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Introduction

Modern footbridges are increasingly slender and lighter than in past, mainly as a result of
technical innovation and finer structural analyses. Due to these characteristics they are more
likely to experience uncomfortable vibrations caused
by pedestrians.

The temporary clo-
sure of both Paris’
Solferino Bridge (1999) and
the London Millennium Bridge (2000)
prompted the scientific community to
develop more accurate methodologies to ac-
cess the pedestrian effects on the serviceability
of footbridges.

The Millennium Bridge has been closed the same day
of the inauguration because of the excessive lateral vibrations.
The natural sway motion of the walking people caused small
sideways oscillations in the bridge, which in turn caused people to sway
in step, increasing the amplitude of the bridge oscillations and continually
reinforcing the effect. This phenomenon is known as synchronous lateral excita-
tion and is a typical case of structure-pedestrian interaction. On that occasion a crowd
of over 1000 people was crossing the bridge, and the lateral movement became sufficiently
large for people to stop walking to retain their balance. The detected amplitude of the oscillation
was 7.5 cm at 1 Hz. The natural frequency of the later mode was 0.9 Hz. The problem was finally
fixed by the retrofitting of 37 fluid-viscous dampers.

Despite these issues are concerning lateral human-induced excitation, the vertical excitation
shall also be taken into account in the serviceability assessment. In dense crowds, interaction
dynamics among the pedestrians themselves also occur. On these pedestrian-pedestrian
interactions a relevant amount of research has been carried out (i.e. Wheeler 1980 [36];
Papadimitriou et al., 2009; Venuti and Bruno, 2009 [35]; Andersen, 2009).

This thesis aims to examine how the response of a simple supported footbridge, from the
serviceability point of view, changes as a result of an interaction of this kind: the pedestrian-
pedestrian interaction. As a representative response of the bridge the vertical displacements
and accelerations at the midspan are considered. The vertical behaviour of this kind of
structure is mainly affected by the first modes of vibrations, also, the vertical dynamic force
exerted by humans has a greater order of magnitude with respect to the lateral one, so its
effects are more immediate to investigate. The response is predicted on theoretical basis
by means of the response spectrum approach, and then it is supported and validated by
numerical simulations. The pedestrian load is simplified as a continuous string of equally
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spaced pedestrians having variable phases and frequencies. A variation of the density results
in a change of the total number of pedestrian present on the bridge at the same time. The
pedestrian-pedestrian interaction is thus implemented in terms of the randomness of the
pedestrian properties, and regulated by proper parameters. Finally, the results are compared
with the current guidelines, in particular with Sétra (2009) [13].



Chapter 1

Beam dynamics

1.1 Equations of motion in discrete form

The equation of the dynamic equilibrium of a beam is:

∂2

∂x2

[
EI(x)

∂2v(x, t)

∂x2

]
+ γ(x)

∂2v(x, t)

∂t2
= f(x, t) (1.1)

where v(x, t) is the deformed shape, function of time t and x abscissa along the beam axis.
f(x, t) represents a generic load, which may vary in time and in space, being distributed in any
way along the beam; E is the modulus of elasticity, while γ(x) and I(x) are the linear mass and
the moment of inertia, both depending on x if the beam section is not constant. The equation
is valid under the assumptions of:

– small oscillations

– linear elastic materialcomportamento lineare elastico

– symmetric section with respect to x, v plane

– rotational inertia, axial deformability and shear deformability negligible

– no internal dissipation

The direct integration of the equation, which is a partial differential equation, is possible just in
few simple cases. The classical approach to reduce the problem in a more manageable form is
discretize it, that is to say reduce it to a finite number of degrees of freedom. For this purpose
the deformed shape is approximated by a linear combination:

v(x, t) =
∑

j

ψj(x)yj(t) (1.2)

ψj(x) are the shape functions, they are set a priori and chosen such that all the imposed
constrains are respected. The yj(t) are the generalized coordinates, they module the shape
functions in time giving rise to the system response and represent the unknown quantities.
The greater the number of summed up terms, the more accurate is the method.

In order to derive the equations of motion the Lagrange equations are used. For them are
required the kinetic energy, the total potential energy, and the generalized component of the
excitation force.

It is necessary to compute the following derivatives of v with respect to the time and the
space:

v̇(x, t) =
∑

j

ψj(x)ẏj(t) v̇2(x, t) =
∑

j

∑

k

ψj(x)ψk(x) ẏj(t)ẏk(t)

v′(x, t) =
∑

j

ψ′j(x)yj(t) v′′(x, t) =
∑

j

ψ′′j (x)yj(t) v′′2(x, t) =
∑

j

∑

k

ψ′′j (x)ψ′′k (x) yj(t)yk(t)
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8 CHAPTER 1. BEAM DYNAMICS

The kinetic energy of the beam is:

T =
1

2

∫ l

0

γ(x)v̇2(x, t)dx =
1

2

∑

j

∑

k

ẏj(t)ẏk(t)

∫ l

0

γ(x)ψj(x)ψk(x)dx (1.3)

it can be collected in the matrix format:

T =
1

2
ẏTmẏ

where m is the inertia matrix and his generic element is:

mij =

∫ l

0

γ(x)ψjψkdx

The total potential energy reads:

V =
1

2

∫ l

0

EI(x)v′′2(x, t)dx =
1

2

∑

j

∑

k

yj(t)yk(t)

∫ l

0

EI(x)ψ′′j (x)ψ′′k (x)dx (1.4)

in matrix notation:
V =

1

2
yTky

the stiffness matrix k consists of the following elements:

kij =

∫ l

0

EI(x)ψ′′j ψ
′′
kdx

The generalized component of the perturbing forces is the one generating work in the free
coordinate, that is Qj(t) in:

δW =
∑

j

Qj(t)δyj

The virtual work done by the perturbating forces is:

δW =

∫ l

0

f(x, t)δv dx δv =
∑

j

ψj(x)δyj

δW =
∑

j

(∫ l

0

f(x, t)ψj(x)dx

)
δyj

so that:

Qj(t) =

∫ l

0

f(x, t)ψj(x)dx

The Lagrange equations represent a system of ordinary differential equations which are as
many as there are degrees of freedom of the system:

d

dt

∂T

∂ẏj
+
∂D

∂ẏj
+
∂V

∂yj
= Qj(t) j = 1, 2, 3...n

The expression also includes the viscous damping by mean of the Rayleigh function D.
We obtain the well known system of motion equations in the n free coordinates:

mÿ + cẏ + ky + Q (1.5)

It must be said that the function of dissipation D, as well as the terms of the matrix mathbfc
which derive from it, are difficult to interpret. In the practise, because the structure is
homogeneous, it becomes possible to directly impose the value of the modal damping factors ξj
as shown in the following.
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1.2 Eigenfunctions

Shape functions must ensure the derivability and integrability in order to compute the inte-
grals 1.3 and 1.4. If we substitute the deformed shape, separating the spatial and temporal
variables v(x, t) = ψ(x)g(t) in the equation of motion for free oscillations:

EIvIV (x, t) + γv̈(x, t) = 0

one finds:
EI

γ

ψIV (x)

ψ(x)
= − g̈(t)

g(t)
= ω2 (1.6)

the first and the second term must be equal for each time instant, so they can put equal to a
constant ω2. One side we obtain:

g̈(t) + ω2g(t) = 0

which is the equation of the harmonic motion, with the simple solution:

g(t) = A sin (ωt) +B cos (ωt)

on the other:
ψIV (x)− λ4ψ(x) = 0 (1.7)

with
λ4 = ω2 γ

EI

that has the general integral:

ψ(x) = C1 sin (λx) + C2 cos (λx) + C3 sinh (λx) + C4 cosh (λx) (1.8)

by imposing the geometric boundary conditions for the simple supported beam:

ψ(0) = 0 ψ(l) = 0 M(0) = EIψ′′(0) = 0 M(l) = EIψ′′(l) = 0

the nontrivial solutions of the system are the ones that makes null the determinant of the
coefficient matrix:

sin (λl) sinh (λl) = 0 ⇐⇒ λ =
jπ

l
j = 1, 2, 3...∞

and that provide, if substituted in 1.8:

ψj(x) = sin
jπx

l
(1.9)

Furthermore, inverting the 1.7, they make possible to understand the physical meaning of ωj:

ωj =

√
EI

γ

(
jπ

l

)2

(1.10)

The problem exposed in 1.6 can be viewed as a eigenvalues problem, where ω2
j are the eigen-

values and ψj(x) the associated eignefunctions. The ωj are also called pulsatance, or circular
frequency, and are linked to the frequency with the relation ω = 2πf . The eigenfunctione, each
one with its proper associated frequency, represent the vibrational modes of the structure.
As one can see from 1.10, increasing the index j, the oscillation frequency increases. As a
consequence the modes of vibration are a potentially infinite set, numerable, with increasing
frequency.

Orthogonality of eigenfunctions implies that:

∫ l

0

γ(x)ψj(x)ψk(x)dx = 0

∫ l

0

EI(x)ψ′′j (x)ψ′′k (x)dx = 0
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Modal mass mj =

∫ l

0

γ(x)ψ2
jdx = γ

∫ l

0

sin2 jπx

l
dx =

γl

2
∀j

Modal stiffness kj =

∫ l

0

EI(x)ψ′′2j dx = EI

∫ l

0

(
jπ

l

)2

sin2 jπx

l
dx = EI

(
jπ

l

)2
l

2

Generalized modal force Qj =

∫ l

0

f(x, t)ψjdx =

∫ l

0

f(x, t) sin
jπx

l
dx

Table 1.1: Properties of the jth mode.

as a consequence all the extra-diagonal terms of the matrices m and k are null:

mjk = 0

kjk = 0
if j 6= k

what derives is that the m and k matrices are diagonal, and under the assumption that c is
too, the system of equations of motion 1.5 uncouples to n ordinary equations:

mj ÿj + cj ẏj + kjyj = Qj(t) (1.11)

each one for a mode of vibration j of the system. Thus the yj coordinates play the role of
principal coordinates. Since they describe the amplitude of the modal shape in time, they
also have the meaning of modal coordinates. The other terms are: for simple supported beam
istance.

The 1.11 is usually written dividing for mj:

ÿj + 2ξjωj ẏj + ω2
j yj =

1

mj
Qj

where ξj is the damping factor related to the jth mode. While

ω2
j =

kj
mj

(1.12)

is the usual way to define the pulsatance. Substituting the modal stiffness and the modal
mass one finds the definition of 1.10 again.

1.3 Solution for arbitrary load

As we have seen, read the problem in terms of modal coordinates not only restrict it to a finite
number of degrees of freedom, but also give us equations in a single degree of freedom, which
are quite handy to solve. Each one of these equations is the motion of a simple oscillator yj(t),
with viscous damper, subjected to a certain forcing function.

If we know the expression in time of the modal coordinates yj(t), the final deformed shape
of the beam is also automatically defined. It is nothing but the superposition of every modal
shape, multiplied by the corresponding modal coordinate varying in time.

When the forcing function is null (free oscillations), constant, or harmonic, the solution
of the modal equations can be found analytically. Otherwise, if the forcing function has an
arbitrary variation in time or space, the solution requires numerical methods.

The resolution approach here adopted is the Duhamel’s integral. That is the easier and
more reliable way to be implemented in the code, in order to solve any kind of load case.

The Duhamel’s integral is in extended form:

y(t) =

∫ t

0

Q(τ)h(t− τ)dτ
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where h(t) is the response of the oscillator to a unit impulse (Q = δ(t− 0)) acting at time t = 0
and represents the Green’s function for that dynamic system. It can be derived from the free
oscillator response

y = e−ξωt [A cosωDt+B cosωDt]

by imposing zero initial displacement, and starting velocity equal to the ratio between impulse
and mass:

y|t=0 = 0

ẏ|t=0 =
I

m

we obtain:
y =

I

mωD
e−ξωt sinωDt ωD = ω

√
1− ξ2

with unitary impulse:

h(t) =
1

mω
e−ξωt sinωDt

The Duhamel’s integral in discrete form becomes:

yj(t) =
∑

n

Qj(n∆t)hj(t− n∆t)∆t

The Duhamel’s integral coincides with the convolution of the forcing function and the Green’s
function of the system. Namely:

y = Q(t) ∗ h(t) (1.13)

The interesting property of the Green’s function h(t) is that its Fourier transform is the
Frequency Response Function (FRF) of the system:

F{h(t)} = H(f)

which is:
H(β) =

1

k

1

1− β2 + 2iξβ
β =

Ω

ω

and by mean of the convolution theorem, which states that the Fourier transform of the
convolution of two functions is equal to the product of the Fourier transform of each function,
in formula:

F
{
h(t) ∗ g(t)

}
= F{h(t)} ·F{g(t)}

one finds that the transform of the response is the product of the FRF for the transform of the
forcing function:

F{y(t)} = H(f) ·F{Q(t)}
That is the basis of the frequency response study.

