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Abstract 

A very large number of asteroids populates our Solar System; some of these are classified as Near Earth Objects 

(NEO), celestial bodies whose orbit lies close to or even intersects our planet’s, a few of which are believed to 

pose a potential threat for Earth. Their hazardous nature has caught the eye of both the public and the scientific 

community and the concern has grown over the past decades, followed by a multitude of studies on the different 

aspects that characterise this problem. 

The most common solution that has been proposed in order to face a potential impact situation is the deflection 

of incoming asteroids in such a way that their encounter with the Earth is avoided or modified to an extent that 

it does not pose a threat. 

The present dissertation will expand on previous works in this sector, with the aim of defining an optimal 

deviation strategy with the objective of not only avoiding the incumbent close-encounter, but to also reduce the 

risk of a future return of the NEO to the Earth. To this purpose, the effect of the deflection will be studied by 

means of the b-plane, a very powerful reference frame used to characterise an encounter between two celestial 

bodies, to determine a deflection strategy that will avoid the conditions corresponding to a resonant return of 

the asteroid to the Earth. 

The results presented in this work feature an analytical correlation between the deflection action and the 

resulting displacement along the axes of the b-plane and the description of optimal deflection techniques based 

on the aforementioned formulas. 

Un grande numero di asteroidi popola il nostro sistema solare; alcuni di questi sono classificati come Near-Earth 

Objects (NEO), ossia corpi celesti la cui orbita giace vicino o addirittura interseca quella del nostro pianeta, alcuni 

dei quali sono ritenuti potenzialmente pericolosi per la Terra. La natura pericolosa di questi asteroidi ha attirato 

l’attenzione del pubblico quanto quella della comunità scientifica e la preoccupazione in merito al rischio dovuto 

ad un potenziale impatto è cresciuta nell’arco degli ultimi decenni, seguita da una moltitudine di studi sui diversi 

aspetti che caratterizzano questo problema. 

La soluzione più comunemente proposta per far fronte ad una situazione di questo genere è la deflessione 

dell’orbita dell’asteroide in rotta di collisione con la Terra, in modo tale da evitare completamente l’incontro tra 

i due corpi celesti o da modificarlo per renderlo innocuo. 

La presente tesi continuerà gli studi effettuati in questo settore con lo scopo di definire una strategia di 

deviazione ottimale mirata non solo ad evitare l’incontro incombente, ma anche a ridurre il rischio di un futuro 
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ritorno del NEO alla Terra. A questo fine, l’effetto della deflessione sarà analizzato nell’ambito del b-plane, un 

sistema di riferimento particolarmente interessante per analizzare gli incontri tra due corpi celesti, per 

determinare le caratteristiche di una deflessione che eviti le condizioni corrispondenti ad un ritorno per risonanza 

dell’asteroide alla Terra. 

Tra i risultati presentati in questo elaborato sono presenti una correlazione analitica tra l’azione di deflessione e 

il risultante spostamento lungo gli assi del b-plane e la descrizione di strategie di deflessione ottimali basate su 

tali formule. 
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1 Introduction 

 Background 

Asteroids and comets are celestial bodies mainly composed by rocks and ice respectively; while the first have 

formed in the region of space located between Mars and Jupiter, the latter originated in the farther reaches of 

our Solar System. It is believed that, around 4.6 billion years ago, the inner rocky planets were formed through 

an agglomeration of asteroids, whereas the outer gas giants were the result of the agglomeration of comets [1]. 

While comets feature highly-elliptical orbits that cause their traversal of a large portion of the Solar System, most 

asteroids still orbit the Sun in the belt located between Mars and Jupiter. It can however happen that some 

asteroids are nudged from their original position and placed on an orbit passing near the Earth. 

These celestial bodies are very interesting from a scientific point of view, as their properties are largely 

unchanged since the time of the planets’ formation. This is the main reason for the scientific missions devoted 

to the study of both asteroids and comets, such as JAXA’s Hayabusa, ESA’s Rosetta and NASA’s Deep Impact [2]. 

However, these celestial bodies can present a very significant danger for life on Earth in the form of an impact 

on the surface of our planet. The objects that could pose such a threat belong to the Near-Earth Object (NEO) 

family, defined as asteroids and comets with a perihelion distance of less than 1.2 AU [1]. Most NEOs are 

asteroids, referred to as Near-Earth Asteroids (NEAs), and a set of subcategories exist to distinguish them: Atiras 

(NEAs whose orbits are contained within the Earth’s, thus featuring a semi-major axis 𝑎 < 1 AU and apohelion 

distance 𝑟𝑎 < 0.983 AU), Atens (Earth-crossing asteroids with a semi-major axis smaller than our planet’s; 𝑎 <

1 AU, 𝑟𝑎 > 0.983 AU), Apollos (NEAs featuring an Earth-crossing orbit with a semi-major axis 𝑎 > 1 AU and a 

perihelion distance 𝑟𝑝 < 1.017 AU) and Amors (asteroids whose orbits are comprised between the Earth’s and 

Mars’; 𝑎 > 1 AU, 1.017 AU < 𝑟𝑝 < 1.3 AU). The most dangerous NEAs also belong to the class of Potentially 

Hazardous Asteroids (PHAs), which feature a Minimum Orbit Intersection Distance (MOID), the minimum 

geometric distance between two orbits, of  less than 0.05 AU and an absolute magnitude of 22.0 or brighter [1]. 

Of the over than 600 000 known asteroids, more than 16 000 are classified as NEOs, of which in turn around 10% 

fall in the category of PHAs [3]. Despite the seemingly high numbers, the probability of an impact is low, but the 

damage it could produce is very significant [4]. 

Another aspect of this threat is represented by the possibility of a NEO which has already flown close to the Earth 

to return to our planets a few years down the line. This phenomenon is known as a resonant return and is 

determined by the possibility of a first close approach to deviate a small body’s orbit in such a way that the new 

orbit will lead to a future encounter. A notable case of this effect is represented by asteroid 2010 RF12, a PHA 
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discovered during a close approach in 2010, which will return to our planet several times in the future. The closest 

of these encounters is predicted around the 6th of September 2095, where it will approach the Earth as close as 

1.209 ∙ 10−4 AU [5]. 

The concern generated by this problem has raised the interest of the major space agencies, which have 

established units devoted to the observation of NEOs, as well as proposing strategies to face an imminent impact, 

were it to be expected. Furthermore, international efforts have come to exist, involving both the cooperation 

between the agencies themselves and the institution of the UN-mandated Space Mission Planning Advisory 

Group (SMPAG) [6], in order to coordinate the work aimed at preparing for such a threat. 

On a final note about the background of the problem, man-made objects could also pose an impact-related 

threat for Earth. This is especially true for spacecraft and launchers used for interplanetary missions, which could 

involuntarily be inserted on an orbit coming back to Earth or impacting another planet. This has been the case 

for the third stage of Apollo 12 and object WT1190F, believed to belong to another lunar exploration mission [7]. 

 Deflection Methodologies 

Several techniques for the deflection of potentially hazardous asteroids have been conceived throughout the 

years and they can be catalogued depending on the type of interaction they have with the asteroid. The first 

category is based around a single impulsive change in the linear momentum of the asteroid, which can be 

achieved through the likes of a kinetic or nuclear impactor. A second class of methods features multiple impulsive 

changes in the NEO’s linear momentum, usually obtained with a mass driver. The last two categories trade the 

impulsive nature of the first two for a continuous low thrust; the first of these actively produces the thrust, 

through techniques such as attached propulsion, while the last passively deflects the asteroid by means of 

induced thermo-optical changes of the celestial body’s surface [8]. 

The simplest technology that can be applied to deflect an asteroid is the use of a kinetic impactor. It involves 

hitting the NEO with a spacecraft at a high relative speed. The nuclear impactor features the same goal of an 

impulsive momentum change as the kinetic one, but aims to achieve it through a nuclear explosion instead of 

through an impact. The explosion can be produced at close distance from the asteroid, on its surface or 

underneath it with differences in mass ejection and robustness of the deviation effect. These technologies can 

be aimed at either deviating the asteroid or at breaking it up into smaller pieces. This last eventuality could 

however not be sufficient to avoid the impact and could even produce more damage than what would have been 

caused if the asteroid was not fragmented [8]. Furthermore, the use of nuclear explosions in space is banned by 

the Outer Space Treaty [9]. 
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Mass drivers are based on the idea of extracting material from a NEO and ejecting it using resources from the 

asteroid surface itself as propellant to produce a change in the asteroid’s momentum. Similarly, in-situ low-thrust 

propulsion systems aim at changing the celestial body’s trajectory by means of engines attached to the NEO’s 

surface. Other low-thrust systems are the gravity tractor, consisting of a spacecraft hovering close to the asteroid 

to slowly pull it away from its nominal trajectory, the modification of the object’s albedo through a coating of its 

surface [10], ablation of the NEO’s surface by means of a laser or the focusing of the Sun’s radiation through a 

system of mirrors and lenses, in order to produce thrust through the ejection of vapours from the surface [11] 

and ion beaming, a technique based on displacing an asteroid by mean of a quasi-neutral ion beam generated 

by a nearby spacecraft [12]. These classes of techniques are generally more complex to implement and the 

deflection thrust they produce is smaller compared to the impulsive alternatives, especially for large asteroids, 

thus requiring a longer active time window [8].  

For the scope of the present dissertation, only the kinetic impactor will be considered as the applicable deflection 

technique in awe of its relative simplicity and ease of correlation with the obtained deflection. This is in line with 

the SMPAG’s statement defining the kinetic impactor as the most viable deflection technique at this stage [13]. 

Furthermore, its modelling will be carried out in a simplified manner, neglecting effects due to momentum 

dissipation and non-uniform composition of the target, as well as the effect of a possibly uneven geometry paired 

with a rotation of the body. 

 Current and Planned Missions 

The first mission involving the deflection of an asteroid through kinetic impact is a joint effort of NASA and ESA 

in the form of the Asteroid Impact & Deflection Assessment Mission (AIDA), currently under development [14]. 

This mission will be composed by two independent spacecraft which will be sent to the binary asteroid Didymos. 

The NASA Double Asteroid Redirection Test (DART) mission will launch between December 2020 and May 2021 

to impact Didymoon, Didymos’ secondary body, in October 2022, at the time of the NEO’s close approach with 

the Earth [15]. ESA’s Asteroid Impact Mission (AIM) is scheduled for launch in October 2020 and will be tasked 

with closely observing DART’s impact with the asteroid. Given the relative proximity of the Earth to the NEO at 

the time of the impact, useful observation will be possible through ground-based telescopes as well. AIM will 

analyse the structure of the small body after the fly-by to compare it with the pre-encounter conditions, as well 

as observing the ejecta plume caused by the impact and the result of the deflection on the asteroid’s orbit. This 

data will allow us to better understand and model this technique in case it were needed for a real threat scenario 

[14]. The AIDA mission replaced a previous prototype mission under development at ESA, the Don Quijote 

Mission, which also featured two spacecraft: an impactor and and orbiter [16]. 
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 Close Encounters and Resonant Returns 

The nature of the close encounters of minor bodies with the planets is key in understanding the current 

configuration of the Solar System. It is in fact responsible for the accumulation of planetesimals in the early 

stages of the system’s formation and still plays an important role in shaping the surface of all the celestial bodies 

with a solid outer layer [17]. 

