with curriculum learning
use at most two turns parsed training data.

5.2.2 Traditional learning

Another contribution that we give is a comparison, presented in Section
6.2.1, between the novel Curriculum learning approach defined in Section
5.2.1, and a second more traditional way of designing the learning paradigm
for generative chatbots, that we call Traditional learning.

This last procedure consists in training a generative conversational model
only with data parsed in a specific number of turns, kept constant during
training. Here stays the first difference with Curriculum learning. In fact,
while the core feature of the curriculum based approach explained in Section
5.2.1 is that the model is trained with a set of datasets with an increasing
complexity, this second more traditional approach proposes to train the
model always with a set of samples parsed in a specific number of turns.

We call this second approach Traditional because it is a combination
of the paradigm with which the community usually trains generative con-
versational models, extended with some intuitions provided by Vaswani et
al 2017, [100]. In fact, we decided to adopt the learning rate decay that
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Figure 5.5: Noam decay from Vaswani et al (2017) [100] .

Vaswani et al 2017, [100] used to train the Transformer.

A contribution of this work is the idea of combining the traditional ap-
proach used to train generative conversational models with the learning rate
decay proposed by Vaswani et al 2017, [100].

The nice property of this innovative learning rate decay, shown in Figure
5.5, is that the learning rate is not fixed during the initial steps, as curricu-
lum learning instead suggests. This property is important, in fact the initial
value of the learning rate in each stage of curriculum learning phase is a
crucial choice to be validated.

This learning rate decay is defined by equation 5.1 and shown in Figure
5.5:

lr(step) = d−0.5model ∗min(step−0.5, step ∗ warmup−1.5). (5.1)

As we can see in the decay function plotted in Figure 5.5, the learning
rate starts from zero and increase linearly for warmup steps. Then it de-
creases exponentially. The choice of the warmup steps is important, in fact
it determines the maximum value for learning rate, how smoothly the value
reaches zero and the average value of the exponential part. For this reason,
it useful to cross validated it.

This decay is interesting because it allows the model to learn smoothly
in the first phase. The nice property here is that in the first part of learning
the function returns smaller and progressively increasing values, allowing to
perform safe updates.



113 5.3. Training procedure

5.3 Training procedure

In order to implement train algorithms like the one presented in Section
5.2, there are several training procedures that can be adopted. First of all,
usually a lot of parameters are necessary to provide the model enough com-
plexity to learn the final task. Due to the inner entropy of Conversational
AI, this number is usually even bigger than in other applications. The huge
number of parameters that the model has to learn makes the training proce-
dure mainly made of very big matrix multiplications and performing those
operations on the CPUs results in a very slow training. For this reason, the
common approach is to equip a machine with several GPUs to exploit their
ability of performing quick matrix multiplications.

Training can be performed sequentially or in a distributed fashion, and
in some cases also training without parallelism is not a big deal. In other
situations, in which the training speed is crucial and there are strict time
constraints, it is necessary to adopt more complex techniques to speed up the
whole procedure. The answer to this need is usually Distributed TensorFlow,
a package implemented with the goal of providing the developers with APIs
to control and implement the distributed training of a deep learning model.

A model is usually defined from the data fetching to the definition of
the loss function and when its training graph is executed, it is compiled
and issued to the run time optimizer, that can run in either sequential or
distributed mode. Sequential training is the solution that is usually chosen.
In this setting, the static graph is taken and provided to a process that
has the role of entering into a training loop and of running the forward
and backward pass for each training batch. The evaluation and inference
procedures are performed periodically in the main thread after a predefined
number of steps. During these evaluation tasks the training is suspended.
The process ends when the epochs are finished or if a termination condition
triggers. After this, the final weights are returned.

Unsupervised feature learning and deep learning have shown that being
able to train large models on vast amount of data can drastically improve
model performance. However, training a deep network with millions, or
even billions of parameters can result in a problem. How do the developer
achieve this without waiting for days, or even multiple weeks ? Dean et al.
[24] propose a different training paradigm which allows to train and serve
a model on multiple physical machines. The authors propose two novel
methodologies to accomplish this, namely, model parallelism and data par-
allelism. Given that, on average, generative Conversational AI models have
an order of 20M parameters, to reduce the training time the experiments
of this chapter are run in distributed settings, in particular exploiting data
parallelism.

In model parallelism, a single graph is distributed across multiple ma-
chines. The performance benefits of distributing a deep network across mul-
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Figure 5.6: Synchronizing perceptron computation. Figure coming from [37]

tiple machines mainly depends on the structure of the model. Models with a
large number of parameters typically benefit from accessing more CPU cores
and memory, thus, parallelizing a large model usually produces a significant
performance increase, and thereby reduces the training time.

There is a famous example to illustrate this concept more clearly. Imag-
ine having a perceptron, as depicted in Figure 5.6. In order to parallelize
this efficiently, a neural network has to be considered as a dependency graph
where the goal is to minimize the number of synchronization mechanisms. A
synchronization mechanism is only required when a node has more than one
variable dependency, that is a dependency which can change in time. For
example, a bias would be a static dependency, because the value of a bias
remains constant over time. In the case for the perceptron shown in Figure
5.6, the only synchronization mechanism which should be implemented re-
sides in output neuron, in fact y = σ(

∑
iwixi). In Figure 5.6, a perceptron

is partitioned by using the model parallelism paradigm. In this approach
every input node is responsible for accepting the input xi from some source,
and multiplying the input with the associated weight wi. After the multipli-
cation, the result is sent to the node which is responsible for computing y.
This node requires a synchronization mechanism to ensure that the result
is consistent. The synchronization mechanism does this by waiting for the
results y depends on.

In TensorFlow, model parallelism is achieved through the so called De-
vice Wrappers, that allow the developer to physically send a part of the
graph to specific machine, or to specify that some operations have to be
performed on specific physical machines. Once these wrappers are placed,
the framework takes care of how to synchronize the whole computation. For
example, in the experiments that we present in this chapter, device wrap-
pers are used to specify that the word embedding lookup and in general the
embedding operations are performed on the CPU.

Data parallelism is an inherently different methodology of optimizing
parameters. The general idea is to reduce the training time by having n
workers optimizing a central model by processing n different shards of the
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Figure 5.7: In this methodology n workers are spawned, not necessarily on different
machines, and a data shard of the dataset is assigned to every worker. Using this data
shard, a worker i will iterate through all mini-batches to produce a gradient, ∇fi(x) for
every mini-batch x. Next, ∇fi(x) is sent to the parameter server, which will incorperate
the gradient using an update mechanism. Figure coming from [37].

dataset in parallel. In this setting n model replicas are distributed over n
processing nodes, that is every node, or process, holds one model replica.
Then, the workers train their local replica using the assigned data shard.
However, it is possible to coordinate the workers in such a way that, to-
gether, they will optimize a single objective. There are several approaches
to achieve this. Nevertheless, a popular approach to optimize this objective
is to employ a centralized parameter server, that is responsible for the aggre-
gation of model updates and the parameter requests coming from different
workers. The distributed learning process starts by partitioning a dataset
into n shards, each one assigned to a particular worker. Next, a worker will
sample mini-batches from its shard in order to train the local model replica.
After every mini-batch, or multiple mini-batches, the workers communicate
a variable to the parameter server. This variable is, in most implementa-
tions, the gradient ∇fi(x). Finally, the parameter server will integrate this
variable by applying a specific update procedure. This process repeats it-
self until all workers have sampled all mini-batches from their shard. This
high-level description is summarized in Figure 5.7.

5.3.1 Approaches for distributed training

Parallelizing gradient updates is not an intuitive task since gradient descent
is an inherently sequential algorithm where every data point provides a
direction to a minimum. However, training a model with a lot of parameters
while using a very large dataset, will result in a high training time. To reduce
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Figure 5.8: In a synchronous data parallel setting, there are n workers, not necessarily on
different machines. At the start of the training procedure, every worker fetches the most
recent center variable. Next, every worker will start their training procedure. After the
computation of the gradient, a worker commits the computed information, gradient or
parametrization, depending on the algorithm, to the parameter server. However, some
workers might induce a significant delay, which results in other workers to be taskless
while still consuming the same memory resources. [37]

the training time, the obvious choice would be to buy better, or rather, more
suitable hardware, for example GPUs, but this is not always possible. For
this reason, several attempts have been made to parallelize gradient descent.

There are two distinct approaches towards solving data parallelism and
the most intuitive is synchronous data parallelism. In synchronous data
parallelism, as depicted in Figure 5.8, all workers compute their gradients
based on the same center variable. This means that, whenever a worker is
done computing a gradient for the current batch, it will commit a parameter
to the parameter server. However, before incorporating this information into
the center variable, the parameter server stores all the information until
all workers have committed their work. After this, the parameter server
will apply a specific update mechanism to incorporate the commits. In
essence, one can see synchronous data parallelism as a way to parallelize
the computation of a mini-batch. Intuitively, workers might commit their
results with a certain delay. Depending on the system load, this delay can
be quite significant. As a result, a synchronous data parallel method is only
as strong, as the weakest worker in the cluster.

In order to overcome the significant delays induced by loaded workers in
synchronous data parallelism, and thereby decrease the training time even
further, the idea of asynchronous parallel training is to remove the syn-
chronization constraint. However, this imposes several other effects. The
first, is parameter staleness. Parameter staleness is the number of com-
mits other workers performed between the last pull, and the last commit,
the parameter update, of the current worker. Intuitively, this implies that
a worker is updating a newer model using gradients based on a previous
parametrization of that model. This is shown in Figure 5.9. The other,
less intuitive side-effect is asynchrony induced momentum [67]. This means
that adding more workers to the problem also adds more implicit momen-
tum to the optimization process. This implicit momentum is the result of
the queuing model required by asynchrony. Note that some approaches,
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Figure 5.9: In asynchronous data parallelism, training time is on average reduced due to
the removal of the synchronization mechanism in synchronous data parallelism. How-
ever, this induces several effects such as parameter staleness, and asynchrony induced
momentum. [37]

such as Hogwild! [75], do not require locking mechanisms, since they as-
sume sparse gradient updates. Also, Mitliagkas et al [67], said that adding
more asynchronous workers to the problem actually deteriorates the statis-
tical performance when using algorithms which do not take staleness and
asynchrony into account.

5.4 Evaluation metrics

How to evaluate a response generation model is still an very open prob-
lem. A deep study about this has been performed by Liu et al in 2017 in
their“How to not evaluate your dialogue system: An empirical study of unsu-
pervised evaluation metrics for dialogue response generation.” [59]. Usually,
generative response generation models adopt metrics from machine transla-
tion to compare the answer of the model with the target response. In their
work, Liu et al [59] showed how these metrics correlate very weakly with
human judgement in the non-technical Twitter domain and not at all in the
technical Ubuntu domain.

Practically, evaluation in dialogue models is done by using human gen-
erated supervised signals such as task completion or user satisfaction score.
These kind of models are called supervised dialogue models while the others
are called unsupervised dialogue models. In their work, Liu et al [59] only
consider the second kind of models. In the last years the unsupervised ones
received an increasing attention, and this is due to the fact that being train-
able end-to-end (Serban et al 2016 [86], Sordoni et al 2015 [92], Vinyals et al
2015 [101]) there is not the need to collect supervised labels, which can be
prohibitively expensive. However, evaluating these models remains an open
question.

Faced with similar challenges, other natural language tasks have success-
fully developed automatic evaluation metrics. For example BLEU (Papineni
et al 2002a [71]) and METEOR (Banerjee et al 2005 [5]) are now standard
for machine translation while ROUGE (Lin 2004) [56] is used for text sum-
marization. The automatic evaluation metrics can be divided into two cate-
gories: the word-overlap based, such as BLEU, ROUGE and METEOR, and



Chapter 5. Model learning and evaluation 118

Figure 5.10: Example showing the intrinsic diversity of valid responses in a dialogue.
The reasonable model response would receive a BLEU score of 0. Figure coming Liu et
al 2017,“How to not evaluate your dialogue system: An empirical study of unsupervised
evaluation metrics for dialogue response generation.” [59].

the word embedding based, that are based on word embedding models such
as Word2Vec (Mikolov et al 2013 [64]). In their paper Liu et al [59] show
that all metrics show either weak or no correlation with human judgements,
despite the fact that word overlap metrics have been used extensively in the
literature for evaluating dialogue systems (above and Lasguido et al 2014
[70]). An example is shown in Figure 5.10.

