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questo lungo percorso, chi sarà per sempre detentore del mio amore e della mia
gratitudine, chi mi ha spinto sin dal primo giorno e chi mi ha reso l’uomo che
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Abstract

Nowadays the UAVs (Unmanned Aerial Vehicles) represent a wide field of research
and development because of the versatility shown in a lot of application fields,
both military and civilian. This leads the UAVs to face up with different and
more insidious environments of work, so, in the last years, the navigation system
of drones has continuously improved with new kinds of sensors and technologies.
One of the most challenging way is about the integration of optical technologies
in order to equipped the UAV with the vision. The idea to compute a quantity
called optical flow vector, that represents the relative motion of the environment
around the observer, and integrate it in a position and velocity estimation process,
could improve and make robust the pre-existing navigation system, allowing the
autonomous flight of the UAV in cluttered or indoor environment.

The purpose of this thesis is to integrate an optical flow sensor, called Px4Flow,
on board of an UAV, already equipped with an inertial measurement unit and a
GPS receiver, and to implement a Kalman filter, able to manage this integration,
that gives a reliable estimation of the position and the velocity of the drone. The
first goal to achieve is to identify the output of the sensor by flight test activity
and to find a relation between the optical flow and the UAV velocity that we
want to estimate. The found relation must be integrated in the mathematical
model. For the estimation, in detail, a Kalman filter based on GPS and optical
flow measurements has been implemented. The most important requirement, in
order to reach the purpose of the thesis, is to implement a Kalman filter able to
manage the multi-rate problem given by the different sampling frequency of the
sensors. The thesis presents also a supplementary implementation of the H∞ filter
in a suitable form for the already implemented architecture of the Kalman filter.
The aim of this addition, is to give the possibility to change the performance of
the filter, changing the tuning of the measurement covariance matrix.

The finalization of this work consists of applying the implemented filters on real
data sets collected during indoor and outdoor flights, and evaluate the estimation
results. What we want to state is: if obtaining reliable estimates of position and
velocity in outdoor and indoor environment using the optical flow measurements
is possible; if the GPS and optical flow measurements can be fused together in a
Kalman filter, making the estimate more robust.





Sommario

Al giorno d’oggi, gli UAVs (Unmanned Aerial Vehicls), comunemente noti col
nome di droni, rappresentano un grosso ambito di ricerca e sviluppo, grazie alla
versatilità che, questi velivoli, hanno dimostrato di avere in applicazioni militari e
civili. Questo ha portato i droni ad essere applicati in diverse condizioni ambien-
tali sempre più insidiose, e di conseguenza a cercare di migliorare il loro sistema
di navigazione con sempre più nuove tecnologie e sensori. Una delle idee maggior-
mente stimolanti è quella di introdurre a bordo tecnologie di tipo ottico, in modo
tale da donare la ”vista” al velivolo. L’idea di calcolare una nuova grandezza,
chiamata vettore optical flow, e di integrarla in un processo di stima di posizione
e velocità, potrebbe migliorare e rendere più robusto il preesistente sistema di
navigazione, permettendo, cos̀ı, il volo autonomo del drone in ambienti conges-
tionati o al chiuso. L’obiettivo di questa tesi è di utilizzare un sensore, chiamato
Px4Flow, atto alla misurazione dell’optical flow, ed integrarlo a bordo di un drone
già munito di una IMU (inertial measurement unit) e di un’antenna GPS; quindi
implementare un filtro di Kalman, in grado di gestire questa integrazione, che ci
restituisca una stima affidabile di posizione e velocità del drone. Il primo obiet-
tivo è identificare l’output del suddetto sensore ottico, eseguendo un’attività di
test di volo e trovare quindi una relazione tra il vettore optical flow e la velocità
che vogliamo stimare. Una volta trovata tale relazione si procederà ad integrarla
all’interno del modello matematico su cui verrà utilizzato il filtro di Kalman. Il
requisito fondamentale, è implementare un filtro di Kalman che utilizzi le mis-
urazioni del GPS e di optical flow e che sia in grado di gestire il problema di
”multi-rate” dovuto alle diverse frequenze di campionamento dei vari sensori. Il
lavoro di tesi prevede anche la supplementare implementazione di un filtro H∞ in
una forma adattabile all’architettura del suddetto filtro di Kalman, con l’obiettivo
di fornire la possibilità di far variare le performance del filtro, agendo sulla matrice
di covarianza delle misurazioni. Infine il lavoro è stato finalizzato, applicando il
filtro implementato sui dati reali raccolti durante una campagna di test di volo
interni ed esterni, e valutandone quindi i risultati. Le conclusioni a cui vogliamo
giungere sono: determinare se è possibile ottenere stime affidabili di posizione e
velocità, utilizzando le misurazioni di optical flow, in ambienti interni ed esterni;
determinare se il GPS e l’optical flow possono essere utilizzati insieme all’interno
di un filtro di Kalman, rendendo la stima più robusta.
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Introduction

UAV (Unmanned Aerial Vehicle), usually called drone, is the definition for an
aircraft without a pilot aboard. This kind of vehicle was introduced, before the
WWII, as moving target used to train the gun-shot of military ships and aircraft
of USA military forces.
At the beginning the drones were remotely piloted, nowadays, with the improve-
ment of technology, they turn into vehicles able to autonomously follow a flight
trajectory and this allows them to increase the their range of applications. Thanks
to this ability to execute autonomous flight and to the improved performances,
nowadays, there are a lot of activities which can benefit from the UAVs:

� Military and Security Field: terrorism fight, ISR (Intelligence, Surveil-
lance and Reconnaissance), DDD Roles (Dangerous, Dirty, Dull) , National
Security, Radar Jamming, Ground Attack, Missile Defense, Search and Res-
cue;

� Civil and Scientific Field: agriculture, hobby, 3D mapping, surveillance,
weather monitoring, journalism and photography, products delivery and lo-
gistic, scientific research.

What a drone needs to execute an autonomous flight, is a Flight Control Unit
(FCU) that allows to correct the behaviour of the vehicle in order to reach the
desired position, velocity, attitude, etc. (talking about multi-copter UAVs , due
to their very fast dynamics, the FCU becomes necessary also for remotely piloted
flight). To correct the behaviour of the drone the FCU needs to have information
about the state of the drone (position, velocity, acceleration, attitude, etc.) during
the whole flight. What makes this possible is a navigation system that uses the
integration of different sensors to reach the complete information about the flight:
accelerometer to define the attitude and to know the accelerations, gyroscopes
for a direct measurements of angular rate, barometer for the altitude, and all the
others sensors that could complete the information. All the measurements of these
sensor are fused in a state estimation process.

What really changes the navigation system and allows the wide growth of
UAVs in the civil and military field, is the development of GPS technology, giving
us a direct position measurement available all around the world.



2 Introduction

Some of the UAV applications presented above underline the need to have a
good operative UAV in cluttered environment like urban and indoor environment,
where the GPS loses its efficiency, thus the navigation system cannot rely position
and velocity measurements; in this scenario the vehicle does not have the necessary
elements for the state estimation to execute an autonomous flight and from this
reason, a new idea was born : to provide a completely independent sensor based
on the optical technology, that becomes the eye of the drone. The idea is to
compute a new vector called optical flow, that describes the apparent motion of
the environment with respect to the UAV, and to use this measurement to obtain
the velocity of the drone. Nowadays this optical technology begins to be enveloped
and different sensors exist which can compute the optical flow vector. The aim
of this thesis work is to obtain a navigation system that includes the optical flow
sensor, and based on a filter able to fuse the GPS and optical flow measurements in
order to obtain a reliable estimate of UAV position and velocity. The application
of this filter on real data sets can gives answers about the possibility to rely on
this estimation to navigate during outdoor and indoor flights.

To reach this purpose the optical flow sensor, named Px4Flow, must be in-
tegrated on board and used to supply optical flow measurements for the state
estimation. The implementation of a Kalman filter is needed to reach reliable es-
timate results, managing the multi-rate sampling frequencies of the sensors. The
flight test campaign, consisting of outdoor and indoor flight tests, supplies the
logged data sets useful for the application of the implemented Kalman filter.

The structure of this thesis is presented in this order:

� formulation of the navigation problem and the description of the different
navigation systems;

� definition of the optical flow and identification of the relation between the
optical flow sensor output and the UAV velocity;

� presentation of the estimation theory with focus on the discrete-time Kalman
filter theory and definition of a form of the H∞ filter suitable with the
Kalman filter architecture;

� description of the implemented mathematical model, Kalman filter and H∞
filter;

� description of the experimental set-up including hardware integration of the
optical flow sensor on the UAV, and its lens calibration;

� presentation of experimental results.



Chapter 1

Problem formulation

1.1 Navigation system definition

Navigation is an ancient discipline that consists in the ability to know and mon-
itor the position of a craft or a vehicle moving from a place to another. In the
aeronautical world it is essential since the first decades of the twentieth century
and it have had a continuous growth correlated to the improvements reached in
the field of sensors. The earliest aircraft were navigated visually for most of the
time, so the two main aims of navigation, knowledge of position and velocity of the
aircraft and the knowledge of its attitude, were achieved in that way or by ”data”
from very simple but efficient sensors as a barometer for the pressure altitude,
anemometer for the airspeed, magnetic compass for the heading, artificial hori-
zons and turn-and-bank indicators to help the aviator to ”estimate” the attitude
especially when the view is poor because of clouds or other natural or artificial
reasons. This pack of primitive sensors allows the pilot to know the state of the
vehicle, especially in the short period; for the long period navigation he had not
other advices in addition to the compass, the maps and some natural or artificial
landmarks on the ground. One of the first techniques developed to improve the
estimation of the position during flight, is ”dead-reckoning” computation. The
idea of this method is to know, with the highest precision possible, the value of
the speed of the vehicle (without the wind speed contribute) and its true head-
ing, to compute the North and the East components of the velocity; from this,
the computation of the position by mathematical integration is possible. This
method gave, of course, before the advent of other technology as the GPS, the
best estimation between two fixed point. The cumulative errors given by the in-
tegration affect the estimate proportionally to the length of the journey and for
this reason step by step, different advices were introduced to have more fixed po-
sition information during a flight (think to the large envelope of radio-navigation
systems during and after the WWII; for more informations [3].

The field of this thesis work is the navigation of UAVs that since their first
debuts during the two world wars, need a navigation system especially for the
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absence of an on-board pilot. Focusing on this category of vehicles we can talk
about three different combinations of sensors and methods representing a naviga-
tion systems :

� inertial navigation;

� inertial plus satellite-radio navigation;

� inertial plus satellite-radio navigation plus vision systems.

Before to explain the pros and cons of these navigation systems, it is better
to describe in this chapter some concepts and formalism useful to understand the
following discussions.

1.2 Reference frames

1.2.1 Geodetic spherical frame

Nowadays the model used for the Geodetic spherical frame is the WGS 84. The
WGS 84 coordinate system is a right-handed, Earth-fixed orthogonal frame, based
on an ellipsoid formulated in the 1984, that approximates very well the surface of
the Earth. According to the definition given by the U.S Defense Mapping Agency
[1], it is possible to state what is described in Figure 1.1. The origin is placed on
the Earth’s center of mass; using the definitions given by the International Earth
Rotation and Reference Systems Service (IERS), the ẑ axis has the direction of
the IERS Reference Pole (IRP); the x̂ axis is generated by the intersection of
the IERS Reference Meridian (IRM) and the plane passing through the origin
and normal to the ẑ. The ŷ axis completes a right-handed orthogonal coordinate
system. The identification of the position of a vehicle in this reference frame is
done through three quantities:

� longitude −→ the angular distance with respect to the Greenwich Meridian,
that is the meridian of reference;

� latitude −→ the angular distance with respect to the Equatorial plane;

� altitude −→ the distance from the origin of the system to the vehicle.
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Figure 1.1: The WGS 84 reference frame [1]

1.2.2 Navigation frame (Earth, NED)

Known also as ”Earth frame” , it is a right-handed orthogonal frame with the
origin placed on a generic point on the Earth’s surface, for example the place of
take-off. The first and second axes x̂n, ŷn define the horizontal plane tangent to
the surface of earth for altitude equal to zero and parallel to it for altitude higher
than zero. The x̂n axis points to the North and the ŷn axis points to the East; the
third axis , ẑn, has the direction of the gravity, pointing downwards. For these
features it is often referred as NED (North-East-Down). (For more information
[4])

1.2.3 Body frame

This right-handed orthogonal frame has the origin on the center of gravity of the
aircraft. The first axis, x̂b is defined parallel or coincident to the longitudinal axis
of the aircraft body, pointing to the front. The ẑb points downwards lying on the
longitudinal plane while the ŷb points to the right creating a right-handed orthog-
onal system. The main property of this coordinate system is its being attached
to the vehicle, changing its orientation with it. This make it very useful for the
writing of the dynamics equation thanks to its constant inertial characteristics.
(For more information [4])
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1.3 Rotation formalism

1.3.1 Euler angles

All the reference frames described in the previous section, could be involved in
a navigation system, especially because of the different nature of the data set
coming from the sensors. For this reason, there is the need to switch from one of
these Cartesian coordinate systems to another, and this is based on the definition
of three independent parameters that allow us to describe the relative orienta-
tion between two different reference frames. The Euler angles (φ, θ, ψ) are three
independent angular parameters that can reach this aim.