Given the relevance of this phenomenon in the motion of objects in space, several studies have been carried out 

throughout the years to better characterise the fly-bys of small celestial bodies. Amongst the first is Tisserand’s 

criterion, dating back to 1889, used to identify a comet after a close approach, which was rendered difficult 

because of the rapid change in its orbital parameters [18]. The result obtained by the French astronomer is still 

widely used today in the framework of the Circular Restricted Three-Body Problem (CR3BP). A second and more 

recent study is the one carried-out by Öpik between 1951 and 1976, aimed at predicting post-encounter 

properties of small bodies featuring a close approach of a planet. Even though Öpik’s modelling of the 

gravitational forces involved in the fly-by is limited to a two-body Keplerian motion, the results that can be 

obtained through its application are still relevant in the modern age [17] [19]. Finally, the idea of resonant 

returns, the property of a fly-by to insert the small body on an orbit leading back to the planet, born in Lexell and 

Le Verrier’s work on Lexell’s comet at the end of the 18th century, was initially used for spacecraft navigation 

purposes in the ‘70s and made its return to close-approach applications in the late ‘90s [19]. All of these studies 

contribute to the basis upon which this thesis work is built. 

 Thesis Objectives 

This thesis work is aimed at finding a deflection strategy for incoming asteroids that will not be limited to the 

deflection of the hazardous NEO in the scope of the immediate encounter, but will instead look at providing a 

technique to reduce the likelihood of an impact of the asteroid on the Earth in its future encounters with our 

planet. The desired displacement of the asteroid will be sought on the b-plane (also known as the “target plane”), 

a reference system often used to characterise an encounter between two bodies in space, which has been the 

subject of extensive research, since its introduction by E. J. Öpik in 1951; most notably by Carusi et al. [17], Milani 

et al. [20] and Valsecchi et al. [19], who have started to study and expand the original theory in the late ‘90s. The 

objective of the present dissertation is to expand on previous work taking advantage of the b-plane, such as 

Bourdoux’s [21] and Vasile and Colombo’s [22], to not simply maximise the distance of the NEO from the Earth 

on the b-plane, but to define specific deflection strategies in order to avoid resonance conditions caused by the 

asteroid’s flyby of our planet. To this purpose, the determination of an analytical technique to correlate the 
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required deviation on the b-plane with the deflection action necessary to obtain it would go a long way towards 

providing a convenient procedure to determine the optimal deviation strategy. 

 Dissertation Structure 

The present final report is organised as follows: the first chapter will concern the b-plane, as it represents the 

foundation of the work, the underlying theory will be detailed and some results will be displayed to analyse its 

crucial properties for the later stages. This section will be followed by a chapter on the modelling of the deviation 

action considered for the problem, which will in turn feature a description of the formulation and some 

important results obtained in the framework of the optimal deflection strategy. Each of these chapters contains 

the theory applied to each case, the new theory and algorithms developed for each section and the results that 

have been obtained in the framework of each subject. Finally, a section containing the results of this work 

analysing the problem as a whole will precede the conclusion, featuring some considerations on what has been 

accomplished so far and what could be the future developments of the presented dissertation. The main 

contributions of the present dissertation are the determination of an analytical theory connecting the 

displacement along the b-plane axes at the encounter with the deflection action performed on the asteroid, the 

description of analytical techniques to maximise the deviation along the b-plane axes based on the 

aforementioned correlation and the application of an optimal deflection technique aimed at reducing the 

probability of a resonant return to the 2095 encounter of 2010 RF12 with the Earth.  
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2 The B-Plane 

This chapter is aimed at describing the b-plane and its properties. As it has been stated in the introduction, the 

b-plane is a very powerful tool to characterise fly-bys; the qualities that determine its advantages will be 

illustrated in section 2.2, following the derivation of the formulas upon which it is based. Some considerations 

on the properties of this reference frame will then precede a section containing the obtained results inherent to 

resonant returns, as determined through the b-plane itself.  

 Fly-by Models 

Every time an object in the Solar System, such as a comet or an asteroid, passes close to a planet, its heliocentric 

trajectory is modified. This is due to the gravitational pull of the planet playing an important role in determining 

the small body’s orbit when performing a fly-by. In fact, a region of space in which the attraction of a body 

dominates over the one of the Sun can be determined; it is known as the Sphere of Influence (SOI). 

The present section details some general properties concerning the fly-by of a small body around a planet. The 

formulas featured in this chapter will be used throughout the following steps of this dissertation to obtain some 

of the equations defining the b-plane. 

 Restricted Two-Body Problem Fly-by Model 

Considering the classic two-body problem relation 

𝑟 =
𝑝

1 + 𝑒 cos 𝜃
 

which expresses the distance of the minor body with respect to the major one in the perifocal reference frame, 

we can compute the direction of the asymptotes of a hyperbolic flyby with respect to the perigee direction as 

𝜃∞ = arccos (−
1

𝑒
) 

where 𝑟 is the distance between the two bodies, 𝑝 and 𝑒 are the hyperbolic orbit’s semi-latum rectum and 

eccentricity respectively and 𝜃 is the true anomaly (𝜃∞ is its value when the distance goes to infinity). 

The other involved angles will therefore be 

𝛽 = 𝜋 − 𝜃∞ 

𝛿 = 2𝜃∞ − 𝜋 = arcsin (
1

𝑒
) 
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𝛿 is the turn angle, which provides information circa the degree of rotation during the fly-by, whereas 𝛽 is the 

complementary angle to 𝜃∞ [23]. 

From Figure 2.1, which expresses the fly-by geometry, we can derive 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Fly-by geometry. 

�̂� = �̂� tan𝛽 

Δ = (𝑟𝑝 + �̂�) sin 𝛽 

By introducing the formulation of 𝛽 derived above, we obtain the impact parameter (also known as the aiming 

radius) [18] as 

�̂� = Δ = �̂�√𝑒2 − 1 

Equation 2.1 

where �̂� is the semi-major axis of the hyperbola after a sign change and 𝑟𝑝 is the pericentre radius. 

The energy conservation equation applied for the distance going to infinity can be used to obtain the modulus 

of the planetocentric velocity of an object leaving a planet on a hyperbolic trajectory 
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𝑈 = √
𝜇𝑃
�̂�

 

Equation 2.2 

where 𝜇𝑃 is the gravitational constant of the planet. 

 Restricted Three-Body Problem Fly-by Model 

The restricted three-body problem features two main bodies of masses 𝑚1 and 𝑚2 rotating around the centre 

of mass of the system with a fixed angular velocity. The motion of a third body characterised by an infinitesimal 

mass around the barycentre can be studied in this framework to obtain some very useful results [18]. 

 Tisserand’s Criterion 

Tisserand’s criterion identifies a quantity of a body which is a constant function in the three-body problem and 

therefore does not vary in the case of a flyby. This property is very useful when trying to determine whether a 

Near-Earth Object (NEO) that is being observed is actually the same object that has been seen during a previous 

close approach with the Earth [18]. Furthermore, it also allows to write a convenient formula for the 

planetocentric velocity of an object at the moment of its encounter with a planet’s sphere of influence, as will 

be shown in the next paragraph. 

 Kinematics 

In the framework of the restricted three-body problem, we can define 

𝒓∗ = 𝑹𝒓 

𝒗∗ = 𝑹𝒗 

𝒂∗ = 𝑹𝒂 

where 𝒓, 𝒗 and 𝒂 are the position, velocity and acceleration vectors with respect to the centre of mass of the 

two main bodies along the rotating frame respectively (see Figure 2.2), 𝒓∗, 𝒗∗ and 𝒂∗ are the same vectors along 

the fixed axes and 𝑹 is the rotation matrix expressing the orthogonal transformation from the rotating frame to 

the inertial one. The inertial reference frame {𝑥∗, 𝑦∗, 𝑧∗} and the rotating frame {𝑥, 𝑦, 𝑧} have the respective 𝑥 

and 𝑦 axes on the plane containing the motion of the two main bodies, leaving the 𝑧-axis, which coincides 

between the two frames, to represent the consequent out-of-plane direction. In the case of the inertial frame, 

the 𝑥∗ and the 𝑦∗ directions are fixed in space, whereas the 𝑥-axis of the rotating frame is defined by the line 

passing through the two major bodies and the 𝑦-axis precedes it by 90°. 
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Figure 2.2: Reference frames. 

By deriving the position and velocity relations, we have [18] 

𝒗∗ =
𝑑𝒓∗

𝑑𝑡
= 𝑹(

𝑑𝒓

𝑑𝑡
+ 𝛀𝒓) = 𝑹(𝒗𝒓𝒆𝒍 +𝛀𝒓) 

Equation 2.3 

𝒂∗ =
𝑑𝒗∗

𝑑𝑡
= 𝑹 [

𝑑2𝒓

𝑑𝑡2
+ 2𝝎 ×

𝑑𝒓

𝑑𝑡
+
𝑑𝝎

𝑑𝑡
× 𝒓 + 𝝎 × (𝝎 × 𝒓)] = 𝑹 [𝒂𝒓𝒆𝒍 + 2𝝎×

𝑑𝒓

𝑑𝑡
+
𝑑𝝎

𝑑𝑡
× 𝒓 + 𝝎× (𝝎 × 𝒓)] 

where 𝑑∎ 𝑑𝑡⁄  expresses the derivation in time, × expresses the vector product, 𝒗𝒓𝒆𝒍 is the velocity in the rotating 

frame excluding the component due to the rotation of the frame itself and 𝛀 is a skew-symmetric matrix which 

describes the rotation of the rotating frame with respect to the inertial one, defined as 

𝛀 = 𝑹𝑻
𝑑𝑹

𝑑𝑡
 

and, as such, can be written in the form 

𝑥∗ 

𝑦∗ 

𝑥 𝑦 

𝒓 
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𝛀 = [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

] 

The rotation can be expressed through the vector 𝝎 defined in the rotating frame, whose components along the 

moving axes are 𝜔𝑥 , 𝜔𝑦, 𝜔𝑧 and we can therefore rewrite the relation (Equation 2.3) as 

𝒗∗ = 𝑹(
𝑑𝒓

𝑑𝑡
+ 𝝎× 𝒓) 

Finally, the last two quantities can be defined with respect to the fixed frame, obtaining 

𝛀∗ = 𝑹𝛀𝑹𝑻 

Equation 2.4 

𝝎∗ = −𝝎 

 Jacobi’s Integral 

Jacobi’s integral is a constant of the motion in the restricted three-body problem and it is defined as 

𝐽 =
1

2
𝜔2(𝑥2 + 𝑦2) +

𝐺𝑚1

𝜌1
+
𝐺𝑚2

𝜌2
 

Equation 2.5 

where 𝐺 is the universal gravitational constant equal to 6.67408 ∙ 10−11  m3 kg ∙ s2⁄ , 𝜔 is the angular velocity 

of the finite masses 𝑚1 and 𝑚2, which is constant and equal to [18] 

𝜔2 =
𝐺(𝑚1 +𝑚2)

𝜌3
 

and 𝜌1, 𝜌2, 𝜌 are the distances of the object from the primary masses and the distance between the masses 

themselves respectively. 

The equation of motion of the small body can be expressed in terms of the Jacobi constant by considering the 

gradient of 𝐽, denoted by the operator 𝛁 in the following formulation 

𝑑2𝒓

𝑑𝑡2
+ 2𝝎×

𝑑𝒓

𝑑𝑡
= 𝛁𝐽 

Equation 2.6 

By performing a scalar multiplication of the terms of Equation 2.6 by the relative velocity 𝒗𝒓𝒆𝒍 we have 
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𝑑2𝒓

𝑑𝑡2
∙
𝑑𝒓

𝑑𝑡
+ 2 (𝝎 ×

𝑑𝒓

𝑑𝑡
) ∙
𝑑𝒓

𝑑𝑡
= 𝛁𝐽 ∙

𝑑𝒓

𝑑𝑡
 

The definition of the constant 𝐶 is subsequently obtained through an integration as 

𝐽 =
1

2

𝑑𝒓

𝑑𝑡
∙
𝑑𝒓

𝑑𝑡
+ 𝐶 

Equation 2.7 

The aforementioned 𝐶 constant does not vary along the trajectory of the small body in the restricted three-body 

problem framework and allows to define surfaces in the rotating reference frame corresponding to |𝒗𝒓𝒆𝒍| = 0, 

which confine the motion of the small body to one side of the curves [18]. 