In this scope, Ritter et al 2011 [77] formulate the unsupervised learning
problem as one of translating a context into a candidate response and they
used Statistical Machine Translation (SMT) to generate the responses to
various contexts using Twitter data and showed that their model outper-
formed information retrieval baselines according to both BLEU and human
evaluations. However, these metrics assume that valid responses have sig-
nificant word overlap with the ground truth responses, and this is a very
strong assumption for dialogue systems, where there is a significant diver-
sity in the space of valid responses to a given context. Sordoni et al 2015 [92]
extended this idea using recurrent language models to generate responses in
a context-sensitive manner. They evaluated their models by using BLEU
and they produced multiple ground truth responses by retrieving a set of
responses from elsewhere in the corpus, using a bag of word model. Li et al
2015 [53] evaluate their diversity-promoting objective function with BLEU
using a single ground truth response. Galley et al 2015b [30], proposed a
modified version called DeltaBLEU, which takes into account several hu-
man evaluated ground truth responses and that is shown to be weakly to
moderate correlated to human judgement using Twitter dialogues.

Unfortunately, such human annotation is infeasible to be obtained in
practice. Several works evaluate how well automatic metrics correlate with
human judgements in both machine translation (Callison-Burch et al 2010
[14], Callison-Burch et al 2011 [15], Graham et al 2015 [33], Bojar et al 2014
[9]) and natural language generation (Stent et al 2005 [94], Cahill et al 2009
[13], Reiter et al 2009 [76], Espinosa et al 2010 [26]). There have been also
works criticizing the use of BLEU for machine translation (Callison-Burch
et al 2006 [16]).
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While many of these criticisms apply to dialogue generation, in their
paper of 2017 Liu et al [59] noticed that generating dialogue responses con-
ditioned on the conversational context is in fact a more difficult problem,
and this is due to the fact that the set of possible correct answers to a con-
text is very large. The main point here is that dialogue response generation
given solely the context has intuitively a higher entropy than translation
given text in source language.

5.4.1 Word overlap based metrics

Considering metrics that evaluate the word overlap between the proposed
response and the ground truth response, the most interesting are BLEU,
ROUGE and METEOR. In this section we will denote the ground truth
response as r while the proposed response is identified as r̂. The j-th token
in the ground truth response is wj while ŵj is the j-th of the proposed
response.

BLEU (Papineni et al 2002a [71]) analyzes the co-occurrences of n-grams
in the ground truth and the proposed responses. It first computes an n-gram
precision for the whole dataset that, with a single candidate ground truth
response, is computed as:

Pn(r, r̂) =

∑
k min(h(k, r), h(k, r̂))∑

k h(k, r)
, (5.2)

where k indexes all possible n-grams of length n and h(k, r) is the number of
n-grams equal to k in r. To avoid the drawbacks of using a precision score
that favours shorter candidate sentences, the authors introduce a brevity
penalty. The most common value of n is usually 4. BLEU-n is then defined
this way:

BLEU n = b(r, r̂) exp(

N∑
n=1

βn log(Pn(r, r̂))), (5.3)

where βn is an uniform weighting and b(.) is a brevity penalty.

METEOR metric (Banerjee et al 2005, [5]) creates an explicit alignment
between the candidate and target responses. The alignment is based on
exact token matching, followed by WordNet synonyms, stemmed tokens and
then paraphrases. Given a set of alignments, the METEOR score is the
harmonic mean of precision and recall between the proposed and ground
truth sentence.

ROUGE (Lin 2004, [56]) is a set of evaluation metrics used for automatic
summarization. The most interesting version is the ROUGE-L, which is a
F-measure based on the Longest Common Subsequence (LCS) between a
candidate and target sentence. The LCS is a set of words which occur in
two sentences in the same order. However, unlike n-grams the words do not
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have to be contiguous, that is there can be other words in between the words
of the LCS.

Following Vinyals and Le 2015 [101], perplexity, Equation 5.4, is usu-
ally exploited as the typical model dependent evaluation metric for Conver-
sational AI and it measures how well a model predicts human responses.
Lower perplexity generally indicates better generation performance.

PPL = exp{− 1

N

N∑
i=1

log(p(Yi|Ui))}. (5.4)

5.4.2 Embedding based metrics

An alternative to using word overlap based metrics is to consider the mean-
ing of each word as defined by a word embedding. Methods such as Word2Vec
(Mikolov et al 2013 [64]) calculate these embeddings using distributional se-
mantics and word vectors are then aggregated in sentence vectors with some
heuristic. To compare the ground truth r and the retrieved response r̂, it is
used the cosine similarity between their sentence level embeddings:

EA = cos(eavgr , eavgr̂ ). (5.5)

Embedding based metrics focus at extracting a sentence vector for both
the candidate and the target sequence of words and then to compare these
sentence vectors by using a similarity metric, for example the cosine simi-
larity. There are several methods to aggregate word vectors into a sentence
vector. An example are Embedding average and Embedding vector extrema.

Embedding average computes the sentence vector by using an additive
composition, a method for computing the meanings of phrases by averaging
the vector representations of their constituent words (Foltz et al 1998 [28],
Laudauer et al 1997 [51], Mitchell et al 2008 [66]). This method has been
widely used in other domains, for example in textual similarity tasks (Weit-
ing et al 2015 [104]). The embedding average eavg is defined as the mean of
the word embeddings of each token in a sentence r:

eavgr =

∑
w∈r ew

|
∑

w′∈r ew′ |
. (5.6)

Another way to calculate sentence level embeddings is using vector ex-
trema (Forgues et al 2014 [29]). For each dimension of the word vectors, it
takes the most extreme value among all the word vectors in the sequence,
and uses that value in sentence-level embedding:

emaxrd =

{
maxw∈r ewd if ewd > |minw′∈rew′d|
minw∈r ewd otherwise

(5.7)
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Figure 5.11: Correlation between each metric and human judgement for each response.
Correlations for the human row result from randomly dividing human judges into two
groups. Figure coming Liu et al 2017,“How to not evaluate your dialogue system: An
empirical study of unsupervised evaluation metrics for dialogue response generation.”
[59].

where d indexes the dimension of a vector and ewd is the d-th dimension of
ew.

Intuitively, this approach prioritizes informative words over common
ones; words that appear in similar contexts will be close together in the
vector space. Thus, common words are pulled towards the origin because
they occur in various contexts, while words carrying important semantic in-
formation will lie further away. By taking the extrema along each dimension,
it is thus more likely to ignore common words.

Greedy matching is the one embedding-based metric that does not com-
pute sentence level embedding. Instead, given two sequences r and r̂, each
token w ∈ r is greedily matched with a token ŵ ∈ r̂ based on the cosine sim-
ilarity of their word embeddings (ew), and the total score is then averaged
across all words:

G(r, r̂) =

∑
w∈r maxŵ∈r̂ cos sim(ew, ew′)

|r|
, (5.8)

GM(r, r̂) =
G(r, r̂) ∗G(r̂, r)

2
. (5.9)

This approach was initially implemented in intelligent tutoring systems (Rus
et al 2012 [79]).

5.4.3 Comparison between word overlap and word embed-
ding metrics

Liu et al 2017 [59] also proposed an interesting correlation analysis, in which
they showed how much the current metrics are related to the human judge-
ment. An example can be found in picture 5.11. They also tried to calculate
BLEU score after removing stopwords and punctuation from the responses,
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Figure 5.12: Correlation between BLEU metric and human judgement after removing
stopwords and puctuation for the Twitter dateset. Figure coming Liu et al 2017,“How
to not evaluate your dialogue system: An empirical study of unsupervised evaluation
metrics for dialogue response generation.” [59].

Figure 5.13: Scatter plots showing the correlation between metrics and human judge-
ments on the Twitter corpus (on the top) and on the Ubuntu Dialogue Corpus (on
the bottom). The plots representBLEU-2 (left), embedding average(center) and cor-
relation between two randomly selected halves of human responsents(right). Figure
coming Liu et al 2017,“How to not evaluate your dialogue system: An empirical study
of unsupervised evaluation metrics for dialogue response generation.” [59].

Figure 5.12, finding that this weakens the correlation with human judge-
ments from BLEU-2 compared with the ones of Figure 5.11.

As it is showed in the picture 5.13, there is a very weak correlation and
in both cases the metric seems to be random noise.

In conclusion, results on the proposed embedding metrics are shown in
Figure 5.14. For retrieval models, the Dual encoder model described in
Section 3.2.3 clearly outperforms both TFIDF baselines on all the metrics.

On the other hand HRED [86], representing the equivalent of the one
described in Section 3.2.8 without attention, significantly outperforms the
LSTM generative model, an architecture that encodes the concatenated con-
text.

Considering BLEU-4 score, where 4 is the maximum order n of n-grams
taken into consideration by the metric, few words have to be said in order
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Figure 5.14: Metrics evaluated using the vector-based evaluation metrics, with 95%
confidence intervals. Figure coming Liu et al 2017,“How to not evaluate your dialogue
system: An empirical study of unsupervised evaluation metrics for dialogue response
generation.” [59].

to interpret its results. In fact, its values are very difficult to be read in the
Conversational AI scope. This happens because, as the maximum order of
n-grams increases, the probability for the BLEU-n score of being zero, and
consequently of loosing any information, grows. This happens because the
rareness of n-grams grows as n increases, and for, in the case of n = 4, it is
very likely that the prediction does not have any 4-grams in common with
the ground truth sample. As a result, for values of n bigger than 3, it is very
likely to not have common n-grams between the predicted and the ground
answer, causing the n-th precision to be equal to zero.

Given that the whole BLEU-n score is defined as the weighted sum of the
logarithm of the precisions, it is enough to have the input to one logarithm
equal to zero to add a −∞ term in the sum, that squashes the whole sum
to −∞, no matter which are the values of the other precisions. This is the
reason why a lot of computed BLEU-n scores, with n > 3, are zero. In these
cases, the BLEU-n score is not able to provide an informative content about
the prediction.

Variants of BLEU also use sentence-level smoothing (Chen et al (2014)
[17]) to fix this issue, a method to ensure that geometric mean never gets to
zero. In order to provide a baseline set of results, this work considers plain
BLEU-4, without smoothing.

In conclusion, the depicted picture seem to be quite confusing. The
metrics do not correlate with human judgement but picture 5.14 shows that
these metrics differentiate models of different quality. The point here is that,
even if the metrics show to have some meaning, this meaning is not related
with what is important for a dialogue system, and for this reason it is not
safe to take them as indicators for ranking models.

The analysis of Liu et al 2017 [59] only considers unconstrained domain,
that is an open domain. Other dialogue settings, such as close domain ap-
plications, could potentially find stronger correlation with the BLEU metric
for their lower diversity.

Liu et al 2017 [59] also asserted that, despite the poor performance the
word embedding-based metrics had in their survey, they believe that met-
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rics based on distributed sentence representations hold the most promise for
the future. This happens because word-overlap metrics requires too many
ground-truth responses to be meaningful, due to the high diversity of di-
alogue responses. The bad performance of the embedding based metrics
could potentially be related to the fact that deterministic aggregation algo-
rithms are not enough complex for modelling sentence level compositionality
in dialogue.
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Results

As a contribute to the Conversational AI community, this thesis aims at
presenting a structured evaluation of the results that different model archi-
tectures obtain on the dataset presented in Table 4.1, that is interesting
because it comes from real world and it is pretty complex for its entropy.

In particular, both model dependent metrics, such as perplexity [101], de-
fined in equation 5.4, and model independent metrics, such as ROUGE [56],
BLEU [71] and accuracy, are used to asses the supremacy of an approach
with respect to another. These quantitative metrics are then used to drive
a cross validation procedure, with the goal of finding the best performing
model.

In particular, two approaches are compared, one based on curriculum
learning, explained in Section 5.2.1, and the other one exploiting traditional
learning, Section 5.2.2. At the end, the best model is evaluated through a
qualitative analysis. Each evaluated model is trained in an asynchronous
distributed way exploiting data parallelism. In each Figure of this Chapter
on the y-axis we plot the metric specified in the caption with respect to the
number of training steps (x-axis).