1.4 Generalized forces

From the perspective of the code compilation are now presented the generalized forces that one
can deal with in the handling of pedestrian forces. Reference is made to the third equation of
table 1.1.
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f(x, t) Qj(t)

Impulsive force applied in x0 at
the instant t0

Pδ(x− x0)δ(t− t0) P sin
jπx0

l
δ(t− t0)

Force constant in time and space Pδ(x− x0) P sin
jπx0

l

Force constant in time, moving
with velocity c

Pδ(x− ct) P sin
jπc

l
t

Harmonic concentrated force P sin(Ωt+ φ)δ(x− x0) P sin(Ωt+ φ) sin
jπx0

l

Harmonic concentrated force,
moving at velocity c

P sin(Ωt+ φ)δ(x− ct) P sin(Ωt+ φ) sin
jπc

l
t

Force with constant component
and harmonic component, mov-
ing at velocity c

PSδ(x− ct)+
+PD sin(Ωt+ φ)δ(x− ct) sin

jπct

l

[
PS + PD sin(Ωt+ φ)

]

Distributed standing load con-
stant in time

q q
l

jπ

[
1− cos(jπ)

]

Distributed standing load vary-
ing in time

q(t) q(t)
l

jπ

[
1− cos(jπ)

]

Table 1.2: Generalized forces related to different loadings conditions, for a simply supported
beam. The jth generalized force excites the jth modal coordinate.



Chapter 2

Human forces: Literature review

2.1 Single person force modelling

What we nowadays know about pedestrian-induced forces started to be studied by Harper et
al. as recently as 1961. They recorded the characteristic shape with two peaks of the vertical
force time history. Many other researchers have confirmed and deepened the subject, among
them: Galbraith and Barton 1970 [17], Andriacchi 1977 [2], Blanchard et al. 1977 [6], Ohlsson
1982 [30], Kerr 1998 [21], Bertram and Ruina 2001 [5], Wheeler 1982 [36].

Andriacchi for instance measured single step walking forces in all three directions by mean
of a force plate, whose typical patterns are presented in figure 2.1.

−50
0
50

Lateral force [N]

−200

−100

0

100

200

Longitudinal force [N]

200 400 600 800 1,000 1,200

200

400

600

800

Time [ms]

Vertical force [N]

Figure 2.1: Tipical shapes of walking force in a) lateral, b) longitudinal and c) vertical direction
(after Andriacchi et al. [2])

The walking force exhibits, besides the vertical one, two other components: the lateral and

13



14 CHAPTER 2. HUMAN FORCES: LITERATURE REVIEW

the longitudinal one. Their presence is mainly due to the friction between the foot and the floor.
The vertical action is at least one order of magnitude greater with respect to the other two.

Despite of this the minor components are not negligible in many cases. For instance, the
lateral component is responsible for the lateral instability of footbridges.

If the footsteps are put consecutively in the time history, as they are recorded, one finds a
continuous force. This force has not empty holes cause the feet of the pedestrian never find
themselves simultaneously raised from the ground (this would be the case of running, which is
not under discussion). We refer to this force as the Ground Reaction Force, GRF.

The natural next step is to decompose it in Fourier series, as the engineer’s basic instinct
requires. The formula first given by Bachmann [4] in 1955 is of the type:

Fped = W +

narm∑

i

Wαi sin (2πifpedt+ φi) (2.1)

where:

W person’s weight, typically 700 N (Bachmann & Ammann assumed 800 N);

αi Fourier’s coefficient of the ith harmonic;

fped activity rate [Hz], that is to say pacing frequency;

φi phase lag of the ith harmonic relative to the 1st one;

i order number of the harmonic;

narm total number of contributing harmonics.

2.2 Dynamic Loading Factor

Since the αi coefficient has the meaning of a Dynamic Loading Factor we are calling it DLF from
now on. It is clear that the complete series includes an arbitrary number of DLFs, which are
referred to the first narm harmonics. In order to identify them, the index i should be added:
DLFi.

Many researchers have tried to quantify the DLFs. What they found is that it depends on
the pacing frequency, or analogously on the speed. An overview of the DLFs for single person
force, provided by different authors, is given in table 2.1.

Authors DLF1 DLF2 φ2 DLF3 φ3 Notes

Blanchard et al. 1977 0.257
Shultze 1987 0.37 0.10 0.12 at 2 Hz
Bachmann & Ammann 1995 0.4÷ 0.5 0.10 π/2 0.10 π/2 at 2÷ 2.4 Hz

Table 2.1: DLFi for ith harmonic and corresponding phase lag. The data refer to the vertical
components of the GRF due to walking.

Figure 2.2 gives an example of the decomposition by means of Fourier series of the Ground
Reaction Force until the third harmonic. The used coefficient are by Bachmann & Ammann [3].

As figure 2.3 shows, the GRF changes with the type of activity: it generally increases its
magnitude with the intensity of the motion. DLF analogous to those in table 2.1 have been
derived for the running case and the jumping case, but these do not concern this study.

Young in 2001 introduced DLF as a function of the walking frequency, supposed to be in
the range 1÷ 2.8 Hz. He examinated the DLFs from the 1st to the 4th harmonic:

DLF1 0.37 (fped − 0.95) ≤ 0.56
DLF2 0.069 + 0.0056fped

DLF3 0.033 + 0.0064fped

DLF4 0.013 + 0.0065fped
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Figure 2.2: GRF decomposition by means of Fourier series. Original GRF time history (a), its
first harmonic (b), first two harmonics (c), and first three harmonics (d). The DLFi coefficients
are taken from Bachmann & Ammann 1995.

Anyway, the data collections are very scattered and with the exception of the first, the other
DLF appear quite unreliable.

A further contribute is provided by Kerr [21], who interpolated the experimental data by a
cubic curve, for the first DLF:

DLF1

upper bound −0.3497f3
ped + 1.7432f2

ped − 2.3228fped + 1.0049

mean −0.2649f3
ped + 1.3206f2

ped − 1.7597fped + 0.7613

lower bound −0.1801f3
ped + 0.8980f2

ped − 1.1966fped + 0.5177

Also, he computed the upper and lower bound of the DLF1 range of variation. These curves are
plotted in figure

2.3 Speed

The velocity of undisturbed pedestrian walking is generally reported as free speed. Several
studies have been carried out to provide the statistical description of the pedestrian free speed
as a random variable through its Probability Density Function (PDF). It is well estabilished that
the Gaussian PDF better agrees with the measured data.
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Figure 2.3: Typical vertical force patterns for different types of human activities (Wheeler
1982 [36])

Table 2.2 reports a selection of the PDF parameters obtained by different authors [10]. The
differences among the mean values (1.08 ÷ 1.6 m/s) are due to the fact that they have been
measured in different locations and traffic situations (subway stations, shopping streets, indoor
walkways). Indeed, walking parameters are influenced by physiological and psychological
factors, such as body weight, height, age, gender, travel purpose, type of walking facility.

2.4 Frequency

As far as the walking frequency is concerned, it has to be intended as a vertical walking
frequency fped,v, that is the number of times a foot touches the ground in a time unit, while the
horizontal or lateral walking frequency fped,l is intended as the number of times the same foot
touches the ground. The lateral step frequency is therefore half the vertical one.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.2

0.4

0.6

Pacing frequency [Hz]

DLF1

Figure 2.4: Kerr’s expression for the Dynamic Loading Factor of the 1st harmonic as function
of the pacing frequency.
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Authors
Mean speed cµ Standard deviation cσ Geographic area

m/s m/s

Fruin 1.40 0.15 US
Hankin and Wright 1.60 - US
Koushki 1.08 - Saudi Arabia
Lam et al. 1.19 0.26 Hong Kong
Older 1.30 0.30 UK
Pauls 1.25 - US
Ricciardelli et al. 1.41 0.224 Italy
Sanhaci and Kasperski 1.37 0.15 Germany
Sarkar and Janardhan 1.46 0.63 India
Tanariboon et al. 1.23 - Singapore
Virkler and Elayadath 1.22 - US
Weidmann 1.34 - -

Mean value 1.32 0.286

Table 2.2: Mean value and standard deviation of pedestrian free speed from different authors.

Human motion
Forward speed Pacing frequency Stride length

m/s Hz m

Walking
Slow 1.1 1.7 0.6
Normal 1.5 2.0 0.75
Fast 2.2 2.3 1.0

Table 2.3: Correlation of forward speed, pacing frequency and stride length for walking
(Bachmann & Ammann, 1987 [4])
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Figure 2.5: Examples of fped(c) relations.

Table 2.4 summarises the mean values
of the vertical frequency measured in uncon-
strained circumstances by different authors.
One of the first reliable statistical description
was given by Matsumoto et al. [25], who
concluded that the vertical frequencies follow
a Gaussian distribution, with a mean value
fµ = 2 Hz and a standard deviation fσ = 0.173 Hz.
The other authors found mostly lower mean val-
ues inside the interval 1.82 Hz÷1.90 Hz.

The complexity of the walking behaviour
makes it difficult to find relationships between
the three walking parameters (speed, frequency,
step length), as pointed out by Bertram and Ru-
ina [5], who obtained different speed(frequency)
relations under different constrained circum-
stances.

The pacing frequency depends on the motion
activity we are considering, which is to say the
speed of the motion. Also, the walking speed is an individual property, and it is influenced
by many factor like age, gender, height, and so on. Many studies have investigated how these
aspects are correlated.

According to Ricciardelli et al. [32], linear relations can be found between the walking
velocity and the step length or the walking frequency, while the latter two parameters can be
considered as uncorrelated. Various fped(c) laws have been proposed as a fitting to empirical
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Authors
Mean frequency fµ Standard deviation fσ Samples

Hz Hz (people)

Leonard 1.7÷2.3 - -
Matsumoto et al. 1972-78 [25] 2.0 0.173 505
Kerr and Bishop [21] 1.9 - 40
Bachmann et al. 1995 [4] 1.6÷2.4 - -
Butz et al. [1] 1.84 0.126 -
Pachi and Ji 2.0÷1.83 0.135÷0.11 800
Ricciardelli et al. 1.835 0.172 116
Sanhaci and Kasperski 1.82 0.12 251
Živanović et al. 1.87 0.186 1976

Mean value 1.92 0.146

Table 2.4: Probability distribution of the pacing frequency by different authors.

1 1.5 2 2.5

1

2

3

Slow

Normal

Fast

Total

Pacing frequency fped [Hz]

fµ = 1.503Hz σ = 0.141

fµ = 1.837Hz σ = 0.126

fµ = 2.06Hz σ = 0.148

fµ = 1.80Hz σ = 0.268

Figure 2.6: Probability density functions of the step frequencies regarding the walking intention
taken from Butz [1].

measurements. Linear expressions have been proposed, for instance, by Oeding [29]:

fped = 0.7886 + 0.7868 c

and by Ricciardelli et al. [32]:
fped = 0.024 + 0.754 c

A non-linear relation based on a cubic fitting to the data has been formulated by Bertram and
Ruina [5]:

fped = 2.93 c− 1.59 c2 + 0.35 c3

These three fped(c) relations are compared in figure 2.5.
The difference between the Bertram and Ruina and Ricciardelli et al. data, can be due to

the different way in which the tests have been performed: in the first case, pedestrians walked
on a treadmill with imposed constant speed, while, in the second, pedestrians were asked to
walk naturally over a length of 72 m on a sidewalk.

2.5 Density

The pedestrian density greatly influences the speed of the individual and is therefore important
for the dynamic analysis. The relation between velocity and pedestrian density has been widely



2.5. DENSITY 19

researched. A physically-based formulation for the density estimation has been provided by
Oeding:

n =
N

beffL
=

ζ

c beff

with the following meanings of the symbols:

n Pedestrian density

ζ Rate of pedestrian arrival

c Velocity of pase

N Number of pedestrian on bridge deck

beff Effective width of the bridge

L Length of bridge

In general the walking velocity reduces with increasing traffic density because of the
reciprocal inhibition of the movement freedom. With high pedestrian densities, the mean
velocity of the pedestrians decreases and the individual pedestrian attempts to adjust his
frequency of pace to coincide with his neighbours.

Among the relations proposed it can be mentioned the linear law by Nelson:

c = 1.4(1− 0.266n) (2.2)

and the exponential law by Kladek [34]:

cKladek = 1.34
(

1− e−1.913(1/n−1/5.4)
)

(2.3)

The table 2.7 includes quite a number of relations and experimental data by different
authors.

Together with the slowing down of the speed, that also means the frequency, what mostly
affect the action exercised on the structure is the progressive concentration through a common
speed, thus a common frequency. The evidence is given by the more narrow distribution of c for
high density. This effect is shown, just qualitatively, in Fig. 2.8a and more or less corresponds
to the initial description of human-human interaction as provided by Wheeler (1981).
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Figure 2.7: Speed
(
Density

)
relations and field measurements taken by different authors. a)

Thompson and Marchant 1995 [33]; b) Bosina 2015: many literature data compared with
Kladek’s formula [7]; c) Non-linear relation proposed by different authors; d) Experimental
measurements from Reimer et al.; e) Linear relations by different authors, and in addition
Nelson’s law (eq. 5.1) overlaid in black; f) Kladek’s formula 1993 [34].
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Chapter 3

MATLAB program validation

In this chapter some tests are performed in order to validate the performace of the MATLAB

program. The code consists in a MATLAB script that aims to solve the dynamic equation of the
beam under arbitrary loading conditions, in terms of modal coordinates. This is achieved by
performing the convolution between the generalised load and the impulse response function
(eq. 1.13) in vector form. The solution is constituted by the time history of the modal coordinate
yj(t) in vector form. An arbitrary number of modal coordinates can be computed, based on the
required accuracy, and finally the output in term of deformed shape in time v(t) is reassembled
by summing up all the modal contributions (eq. 1.2).