By combining Equation 2.5 and Equation 2.7, we have the following formulation of the relative velocity, which 

will be used to determine Tisserand’s parameter in section 2.1.2.1.3 

𝑣𝑟𝑒𝑙
2 = 𝜔2(𝑥2 + 𝑦2) +

2𝐺𝑚1

𝜌1
+
2𝐺𝑚2

𝜌2
− 𝐶 

Equation 2.8 

that can also be written as 

𝑣𝑟𝑒𝑙
2 = −𝒓 ∙ 𝝎 × (𝝎 × 𝒓) +

2𝐺𝑚1

𝜌1
+
2𝐺𝑚2

𝜌2
− 𝐶 

Equation 2.9 

 Tisserand’s Parameter 

Equation 2.3 can be re-formulated, considering the definition (Equation 2.4), to express 𝒗𝒓𝒆𝒍 as 

𝒗𝒓𝒆𝒍 = 𝑹
𝑻(𝒗∗ +𝛀∗𝒓∗) 

where 𝒗𝒓𝒆𝒍 is the velocity of the small body in the rotating frame excluding the component due to the rotation 

of the frame itself and 𝒗∗ is its complete velocity along the inertial frame, and therefore 

𝒗𝒓𝒆𝒍
𝑻𝒗𝒓𝒆𝒍 = 𝑣𝑟𝑒𝑙

2 = 𝑣∗2 − 2𝝎 ∙ (𝒓∗ × 𝒗∗) − 𝒓 ∙ 𝝎 × (𝝎 × 𝒓) 

Equation 2.10 

By comparing Equation 2.9 and Equation 2.10, it is apparent that 
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𝑣∗2 = 2𝝎 ∙ (𝒓∗ × 𝒗∗) +
2𝐺𝑚1

𝜌1
+
2𝐺𝑚2

𝜌2
− 𝐶 

Equation 2.11 

Now, by assuming 𝑚1 to be the mass of the Sun and 𝑚2 to be the mass of the planet around which the fly-by is 

performed, we can approximate the angular velocity 𝜔 as 

𝜔2 ≅
𝐺𝑚1

𝜌3
=
𝜇

𝜌3
 

Equation 2.12 

where 𝜇 is the gravitational constant of the Sun. 

Given the planar nature of the heliocentric motion of the small body, we can write 

𝝎 ∙ (𝒓∗ × 𝒗∗) = 𝜔ℎ cos 𝑖 = 𝜔√𝜇𝑎(1 − 𝑒2) cos 𝑖 

Equation 2.13 

where ℎ, 𝑎, 𝑒 and 𝑖 are the small body’s heliocentric angular momentum, semi-major axis, eccentricity and 

inclination respectively. 

By considering Equation 2.12 and Equation 2.13, as well as the vis viva equation 

𝑣∗2 = 𝜇 (
2

𝜌1
−
1

𝑎
) 

and neglecting the term relative to the gravitational attraction of 𝑚2, Equation 2.11 can be re-written as 

𝜇 (
1

𝑎
+ 2√

𝑎(1 − 𝑒2)

𝜌3
cos 𝑖) = 𝐶 

Equation 2.14 

where 𝐶 is the dimensional version of the Tisserand parameter [24]. 

 Velocity of the Object at the Entrance of the Planet’s Sphere of Influence 

The aim of the present section is to determine a formulation for the planetocentric velocity of an object at the 

beginning of its fly-by of a planet, which will be required in the definition of the resonance conditions on the b-

plane (see section 2.3.2). 
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By introducing the value of the Tisserand parameter 𝐶, determined in the previous section (Equation 2.14), in 

Equation 2.8 and neglecting the gravitational term due to the planet, as done for Equation 2.14 , we have that 

𝑈2 = 𝜇(
3

𝜌
−
1

𝑎
− 2√

𝑎(1 − 𝑒2)

𝜌3
cos 𝑖) =

3𝜇

𝜌
− 𝐶 

Equation 2.15 

as 

𝒗𝒓𝒆𝒍 = 𝒗 −𝝎× 𝒓 = 𝒗 − 𝒗𝑷 = 𝑼 

where 𝜇 is the gravitational constant of the Sun, 𝑼 is the relative velocity of the object with respect to the planet 

(planetocentric velocity) and 𝒗𝑷 is the velocity of the planet around the system barycentre. 

 Normalised Formulation 

A normalised version of the Tisserand parameter 𝑇 is quite commonly employed [19] and is defined as 

𝑇 =
𝐶

𝑣𝑃
2

 

Assuming the planet to be on a circular orbit around the Sun, we have 

𝑣𝑃 = √
𝜇

𝜌
 

𝑇 = 𝜌(
1

𝑎
+ 2√

𝑎(1 − 𝑒2)

𝜌3
cos 𝑖) =

𝜌

𝑎
+ 2√

𝑎(1 − 𝑒2)

𝜌
cos 𝑖 =

1

𝑎
+ 2√𝑎(1 − 𝑒2) cos 𝑖 

𝑈
2
= 3 − 𝑇 

where 

𝑈
2
=
𝑈2

𝑣𝑃
2

 

𝑎 =
𝑎

𝜌
 

are the non-dimensional relative velocity of the small mass with respect to the planet and semi-major axis 

respectively [25]. 
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 B-Plane Definition 

The b-plane is a planetocentric reference frame {𝜉, 𝜂, 𝜁}, such that 𝜉 and 𝜁 are coordinates on the b-plane and 𝜂 

is normal to the aforementioned plane. The direction of the 𝜂-axis is identified by the planetocentric velocity 

vector 𝑼, whereas the 𝜁-axis is directed in the opposite direction as the projection of the planet’s velocity vector 

on the b-plane and the 𝜉-axis completes the right-handed reference frame [26]. The impact parameter is the 

intersection of the incoming hyperbola asymptote with the b-plane and is therefore defined as 

𝑏 = √𝜉2 + 𝜁2 

 

Figure 2.3: B-plane geometry [27]. 

The b-plane has the very useful property to conveniently characterise close approaches between an object and 

a planet, as it decouples the two main parameters that describe the encounter: the geometric distance and the 

timing of the close-approach. It can be shown that the 𝜉-axis represents the geometric distance between the 

two bodies’ orbits at the encounter, whereas the 𝜁-axis represents a shift in the time of arrival of the object at 

the planet [19]; a positive value of 𝜁 represents a delay and vice-versa for a negative value of the coordinate. The 
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aforementioned properties are based on the approximation that, at the time of the encounter, the two orbits 

are straight lines [21]. 

Two different b-planes can be drawn for an encounter when considering a liked-conics approach: the one 

referred to the incoming asymptote of the hyperbola and the one relative to the outgoing one. Given the 

definition of the b-plane reference frame, the value of the 𝜂 coordinate is negative before the close-approach 

and positive when the fly-by has already happened [22]. 

 Impact Region 

The impact region is the locus of the points on the plane tangent to the small body’s entry point in the planet’s 

Sphere of Influence (SOI) that will lead to an impact (see Figure 2.4). The size of the region depends on both the 

planet and the body approaching it, as it takes the effect of the celestial body’s gravitation into account, as well 

as the small body’s planetocentric velocity. 

The intersection of the impact region with the b-plane corresponds to a circle with a radius equal to 

𝑏𝐼𝑅 = 𝑟𝑃√1+
2𝜇𝑃
𝑟𝑃𝑈

2
 

where 𝑟𝑃 is the radius of the planet, 𝜇𝑃 is its gravitational constant and 𝑈 is the object’s relative approach velocity 

at the entrance of the SOI [28]. 

 

Figure 2.4: Impact region [27]. 
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 Öpik’s Theory 

Öpik’s theory for planetary encounters is based on a linked two-body approach. The object is considered to be 

on an elliptical heliocentric orbit until its encounter with the planet, where it transitions to a hyperbolic orbit 

under the sole attraction of the planet and finally returns to a different heliocentric elliptical orbit. In the 

framework of the linked-conics, the planet’s SOI is considered infinitesimal when viewed from the Sun’s 

perspective and infinitely large when performing the fly-by under the planet’s sole attraction. As the effect of 

the encounter is considered to be an instantaneous deflection of the object’s velocity vector from its incoming 

asymptote to its outgoing one, Öpik’s theory is more accurate for deep encounters. This is due to the 

planetocentric velocity of the object being higher, thus better approximated by the point-like interaction; 𝑇 < 3 

is the necessary condition to have a hyperbolic flyby [29] and lower values are preferred as they correspond to 

higher velocities. Furthermore, the theory is exact in the case when in which the two bodies feature a miss-

distance equal to zero [19].  

An extension of the theory has been formulated by Valsecchi et al. [19] allowing for its use in the case of near 

misses (see section 2.5). 

 Planetocentric Reference Frame 

The following planetocentric reference frame (see Figure 2.5) is central to the discussion of Öpik’s theory; it is 

based on the hypothesis of the planet being on a circular orbit around the Sun and is defined as follows: 

 𝑋-axis directed along the position vector of the planet with respect to the Sun (the same direction of the 

𝑥-axis of the rotating reference frame of chapter 2.1.2) 

 𝑌-axis in the direction of the planet’s velocity vector (the same direction as 𝒗𝑷, the planet velocity vector, 

of section 2.1.2.2) 

 𝑍-axis completing the right-handed frame 
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Figure 2.5: Planetocentric reference frame. 

Vectors in the planetocentric reference frame are described by means of the angles Θ and 𝜙, represented in 

Figure 2.6. 

The angle Θ can take values between 0 and 𝜋, whereas we have −𝜋 2⁄ < 𝜙 < 𝜋 2⁄  for encounters at the 

ascending node and 𝜋 2⁄ < |𝜙| < 𝜋 for encounters at the descending node [17], as 𝜙 describes the inclination 

of the velocity vector with respect to the orbital plane of the planet. These excursions allow for the description 

of all the possible orientations of 𝑼. 

𝒗𝑷 𝑋 

𝑌 

𝑍 
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Figure 2.6: Planetocentric reference frame angles [19]. 

The following transformation can be applied to express the coordinates of vectors originally in the planetocentric 

reference frame in the b-plane. In other words, Equation 2.16 allows transforming  a vector {𝑋, 𝑌, 𝑍}′ expressed 

in the planetocentric reference frame (i.e. the rotating frame of the Restricted Three-Body Problem centred in 

the planet) into the same vector {𝜉, 𝜂, 𝜁}′ expressed in the b-plane. 

{
𝜉
𝜂
𝜁
} = [

1 0 0
0 cosΘ sinΘ
0 − sinΘ cosΘ

] [
cos𝜙 0 − sin𝜙
0 1 0

sin𝜙 0 cos𝜙
] {
𝑋
𝑌
𝑍
} 

Equation 2.16 

A very important consideration to make is that Öpik’s theory cannot be used in the case of exactly tangent and 

coplanar orbits and the results become unreliable for orbits approaching these conditions, corresponding to 

sinΘ ≅ 0 [19]; [29]. 

The theory can be extended to the case of an elliptical planetary orbit by defining the angles Θ and 𝜙 in function 

of the 𝑌-axis, which would therefore not be perpendicular to the Sun-planet direction at all times [19]. 