6.1 Curriculum learning quantitative analysis

In this scope, a particular kind of data parallelism is exploited: each one of
the workers retains a pointer to a specific dataset among the ones previously
generated, and asynchronously sends updates to the parameter server basing
on its dataset.

Interestingly, data parallelism here becomes turn parallelism. Further-
more, in order to support curriculum learning, the workers adopt the learn-
ing rate decay described in Section 5.2.1, while the master takes lr0, the
initial learning rate of the initial decay used by the workers, and adopts a
constant learning rate equal to lr0 ∗ 0.7.

It can be seen how much complex is the parameter update: gradients
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are sparse, asynchronous and come from different optimization tasks. The
assumption here is that such a complex model as the hierarchical attention
can be trained in this very particular setting and that curriculum learn-
ing, together with the learning rate decay of Section 5.2.1, helps to reach
convergence.

Practically, a first set of models is trained in a cluster where the master
uses a two turns dataset and the workers perform two epochs of curriculum
learning, one on one turn parsed train samples, the other on the two turns
training set. This set of models is composed of four variations, each one
sharing the configuration of Table 5.1 and using a different value of the
recurrent cell:

• NAS: Implemented in tf.contrib.rnn.NASCell, described in Zoph et
al (2016) [114], represented in the plots by the blue line.

• LSTM: Implemented in tf.contrib.rnn.BasicLSTMCell, described
in Zaremba et al (2014) [112], represented in the plots by the pink
line.

• GRU: Implemented in tf.contrib.rnn.GRUCell, described in [19].
and [84], represented in the plots by the red line.

• UGRNN: Implemented in tf.contrib.rnn.UGRNNCell and described
in [22], represented in the plots by the light blue line.

In particular, in this section each plot shows the trends of several evalua-
tion metrics, referring each validated model with a line of a different colour,
light blue for UGRNN [22], red for GRU [84], blue for NAS [114] and dark
pink for LSTM [112]. This analysis considers both model dependent and
model independent metrics and its goal is to show which is the best recurrent
cell to be used in the curriculum learning setting.

In Figure 6.1, 6.2 and 6.3 we present the perplexities, computed with
Equation 5.4, that each different model obtains on three evaluation sets,
respectively made of samples parsed in one turn, two turns and three turns.

By inspecting the evaluation perplexities, it is pretty clear that there are
two sets of models. The first, composed by UGRNN cell [22] and GRU cell
[84], is outperformed by the second, made of LSTM cell [112] and NAS cell
[114]. In particular, among the best performing set, the second model based
on the LSTM cell shows less variance in the results, and for this reason is
selected as the best one with respect to model dependent metrics.

In addition, there is a clear trend that each plot presents. The perplexity
drops down very fast for 40k steps, then it grows for some time to decrease
slowly. This is caused by the fact that at 40k steps it starts the second step
of curriculum learning and the dataset changes from the one parsed in one
turn to the one in two turns.
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Figure 6.1: Perplexities obtained by the models trained with curriculum learning on the
1-turn evaluation set. The Blue line represents the NAS based model, Light blue the
UGRNN based one, red the GRU based one, and pink the LSTM based one.

Figure 6.2: Perplexities obtained by the models trained with curriculum learning on the
2-turns evaluation set. Blue NAS based model, Light blue UGRNN, red GRU, pink
LSTM.

Figure 6.3: Perplexities obtained by the models trained with curriculum learning on the
3-turns evaluation set. Blue NAS based model, Light blue UGRNN, red GRU, pink
LSTM.

Another interesting behaviour is that, if during the first step of cur-
riculum learning the three cells do not show that big difference in terms of
performance, the second step instead amplifies a lot the difference. In fact,
the gap between the first and the second set of models is roughly 0.3 in the
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first step and 0.5 in the second. This observation shows that this learning
procedure could potentially help the developer in performing cross valida-
tion. An intuition that could explain why the performance changes that
much in the second curriculum learning phase could be in the strong per-
turbation caused by the dataset switch. In fact, the goal of the optimization
changes and the model is asked to adapt to this phenomenon, that means
figuring out how to move from a set of weights that were optimal for the
previous curriculum learning step, to a new set of weights, optimal for the
new learning objective. In this order of ideas, the just noticed difference in
the performance could be due to the fact that some recurrent cells are more
suited to adapt to such hard perturbations than others. In particular, it is
clear that LSTM [112] is the best model with respect to model dependent
metrics in terms of its adaptation capability. In fact it is the best performing
model in roughly all the curriculum learning steps, it adapts very quickly
to the dataset switch and also shows less variance with respect to the other
best performing model, that is NAS [114]. In addition, the initial learning
rate used in the beginning of the staircase decay of Figure 5.1 could be too
high to support such a complex learning algorithm.

Interesting could also be to study how increasing the number of epochs
for each curriculum learning step changes the overall performance of the
model. On one side, using too many epochs could bring to values of the
weights that are too much over-fitted for the current dataset, and this can
make very hard for the next curriculum learning step to converge. On the
contrary instead, it could happen that using several epochs brings to better
and more stable solutions.

Another parameter that is interesting to tune is the batch size. In these
experiments it is used a value of 128, the maximum allowed to make a model
fit in a single K80 GPU. More complex architectures, combining model par-
allelism with data parallelism, could allow to use higher batch size and so to
perform safer updates with less variance. Again, here is clear how this work
wants to be a first head into this world, presenting a baseline architecture
both in terms of model complexity, it does not use backward sentence level
encoder and the algorithm does not adopt the dependence of the word level
encoder to the sentence one, and in terms of training complexity, mean-
ing that only data parallelism is adopted while a combination with model
parallelism could bring to better solutions.

The best obtained perplexity is 2.53 on the one turn, 2.61 on the two
turns and 2.63 on the three turns evaluation dataset. An interesting aspect
to be pointed out is that the three evaluation plots referring to model de-
pendent metrics show exactly the same trend even if they refer to datasets
with an increasing complexity.
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Figure 6.4: Accuracy obtained by the evaluated models on the 1-turn evaluation set.
Blue NAS based model, Light blue UGRNN, red GRU, pink LSTM.

6.1.1 Model independent metrics

While in the previous section was explained how model dependent metrics
give an informative signal about the quality of the model, in this section we
show how independent measures are not very useful during the evaluation
phase of curriculum learning based algorithms, demonstrating the thesis of
Liu et al (2016) [59].

In particular, the models are evaluated through the analysis of the trends
of three external metrics: sentence level accuracy, ROUGE [56] and BLEU-4
[71] and the assessment of the word-embedding based ones are left to future
work. Section 7 shows, from an high level, how to build this new kind of
evaluation module.

Considering sentence level accuracy, Figure 6.4 shows, with the same
colours explained above, the accuracy obtained on the first evaluation set
by the four models. From this Figure we can see how much noisy are the
performances and how they do not show any trend. This happens because
accuracy is computed sentence level, meaning that if the target sequence is
(w0, w1, w2, w3) and the model generates (w100, w0, w1, w2, w3), the accuracy
is zero because the first token w100 makes the two sequences two different
labels. From the smoothed version of Figure 6.5 is pretty clear how this
metric pretty much useless, demonstrating the thesis of Liu et al (2016)
[59].

Again, plot 6.6 shows how the ROUGE metric is uncorrelated with the
model strength in handling conversations. In fact it stays constant on four
ROUGE points. Differently with accuracy, it shows a little drop at 40k
steps, the end of the first curriculum learning phase, demonstrating that
it suffers a bit of the dataset switch. Unfortunately, after that moment it
returns quickly to the previous value and stays there constantly.

For these above reasons, this metric can be considered a little bit more
correlated with the model behaviour with respect to accuracy. However,
given that it does not show any increasing or decreasing trend and remains
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Figure 6.5: Smoothed accuracy obtained by the evaluated models on the 1-turn evalu-
ation set. Blue NAS based model, Light blue UGRNN, red GRU, pink LSTM.

Figure 6.6: Rouge scores obtained by the evaluated models on the 1-turn evaluation
set. Blue NAS based model, Light blue UGRNN, red GRU, pink LSTM.

Figure 6.7: Smoothed rouge scores obtained by the evaluated models on the 1-turn
evaluation set. Blue NAS based model, Light blue UGRNN, red GRU, pink LSTM.

constant exception made for step 40k, also this metric is considered not
informative to discriminate the model capacity. This demonstrates again
the thesis of Liu et al (2016) [59].

A quite different situation happens for BLEU-4 [71]. In Figure 6.8, 6.10
and 6.12 we show the not smoothed BLEU-4 trends, and it can be seen that
they are very noisy. To clarify these patterns, we show in Figures 6.9, 6.11
and 6.13 the smoothed plots, where it is possible to better notice the high
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Figure 6.8: BLEU-4 [71] scores obtained by the evaluated models on the 1-turn evalu-
ation set. Blue NAS based model, Light blue UGRNN, red GRU, pink LSTM.

Figure 6.9: Smoothed BLEU-4 [71] scores obtained by the evaluated models on the 1-
turn evaluation set. Blue NAS based model, Light blue UGRNN, red GRU, pink LSTM.

level patterns.

First of all, in Figures 6.8 and 6.9 can not be noticed any clear increasing
trend. The performance always remains lower than one BLEU-4 point and
increases during the first curriculum learning step, that finishes at 40k. After
that, when the dataset changes, it starts a long decreasing curve which
finishes roughly at 120k steps, where it starts increasing again resuming
the trend it left after the first curriculum learning step. This very weak
trend can be interpreted by saying that during the first steps the model
is optimizing by using a dataset parsed as the evaluation set, and so the
evaluation BLEU-4 increases. In the second step instead, it is fooled by the
change of dataset and it takes a lot to converge to a better solution. In this
last example can be seen how much difficult is to train a model with this
new learning procedure.

A weak correlation with model independent metrics is instead shown in
Figure 6.10 and 6.11, presenting the BLEU-4 points obtained on the two
turns parsed evaluation set. These last two figures show again an increase
in the first curriculum learning step but, differently with the previous plots,
it can be noticed a clear increasing trend for some recurrent cells during
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Figure 6.10: BLEU-4 [71] scores obtained by the evaluated models on the 2-turns
evaluation set. Blue NAS based model, Light blue UGRNN, red GRU, pink LSTM.

Figure 6.11: Smothed BLEU-4 [71] scores obtained by the evaluated models on the
2-turns evaluation set. Blue NAS based model, Light blue UGRNN, red GRU, pink
LSTM.

the second curriculum step, and this is intuitive given that now the model
is optimizing by using a dataset that is parsed in the same way of the
evaluation set.

We can notice how the LSTM cell [112] clearly outperforms UGRNN
[22], GRU [84] and NAS [114], that seem to show the same, but weaker,
increasing trend. We can find an even nicer pattern in Figures 6.12 and 6.13.
Here the BLEU-4 score is computed on a three turns parsed evaluation set
and the ramp is even clearer. However, this is counter intuitive given that
the model now is never optimized by using the three turns dataset. In fact,
it is using one turn parsed samples in the first step and two turns data in
the second step.

As it could be noticed in two turns evaluation, also in three turns valida-
tion the LSTM clearly outperforms the other three recurrent cells showing
a cleaner trend.

A difference between the figures of model dependent and model indepen-
dent metrics is that, while the first ones show an equivalent performance for
both NAS and LSTM based models, from an analysis of model independent
metrics it is clear that with the LSTM cell the model performs better.
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Figure 6.12: BLEU-4 [71] scores obtained by the evaluated models on the three turns
evaluation set. Blue NAS based model, Light blue UGRNN, red GRU, pink LSTM.

Figure 6.13: Smoothed BLEU-4 [71] obtained by the evaluated models on the 3-turns
evaluation set. Blue NAS based model, Light blue UGRNN, red GRU, pink LSTM.

If ROUGE [56] and accuracy are not correlated at all with model de-
pendent metric, BLEU-4 score instead shows that at least a bit it is useful
to discriminate the performances.