Unless otherwise stated, the data of the structure, intended as a beam-like, simply supported
footbridge, are prescribed in table 3.1.

EI

l

Text notation Code notation Value

Length l l 50 m
Elastic modulus E E 200 000 N/mm2

Linear mass γ gamma 3000 kg/m
Sectional moment of inertiaa I I 1.5198× 1011 mm4

Natural frequency of the structure (first
mode)

fstr fstr 2 Hz

Circular frequency (first mode) ωstr omega_j(1) 12.56 rad/s
Viscous damping factor ξ csi 0.2 (20%)
Number of modes narm n_armoniche 10

Table 3.1: Basic model for testing

aThe moment of inertia is derived from 1.10 in order to have the natural frequency equal to 2Hz

Static concentrated load at the midspan

The load is applied at time t = 0. After a transition which is typical of the damped motion, the
displacement stands at about 0.060 mm. If static conditions are imposed in eq. 1.11 (acceleration
and velocity null), the modal coordinates assume the following form:

yj(t =∞) =
2Pl3

π4EI

sin
(
jπ
2

)

j4

The displacement value corresponds to that we obtain from the eigenfunction summation:

vl/2,t=∞ =
2Pl3

π4EI

10∑

j=1

sin2 jπ
2

j4
=

2Pl3

π4EI

(
1 +

1

34
+

1

54
+

1

74
+

1

94

)
= 5.997× 10−2 mm (3.1)

23
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Figure 3.1: Displacement at the midspan due to concentrated constant load applied at starting
time.

which in turn tends to the exact value by Euler-Bernoulli:

vl/2 =
1

48

Pl3

EI
= 5.997× 10−2 mm (3.2)

with an error equal to 9.6× 10−6. The diagram is plotted in figure 3.1, while in figure 3.2 it
is shown that by removing the load the displacement tends back to zero after an analogous
transition.

Concentrated moving load with constant amplitude

The motion of the load can magnify the dynamics displacements in the beam. Such a result
occurs when the load moves in a period of time which has the same order of magnitude of the
natural period of the structure. We might say that the load is in a sense steering into the beam.

The maximum effect is reached when the load crosses at a speed equal to the critical one,
which is the speed required to cover the entire beam in a time corresponding to the period of
the first mode of vibration.

As defined, it is:

ccr =
π

l

√
EI

γ
(3.3)

In this case it provides ccr = 200 m/s, a speed which is pretty far from the usual pedestrian
range.

In the diagram 3.3 are plotted the results of three runnings of the code with different
load speeds. We can see how the displacement track for c = 2 m/s and c = 20 m/s correctly
resembles the influence line of the beam. This means that the effect of such a moving load
is approximately the same of a load statically placed point by point. Vice versa for c = ccr the
displacement track is magnified and its maximum exceeds the static one.

In the diagram 3.4 the same plot set has been normalised with respect to the crossing
period.(T = c/l) The so obtained shapes coincides with those reported by Frýba [16]. We observe
again that if the speed is in the walking range (c ≈ 1.8 m/s) the dynamic effects are negligible.
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Figure 3.2: Displacement at the midspan due to concentrated constant load applied at starting
time and then removed at time t = 3 s.

As a conclusion we can state that a static approach is equally representative of the problem.
This means that if we model the pedestrians as a static harmonic force which is not effectively
moving, we expect to obtain mainly the same results as they are moving.

That fact allows us not to take them into account in the developing of the next theoretical
formulation.

Harmonic concentrated load in the midspan

The system is analogous to the damped oscillator subjected to harmonic force. The discriminant
is here the load pulsatance, which can produce the amplification or the reduction of the beam
displacements, as a function of the ratio with the natural frequency.

In figure 3.5 it is shown the curve for a load that could represent the single pedestrian. It is
assumed as the amplitude of the force, the conventional value equal to the 40% of the weight
force PS = 700 N, that is to say PD = 280 N. While the frequency is the representative value
1.8 Hz.

We can state that the maximum displacement vD,max under harmonic load is given by the

one due to an equivalent static load vS times the amplification factor N(β), with β =
fped

fstr
:

vD,max = N(β) · vS (3.4)

with the usual form for N(β):

N(β) =
1√

(1− β2)
2

+ 4ξ2β2

(3.5)

In the current case we get β = 1.8 Hz/2.0 Hz = 0.9, and then N(0.9) = 2.456. It follows:

vS,l/2 '
1

48

PDl
3

EI
= 2.39× 10−2 mm

vD,l/2 = 2.456× 2.39× 10−2 mm = 5.89× 10−2 mm

That validates the result of figure 3.5.
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Figure 3.3: Midspan displacement due to concentrated load moving at three different speeds.
The crossing begins at time t = 0.
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Figure 3.4: Midspan displacement due to concentrated load, moving with four different speeds,
time axes normalised with respect to the crossing period (T = c/l).
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Figure 3.5: Midspan displacement under harmonic load concentrated at the midspan. P (t) =
PD sin (2πfµt), PD = 280 N, fµ = 1.8 Hz

Harmonic concentrated load, moving at c = 1.62m/s� ccr

The prescribed velocity must be referred to a perfect pedestrian which is walking with a pacing
frequency equal to 1.8 Hz and a step length equal to 90 cm. The load is moving and its amplitude
varies following the harmonic law. Since its speed is quite lower than the critical speed we’re
expecting a displacement similar to that of figure 3.5, but modulated by the modal shape. Also
we should find at half way a very similar magnitude.

The result, reported in figure 3.6, correctly presents these elements. The vibration of the
structure ends with the exit of the load from the beam (some seconds later, actually, because
of the inertia) after the crossing period T = 30.86 s.

In simulation 3.7 it is added to the load a constant component PS = 700 N. The displacement
trace is now representative that one of a synthetic pedestrian having mass 70 kg.

Distributed constant load

We’re calling it distributed for simplicity, but the loading case actually consists of a line of
concentrated loads. In the simulation of figure 3.8 the load is applied in the initial instant and
left still. Obviously nothing different from the test reported in figure 3.1 is expected, the only
thing, the magnitude of the displacement must be greater. One finds that the modal coordinate
in static conditions is:

yj(t =∞) =
4ql4

π5EI

1

j5

thus, the midspan displacement is:

vl/2,t=∞ =
4ql4

π5EI

10∑

j=1

sin jπ
2

j5
=

4ql4

π5EI

(
1− 1

35
+

1

55
− 1

75
+

1

95

)
= 0.937 mm (3.6)

which in turn tends to the exact value by Euler-Bernoulli:

vl/2 =
5

384

ql4

EI
= 0.937 mm (3.7)
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Figure 3.6: Midspan displacement under concentrated harmonic load, moving at c = 1.62 m/s.
Crossing begins at time t = 0. P (t) = PD sin (2πfµt), PD = 280 N, fµ = 1.8 Hz

with an absolute error 4.12× 10−6.

Distributed constant load in motion

The test 3.8 shall be used in order to simulate a crowd crossing the footbridge. The simulation
is carried out with a sample of 2N forces, representing the walking pedestrians, which are
equally spaced along twice the beam length, so that we can observe a transitional stage from
t = 0 to t = T in which the bridge is filling up, followed by a stationary stage from t = T to
t = 2T where the brisge contains N forces in motion, and after that a last transitional phase in
which the bridge is emptying out from t = 2T to t = 3T .

During the first period the displacement is supposed to increase from 0 to 0.937 mm, which
corresponds to the maximum static displacement vmax already found that we would get if the
load is not moving. Then it’s expected to remain more or less constant (very small oscillations
can occur because the first punctual load in the line goes down before than a new one comes
up, and this repeat continually). Finally, it gradually goes to 0.

We are interested in studying the second period, by virtue of its stationary in time. Some
useful quantities like the variance and the effective value of the response, both in terms of
displacements and accelerations, shall be computed in the following chapters.

Distributed load with constant and harmonic component in motion

As concerns this case, what has been observed for the distributed constant load in motion
and for the concentrated harmonic load also applies to it. In figure 3.10 three simulations
with different structural frequencies are performed. The distributed load consists in a string of
concentrated loads, each one having oscillation frequency set to fµ = 1.8 Hz. The magnitude of
the dynamic component is 280 N and the static one is 700 N. They are in phase and thus the
overall distribution load is q = 350 N/m + 140 N/m sin(2πfµt).

For the three cases a predicted theoretical displacement can be computed (note that if
fstr changes, the modulus of inertia I changes as well). The obtained values are reported in
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Figure 3.7: Midspan displacement under harmonic concentrated load, moving at c = 1.62 m/s.
Crossing starts at time t = 0. P (t) = PS + PD sin (2πfµt), PS = 700 N, PD = 280 N, fµ = 1.8 Hz
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Figure 3.8: Midspan displacement under distributed static load applied at time t = 0.
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Figure 3.9: Midspan displacement due to distributed constant load, transiting at speed 1.62 m/s.
Crossing period equal to T = 30.86 s.

fstr β Amplification factor N(β) vS Theoretical vD Output vD Error

0.5 3.6 0.083 5.749 0.477 0.504 5.5%
1 1.8 0.425 1.437 0.610 0.618 1.1%
2 0.9 2.456 0.359 0.883 0.887 0.4%

Table 3.2

table 3.2. The static displacement vS refers to the displacement due to a constant distributed
load q = 140 N/m, hence the dynamic displacement vD, which is given by the static displacement
times the amplification factor N(β) (figure 3.11), stands for the magnitude of the oscillation
one can see in figure 3.10 in the stationary phase.

Number of harmonics

Figure 3.12 shows the convergence of the midspan displacement computed by means of
the eigenfunctions decomposition. The values refers to the midspan displacement under
concentrated load described at page 23, and in particular to the series equation 3.1. One can
find that the method benefits from a quick convergence through the axact value, which is
1

48

Pl3

EI
,and that is marked by the dotted line in the graph. The even terms of the series are not

taken into account because they does add a null contribute to the sum. By virtue of the small
error registered, we can arrest the computation even to the first term, without incurring in
lack of accuracy.

The computed values for the converging maximum displacement are given in table 3.3.

Discretization

A not negligible fact is regarding the discretization limits to be set in the program. They
concern the space discretization and the time discretization. The space discretization means
the number of elements the beam is split into of the abscissa vector. This basically doesn’t
affect the measurement at the midspan, since it counts only in the recomposition of the
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solution. But it is guaranteed only as long as a node coincides with it or is very close. The
same applies if an other point is used as a sample.

A different consideration concerns the time discretization. Since it ultimately determines
the accuracy in the time history of the modal coordinates, it plays a crucial role. Figure 3.13
illustrates how the midpan displacement tie history is affected by the time discretization,
passing from a time-step equal to ∆ = 0.1 s to ∆ = 0.001 s. There is a great gain in terms of
accuracy passing from ∆ = 0.1 s to ∆ = 0.01 s whereas we get only a marginal profit passing
from ∆ = 0.01 s to ∆ = 0.001 s. By virtue of this evidence, the discretization step adopted for
following developments is ∆ = 0.01 s.
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Figure 3.11: Amplification factor for ξ = 0.2

Number of
harmonics vS,t=∞

1 0.059 104
3 0.059 833
5 0.059 928
7 0.059 952
9 0.059 961

Exact value 0.059 971 55. . .

Table 3.3
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Figure 3.12: Convergence to the exact value of the midspan displacement by increasing the
number of harmonics.
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Figure 3.13: Midspan displacement time history with different time-step discretizations.
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Chapter 4

Acceleration response — varying
pedestrian phase and frequency

In this chapter the two random variables of the model are introduced: the pedestrian phase
and pacing frequency. Subsequently a formula for the computation of the RMS of the response
in terms of displacement and acceleration is proposed.

The adopted approach falls within the random vibration theory, which allows to represent
the loading and the response in the frequency domain through their Power Spectral Density
(PSD). The formulation is then accompanied and supported by MATLAB simulations.

4.1 Random variables introduction

The dynamic system to be examined consists in a simply supported beam, as seen in previous
chapter, that represents the static scheme of a footbridge, with a continuous file of pedestrian
passing on it. The pedestrian are uniformly spaced so that when the beam is entirely covered
the total number is 25.

The force exercised by each pedestrian, the Ground Reaction Force, is now rewritten from
equation 2.1 with a little change in notation:

Fped = W +

narm∑

i

W · DLFi sin (2πifpedt+ φi) (4.1)

From now on, W shall be set to 700 N, DLF to 0.4, and it is taken into account the 1st

harmonic only.