 Planetocentric Velocity of the Object 

From Equation 2.15, we have 
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𝑈 = √𝜇(
3

𝜌
−
1

𝑎
− 2√

𝑎(1 − 𝑒2)

𝜌3
cos 𝑖) 

As can be observed in Figure 2.6 the components of the planetocentric velocity in the planetocentric reference 

frame are 

{

𝑈𝑋 = 𝑈 sinΘ sin𝜙
𝑈𝑌 = 𝑈 cosΘ          
𝑈𝑍 = 𝑈 sinΘ cos𝜙

 

from which, we can write 

{
 

 cosΘ =
𝑈𝑌
𝑈

tan𝜙 =
𝑈𝑋
𝑈𝑍

 

As the planet is considered to be on a circular orbit around the Sun on the ecliptic plane, in order to have an 

encounter between the object and the latter, the following condition must be satisfied 

cos𝜃 =
1

𝑒
(
𝑝

𝑟𝑃
− 1) 

This is equivalent to imposing that the small body is at a distance from the Sun which is equivalent to the planet’s. 

Through the formulas for the radial and transversal components of the velocity in the case of a two-body 

problem, we can derive 

{
 
 
 
 

 
 
 
 
𝑈𝑋 = ±√

𝜇

𝜌
[2 −

1

𝑎
− 𝑎(1 − 𝑒2)]

𝑈𝑌 = √
𝜇

𝜌
𝑎(1 − 𝑒2) cos 𝑖 − √

𝜇

𝜌
  

𝑈𝑍 = ±√
𝜇

𝜌
𝑎(1 − 𝑒2) sin 𝑖          

 

Equation 2.17 

and therefore 



27 
 

cosΘ =
1

2𝑈
(1 −

1

𝑎
− 𝑈

2
) 

Equation 2.18 

tan𝜙 = √
2 − 1

𝑎⁄

𝑎(1 − 𝑒2)
− 1

1

sin 𝑖
 

It should be noted that the components of the planetocentric velocity, as described in Equation 2.17, are based 

on the assumption that the positions of the small body and the planet during the encounter coincide with respect 

to the Sun (i.e. linked conics method), as stated at the beginning of chapter 2.3. This assumption will not be 

considered in the numerical study of the close-approach characterisation in this thesis, as it would not allow to 

properly distinguish impact and miss conditions. The results based on this assumption will be replaced by 

numerical computations, as will be discussed in section 2.8. 

 Fly-by in the B-Plane 

 Rotation of the Planetocentric Velocity Vector 

As described by Valsecchi et al. [19], when the object performs its fly-by, its planetocentric velocity vector is 

rotated to match the direction of the outgoing asymptote, while its modulus is kept constant. 

 

Figure 2.7: Fly-by effect on the planetocentric velocity [19]. 
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From Figure 2.7, we can write 

tan (
𝛾

2
) =

𝑐

𝑏
 

where 𝛾 is the turn angle, 𝑏 is the impact parameter and 𝑐 is the length of the segment connecting the point of 

interception between the asymptotes with their interception with the respective b-plane (i.e. incoming and 

outgoing). 

Given Equation 2.1 and Equation 2.2, the previous formulation can be re-written as 

tan (
𝛾

2
) =

𝜇

𝑏𝑈2
 

thus allowing the derivation of the following formulations 

sin 𝛾 =
𝑏2 − 𝑐2

𝑏2 + 𝑐2
 

cos 𝛾 =
2𝑏𝑐

𝑏2 + 𝑐2
 

which describe the turn angle as a function of the impact parameter 𝑏 and the 𝑐 parameter, as described above. 

We can define the angle 𝜓 as 

{
𝜉 = 𝑏 sin𝜓
𝜁 = 𝑏 cos𝜓

⟹ 𝜓 = arctan(
𝜉

𝜁
) 

and introduce it in the planetocentric reference frame representation of the relative velocity before and after 

the flyby (see Figure 2.8). The quantities after the fly-by are denoted by an apex symbol. 
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Figure 2.8: Rotation of the planetocentric velocity vector in the planetocentric reference frame [17]. 

The quantity 𝑈 portrayed in Figure 2.8 is the normalised counterpart to the planetocentric velocity vector, as 

described in section 2.1.2.3, which shares its direction with the dimensional vector. 

The problem of determining the values of the Θ and 𝜙 angles after the fly-by can be solved through the spherical 

triangle formulas, imposing 𝜒 = 𝜙 − 𝜙′ to obtain 

cosΘ′ = cosΘ cos 𝛾 + sinΘ sin𝛾 cos𝜓 

Equation 2.19 

sin𝜒 =
sin𝛾 sin𝜓

sinΘ′
 

cos 𝜒 =
sinΘ cos𝛾 − cosΘ sin 𝛾 cos𝜓

sinΘ′
 

tan𝜒 =
sin 𝛾 sin𝜓

sinΘ cos 𝛾 − cosΘ sin 𝛾 cos𝜓
 

tan𝜙′ =
tan𝜙 − tan𝜒

1 + tan𝜒 tan𝜙
 

Equation 2.20 
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A formulation describing the values of Θ′ and 𝜙′ based on the pre-encounter conditions has been obtained; this 

will allow the prediction of the fly-by outgoing coordinates. 

 B-Plane Coordinates after the Fly-by 

Equation 2.19 and Equation 2.20 describing the values of angles Θ and 𝜙 after the fly-by can be rewritten as [19] 

cosΘ′ =
𝑏2 − 𝑐2

𝑏2 + 𝑐2
cosΘ +

2𝑐𝜁

𝑏2 + 𝑐2
sinΘ 

sinΘ′ =
√[(𝑏2 − 𝑐2) sinΘ − 2𝑐𝜁 cosΘ]2 + 4𝑐2𝜉2

𝑏2 + 𝑐2
 

cos𝜙′ =
[(𝑏2 − 𝑐2) sinΘ − 2𝑐𝜁 cosΘ] cos𝜙 + 2𝑐𝜉 sin𝜙

√[(𝑏2 − 𝑐2) sinΘ − 2𝑐𝜁 cosΘ]2 + 4𝑐2𝜉2
 

sin𝜙′ =
[(𝑏2 − 𝑐2) sinΘ − 2𝑐𝜁 cosΘ] sin𝜙 − 2𝑐𝜉 cos𝜙

√[(𝑏2 − 𝑐2) sinΘ − 2𝑐𝜁 cosΘ]2 + 4𝑐2𝜉2
 

Considering the rotation of the velocity vector portrayed in Figure 2.7 and the transformation of coordinates in 

Equation 2.16, the b-plane coordinates after the fly-by expressed in the post-encounter b-plane can be written 

as 

𝜉′ =
𝜉 sinΘ

sinΘ′
=

𝜉(𝑏2 + 𝑐2) sinΘ

√[(𝑏2 − 𝑐2) sinΘ − 2𝑐𝜁 cosΘ]2 + 4𝑐2𝜉2
 

𝜁′ =
(𝑏2 − 𝑐2)𝜁 sinΘ − 2𝑏2𝑐 cosΘ

√[(𝑏2 − 𝑐2) sinΘ − 2𝑐𝜁 cosΘ]2 + 4𝑐2𝜉2
 

It is important to note how the definition of the planetocentric reference frame does not vary across the velocity 

vector rotation, as it is defined solely through the coordinates of the planet, which remain constant as the 

rotation is assumed to be instantaneous, whereas the post-encounter b-plane does not correspond to the one 

defined at the arrival of the small body to the planet, as its normal is defined by the direction of the 

planetocentric velocity vector. 

 Extended Öpik’s Theory 

Valsecchi et al. [19] introduced an extension of Öpik’s original theory to near misses to obtain a closer 

correspondence of the results produced by the theory of close-approaches and those obtained through the 

propagation of the small body’s coordinates in time. This formulation relaxes the hypothesis of complete 

superposition between the position of the small body and the planet at the time of the encounter by introducing 
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a set of correction factors linearised in the miss distance [19]. The obtained corrections are therefore more 

accurate for deeper encounters. 

The extension of Öpik’s theory to near misses considers the object as having a uniform rectilinear motion along 

the incoming and outgoing asymptotes [19]. The rotation from the incoming asymptote to the outgoing one is 

considered to take place in the point of minimum distance between the two bodies, which is not necessarily the 

Minimum Orbital Intersection Distance (MOID) and corresponds instead to the projection of the conditions at 

the entrance of the SOI on the b-plane, given the rectilinear motion, and is assumed to be instantaneous. 

In the results obtained in the present thesis, only the linearised modelling of the fly-by of the aforementioned 

formulation will be implemented, as the orbit of the Earth will be considered as elliptical, differently from the 

assumption made in both Öpik’s classical theory and its extension. 

 Resonant Returns 

 Resonant Return Circles 

In order to witness a planetary encounter of the object, under the assumption of Keplerian motion between the 

two close-approaches, the following condition must be satisfied 

𝑘Τ𝑃 = ℎΤ′ 

where Τ𝑃 and Τ′ are the periods of the planet and the object after the encounter respectively and 𝑘, ℎ are integer 

numbers, not to be confused with the angular momentum used in section 2.1.2. If we consider the small body to 

be on an elliptical orbit and the planet to be on a circular orbit, the condition can be rewritten as 

𝑎′ =
𝑎′

𝜌
= (

𝑘

ℎ
)

2
3⁄

 

For each value of the normalised semi-major axis, we can compute (Equation 2.18) 

cosΘ′ =
1

2𝑈′
(1 −

1

𝑎′
− 𝑈′2) 

By rewriting Equation 2.19 to calculate cos𝜓 and introducing the previously calculated expressions for the 

present terms, the following equation can be written 

𝜉2 + 𝜁2 −
2𝑐 sinΘ

cosΘ′ − cosΘ
𝜁 +

𝑐2(cosΘ′ − cosΘ)

cosΘ′ − cosΘ
= 0 

which is none-other than the equation of a circle in the b-plane centred in 𝐷 on the 𝜁-axis with radius 𝑅. 
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𝜉2 + (𝜁 − 𝐷)2 = 𝑅2 

{
 

 𝐷 =
𝑐 sinΘ

cosΘ′ − cosΘ

𝑅 = |
𝑐 sinΘ′

cosΘ′ − cosΘ
|
 

Therefore, for each value of the normalised semi-major axis 𝑎′, a circle on the b-plane can be drawn. These circles 

are referred to as resonance circles, as they represent the loci of orbits that will bring the object back to the 

planet after a certain amount of revolutions of both bodies. 

A convenient notation for the resonant circles is “(ℎ, 𝑘)”, to represent the number of periods of the deflected 

small body and the planet necessary to obtain the return respectively. This notation can also be applied to the 

keyholes, described in seciton 2.6.2. 

The formualtion described in this thesis is based on the assumption that the small body’s position coincides with 

that of the planet with respect to the Sun, as per Öpik’s classical theory. However, this simplification still provides 

a good approximation of the resonace conditions, as the the higher-order terms in 𝜉 and 𝜁, which are present 

when relaxing the aforementioned hypothesis, is limited to a slight distortion of the circles [19]. Nevertheless, 

the conditions corresponding to a return of an object to the planet portrayed in the results of this thesis will be 

computed numerically in order to guarantee the expected returns (see section 2.8). 

 Reachability of the Resonances 

Circles with a value of the radius 𝑅 < 𝜉𝑏 are considered as unreachable, as 𝜉𝑏 is the value of 𝜉 of the incoming 

trajectory and it is the minimum value that the impact parameter can reach in the case that the two orbits are 

perfectly phased (i.e. it correponds to the MOID) [7]. 