Another problematic issue of using BLEU to evaluate Conversational AI
is to understand what is a good value for it. It is known that the Trans-
former, the very best model for machine translation, obtains 28 BLEU-4
points, but its goal is to model not entropic data, and this value can not
be used as an indicator for Conversational AI, first of all because it uses
a different architecture, and lastly because of the motivations explained in
Liu et al (2016) [59]. At the end, even if the final evaluation is usually
done through a qualitative analysis, inspecting the trend of the BLEU score
could be interesting to see, from an high level point of view, if the model is
behaving well during intermediate steps.

In all the above plots can be seen how the models, if run for more than
one epoch per curriculum learning step and with a bigger batch size, could
potentially show their trends better and with less variance, and this analysis
is left to future work. As a conclusion, in this first evaluation step we found
out that, from a mere quantitative analysis, LSTM cell is the best recurrent
unit to be used in the curriculum learning setting because it outperforms
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Color Unit Dropout Pretrain Reverse Warmup Batch
Cyan LSTM 0,20 True True 12k 128
Blue LSTM 0,15 True True 12k 128
Red LSTM 0,10 True True 20k 128
Green NLSTM 0,10 True True 20k 128
Grey NLSTM 0,15 True True 20k 256
Pink NLSTM 0,15 False True 12k 128
Orange LSTM 0,15 True False 9k 128

Table 6.1: Different settings of traditional learning based models.

the other architectures in both qualitative and quantitative metrics.

6.2 Traditional learning quantitative analysis

In parallel, we validated a second set of seven models using the traditional
learning procedure described in Section 5.2.2. Four of them use LSTM [112],
while the other three use Layer Normalized LSTM [3]. Each setting shares
the values of Table 5.1 and updates them with the ones of Table 6.1. The
best performing model for traditional learning is extracted and compared
with the best one coming from curriculum learning.

Again, each validated model is trained in a distributed fashion where,
differently from curriculum learning, each process always uses samples com-
ing from a one turn parsed training set. For this reason, while the previous
approach implemented turn parallelism, here only data parallelism is used.

Similarly to what happened in the previous section, here each model is
identified by a colour, that is described by the first column of Table 6.1.
First of all, given that the curriculum learning analysis found out that the
LSTM cell is the best performing one, this evaluation only considers this
cell together with its normalized version, called NLSTM (Layer Norm LSTM
[3]) which functionalities are detailed in Section 3.2.1.

In order to find the best values for the six hyper-parameters of Table 6.1,
the seven configurations are compared in groups, and during each compari-
son we give insights about how to choose the value of a specific parameter.
The first and most important analysis regards the unit type, and for this
reason the first evaluation step considers the models identified with the red
and green colours, that share the exact same configuration and differ only
for the unit, respectively LSTM for the red model and Layer Normalized
LSTM for the green one. In particular, Figures 6.14, 6.15 and 6.16 show
the perplexities that these models achieve on three evaluation sets, the same
ones used for curriculum learning evaluation and respectively containing one
turn, two turns and three turns parsed samples.

From Figure 6.14 we can notice that the two models perform very sim-
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Figure 6.14: Perplexities that a LSTM based model, the red one, and a Layer Norm
LSTM model, the green one, obtain on the 1-turn evaluation set.

Figure 6.15: Perplexities that a LSTM based model, the red one, and a Layer Norm
LSTM model, the green one, obtain on the 2-turn evaluation set.

ilarly on the one turn parsed evaluation set, even if the model using Layer
Norm LSTM always shows to be better than the other one.

While this first figure already shows the supremacy of the normalized
cell, this hypothesis is even enforced by the plots showing the perplexities
achieved by the two models on the two turns, Figure 6.15, and on the three
turns, Figure 6.16, evaluation sets. In fact, from the last two figure we can
notice how the normalized cell is able to reach a significantly better result
on more complex tasks, such as multiple turn evaluation. Interestingly, the
effect of the normalization allows to show the same performance on the
different evaluation datasets, while the other architecture keeps worsening
as the number of turns increases. In particular, on the two turns parsed
evaluation set, the green model obtains less than 2.6 while the LSTM obtains
2.8 and then stops improving. Considering the three turns case instead, is
clear that the normalized model performs in the same way it did on two
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Figure 6.16: Perplexities that a LSTM based model, the red one, and a Layer Norm
LSTM model, the green one, obtain on the 3-turn evaluation set.

Figure 6.17: BLEU-4 scores that a LSTM based model, the red one, and a Layer Norm
LSTM model, the green one, obtain on the 2-turns evaluation set.

turns data, while the other one is not even able to converge to a value less
than 3, and it further starts diverging after 100k steps. We found the same
pattern also in the plots regarding BLEU-4 [71], as it is shown in Figure
6.17 that presents this evaluation metric computed on the two turns parsed
evaluation set.

As a conclusion, it can be said that in traditional learning Layer Norm
LSTM performs significantly better than LSTM cells, both in terms of
quantitative and qualitative metrics.

A second interesting analysis regards the red, blue, cyan and orange
model. Each one of them uses the LSTM cell, and while the first three
use an increasing value of dropout, the last one differs with the blue model
because it is fed with the reversed input sequence.

In particular, from Figure 6.18 we can notice how using the two extreme
values of dropout, that are 0, 10 and 0, 20, results in a poor performance,
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Figure 6.18: Perplexities obtained by four LSTM based models, three of them, red,
blue and cyan, using different dropout probabilities, respectively 0,10 , 0,15 and 0,20,
and the last one, the orange, using 0,15 and not reversing the input sequence. Values
computed on the 1-turn evaluation set.

while adopting 0, 15, blue line, results in a better model. If Figure 6.18
shows a clear distinction between adopting 0, 15 and 0, 20, the figures about
perplexity computed on two turns dataset, Figure 6.19, and three turns
dataset, Figure 6.20, show that instead, from their point of view, the two
choices are pretty much equivalent.

A similar behaviour can be also seen in Figure 6.21, where the model
using 0, 10, the red line, is outperformed by the other two, which show a
similar trends. For this reason, it is possible to say that the optimal dropout
value is between 0, 15 and 0, 20, and in this range, plot 6.18 suggest to use
values close to 0, 15. To summarize, from Figures 6.18, 6.19, 6.20 and 6.21,
we extracted that dropout slightly affects the performances of the model
and a value close to 0, 15 is the best choice.

Considering instead the way the input sequence is fed to the model, if
in machine translation reversing the input of the encoder is a practice that
showed great improvements, on the contrary, this analysis shows that in the
scope of Conversational AI, it is better not to follow this intuition and to
use a non reversed input. In fact the orange model, that does not reverse its
input sequence, shows to be better than the other three, which instead re-
verse it, both in terms of model independent and model dependent metrics.
As said in Section 3.2.5, in the translation setting the dependencies between
source and target sequences are mainly tok2tok aligned. For this reason,
reversing the input sequence is a practice that, putting close together the
first positions of the two sequences, reduces the length of the dependencies
and eases the task. Given that Conversational AI does not have the same
dependencies of machine translation, it is intuitive that the same architec-
ture will not work in this setting. This happens mainly because, in order
to reduce the length of the dependencies, is often better to leave the last
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Figure 6.19: Perplexities obtained by four LSTM based models, three of them, red,
blue and cyan, using different dropout probabilities, respectively 0,10 , 0,15 and 0,20,
and the last one, the orange, using 0,15 and not reversing the input sequence. Values
computed on the 2-turn evaluation set.

Figure 6.20: Perplexities obtained by four LSTM based models, three of them, red,
blue and cyan, using different dropout probabilities, respectively 0,10 , 0,15 and 0,20,
and the last one, the orange, using 0,15 and not reversing the input sequence. Values
computed on the 3-turn evaluation set.

utterance of the context close to the answer generation process, given that
it is more likely to have the last utterance being the most important part of
the context to generate the answer.

We than perform a third analysis with which on one side we want to
cross-validates the choice of pre-training or not the word embeddings, and
on the other one we show how increasing the batch size improves the perfor-
mance of the model. A first important insight can be extracted from Figures
6.22, 6.23 and 6.24, where it is clear how the grey model, using batch size
equal to 256, greatly outperforms the other two in model dependent metrics.
This is reasonable given that, with a bigger batch size, is possible to better
approximate the function to be optimized, bringing to faster convergence.
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Figure 6.21: BLEU-4 scores obtained by four LSTM based models, three of them, red,
blue and cyan, using different dropout probabilities, respectively 0,10 , 0,15 and 0,20,
and the last one, the orange, using 0,15 and not reversing the input sequence. Values
computed on the 2-turn evaluation set.

Figure 6.22: Perplexities obtained by three Layer Norm LSTM based models, one using
batch size of 256, the grey line, another that does not pretrain the word embeddings,
the pink line, and lastly the green one, that uses a low dropout probability, that is 0,10.
Values computed on the 1-turn evaluation set.

Unfortunately, using 256 as the batch size is not always feasible. In fact,
the physical setting we used, the one proposed in Section 5.1.1, is made of
four GPU machines, each one having 12 MiB of internal memory and being
dedicated to a single specific process during distributed training. In fact,
given that in this work each worker has its own version of the model and
sends asynchronous updates to the central parameter server, computed by
using its own dataset, all the computation has to be performed on a single
GPU, and for this reason only a batch with size equal to 128 allows to not
have OOM errors.

Given that, as said, the selected architecture could not support such a
high batch size, the grey model shown in Figures 6.22, 6.23, 6.24, 6.25, 6.26
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Figure 6.23: Perplexities obtained by three Layer Norm LSTM based models, one using
batch size of 256, the grey line, another that does not pretrain the word embeddings,
the pink line, and lastly the green one, that uses a low dropout probability, that is 0,10.
Values computed on the 2-turn evaluation set.

Figure 6.24: Perplexities obtained by three Layer Norm LSTM based models, one using
batch size of 256, the grey line, another that does not pretrain the word embeddings,
the pink line, and lastly the green one, that uses a low dropout probability, that is 0,10.
Values computed on the 3-turn evaluation set.

and 6.27 is the result of training the model on another machine equipped
with four P100 NVIDIA GPUs, each one having 16 MiB of memory.

As a conclusion, in order to use 256 as the batch size, it is necessary to
either use P100 GPUs, or to adopt an approach that allows to use both data
and model parallelism. This last setting refers to the case of distributing
the nodes of the computational graph across the available GPUs, performing
for example the operations of the encoder on the first GPU and remaining
computation on the second GPU. This way, the training procedure exploits
both data parallelism and model parallelism.

Another interesting aspect is to understand if the use transfer learning
for word embedding matrices gives an improvements in the performance.
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Figure 6.25: BLEU-4 scores obtained by three Layer Norm LSTM based models, one
using batch size of 256, the grey line, another that does not pretrain the word embed-
dings, the pink line, and lastly the green one, that uses a low dropout probability, that
is 0,10. Values computed on the 1-turn evaluation set.

Intuitively, exploiting this technique means pre-training word embedding
matrices with a Word2Vec model, Mikolov et al 2013 [64], and this should
result in a model that reaches convergence more easily. On the contrary, in
Figures 6.25, 6.26 and 6.27 we show how this intuition is not correct, and
training word embeddings from zero gives a better performance.

In fact, if Figure 6.25 does not highlight this difference that much, we
noticed that, as the number of turns increases, the model that does not pre-
train embeddings clearly outperforms the ones that use transfer learning for
the embedding matrices, and this can be seen in Figures 6.26 and 6.27.

One could argue that, in the above figures, the model that does not pre-
train embeddings also uses 0, 15 as the dropout probability, while the other
one adopts 0, 10, and given that this choice was found to be crucial, it could
be said that the cause of the better performance is in the dropout and not in
the different initialization of the embedding matrices. To clarify this issue,
the claim here is that the gap in the BLEU-4 scores found in Figures 6.26
and 6.27 is not explainable by only considering the difference in the dropout
probabilities of the two models. In fact, in Figure 6.21 the gap between the
models using 0, 10 and 0, 15 as their dropout probability is not as huge as
the one in Figure 6.27.

It is also very interesting to notice how this gap is found this huge only in
figures showing the model independent performances on complex evaluation
tasks, such as decoding of two turns and three turns unseen samples. In
fact, in model dependent metrics and in the evaluation of the BLEU-4 score
on the one turn evaluation set, the two models are indistinguishable.