Adopting the to-from notation, a rotation matrix from system E to system D
(considering the two systems with the origins in the same place with differently
oriented axes) might be named RD

E . Thus, a vector vE in system E can be resolved
to system D, that is vD through the matrix operation:

vD = RD
EvE (1.1)

The matching between the two set of axes is obtained by a sequence of three
rotations (one per axis). In light of this it is easy to understand how these rotation
matrices work: the rotation about the X axis does not change the component of
the vector directed along the X axis, but it rotates the Y and Z components.
The rotation matrix that does this transformation is

RX(Φ) =

 1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 . (1.2)

In a similar fashion, fixing a different axis each time we obtain the other two
rotation matrices:

RY (Θ) =

 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 , (1.3)

RZ(Ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 . (1.4)

The concept of rotation of a coordinate system with respect to another needs
the definition of a triad of axes as the non-rotating one; it will represent the
starting point for the rotations of the other triads. One of the most important
properties of this approach is the orthonormality of the rotation matrices, which
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means orthogonality and unit magnitude of the columns of matrices seen as vec-
tors. Mathematically this is expressed as:

R−1X (φ) = RT
X(φ),

R−1Y (θ) = RT
Y (θ), (1.5)

R−1Z (ψ) = RT
Z(ψ).

In this way we are able to manage any number of rotations.
The resulting cascade can be reduced to a rotation about just three axes. The
matrix that performs this specific action is called an Euler rotation matrix and
has the following definition:

TBE (φ, θ, ψ) = RX(φ)RY (θ)RZ(ψ) . (1.6)

The subscripts B and E stand for ”Body” and ”Earth”, respectively. The
matrix TBE resolves an Earth-based vector to body axes:

TBE (φ, θ, ψ) =

 CθCψ CθSψ −Sθ
SφSθCψ − CφSψ SφSθSψ + CφCψ SφCθ
CφSθCψ − SφSψ CφSθSψ − SφCψ CφCθ

 , (1.7)

where a shorthand notation, which is Ca = cos(a) and Sa = sin(a), has been
adopted.
The following is the transformation related to velocity vectors mathematically
explained:

re =

 N
E
D

 , ve =

 Ṅ

Ė

Ḋ

 = ṙe, (1.8)

vb = TBE (φ, θ, ψ)ve =

 u
v
w

 , (1.9)

where re is the position vector of the aircraft center of gravity in inertial
(Earth) axes, ve is the velocity of the aircraft with respect to the Earth, and vb is
the inertial linear velocity of the aircraft, resolved to body axes.

We can also define the vector of angular position of the aircraft body frame
with respect to the Earth, resolved to the Earth where the elements are the
respectively roll, pitch and yaw angles.

αe =

 φ
θ
ψ

 . (1.10)
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(a) No gimbal lock (b) Gimbal lock

Figure 1.2: Rotation singularity

1.3.2 Quaternions

The three equations coming from the Euler rotation matrix represent a convenient
tool to manage the rotation between different triads of axes but the system they
compose has singularity issues. This mathematical singularity known as ”gimbal
lock”, takes its name from the correlated physical phenomena observable in the
old mechanical gyroscopes which use three gimbals (one for each axis) to give in-
formation about the attitude. Using this kind of sensor, when the vehicle executes
a vertical flight, the pitch gimbal and the yaw one become aligned; this lead to
a situation where it is impossible to distinguish between a rotation in roll or in
yaw, as we can see in Figure 1.2.

It is well known that no global (singularity-free) three-dimensional parametri-
sation exist for rigid body attitude, but it is possible to formulate a four dimen-
sional, singularity-free parametrizations to apply to this problem. Considering
the latter type, the most common and widely used formulation is the quaternion.
It can be defined as follows:

q =


q1
q2
q3
q4

 . (1.11)

It can be explained in terms of Euler axes (e) and angle (ϑ):

q =

[
ρ
q4

]
, (1.12)

where

ρ =
[
q1 q2 q3

]T
= e sin

ϑ

2
, (1.13)
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q4 = cos
ϑ

2
. (1.14)

In order to manage the rotations between different coordinate systems, using
the quaternion formulation, an attitude matrix is defines as:

A(q) =

 q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) −q21 − q22 + q23 + q24

 . (1.15)

For a better knowledge of this parametrization it is better to specify some
useful properties. The q has a unit-norm constraint expressed as:

qT q = 1, (1.16)

in this way , from a geometric point of view, the set of all admissible quater-
nions spans the unit-sphere in the four dimensional Euclidean space R4.

The unit quaternion is given by [0 0 0 1]T that means A = I3. While the
inverse of a quaternion is given by:

q−1 =

[
−ρ
q4

]
. (1.17)

Different quaternions represent different attitude states, thus different attitude
matrices represent different rotations. It could be necessary to concatenate prod-
ucts by these matrices. The product and quotient operation for two quaternions
q′ and q′′:

A(q′′)A(q′)⇔ q′′ ⊗ q′
A(q′′)A(q′)T ⇔ q′′ ⊗ q′−1 (1.18)

with the quaternion product operator :

q′′ ⊗ q′ =


q′′4 q′′3 −q′′2 q′′1
−q′′3 q′′4 q′′1 q′′2
q′′2 −q′′1 q′′4 q′′3
−q′′1 q′′2 −q′′3 q′′4

 q′. (1.19)

For the application of this thesis work this discussion about the quaternion
formulation is sufficient. For more details, especially about the time evolution so
the time derivative, it is suggested to see on [4].
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1.4 Different navigation system configurations

In the following paragraphs the three types of navigation systems introduced above
are discussed to focus on the motivation of this thesis work and how an optical
sensor could theoretically be a good choice to improve the pre-existent systems
for UAVs.

1.4.1 Inertial navigation system

The inertial navigation system (INS) represents one of the earliest examples of
multi-sensors configuration. It evolved from the fire control technology imple-
mented for the guidance of missiles since the years before WWII, and from the
marine gyrocompass (a sensor that uses the efficiency of gyroscopes in the short
period and the reliability of compass measurement in long range missions). At
the beginning this kind of system had much fortune in ships , as well as in mis-
siles, especially because of its size and weight, but with the improvement of such
technology the INS started to appear also on aircraft. Its operative principle is
to recover information of position, velocity and attitude starting from measure-
ments supplied by accelerometers, gyroscopes and, sometimes, a compass. For
the first time in history a computer on board became necessary (analog and then
digital) able to fuse all these different data and give back the desired information.
What the computer did on data, basically was to take the measured acceleration
and , like in the dead-reckoning technique, integrate it in time twice, obtaining
first the velocity and then the position, while the information about the attitude
was recovered from gyroscopes, which measure the angular velocity, and from the
compass for the heading. This process must be done on all the three axis of the
chosen reference system. At the beginning this was possible thanks to the me-
chanical gimbals which isolate the sensors from the rotations of the vehicle, in
order to fix accelerometers and gyroscopes on a unique orientation, today thanks
to the technological improvements it is possible to benefit from the strap-down
inertial system. This modern sensor platform is fixed to the aircraft and this lead
to have measurements with respect to the body frame (giving us the possibility
to use the projection of the gravity acceleration, felt by the accelerometer, on the
three axis, in order to obtain the attitude of the body frame with respect to the
navigation one). The actual strap-down platform can be very light in weight and
power consumption, precise and cheap, thus ideal for the navigation system of a
UAV; it is appropriate to analyse the pros and cons of the pure inertial navigation
system.

1.4.1.1 Advantages

� High data rates and high bandwidths;
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� completely independent from the external world, so non-jammable;

� its data are reliable at all latitudes of the Earth (including the polar regions);

� the most accurate advice for the measuring of the azimuth.

1.4.1.2 Disadvantages

� Due to the cumulative errors given by the integration steps, the position
and velocity information degrades with time;

� the accuracy of the navigation information could be affected by the dynamics
of the vehicle.

1.4.2 Inertial and satellite radio navigation system

The main disadvantage of the INS is the degradation of the estimation of position
and velocity with time. Of course this represents a huge problem for long range
missions, so, during the decades, the technological progress tried to fix it imple-
menting the radio navigation system. It means the creation of a ground segment
able to transmit, through radio signals, information of position and velocity to the
vehicle, reducing the time interval in which the navigation must rely only on the
inertial platform. During the second half of the 20th century, great improvements
have been made in this direction, but there was the need to implement something
able to supply measurements of position and velocity all over the world. The
answer has been the use of satellites. The United States of America created the
first satellite navigation system, the NAVSTAR Global Positioning System, better
known as the GPS (nowadays others systems and constellations exist, co-working
for the GNSS, Global Navigation Satellite System).

1.4.2.1 Work principles

Focusing on its working principles, the satellite radio navigation system is basically
composed by a space vector (satellites), ground vector (ground control station for
the manage and the upload), a user vector represented by a receiver antenna. The
latter receives the signal and computes the distance from the satellite, knowing
the velocity of the signal and the time interval used to reach the target. The
precise identification of the position is based on the concept of trilateration: the
computed distance from the satellite represents the radius of a sphere, so it can
not define a single point, but the intersection of three spheres allow to find the
position of the vehicle, as seen in Figure 1.3.
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Figure 1.3: Trilateration of satellites

The process described above is based on the assumption that the epoch times
of the satellites and the receiver are known and synchronized; but the clock of the
user cannot have the same accuracy of the atomic ones integrated on the satellites.
For this reason there is the need to continuously correct this time information of
the receiver, and this means to add another unknown variable to the system. It is
clear that a fourth satellite is necessary to execute this time correction. In light
of this we can state that the space segment must supply at least four satellites to
the receiver.

This is acceptable in the ideal case where the intersection of three spheres gives
back a unique point. This is not true in reality where this intersection has as result
a small region around the exact solution point. To reduce this uncertainty region
more spheres must be intersected, thus other satellites need to be available in the
observable sky by the receiver. Focusing on the Gps’s constellation, it consists
of 24 operative satellites distributed on six orbits, so four on each orbit, equally
spaced (60◦ apart). This large space segment allows to have always a sufficient
number of satellites to reach a position and velocity measurement. The choice
of visible satellites is crucial to reduce the uncertainty and the criteria used to
chose, by the receiver, is their spread in the sky. Operatively it is translated
into a numeric parameter named DOP (Dilution of Precision) that suggests which
satellites are better to chose. See [3].

1.4.2.2 Sources of errors

� Ionospheric refraction, due to the high ionization, thus large presence of ions
and free floating electrons, of the atmosphere in its outermost layer;
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� tropospheric refraction, in the innermost layer of the atmosphere where the
satellite signal is affected in function of temperature, pressure and humidity;

� multi-path, that is an error given by the reflection of signals on the environ-
ment around the receiver as easily represented in Figure 1.4;

� receiver noise;

� time error;

� typology of the used signal. Depending of what user we are, we are autho-
rized to receive a particular signal.

Figure 1.4: Multipath signals

With the modernization of the system and the implementation of new tech-
niques, some of these errors have been reduced or completely compensated, but
the source of error for this navigation system are numerous. For a complete dis-
cussion on the errors and correlated compensation, read on [3]

Below, pros and cons of this navigation system are summarized.

1.4.2.3 Advantages

� The use of the GPS gives a direct measurement of position and velocity,
fixing the dead-reckoning of the inertial system, and for a UAV this means
the possibility of outdoor automatic and autonomous flight;
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� it adds an accurate information of time;

� a space segment for the transmitters allows us to have this information in
every geographic region on the Earth.

1.4.2.4 Disadvantages

� slow rate of information, especially if it is compared with the inertial sensors;

� possibility to be jammed;

� not reliable indoor or in very clustered environments;

� actually the most reliable and efficient satellites system is the GPS and it
is a property of the United States Department of Defense, which for any
reason can decide to put it out of service or to degrade the signal.