Furthermore, resonant circles can theoretically be drawn for any couple of values (ℎ, 𝑘). However, as the b-plane 

is built on the hypothesis of a two-body propagation, the circles corresponding to returns that would be very 

distant in time cannot be considered as representative of the real conditions. A value of ℎ = 𝑘 = 10 is a 

reasonable limit for the choice of resonant circles [21] [27]. 

 Keyholes 

The keyholes are the regions of the b-plane that will bring to a subsequent encounter were the asteroid to pass 

through one of them. They can represent either a hit, in which case they are none-other than the pre-images of 

the planet’s cross-section on the b-plane, or more generally a subsequent close-encounter (for example the pre-

image of the SOI’s cross-section) [19]. The keyholes can therefore be considered as an extension of the resonant 



33 
 

circles, as they represent a set of possible return conditions corresponding to a target area, be it the Earth’s 

cross-section or that of the SOI, whereas the resonant circles are the pre-image of a single return position: the 

one corresponding to the first encounter. 

Per their nature, keyholes are linked to the semi-major axis of the asteroid after the first fly-by and thus are 

located in the vicinity of the resonant circles corresponding to their anticipated return. In the case of a purely 

Keplerian propagation between the encounters, the only b-plane coordinate to vary is 𝜁, as it is related to the 

timing of the encounter, whereas the geometry of the orbit (i.e. the MOID) is unaffected [19]. 

In particular, we have 

𝜁′′ = 𝜁′ − [mod(𝑣𝑃 ∙ Δ𝑡 + 𝑣𝑃
Τ𝑃
2
, 𝑣𝑃

Τ𝑃
2
)] sinΘ 

where 𝜁′′ and 𝜁′ are the values of the 𝜁-coordinate at the resonant return and at the end of the first fly-by 

respectively and Δ𝑡 is the time difference between the encounters. 

 Secular Variation of 𝜉 

When considering a real case, the 𝜉 component is bound to vary between encounters because of planetary 

perturbations on a short time scale and because of the Kozai cycle on a long time scale [19]. 

The short period variations are hard to model analytically, whereas the secular variation can be modelled through 

a linear term affecting 𝜉 as 

𝜉′′ = 𝜉′ +
𝑑𝜉

𝑑𝑡
Δ𝑡 

where 𝜉′′ and 𝜉′ are the values of the 𝜉-coordinate at the resonant return and at the end of the first fly-by 

respectively. 

 Considerations on Keyhole Sizes 

The size of keyholes varies based on two main parameters: the distance from the 𝜉-axis and the number of 

periods connected with the relative resonant circle [21]. Keyholes that are situated further from the 𝜉-axis are 

larger, as the effect of the fly-by varies more significantly in space when closer to the planet, leading to very 
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different orbits. Keyholes connected to returns more distant in time are smaller, as the time difference at the 

encounter, due to a given difference in the period after the flyby, grows in time. 

 B-Plane Definition Considerations 

The present section will describe a few characteristics of the b-plane concerning the practical implementation of 

the latter to analyse a close approach. 

 Coplanar Orbits 

The first important consideration, even though relevant mainly for fictitious test cases, is that the b-plane cannot 

be employed for tangent coplanar encounters, as, in the tangency point, the planet velocity and the 

planetocentric velocity of the object are aligned, rendering the b-plane ill-defined. The b-plane can however be 

employed if the projection is considered in the point of entry of the small body in the planet’s SOI, as the 

linearised local orbits do intersect each other, thus returning a correct result for the value of 𝜉 (see section 2.7.2). 

In the case of secant coplanar orbits, the 𝜉-component of the projection will always be equal to zero, as it will lie 

on the plane identified by the 𝜂 and 𝜁 versors. This condition is due to the fact that the two linearised orbits 

intersect each other and their geometric distance is therefore null (see section 2.7.3). The limitations of this 

approximation are prominent when studying two coplanar orbits that do not intersect, as the 𝜉-component on 

the b-plane will still be null, which is correct under the assumption that the orbits are locally straight, even though 

the real geometric distance is clearly greater than zero. 

 Effect of the SOI 

The b-plane is usually plotted when the object being observed crosses the planet’s SOI [7] and the registered 

point corresponds to the projection of said point on the b-plane. However, if we consider the motion of the 

object within the SOI and project the position of the object on a “local” b-plane defined at each instant (a similar 

consideration can be made projecting each step on the original b-plane), the figure appears changed; this 

difference can be related to the assumption that the two orbits are straight lines when the b-plane is drawn, but 

in reality follow a different curve. This effect is present also when assuming a pure two-body propagation for the 

object (see section 2.7.3), thus neglecting the effect of the fly-by. 

This consideration is not relevant when applying the extended Öpik theory, as the object is assumed to move 

along its asymptotes during the flyby, resulting in the same b-plane. 
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 Test Cases 

Four test cases will now be presented to illustrate the effects detailed above. Test case A will be followed by 

three permutations of a second test case; B1, B2 and B3. 

In the cases analysed in this section, the value of the 𝜂 coordinate is not shown as it is not the focus of the present 

considerations. However the behaviour described in section 2.2 is still present: 𝜂 is negative when analysing the 

b-plane before the point of minimum distance between the asteroid and the Earth and positive afterwards. It 

should be noted this is true even though no fly-by mechanics are implemented in these cases, which simply aim 

at observing the effects of the point of projection of the entry coordinates (i.e. the size of the SOI) on the b-

plane. 

 Case A 

This test case features two ad-hoc-created coplanar secant orbits that illustrate some of the considerations made 

above. The orbits have been propagated with a simple two-body method to avoid introducing other effects which 

would make the results less straight-forward to understand. 

Figure 2.9 depicts a top-view of the orbits of the Earth and the NEO. In this case, the Earth is assumed to be on a 

circular orbit (blue line), whereas the NEO moves on an elliptical orbit (red line). 

 

Figure 2.9: Case A - Orbits of the Earth and the NEO. 
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The close approach between the two bodies has been represented in several steps, from when the fictitious 

asteroid enters the planet’s SOI, to when it leaves it. These steps are clearly visible in Figure 2.10 as, for every 

instant in which the NEO’s distance from the Earth is smaller than the latter’s SOI, it is assumed to be entering a 

fictitious SOI, to which corresponds a new b-plane. The passing of time is represented through colours, going 

from light-blue to yellow. It should be noted that no fly-by is performed in this fictitious case, as already stated. 

 

Figure 2.10: Case A - Close approach. 

Figure 2.11 shows the b-plane representation of the encounter at the entrance in the SOI. The blue line 

represents the Earth’s cross section on the b-plane. It is interesting to observe how the 𝜉-component is zero, as 

stated in section 2.7.1. Furthermore, it should be noted that this encounter would result in an impact of the NEO 

on the Earth’s surface, as its projection on the b-plane is located within the region occupied by the planet’s 

intersection with the plane. 
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Figure 2.11: Case A - Close approach b-plane representation at the first entrance in the nominal SOI. 

The variation of the 𝜁-component due to the projection of the asteroid’s position on the local b-plane at each 

time step, represented by the modified Julian date (mjd2000), can be seen in Figure 2.12; it should be noted 

that the variation is limited when considering the quantities at play. 
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Figure 2.12: Case A - Close approach b-plane components evolution. 

 Case B.1 

This test case features a perfectly circular orbit for the Earth, like in the previous example, whereas the NEO is 

on a non-coplanar elliptical orbit, which intersects the planet’s in a single point. The propagation of the orbits is 

once more performed through the two-body approach. The depicted figures are the same as those in case A (see 

section 2.7.3.1), only applied to the case at hand. This is also valid for cases B.2 and B.3. 

Figure 2.15 displays the effect of the SOI on the projection of the conditions at the entrance in the sphere on the 

b-plane; as for case A, the variations in the b-plane coordinates are relatively limited and the encounter between 

the two bodies would result in an impact. It can be noticed that the sign of the 𝜉 coordinate is inverted across 

the flyby; this phenomenon can be understood by observing Equation 2.16 and considering the sign inversion 

that affects both 𝑋 and 𝑍. 
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Figure 2.13: Case B.1 - Orbits of the Earth and the NEO. 

 

Figure 2.14: Case B.1 - Close approach. 
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Figure 2.15: Case B.1 - b-plane representation of the close approach at the first entrance in the nominal SOI. 

 

Figure 2.16: Case B.1 - b-plane components evolution. 
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 Case B.2 

Case B.2 presents the same orbits as case B.1 while introducing a delay of 10 min in the encounter: the NEO 

reaches the crossing between the two orbits when the Earth has already passed the MOID. The impact therefore 

becomes a close approach and a near miss in this case. As for the previous cases, the effect of the choice of the 

time at which to plot the b-plane has a relatively small effect on the magnitude of the coordinates. The change 

of sign of the 𝜉 coordinate is still present in this case, as it is tied to the crossing of the ecliptic by the NEO. 

 

Figure 2.17: Case B.2 - b-plane representation of the close approach at the first entrance in the nominal SOI. 
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Figure 2.18: Case B.2 - b-plane components evolution. 

 Case B.3 

Case B.3 inverts the concept of case B.2 replacing the delay with an advance of 10 min in the encounter: the 

NEO reaches the crossing before the Earth does, once again replacing the impact with a close approach. As in 

the previous cases, the effect of the timing of the projection on the b-plane is relatively limited. The most notable 

difference from the previous case stems from the opposite sign of the 𝜁 coordinate of the encounter. This effect 

is in accordance with the definition of the b-plane axes in section 2.2 [21]. As in the previous case, the projection 

of the NEO coordinates along the 𝜉-axis features a sign inversion. 
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Figure 2.19: Case B.3 - b-plane representation of the close approach at the first entrance in the nominal SOI. 

 

Figure 2.20: Case B.3 - b-plane components evolution. 
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 Numerical Keyhole Definition 

This section will show the effect of the passage of a NEO through a keyhole during a fly-by of the Earth. As some 

hypotheses made in defining the resonance circles and the relative keyholes in the framework of Öpik’s theory 

have been relaxed, namely the circularity of the Earth’s orbit and the coincidence of the NEO and the planet 

during the encounter with respect to the Sun, the effective keyholes have been computed numerically through 

the following algorithm developed in this work and inspired on what has already been done by Bourdoux [21]: 

1. The nominal encounter between the asteroid and the planet is recorded (a two-body propagation is 

assumed for both the Earth and the NEO), based on the entrance of the asteroid in the planet’s SOI 

2. An array of values of 𝜁 is explored to analyse the period of the corresponding orbit after the fly-by 

(modelled according to Valsecchi’s extension of Öpik’s theory, see section 2.5), while keeping the value 

of the 𝜉 coordinate constant and equal to its nominal value (corresponding to a shift in time of the 

encounter); in other words, the post-encounter orbit of a series of synthetic points describing a segment 

parallel to the 𝜁-axis and passing through the nominal encounter conditions is analysed to determine 

whether or not they will lead to an encounter 

3. If the resulting semi-major axis corresponds to a value of the period required for a resonant return after 

ℎ periods of the NEO and 𝑘 periods of the Earth, given a certain tolerance, the value of 𝜁 is recorded as 

being part of the (ℎ, 𝑘) keyhole 

The reason for which the position and size of the keyhole is computed along the 𝜁 direction stems for the 

knowledge that we have regarding the orbital parameters of the NEOs. In practice, small differences in the semi-

major axis of an asteroid can have a very significant effect on the timing of an encounter when the coordinates 

are propagated for a long integration time [21]. Furthermore, as will be illustrated in chapter 3, in most cases, 

the deflection along the 𝜁-axis dominates over the one along the 𝜉-axis. 

 Extension of the Algorithm to the 𝜉-Axis 

Despite the statement made at the end of the previous section (2.8), analysing the geometry of the keyholes 

along the 𝜉-direction can help describing the difference between the position of the analytical resonant circles 

and those computed numerically. 