This again shows how much tricky is taking design choices for Con-
versational AI architectures. An explanation for this phenomenon is that
training word vectors together with the architecture makes it more robust
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Figure 6.26: BLEU-4 scores obtained by three Layer Norm LSTM based models, one
using batch size of 256, the grey line, another that does not pretrain the word embed-
dings, the pink line, and lastly the green one, that uses a low dropout probability, that
is 0, 10. Values computed on the 2-turn evaluation set.

and gives the ability to generalize better and to learn Conversational AI
word embeddings instead of general purpose word embeddings. In fact, when
using transfer learning, the developer does an implicit assumption about
the portability of the value of the pre-trained weights. In some cases this
assumption is correct, in other cases, such as pre-training word embeddings
for Conversational AI, it is not.

Another nice property is that the performance gained by the pink model
on the two turns and three turns reaches roughly the same value in both the
cases while the green configuration instead becomes worst as the complexity
of the evaluation task increases, and this is a good indicator of the gener-
alization capability of the pink variant. Nicely, BLEU-4 score is a little bit
more correlated with model dependent metrics in traditional learning than
in curriculum learning.

6.2.1 Best performing model

In Section 6.1 was found that the best performing model for curriculum
learning is the one that adopts the LSTM recurrent cell, while the best
in the traditional learning setting, Section 6.2, is the pink configuration of
Table 6.1. In this section, the above two models are compared, both in terms
of model dependent and independent metrics. The final goal is to find the
best performing setting, and consequently the best approach, in order to
perform a qualitative analysis of the best model. Specifically, Figures 6.28
6.29 and 6.30 show the per word perplexity that the two best models obtain
respectively on the three evaluation sets used in this chapter. In these next
three plots the best performing model for curriculum learning is identified
with the blue line, while the best from traditional learning is represented
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Figure 6.27: BLEU-4 obtained by three Layer Norm LSTM based models, one using
batch size of 256, the grey line, another that does not pretrain the word embeddings,
the pink line, and lastly the green one, that uses a low dropout probability, that is 0,10.
Values computed on the 3-turn evaluation set.

Figure 6.28: Perplexities obtained by the two best performing models. The blue model
represents the best performing one with respect to curriculum learning while the cyan
line identifies the best one in traditional learning. Values computed on the 1-turn
evaluation set.

with the cyan coloured curve.

As expected, the traditional learning model is more stable and presents a
much smoother trend, and this is true in all the three plots. Interestingly, the
three figures show that during the first curriculum learning step, identifies
between zero and 40k global steps, the performance of the blue model drops
down faster than the cyan does, and this is due to the fact that the first
step of curriculum learning starts with constant learning rate different from
zero, while traditional learning starts with zero.

For this reason the cyan model, using a larger learning rate, at the very
beginning is able to converge quicker to a smaller evaluation loss. After this
first phase, in all the three figures the models join and their performance
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Figure 6.29: Perplexities obtained by the two best performing models. The blue model
represents the best performing one with respect to curriculum learning while the cyan
line identifies the best one in traditional learning. Values computed on the 2-turn
evaluation set.

Figure 6.30: Perplexities obtained by the two best performing models. The blue model
represents the best performing one with respect to curriculum learning while the cyan
line identifies the best one in traditional learning. Values computed on the 3-turn
evaluation set.

decreases together, until the first curriculum learning step finishes. This
event causes a perturbation in the curriculum learning curves, while the
cyan model continues optimizing following the same pattern.

An interesting fact to be noticed is that, after figuring out how to react to
the perturbation caused by the change of dataset, the blue model arrives to a
value of the performance that is closer to the cyan model as the complexity
of the evaluation task increases. This happens because augmenting the
complexity of the training task helps the model to perform better on more
complex tasks, and for this reason during the second curriculum learning
step the performance shown by the two models of Figure 6.30 is very similar.

Even if the curriculum learning approach is promising, it is clear that
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Figure 6.31: BLEU-4 scores obtained by two best performing models. The orange
model represents the best performing one with respect to curriculum learning while the
red line identifies the best one in traditional learning. Values computed on the 1-turn
evaluation set.

Figure 6.32: BLEU-4 scores obtained by two best performing models. The orange
model represents the best performing one with respect to curriculum learning while the
red line identifies the best one in traditional learning. Values computed on the 2-turn
evaluation set.

a much deep study has to be performed to understand how to avoid that
perturbation. For this reason, the much smoother trend shown by traditional
learning makes it the optimal architecture with respect to model dependent
metrics.

Figures 6.31, 6.32 and 6.33 instead present the BLEU-4 score obtained
by the same models on the three different evaluation sets. The red line is the
best one in the traditional learning setting, while the orange one represents
the best one using curriculum learning.

First of all, we can notice that the orange model does not show the
perturbation that its showed in the plots of model dependent metrics. In
addition, we can see that the traditional learning model always outperforms
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Figure 6.33: BLEU-4 obtained by two best performing models. The orange model
represents the best performing one with respect to curriculum learning while the red
line identifies the best one in traditional learning. Values computed on the 3-turn
evaluation set.

the other one. Nicely, as the complexity of the evaluation task increases,
the performance of the models becomes more similar, demonstrating the
principle for which curriculum learning helps to solve complex tasks. Again,
it is clear that the traditional approach is more stable and best suited for
immediate use, while the curriculum learning based approach is promising
but requires further study to be stabilized and used.

6.3 Qualitative analysis

As said in the last section, the best model is the one extracted from tradi-
tional learning because of its superiority in roughly both model independent
and model dependent metrics and also for its more regular and smooth
trends. Because of the absence of a really reliable evaluation metric, quali-
tative analysis is very important in Conversational AI, and for this reason
this section contains a qualitative inspection of the results provided by the
best model.

In this section we qualitatively analyze the quality of the answers that
the best performing model generates when is fed with contexts coming from
an one turn parsed evaluation set. In addition, in order to visualize what the
network is learning, for each example coming from the off-line evaluation
we show sentence level and word level attention weights. The plots of this
section have to be interpreted like Figures 3.16, 3.17, 3.22, 3.23, 3.24 and
3.25, meaning that a dark colour refers to a higher attention score. In
particular, each example that we show below is made of to three Figures,
where each column presents the words that compose the generated answer.
The Figures with orange weights, for example Figure 6.34, show the sentence
attention weights, while the blue weights, Figures 6.35 and 6.36, represent
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Figure 6.34: Example 1: Attention weights assigned by sentence level attention.

the word attention weights that the model assigned to the hierarchical con-
text. In order to find the elements that compose an example, we identify
a triplet, made of the sentence attention and the two word level attentions,
with the unique number presented in the caption after the word Example.

For instance, Figures 6.34, 6.35 and 6.36 refer to the first evaluation
example. Below we show off-line one turn evaluation, where the first word
level attention Figure always represents the last agent utterance while the
second word level attention refers to the actual user question, resulting in a
basic context made of two utterances. For each column, a token in the pre-
dicted sequence, the Figures show the importance that the model assigned
to each row in generating that specific predicted token. In word level at-
tention Figures instead the row represents a word in either the user or the
agent utterance, while in the sentence level attention the rows represent the
importance of either the user utterance, the first row, or the agent utterance,
the second row.

6.3.1 Success examples

A first example is generated with the 24k-th model checkpoint, a bit more
than one epoch, and it is interesting because it shows how the model is
able to catch a first simple pattern. Figures 6.34, 6.35 and 6.36 show the
attention weights assigned to the context in order to generate the answer
ciao puoi darmi il nome e cognome dell’intestatario?.
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Figure 6.35: Example 1: Attention weights assigned by word level attention to the first
utterance of the context.
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Figure 6.36: Example 1: Attention weights assigned by word level attention to the
second utterance of the context.

From Figure 6.34 we can see that the sentence level attention under-
stands that, to generate the answer, only the user utterance, the second one
in the context, represented by Figure 6.36, is useful.

Secondly, from Figure 6.35 we can notice how the model, even if the
first utterance is not significant in the answer generation, catches important
tokens such as servizio, the name of the company DICIOS and the verb
sono, but not other important words such as disdetta.
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Figure 6.37: Example 2: Attention weights assigned by sentence level attention.

This can be either due to the fact that this topic has not been learnt
given that the model is taken from the early training stage or because there
are much hidden dynamics that can not be caught from a mere weights
visualization. From Figure 6.36 we can notice how the model pays all the
high level attention to the second utterance in which the single token salve
triggers the generation of a typical question, that is asking the name and
the surname of the user to load its profile.

We can noticed how, given that the predicted utterance is generated in
any case by the agent after the first user utterance, only the greet salve
is important, while the first utterance of the context is useless, and this
procedure mimics what a real customer service agent does. In fact, the
agent, while asking generalities, does not pay attention to the utterance he
said in the previous turn.

Another interesting example comes from an inference step using the 32k-
th checkpoint and we present it in Figures 6.37, 6.38 and 6.39. This case
shows two important characteristics that attention visualization presents in
complex scopes such as the one of Conversational AI where the dependen-
cies between input and output are very difficult to be understood, even by
inspecting the attention weights.

In particular, in the example shown in Figures 6.37, 6.38 and 6.39 we
specify how the model pays attention to the hierarchical context made of
come posso esserti utile ? and of avrei bisogno di sapere se volessi recedere
dall’abbonamento come sono le modalita’ e i tempi per non pagare penali in
order to generate the answer per disdire e’ necessario inviare una richiesta
scrita per a.

First of all we want to highlight how the generated answer, inviare una
richiesta scrita per a ... ?, is incomplete, and this is due to the fact that the
model uses weights coming from an early stage of learning. This problem was
mentioned in Chapter 2 and refers to the possibility for generative models
to show bad grammar, and this happens because each word in the generated
sentence is the result of a maximum sampling over the vocabulary, and does
not come from a database of correct answers.

With respect to the previous case, now the sentence level attention gives
importance to both the utterances, in a way that is very difficult to be
understood by humans.
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Figure 6.38: Example 2: Attention weights assigned by word level attention to the first
utterance of the context.

Nicely, word level attention shown in Figure 6.39 presents a very inter-
esting word by word relationship. In fact, to generate the word richiesta the
model pays attention to the word modalita’, in fact a request is a modality,
while to generate scritta pays a lot of attention also to come sono, meaning
..how is the request? written.., in a way that the model seams to answer to
a specific indirect question. This last example shows that Conversational
AI is based on a various number of dependencies, some of them are tok2tok
and other ones are multitok2tok or tok2multitok, and this last case explains
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Figure 6.39: Example 2: Attention weights assigned by word level attention to the
second utterance of the context.

that sometimes we can find tok2tok dependencies, typical of machine trans-
lation, also in this scope.

Another interesting example in this setting is the one that we present in
Figures 6.40, 6.41 and 6.42. These weights are generated by a checkpoint
related to the 94-th step of the model. It can be noticed how the model now
is more able to extract topics, such as a service sold by the company, called
DICIOS fly, and this can be seen by inspecting the attention weights.
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Figure 6.40: Example 3: Attention weights assigned by sentence level attention.

Figure 6.41: Example 3: Attention weights assigned by word level attention to the first
utterance of the context.
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Figure 6.42: Example 3: Attention weights assigned by word level attention to the
second utterance of the context.

In this case, to generate the answer DICIOS fly e’ gratuito, the model
correctly pays a lot of attention to DICIOS fly in the last utterance of
the context and interestingly refers back to the price of the service, an
information contained in the first utterance. The weird fact is that this
last dependency is not clear from the visualization of the attention weights.
From this example we can see how in Conversational AI the dependencies
can be both direct and indirect, in a way it is not always easy to interpreted
them with a mere analysis of the magnitude of the weights.
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Figure 6.43: Example 4: Attention weights assigned by word level attention to the first
utterance of the context.

As said in Chapter 2, generative models are able to refer back to entities
in the conversational context. This is shown in Figures 6.44, 6.43 and 6.45,
where the agent asks the name in the first utterance of Figure 6.43 and
then, when the user replies with his name, escaped from the preprocessing
chain into the support token NAME , the model, identified by the check-
point taken after 104 steps, uses it to reply again with NAME , showing to
understand this micro conversational patter.
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Figure 6.44: Example 4: Attention weights assigned by sentence level attention.