1.4.3 Inertial, satellite radio and optical navigation system

The disadvantages shown by the satellite navigation system become worse if we
focus on the field of application of this thesis work, UAV navigation. For a drone it
is more probable to execute missions indoor or in a cluttered environment such as
the urban one, and if the aim is to reach autonomous flight for this kind of vehicle,
it is necessary to think about a new generation of sensors that can fix this issue.
Thanks to the large improvements in visual technologies and image processing,
the idea to use the vision to accomplish this task was born. The integration of
the inertial-satellite navigation system with an optical sensor able to give position
and velocity information in scenarios where usually the Gps loses its efficiency,
could increase the field of application of UAVs. The other important aspect is
the possibility to have a completely independent navigation system, without any
kinds of external infrastructure, and always reliable. Nowadays this new kind of
optical sensor has become popular and basically what the research has done is
to give to the drone the ability to use a visual course guidance navigation as the
first pilots. The idea is to measure how the vehicle is moving, observing how the
environment has moved with respect to it. The leading actor of this navigation
system is the ”optical flow”; the quantity that represents the apparent motion of
the scenario around the UAV. The optical flow vector will be deeply discussed in
the next chapter. In the following there is a brief summary of the pros and cons
that we expect before to implement and test this navigation system.

1.4.3.1 Advantages

� Position and velocity information indoor and in cluttered environment;

� completely independent navigation system;
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� data rate higher than data from GPS.

1.4.3.2 Disadvantages

� Degraded quality of measurements with bad visual condition (weather or
brightness condition);

� altitude limitation;

� need of features to observe to feel the apparent motion of the scenario, so
not completely smooth surface.





Chapter 2

Optical flow

2.1 Definition of optical flow

The concept of optical flow can be described as the apparent motion of what be-
longs to the environment all around the observer. When we move, the perception
of visual world give us a continuous feedback of the motion allowing us to know
the depth and the relative velocity of an image.[5]

With this information, our brain is able to estimate our position and velocity.
The study of this phenomenon is not a modern activity, in fact the first person
who focused his knowledge and efforts to give a scientific and psychological expla-
nation to it, was James J. Gibson with his first work in 1950 : ”The Perception
of the Visual World”. His idea was born right from the world of vehicles. Dur-
ing World War II , Gibson served in the USA Army Air Force, in the Aviation
Psychology Program, where his aim was to understand how the pilots fly without
instrumentation, simply based on what they see and how the scenario changes out
of their cockpit. [2]

Figure 2.1: Optical flow (flying forward) [2]
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Figure 2.2: Optical flow (flying to the left) [2]

The Figure 2.1 and Figure 2.2 were drawn by Gibson, after he spent entire
days observing and analysing dozens of flights, and they represent respectively
the motion of the scenario while the aircraft goes forward (Figure 2.1) and the
motion of the scenario while the aircraft goes to the left (Figure 2.2). These two
drawings are a real simple and clear explanation of what optical flow means; here
the scientist tried to represent the apparent motion of each portion of the scenario
observed by the pilot, using this drawn arrows that show the direction and the
sense of this field of motion, and also its magnitude: looking at the two pictures,
we can immediately appreciate , thanks to the size of the arrows, that an image
closer to the observer moves faster.

Another example of how much reliable could be the visual motion for naviga-
tion, comes from flying insects (Figure 2.3). They rely mainly on optical flow to
navigate efficiently during their flight maneuvers such as: terrain following, tunnel
crossing, adjusting their speed in very cluttered environment. [6]

2.2 Computation of the optical flow

The application of this principle to UAV navigation needs the definition of the
optical flow as a field of vectors.

The necessary elements to do that are: a camera able to catch the apparent
motion of the environment frame by frame and an algorithm to compute the op-
tic flow vector. There are different techniques for this computation (classified as
differential, matching, energy-based, phase based) but in this work we are not
going to focus on their mathematical equations. It is useful to know just the basic
idea used to obtain the optical flow vector by the sensor, chosen for this work,
i.e., the Px4Flow. In this case optical flow estimation is based on the Sum of
Absolute Differences (SAD) block matching [7]. It consists in the observation of a
search area of ±4 pixels with respect to the point given by the intersection of the
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Figure 2.3: Insect optical flow

observed surface and the perpendicular line coming from the centre of the lens
of the camera. The 8x8 pixels block is defined and compared frame by frame,
looking at how much a single pixel has moved from an image to the next. The
SAD is used to identify the same portion between the old frame and the new one
(for a better understanding see Figure 2.4).

2.3 Integration of the optical flow in the naviga-

tion system

For our purposes the camera has been fixed in a looking downward position to use
the features of the floor for the block matching algorithm. The aim of this work
is to take the output optical flow vector computed into the sensor and use it as
and indirect measurement of the translational velocity (x,y plane) of the UAV. It
is necessary to understand its behaviour to execute the sensors integration in the
right way.

2.3.1 Angular compensation

The optic flow data, supplied by the sensor, represent the relative motion of the
environment around the drone and for this reason they don’t take into account if
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Figure 2.4: Block matching by SAD

this apparent motion is due to a translational or an angular velocity of the UAV.
A multi-copter flies thanks to the thrust given by its propellers. When the drone
is levelled this thrust is vertical and it is possible to stay in hover or to reach a
chosen altitude. If we want to follow a different trajectory the multi-copter has to
rotate and generate an horizontal component of the thrust, like in the scheme of
Figure 2.5. For this reason, for the conventional configuration of a multi-copter
UAV, is impossible to execute a translation without a rotation in pitch or roll
(depending on the direction of the translation).

Figure 2.5: Multi-copter coupling between translational and rotational motion

For the camera a change in attitude is a motion of the image of the floor(Figure
2.6), as well as a change in longitudinal or lateral position, so it becomes necessary
to post-process the optical flow data in order compensate the contribution of the
rotation. To accomplish this task the attitude of the UAV must be known. In
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particular the angular velocity about the x̂ and ŷ body axes can be measured
using the set of gyroscopes that are implemented on board.

Figure 2.6: Apparent motion due to rotation

2.3.2 Ground altitude scaling

A moving object could appear more or less faster depending on the distance from
the observer and this affect the optical flow computation. To understand how, it
could be useful to think that the camera works the images placed on an imaginary
sphere that have the centre equivalent to the position of the camera, and the radius
equal to the ground distance. The same value of optic flow could be the result
of a faster motion with higher ground distance , or a slower motion with a lower
ground distance. This can completely void the estimation of the velocity, so the
navigation system must have the measurement of the distance from the flow at
each time instant. It is important to underline that what we need is something as
a sonar or laser sensor that lets us to know the ground distance, not a barometer
because it is necessary to feel every single vertical change of the observed floor
surface.

2.3.3 Integration of the optic flow in the navigation system

The chosen scheme to integrate the optical flow with the other sensors, described
in Figure 2.7, requires:

� optical flow sensor for the optical flow vector (flow); accm supplied by the
accelerometers; gyroscopes for the angular velocities (wm); a sonar sensor
for the ground distance (h), GPS receiver to have a comparison with the
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velocities estimated from the optical flow data or to implement a position
and velocity estimation with the redundancy of the two sensors.

� the attitude inputs (q̂) needed for the position (p̂) and velocity (v̂) estima-
tion, supplied by an attitude estimator.

Figure 2.7: Scheme for the on board integration of the optical flow

2.4 Optical flow equations

What we need from the optical flow sensor is an output useful to indirectly esti-
mate the velocity. The optical flow is definitely related to it but we don’t know
how and there is not a literature that can suggest some kind of equation. The
procedure to identify the output of the sensor and its relation with the velocity
of the UAVs, has been based on:

� Knowledge of the physics of the optical flow (explained in Chapter 1);

� knowledge of the firmware implemented in the sensor;

� comparison with the available velocity measurements coming from the GPS.

The optical flow could be seen as a rotation of the environment sphere around
the observer. For this reason we can suppose it, dimensionally, as an angular
velocity expressed in [rad/s].
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The velocity, that is the target, is expressed in [m/s]; so, according to the
kinematic equation of a generic rotational motion as shown in Figure 2.8 , it is
possible to write:

vfloor = ε h , (2.1)

v = −vfloor , (2.2)

with ε = optical flow vector; v = UAV velocity; vfloor = floor apparent
velocity; h = distance between the floor and the camera.

Figure 2.8: Optical flow and velocity relation

Taking into account the reference system orientation and both axes of interest:

{
vx = εy h (2.3)

vy = −εx h . (2.4)

The different sign in the two equations above is due to the reference system
as represented in Figure 2.9 (a) and Figure 2.9 (b) to the way used by the sensor
to compute the optical flow. In Figure 2.9 (a) the drone is moving forward and
this means, in UAV body reference frame, along the x̂ axis, and this leads to an
apparent translational velocity of the floor in the opposite direction (−x̂). The
floor could be approximated as a little portion of the circumference around the
sensor that, rotating, generates the optical flow (the flowing images in front of
the camera). If we consider the flow vector as an angular velocity around the ŷ
axis (εy−true in the figure), it will be negative in this case (its spin axis points in
the opposite direction of ŷ); but the sensor is implemented to give, as an output,
the optical flow vector with a change in sign (εy in the figure), to allow the direct
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(a) Flow moving forward (b) Flow moving to the right

Figure 2.9: Flow sense

recover of the UAV velocity , without passing through the floor apparent velocity.
In light of this a positive value of flow along the ŷ axis is correlated to a positive
value of velocity in the x̂ axis.
The visual circumference around the camera, according to how it was defined
above, has radius equal to the ground distance h. For our application, also h
will be supplied by a sensor, in particular by an on-board sonar. Multiplying the
introduced vectors it is possible to write equation (2.3).

In Figure 2.9 (b) where the drone is moving to the right, so along the ŷ body
axis, it is clear that, in this situation, the flow vector spin axis is equal to x̂
in positive sense(εx−true in the figure); but according to the same reasoning, the
optical flow from the sensor is available with the opposite sign (εx in the figure),
so we obtain equation (2.4), that shows how a positive value of velocity in ŷ axis
is correlated to a negative value of the flow around the x̂ axis.

Comparing the output data of the optical flow sensor with the measured angu-
lar velocities, we observe there is a constant offset between them. The knowledge
of the firmware implemented on the sensor suggests to us that the sensor computes
the optical flow integrating the angular velocity of the flowing images on camera,
so its output is a delta angle. The constant offset is due to the integration time
step equal to 0,1 [s]. The equations become:


vx =

flowy
dt

h (2.5)

vy =
−flowx
dt

h , (2.6)

with dtPx4Flow = 0.1s .
Until now, we have assumed that the UAV does not change its attitude, but,
as described above, it is impossible for a conventional multirotor UAV (with no-
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tilting arms), to execute a translational motion without an attitude variation. In
the equations (2.5) and (2.6) it is necessary to introduce the angular compensation
discussed before, to avoid a wrong estimation of the velocity. The idea is to
subtract the portion of optical flow generated by the rotation, keeping in mind
that a positive angular velocity leads to a negative optic flow value and vice versa;
so to take the angular rate information from the on-board gyroscopes and act as
follows:


vx = (

flowy
dt

+ ωy)h (2.7)

vy = −(
flowx
dt

+ ωx)h (2.8)

where ωx is the angular velocity in x body axis and ωy is the angular velocity
in y body axis.

Equations (2.7) , (2.8) represent the ultimate relations between the velocities
in x̂ and ŷ body axis and the optical flow vector. Rewriting and making them
explicit with respect to the two component of the flow vector we will have the
following equations to use in the mathematical model that we are going to use for
the estimation problem. The equations are:

flowx = (−vy
h
− ωx) dt (2.9)

flowy = (
vy
h
− ωx) dt . (2.10)





Chapter 3

Filtering estimation theory

In this chapter we briefly describe the estimation theory and the different ways
to approach it, then focusing on our interest: the Kalman filter theory. All the
equation and requirements of the Kalman filter algorithm are presented and de-
scribed. In the last part of this chapter the H∞ filter theory is presented focusing
on its suitable form for the Kalman filter architecture.

3.1 Estimation theory

This chapter describes in general the state estimation theory, focusing on the
filtering technique, that allows a real-time state estimation useful for on board
application where it is necessary to have reliable information about the state
vector (composed by position, velocity, attitude and all the other quantities that
we want to estimate) at each time instant. In light of what has been described
in the Chapter 1, it is clear that the navigation system could consists of various
configurations of sensors with their advantages and disadvantages. The estimation
theory gives us the tools to overcome individual sensor deficiencies obtaining a
multi-sensor system designed to provide reliable and accurate estimation of the
vehicle state vector, for all required flight conditions.