4.1.1 Phases distribution

With regard to the phases φ no information are known, that is to say they are supposed to be
randomly distributed, and in a spread crowd there are no reasons for them to be somehow
correlated. In this respect, we’ve been led to set the phases probability distribution as a
uniform distribution.

In order to be able to modulate the overall distribution, we’re introducing the parameter
α. It meaures the width of the band where the phases are spread out. Figure 4.1 clarifies its
meaning. If α = 2π the phases are uniformly distributed between 0 and 2π, if α = 0 all the
phases are equal to 0. The smaller is the parameter α the closer are the phases each other.

p(φ) =
1

α
rect

(
φ

α
− 1

2

)
(4.2)

This parameter was initially introduced by Capsoni [9] and adopted by Mariani & Man-
delli [23].
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Figure 4.1: Probability density distribution of loads phases and frequencies

4.1.2 Pacing frequency distribution

For the pacing frequency a normal distribution is assumed, according to the literature (see sec-
tion 2.4). Among the many values for the mean pacing frequency proposed by the researchers,
it is chosen fµ = 1.8 Hz, [1] for its simplicity.

It is known that the variance of the walking frequency has a high level of randomness, so
this one will be our random variable. Although we know it normally stands between 0.1÷ 0.2
the wider interval 0÷ 1 is going to be studied.

The normal distribution is described by:

p (fped) =
1

σ
ϕ

(
fped − fµ

σ

)
(4.3)

where ϕ(x) is the standard normal distribution. In extended form:

p (fped) =
1

σ
√

2π
e−

(fped−fµ)
2

2σ2 (4.4)

Figure 4.1 shows the probability density function of the pacing frequency as it has just been
defined.

In figure 4.2 and 4.3 are provided some simulation made with the MATLAB program with
varying α and σ. One can see the principal difference in how these two parameter of randomness
affect the time histories. A greater scattering in the phases of the pedestrian produces a smaller
response, which however keeps a certain regularity in time.

The major scattering in the walking frequencies leads to a substantially different result,
the output is much more irregular, and even if very small values are reached in some time
instants, biggest ones are reach in others, so that cannot be concluded that the effective value
of the response is smaller. It could be bigger, as it is demonstrated in section 4.3.

4.2 Stochastic load model

Random vibration theory provides us the useful formula in terms of ASD (Auto Spectral
Density):

Sy(f) = H∗(f)H(f)Sx(f) = |H(f)|2Sx(f) (4.5)
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that expresses the ASD of the response of a generic single-degree of freedom system excited by
a single force. What is also called single input-single output system. The Frequency Response
Function is:

H(f) =
1

k

1

1− β2 + 2iξβ

while its modulus is:
|H(f)| = 1

k2

1√
(1− β2)

2
+ 4ξ2β2

with the usual meaning of the variable β =
f

fn
. f is the frequency of the excitation force and fn

the natural frequency of the system. It should more correctly be indicated in respect of the
modal number fj, but in this context only the first harmonic is used, so the term fn, standing
for f1, is sufficient.

Adapted for this case the relation links the input ASD of a force and the output of a
displacement:

Sv(f) = |H(f)|2SF (f) (4.6)

In the case of 2 input forces the relation changes form:

Sv = H∗1H1SF1 +H∗1H2SF1F2 +H∗2H1SF2F1 +H∗2H2SF2

having used SF1
and SF2

as the ASD of the two random forces and SF1F2
for the cross

spectral density. The notation also implies that SF1F1
= SF1

.
Extending it to any multi-input system, in a compact way it becomes:

Sv =

N∑

r=1

N∑

s=1

H∗rHsSFrFs

which is, — in the Newland words — the central result of random vibration theory, and its sim-
plicity justify our faith in the Fourier transform and frequency response approach. Nethertheless
its application is restricted to single dof systems.

For a continuous system which can be described by means of eigenfunctions, the 4.6
becomes:

Sv(z, z1, f) = |H(z, z1, f)|2SF (f)

where:

H(z, z1, f) = |H(f)|ψ(z)ψ(z1)

|H(z, z1, f)| =







narm∑

j

ψj(z)ψj(z1)H(f, fj) cosφj




2

+



narm∑

j

ψj(z)ψj(z1)H(f, fj) sinφj




2




0.5

with ψj(z) the j-th modal shape. H(z, z1, f) is here describing the frequency output in an
arbitrary abscissa when the structure is excited by a random force in z1. So that is the case of
single outputs.

More extensively it reads:

Sv(z, z1, f) = |H(z, z1, f)|2SF (f) = ψ1(z)2ψ1(z1)2|H(f)|2SF (f)

For multi-input — single-output case (2 forces) the formulation is the following:

Sv(z, z1, z2, f) = |H1|2SF1
+ |H2|2SF2

+ 2|H1||H2|
{
SCF1F2

cos (ζ1 − ζ2) + SQF1F2
sin (ζ1 − ζ2)

}
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where SCF1F2
and SQF1F2

are the cross spectral density in phase and in quadrature. With the
following phase shift:

ζi = arctan

(
2ξiβi

1− β2
i

)

It is the case that every force exercised by the pedestrian has the same ASD, so we can simplify
SF1

= SF2
= SF and collect out of the parentesis:

Sv(z, z1, z2, f) = SF

{
|H1|2 + |H2|2 + 2|H1||H2|

{
SCF1F2

cos (ζ1 − ζ2) + SQF1F2
sin (ζ1 − ζ2)

SF

}}

It is now introduced the coherence function as:

Coh(f) =
|SF1F2 |2
SF1

SF2

It mainly gives a measure of how much the forces are correlated each other. It assume the
value 0 when the correlation is totally absent, and 1 when it is maximal.

One has:

Sv = SF

(
|H1|2 + |H2|2 + 2|H1||H2|

√
Coh

)

and then extending to the general multi-input case:

Sv = SF

(
N∑

r

|Hr|2
(

1−
√

Coh
)

+

N∑

r

N∑

s

|Hr||Hs|
√

Coh

)

we substitute the frequency response function taking just the first harmonic:

Sv = SF

(
N∑

r

ψ1(z)2ψ1(zr)
2|H|2

(
1−
√

Coh
)

+

N∑

r

N∑

s

(
ψ1(z)ψ1(zr)

)(
ψ1(z)ψ1(zs)

)
|H|2
√

Coh

)

and collecting:

Sv = |H|2ψ1(z)2

{
N∑

r

ψ1(zr)
2
(

1−
√

Coh
)

+

N∑

r

N∑

s

ψ1(zr)ψ1(zs)
√

Coh

}
SF (4.7)

If the loads are full correlated, SF1F2
= SF and Coh = 1, so that it becomes:

Sv = |H|2ψ1(z)2

{
N∑

r

N∑

s

ψ1(zr)ψ1(zs)

}
SF

In the loads are fully correlated, SF1F2 = 0 then Coh = 0 and it becomes:

Sv = |H|2ψ1(z)2

{
N∑

r

ψ1(zr)
2

}
SF

One can see that, if we have two full correlated loads acting in the same place, and with the
same phase, then ψ(z1) = ψ(z2) and the response is four times the corresponding counterpart
for a single load. But if they have opposite phase, it is ψ(z1) = −ψ(z2) and the effect cancel. On
the other side, if they are not correlated at all, the response is doubled, but independently on
the phases.

The first modal shape corresponds to

ψ1 = sin
πx

l
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from their integral definition the following relations can be expressed:

lim
n→∞

N∑

i=1

sin
πxi
l

2
= lim
n→∞

n

2

lim
n→∞

N∑

i=1

sin
πxi
l

= lim
n→∞

2n

π

lim
n→∞

N∑

i=1

N∑

j=1

sin
πxi
l

sin
πxj
l

= lim
n→∞

4n2

π2

In such a way that they can be substituted in eq.4.7 provided that the number of pedestrians
N , is sufficiently high. We got:

Sv = |H|2ψ2

{
N

2
(1−

√
Coh) +

(
2N

π

)2√
Coh

}
SF

Which ultimately represents how the response changes in relation to the crowd correlation.
This is a form similar to the one that can be read in [9] by Capsoni, where the coherence

√
Coh

is expressed by a synchronization parameter s.
Looking for a simpler form, one can take the coherence-affected term into the ASD of the

distributed load; finding the same compact form of the single-input — single-output system:

Sv(f) = |H(f)|2SF (f)

with the following load spectral density:

SF =
F 2p(f)

2
·
{
N
2 fully uncorrelated(
2N
π

)2
fully correlated

(4.8)

About the acceleration response, it can be derived knowing that:

Sv̈ = ω4Sv

Indicated with Sv̈ = Sa, it is

Sa = ω4|H|2SF
and then:

|Ha| = ω4|H| = 1

m

β2

√
(1− β2)

2
+ 4ξ2β2

Sa(f) = |Ha(f)|2SF (f)

The variance of the acceleration response is given by:

E[a2] =

∫ ∞

0

|Ha|2SFdf =

∫ ∞

0

1

m2

β4

(1− β2)
2

+ 4ξ2β2

F 2p(f)

2
η df

where η was used to indicate the coefficient that multiplies the ASD in eq.4.8.
The effective value is just the square root of the variance:

aRMS =

√∫ ∞

0

|Ha|2SF df =

√∫ ∞

0

1

m2

β4

(1− β2)
2

+ 4ξ2β2

F 2p(f)

2
η df (4.9)
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EI

l

Text notation Code notation Value

Length l l 50 m
Elastic modulus E E 200 000 N/mm2

Linear mass γ gamma 3000 kg/m
Sectional moment of inertiaa I I 1.5198 cm4

Natural frequency fstr fstr 2 Hz
Circular frequency ωstr omega_j(1) 12.6 rad/s
Viscous damping factor ξ csi 0.004
Number of considered harmonics narm n_armoniche 1
Time discretisation step ∆t step_temp 0.01 s

Table 4.1: Base model

aThe moment of inertia is derived from 1.10 in order to have the natural frequency equal to 2Hz

4.3 Simulations with variable parameters α and σ

The data used in the following simulation are reported in table 4.1. From now on
The pedestrian load, as previously anticipated, is modelled by a file of harmonic force with

randomness coefficients α and σ. The number of pedestrian implemented in the program is
N = 50, uniformly spaced between z = 0 and z = −2l. In such a way they start walking, with a
speed given by

c = fµλ

c = 1.8 Hz× 0.9 m = 1.62 m/s

and after a period T which is T = l/c = 50 m/1.62 m/s = 30.86 s, the footbridge bears 25
pedestrian from one edge to the other.

Then a second period T occurs, in which the number of pedestrian simultaneously walking
on the footbridge remains 25 (to be precise it is 25 for just an instant, and in the rest of time it
is 24, cause the first pedestrian is just gone off and the 25th is yet to go on).

At last, a third period of time T occurs in which the footbridge is emptying. We’re referring
our computations on the central period, when the response can be considered as a random
stationary process.

Clearly the reference remains the midspan. Figure 4.4 contains a typical simulation with
quite a good intrinsic randomness (α = 2π, σ = 0.1). It is shown the displacement time history
and the corresponding acceleration between the first pedestrian entrance and the last exit.

One can see that the acceleration response is not influenced by the static load of the
pedestrian, which instead produces a overall lowering in displacement history. That defines
the acceleration response as a zero mean value process, and consequently its variance is equal
to the mean square.

Now the parameters σ and α are investigated. In the following figures are presented the
effective value of the acceleration response, taken in the stationary range, with varying one
between σ and α with respect to the other.

Each plot reports 20 simulations groups, in transparency, each one containing 100 effective
simulations which represent each point in the plot, between 0 and 2π for α and 0 and 0.2 for σ.
The mean of the 20 groups is reported in thick line over them.

We can observe that if the frequencies are all concentrated upon a same value, and one
increase the scattering in phases, the effective response decrease in quite a regular manner.
The same does not happen if the frequency are in some way scattered, where instead the
response appears not to be dependent on α.

In other words the phases shift in the crowd seems to mostly affect the response if the
crowd is already correlated in frequency.
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For uncorrelated
In figure 4.6 α is taken as a constant and σ is left varying. What stands out is the mainly

identical shape of the mean curve, for any σ but near 0, where the response has a local peak
and matches with the local value of figure 4.5 left, for α = 0.

So, there is the evidence of a local behaviour near σ = 0 which is activated only if the phases
are correlated. This occurs for a very narrow range of standard deviation, namely 0 ÷ 0.01,
which are quite far from the usual frequency rate distribution for real pedestrian.

In figure 4.7 is plotted the analytical curve, given by equation 4.9 and computed by MATLAB,
using η = N

2 for anywhere but for σ = 0 where the coefficient η =
(

2N
π

)2
is used (left).

A good matching with the simulations is observed, even more accurate for small standard
deviations. The punctual value for null variance is correctly estimated. Only a few concern can
be expressed on the remaining part of the curve where the gap appears to be more consistent.