To this end, a “Monte Carlo”-like approach has been implemented in this thesis to analyse the post-encounter 

semi-major axis of a set of points in the area surrounding the nominal conditions of an encounter on the b-plane 

both in the 𝜉 and in the 𝜁 direction, practically extending the algorithm presented in section 2.8 to define 

keyholes numerically to the 𝜉-axis. 
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In particular, the following example features the September 2095 encounter of asteroid 2010 RF12 with the Earth 

(the conditions of the nominal encounter differ from the ones related to the actual ephemerides values taken 

from NASA’s SPICE toolkit [30] as the pre-encounter propagation is carried out considering a two-body 

framework for both the NEO and the planet) and considers a circular area with a radius of 10000 km centred in 

the nominal encounter conditions on the b-plane. The sampling of the area is based on a radial step of 1 km and 

an angular discretisation with a point every 0.1°; a qualitative scheme of the discretisation can be seen in Figure 

2.21. 

Nominal conditions

ζ

ξ

Evaluation points

 

Figure 2.21: "Monte Carlo"-like method evaluation points qualitative scheme. 

The tolerance selected for the return time difference in this application is 1 h. Figure 2.22 and Figure 2.23 portray 

both the analytically-computed resonant circles (in the form of coloured lines ranging from dark blue to yellow, 

which have not been numbered to improve figure clarity) and the numerically-computed keyholes (in brown) 

relative to the nominal encounter conditions (also present in the figures as a purple asterisk). From Figure 2.23 

it is apparent how, despite the fact that the analytical resonant circles and the numerical keyholes differ 

significantly in their positions (which is to be expected, given the different assumptions upon which they are 

based), the numerical keyholes retain the shape of the resonant circles even though they are based on different 

hypotheses, as stated in section 2.8. 
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Figure 2.22: B-plane representation of the encounter between 2010 RF12 and the Earth. 

 

Figure 2.23: Zoom-in of Figure 2.22 focusing on the area featuring the analysed returns. 
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 Effect of the Keyholes 

This example analyses the encounter between asteroid 2010 RF12 and the Earth estimated around the 6th of 

September 2095. The choice of the NEO is based on 2010 RF12 currently having the highest probability of colliding 

with the Earth amongst the known PHAs, estimated around 6% for the selected encounter [5]. If it were to take 

place, the impact would liberate an energy of the order of magnitude the Hiroshima bomb [31]. 

The conditions of the nominal encounter differ from the ones that would be obtained relying on the SPICE 

ephemerides [30] values, as the pre-encounter propagation is carried out considering a two-body problem 

framework for both the NEO and the planet. Table 1 shows the Keplerian parameters assumed for this example 

(where mjd2000 is the modified Julian date). 

 𝑎 [𝑘𝑚] 𝑒 𝑖 [𝑟𝑎𝑑] Ω [𝑟𝑎𝑑] 𝜔 [𝑟𝑎𝑑] 𝜃 [𝑟𝑎𝑑] mjd2000  

Earth 1.4972 ∙ 108 0.0164 2.0800 ∙ 10−4 3.0488 4.9940 4.1319 3.4942 ∙ 104 

2010 RF12 1.5739 ∙ 108 0.1881 0.0160 2.8365 4.6594 4.6795 3.4942 ∙ 104 

Table 1: Keplerian parameters of the Earth and the asteroid assumed for this example. 

Three new initial synthetic conditions corresponding to different values of 𝜁 on the pre-encounter b-plane are 

obtained by keeping the other quantities defining the b-plane unchanged (𝑈, Θ, 𝜙 and 𝜉) with respect to the 

nominal encounter: 

1. Centre of keyhole (5,4), see Figure 2.24 and Figure 2.25 (red asterisk symbol) 

2. Middle point between keyhole (5,4) and keyhole (6,5), see Figure 2.24 and Figure 2.25 (blue asterisk 

symbol) 

3. Centre of keyhole (6,5), see Figure 2.24 and Figure 2.25 (green asterisk symbol) 

From Figure 2.24 and Figure 2.25 it is apparent how the difference between the analytical keyholes and those 

computed numerically is very significant, rendering this step necessary in order to obtain results leading to actual 

returns. This is especially true for the NEO deviation application (see sections 4.2 and 4.3), where the targets for 

the deviation must be such that a resonant return is avoided. The figures portray the analytical resonant circles 

as coloured lines (ranging from dark blue to yellow, as already done in section 2.8.1, only a subset of which is 

present in Figure 2.25) and the selected new synthetic initial conditions described above. 
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Figure 2.24: B-plane of the encounter between 2010 RF12 and the Earth showing the new synthetic initial conditions. 

 

Figure 2.25: Zoom-in of Figure 2.24 showing only the neighbouring resonant circles. 
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The propagation of the synthetic initial conditions described in the previous figures is displayed in Figure 2.26 

and Figure 2.27 (which more closely analyses the return conditions). As expected from the initial conditions, the 

encounters crossing the keyholes (red and green asterisk symbols in Figure 2.24 and Figure 2.25) feature returns 

after the corresponding numbers of periods of the asteroid and the Earth, whereas the point halfway between 

the considered keyholes (blue asterisk in Figure 2.24 and Figure 2.25) does not feature a return in the considered 

time-frame (based on the maximum resonant return considered when calculating the position and size of the 

keyholes). This condition is therefore desirable for the deviation of an incoming asteroid, as will be discussed in 

section 4.2. 

 

Figure 2.26: Distance between 2010 RF12 and the Earth for the considered initial conditions. 
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Figure 2.27: Zoom-in of Figure 2.26 showing the resonant returns corresponding to the keyholes. 

It should be noted that the propagation of the conditions deriving from the keyholes is performed until their 

expected relative returns, as the second flyby would not be correctly represented in the two-body problem 

framework, and that the middle point conditions are only propagated for the number of years corresponding to 

the maximum considered circle (10𝑦 in this case), as the point could correspond to a later keyhole (not drawn 

on the b-plane). The latter limitation could be counteracted by considering more keyholes, which would however 

be further from the real conditions due to the approximate nature of the propagation, as stated in chapter 

2.6.1.1. 

 Validity of the Approach 

We need to consider that the analysis performed so far is conducted in the linked-conics method of the Restricted 

Two-Body Problem (R2BP). In reality, NEOs’ orbits need to be propagated in the 𝑛-Body Problem (nBP) 

considering the presence of the Solar System planets. The example in this section features an 𝑛-body propagation 

of the NEO’s coordinates (considering all of the Solar System’s planets) after the encounter with the planet; 

furthermore, the Earth’s coordinates are obtained through SPICE ephemerides [30], as well as the NEO’s up to 

the encounter. 

This more accurate modelling of the effects of the encounter clearly highlights the limitations of a more complex 

model: the anticipated return is not obtained when considering the 𝑛-body propagation after a single year (the 
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keyholes are computed in the R2BP), while the R2BP return is affected by the non-perfectly-Keplerian motion of 

the Earth resulting from the ephemerides, as is evident from Figure 2.30. Nevertheless, the proposed simplified 

approach can be considered as a viable first approximation for the real case, as the results of the R2BP 

approximation are indicative of the real situation on the short period (up to 10𝑦 approximatively, as stated in 

section 2.6.1.1). 

 

Figure 2.28: Ephemerides-derived b-plane for 2010 RF12's encounter with the Earth on 06/09/2095. 
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Figure 2.29: Distance of 2010 RF12 from the Earth considering both R2BP and nBP approaches. 

 

Figure 2.30: Zoom-in of Figure 2.29 showing the differences in the returns of both types of propagation after 1 𝑦. 
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3 Near-Earth Object Deflection 

The main topic of this chapter will be the description of the modelling of the deflection manoeuvre and the 

resulting displacement at the MOID. Further along the chapter, the maximisation of the deflection effect will be 

discussed considering different objectives, both purely geometrical and concerning the b-plane properties. 

Finally some results relative to the proposed techniques will be presented to corroborate the theoretical results. 

The analytical correlation between the displacement on the b-plane, both generic and along each axis, as well as 

the application of the maximisation technique to the aformentioned correlation are innovative results based on 

the work of Vasile and Colombo [22] and developed during the thesis work.  

 Deflection Model 

The objective of the deviation action is to cause a displacement of the NEO at the time of the close approach 

through an impulsive manoeuvre at a time 𝑡𝑑. The first step in defining the required optimisation strategy is to 

detail the equations applied to the modelling of the deflection. The approach used in this part of the work was 

proposed by Vasile and Colombo [22] and is here expanded to consider the projection of the deflection on the 

b-plane. 

 Proximal Motion Equations 

As the perturbed orbit can be considered proximal to the original one, the position of the NEO after the deviation 

in the radial, transversal and perpendicular-to-the-orbit-plane directions (𝛿𝑠𝑟, 𝛿𝑠𝜃 and 𝛿𝑠ℎ) can be computed 

through the use of the proximal motion equations [22] 

𝛿𝑠𝑟 ≅
𝑟𝑀𝑂𝐼𝐷
𝑎

𝛿𝑎 +
𝑎𝑒 sin 𝜃𝑀𝑂𝐼𝐷

𝜂
𝛿𝑀 − 𝑎 cos 𝜃𝑀𝑂𝐼𝐷 𝛿𝑒 

𝛿𝑠𝜃 ≅
𝑟𝑀𝑂𝐼𝐷
𝜂3

(1 + 𝑒 cos𝜃𝑀𝑂𝐼𝐷)
2𝛿𝑀 + 𝑟𝑀𝑂𝐼𝐷𝛿𝜔 +

𝑟𝑀𝑂𝐼𝐷 sin 𝜃𝑀𝑂𝐼𝐷
𝜂2

(2 + 𝑒 cos 𝜃𝑀𝑂𝐼𝐷)𝛿𝑒 + 𝑟𝑀𝑂𝐼𝐷 cos 𝑖 𝛿Ω 

𝛿𝑠ℎ ≅ 𝑟𝑀𝑂𝐼𝐷(sin 𝜃
∗
𝑀𝑂𝐼𝐷 𝛿𝑖 − cos 𝜃

∗
𝑀𝑂𝐼𝐷 sin 𝑖 𝛿Ω) 

Equation 3.1 

where 𝑟𝑀𝑂𝐼𝐷 is the distance of the NEO from the Earth at the MOID, 𝜃∗𝑀𝑂𝐼𝐷 = 𝜃𝑀𝑂𝐼𝐷 +𝜔 is the argument of 

latitude of the NEO at the MOID and 𝜂 = √1 − 𝑒2. The other quantities present in Equation 3.1 are the orbital 

parameters of the NEO, 𝑎 is the semi-major axis, 𝑒 is the eccentricity, 𝑖 is the inclination, Ω is the right-ascension 
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of the ascending node, 𝜔 is the argument of the periapsis and 𝑀 is the mean anomaly, and the variation of such 

parameters 𝛿𝑎, 𝛿𝑒, 𝛿𝑖, 𝛿Ω, 𝛿𝜔 and 𝛿𝑀. 