3.1.1 General overview

The aim of a navigation system is to allow the knowledge of the state vector of
the vehicle at each time instant. In an ideal world this could be achievable simply
reading the measurements of the on board sensors. In the reality , on the contrary,
there are a lot of issues which make this simply way not executable. For example
the noise of the sensors that affects the measurements, and all the other items
which make the problem stochastic and not deterministic; for this reason there is
the need to approach the problem in a statistical and probabilistic way, in order
to take into account the uncertainties of the whole system. The other advantage
to solve the navigation problem in this way is to have information about the state
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variables with the same rate and, in most of the cases, with an higher rate with
respect to data rate of the single sensor.

In a stochastic system, there are random variables in the system equations, so
the envelope in time of the state variables must be estimated using a statistical
method. There are many possible formulations of the state estimation problem,
and before to briefly described them, focusing later on the state estimation for
our application, it is better to define, in this paragraph, what is meant with
stochastic problem. The problem can be formulated in different ways depending
on the modelling assumptions:

� continuous-time dynamics and continuous-time measurement process;

� continuous-time dynamics and discrete-time measurement process;

� discrete-time dynamics and discrete-time measurement process;

According to what we have done in this thesis work, we are going to formulate
the problem as a discrete-time dynamics with discrete-time measurement pro-
cess. We introduce a generic discrete-time linear stochastic system modelled as
suggested in [8]:

x(k) = Φ(k − 1)x(k − 1) + Γ(k − 1)u(k − 1) + Γw(k − 1)w(k − 1) , (3.1)

y(k) = H(k)x(k) +D(k)u(k) + v(k) i = 1, 2, ...., N , (3.2)

where x is the state vector, y is the output vector, z is the measurement vector
and u is the input vector. The two noises w and v are, respectively, the process
noise, accounting for disturbances and model uncertainty and the measurements
noise acting on the output of the system. It is important to state that they are
two white Gaussian noise processes. The Bayesian model for uncertainties is given
as:

E[x(0)] = x̄0 E{[x(0)− x̄0][x(0)− x̄0]T} = P0 , (3.3)

E[w(i)] = 0 E[w(i)wT (j)] = Q(i)δij , (3.4)

E[v(i)] = 0 E[v(i)vT (j)] = R(i)δij , (3.5)

where x(0), w(i) and v(i) are uncorrelated.
In addition, we introduce and define some notation useful for the understand-

ing:

� x̂k indicates the estimate of the state at the tk = k∆t time instant;

� ek is the error vector in the estimate x̂k, defined as ek = x(k)− x̂k ;
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� the state error covariance matrix is Pk = E[eke
T
k ] .

For the system specified above, assuming to have data over the time interval
from 0 to tk, we can formulate three different estimation problems (see Figure
3.1):

� for t > tk ⇒ prediction, estimates how something will be in the future,
based on what informations are available until now;

� for t = tk ⇒ filtering, for the estimation in the current time instant, thus
useful for real-time applications;

� for 0 < t < tk ⇒ smoothing, that can increase the accuracy of the estimation
but knowing the whole data set, thus not applicable in for real-time purposes.

Figure 3.1: Estimation approaches

3.2 Filtering theory

The navigation system is something that the vehicle needs during the flight to
know, at each time instant, its position, velocity and attitude; for this reason it is
a real-time application of the estimation problem. According to our aims, in this
paragraph the focus goes on the filtering theory and the on-line algorithm used in
this work, to execute it.
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3.2.1 Discrete-time Kalman filter

The Kalman filter is named after Rudolph E. Kalman, who in 1960 published his
famous paper describing a recursive solution to the discrete-time linear filtering
problem. First of all we have to state that the Kalman filter represents an optimal
estimator if all the noises are Gaussian, and it means that the noises have a
probability density function (PDF) equal to the probability density function of
the normal distribution, which is also known as the Gaussian distribution. If this
hypothesis is not confirmed, the Kalman filter represents the best linear estimator
(non-linear estimators may be better). Below we will describe the formulation of
the Kalman filter, basing on the state space model introduced in equations (3.1)
(3.2). Concerning the stochastic terms, the process noise w and the measurements
noise v represent white Gaussian noises with covariance matrices, respectively Q
and R. Some assumption have to be defined, for the sake of simplicity:

� w and v are assumed uncorrelated;

� R and Q are assumed to be strictly positive definite.

It is fundamental to notice that, concerning the convergence to a steady-state
solution for the recursive estimator, there are some minimal assumption needed:

� Observability of Φ and H;

� Controllability of Φ and Q1/2 .

If these two assumptions are satisfied, the asymptotic stability of the plant
model is not necessary, as the filter still guarantees its stability.

The base idea of the Kalman filter, is to supply a recursive estimate (x̂) of the
state variables vector (x) at time k, using input (u) and output (y) data up to the
same time instant k, in order to minimize the variance of the estimation error.
We can imagine the solution to this problem as a particular form of Luenberger
observer

x̂k = Φk−1x̂k−1 +Kk(yk − ŷk) , (3.6a)

ŷk = Hkx̂k, (3.6b)

where the Kalman gain K is computed so as to minimize the variance of the
estimation error

E[(xk − x̂k)T (xk − x̂k)] . (3.7)

In this discussion the Kalman filter is presented in its predictor-corrector form;
in this way the estimation of the state vector is carried out in two different steps :
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� the prediction step at time k consists of a one-step-ahead in the timeline,
simply based on the propagation given by the plant model starting from the
corrected state estimate in time k − 1;

� the correction step at time k uses the computed Kalman gain, correcting
the predicted state from the same time instant k.

The forward propagation through the deterministic part of the model, gives
us the prediction step

x̂k(−) = Φkx̂k−1(+) + Γkuk . (3.8)

The forward propagation step must be applied also in terms of covariances, so

Pk(−) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1 , (3.9)

The best structure for the correction step turns out to be of Luenberger types,
defined as follows:

x̂k(+) = x̂k(−) +Kk(yk − ŷk) , (3.10)

where
ŷk = Hkx̂k(−) . (3.11)

The same idea to extend the prediction also to the covariance matrix, is valid
also for the propagation step. The covariance matrix is updated as

Pk(+) = [I −KkHk]Pk(−). (3.12)

The Kalman filter algorithm needs the numerical positive definiteness of the co-
variance matrix for the estimation error in order to not have stability issues, and
to easily achieve this condition there is a different way to write the corrected
P . This equation, known as Joseph form of the covariance update, is defined as
follows:

Pk(+) = [I −KkHk]Pk(−)[I −KkHk]
T +KkRkK

T
k . (3.13)

What we expect from the state error covariance matrix is that during the
prediction step it becomes higher, because of the uncertainty that characterize a
propagation step. The aim of the correction step is to reduce the values of the
covariance matrix that means the error is going to a convergence, as shown in
Figure 3.2.

We can notice that the main character of the correction step is the Kalman
gain, which is updated in this way

Kk = Pk(−)HT
k [HkPk(−)HT

k +Rk]
−1 . (3.14)
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Figure 3.2: Example of P trend

The above presentation of the general solution to the Kalman filter, assumes
that all the measurements of the model, are sampled at the same frequency, and
that are available simultaneously at the same time instant k. This is an ideal
condition difficult to reach in the reality, where measurements are supplied by
different sensors with different sampling time. In this thesis the chosen solution
to this issue is the sequential update. Its principle is to execute a correction step
for each measurements. It will be described in the next chapter with the correlated
advantages.

3.2.2 H∞ filter

The presented Kalman filter is defined as the optimal solution for the filtering
problem, assuming that the stochastic elements of the model (w and v) are white
Gaussian noise with known covariance matrix, respectively, Q and R; but this
assumptions is difficult to be confirmed in practice, so, over the years, others
solution have been proposed. In this work the best-known alternative has chosen,
the H∞ filter. The purpose is to implement a formulation of this filter, able
to be adapted to the pre-implemented structure of the Kalman filter. In this
paragraph, a brief description of the theory of the H∞ filter will be presented, and
its formulation chosen for this work.

The idea is to have a filter able to optimize the state estimate solution ac-
cording to a chosen cost function, stated that the absolute optimal solution is not
reachable by the Kalman filter, due to the non-Gaussian noises w and v. The
filtering problem is the estimation of

zk = Lkxk , (3.15)
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where zk is named performance outputs vector and represents the quantities
respect of which the optimization is executed, Lk is defined by the user and xk
represent the state vector. The cost function to minimize is formulated as follows:

J1 =
ΣN−1
k=0 ‖zk − ẑk‖2Sk

‖x0 − x̂0‖2P−1
0

+ ΣN−1
k=0 (‖wk‖2Q−1

k

+ ‖vk‖2R−1
k

)
, (3.16)

where x̂0 is the estimate of the initial state; P0, Qk and Rk is the already
presented user-defined covariance matrices; Sk is the new symmetric, positive
definite user-defined matrix; and at last we define the annotation

‖Sk‖2Rk
= STk RkSk . (3.17)

According to the theory, the direct minimization of the cost function J1 is not
reachable, so the approach is to look at the problem as

J1 <
1

θ
, (3.18)

where θ is a performance bound defined by the user.
The problem can be reformulated as

J = −1

θ
‖x0 − x̂0‖2P−1

0
+

N−1∑
k=0

‖zk − ẑk‖2Sk
− 1

θ

N−1∑
k=0

(‖wk‖2Q−1
k

+ ‖vk‖2R−1
k

) (3.19)

requiring to satisfy the condition

J < 1 . (3.20)

The described optimization problem is a min-max one, which can be defined
as

J∗ = min
ẑk

max
wk,vk,x0

J , (3.21)

which means to provide the best performance estimate (ẑk) considering the
worst case about noise processes (wk, vk) and initial condition (x0).

For our purposes, we want a formulation of the H∞ filter, suitable with the
Kalman filter structure (as a guideline for the following discussion [9] has used).
The latter, by means of suitable manipulations can be written as

x̂k+1(−) = Φkx̂k(−) + ΦkKk(yk −Hkx̂k(−)) , (3.22)

Kk = Pk(−)HT
k [HkPk(−)HT

k +Rk]
−1 , (3.23)

Pk(−) = Φk−1Pk−1(+)ΦT
k − 1 +Qk−1 , (3.24)

Pk(+) = [I −KkHk]Pk(−) . (3.25)
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can be easily manipulated and rewritten as

x̂k+1(−) = Φkx̂k(−) + ΦkKk(yk −Hkx̂k(−)) , (3.26)

Kk = Pk(−)[I +HT
k R
−1
k HkPk(−)]−1HT

k R
−1
k , (3.27)

Pk+1(−) = ΦkPk(−)[I +HT
k R
−1
k HkPk(−)]−1ΦT

k +Qk . (3.28)

The H∞ filter is given by

S̄k = LTk SkLk , (3.29)

x̂k+1 = Φkx̂k + ΦkKk(yk −Hkx̂k) , (3.30)

Kk = Pk[I − θS̄kPk +HT
k R
−1
k HkPk]

−1HT
k R
−1
k , (3.31)

Pk+1 = ΦkPk[I − θS̄kPk +HT
k R
−1
k HkPk]

−1ΦT
k +Qk . (3.32)

From this formulation it is clear that if θ −→ 0 then the gain of the H∞ filter
becomes equal to the gain of Kalman filter; on the contrary if θ is chosen larger
and larger, the two filters become increasingly different and it means imposing
tighter bounds on the cost function J .

For the tuning of the H∞ filter, according to our purposes, the choice has been
the following:

zk = yk , (3.33)

which means

Lk = Hk . (3.34)

After this choice, the tuning parameter will be only the diagonal elements
of the matrix Sk, which could be chosen, for example to provide scaling factors
among the outputs:

Sk =

 S1 0 0

0
. . . 0

0 0 Sl

 . (3.35)

In order to have a completely suitable formulation of the H∞ filter with the
Kalman gain structure, we need to recover a predictor/corrector form. Below the
resulting formulation is defined (for deeper discussion see [10]) :
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x̂k+1 = Φkx̂k + ΦkKk(yk −Hkx̂k) , (3.36)

Kk = Pk[I +HT
k R
−1
k HkPk]

−1HT
k R
−1
k , (3.37)

Pk+1 = ΦkPk[I +HT
k R̄
−1
k HkPk]

−1ΦT
k +Qk , (3.38)

having introduced the new ”covariance” matrix

R̄k = [−θSk +R−1k ]−1 , (3.39)

from which it is easy to observe that R̄k −→ Rk for θ −→ 0, reducing to the
measurements covariance matrix of the Kalman filter formulation.

With Rk assumed diagonal, as in our work, and in view of the definition of Sk,
also R̄k is diagonal. Its diagonal elements, according to the equation (3.39), can
be written as

R̄(i, i)k = −θSi +
1

R
[i]
k

. (3.40)

Also in this case, for the well-posedness of the filter it necessary that

R̄k > 0 , (3.41)

and it means

min
i=1,...l

−θSi +
1

R
[i]
k

> 0 , (3.42)

so

θ < min
i=1,...l

1

SiR
[i]
k

, (3.43)

with l = length of the diagonal of R̄k.
This could be a useful guideline for the tuning of the H∞ filter.