This accordance with the analytic formula in the form with η = N
2 seems to tell us that

the pedestrian loads have to be considered inherently uncorrelated with reference to the
frequencies even if their standard deviation is small.

In the following plots the surface aRMS(σ, α) is represented by mean of MATLAB simulations.
The domain is 20 points along α axis, and 100 points along σ axis. For each point in the
domain a total of 100 simulation have been performed, whose mean is the final value plotted.

Against the lateral face of the graph is plotted the analytical function given by eq. 4.9.
From the three graphs 4.8, 4.9, 4.10 some observations follow:

– The effective response does not depend on the parameter α, which is to say the inherent
phase shift in the crowd, if the pacing frequencies are even very low spread out.

– If all the pedestrian have the same frequency, there is a singularity behaviour and the
response is highly dependent on the phases shift.

A relevant aspect of the aRMS(σ) trend is the local peak that occurs in expanding the
frequency variance. Such a behaviour can generate some doubts, since one is likely to expect
a monotonous trend. In fact, the variance of the frequency distribution is linearly increasing
and it is in some sense more intuitive consider the response proportionally decreasing with
this variance. That would be true only if the mean pacing frequency coincides with the natural
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Figure 4.5: 20 simulations groups with varying α, with frequencies concentrated on fpedi =
fµ = 1.8 Hz on the left, and spared frequencies on the right.

frequency, but generally it is not. An easy representation of how this mechanism works is
sketched in figure 4.11.

4.4 Loads correlation

The latest conclusion, the fact that the phase synchronisation doesn’t affect the response when
the frequencies are — even the slightest — distributed, deserves some more deepenings.

Let us take as a reference just two pedestrian forces P1(t) and P2(t). These are two possible
realizations of the random process in time P (t), which is:

P (t) = F sin (2πft+ φ) (4.10)

The frequency f and the phase φ are random variables characterised by the parameters already
introduced: α and σ1 respectively.

Thus, P1(t) and P2(t) are time-dependent random variables, which are by definition, inde-
pendent each other, because the occurrence of one does not affect the probability of occurrence
of the other.

We are interested in studying the sum of them, as the simplest case of mutual action of two
forces. In this regard the variance of the sum of the two forces is:

σ2
P1+P2

= E
[(

(P1 + P2)− E [P1 + P2]
)2]

= E
[
P 2

1

]
− E [P1]

2
+ E

[
P 2

2

]
− E [P2]

2
+ 2E [P1P2]− 2E [P1]E [P2]

= σ2
P1

+ σ2
P2

+ 2σP1P2

(4.11)

Where has been made use of the fundamental relations:

σ2
P1

= E
[
P 2

1

]
− E [P1]

2

σ2
P2

= E
[
P 2

2

]
− E [P2]

2

σP1P2
= E [P1P2]− E [P1]E [P2]

1Not to be confused with the root square of the variance. Here σ stands for the standard deviation of the probability
density distribution of the frequency (eq. 4.4). The variance σ2

Pj
, or its root σPj , are always indicated with the

subscript of the relating variable, or with the notation Var [·]
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Figure 4.6: 20 simulations groups with varying σ. All of them having the same phase (left) or
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Figure 4.7: Confrontation of the simulations output (scatter) with the analytic function (dashed,
continuous) provided by eq. 4.9

Identifying with σ2
P1

and σ2
P2

the variances of P1(t) and P2(t), and with σP1P2 their covariance.
Before proceeding, the nature of the expected value operator E [·] has to be specified. A first

way the expected value operator can be conceived, is as a time-average operator:

E [X(t)] =
1

T

∫ T

0

Xj(t) dt

in this case we’re studying the randomness of the variable with respect to the time.
A second way is to consider all the possible realizations of the process for a given time

instant tk, and take the average. As a matter of fact, in doing so we are considering a new
random variable Xtk that represents all the values X(t) can assume when computed in tk.
This provides us the probabilistic properties of the process for any instant. The formal way to
express it, is by integrating all the values x that the variable can assume, multiplied by their
relevant probability pX :

E [Xtk ] =

∫ +∞

−∞
x pXdx
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Figure 4.8: aRMS(σ, α) surface for structure frequency fstr = 1.8 Hz.

If E [Xtk ], which we’re going to call punctual-average, is constant in time, the process is
stationary in wide sense. Furthermore, if E [Xtk ] = E [X(t)] for each t, the process is ergodic.

Now, in the computation of eq. 4.11 the time-average definition is assumed. Since P (t) is a
zero-mean process in time, whichever Pj(t) realization we take, the terms E [P1]

2 and E [P2]
2 are

both null.
Otherwise E

[
P 2

1

]
and E

[
P 2

2

]
, which are the mean square of the two variables and in this

case also correspond to the variances σ2
P1

and σ2
P2

, can be computed as follow:

E
[
P 2
j

]
= σ2

P = F 2 1

T

∫ T

0

sin2 (2πft+ φ)dt

=
1

T

F 2

2πf

[
−1

2
sin(2πft+ φ) cos(2πft+ φ) +

1

2
(2πft+ φ)

]T

0

=
F 2

2

This is a well-known value and it is the same no matter which value f and φ assume, and
thus is the same for any Pj(t). But that is true when computed within the proper T : the exact
period of the function. What if we remove this limitation?

Let us take the only frequency as random, and a fixed phase φ = 0. By means of an high
number of simulation using MATLAB one can find that the punctual-average E

[
P 2
tk

]
moving in

time, oscillates between −F and F for a certain time range, whose length increases the higher
is the frequencies randomness, depending on the parameter σ. In other words, the process
exhibits a non-stationary behaviour in the initial stage, and after that it becomes stationary,
since its punctual-average and its time-average coincide. We conclude that the process P (t)
can be regarded as stationary, given the frequency as the only random variable, if the reference
period is sufficiently long.

About the phase randomness, it is described by the parameter α in such a way that
φ ∼ U [(−α/2,+α/2)]. With the same numerical procedure, one finds that the punctual-average
of P (t) with the only randomness given by the phase shift, that is to say given by α, is never
constant, but is actually cyclostationary. That occurs for every α but 2π, when instead E [Ptk ]
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Figure 4.9: aRMS(σ, α) surface for structure frequency fstr = 1.9 Hz.

is constant and equal to 0. However, it is found that the time-average is always the same,
whatever the α.

As a conclusion, the process P (t) cannot be said stationary in wide sense. But, if the
observation period is sufficiently long, it can be treated like it is stationary. This is relevant
because it means that the probabilistic properties of the process seen in equations 4.11, are
time-independent.

Against this background, the variance of the sum of the two forces can be rewritten:

σ2
P1+P2

= E
[
P 2

1

]
+ E

[
P 2

2

]
+ E [P1P2]

= σ2
P1

+ σ2
P2

+ 2σP1P2

= 2σ2
P

(
1 +

σP1P2

σ2
P

)

= 2σ2
P (1 + ρP1P2

)

(4.12)

where has been collected σ2
P since has been proved that σ2

P1
= σ2

P2
= σ2

P = F 2

2 , and it is
introduced the correlation coefficient:

ρP1P2
=
σP1P2

σ2
P

It stands between −1 < ρP1P2
< 1 and expresses the grade of correlation between the two forces.

It is 0 if they are uncorrelated, 1 if they are perfectly correlated, and −1 if they are inversely
correlated.

The equation 4.12 makes it clear how the correlation between two random variable affects
their sum. If they are uncorrelated, the variance of the sum is equal to the sum of the variances
of the two variable separately. If they are perfectly correlated instead, the variance of the sum
is equal to the double of the sum of their variances.

As stated before, the forces which share the probabilistic properties with P (t) are in-
dependent, and consequently they are uncorrelated. Two uncorrelated variables has zero
covariance: σP1P2

= 0, that means E [P1P2] = E [P1]E [P2]. In our case the second term in null,
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Figure 4.10: aRMS(σ, α) surface for structure frequency fstr = 2 Hz.

and we get E [P1P2] = 0. That allows us to write the correlation coefficient in the simple form:

ρP1P2
= lim
T→∞

2

T

∫ T

0

sin(2πft+ φ) sin(2πft+ φ) dt (4.13)

where the limit form is introduced in order to approach the computation in a numerical way.
Until now has been stated that the two variable P1(t) and P2(t) are by definition uncorrelated.

This statement ends to be true in two cases. First, when the frequency and the phases
probability distribution converge towards a Dirac delta function, that is to say: they have
the same frequency and the same phase. Obviously, in such a limit case, the two variables
lose their randomness, and become deterministic functions of time. Having the same value
in every moment, their correlation coefficient must be 1 and the variance of their sum is 4σ2

P .
Second, when the frequency probability distribution is a Dirac delta function, and the phases
probability distribution is uniformly distributed in the band [−α/2,+α/2], with 0 ≤ α ≤ 2π.

The correlation coefficient can be computed by exploiting equation 4.13, through an high
number of simulation in MATLAB. What comes out is shown in figure 4.13 depending on the
probability band-width α.

The plot shows that the correlation coefficient of the two forces goes from 1 for α = 0
(perfectly correlated) to 0 for α = 2π (uncorrelated) in a continuous and almost sinusoidal
shape.

Figure 4.14 insted shows the correlation coefficient when σ varies from 0 to 1. The phases
are both taken null (α = 0), so that in σ = 0 we find again the full correlation ρP1P2 = 1. Then,
from that point on, the correlation coefficient quickly converge to 0.

Both the plot include 1000 computed points, each of which is averaged upon a sample
space of 100 random simulations.

4.4.1 Further evidences: frequency gap

It is interesting to observe the sudden decrease of the correlation in figure 4.14. This correspond
to a sudden decrease of the variance of the sum of the two forces, from 4σ2

P = 2F 2 to 2σ2
P = F 2.

This drift apparently happens when a tiny scattering in the frequencies takes place. The
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walking frequencies their probability function overlaps the frequency response function, and
the resulting crossed area — which is proportional to the RMS response — firstly increases,
and then decreases. Notice that the FRF is very narrow, mainly because of the low damping
factor. Both the FRF(f) and the pdf(f) were normalised in order to be well visible.
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Figure 4.12: Punctual statistic properties of the random process P (t) = F sin (2πft) with fσ = 0.1.
Each plot is computed upon a sample space of ten thousand random simulations.

question is: a so small scattering in frequencies justifies such a breakdown? If we take two
forces with a frequency shift ∆f :

P1(t) = sin (2π1.8 Hz t)

P2(t) = sin
(
2π(1.8 Hz + ∆f)t

)

and sum them up, we obtain what is depicted in figure 4.15. Even if the difference in the
frequencies is small, the resultant wave is rather far from the two generating, and the beats
phenomenon is clearly visible. If the difference is larger then the sum wave is even more
different from the original, and its shape less regular. This graphically helps to understand
how the frequency difference interferes with the effective value of the resultant wave, indeed
the third wave has local peaks generally closer to the zero, and this means a lower variance
and a lower effective value.

Then, the example is proposed with the frequency gap ∆f changing in continuous manner
(figure 4.16). For every point in the plot the effective value RMS (P1(t) + P2(t)) is computed over
a period of time equal to T .

One can see that increasing the period T the function better approximate the values for
small ∆f . That because the smaller ∆f is, the greatest is the time which some consistent
difference in the two waves appear after, or, in other terms, the lower is the frequency of the
beats, and a higher period of computation is required to include these lower frequencies into
the computation.
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It can be reasonably stated that the function tends to the limit situation:
√

2 when ∆f = 0
and 0 elsewhere. Extending this result to the correlation coefficient:

ρP1P2
=

{
1 f1 = f2

0 f1 6= f2

That, it should be recalled, is valid for a sufficiently long period.
Everything that has been said about the two forces P1(t), P2(t), clearly also applies to the

case of several forces. The variance formulation can be extended to a summation where the
correlation coefficients of every pair of forces appear. Under the assumption that each variable
Pj(t) got the same statistical properties, σ2

Pj
and ρPiPj is always the same. One can collect them

all, obtaining:

Var



N∑

j

Pj(t)


 = N σ2

P

[
1 + (N − 1)ρ

]
(4.14)

hence:

Var



N∑

j

Pj(t)


 =




Nσ2

P = N
F 2

2
full correlated

N2σ2
P = N2 F 2

2
uncorrelated

See section 4.2 for response spectrum formulation.
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4.4.2 Deterministic frequencies and random phases
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Figure 4.18 shows results from a simulation test
with five forces fixed in space, each one oscillat-
ing at a given frequency. The scatter plot shows
the effective acceleration response in midspan,
computed over a period of 100 s, in ten thousand
simulation with changing the parameter α. This
means that the amplitude of the relative phase
shift between the forces, representing pedestrian,
increases from 0 to 2π.

As the mean line (thick, black) shows, the ef-
fective acceleration is not significantly affected by
this parameter change. Only, a greater α deter-
mines a greater variability of the result.

This further validates the thesis that, if the fre-
quencies are scattered, any change in the phases
shifts doesn’t affect the response. We could say
because the forces are already uncorrelated and
cannot be more uncorrelated.