Figure 6.45: Example 4: Attention weights assigned by word level attention to the
second utterance of the context.
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Figure 6.46: Example 5: Attention weights assigned by sentence level attention.

Figure 6.47: Example 5: Attention weights assigned by word level attention to the first
utterance of the context.

A very interpretable situation is shown in Figures 6.46, 6.47 and 6.48.
In fact Figure 6.46 shows that the first utterance is useless and Figure 6.47
describes how the weights generally are more intense for concepts.
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Figure 6.48: Example 5: Attention weights assigned by word level attention to the
second utterance of the context.

More importantly, Figure 6.48 indicates how the most important word
to generate the answer si ma non e’ aumentato il costo di listino is aumento.
The model uses the weights related to the 105k-th checkpoint.

Figures 6.49, 6.50 and 6.51 refer to the inference step performed with the
model identified by the weights of the 123k-th checkpoint and are interesting
because they show how, after being trained for a significant number of steps,
the model starts to answer correctly also to indirect questions.
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Figure 6.49: Example 6: Attention weights assigned by sentence level attention.

Figure 6.50: Example 6: Attention weights assigned by word level attention to the first
utterance of the context.
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Figure 6.51: Example 6: Attention weights assigned by word level attention to the
second utterance of the context.

As the training goes on, the model becomes more able to extract con-
cepts, and to hierarchically attend on them. This is what we show in figures
6.52, 6.53 and 6.54, where we present the attention weights generated by a
model using the checkpoint of the 134k-th step.
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Figure 6.52: Example 7: Attention weights assigned by sentence level attention.

Figure 6.53: Example 7: Attention weights assigned by word level attention to the first
utterance of the context.

In particular, it starts by assigning a distributed set of sentence attention
weights, as shown in Figure 6.52, and the word level attention aggregates
n-grams. In fact, from Figure 6.53 it extracts ok, riceverai and conferma.
From the second utterance instead, several concepts are aggregated, such
as ottimo, quali, questo abbonamento and ?. Then, the model performs a
very complex processing of the extracted topics and generates the correct
answer. This example is important because shows how attention helps the
model to hierarchically organize the available information, and to generate
proper answers.
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Figure 6.54: Example 7: Attention weights assigned by word level attention to the
second utterance of the context.

Figure 6.55: Example 8: Attention weights assigned by word level attention to the first
utterance of the context.

6.3.2 Failure examples

Sometimes, the model shows some bad behaviours. An example is the one
presented in Figures 6.55, 6.56 and 6.57. Nicely, the model understands
that there is a problem, even without a token specifically related to this
semantic meaning, and, as shown in Figure 6.57, extracts the service that
causes the problem, DICIOS fly, and proposes a fix, that is by following the
instructions provided at an external url. Also, this case shows one of the
problematic issues of a model trained with one turn parsed samples.
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Figure 6.56: Example 8: Attention weights assigned by word level attention to the first
utterance of the context.

In fact, probably, the correct solution to the problem is not to restore
the password, but it is impossible for the model, and I would say also for
humans, to understand the real issue without being fed with more context.

For this reason, future work would require to train this architecture
with either two turns or three turns parsed sample, but, as already said, this
would need both a more powerful physical setting and a training architecture
that exploits also model parallelism.
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Figure 6.57: Example 8: Attention weights assigned by word level attention to the
second utterance of the context.

Figure 6.58: Example 9: Attention weights assigned by word level attention to the first
utterance of the context.

Another similar example to is presented in 6.58, 6.59 and 6.60, that refers
to an inference step performed with the model trained for 140k steps.
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Figure 6.59: Example 8: Attention weights assigned by word level attention to the first
utterance of the context.

Here the model, even if it shows the ability of extracting and under-
standing hierarchical concepts, such as il cavo, that is the cable, gives a too
much general and maybe wrong answer, and this is probably due to the fact
that is fed with a context that does not contain the information needed to
answer properly. In fact, from the answer it gives we can understand that
it gets that there is an hardware problem, ... problema di impianto..., that
means a problem with the physical setting.
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Figure 6.60: Example 8: Attention weights assigned by word level attention to the
second utterance of the context.

A different problem is shown in examples 6.61, 6.62 and 6.63. In fact
here the model, even if it extracts correctly the hierarchical concepts, does
not understand the question of the user, and replies by asking a question
that the user already answered.
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Figure 6.61: Example 10: Attention weights assigned by word level attention to the
first utterance of the context.

Figure 6.62: Example 10: Attention weights assigned by word level attention to the
first utterance of the context.

This is a bad behaviour that can potentially drive users away, and is one
of the reasons why such models are not used in production environments.
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Figure 6.63: Example 10: Attention weights assigned by word level attention to the
second utterance of the context.

6.3.3 Interactive chats

To perform a really meaningful qualitative analysis, it is necessary to check
how the model behaves in an environment similar to the production one. For
this reason, we supposed to be customers having several typical problems
and we asked the model for a solution to fix them. Importantly, this inference
phase has been performed by passing one turn samples to the model. A first
typical problem arises when a user looses the credentials to access the on-line
website. Below can be found an example of a conversation aimed to solve
this issue.

buonasera mi chiamo luca : USER

BOT: ciao NAME

mi invii il link per recuperare i dati di accesso ? : USER

BOT: URL
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grazie : USER

BOT: figurati grazie

In the example above, the user asks a very direct question, containing
a lot of informative keywords, such as link and dati di accesso. For this
reason, the model is able to understand immediately the necessity, resulting
in a perfect handling of the request. This is not what always happens. In
fact, more hard situations can arise, like the one below.

ciao sono alberto : USER

BOT: ciao

non riesco ad accedere al portale online : USER

BOT: mi daresti il tuo codice client cosi facciamo una verifica

3145151 : USER

BOT: grazie sei ancora in linea ?

si : USER

BOT: si scusa messaggio automatico

si ok : USER

BOT: ok fatto

mi puoi aiutare a recuperare i miei dati di accesso al portale online ? :
USER

BOT: ok, ti aiuto io, clicca qui per recuperare i tuoi dati di accesso:
URL sei ancora in linea ?

grazie :) : USER

BOT: posso esserti utile in qualcosa altro ?

no grazie : USER

BOT: AGENT SCRIPT 1
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In this example, the user does not ask a direct question and instead
explains a problem with particular words, making the task more difficult.
This way the model, being a little bit fooled by the questions of the user,
starts asking typical cross-context questions. Because of this intermediate
micro conversational patter, the important message goes out of the context,
and, after the conversational patter is finished, the model has no way to
answer with the correct solution, given that description of the problem is
no more in the conversational context. For this reason it responds with a
cross-context answer like ok fatto.

Now the user decides to reply with a more direct question, receiving the
correct answer. Potentially, this issue could be solved by passing a longer
conversational context to the model, and this explains that, in Conversa-
tional AI, the number of utterances passed as input is very important for
both training and inference.

Also, there are cases in which the model gets lost saying useless utter-
ances. This is what happens below.

salve : USER

BOT: come posso

mi chiedevo se puoi aiutarmi a recuperare i miei dati di accesso al portale
online : USER

BOT: URL

ahahah ok : USER

BOT: clicca su prosegui

si : USER

BOT: clicca su prosegui

ho fatto grazie : USER

BOT: perfetto

ciao : USER

BOT: posso esserti

no sono a posto grazie : USER

BOT: ok buona serata! AGENT SCRIPT 1
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In this example, it is clear that the model is able to immediately solve
the issue, even if it is explained by using a non direct question, but, when the
uses says ahahah ok, that is a very rare answer, it starts behave strangely,
repeating the same utterance twice. This is caused by the fact that there is
not that much data covering that specific rare situation, and for this reason
the model does not know with high confidence how to handle properly this
case.

Also, this example shows another typical issue of generative models. In
some cases, their answers are incomplete, and this is due to the fact that the
end of sequence token is assigned of a little bit higher probability than the
token that allows to continue the answer. This happens because, when the
algorithm is not sure about how to answer, usually generates short utter-
ances such as ok. In this case, this behaviour does not result in generating an
answer made of a single token but instead makes the model uncertain, with
the result of raising the probability of the end of sequence token, demon-
strates how these models are very difficult to be put in production. In fact,
even if they have very good performances in some cases, in others they show
unpredictable behaviours.

Another interesting case is to understand how the model handles situa-
tions when the user asks for the available promotions, and below is shown
an example.

ei ciao : USER

BOT: ciao sei ancora in

si, volevo chiederti se hai delle offerte interessanti : USER

BOT: non ho promozioni dedicate ai nuovi clienti, ma ce ne sono alcune
per i gia’ clienti

ho capito ma io sono gia’ cliente : USER

BOT: puoi aderire alla promo dedicata ai nuovi abbonati estesa, ancora
per pochi giorni, anche ai gia’ clienti

mi puoi inviare il link della promo ? : USER

BOT: URL puoi verificarlo direttamente da questo link PSMILE

grazie : USER

BOT: di nulla ! buona giornata AGENT SCRIPT 1

:) : USER
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BOT: PSMILE

In this case we show how the architecture is able to model a very com-
plex situation. It commits some errors, such as the early termination of the
decoding, first utterance generated by the bot, and a conceptual incompati-
bility between the utterance where it says that there are not promotions for
the new clients, and the utterance when it says that there is a promo for
them.

Beside this, it is able to express a very complex concept, that is the fact
that there is a promotion for new users that is available also for already
registered clients, and this has a duration of only few days. Also, it is able
to send the link where the promotion is presented and to nicely show the
very polite and sympathetic behaviour of last utterance. Relating this topic,
a case when the model does not behave perfectly is presented below.

ciao mi chiamo marcello : USER

BOT: ciao

mi puoi dare delle informazioni? : USER

BOT: si certo

mi interesserebbe sapere se ci sono delle promozioni interessanti : USER

BOT: al momento non ho altre opzioni da proporti, mi spiace

sicuro? : USER

BOT: si, ma non posso darti informazioni in merito

ok : USER

BOT: posso esserti utile in qualcosa altro?

si vorrei sapere quanto costa il servizo opzione4 : USER

BOT: MONEY al mese

grazie : USER

BOT: posso esserti utile in qualcosa altro

no grazie sono a posto : USER

BOT: AGENT SCRIPT 1
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Here we can notice that the model, when the user asks a rare question
such as sicuro? answers in a confuse way, showing a grammatical error. In
fact si ,ma non posso darti informazioni in merito should be si, non posso
darti informazioni in merito. However, it shows of being able to perfectly
give information about the cost of a service. A side property is that, when
a task is solved, keeps up the engagement of the user by asking if it can be
useful for something else.

Another topic refers to the case when the user asks for the intervention
of a technician, as shown below.

ciao sono fabio : USER

BOT: ciao NAME !

vorrei chiederti se puoi mandarmi un tecnico in via garibaldi 23 : USER

BOT: certamente, con chi ho il piacere di chattare ?

sono fabio : USER

BOT: piacere NAME dimmi pure

vorrei richiedere l’intervento di un tecnico : USER

BOT: ok, ti mando il link per il preventivo URL clicca qui: URL

grazie : USER

BOT: prego !

Here the model still shows the problem of not having the information
about the problem in the conversational context when generating the ut-
terance piacere NAME dimmi pure. Also, replies with a correct but not
perfect answer, not setting up the meeting with the technician but sending
a form to understand the cost of using such service. The last two examples
show how the model behaves when it has to handle a very long conversation.

ciao mi chiamo alberto : USER

BOT: dimmi

mi chiedevo se ci fosse qualche promozione interessante : USER

BOT: verifico subito attendimi in linea per favore

ok : USER
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BOT: grazie per l’attesa. vedo che hai la visione dei pacchetti DICIOS
opzione1 + opzione3

si esatto : USER

BOT: DICIOS opzione3 comprende documentari e life style + bambini e
musica

esatto : USER

BOT: ok, possiamo richiedere la variazione gratuita del servizio al
DATE , oppure, se preferisce, anticipata

quanto mi verrebbe a costare? : USER

BOT: MONEY mensili

grazie mi sembra ragionevole : USER

BOT: posso esserti utile in qualcosa altro ?

vorrei richiedere la variazione : USER

BOT: ok, mi attendi in linea per favore?

ok : USER

BOT: la variazione si puo’ inserire per il DATE con un costo di una
tantum di MONEY

ok : USER

BOT: procedo ?

si grazie : USER

BOT: fatto

perfetto : USER

BOT: posso esserle

mi arrivera’ una email di conferma? : USER

BOT: si certo

grazie : USER
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BOT: di nulla, posso

no sono a posto : USER

BOT: bene le auguro una buona serata allora

grazie a lei : USER

BOT: grazie

This first example shows again how, when the context does not contain
the informative utterance, the model generates not appropriate answers,
and this is what happens during the generation of ok, possiamo richiedere
la variazione gratuita del pacchetto al DATE , oppure, se preferisce, antic-
ipata. In fact, this utterance is about the variation of a service as if the user
had already selected the service, and this is not true.