Chapter 4

Position and velocity filtering

In this chapter there is the description of what has been implemented in practice,
in order to reach a position and velocity state estimate based on GPS and optical
flow measurements, according to the filtering theory illustrated in the Chapter 3.
The discussion about every choice and assumption will be described below.

4.1 Mathematical model

The used model is a discrete-time kinematic one, based on the relation between
position, velocity and acceleration. It is written as follow:

{
pk = pk−1 + dt vk−1

vk = vk−1 + dt ak .
(4.1)

Where k is the current time instant; p, v and a are respectively the position,
the velocity and the acceleration of the UAV; dt defined as the time step of our
discretization. This equations system represents the time propagation model of
the problem. We can observe that, in order to pass from the continuous-time
model to the discrete one, some choices have been done. The first equation of the
system (4.1) could be seen as a commonly known Backward Euler method that
give us a time propagation that depends only on past value of the state variables.

On the contrary, for the second equation of the system (4.1), the chosen dis-
cretization uses the acceleration at the current time instant, giving back a Forward
Euler formulation, where the propagation in time of the left side state variable
depends on both current e past quantities. Usually this leads to a heavier com-
putational load because of the non linearity of the system (for insights see [11]),
receiving back a best numerical stability situation. In our case the computational
load remains the same and the equation linear, due to the following choice about
the acceleration. In the design phase of the mathematical model, the possibility
to implement a system of two state variables rather than three, has taken into
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account and it has become the final strategy. It means to define the position and
the velocity as state variable, and the acceleration as an input reliable from the
accelerometers. This choice has two main effects:

� the problem to estimate two state variables rather than three;

� the process noise w of the model is given by the accelerometers standard
deviation and it means less possibility of free tuning.

Starting from this model, we define a state-space representation of the model
focusing on each of its elements. Using the same notation introduced in the
previous chapter, the state space model is defined as

xk = Φk−1xk−1 + Γk−1ua k−1 +Gk−1wk−1 , (4.2a)

yk = Hkxk +Dkuw k + vk . (4.2b)

The first equation represents the system (4.1), thus we define the x as the
state vector containing the two state variables, position and velocity in their three
components, so we can write

x =


px
py
pz
vx
vy
vz


NED

, (4.3)

where px, py, pz are the three components of UAV position on the three axes
of the NED reference frame; vx, vy, vz are the three components of UAV velocity
in the NED reference frame.

Φ is the state transition matrix that allows us to execute the time propagation
of the state vector. According to the mathematical model it is defined as follow:

Φ =

[
I3 dtI3
O3 I3

]
, (4.4)

where the subscript ”3” indicates a 3x3 dimension for the related element.
In the state space representation above (equations (4.2a) (4.2b)), we can notice

that the input vector have been split into two vectors: one for the inputs acting
on the state equation and one for that about the output equation. This have been
done simply to get more comfort during the implementation of the filter. In view
of this we have:

ua =

 ax
ay
az


NED

, (4.5)
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where ax, ay, az are the three components of the acceleration in NED reference
frame, which excite the state model;

uω =

[
ωx
ωy

]
BODY

, (4.6)

with ωx, ωy equal to the angular velocity in two axes of the body reference
frame, necessary to execute the angular compensation of the optical flow mea-
surements, as discussed in 2.3.1. For the angular velocity measurements we use
the gyroscopes mounted on board, in particular we can choose between those inte-
grated on the IMU(inertial measurements unit) or those from the optical flow sen-
sor. We have chosen the latter and the reason is about their sampling frequency;
in order to have a more comfortable implementation of the angular compensation
for the optic flow is convenient to use a measurement of angular velocity sampled
at the same frequency of the flow vector.

Γ is the coupling matrix between input vector and state variables vector, and
for our model it is defined as

Γ =

[
O3

dtI3

]
, (4.7)

that shows how the acceleration input excites directly only the velocity. At the
beginning of the section we have stated that the random process is given to the
model by the acceleration input (in the next section the characterization process
will be described). What is necessary to notice for the model is that

am = a+ wa , (4.8)

⇒ a = am − wa , (4.9)

where a is the true acceleration that in an ideal case must be used as input
in our system, but of course, what is available for this task is the measured
acceleration am. The accelerometers return, as it is well known, a measurement
with noise wa. Introducing the equation (4.9) in our model we will have a matrix
(G) that couples the random process noise to the state variables, defined as follow:

G =

[
O3

−dtI3

]
. (4.10)

The second equation ((4.2b)) of the state space model represents the measured
outputs and how they are coupled with the states and the inputs of the system.
For our application the measured output vector y rely on the measurements of
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the GPS and the optical flow sensor (Px4Flow), and we define it as

y =


posx
posy
posz
flowx
flowy

 , (4.11)

where posx, posy, posz come from the GPS and we want them representing the
UAV position components on the three axes of the NED reference frame, for this
reason it is necessary to convert the GPS measurements from the geodetic frame
to the NED one; flowx and flowy are the measurements of the flow vector in
body axis. The matrix that links the state to the output is the measurements
sensitivity matrix H and it is defined as follow:

H =

[
I3 O3

O2x3 Hflow

]
, (4.12)

whereHflow is, according to what is explained in 2.4, the matrix that represents
the relation between the measurements of the optical flow sensor and the velocities
of the state vector; it is defined as

Hflow =

 0 −dtflow
h

dtflow
h

0

 [ 1 0 0
0 1 0

]
Ai2b , (4.13)

where dtflow is the integration time implemented on the sensor firmware as speci-
fied in Chapter 2, and it is equal to 0.1 seconds; h is the distance from the ground;
the second matrix is a selector matrix, necessary to link the flow vector only to
the vx and vy component; Ai2b is the attitude matrix defined as in (1.15) and it
is used in order to rotate the velocity vector from the NED inertial frame to the
body frame.

The last matrix to be defined is D that describes the relation between the
angular velocity seen as an input and the flow measurements, in order to ensure
the angular compensation. It is stated as

D =
[
−dtpx4FlowI2

]
. (4.14)

Before to discuss about the implementation of the Kalman filter, an obser-
vation is necessary, about the above defined matrices of the model. While all
the other matrices remain constant during the time iterations, the H matrix is
time-variant due to the presence of the attitude matrix. The latter is defined
through the estimate quaternion coming from an attitude estimator, so at each
time instant the attitude matrix must be re-defined to ensure the following of the
actual attitude of the UAV, thus rotating the velocity vector in the right way.
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In view of this, the annotation will expect the use of the subscript (k) only for
the H matrix and not for the other matrices of the mathematical model.

4.2 Implemented Kalman filter

According to the Kalman filter theory presented in Chapter 3, this section will
focus on the practical implementation of the filter equations, with all the needs
required by the reality.

4.2.1 Data pre-processing

Before to use the sensor data as measurements (y) and inputs (u), their rotation
into the appropriate reference frames must be executed. In particular two data
sets need to be rotated:

� GPS data from the geodetic reference frame to the NED one;

� acceleration data from the body reference frame to the NED one.

About the angular compensation of the optical flow, one observation must
be noticed: the Px4Flow , as stated in 2.4, gives back its measurements as a
delta angle and not as an angular velocity, so to use its gyroscopes outputs as
something expressed in [rad/s] we need to divide them for dtflow. In this way it
is not necessary to change the Hflow, so it is possible to have a model usable also
if we decide to use the gyroscopes of the IMU.

The last adjustment to do is about the measurement of the ground distance.
It is obtained by the sonar integrated in the Px4Flow and it is used into the
Hflow matrix as a denominator. For this reason, to avoid singularity problem due
to h = 0, we have chosen to put a lower bound to this measurement, equal to
hmin = 0.3[m] (value that represents also the minimum operative distance from
an observed surface, for the lens of the Px4Flow camera).

4.2.2 Initialization

The Kalman filter algorithm needs an initial guess for the state vector (x0).
The choice of this initial estimate should be based on prior knowledge, if avail-
able, of the typical average values for the individual components of the state. The
state vector in our problem represents the position and the velocity of the UAV,
so, reasonably, it can be initialize equal to zero. The initial covariance (P0),
on the other hand, is used to express the confidence in the initial state vector;
more we trust in the initial guess and smaller the initial covariance values will be;
on the contrary if we don’t have prior knowledge about the initial state variables,
the values of P0 may be higher. From the equation of the Kalman gain (3.14), it
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is clear how this affects the work of the filter; large values of the state covariance
matrix imply large gains, which pick up the value of the state estimate far from
the initial guess. For this thesis work the chosen values for x0 and P0 are:

x0 =



0
0
0
0
0
0


, P0 = 10−6I6 . (4.15)

4.2.3 Tuning

The tuning of the Kalman filters consists of choosing the appropriate values for
the covariance matrices Q and R. It is a problem which has been studied ex-
tensively in the literature but there is not systematic approach to do that and
it depends a lot on the preliminary knowledge of the designer about the model.
Usually the R matrix is easier to be defined, due to do the fact that it represents
the measurement noise covariance, so it is strictly linked to the data from the
sensors. On the contrary the Q matrix is related to the process noise that could
be the effect of a lot of elements. In view of this, the R matrix in our case has
been defined thanks to the variances of the analyzed data coming from the sensor.
It is, reasonably, assumed diagonal, and it means that the noise of a certain mea-
surements gives uncertainty only on the output correlated to that measurement,
so each noise is independent. The measurement covariance matrix is:

R =

[
Rgps O3x2

O2x3 Rflow

]
, (4.16)

with

Rgps =

 σ2(gpsx) · · · 0
... σ2(gpsy)

...
0 · · · σ2(gpsz)

 , Rflow =

[
σ2(flowx) 0

0 σ2(flowy)

]
,

(4.17)
where σ2(•) indicates the variance of the measurement ”•” (defined as Var(•)).
The estimate problem is formulated as a discrete-time problem, so it is necessary
to use discrete covariance matrix and as in our case, if the computation of the
sensor variances is done in continuous time, we need to act as follow:

Rd = R/dt . (4.18)
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The process noise, as explained above, is more difficult to define, but in our
problem, thanks to the choice to use the acceleration as an input we can have a
really good approximation of the real Q starting from the value of the accelerom-
eter noise. Looking at the mathematical model (4.1), the acceleration variance
seems to affect only the velocity, but if we want a more real values of Q, we have
to propagate the covariance thanks to the following formulation (stating that the
below discussion is done for one generic axis and it is the same for all the direction
of the reference frame):

Qk = cov(wk) =

tk+1∫
tk

eA(tk+1−τ)GQwG
T eA

T (tk+1−τ)dτ , (4.19)

with

Qw = σ2
acc(τ) , (4.20)

where τ is the time variable and σ2
acc represents the variance of the accel-

eration measurement. Notice that the equation.(4.19) involves matrix from the
continuous-time state space model that we report here for sake of clarity:

ẋ = Ax+Bu+Gw , (4.21)

that in detail it is written as{
ṗ
v̇

}
=

[
0 1
0 0

]{
p
v

}
+

[
0
1

]
a+

[
0
−1

]
wa . (4.22)

Solving the analytic equation (4.19) we obtain a discrete covariance matrix Qd

for the single axis equal to

Qd =

 ∆t3

3

∆t2

2
∆t2

2
∆t

σ2
acc , (4.23)

where ∆t is the time interval between two time instants. From this formulation
it is clear that now the problem is to identify experimentally the variance of the
accelerometer for each axis (σ2

acc). The procedure and results will be shown in the
Chapter 6.
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4.2.4 Multi-rate management: sequential update

In Chapter 3 we have underlined how the generic theory of the Kalman filter is
based on the assumption of having all the data set at the same rate. On the
UAV used for this thesis there is a large group of sensors, which are involved in
the Kalman filtering process. Due to their different nature, they have different
sampling frequencies, making our filtering problem a multi-rate one. In particular
the sensors has the following sampling frequencies:

� accelerometers sample at 125Hz ;

� Px4Flow (that gives data about optical flow, angular rate and ground dis-
tance) samples at 10Hz ;

� Gps samples at 5Hz .

In order to manage this multi-rate problem, a sequential update approach is
used. In our case it is executed following these instructions:

� the discrete-time Kalman filter is run at the fastest update frequency, namely
the accelerometers one ;

� at each time update, the availability of each measurement is verified;

� only the available measurements are used for the correction step of the filter.