As a conclusion we can assume that the corre-
lation coefficient varies as it is sketched in figure 4.17.

4.4.3 Disturbed load model

In some sense the obtained distribution of ρ sounds unintuitive because of its discontinuity.
Also, one is led to believe that the full correlated state is never achieved in reality, because
it requires that the forces have exactly the same frequency. In the case of the pedestrians,



52CHAPTER 4. ACCELERATION RESPONSE — VARYING PEDESTRIAN PHASE AND FREQUENCY

2 4 6 8 10 12 14 16

−2F

2F

t [s]

∆f = 0 Hz

P1(t), P2(t), P1(t) + P2(t)

2 4 6 8 10 12 14 16

−2F

2F

t [s]

∆f = 0.1 Hz

2 4 6 8 10 12 14 16

−2F

2F

t [s]

∆f = 1 Hz

Figure 4.15: Sum of two sinusoidal signal with differing frequencies.

this means that they must walk perfectly synchronized, in such a way that the frequency
distribution has zero deviation σ = 0 and this is quite unrealistic.

An attempt to explain how the full correlation can be physically achieved is to change
the starting model which sees the pedestrian as perfect sinusoidal forces. Instead, we can
introduce a disturb in the perfect wave, for instance by adding a random quantity to the phase:

P (t) = F sin(2πft+ D(t))

the added disturb D(t) is generated in such a way it is sufficiently regular, better say smooth,
cause otherwise the force would result excessively noisy and unnatural. One generated sample
is reported in figure 4.19 (continuous line), with respect to the original wave (dashed).

The property of this derived function is that it maintains the original frequency globally,
while locally it presents slight deviations. We expect that the frequency, computed as the
number of crossings the time axis in an observation period, tends to the frequency f as the
period increases

Then, if we sum up two signals of this type and compute its variance, we find σ2 ≈ 1.7÷1.8F 2,
which is more than the uncorrelated value (F 2/2 + F 2/2 = F 2) but less then the correlated one
(2F 2). The value of the response depends in this case by the amplitude of the disturb, which in
the previous case has a maximum value of 0.8, and is normally distributed.

4.5 Simulations with variable natural frequency fstr
What it follows is to study how the natural frequency of the structure affects the response.
Once demonstrated the reliability of the analytical model in predicting the response, we put
the simulations aside for a while. The analytical model gives us the curves with varying fstr
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reported in figure 4.20. We’re referring to the α = 0 case, so the curves present a very narrow,
local peak in σ = 0.

What stands out is that the peak that for fstr = 2 Hz occurs around σ = 0.2 moves closer
and closer to σ = 0 with fstr going to the mean pacing frequency fµ. That corresponds to the
resonance.

In this range the peak is increasing as well. For great standard deviation, instead, the
response is almost unaffected by the structure frequency.

What has been stated is nothing more than the proof of the resonance in frequency domain.
What shown in figure 4.20 is then confirmed with simulations. In figure 4.22 the surface

aRMS(σ, fstr) is plotted across a domain of 20× 100, where each point corresponds to the mean of
100 simulations. The simulations are taken in the case of α = 0, this explain the singularity in
σ = 0.

The same surface is then obtained by the analytical expression. The result is plotted in
figure 4.23. This case the surface refers to α = 2π
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an observation time T .
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Figure 4.21: Relation aRMS(σ) with different structure frequencies like figure 4.20 viewed by the
side
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Figure 4.22: aRMS(σ, fstr) surface for α = 0.
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Figure 4.23: aRMS(σ, α) surface for α = 2π. On the edge the aRMS(fstr) relation for α = 2π
(continuous line) and α = 0 (dashed line)



58CHAPTER 4. ACCELERATION RESPONSE — VARYING PEDESTRIAN PHASE AND FREQUENCY

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

ξ = 0.2%

ξ = 0.4%

ξ = 0.6%

σ

aRMS [m/s2]

fstr = 2Hz

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

ξ = 0.2%

ξ = 0.4%
ξ = 0.6%

σ

aRMS [m/s2]

fstr = 1.8Hz

Figure 4.24: aRMS(σ) relation for high, medium and low damping factor ξ (from the lower curve:
ξ = 0.006, ξ = 0.004, ξ = 0.002) for fstr = 2 Hz left, and for resonance conditions fstr = 1.8 Hz right.



Chapter 5

Acceleration Response — varying
pedestrian density

5.1 Introduction of the density-dependent parameters

As seen in section 2.5 the pedestrian walking is highly affected by the density of the crowd.
Many studies, in that sense, had tried to define the speed (density) and frequency(speed) relation-
ships.

The density factor is going now to be added to the model, in order to provide a more realistic
and complete response. The analytic formula 4.9 gives us the effective acceleration response
knowing the pacing frequency probability distribution, which is, from now on, a function of the
density.

Apparently, no frequency(density) laws are available in the literature, as also its PDF function.
So, these relations are going to be derived from the ones which are known, by their linear
mathematic relations.

5.1.1 Walking speed

As the speed(density) relation, the Nelson formula is chosen:

c = k (1− an) (5.1)

We are referring to the mean speed c = cµ as usual, k is a terrain dependent constant,
k = 1.4 (for corridor, doorways, and ramps) and a = 0.266 (for the floor movement).

This law was developed by Nelson and MacLennan [26] in a context of emergency evacuations
movement. They calculated a region of interest within the crowd densities of 0.54 and 3.8 ped/m2

where an individual could maintain a relatively free movement of his choice. Instead, at the
density of 3.8 ped/m2 or above, they experienced that serious congestion and little or even no
movement may happens.

Within the two limits the equation 5.1 represents the speed flows. It is rather convenient
because of its linearity, and because it goes to zero for a precise value of density — that we are
calling the stagnation density: nstagn = 3.76 ped/m2 — allowing us to take into account a limited
range of density.

Please note that we are extending the linear relation also to the densities lower than the
studied range, for simplicity. One could also take the speed constant below the lower threshold.

Other laws, like the one proposed by Kladek [34] (see fig.2.7), have exponential or polynomial
forms, but even if they better approximate the empirical data, such a complexity appears
unjustified for our purposes.

Figure 5.1 exposes the Nelson formula (thick line) with respect to a large amount of other
analogous formulas, already shown in figure 2.7e and 2.7c.

59
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Figure 5.1: The relationship between crowd densities and velocities. Various authors (gray)
versus the linear Nelson [26] law (black)

5.1.2 Step length and pacing frequency

Despite the ample dataset regarding walking speed, much less is usable about step length
and pacing frequency, with a substantial lack of empirical laws. Here we propose a simple law
based on few clear evidences.

The basic relation linking step length λ, walking velocity c and frequency fped is c = λ · fped,
hence, introducing the pedestrian density:

fped(n) =
c(n)

λ (c(n))
(5.2)

Where appear the already known c(n) law and an empirical λ (c) relation in order to find
fped(n).
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Figure 5.2: Step length and pacing frequency as function of the walking speed. Measurements
from Betram & Ruina 2001 [5] and Yamasaki et al. 1991 (gray) and adopted function (black).
The dataset is imported from Ingólfsson [20]

The steplength(walkingspeed) proposed equation is a linear function based on the data from
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Betram & Ruina 2001 [5] and Yamasaki et al. 1991, both reported in figure 5.2. The
measurements fit well with a linear interpolation; moreover, no other laws seem suitable in
describing such a physical phenomenon. It is reasonable as well to assume that the step length
doesn’t become null for zero walking speed, cause the dimension of the foot itself constitutes a
minimum threshold.

The found equation read:
λ = 31.5 + 25.8 c (cm) (5.3)

from which we have that the minimum length is set to λmin = 31.5 cm for c that tends to zero,
and the maximum one λmax = 96 cm for c = 2.5 m/s.

We formulate now the relation between frequency and speed, according to:

f(c) =
c

λ(c)

and by including eq. 5.1 and 5.3 we find:

f(c) =
c

0.315 + 0.258 c
(5.4)

that is plotted in figure 5.2b.
Finally, with a further substitution into eq. 5.2 the searched relation is obtained:

f(n) =
1− 0.266 n

0.483− 0.0686 n
(5.5)

Its plot is drawn in figure 5.3. One other attempting curve was provided by Ricciardelli [32]
and is reported in the figure as well. The latter is defined for the only range 0.2÷1.5 ped/m2,
and its second order expression:

f(n) = 0.79
(
0.13 n2 − 0.82 n+ 1.80

)
+ 0.79

give reasons to think that has been obtained by a data interpolation, and no by a physical
consideration.

The further curve, obtained by substituting the Kladek expression for pedestrian speed into
the 5.2, well fits to the one proposed here, but for higher density assumes an asymptotic-like
behaviour. The curves that present this tendency are supposed to be derived in practical
contexts where really high density can be reached, like the emergency crowd movements. That
is not the case of pedestrian footbridges. All of these issues make us to consider the proposed
curve a good choice.
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Figure 5.3: Adopted fped(n) function (black) together with the one proposed by Ricciardelli [32]
within the range 0.2 ped/m2÷1.5 ped/m2, and the one that would be obtained with the same
passages (eq. 5.2) but starting from the Kladek formula for the velocity [34] (gray).
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5.1.3 Standard deviation of the frequencies

So far the expression of the pacing frequency has been achieved. But, as for the pedestrian
speed, it stands for the mean pacing frequency, and some variance is supposed to be affecting
the value. The literature hardly takes that into account with respect to the density, limiting to
measure such parameter for the free walking. Instead, it is precisely this parameter the main
attendant in quantifying the synchronisation among the pedestrian.

Here an exponential law is submitted, which properly fits the one that Ricciardelli [32] gave
together with the previous expression. This reads:

σ(n) = 0.08
(
0.13 n2 − 0.82 n+ 1.80

)
− 0.03

and the fitting curve is:

σ(n) = 0.1088 e−0.613 n (5.6)

Its plot is drawn in figure 5.4. It comes out a value of σ = 0.1088 Hz for the free walk (n = 0),
which is something less than the mean standard deviation fσ ' 0.146 among the authors of
table 2.4.

Figure 5.5 illustrates the Probability Density Function of the pacing frequency with respect
to the density, taking into account the mean value from eq. 5.5 and the standard deviation
from eq. 5.6.
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Figure 5.4: Variation of the standard deviation of the pacing frequency with respect to the
crowd density. Adopted exponential law (thick) and polynomial law proposed by Ricciardelli [32]
within the range 0.2 ped/m2÷1.5 ped/m2

5.1.4 Dynamic Loading Factor

As summarised in section 2.2, the Dynamic Loading Factor increases with the walking fre-
quency. Among the relations proposed, the Kerr’s [21] includes an upper and a lower limitation,
and its polynomial shape make possible to readily identify a starting and a final stationary
value. That is the expression chosen in this handling. It is drawn in figure 5.6 in comparison
with the linear law by Bachmann & Ammann [3].

In figure 5.7 the three varying parameter of the model are comprehensively collected.

5.2 Acceleration Root Mean Square response

The effective value of the acceleration is given by eq. 4.9, where the density-dependent parame-
ters are now included. A useful visualisation is presented in figure 5.8.
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Figure 5.5: Probability density function of the pacing frequency plotted in a tridimensional
visualization.

The tridimensional plot make easy to visualise how the response changes with both the
density and the structural frequency.

The first significant point is that a resonance condition is achieved for every structural
frequency less than fped,free ' 2 Hz. The difference among them is the density state in which the
resonance takes place: lower frequencies are excited by higher densities.

The second point is the existence of a local maximum in the response, which is set in this
case around fstr ' 1.6 Hz, n ' 1.2 ped/m2. That makes possible to draw an envelope curve, as
illustrated in figure 5.8b, where for every crowd density, the worst condition, that is to say the
maximum response, is detected.

5.3 Simplified approach

5.3.1 Dallard’s formulation

A simpler form of the acceleration RMS can be provided. Dallard et al. in [11] assume:

E
[
a2
]
≈ ω4

nE
[
v2
]
≈ πN

16ξ
fnp(fn)

(
F

m

)2

(5.7)

The reason behind such an approximation is that the peak of the Frequency Response
Function H(f) is supposed to be really marked, that is to say the response in fn is dominant.
In this case the forcing spectrum SX can be treated like a white noise in the strict around of fn,
hence:

E
[
v2
]

=

∫ ∞

0

SF (f)|H(f)| df ≈ SF (fn)
πfn
4ξk2

Further, for the same reason, the variance of the acceleration response can be compute as
follows:

E
[
a2
]

= (2πf)4E
[
v2
]
≈ (2πfn)4 · SF (fn)

πfn
4ξk2

and recalling the basic relation 1.10 we find the expression 5.7 with the modal mass m in
place of k. A graphic demonstration is provided in figure 4.11, where one can find a confirm of
the dominance of the FRF |H(f)|.



64 CHAPTER 5. ACCELERATION RESPONSE — VARYING PEDESTRIAN DENSITY

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

Kerr upper bound

Kerr lower bound

Pacing frequency [Hz]

D
L
F
[−

]

Figure 5.6: Adopted DLF law for the model, which is the curve proposed by Kerr [21] (black).
Linear law proposed by Bachmann & Hammann [3] (gray).
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Figure 5.7: Summary of the three parameters affected by the varying density which are
implemented in the model.