 Gauss Planetary Equations 

The variation of orbital parameters can be determined through the Gauss planetary equations if an 

instantaneous perturbation of the NEO velocity vector (expressed in the tangent, normal and perpendicular-to-

the-orbit-plane directions; 𝛿𝑣𝑡, 𝛿𝑣𝑛 and 𝛿𝑣ℎ in the following equations) is considered. The aformentioned 

correlation is expressed by the following formulas derived for finite differences [8]: 

𝛿𝑎 =
2𝑎2𝑣𝑑
𝜇

𝛿𝑣𝑡 

𝛿𝑒 =
1

𝑣𝑑
[2(𝑒 + cos 𝜃𝑑)𝛿𝑣𝑡 −

𝑟𝑑
𝑎
sin 𝜃𝑑 𝛿𝑣𝑛] 

𝛿𝑖 =
𝑟𝑑 cos 𝜃

∗
𝑑

ℎ
𝛿𝑣ℎ 

𝛿Ω =
𝑟𝑑 sin𝜃

∗
𝑑

ℎ sin 𝑖
𝛿𝑣ℎ 

𝛿𝜔 =
1

𝑒𝑣𝑑
[2 sin𝜃𝑑 𝛿𝑣𝑡 + (2𝑒 +

𝑟𝑑
𝑎
cos 𝜃𝑑)𝛿𝑣𝑛] −

𝑟𝑑 sin 𝜃
∗
𝑑 cos 𝑖

ℎ sin 𝑖
𝛿𝑣ℎ 

𝛿𝑀𝑡𝑑 = −
𝑏

𝑒𝑎𝑣𝑑
[2 (1 +

𝑒2𝑟𝑑
𝑝
) sin 𝜃𝑑 𝛿𝑣𝑡 +

𝑟𝑑
𝑎
cos 𝜃𝑑 𝛿𝑣𝑛] 

Equation 3.2 

where the quantities denoted by the subscript 𝑑 are computed at the deviation point. 

As 𝛿𝑀𝑡𝑑 does not take the variation of the mean motion 𝛿𝑛 into account, but rather only considers the 

instantaneous change of geometry at time 𝑡𝑑; the following term needs to be added [22] 

𝛿𝑀𝑛 = 𝛿𝑛Δ𝑡 = (√
𝜇

𝑎3
−√

𝜇

(𝑎 + 𝛿𝑎)3
)(𝑡𝑀𝑂𝐼𝐷 − 𝑡𝑛) = −

3

2

√𝜇

𝑎
5
2⁄
Δ𝑡𝛿𝑎 

𝛿𝑀 = 𝛿𝑀𝑡𝑑 + 𝛿𝑀𝑛 = −
𝑏

𝑒𝑎𝑣
[2 (1 +

𝑒2𝑟

𝑝
) sin𝜃𝑑 𝛿𝑣𝑡 +

𝑟

𝑎
cos 𝜃𝑑 𝛿𝑣𝑛] −

3

2

√𝜇

𝑎
5
2⁄
Δ𝑡𝛿𝑎 

Given the vector scheme in Figure 3.1, the aim of the problem becomes the maximisation of the objective 

function: 
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𝐽 = (Δ𝑠𝑟 + 𝛿𝑠𝑟)
2 + (Δ𝑠𝜃 + 𝛿𝑠𝜃)

2 + (Δ𝑠ℎ + 𝛿𝑠ℎ)
2 

 

 

 

 

 

 

 

 

Figure 3.1: Distance vectors at the MOID (Earth in green, non-deviated NEO in orange and deviated NEO in red) 

This method provides a relatively simple and computationally inexpensive strategy to determine the effect of a 

deviation [22]. 

By combining the proximal motion equations (Equation 3.1) and the Gauss planetary ones (Equation 3.2), the 

following matrix formulation linking the 𝜹𝒗 at the deflection point to the 𝜹𝒓 at the MOID can be obtained [22]: 

{
𝜹𝒓𝑀𝑂𝐼𝐷 = 𝑨𝑀𝑂𝐼𝐷𝜹𝜶𝑑

𝜹𝜶𝑑 = 𝑮𝑑𝜹𝒗𝑑
⟹ 𝜹𝒓𝑀𝑂𝐼𝐷 = 𝑨𝑀𝑂𝐼𝐷𝑮𝑑𝜹𝒗𝑑 = 𝑻𝜹𝒗𝑑 

Equation 3.3 

𝑨𝑀𝑂𝐼𝐷
𝑇 =

[
 
 
 
 
 
 
 
 
 
𝑟𝑀𝑂𝐼𝐷
𝑎

−
3

2

𝑒 sin𝜃𝑀𝑂𝐼𝐷
𝜂

√𝜇

𝑎
3
2⁄
Δ𝑡 −

3

2

𝑟𝑀𝑂𝐼𝐷
𝜂3

(1 + 𝑒 cos 𝜃𝑀𝑂𝐼𝐷)
2 √𝜇

𝑎
5
2⁄
Δ𝑡 0

−𝑎 cos 𝜃𝑀𝑂𝐼𝐷
𝑟𝑀𝑂𝐼𝐷 sin𝜃𝑀𝑂𝐼𝐷

𝜂2
(2 + 𝑒 cos 𝜃𝑀𝑂𝐼𝐷) 0

0 0      𝑟𝑀𝑂𝐼𝐷 sin 𝜃
∗
𝑀𝑂𝐼𝐷      

0 𝑟𝑀𝑂𝐼𝐷 cos 𝑖 −𝑟𝑀𝑂𝐼𝐷 cos𝜃
∗
𝑀𝑂𝐼𝐷 sin 𝑖

0 𝑟𝑀𝑂𝐼𝐷 0

                 
𝑎𝑒 sin𝜃𝑀𝑂𝐼𝐷

𝜂
                          

𝑟𝑀𝑂𝐼𝐷
𝜂3

(1 + 𝑒 cos 𝜃𝑀𝑂𝐼𝐷)
2          0

]
 
 
 
 
 
 
 
 
 

 

𝜹𝒓 

𝚫𝒓 
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𝑮𝑑 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

2𝑎2𝑣𝑑
𝜇

0 0

        
2

𝑣
(𝑒 + cos 𝜃𝑑)              −

𝑟

𝑎𝑣𝑑
sin 𝜃𝑑       0

0 0     
𝑟𝑑 cos𝜃

∗
𝑑

ℎ
    

0 0
𝑟𝑑 sin 𝜃

∗
𝑑

ℎ sin 𝑖

2 sin 𝜃𝑑
𝑒𝑣𝑑

2𝑒 +
𝑟𝑑
𝑎⁄ cos 𝜃𝑑

𝑒𝑣𝑑
−
𝑟𝑑 sin𝜃

∗
𝑑 cos 𝑖

ℎ sin 𝑖

−
2𝑏

𝑒𝑎𝑣𝑑
(1 +

𝑒2𝑟𝑑
𝑝
) sin 𝜃𝑑 −

𝑏

𝑒𝑎𝑣𝑑

𝑟𝑑
𝑎
cos𝜃𝑑 0

]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where 𝜹𝜶𝑑 = {𝛿𝑎 𝛿𝑒 𝛿𝑖 𝛿Ω 𝛿𝜔 𝛿𝑀𝑡𝑑}
𝑇. 

It should be noted that the equations presented in this formulation are consistent with a keplerian motion of the 

involved bodies along elliptical and quasi-circular orbits [8]. 

Even though the deviation is evaluated at the MOID, the formulas presented in this section (and applied in the 

following sections) remain valid in the case the encounter is not correctly phased and therefore does not take 

place at the exact MOID; this is due to the fact that the encounter is assumed to take place at the MOID in the 

present formulation, but no related restriction is applied to the formulas (i.e. the MOID represents the close-

encounter conditions). 

 Maximisation of the Deflection 

 Geometric Deviation 

As proposed and applied by Colombo [8] to NEO deflection missions, a convenient formulation to maximise the 

relative deviation ‖𝜹𝒓𝑀𝑂𝐼𝐷‖ is based on maximising the quadratic form 𝑻𝑻𝑻 associated with Equation 3.3. This 

can be achieved by choosing an impulse velocity vector 𝜹𝒗𝑑  parallel to the direction of the eigenvector of the 

matrix 𝑻𝑻𝑻 conjugated to its maximum eigenvalue. This method only constrains the direction of 𝜹𝒗𝑑 while its 

sign can be chosen to determine the direction of the corresponding displacement [22]. The sign is therefore 

selected such that the deviation increases the distance of the asteroid from the Earth at the time of the 

encounter. 

 Deviation on the b-Plane 

The method applied to the maximisation of the geometric deviation is extended in this thesis to maximise both 

the deviation of the impact parameter ‖𝜹𝒃𝑀𝑂𝐼𝐷‖ and the single components on the b-plane ‖𝜹𝝃𝑀𝑂𝐼𝐷‖ and 
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‖𝜹𝜻𝑀𝑂𝐼𝐷‖. In order to use the previously described procedure, the quantities must be taken as vectors in space 

and expressed as the product of a matrix and the impulse velocity vector. 

The effectiveness of these methods is later proven in section 3.3 through a comparison with a numerical 

maximisation. 

 Deviated Impact Parameter 

Let us consider the achieved deviation in the impact parameter 𝑏 on the b-plane. To do so, the first step must be 

the computation of the deflection vector in the b-plane: 

𝜹𝒃𝑀𝑂𝐼𝐷 = 𝜹𝒓𝑀𝑂𝐼𝐷 − (𝜹𝒓𝑀𝑂𝐼𝐷 ∙ 𝒆𝜼)𝒆𝜼 

Equation 3.4 

where 𝒆𝜼 is the versor of the 𝜂-axis of the b-plane and 𝜹𝒃𝑀𝑂𝐼𝐷 is a vector identifying 𝛿𝑏𝑀𝑂𝐼𝐷, the deviation on 

the b-plane as represented in Figure 3.2. 

 

Figure 3.2: Deviation components on the b-plane. 
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Considering the vector triple product identity, we have 

𝒆𝜼 × (𝜹𝒓𝑀𝑂𝐼𝐷 × 𝒆𝜼) = (𝒆𝜼 ∙ 𝒆𝜼)𝜹𝒓𝑀𝑂𝐼𝐷 − (𝜹𝒓𝑀𝑂𝐼𝐷 ∙ 𝒆𝜼)𝒆𝜼 = 𝜹𝒓𝑀𝑂𝐼𝐷 − (𝜹𝒓𝑀𝑂𝐼𝐷  ∙ 𝒆𝜼)𝒆𝜼 

We can therefore re-write Equation 3.4 as 

𝜹𝒃𝑀𝑂𝐼𝐷 = 𝜹𝒓𝑀𝑂𝐼𝐷 − 𝜹𝒓𝑀𝑂𝐼𝐷 + 𝒆𝜼 × (𝜹𝒓𝑀𝑂𝐼𝐷 × 𝒆𝜼) = 𝒆𝜼 × (𝜹𝒓𝑀𝑂𝐼𝐷 × 𝒆𝜼) 

The previous expression can also be written in the compact form 

𝜹𝒃𝑀𝑂𝐼𝐷 = 𝑴𝜹𝒃𝜹𝒓𝑀𝑂𝐼𝐷 

𝑴𝜹𝒃 = [

𝑒𝜂2
2 + 𝑒𝜂3

2 −𝑒𝜂1
𝑒𝜂2

−𝑒𝜂1
𝑒𝜂3

−𝑒𝜂1
𝑒𝜂2

𝑒𝜂1
2 + 𝑒𝜂3

2 −𝑒𝜂2
𝑒𝜂3

−𝑒𝜂1
𝑒𝜂3

−𝑒𝜂2
𝑒𝜂3

𝑒𝜂1
2 + 𝑒𝜂2

2

] 

where 𝑒𝜂𝑖
 are the components of the versor. 

The deviation on the b-plane 𝜹𝒃𝑀𝑂𝐼𝐷 can now be mapped back to the deviation manoeuvre 𝜹𝒗𝑑: 

𝜹𝒃𝑀𝑂𝐼𝐷 = 𝑴𝜹𝒃𝑻𝜹𝒗𝑑 = 𝑻𝜹𝒃𝜹𝒗𝑑 

Equation 3.5 

We have obtained an analytical formulation to describe the deviation on the b-plane at the MOID in function of 

the deflection action, which can be used to obtain the direction of the maximum deviation on the b-plane 

through the optimisation technique of section 3.2.1. This is the first innovative result continuing Vasile and 

Colombo’s work [22], which relied on a numerical computation of 𝛿𝑏𝑀𝑂𝐼𝐷. 