This approach is possible to follow due to the matrix of the covariance mea-
surement noise R assumed to be diagonal. This allow us to use two independent
blocks of the diagonal of R for the different sensors measurements used to correct
the estimate of the state vector.

The structure of the prediction and correction process of the Kalman filter
implemented for our work could be resumed as follow:

� prediction step

x̂k(−) = Φkx̂k−1(+) + Γkuk , (4.24)

Pk(−) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1 ; (4.25)

� GPS correction step

Kgps k = Pk(−)HT
gps k[Hgps kPk(−)HT

gps k +Rgps k]
−1 , (4.26)

Pk(+) = [I −Kgps kHgps k]Pk(−)[I −Kgps kHgps k]
T +Kgps kRgps kK

T
gps k ,

(4.27)

x̂k(+) = x̂k(−) +Kgps k(yk − H̄gps kx̂1:3 k(−)) , (4.28)



4.2 Implemented Kalman filter 45

where Hgps k is the sub-matrix of H(i, j), with i = 1, ..., 3 and j = 1, ..., 6
; and H̄gps k is the sub-matrix of H(i, j) with i = 1, ..., 3 and j = 1, ..., 3
; notice that the innovation error (element that multiply the Kgps1,k) in
equation (4.28) is executed using only the state vector components related
to the position;

� optical flow correction step

Kof k = Pk(−)HT
of k[Hof kPk(−)HT

of k +Rof k]
−1 , (4.29)

Pk(+) = [I −Kof kHof k]Pk(−)[I −Kof kHof k]
T +Kof kRof kK

T
of k , (4.30)

ȳk = yk −Duω , (4.31)

x̂k(+) = x̂k(−) +Kof k(ȳk − H̄of kx̂4:5 k(−)) , (4.32)

where Hof k is the sub-matrix of H(i, j), with i = 4, ..., 5 and j = 1, ..., 6 ; and
H̄of k is the sub-matrix of H(i, j) with i = 4, ..., 5 and j = 4, ..., 6 ; notice that
the innovation error (element that multiply the Kof1,k) in equation (4.32) is
executed using only the state vector components related to the velocity in
x and y axes.

Following the above structure, we obtain an estimate state vector at the rate of
the Kalman filter, with a correction based on the availability of the sensors mea-
surements, thus on their rate. This allows a perfect management of the multi-rate
problem and a lower computational load during the correction step.

The last thing to describe is the way to check the availability of the measure-
ments in a real-time problem as the Kalman filter. It is illustrated in the following
block diagram:

Figure 4.1: Measurements availability check
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where tKF is the time-line vector of the Kalman filter and the i is the index
that indicates the element of this vector; in the same way ty represents the time-
line vector of the measurement of which we want to check the availability and j
indicates the element of the vector; in the block of the correction step , y(ty(j))
is the measurement taken at the time instant equal to ty(j).

4.3 Implemented H∞ filter

The implementation of the H∞ filter has not critical aspects thanks to the effort
done to reach the formulation discussed in 3.2.2. The problem is reduced to write
the ”new covariance” matrix R̄ according to the equation (3.39) where the only
parameter that needs to be tuned is the θ. Substantially, in the code, a flag has
been included in order to allow us to chose which one between the two filters we
want to use for the estimate; the flag drives us in a section of the implemented code
where we can tune the θ parameter in order to change the filter performances.



Chapter 5

Experimental set-up

In this chapter the experimental set-up is described. In particular a brief descrip-
tion of the used UAV is done followed by a description of the used optical flow
sensor, Px4Flow. The on board integration of the optical flow sensor is presented
focusing on the hardware set-up. In the last part of this chapter, the required
pre-test activity are described.

5.1 Hardware set-up

The machine used for the experimental activity of this work, is an hexa-copter
UAV, designed and become operative during previous works executed in the ASCL
(Aerospace System & Control Laboratory) of Politecnico di Milano. The drone
has the following properties:

� configuration � six propellers ;

� TOW � 900 g ;

� flight duration � 20 minutes ;

� payload � 350 g .

The optic flow sensor, main character of this thesis work, must be installed
co-existing with an already implemented pack of sensors. This is composed by :

� IMU platform (3-axis accelerometers, 3-axis gyroscopes, magnetometer for
the heading);

� barometer;

� GPS antenna.
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5.1.1 Optical flow sensor: Px4Flow

Figure 5.1: Px4Flow sensor

Px4Flow, introduced in Figure 5.1, is an optical flow smart camera created to
calculate optic flow from the observation of images. It is not designed to capture
images like a common web-cam but it is able to supply the video just for calibration
proposal (not when it is working on the UAV). Unlike many mouse sensors, it
also works indoors and in low outdoor light conditions without the need for an
illumination LED, but it is also very sensitive to high light conditions due to its
very high frequency of optical flow calculation, 400 Hz.

The Px4flow is not just a camera, but it is composed by all the necessary
to comfortably use the optical flow data. On board we can appreciate a set of
gyroscopes for the angular compensation and a sonar for the ground altitude
scaling.

5.1.1.1 Technical properties:

� 168 MHz Cortex M4F CPU (128 + 64 KB RAM);

� 16 mm M12 lens;

� Size 45.5 mm x 35mm;

� Power consumption 115mA / 5V;
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� On board 16bit gyroscope up to 2000°/s;

� On board sonar;

� USB bootloader and power option.

5.1.1.2 Dimensions and connectors scheme:

Figure 5.2: Connectors and dimensions

5.1.2 On board integration

The choice to use the hexa-copter has taken for reason of comfortable allocation
possibility and with respect to the requirements of payload and power indicated
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by the technical specifications of the sensor in 5.1.1.1.
The Px4Flow needs to be oriented looking downward; and the chosen UAV has the
space to allocate a new rigid platform to host the new sensor. The supplementary
platform gives us the possibility to set the new electronic component without
taking space to the pre-existing sensors and modules.

5.1.2.1 Design and realization of the platform

The platform requires few very important things:

� it must not give a big increase of weight to the structure;

� it must supply enough space for the allocation of the Px4Flow

� it must ensure the necessary opening to allow the wiring between the sensor
and the flight controller placed in the core of the UAV.

The design , shown in Figure 5.3, has made using the 3D mechanical CAD
program SolidWorks, obtaining the file that allow to generate a gcode on Cambam
software, necessary to use the milling machine for the realization of the platform.
The chosen material for this item is the carbon fiber that ensures a good compro-
mise between weight and good mechanical properties. For the final assembly, the
procedure suggested in the on-line guide has been followed; where one of the most
important recommendation is about the orientation of the sensor, in order to be
coherent with the orientation (so with the reference frame) of the Flight Control
Unit, as it is described in the Figure 5.5 below.

(a) 2D sketch of the platform (b) 3D model of the platform

Figure 5.3: Design of the platform
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(a) Bottom view (b) Side view

Figure 5.4: Px4Flow assembled on the UAV

Figure 5.5: Px4Flow orientation

5.2 Pre-test activities

There are some procedures to follow before doing a flight test, in order to have
a valid data set. The program QGroundcontrol gives us an appropriate ground
station for the following described activities. First of all, what needs to be done
is the upload of the firmware on the PixHawk (Flight Control Unit) and the
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Px4Flow; the firmware could be the default one or a tuned one depending on
what we desire from the machine.

The second step is to calibrate all the sensors on board. In this description our
focus goes on the calibration of the Px4Flow lens; Its camera needs to be focused
on the image, taking into account the range of ground distance of the test that
we want to execute. Its ability to catch good images depends a lot on this, and
a poor vision quality could completely affect the optical flow data. A parameter
named ”Quality” is available from the messages of the Px4Flow, and logging it,
we can have a qualitative measurement of how well the camera is catching images
useful for the computation of the optic flow. The sensor is set to work only when
this parameter is bigger than a chosen threshold. There are some elements which
generate variation on the quality parameter and their management allow us to
keep it higher , thus to have a reliable data set for our analysis. Those elements
are: brightness, surface roughness and colour, lens calibration. The latter is where
we can and must act. The procedure is executable on the QGroundcontrol and it
requires :

� to plug-in the Px4Flow to the ground station;

� to rotate the lens, as a common camera, till the images shown on the screen
have a very good resolution (for example , like in Figure 5.6, pointing the
camera on the keyboard of a computer in order to use the readability of the
alphanumeric symbols as a feedback for the focus calibration.

When the above procedure are executed, the UAV, equipped with the Px4Flow,
is ready to fly and we are ready to do the chosen flight tests.



5.2 Pre-test activities 53

Figure 5.6: Lens calibration





Chapter 6

Experimental results

First of all in this chapter the procedure and the test results used to obtain the
values of the sensors measurements variances are explained. In the second part
all the results obtained by applying the implemented filters on the real data sets
collected during the flight testing activity are shown and discussed.

6.1 Covariance characterisation

The paragraph 4.2.3 describes how to define the covariance matrices Q and R, and
we can observe that the way to proceed is to find a physical value for the variances
of the sensors measurements. Below the experimental procedure to reach them
and the results are shown.

6.1.1 Procedure description

According to our implementation of the Kalman filter we need the continuous
sensors measurements variances, so the evaluation of it by the power spectral
density (PSD) analysis is necessary. The procedure to follow is: compute a vector
as the difference between the measurements data and the mean value of the same
data set (this operation allows us to identify only the noise of the measurements);
plot the trend of the square root of the one-sided PSD of this new vector with
respect to frequency; from the resulting plot we can properly identify a value to
approximate the model of the sensor noise with a straight horizontal line passing
through that value; for the approximation of the sensor noise we have decide to
take a mean value of the plotted square root of the one-sided PSD, described
above, observing the set of frequency from the lowest one to the 1Hz one, in
order to focus the problem on a set of frequencies similar with the range of the
UAV dynamics. According to this, to obtain the variance value we have to act as
follows:

in the resulting plots ( i.e. in Figures 6.1 , 6.2, 6.3 ) we read the values of
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σ multiplied by
√

2 (where σ is the standard deviation of the measurement); so
computing the mean value in the above described range of frequencies, we have

m =
√

2σ , (6.1)

manipulating it to obtain the standard deviation

σ =
m√

2
, (6.2)

thus the variance

V ar = σ2 . (6.3)

6.1.2 Test results

The tests for this aim have planned in order to have the most reliable variance
values for on board sensors. The results, shown below, come from the best flight
tests for this purpose.

The flight used to characterize the accelerometer and flow sensor variances, is
executed outdoor in perfect visibility conditions for the lens of the Px4Flow. In
Figure 6.1 the square root of the accelerometer measurements PSD, in the three
body axis, is shown; while the square root of the flow PSD in x and y body axes
is represented in Figure 6.2.

Accelerations PSD (power spectral density)

Figure 6.1: PSD analysis for accelerometers
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Table 6.1: Accelerometers variance values in (m/s2)/
√
Hz

accx accy accz

m 0.34 0.27 0.65
Var 0.0578 0.0364 0.2112

Optical flow PSD (power spectral density)

Figure 6.2: PSD analysis for optical flow

Table 6.2: Optical flow variance values in rad/
√
Hz

flowx flowy

m 0.0375 0.0476
Var 0.0007 0.0011

In Table 6.1 and Table 6.2 are reported the numerical values obtained using the
described procedure. Putting them in our covariance matrices, make the tuning
of the Kalman filter coherent with the reality.

For the definition of the GPS variances we have planned a different test in
order to obtain more reliable results. This test has been executed following these
instructions:

� UAV placed on a 3 meters tall platform to avoid multipath GPS error;

� data logged with the no-flying UAV but with armed propellers, in order to
have disturbance conditions similar to the flight mode.
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Gps PSD (power spectral density)

Figure 6.3: PSD analysis for GPS position

Table 6.3: Gps variance values m/
√
Hz

gpsx gpsy gpsz
m 0.2739 0.432 0.968
Var 0.0375 0.0933 0.4685

From the trend of the square root of the PSD plotted in Figure 6.3 with
respect to frequency, we can extrapolate the value of m, thus of the variance (V ar)
reported in Table 6.3 , in order to complete the set of useful sensor variances for
the tuning.

6.2 Estimate results

The performance of the implemented Kalman filter and H∞ filter has been tested
thanks to data sets collected during a large number of flight tests. In this chapter,
we present the results related to the tests evaluated to be the best to shown the
completeness of the performance, results and limitation of this Gps and optical
flow based estimation filter. Five cases will be discussed and described:

� Gps based Kalman filter in outdoor flight;

� Gps and optical flow based Kalman filter in outdoor flight;

� optical flow based Kalman filter in outdoor flight;

� optical flow based Kalman filter in indoor flight;
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� Gps and optical flow based H∞ filter in outdoor flight.