5.3.2 Acceleration Root Mean Square

The effective value of the acceleration is the square root of 5.7:

aRMS =
F

4m

√
π

ξ
Nfn p(fn) (5.8)

As stated in the previous section the approximated formula is the more accurate, the more
dominant is the frequency response function with respect to the spectrum of the walking
force. This is true when ξ is small and σ is high, that is to say that their ratio is sufficiently
small: σ/ξ → 0.

Figure 5.9 illustrates the sensibility with respect to these two parameters in the reliable of
the formula.

One can notice how the smaller damping factor plays a primary role in the validation of
the formula, that provide a very good approximation for ξ = 0.004 which is the usual order of
magnitude.

In view of these considerations the envelope of aRMS is proposed again in figure 5.10, now
obtained by the approximated formula 5.8.

Finally, in figure 5.11 the actual and the approximated envelope derived so far are compared.
Their similarity justify the use of the approximated formula, which we are referring to from
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Figure 5.8: RMS acceleration response as a function of both the structure frequency and the
density (a) and maximum envelope with respect to the density (b).
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Figure 5.9: How the Dallard’s formula (dashed) approximates the actual response (continuous),
for different damping factors and different σ.

now on.

5.3.3 Peak acceleration

In order to align the formulation to the standards, the peak value of the acceleration has to be
quantified.

From 5.8, given that apeak = gp aRMS we get that

apeak = gp
F

4m

√
π

ξ
Nfn p(fn) (5.9)

That is subjected to the peak factor determination.
Figures from 5.12a to 5.12c shown simulations similar to the ones reported in Fig.4.6, for

which also the peak value is computed.
We can assume on good basis the peak factor to be 2.5. (notice that in σ = 0 the peak factor

correspond instead to
√

2, which the factor for sinusoidal signal, as here for fully correlated
forces is.)

Finally the envelope 5.13 is produced by the analytic approximated formula. One can
observe that each response curve with its proper natural frequency finds its peak for a density
corresponding more or less to the density for which the crowd has that mean pacing frequency.

Looking to each plots separately one can states that for this range of footbridges frequencies,
increasing the density of the crowd, the response increases too. That because of the slowing
down of the pacing frequency, which ends up in crossing the structure frequency. Also, there
is a certain density which maximise the response.

The overall envelope shows that a global maximum exists and, for the given properties, is
reached for structure with frequency approximately equal to 1.25 Hz, at a rate of apeak ≈ 1.3 m/s2.
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Figure 5.10: RMS acceleration response as a function of both the structure frequency and the
density (a) and maximum envelope with respect to the density (b), both given through the
simplified formulation.



68 CHAPTER 5. ACCELERATION RESPONSE — VARYING PEDESTRIAN DENSITY

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

n [ped/m2]

aRMS [m/s2]

Figure 5.11: Comparison between the exact acceleration RMS response (continuous), and the
approximated acceleration RMS response (dashed) by means of 5.8



5.3. SIMPLIFIED APPROACH 69

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

σ

fstr = 1.5Hz

Acceleration Effective Value
aRMS [m/s2]

0.2 0.4 0.6 0.8 1

1.5

2

2.5

σ

Peak factor
gp

(a)

0.2 0.4 0.6 0.8 1

2

4

σ

fstr = 1.8Hz

0.2 0.4 0.6 0.8 1
1.5

2

2.5

σ

(b)

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

σ

fstr = 2Hz

0.2 0.4 0.6 0.8 1

1.5

2

2.5

σ

(c)
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is the 100 simulations mean.
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Chapter 6

Comparison with standards and
guidelines

6.1 Guidelines overview

The early standards prescribed that natural frequencies close to the first and second walking
harmonics, and to the jogging frequency, should be avoided. BS5400 of the British Standards
Institution (BSI 1978), for instance, prescribes that dynamic analyses should be carried out if
the lateral fundamental frequency is less than 1.5 Hz. SIA 1989 and FIB 2010 both suggest
to avoid vertical natural frequencies in the range of 1.6÷2.4 Hz (first walking harmonic), in the
range of 3.5÷4.5 Hz (second walking harmonic), and in the range of 2.4÷3.5 Hz (running/jogging).
If these requirements are not fulfilled, the acceleration response of the structure is to be
checked.

With the increasing knowledge on the issue, other standards faced in the design scenario,
proposing a framework to predict the acceleration response.

6.1.1 Frequency limitations

Sétra (2006) [13] defined levels of risk of vibration in both vertical and horizontal directions,
depending on frequency. The maximum level of vibration risk is associated with vertical
vibration frequencies in the range of 1.7÷2.1 Hz and lateral vibration frequencies in the range of
0.5÷1.1 Hz; a medium level of vibration risk is associated with vertical vibration frequencies in
the range of 1.0÷1.7 Hz and 2.1÷2.6 Hz and lateral vibration frequencies in the range of 0.3÷0.5 Hz
and 1.1÷1.3 Hz; a low level of vibration risk is associated with vertical vibration frequencies
in the range of 2.5÷5.0 Hz and lateral vibration frequencies in the range of 1.3÷2.5 Hz. Other
vibration frequencies should not be considered a concern.

HIVOSS (Heinemeyer et al. 2009) defined the critical ranges of natural frequencies for
footbridges excited by the first harmonic of the walking load as 1.25÷2.3 Hz for the vertical
direction and 0.5÷1.2 Hz for the lateral direction, and by the second harmonic as 2.5÷4.6 Hz for
the vertical direction.

6.1.2 Equivalent number of pedestrians and maximum acceleration

The maximum acceleration due to a single, a group, or a stream of walkers, either in the
vertical or in the lateral direction, is usually given as

ÿmax = Neq · ÿmax(1) ·Ψ(f1)

where ÿmax is the maximum transient acceleration due to one walker resonant with the
lowest harmonic that can be matched by the walking frequency, Ψ(f1) is a coefficient that
reduces the response when the fundamental frequency of the bridge f1 is away from the
walking frequency, (for Sétra is reported in fig. 6.1), and Neq is the equivalent number of
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Figure 6.1: Minus factor for the first harmonic, adopted by Sétra guidelines

walkers on the bridge and accounts for the level of synchronisation. It stands for the number of
pedestrians which are fully synchronised — in phase and frequency — and walking at the same
frequency of the structure, that produce an acceleration response equal to the one produced
by N incoherent pedestrians.

Sétra [13] guidelines use a stationary harmonic load model for the evaluation of the
maximum acceleration induced by one pedestrian; the equivalent number of pedestrians is
given as a function of n:

Neq =

{
10.8

√
ξN n < 1 ped/m2

1.85
√
N n > 1 ped/m2

(6.1)

This setting presents a sudden change in the response for n = 1 ped/m2, which can be
magnified or not by other parameters like the damping. What it is implicitly assumed by Sétra
is that above the 1 ped/m2 threshold the pedestrians gain a full synchronisation in frequency.
Such an assumption is apparently not properly justified in [13] and it possibly refers to the
pedestrian-structure type of synchronisation, which is not treated here and however is not
common to take place.

The linear load generated by the equivalent number of pedestrian is consequently:

Flin =
280 Neq Ψ

l
=

{
280 10.8

√
ξNΨ/l n < 1 ped/m2

280 1.85
√
NΨ/l n > 1 ped/m2

and the produced maximum acceleration:

apeak =
1

2ξ

4Flin

πγ
(6.2)

Figure 6.2a shows the peak acceleration predicted by Sètra, for the reference case treated
here, which is to say ξ = 0.004 and l = 50 m.

HIVOSS (Heinemeyer et al. 2009) adopts two approaches for the evaluation of the maximum
acceleration: the stationary harmonic load model and the response spectral model. In the
harmonic load model, Neq and ÿmax coincide with those given by Sétra, but Ψ(f1) differs.
The response spectral model was derived from Monte Carlo simulations based on numerical
time-step simulations of various pedestrian streams on various bridges geometries (Butz
2006 [1]).

The Eurocode 5 (EC5; CEN 1995) considers both the case of a group of three synchronized
walkers and that of a stream of walkers, but the former becomes relevant only for very small
footbridges, with a deck smaller than 37 m2. Subsequently, the European Standard version,
designated EN, of EC5 (CEN 2005) modifies the equations, but the case of a group of walkers
remains dominant for very small footbridges, with a deck area in this case smaller than 22 m2.
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Figure 6.2: Sétra peak acceleration as a function of the crowd density and the structural
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6.2 Peak acceleration comparison

Taking as a reference the Sétra guidelines, an analogous expression for the equivalent number
of pedestrians is now derived. In the following table the formal steps are listed, in order to
obtain the maximum acceleration due to an uncorrelated pedestrian crowd (to the left) and
the corresponding maximum acceleration due to a fully synchronised pedestrian crowd (to the
right) which is constituted by definition by Neq pedestrians.

The used approach is the simplified one, seen in section 5.3.

Uncorrelated Correlated

E
[
a2
]

=

∫ ∞

0

|Ha(f)|2 SF (f) df E
[
a2
]

=

∫ ∞

0

|Ha(f)β=1|2 SF (f) df1

SF =
F 2p(f)

2
· N

2
SF =

F 2p(f)

2
·
(

2Neq
π

)2

p (f) =
1

σ
√

2π
e−

(f−fµ)2

2σ2 p(f) = δ(f − fstr)

aRMS ≈
F

4m

√
π

ξ
Nfn p(fn) aRMS =

F√
2πmξ

Neq

apeak = 2.5 aRMS apeak =
√

2 aRMS

apeak = 2.5
F

4m

√
π

ξ
Nfn p(fn) apeak =

F

πmξ
Neq

|Ha(β)| = 1

m

β2

√
(1− β2)2 + 4ξ2β2

|Ha(β = 1)| = 1

m

1

2ξ
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Figure 6.3: Governing functions as previously introduced (fig. 5.7), here the restricted domain
0÷1.5 ped/m2 as in guidelines, is highlighted.

Then asking the peak acceleration in both the cases to be the same, it is found the number
of equivalent pedestrians:

Neq = 3.48
√
ξfnp(fn)N

where, by adopting the same formulation of the guidelines, fnp(fn) assumes the role of
Ψ(f1), if normalised to the range 0÷1:

Ψ(f) =
fnp(fn)

max (fnp(fn))

Finally the formula directly comparable with Sètra must be written:

Neq = 3.48
√
Nξ ·max (fnp(fn))

That shows a divergence, mainly related to the value of fnp(fn).
While this study covered a density range of 0÷4 ped/m2, Sétra, HIVOSS and the majority

of the guidelines only take into account the range 0÷1.5 ped/m2. Some studies reported that
above 1.5 ped/m2 the crowd flux lost its continuity and becomes a start-and-stop movement.
That could explain such choice in taking it as an upper limit.

If the handling is restricted to the 0÷1.5 ped/m2 domain only a small section of the adopted
governing functions (fig. 5.7) has to be considered. This subdomain is plotted in figure 6.3.

Figure 6.4 shows the comparison between the Sétra peak acceleration envelope — which is
simply taken at fstr = 1.8 Hz or generally at a frequency belonging to the peak of the minus factor
function — and the envelope derived from the discussed framework, and already introduced in
figure 5.13.

A substantial divergence characterises the section above the 1 ped/m2. The reasons why
Sétra exhibits such a high curve are already treated. The model here developed doesn’t take
into account any pedestrian-structure synchronisation so that its envelope doesn’t present
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Figure 6.4: Envelope of the predicted peak acceleration by Sétra (dashed) and by the present
formulation (conntinouos), with highlighted the range usually covered by the guidelines.

a sudden peak or something similar. One can find the usefulness of the treated model in
describing what happens in high density conditions like those, in absence of any interaction
with the structure that could perturb the natural walking condition, only affected by the density
of the crowd.
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Chapter 7

Concluding remarks

7.1 Conclusions

This work initially intended to study the synchronisation of the pedestrians in high density
condition in order to develop a comprehensive formulation of how such a phenomenon affect
the serviceability in footbridges. The idea was to express that level of synchronisation by means
of a parameter that quantify the average phase shifts among the pedestrians. That is the aim
of the parameter α. By analytical random simulations the limitations of such a choice have
become clear, since α appears to be relevant only in synchronous conditions, that is to say all
pedestrians at the same frequency.

Then the work focused on the variance of the frequencies of the pedestrians, examining how
this affects the response. Quite an interesting result is that the maximum response does not
occur in coincidence with the perfectly synchronous condition (assuming phase-uncorrelated
pedestrians, otherwise it does).

In support of these results an analytical formulation has been provided, on the basis of the
random vibration theory. The formulation closely predicts the numerical results.

On these analytical basis, the density variable has been introduced by means of the known
relations available in the literature. The final result is a model that aims to predict the peak
acceleration of a footbridge comparable to a simple supported beam, under the action of
uniform pedestrian stream, with assigned density and frequencies distribution.