Nicely, it is instead able to detect that anticipating the variation means
to pay a penalty, while the free variation is related to a specific date. It also
shows nice micro-patterns such as answering when the user asks for the price
of something, the case of MONEY mensili, making a summary of what it
has already said in the conversation, this is what happens with the answer
la variazione si puo’ inserire per il DATE con un costo di una tantum di
MONEY and driving the user through a complex procedure such as the

one of actuating a variation of the current plan.

In conclusion, it shows to be polite and to engage the user after a task
is concluded. Still, there is the problem of the early termination of the
decoding, and this is the case of di nulla, posso.

A second interesting long conversation is presented below.

ciao il mio nome e’ carlo tarlo e vorrei chiederti delle informazioni :
USER

BOT: ciao dimmi pure

mi sai dire quanto costa aggiungere il servizio opzione3? : USER

BOT: MONEY al mese

interessante : USER

BOT: si certo

e da quando sarebbe attivo? : USER

BOT: il DATE
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sto pensando di rimodulare il mio abbonamento e aggiungere il servizio
opzione3 : USER

BOT: ok allora possiamo fare la richiesta per il DATE senza costi

grazie : USER

BOT: ok fatto posso esserti utile in qualcosa altro?

no va bene : USER

BOT: ok buona serata ! AGENT SCRIPT 1 ciao

ciao :) : USER

BOT: ciao PSMILE

Again the model shows of being able to answer to direct questions that
ask for a date, to help the user in the reformulation of its plan and to suggest
the best option to perform a task, that is the answer proposing an option
to perform the variation without costs.

The examples above showed how generative models are promising be-
cause of their ability of hierarchically paying attention and of successfully
supporting the user in several tasks typical of a very hard and diverse en-
vironment such as customer service. Still, some problems are present, for
example the one of expressing coherent personality, explained in Chapter 2,
or the ability to reliably recover from not usual questions.

To solve this issue, a recent paper by Buck et al (2017) [12] proposes to
integrate a module able to reformulate the question in a meaningful form, in
order to help the decoder in reducing the entropy of the possible questions.
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Conclusions

In this thesis we want explain how to deal with a real-world Conversational
AI problem, from data exploration to data preprocessing, normalization and
standardization. After these preliminary and crucial steps, we explain how
to choose, train and validate a model in a real-world setting.

In Chapter 2 we deeply discuss the relationships between text mining and
Conversational AI and we analyse how to handle long or short conversations,
open or closed domains and multi or single turn conversations. We give a
particular importance to the study of providing a conversational model with
coherent personality, intention and diversity. At the end of the Chapter
we show how these models can easily result in uncontrollable behaviours,
presenting the case of Tay [42], a chatbot developed by Microsoft.

The goal of Chapter 2 is to engage the reader by showing how much
fascinating is Conversational AI. In fact, building a perfect conversational
agent would mean to reach the final goal of AI, that is creating an artificial
general intelligence (AGI ) able to reason on concepts, have memory and
take decisions. We are far away from reaching this goal and this is due to
two reasons: the first one is that technologies and models have to be further
improved to handle the complexity of conversations, and the second is the
lack of appropriate datasets to experiment on. As a result, current models
are promising but not ready to be put in production environments where
mistakes are very expensive.

Chapter 3 is a review of the state of art models currently adopted to
build conversational agents. Among them we consider only retrieval and
generative models, the ones that employ natural language processing (NLP).

We show how retrieval models rely on a knowledge base of historical
question-answer pairs and exploit two modules to return a sample from the
database: the matching measure, that can be either deterministic or stochas-
tic, and the feature extraction algorithm, that can be based on traditional
NLP methods, on bag of word algorithms (BOW ) or on deep learning models
(DL). Among these architectures we carefully analyse TACNTN, a retrieval

177



Chapter 7. Conclusions 178

model based on CNNs and NTNs (Socher et al (2013) [91]), published by
Wu et al (2016) [106], and the dual recurrent encoder, published by Lowe
et al (2015) [60], that uses RNNs. Retrieval models essentially implement
a semantic search over a knowledge base. In huge databases this procedure
can take a lot of time, and this is the reason why we propose to integrate a
clustering algorithm to reduce the time needed.

Retrieval models do not generate novel answers. This is the main dif-
ference with generative models, which instead exploit methods that allow
to assemble new answers word by word. Given that they handle sequences
of words, generative models use recurrent architectures to process them se-
quentially. In fact, Conversational AI can be seen as a task with multiple
inputs, the words of the conversational context, and multiple outputs, the
words of the answer, where these sequences have in general different lengths.

In Chapter 3 we explain how the above models work, starting from show-
ing the behaviour of basic recurrent units such as RNNs, LSTMs [112], GRUs
[4], Layer Norm LSTMs [3] or BiRNNs [4], and arriving to more complex
architectures such as Sequence to Sequence models ([95], [19]) and Language
models ([65]).

An important part of Chapter 3 is dedicated to the study of the attention
mechanism, either local ([4], [19]), global ([19]) or hierarchical ([108], [110]),
a powerful algorithm that empowers sequence models and gives them the
possibility to pay attention on the different elements in the input sequence.

To conclude the analysis, we present a set of algorithm that perform
sequence learning without recurrence. Among them the most interesting
is the one of Vaswani et al (2017) [100], an architecture able to process
sequences with an architecture that dispenses from recurrent modules and
that is solely based on self attention. The last two Sections of Chapter 3 are
summaries that explain how to prepare data and train Sequence models. We
spent the most of Chapter 3 studying generative models for Conversational
AI because we believe that they are intuitive, fascinating and interesting
because of their ability of generating novel answers.

In Chapter 4 we frame our case study and we show how we designed our
preprocessing pipeline. This thesis has both the goal of investigating the
most interesting methods used to build conversational models and of show-
ing their application in a real-world use case. In fact, we want to describe
generative conversational models both from a theoretical and a practical
point of view, taking as an example a technical case study coming from a
project developed together with Loop AI Labs, an American company to-
gether which we developed this thesis. This project had the goal of inspect-
ing the performance and applicability of generative conversational models
in a real world scenario, and the support of the team of Loop AI Labs was
fundamental during the design of the model.

Thanks to Loop AI Labs, we could have access to a big knowledge base
containing historical set of conversations. This database came from DI-
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CIOS, an Italian service provider company, and it is a set of the anonymized
recorded conversations produced by a chatting center in the north of Italy
between January 2016 and December 2016.

This dataset was dirty, irregular and related to a lot of topics. In order to
help the job of the model we designed a preprocessing pipeline to standardize
and normalize the conversations. The result of this pipeline is the final
training set.

We started from data exploration, where we understood the properties of
the dataset we had to handle. Then, we designed a procedure for word and
character level cleaning. We empowered the preprocessing pipeline with an
interesting module: a statistical spell checker able both to detect if a word
contains a typo and to correct the misspelled word with its most plausible
correction in a vocabulary. This algorithm is based on the number of occur-
rences that each word has in the corpus, and works in such a way that the
percentage of the generated false positive is kept low, at the cost of allowing
few false negatives. This means that the program corrects a word only if it
is very sure that it is misspelling, resulting in a safe spell correction module
that does not introduce errors. As a third step, we propose a module able
to extract long and frequent sequences and we assign them a single token.
An important contribution of this thesis is the design of a preprocessing
pipeline to normalize Italian text. At the end of the Chapter, we propose
a critical analysis where we show how to parse historical conversations into
multi turn training samples.

Chapter 5 presents the features of our hardware and the programming
environment that we decided to adopt. We explain why we chose a hierar-
chical attention based model and we detail the set of hyper-parameters that
we decided to use.

In the second part of Chapter 5 we describe the two learning paradigms
that we quantitatively compare in Chapter 6: a first one, called curriculum
learning and based on the work of Bengio et al (2009) [6], and a second
called traditional learning, an approach based on the learning rate decay
proposed by Vaswani et al (2017) [100].

Curriculum learning takes inspiration from a peculiar aspect of conver-
sations. In fact, while the hierarchical structure of dialogues is a property
often used to bias the model architecture, and an example is the algorithm
presented by Xing et al (2017) [108], another property that is usually not
exploited is that conversations can be seen as incremental in their complex-
ity. In this scope, generative answering can be seen as a task where the
complexity grows as the provided context gets longer, in fact answering to
one turn contextualized question is easier then doing it for two turns, and
we adopted curriculum learning because it is particularly suited to exploit
this property. In fact, this paradigm is usually chosen for problems where
the agent starts from simple tasks and abstracts his knowledge to solve
more complex tasks. Specifically, a Conversational AI model trained with



Chapter 7. Conclusions 180

curriculum learning performs some epochs with one turn samples, then it
changes dataset and uses two turns data for some other epochs, and goes on
increasing the complexity of the training samples.

Traditional learning instead consists in training a generative conversa-
tional model only with data parsed in a specific number of turns, kept
constant during training. Here stays the first difference with curriculum
learning. In fact, while the core feature of the curriculum based approach
explained in Section 5.2.1 is that the model is trained with a set of datasets
with an increasing complexity, this second more traditional approach pro-
poses to train the model always with a set of samples parsed in a specific
number of turns. We call this second approach traditional because it is a
combination of the paradigm with which the community usually trains gen-
erative conversational models and of some intuitions provided by Vaswani
et al 2017 [100]. In fact, we decided to adopt the learning rate decay that
Vaswani et al 2017 [100] used to train the Transformer.

A contribution of this thesis is the idea of combining the traditional
approach used to train generative conversational models with the learning
rate decay proposed by Vaswani et al 2017, [100].

In the last part of Chapter 5 we study the different types of training
procedures, sequential or distributed, focusing on the second family and
showing the differences between asynchronous and synchronous distributed
training. In our experiments we decided to use asynchronous distributed
training.

At the end of Chapter 5 we present a Section where we analyse the eval-
uation metrics that are commonly adopted, word overlap or word embedding
based, showing that they are not correlated with human judgement. We
conclude by saying that Conversational AI needs a new, more reliable and
correlated evaluation metric.

As a unique result, this thesis presents an explicit quantitative analysis of
the BLEU-4 scores, filling a huge gap that research previously had. In fact,
to the best of our knowledge, it does not exist a report showing quantitative
results of generative models.

However, it is clear that the current evaluation metrics does not pro-
vide a signal able to correctly discriminate models. For this reason it is
important for the community to head in the direction of designing a new
evaluation metric correlated with human judgement. Another problematic
issue of using BLEU to evaluate Conversational AI is to understand what is
a good value for it. It is known that the Transformer, the very best model
for machine translation, obtains 28 BLEU-4 points, but its goal is to model
not entropic data, and this value cannot be used as an indicator for Con-
versational AI, first of all because it uses a different architecture, and lastly
because of the motivations explained in Liu et al (2016) [59].

In their paper of 2017 Liu et al [59] noticed that generating dialogue
responses conditioned on the conversational context is in fact a more dif-
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ficult problem, and this is due to the fact that the set of possible correct
answers to a context is very large. The main point here is that dialogue
response generation given solely the context has intuitively a higher entropy
than translation given text in source language. To fix the above issues, which
make evaluation pretty complex, research is heading in the direction of build-
ing an embedding based metric to more reliably evaluate Conversational AI
models. This way, a better signal would be provided to discriminate mod-
els during evaluation. An example where word-overlap based metrics fail is
presented in following dialogue.

The agent says:

mi puoi dare il tuo indirizzo email ?