The reader must be advised that all the results about the position and velocity
state variables are expressed in NED reference frame. Before discussing the results,
below we describe the two flight tests used to apply the implemented filters and
get the estimate results.

6.2.1 Flight tests description

6.2.1.1 Outdoor flight

(a) Outdoor scenario (b) Outdoor surface

Figure 6.4: Outdoor test

The outdoor flight has performed at the heliport of the Bovisa campus of Politec-
nico di Milano, in order to reduce or completely avoid the multipath error for the
GPS. The weather conditions were optimal in order to have a high quality of the
Px4Flow measurements that means a high visibility of its camera. The second
element that contributes to the high quality of the optical flow data is the outdoor
surface, as we can appreciate in Figure 6.4 . The duration of the whole flight is
equal to 11 minutes and 40 seconds (700 seconds). In Figure 6.5 the parameter
Px4Flow quality is shown and indicates how good the Px4flow camera is observ-
ing the ground surface as described in paragraph 5.2 . As we can see, there is a
threshold that indicates when the optical flow is considered completely reliable,
and it is equal to 250. We can observe that during this outdoor flight, the chosen
environment conditions ensure high quality of the optical flow measurements, so
we expect good results from the filter.
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Px4Flow Quality

acceptance

threshold 

Figure 6.5: Px4Flow quality parameter: outdoor flight

6.2.1.2 Indoor flight

(a) Indoor scenario (b) Indoor surface

Figure 6.6: Indoor test

In our laboratory, equipped with the security cage specific for indoor flight test,
the ground surface is extremely smooth and with a high light reflectivity. This
makes the usage of the Px4flow to collect optical flow data impossible. In order
to reach better conditions, we have tried several solutions but we have obtained
the best visual capability results, using simple coloured carpets. In Figure 6.6
we can appreciate the roughness of the carpet surface that increases the quality
parameter for the indoor flight. The quality parameter is shown in Figure 6.7,
where we can see that, in this indoor case, the optical flow measurements are less
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reliable, so we expect worse results from the filtering. In future works the first
thing to do, could be to try to find surface conditions which allow us to have high
quality optical flow measurements in an indoor environment, equipped with the
necessary facilities to execute flight testing (safety cage, motion capture system).

Px4Flow Quality

acceptance

threshold

Figure 6.7: Px4Flow quality parameter: indoor flight

6.2.2 GPS based Kalman filter outdoor

The following results are obtained by applying the implemented Kalman filter on
the data set collected during the outdoor flight described in 6.2.1.1, by using only
the Gps measurements for the correction step.

The Gps based Kalman filter for the estimate of the UAV position and velocity
gives good estimates. In particular we can observe that the estimates of position
along x (Figure 6.8) and y (Figure 6.9) NED axes, are similar to the Gps measure-
ments but not exactly the same; this means that the filter is reaching an estimate
fusing the acceleration measurements (as inputs in the mathematical model) and
the GPS measurements. We cannot state if it is an absolutely correct estimate,
because the only reference is the output of the Gps , that has its intrinsic errors,
but of course the Kalman filter is working very well.

A different behaviour can be observed along the z axis (Figure 6.10). We know
that GPS measurements are less reliable along the z direction (altitude), so we
expected these results. Nevertheless the estimate could be considered satisfying.

The estimate velocities are compared with the velocity information given by
the Gps, but the implemented Kalman filter does not fuse direct measurements
of the velocities. In the two comparisons, Figure 6.11 for the x velocity and
Figure 6.12 for the y velocity, we can observe a coherent behaviour between the
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Figure 6.8: Comparison: estimated x-position and GPS x-position
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Figure 6.9: Comparison: estimated y-position and GPS y-position
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Figure 6.10: Comparison: estimated z-position and GPS z-position

estimates and the references. About the z axis, as expected, the gap between the
GPS measurement and the estimate became bigger (Figure 6.13).

A quantity that could show better if the Kalman filter is working in a good way,
is the estimation error (also called innovation), that, as we can see in eq.(3.10),
multiplied for the Kalman gain, gives us the correction of the state vector. The
right behaviour of the innovation that we want to observe consist of:

� a white noise, zero mean value process, that suggests the filter is working
right (see [12] for the proof) ;

� a trend that stay bounded in the plus-minus three standard deviation (± 3std)
band in order to ensure the normal distribution of the innovations. The stan-
dard deviation has been calculated from the values of the P state covariance
matrix.

For this case, the application of the Kalman filter on the available data set,
gives us the innovation results in Figure 6.14 . Except for a few moments, we can
observe the innovations staying within the boundaries, and these results underline
a good tuning of the Kalman filter. Another results that gives us a positive
feedback of the good working of the GPS based Kalman filter in this outdoor
flight, is the trend of the power spectral density (PSD) of the innovations. What
we expect from a good filter, is to get an innovation PSD with lower value than
the PSD of the available measurements. This behaviour is observed in the results
in Figure 6.15 as further evidence of the a good working Kalman filter.

An observation must be done about the peaks which can be seen in the inno-
vations PSD behaviour at high frequency.
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Figure 6.11: Comparison: estimated x-velocity and GPS x-velocity
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Figure 6.12: Comparison: estimated y-velocity and GPS y-velocity
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Figure 6.13: Comparison: estimated z-velocity and GPS z-velocity

Figure 6.14: State estimate innovations
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Figure 6.15: Comparison: Innovations PSD and GPS measurements PSD

Figure 6.16: Innovations PSD at high frequency
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In Figure 6.16 the plot is focused on high values of frequency and show us an
harmonic presence of these peaks, about every 5 Hz. This is a typical phenomenon
of a multi-rate Kalman filter. In an ideal case where all the involved measurements
have the same rate of the Kalman filter, the innovation PSD at high frequency will
converge to a value. In our case the measurements y are not always available, in
particular in this case the innovation for the correction step is executed thanks to
the GPS measurements which are sampled at 5Hz. This explains the periodicity
of the peaks that appear after the 5Hz that we can observe in Figure 6.16.

At last we report in Figure 6.17 the Kalman gain components for every time
instant, and it is possible to see all the components of the Kalman gain matrix
converge quickly around a constant value.

Figure 6.17: Kalman gains due to GPS measurements

In view of this results we can state that the implemented Kalman filter gives
a reliable estimate of the position and the velocity of the UAV, during an outdoor
flight when it is based on Gps measurements. The addition of another sensor to
improve the estimate results along the z axis, could be necessary.

6.2.3 Optical flow based Kalman filter outdoor

In this paragraph we present the results obtained applying the Kalman filter to the
data set collected during the outdoor flight described in 6.2.1.1, by using only the
optical flow measurements for the correction step. The optical flow measurements
allow us to have indirect measurements of the velocity, as stated in equation (2.9)
and equation (2.10), so the position cannot be estimated in a right way, being
obtained by integrating the velocity with no direct measurements which could
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correct it. Indeed it is clear that the position states are not observable from the
flow measurements. For this reason we must evaluate the results of this scenario
by looking only at the estimates velocities. Of course there is not observability
from the optical flow measurements also for the velocity along the z axis, so its
estimate is not reliable as well.

In Figure 6.18 the estimated velocity along the x NED axis is compared to
the NED velocity in x obtained from the GPS measurements. It is important to
underline that the data sets supplied by the GPS are used only as a reference but
they are not involved in the estimation. It is possible to observe an error between
the two plotted velocities, that in some time interval could become higher, as
represented in the zoom box on Figure 6.18 , but for most of the flight it is very
small.
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Figure 6.18: Comparison: estimated x-velocity and GPS x-velocity

The same considerations can be done for the velocity along the y NED axis,
by looking at the Figure 6.19.

In Figure 6.20 the innovations about the velocities in x and y are shown. In
this case it seems not to be a completely zero mean process but it always stays
within the± 3std boundaries. In future works could be possible to take advantages
of this big margin between the boundaries and the innovations, pushing up the
Kalman filter performances by acting on the tuning.

In the Figure 6.21 we can appreciate the PSD of the innovation compared
with the PSD of the optical flow measurements. It is possible to state that the
innovation PSD values are lower than the optical flow measurements PSD values,
and this is an other indicator of the good working of the filter. Zooming on
the PSD related to high frequencies (Figure 6.22) we can observe the same PSD
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Figure 6.19: Comparison: estimated y-velocity and GPS y-velocity

Figure 6.20: State estimate innovations
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behaviour discussed in the results of GPS based Kalman filter, in paragraph 6.2.2
. In this case the periodic trend of the peaks is given by the optical flow sample
frequency that is equal to 10Hz.

Figure 6.21: Comparison: Innovations PSD and optic flow measurements PSD

Figure 6.22: Innovations PSD at high frequency

In Figure 6.23 the Kalman gain from the optical flow correction block, are
shown. Their strange behaviour is due to the attitude matrix of this flight; the
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attitude is involved through the H matrix (Eq.(4.1)) that, in turn, affects the
Kalman gain calculate as we can see in Eq. (3.14).

Figure 6.23: Kalman gains due to optical flow measurements

In view of the above discussion, we can state that the optical flow based
Kalman filter for an outdoor flight with good visibility conditions, can give reliable
estimate velocities in x and y NED axis.

6.2.4 GPS and optical flow based Kalman filter outdoor

The below results are obtained by applying the implemented Kalman filter on the
data set logged during the outdoor flight described in 6.2.1.1, using both GPS and
optical flow measurements for the correction step. This represents the probable
scenario for an application of this technology: the UAV able to rely both on the
GPS and optical flow sensor to execute its autonomous flight.

In order to have a comparison to evaluate the estimate results, the GPS mea-
surements are used as a reference, but it is good to underlined that the correction
step is implemented to use the GPS position measurements and the optical flow
measurements.

The Figure 6.24 shows the estimate position along the x axis compared with
the GPS information. The Figure 6.25 does the same for the estimate position in
y axis.

Of course the GPS reference cannot bee seen as the perfect one, being a mea-
surement, thus, not completely correct; but this comparison give us the idea that
the filter is working good.
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Figure 6.24: Comparison: estimated x-position and GPS x-position
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Figure 6.25: Comparison: estimated y-position and GPS y-position
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Figure 6.26: Comparison: estimated z-position and GPS z-position

The Figure 6.26 shows what we expect about the z axis; the error between the
estimate z position and the GPS measurement is significant but it is well known
that the worse performances of the GPS are along the z axis.

Using both the sensor, the estimate results about the velocities, are good, as
it is possible to observe in Figure 6.27 for the x axis and in Figure 6.28 for the y
axis.
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Figure 6.27: Comparison: estimated xvelocity and GPS x-velocity
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Figure 6.28: Comparison: estimated y-velocity and GPS y-velocity

The bad behaviour along the z axis is underlined in Figure 6.29 where the
estimate results about the z velocity are compared with the GPS measurements.
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Figure 6.29: Comparison: estimated z-velocity and Gps z-velocity

In order to ensure that the Kalman filter is working right, the innovation
behaviour must be observed. In Figure 6.30 the innovations about the position
state variables are represented with the boundaries composed by the ± 3std band.
As we can see, the estimate innovations stay within the boundaries for most of the
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time of the flight, certifying the good tuning of the filter. The same is represented
in Figure 6.31 about the velocity state estimate innovations. In this case we can
see a large margin to be used in order to increase the filter performance.

Figure 6.30: Position state estimate innovations

Figure 6.31: Velocity state estimate innovations

In Figure 6.32 we can observe and analyse the innovations from the PSD point
of view. This graph shows an innovation PSD lower than the GPS measurements
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PSD for all the three components of the position. This means the Kalman filter is
doing its work. The same behaviour can be observed for the velocity innovations
PSD, in Figure 6.33, with respect to the optical flow measurements PSD.

Figure 6.32: Comparison: Innovations PSD and GPS measurements PSD

Figure 6.33: Comparison: Innovations PSD and optic flow measurements PSD

The typical multi-rate behaviour can be observed, focusing on the innovation
PSD at high frequencies. The Figure 6.34 shows what happen to the position
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innovations PSD at high frequency; as we can see, the trend of the PSD is charac-
terized by periodical big peaks, consequence of the GPS sampling frequency equal
to 5Hz, but also other small peaks can bee observed and they are consequences
of the combination of the effects given by the sampling time of both the sensors
(GPS and optical flow sensor). This effects are visible also in Figure 6.35, where
the velocity innovations PSD at high frequency are represented.

Figure 6.34: Position innovations PSD at high frequency

Figure 6.35: Velocity innovations PSD at high frequency
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At the end of this paragraph we focus our attention on the Kalman gain
contributes given by the two block of used measurements (GPS positions and
optical flow). In Figure 6.36 the Kalman gains due to the GPS measurements are
shown. In Figure 6.37 we can appreciate the Kalman gain due to the optical flow
based correction step.