In comparison to the current normative scenario this model includes in a continuous way
the density variable and, more important, how pedestrians-induced actions are affected by it.
This tool may be deployed to better investigate how structures that are characterised by lower
natural frequencies do behave under dense crowd action.

For regular density states instead, the model pretty well confirms the Sétra formulation.
The fundamental law, that is: the acceleration is proportional to the square of the number of
pedestrian, is confirmed on both theoretical and numerical basis. This makes seem weaker
standards like EN EC5 or FIB that consist in linear rules, based on empirical measurements.

It should be noted that the Sétra, together with the HIVOSS guidelines, are the only ones
that presents the particular distinction after n = 1, that so roughly runs counter to the
prediction of the presented model. It is due, as already stated, to the assumption of perfect
synchronisation that would somehow take place at this level of density. Some criticisms can
be addressed to it, knowing that apparently no studies corroborate this fact and no easily
accessible data are available about the response of simply supported-like footbridges subjected
to highly dense (n > 1) crowd loading. Some measurements are available but at lower level
of density. For instance see [28], [21], [14]. Those references are agree in stating that the
guidelines provide a generally conservative prediction (in some cases out of all proportion), and
among them the Sètra are often indicated as the more reliable. (Even if, like Eriksson [14]
observed, the error in predictions never drops below 25%).
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7.2 Further developments

– Some aspects of this model easily lend themselves to be improved. The first concerns the
number of harmonics. In the model, only the 1st harmonic is taken into account, while
the current standards, like Sétra and HIVOSS, also include the second. It is known that
above the second harmonic of the walking force a very little dynamic effect is detected; for
instance Schultze goes from DLF1 = 0.37 for the 1st harmonic, to DLF5 = 0.04 for the 4th.
But until the 2nd one some noticeable effects are measured. For instance Eriksson [14],
in a jumping test on a multi-span bridge in Mariestad, experienced an higher response
when the jumping frequency was the half of the natural frequency. He concludes: This
should be something to consider in the design phase, if the bridge has a natural frequency
of approximately 4 Hz, a forcing frequency of half the natural frequency may give excessive
accelerations.

The affect of higher harmonics should be taken into account not only with regards to the
pedestrian force but also referring to the structure. This issue affects the more deformable
structures, which are characterised by low natural frequencies, or in the more frequent
case the multi-span bridges, where many modes can interact also because their closeness,
and then generate an unpredicted high response.

– Secondly, the hypothesis of simple supported beam can be removed. That implies a review
of the first part and the MATLAB script, but fundamentally it changes the expressions for
the natural frequency, which in case of fixed edges increases.

– Some research can concern the time-dependent parameters, those parameters that varies
with the number of pedestrians getting across the footbridge. Has been documented how
the damping factor is affected by that.

Furthermore, the mass of the bridge has to be taken into account, since it increases
with every pedestrian more on the bridge. The expected result is that both damping and
mass contribute in decreasing the response. Sétra guidelines already include the mass
factor in predicting the acceleration. From the examples provided by the Sétra itself [13] a
percentage close to the 10% in terms of acceleration response is expected to vary because
of the added mass.



Appendix A

MATLAB script

%PARAMETRI TRAVE
E=200000; % Modulo di elasticià N/mm^2
gamma=3; % Massa lineare kg/mm
l=50000; % Lunghezza mm
%fstr=pi*sqrt(5*400*5/384/4/mu/l*1000); % Frequenza per avere freccia con

5kN/m = 1/400 L
fstr=2; % Frequenza propria della struttura (primo modo) in Hz
I=4*fstr^2*l^4*gamma/pi^2/E/1000 % Momento d'inerzia mm^4
m=gamma*l/2; % Massa modale kg
k=omega_j.^2*gamma*l./2/1000 % Rigidezza modale N/mm^2

omega_j=sqrt(1000*E*I/gamma)*(j*pi/l).^2; % Vettore pulsazioni
f_j=omega_j/(2*pi); % Vettore frequenze modali 1/s
csi=0.0048; % Fattore di smorzamento viscoso
omega_b=csi.*omega_j;
omega_D=omega_j*sqrt(1-csi^2);

%DOMINIO DI DEFINIZIONE DEL PROBLEMA
tempo_tot=10; % Tempo totale di simulazione. s
%tempo_tot=3*T;
step_temp=0.01; % Delta temporale. s
t=[0:step_temp:tempo_tot]; % Vettore tempo discretizzato

step_x=100; % Delta spaziale. mm
x=[0:step_x:l]; % Vettore trave discretizzata nello spazio

%FORZA COMPONENTE COSTANTE +COMPONENTE ARMONICA IN MOVIMENTO A VELOCITA' c
% (con fstep=0 si ricade nel caso di forza costante a velocitï¿½ c)
N=25; % Numero di carichi
DLF=0.4; % Fattore dinamico
S=700; D=DLF*S; % N
fstep=2; %Hz (passi/secondo)
c=fstep*0.9*1000; % Velocitï¿½ pedoni mm/s
T=l/c; % Periodo di percorrenza della trave s

c_cr=pi/l*sqrt(1000*E*I/gamma); % Velocitï¿½ critica
Alpha=c/c_cr;
beta=fstep/fstr;
FattAmpl=1/sqrt((1-beta^2)^2+4*csi^2*beta^2); %Fattore di amplificazione

del carico armonico - utile per verificare
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%Inizializza la struttura che contiene le informazioni del carico n-esimo:
Q(1,N)=struct('S',[],'D',[],'c',[],'Omega',[],'Phi',[],'x_0',[],'t_ingr'

,[],'t_uscita',[],'posizione',[],'ampiezza',[],'f',[]);

%Compilazione della struttura
%COMPONENTE STATICA
[Q.S]=deal(S); % Tutte le forze uguali
%static_forces={1 2 3 }; % Forze inserite una ad una..esempio con tre forze
%[Q.S]=static_forces{:};

%COMPONENTE DINAMICA
[Q.D]=deal(D); % Tutte le forze uguali
%dynamic_forces={1 2 3 }; % Forze inserite una ad una..esempio con tre

forze
%[Q.D]=dynamic_forces{:};

%VELOCITA'
[Q.c]=deal(c); % Uguale per tutti i carichi

%PUNTI DI PARTENZA DEI CARICHI
%starting_points={l/4 3/4*l}; % Punti di partenza dichiarati uno ad uno
starting_points=num2cell(linspace(0,l,N)); % Punti di ingresso

equispaziati
%starting_points=num2cell(2*l*rand(1,N)-2*l); % Punti di ingresso casuali

[Q.x_0]=starting_points{:}; % Inserimento nella struttura

%OMEGA (PULSAZIONI dei carichi)
%rng default %Seme delle variabili random, usare lo stesso per ottenere

le stesse variabili
%rng(1)
sqm=0; %scarto quadratico medio delle frequenze.(sigma)
frequences=num2cell(fstep+sqm*randn(1,N));
pulsazioni=num2cell(2*pi*[frequences{:}]);
[Q.Omega]=pulsazioni{:}; % Inserimento nella struttura

%FASI
alpha=0; %ampiezza di banda delle fasi da 0 a 2pi
phases=num2cell(alpha*rand(1,N)-alpha/2);
[Q.Phi]=phases{:};

forza_generalizzata = @(n,j,t,S,D,Omega,Phi,c,t_ingr) (Q(n).S+Q(n).D*sin(
Omega*t+Phi)).*sin(j*pi*c*(t-t_ingr)/l);

for n=1:N %Ciclo che compila le strutture dei carichi con le variabili
dipendenti e la matrice jxt delle forze generalizzate.
if c~=0
Q(n).t_ingr=-Q(n).x_0/Q(n).c;
Q(n).t_uscita=l/Q(n).c+Q(n).t_ingr;
Q(n).f=forza_generalizzata(n,j,t,Q(n).S,Q(n).D,Q(n).Omega,Q(n).Phi,Q(n)

.c,Q(n).t_ingr);
Q(n).posizione=Q(n).c*(t-Q(n).t_ingr); Q(n).ampiezza=Q(n).S+Q(n).D*

sin(Q(n).Omega*t+Q(n).Phi);

[var_inutile ind_t_uscita]=min(abs(t-Q(n).t_uscita));



81

[var_inutile ind_t_ingr]=min(abs(t-Q(n).t_ingr));
Q(n).f(:,[1:ind_t_ingr,ind_t_uscita:size(Q(n).f,2)])=0;

else
Q(n).t_ingr=0;
Q(n).t_uscita=tempo_tot;

forza_generalizzata = @(j,t,S,D,Omega,Phi,x_0) (Q(n).S+Q(n).D*sin(
Omega*t+Phi)).*sin(j*pi*x_0/l);

Q(n).f=forza_generalizzata(j,t,Q(n).S,Q(n).D,Q(n).Omega,Q(n).Phi,Q(
n).x_0);

Q(n).posizione=Q(n).x_0*ones(1,size(t,2)); Q(n).ampiezza=Q(n).S+Q
(n).D*sin(Q(n).Omega*t+Q(n).Phi);

end

%genera la Matrice delle forze generalizzate. Una riga per armonica.
end

%Matrice delle risposte all'impulso unitario. Una riga per armonica, cioè
ogni riga costituisce la risposta della j-esima coordinata modale.

h=1000*2./(gamma*l*omega_D).*exp(-omega_b*t).*sin(omega_D*t);

%inizializza la matrice delle forze generalizzate totali
f=zeros(n_armoniche,length(t));
%Ciclo che somma assieme le forze generalizzate di tutti i carichi

for n=1:N
f=f+Q(n).f;

end

%DUHAMEL - INTEGRAZIONE DELLA RISPOSTA
% Inizializza la matrice v contenente la deformata nel tempo

v=zeros(length(t),length(x));
vn=zeros(length(t),length(x));
%

for i=1:n_armoniche
y(i,:)=conv(f(i,:),h(i,:))*step_temp;
yridotta=y(i,1:size(t,2));
vi=yridotta'*sin(i*pi*x/l);
vn=vn+vi;
waitbar(i/n_armoniche)
end
v=v+vn;

dvdt=diff(v,1,1)/step_temp; %attenzione ha un elemento in meno rispetto a v
alla fine.

a=diff(dvdt,1,1)/step_temp; %attenzione ha due elementi in meno rispetto a
v alla fine.

[punto_campionato_discreto,ind_punto_campionato]=min(abs((x-
punto_campionato_val))); %serve per trovare l'indice del valore
corrispondente all'abbassamento in mezzeria. E' un più laborioso,
sarebbe bastato prendere il valore a del vettore. Ma così è possibile
cambiare il punto di cui tracciare lo spostamento con quello che si
desidera.

v_mezz=v(:,ind_punto_campionato);
%{
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a_mezz=a(:,ind_punto_campionato);
[a ind_a]=min(abs(t-50));
[b ind_b]=min(abs(t-100));
RMS=rms(a_mezz(ind_a:ind_b));



Appendix B

MATLAB script

num_sqm=10;
num_fstr=10;
asse_sqm=linspace(0,1,num_sqm);
asse_fstr=linspace(1,2.6,num_fstr);

L=50000; %mm
E=200000; %N/mm2
csi=0.004;
gamma=3; %kg/mm massa per unità di lunghezza
m=75000; %kg massa modale
W=700; %N peso singolo pedone
DLF=0.4; %coefficiente dinamico
F=W*DLF; %N
N=25; %#pedoni
q=W*DLF*N/L; %N/mm carico distribuito equipesante
fstep=1.8; %Hz frequenza media pedoni

contatore=0;
for indice_fstr=1:length(asse_fstr)

fstr=asse_fstr(indice_fstr);

for indice_sqm=1:num_sqm
sigma=asse_sqm(indice_sqm);

H2acc = @(freq) ((1/m^2*((freq/fstr).^4./((1-(freq/fstr).^2).^2+4*csi^2.*(
freq/fstr).^2)))); %Come sopra ma moltiplicata per (2*pi*fstr)^4

S_F= @(freq) (N/2)*F^2/2*normpdf(freq,fstep,sigma); %Spettro della forzante
. Il coefficiente N/2 deriva dall'assunzione che i segnali sono
totalmente scorrelati.

%Se le frequenze fossere uguali (sigma=0) e i segnali perfettamente
correlati (alpha=0), bisognerebbe usare (2*N/pi)^2.

if sigma==0
RMSa_metodo_aleatorio(indice_sqm,indice_fstr)=(H2acc(fstep)*F^2/2*(2*N/

pi)^2)^0.5;
else

ValoreQuadraticoMedio_a=integral(@(freq) H2acc(freq).*S_F(freq),0,inf,'
Waypoints',[fstep-5*sigma fstep+5*sigma]);

RMSa_metodo_aleatorio(indice_sqm,indice_fstr)=ValoreQuadraticoMedio_a
^0.5;

end
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contatore/(length(asse_fstr)*length(asse_sqm))*100
contatore=contatore+1;
end
end

figure
s=surf(asse_sqm,asse_fstr,RMSa_metodo_aleatorio')
s.EdgeColor = 'none';
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