The user answers:

va bene aspettami in linea

The ground truth response is:

ok

The model generates:

si

Every word overlap metric, Section 5.4.1, would assign a score equal to
zero to the predicted response, while an embedding metric, Section 5.4.2,
would find out that ok and si are similar answers. In fact, embedding based
metrics will assign a very high similarity score to the predicted answer,
resulting in a cleaner evaluation signal, and this is the reason why we believe
that word embedding metrics are best suited for building reliable evaluation
metrics correlated with human judgement.

In Chapter 6 we present the obtained results. We select a hierarchical
attention sequence model similar to the one presented by Xing et al (2017)
[108] and we test its behaviour on the real world dataset generated by the
preprocessing procedure described in Chapter 4.

As a first part we use model dependent and independent metrics, such
as perplexity [101], BLEU [71], ROUGE [56] and accuracy, to quantitative
cross-validate the recurrent unit of a set of curriculum learning based mod-
els. We design four algorithms and we show that the LSTM [112] based
architecture performs better.

In a second part we consider traditional learning and we quantitatively
analyse seven models finding out that the best architecture uses layer nor-
malized LSTM [3] cells, does not reverse the input sequence, uses 0, 15 as
dropout probability, does not pre-train the word embeddings and uses 256
as batch size. From the results of Chapter 6 it is clear that using 256 as the
batch size gives an important performance improvement. We showed that,
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in order to do increase the batch size, it is necessary to either use P100
GPUs, or to adopt an approach that allows to use both data and model
parallelism.

Curriculum learning is more difficult to be evaluated because it has a lot
of variables to be tuned, that are the number of curriculum steps, the number
of epochs per step and the parameters of the learning rate decay. Traditional
learning instead is easier to be validated, and this happens because the train-
ing procedure is more stable. For the above reasons, in Chapter 6 we claim
that traditional learning is more reliable for immediate usage. However, we
think that, if further validated, curriculum learning is promising.

One of the contributions of this thesis is the idea of designing such a
learning paradigm that takes into consideration the incremental complexity
of conversations to define a procedure that could help the model to generalize
better. Also, we believe of having opened a new branch of research that,
if further deepened, could potentially give important improvements in the
design of generative models.

An important discovery we made is understanding that, even if gener-
ative models for Conversational AI use the same architectures of machine
translation, design choices made in this last field are not always portable
to Conversational AI. The reason why this happen is that, if in machine
translation a token usually maps to a specific single token in the translated
sequence, in Conversational AI happens that each word of the generated
response is dependent on the big parts of the input sequence. This can be
seen from several examples presented in the off-line evaluation of Chapter
6. On the other hand, some other examples show that the model, when it is
necessary, is able to learn the ability of focusing on a single word in the con-
text, demonstrating how Conversational AI can be seen as a generalization
of machine translation.

As the last step we take the best models coming from the two learning
paradigms and we perform a quantitative comparison from which we under-
stand that traditional learning is more reliable. This is the reason why we
choose this last learning paradigm to perform a qualitative analysis where
we inspect the responses that the model proposes in off-line and on-line
evaluation. If we perform the off-line evaluation by taking some one turn
parsed evaluation examples coming from a separate test set, on the other
hand we perform on-line testing by analysing how the model behaves during
chats with real users.

Qualitative analysis shows that the number of turns is crucial while
developing such kinds of models. In fact, some evaluation examples show
that, when the information needed to answer a question is not present in
the context, it is impossible for the model to generate a proper response.

Beside some annoying issues, such as the fact that the decoding phase of-
ten terminates too early, resulting in an not natural truncation of the answer
generation process, or the unpredictable behaviour that these conversational
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agent show when they are asked to answer to a rare question, conversational
models are usually able to generate correct and satisfying answers, showing
politeness and engaging the user during the conversation. Unfortunately,
because of few cases in which they answer in an unpredictable way, we be-
lieve that for now it is not safe to use generative architectures in production
environments.

7.1 Future work

As said in Chapter 3, the problem of modelling situations where both the
input and the output are sequences of variable size is often faced by adopting
sequence to sequence models, first introduced by Cho et al (2014) [19] and
by Sutskever et al (2014) [95]. Their most intuitive application is machine
translation, where an encoder reads a sequence in English and a decoder
generates the target sentence in French, while being conditioned on the
output of the encoder. Beside this basic application, these models, because
of their extreme flexibility, can be used for a vast variety of tasks.

In this scope, we claim that each task that adopts these models is dif-
ferent in terms of the entropy it shows, intended as the number of target
sequences that are appropriated for a given input sequence. In fact, while
in machine translation this number is bounded, in other scopes such as
Conversational AI it is huge and usually infinite. In fact, if we consider a
conversational context made of Hello, coming from agent 1, then Hi from
agent 2 and then How are you ? again from agent 1, both I am good and I
do not feel good belong to the infinite set of sentences that are appropriate
answers to the proposed conversational context.

We state the problem this way: sequence architectures are not able to
model this diversity because they optimize cross entropy. The assertion is
that this optimization procedure forces too much the model to refer to the
specific ground truth answer. In fact, all the other acceptable candidates
are not considered, resulting in a weak model.

In the frame described above, a second assumption is that the encoder-
decoder architecture is valuable, especially in the variant that uses the hi-
erarchical encoder, proposed by Xing et al (2017) [108]. For this reason, it
is reasonable to think that sequence models, if trained in a different way,
could both generate more meaningful and diverse answers and result a truly
generative models. Following the above intuitions, that is saying that the
optimization is conceptually not correct for all the applications while the
architecture itself is valuable, as said by Vinyals et al (2015) [101], we be-
lieve that the future of Conversational AI is to introduce a new loss function
able to better train sequence models for high entropic data, creating truly
generative sequence to sequence architectures.
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[72] Ankur P Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszko-
reit. A decomposable attention model for natural language inference.
arXiv preprint arXiv:1606.01933, 2016.

[73] Romain Paulus, Caiming Xiong, and Richard Socher. A deep
reinforced model for abstractive summarization. arXiv preprint
arXiv:1705.04304, 2017.

[74] Ning Qian. On the momentum term in gradient descent learning al-
gorithms. Neural networks, 12(1):145–151, 1999.

[75] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hog-
wild: A lock-free approach to parallelizing stochastic gradient descent.
In Advances in neural information processing systems, pages 693–701,
2011.

[76] Ehud Reiter and Anja Belz. An investigation into the validity of some
metrics for automatically evaluating natural language generation sys-
tems. Computational Linguistics, 35(4):529–558, 2009.

[77] Alan Ritter, Colin Cherry, and William B Dolan. Data-driven re-
sponse generation in social media. In Proceedings of the conference
on empirical methods in natural language processing, pages 583–593.
Association for Computational Linguistics, 2011.

[78] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747, 2016.



Bibliography 192

[79] Vasile Rus and Mihai Lintean. A comparison of greedy and optimal
assessment of natural language student input using word-to-word sim-
ilarity metrics. In Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP, pages 157–162. Association for
Computational Linguistics, 2012.

[80] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector
space model for automatic indexing. Communications of the ACM,
18(11):613–620, 1975.

[81] samyzaf’s Blog. Nlp. http://www.samyzaf.com/ML/nlp/nlp.html.

[82] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural
networks. IEEE Transactions on Signal Processing, 45(11):2673–2681,
1997.

[83] Bit Search. Vector space model for scoring. http://bitsearch.

blogspot.com/2011/01/vector-space-model-for-scoring.html.

[84] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. Recurrent
dropout without memory loss. arXiv preprint arXiv:1603.05118, 2016.

[85] Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kartik Tala-
madupula, Bowen Zhou, Yoshua Bengio, and Aaron C Courville. Mul-
tiresolution recurrent neural networks: An application to dialogue re-
sponse generation. In AAAI, pages 3288–3294, 2017.

[86] Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C
Courville, and Joelle Pineau. Building end-to-end dialogue systems
using generative hierarchical neural network models. In AAAI, vol-
ume 16, pages 3776–3784, 2016.

[87] Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin,
Joelle Pineau, Aaron C Courville, and Yoshua Bengio. A hierarchical
latent variable encoder-decoder model for generating dialogues. In
AAAI, pages 3295–3301, 2017.

[88] Lifeng Shang, Zhengdong Lu, and Hang Li. Neural responding ma-
chine for short-text conversation. arXiv preprint arXiv:1503.02364,
2015.

[89] Hava T Siegelmann and Eduardo D Sontag. On the computational
power of neural nets. Journal of computer and system sciences,
50(1):132–150, 1995.

[90] Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. Don’t
decay the learning rate, increase the batch size. arXiv preprint
arXiv:1711.00489, 2017.



193 Bibliography

[91] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew
Ng. Reasoning with neural tensor networks for knowledge base com-
pletion. In Advances in neural information processing systems, pages
926–934, 2013.

[92] Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett,
Yangfeng Ji, Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill
Dolan. A neural network approach to context-sensitive generation of
conversational responses. arXiv preprint arXiv:1506.06714, 2015.

[93] SQLML. Recurrent neural network. http://sqlml.azurewebsites.

net/2017/08/12/recurrent-neural-network/.

[94] Amanda Stent, Matthew Marge, and Mohit Singhai. Evaluating eval-
uation methods for generation in the presence of variation. In Inter-
national Conference on Intelligent Text Processing and Computational
Linguistics, pages 341–351. Springer, 2005.

[95] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. In Advances in neural information
processing systems, pages 3104–3112, 2014.

[96] Tensorflow. Neural machine translation (seq2seq) tutorial. https:

//github.com/tensorflow/nmt.

[97] The Seattle Times. Baidu research chief andrew ng fixed on self-
taught computers self-driving cars. https://www.seattletimes.

com/business.

[98] Trieu H Trinh, Andrew M Dai, Thang Luong, and Quoc V Le. Learn-
ing longer-term dependencies in rnns with auxiliary losses. arXiv
preprint arXiv:1803.00144, 2018.

[99] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representa-
tions: a simple and general method for semi-supervised learning. In
Proceedings of the 48th annual meeting of the association for com-
putational linguistics, pages 384–394. Association for Computational
Linguistics, 2010.

[100] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems,
pages 6000–6010, 2017.

[101] Oriol Vinyals and Quoc Le. A neural conversational model. arXiv
preprint arXiv:1506.05869, 2015.



Bibliography 194

[102] Chris Welch. Google just gave a stunning
demo of assistant making an actual phone call.
https://www.theverge.com/2018/5/8/17332070/

google-assistant-makes-phone-call-demo-duplex-io-2018.

[103] Lilian Weng. from gan to wgan. https://lilianweng.github.io/

lil-log/2017/08/20/from-GAN-to-WGAN.html.

[104] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. To-
wards universal paraphrastic sentence embeddings. arXiv preprint
arXiv:1511.08198, 2015.

[105] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[106] Yu Wu, Wei Wu, Zhoujun Li, and Ming Zhou. Response selec-
tion with topic clues for retrieval-based chatbots. arXiv preprint
arXiv:1605.00090, 2016.

[107] Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang, Ming Zhou, and
Wei-Ying Ma. Topic aware neural response generation. In AAAI,
volume 17, pages 3351–3357, 2017.

[108] Chen Xing, Wei Wu, Yu Wu, Ming Zhou, Yalou Huang, and Wei-Ying
Ma. Hierarchical recurrent attention network for response generation.
arXiv preprint arXiv:1701.07149, 2017.

[109] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend
and tell: Neural image caption generation with visual attention. In In-
ternational Conference on Machine Learning, pages 2048–2057, 2015.

[110] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and
Eduard Hovy. Hierarchical attention networks for document classi-
fication. In Proceedings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 1480–1489, 2016.

[111] Kaisheng Yao, Geoffrey Zweig, and Baolin Peng. Attention with
intention for a neural network conversation model. arXiv preprint
arXiv:1510.08565, 2015.

[112] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neu-
ral network regularization. CoRR, abs/1409.2329, 2014.



195 Bibliography

[113] Yizhe Zhang, Dinghan Shen, Guoyin Wang, Zhe Gan, Ricardo Henao,
and Lawrence Carin. Deconvolutional paragraph representation learn-
ing. In Advances in Neural Information Processing Systems, pages
4172–4182, 2017.

[114] Barret Zoph and Quoc V Le. Neural architecture search with rein-
forcement learning. arXiv preprint arXiv:1611.01578, 2016.