Figure 6.36: Kalman gains due to GPS measurements

Figure 6.37: Kalman gains due to optic flow measurements

In view of the above discussion, we can state that an optical flow and GPS
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based Kalman filter for an outdoor flight with good visibility conditions, can give
reliable estimate position and velocity in x and y NED axes while along the z one
could be necessary an other kind of sensor to improve the estimate results.

6.2.5 Results comparison: outdoor flight

In this paragraph we want to give a more complete understanding of the estimation
results, by comparing the estimates obtained in the different cases discussed above.
The comparison between the Kalman filter results when it uses different kind of
data sources, is done on the outdoor flight data sets.

The Figure 6.38 shows the comparison between: the estimate position in x
when the filter uses both the GPS and the optical flow measurements, and the
estimate position in x when the filter uses only the GPS data for the correction
step. The results are very similar and the data set is very long, so it is difficult
to see any differences. For this reason in Figure 6.39 the same comparison is
represented in a 40 seconds interval of the flight, adding the x position from
GPS raw data as a reference. It is possible to observe that the two estimates are
different. The magnitude of this difference is readable from the Figure 6.40, where
the error between the two estimates is represented; this error is not negligible.

Figure 6.38: Compared results: position in x
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Figure 6.39: Compared results (zoom): position in x

Figure 6.40: Position-x error between the estimate by using GPS + optical flow
and GPS only

The Figure 6.41 shows the comparison between: the estimate position in y
when the filter uses both the GPS and the optical flow measurements, and the
estimate position in y when the filter uses only the GPS data for the correction
step. The results are similar. In Figure 6.42 the two estimates are represented
in a 40 seconds interval of the whole flight. In this figure we can appreciate



6.2 Estimate results 81

the differences between the two estimates and how far they are from the GPS
measurements of the position in y. In order to see how much the optical flow
affects the estimate position with respect to the case when only the GPS is used
for the estimation, we represent the error between the two estimates in Figure
6.43.

Figure 6.41: Compared results: position in y

The Figure 6.44 shows the comparison between: the estimate position in z
when the filter uses both the GPS and the optical flow measurements, and the
estimate positions in z when the filter uses only the GPS data for the correction
step. The Figure 6.45 shows that both the estimates are far from the GPS raw
data, but we already stated that the performances of our Kalman filter decrease
along the z axis. In Figure 6.46 we can appreciate the error between the two
estimates along the z axis.
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Figure 6.42: Compared results (zoom): position in y

Figure 6.43: Position-y error between the estimate by using GPS + optical flow
and GPS only
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Figure 6.44: Compared results: position in z

Figure 6.45: Compared results (zoom): position in z
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Figure 6.46: Position-z error between the estimate by using GPS + optical flow
and GPS only

The Figure 6.47 shows the comparison between: the estimate velocity in x
when the filter uses both the GPS and the optical flow measurements, and the
estimate velocity in x when the filter uses only the optical flow data from the
Px4Flow for the correction step. The two estimates are slightly different, and we
can have a quantitative analysis of this difference, looking at the Figure 6.48 in
which the error between the two estimates is represented.
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Figure 6.47: Compared results: velocity in x
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Figure 6.48: Velocity-x error between the estimate by using GPS + optical flow
and optical flow only

The Figure 6.49 shows the comparison between: the estimate velocity in y
when the filter uses both the GPS and the optical flow, and the estimate velocity
in y when the filter uses only the optical flow data from the Px4Flow for the
correction step. In the zoom box of this figure we can appreciate the differences
between the two estimates. The Figure 6.50 helps us to evaluate this error between
the results of the two way to execute the estimation of the velocity in the y axis.
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Figure 6.49: Compared results: velocity in y
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Figure 6.50: Velocity-y error between the estimate by using GPS + optical flow
and optical flow only

From the above results we can state that, of course, the implemented Kalman
filter works differently according to which set of sensors use, to estimate the posi-
tion and velocity. We cannot state, which one of the discussed cases work better,
because of we don not have an absolutely correct reference, both for the position
and for the velocity.

In Figure 6.51 the innovations PSD for the position are compared, analysing
the results of the Kalman filter based on the GPS and optical flow data and the
results of the Kalman filter based only on the GPS measurements. The innovations
PSD in the two cases are very similar, so we cannot observe any differences in the
filter working.

In Figure 6.52 the velocity innovations PSD is shown. We compare the results
of the Kalman filter when it uses both the GPS and the optical flow measurements,
with the results obtained by the Kalman filter based only on the optical flow
measurements. We can observe innovations PSD value lower in the case of the
availability of both the GPS and the optical flow; so, in view of this, we can state
that with the combination of the two sensors we obtain a better estimate of the
velocity in x and y axes.

The last interesting observation to do is about the Kalman gain. In Figure
6.53 we compare: the Kalman gain component due to the GPS, related to the x
position, in the case when the filter uses both the sensors to correct the estimate;
the Kalman gain component due to the GPS, related to the x position, when the
filter uses only the GPS measurements. As we can see, in the first case (blue line)
the Kalman gain is more coloured, with respect to the second case (orange line),
and not stable around a mean value. This is due to the correction step executed
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Figure 6.51: Innovations PSD comparison for position

Figure 6.52: Innovations PSD comparison for velocity
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by the optical flow measurements, when the P covariance matrix, became non-
diagonal. It is function of the H matrix (Eq.(3.2.1)), and this is a full matrix
because of the attitude matrix in Hflow, as we can see in equation (4.1).

Figure 6.53: Kalman gain comparison for position in x

6.2.6 Optical flow based Kalman filter indoor

Here, we present the estimate results obtained by applying the implemented
Kalman filter on the data set logged during the indoor flight described in 6.2.1.2.
The correction step is executed by using only the optical flow measurements in
order to test if it possible to rely on them to execute an indoor flight without any
other facilities.

In Figure 6.54 the estimate velocities along the x axis is compared to the x
velocity measured by the motion capture system named Optitrack (Mocap), the
laboratory facility that allows the indoor flight. Mocap measurements can be
considered more reliable than the GPS measurements, and they represent values
very close to the real values of position and velocity. For this reason if the estimate
velocities does not match the mocap measurements of velocity, we are sure that
the filter is not working in the right way. Looking at Figure 6.54 we can observe
that the Kalman filter is not estimating the x velocity in the right way. The same
wrong estimate can be observed from Figure 6.55 where the velocity along the y
axis is compared to the mocap y velocity measurement.
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Figure 6.54: Comparison: estimated x-velocity and Mocap x-velocity
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Figure 6.55: Comparison: estimated y-velocity and Mocap y-velocity

The best evidence of the not good working of the filter is given by the behaviour
of the P covariance matrix. In Figure 6.56 the red lines may represent the ± 3std
band around the innovations. The standard deviation (std) is computed as the
square root of the diagonal elements of the P matrix. The very strange behaviour
shown in Figure 6.56 underline that something is not working right in the Kalman
filter.
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Figure 6.56: Velocity state estimate innovations

Figure 6.57: Velocity state estimate innovations without ± 3std boundaries

Isolating the velocity innovations representation in Figure 6.57, we can no-
tice again a very strange behaviour, completely different from the innovations
represented for the other above cases.

The Figure 6.58 shows the comparison between the innovations PSD and the
optical flow measurements PSD. The innovation PSD is lower than the measure-
ments PSD, so the filter is doing its work from this point of view, but we have
already stated its bad working for this case.
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Figure 6.58: Comparison: Innovations PSD and optical flow measurements PSD

Figure 6.59: Velocity innovations PSD at high frequency

In Figure 6.59 we can observe the velocity innovation PSD at high frequency,
and we can appreciate the effect of the multi-rate of the sensors, in particular in
this case the peaks appear every 10Hz interval, due to the sampling frequency of
the optical flow measurements.

The above results allow us to state that an optical flow based Kalman filter does
not work good on a data set from an indoor flight with the environment conditions
described in 6.2.1.2 . This was expected looking at the quality parameter in Figure
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6.7 . In order to improve these estimate results in future works, the first thing to
do is to try to find visibility conditions which ensure an high quality of the optical
flow sensor indoor; from the filter point of view, the challenge to face with, is to
find a way to involve the quality parameter in the tuning part.

6.2.7 GPS and optical flow based H∞ filter outdoor

The implemented H∞ filter suitable for the Kalman filter architecture, allows to
modify the tuning of the R covariance matrix in order to change the performance
of the filters. As we can see from the theory discussed in paragraph 3.2.2, the
problem is to tune θ. Remembering that for θ −→ 0 the H∞ filter becomes equal
to the Kalman filter.

In this paragraph the estimation results for different θ are presented, in order
to show how the performances of the filter can bee modified according to the aim
of the work. For the following results the chosen scenario is the outdoor flight
described in 6.2.1.1 , with the GPS and optical flow measurements used for the
correction step of the filter. The condition representing a guideline to tune θ is
defined in equation (3.43); it ensures the well-posedness of the R̄ matrix (equation
(3.41)). In order to have a wide panoramic of how the filter performances change
for different θ, we have chosen: θ = 0.5 , θ = 0.9 which respect the condition
of well-posedness of R̄ ; θ = 10 that does not ensure the same well-posedness
condition.

In Figure 6.60 we compare the estimate x position for different thetas, taking
into account also θ = 0 that means original Kalman filter. In this case, with these
values, the estimates change but there are not big differences between them.

Figure 6.60: Estimate x position: H∞ with different thetas
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The Figure 6.61 shows the comparison between the estimates of y position
for different theta values. In this case, for example, increasing the value of theta
to θ = 0.9 (thus, getting away from the original Kalman filter) we obtain higher
error with respect to the raw GPS data. If we increase more the theta value, using
θ = 10, not ensuring the well-posedness condition, we obtain an estimate similar
to the Kalman filter one. This is just to show how the H∞ filter can be used to
change the filtering performances.

Figure 6.61: Estimate y position: H∞ with different thetas
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Figure 6.62: Estimate z position: H∞ with different thetas

In Figure 6.62 we compare the results about the estimate z position. As we
can see, in this case the trend is different: increasing the value of theta, the error
with respect to the raw GPS data decreases.

In view of the above results, we can appreciate how the implemented form of
the H∞ filter, could be a useful tool to modify the Kalman filter performances.



Conclusions

The aim of this thesis was to reach a position and velocity estimation implementing
a Kalman filter based on GPS and optical flow measurements, to improve the pre-
existing UAV navigation system.

A new optical flow sensor, called Px4Flow, has been integrated on-board the
UAV and its output has been identified by flight testing activity. The next step
has been to find the relation between the optical flow sensor output and the UAV
velocity in the NED reference frame, in order to involve it in the mathematical
model.

A Kalman filter based on both the GPS and the optical flow, able to manage
the multi-rate problem given by the different sensors, has been implemented. The
tuning of the Kalman filter has executed using the variances of the involved sensors
which have been defined through new testing activity on the UAV. A H∞ filter
has implemented in a suitable form with the already implemented architecture of
the Kalman filter. This supplementary implementation has been done in order to
have the possibility to change the performances of the original Kalman filter.

A flight test activity, outdoor and indoor, has been executed to collect the real
data sets on which the filter has been applied. From the estimation results ob-
tained on the real data, different conclusions have been reached: the implemented
Kalman filter, based on Gps and optical flow, for an outdoor flight, gives reliable
estimates of position and velocity when it uses both the sensors; also the imple-
mented Kalman filter, using only the GPS during an outdoor flight, gives reliable
estimates of position and velocity; the Kalman filter, using only the optical flow
outdoor, gives good estimates of the velocity in x and y NED axis. In view of this,
it is difficult to state if the addition of the optical flow measurements, improves
the estimation results because as a reference we do not have absolute values of
position and velocity during the outdoor flight. On the other hand, we can state
that the possibility to have two sensors that contributes to the velocity estimate,
instead of one, makes more robust the optimal estimate of the Kalman filter.

The application of the implemented Kalman filter on the indoor flight data,
using only the optical flow, does not give the same good results. The surface of
the available indoor environment does not ensure good visibility conditions for
the Px4Flow camera, so different solutions, to cover the floor, have been tried,
improving the quality of the optical flow measurements. The improved optical
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flow quality is not enough to ensure a reliable estimate for the velocity for an
indoor flight.

Concluding, some considerations about the future developments, could be
done:

� find a surface able to ensure the best visibility conditions for the Px4Flow
camera for the indoor flight;

� evaluate the possibility to involve the quality parameter of the Px4Flow in
the implemented Kalman filter in order to take it into account to define the
uncertainty of the optical flow measurements;

� model the dynamic of the sensors and involve it in the Kalman filter in order
to obtain not approximated variances values.
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