 Components on the B-Plane (𝜉 and 𝜁) 

Let us now compute the single components of 𝜹𝒃𝑀𝑂𝐼𝐷 (from Equation 3.5) on the b-plane: 

𝜹𝝃𝑀𝑂𝐼𝐷 = 𝜹𝒃𝑀𝑂𝐼𝐷 − (𝜹𝒃𝑀𝑂𝐼𝐷 ∙ 𝒆𝜻)𝒆𝜻 

𝜹𝜻𝑀𝑂𝐼𝐷 = 𝜹𝒃𝑀𝑂𝐼𝐷 − (𝜹𝒃𝑀𝑂𝐼𝐷 ∙ 𝒆𝝃)𝒆𝝃 

where 𝒆𝝃 and 𝒆𝜻 are the versors of the 𝜉 and 𝜁 axes of the b-plane respectively. 

Through the same procedure applied for the impact parameter in section 3.2.2.1, we can write 

𝜹𝝃𝑀𝑂𝐼𝐷 = 𝑴𝜹𝝃𝜹𝒃𝑀𝑂𝐼𝐷 

𝜹𝜻𝑀𝑂𝐼𝐷 = 𝑴𝜹𝜻𝜹𝒃𝑀𝑂𝐼𝐷 
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𝜹𝝃𝑀𝑂𝐼𝐷 and 𝜹𝜻𝑀𝑂𝐼𝐷 are the vectors representing the deflection along the respective axes on the b-plane, as seen 

in Figure 3.2. 

𝑴𝜹𝝃 = [

𝑒𝜁2
2 + 𝑒𝜁3

2 −𝑒𝜁1
𝑒𝜁2

−𝑒𝜁1
𝑒𝜁3

−𝑒𝜁1
𝑒𝜁2

𝑒𝜁1
2 + 𝑒𝜁3

2 −𝑒𝜁2
𝑒𝜁3

−𝑒𝜁1
𝑒𝜁3

−𝑒𝜁2
𝑒𝜁3

𝑒𝜁1
2 + 𝑒𝜁2

2

] 

𝑴𝜹𝜻 = [

𝑒𝜉2
2 + 𝑒𝜉3

2 −𝑒𝜉1
𝑒𝜉2

−𝑒𝜉1
𝑒𝜉3

−𝑒𝜉1
𝑒𝜉2

𝑒𝜉1
2 + 𝑒𝜉3

2 −𝑒𝜉2
𝑒𝜉3

−𝑒𝜉1
𝑒𝜉3

−𝑒𝜉2
𝑒𝜉3

𝑒𝜉1
2 + 𝑒𝜉2

2

] 

where 𝑒𝜉𝑖
 and 𝑒𝜁𝑖

 are the components of the respective versors (see Figure 3.2). 

The components of 𝜹𝒃𝑀𝑂𝐼𝐷 in the b-plane can therefore be written in a compact form as: 

𝜹𝝃𝑀𝑂𝐼𝐷 = 𝑴𝜹𝝃𝑻𝜹𝒃𝜹𝒗𝑑 = 𝑴𝜹𝝃𝑴𝜹𝒃𝑻𝜹𝒗𝑑 = 𝑻𝜹𝝃𝜹𝒗𝑑 

𝜹𝜻𝑀𝑂𝐼𝐷 = 𝑴𝜹𝜻𝑻𝜹𝒃𝜹𝒗𝑑 = 𝑴𝜹𝜻𝑴𝜹𝒃𝑻𝜹𝒗𝑑 = 𝑻𝜹𝜻𝜹𝒗𝑑 

Equation 3.6 

 Maximisation of the Components in the B-Plane 

The same method used by Colombo [8] to maximise the relative deviation ‖𝜹𝒓𝑀𝑂𝐼𝐷‖ based on maximizing the 

quadratic form 𝑻𝑻𝑻 associated with Equation 3.3 can now be extended to maximise ‖𝜹𝒃𝑀𝑂𝐼𝐷‖, ‖𝜹𝝃𝑀𝑂𝐼𝐷‖ or 

‖𝜹𝜻𝑀𝑂𝐼𝐷‖. This can be achieved by chosing an impulse velocity vector 𝜹𝒗𝑑 parallel to the direction of the 

eigenvector of the matrix 𝑻𝒔𝒆𝒍
𝑻𝑻𝒔𝒆𝒍 (where 𝑻𝒔𝒆𝒍 is the matrix mapping the desired vector on the b-plane with 

the deflection action 𝜹𝒗𝑑, as described in sections 3.2.2.1 and 3.2.2.2) conjugated to its maximum eigenvalue. 

This method only constrains the direction of 𝜹𝒗𝑑 while its sign can be chosen to determine the direction of the 

corresponding displacement [22]. The sign is therefore selected such that the deviation increases the value of 

the selected coordinate (𝑏, 𝜉 or 𝜁) of the projection of the deflected encounter conditions on the b-plane. 

Indeed, this method is used to compute the optimal direction of the deflection to be imparted to the asteroid as 

a function of the Δ𝑡 time before the possible impact. Once the deflection direction has been defined, the 

magnitude of the velocity vector 𝜹𝒗𝑑 can be increased as much as possible to further deviate the NEO, but the 

optimal direction of deviation does not change. 
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 Validation of the Eigenvector Method Extension 

From this section forward, the indication of the point of application of the deflection manoeuvre and the 

conditions at which the deflection is observed (i.e. the “d” and “MOID” suffixes) will be omitted from the notation 

to provide a clearer explanation. The deflection is always to be considered as taking place in the deviation point 

and the resulting displacement as taking place at the encounter coordinates, as previously stated in section 3.1.  

In this section, the results obtained by maximising the deviation of the different components on the b-plane 

explained in section 3.2.2 are compared with the outcomes of a classical numerical optimisation, performed with 

MATLAB®’s fmincon optimiser (an optimiser based on the “interior point” algorithm). The numerical 

maximisation problem is handled by maximising the equation correlating between the deflection velocity vector 

and the desired displacement component on the b-plane (Equation 3.5 or Equation 3.6) in function of the velocity 

vector 𝜹𝒗𝑑, which is taken as an array of unknown components constrained to have a unitary norm.  

For example, in the case of the maximisation of 𝛿𝑏, the function to maximise will be: 

𝑓 = 𝑻𝜹𝒃𝜹𝒗𝑑 

The result of this operation is therefore the direction of maximum displacement 𝛿𝑏, 𝛿𝜉 or 𝛿𝜁. 

 Comparisons Between the Analytical and the Numerical Methods 

In this section, the analytical maximisation method illustrated in section 3.2.3 and its numerical counterpart 

defined above are implemented for the same conditions to prove their equivalence. 

Apophis was chosen as the reference object to be deflected for this comparison. The directions of optimal 

deviation are computed over a time of up to 1200 d before the close-approach, with a step of 4 d and a 

magnitude of 𝜹𝒗 of 7 m s⁄  is considered. 

 Maximisation of the Impact Parameter Deviation (𝛿𝑏) 

Figure 3.3 portrays the effect of a deviation along a specific direction on the impact parameter. The tangent 

deviation result (the dashed dark-blue line), the normal deviation result (the dashed-dotted blue line) and the 

out-of-plane deviation result (the dotted blue line) are included for reference. The effects of the deflection in the 

direction of maximum 𝛿𝑏 deviation, computed according to the analytical and numerical optimisation techniques 

are represented by the red line and the dashed green line respectively. 

Figure 3.4 depicts instead the weight of each of the components (i.e. the value of the components of the 

normalised vector) of the optimal 𝛿𝑏 deflection direction in the tangent, normal and out-of-plane (tnh) reference 
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frame (calculated in the position of the asteroid at the time of deflection), to characterise the direction of optimal 

deviation and compare the results returned by each method. 

Finally, Table 2 features the computational time required for the present implementation of the two optimisation 

methods for comparison purposes. 

This structure will be repeated for the deflection aimed at maximising 𝛿𝜉 and 𝛿𝜁 in sections 3.3.1.2 and 3.3.1.3 

respectively. A set of conclusions applicable to all three deviation targets will then be illustrated in section 3.3.2. 

 

Figure 3.3: Deviation of the impact parameter. 
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Figure 3.4: Maximum 𝛿𝑏 deviation direction. 

Eigenvalue Method Numerical Method 

0.1033𝑠 70.9133𝑠 
Table 2: Computational time for the maximum 𝑏 deviation. 

 Maximisation of the 𝜉 Coordinate Deviation (𝛿𝜉) 

The structure of the results displayed in this section is equivalent to the one detailed in section 3.3.1.1. 
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Figure 3.5: Deviation of the 𝜉 component. 

 

Figure 3.6: Maximum 𝛿𝜉 deviation direction. 
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Eigenvalue Method Numerical Method 

0.1435𝑠 15.6473𝑠 
Table 3: Computational time for the maximum 𝜉 deviation. 

 Maximisation of the 𝜁 Coordinate Deviation (𝛿𝜁) 

The structure of the results displayed in this section is equivalent to the one detailed in section 3.3.1.1. 

 

Figure 3.7: Deviation of the 𝜁 component. 
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Figure 3.8: Maximum 𝛿𝜁 deviation direction. 

Eigenvalue Method Numerical Method 

0.1783𝑠 56.6891𝑠 
Table 4: Computational time for the maximum 𝜁 deviation. 

 Considerations 

As it can be seen in the figures in section 3.3.1, the methods exploiting the maximum eigenvalue technique are 

equivalent to the numerical method ones; indeed the lines relative to the analytical method and those relative 

to the numerical one are coincident, apart from some points in which the numerical optimisation did not 

converge with the applied settings, which do not compromise the point of this comparison. 

One of the advantages of the analytical approach is the drastic reduction in the time required to perform the 

computations when using the eigenvalue method compared to the numerical optimiser, as shown in Table 2, 

Table 3 and Table 4. Furthermore, the difference would be even greater if a higher number of evaluations were 

to be introduced in the numerical optimisation to reduce the problem of non-converging points or if the 

proposed approach were to be coupled to the trajectory design for the spacecraft to reach the NEO and deflect 

it, as done by Vasile and Colombo [22], given that it would require embedding this formulation into a global 

optimisation procedure integrating the transfer trajectory and the deflection phase. 
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The second and main advantage lies in the possibility of defining an analytical technique to identify the optimal 

direction to obtain a maximisation of each of the parameters, as already done in the case of the maximum 

geometric deviation [22]. This property helps in giving a better insight into the deflection problem. 

 Optimal Deflection Direction 

Asteroids 2010 RF12 and 1979 XB were chosen as test subjects for their difference in orbital parameters to 

represent two relatively different cases. In particular, asteroid 1979 XB features an orbit with a large value for 

the period, as well as significant eccentricity and inclination values, whereas 2010 RF12 is characterised by an 

orbit closer to the Earth’s, as can be seen in Table 5 (the ephemerides data has been obtained by SPICE [30]). 

 𝑎 𝑒 𝑖 

2010 RF12 1.05𝐴𝑈 0.19 0.91° 

1979 XB 2.35𝐴𝑈 0.73 25.4° 
Table 5: Orbital parameters of the chosen NEOs. 

The analysis of the deflection is carried out at the entrance of the unperturbed asteroid in the SOI. It should be 

noted that the configuration of the close approaches determined by the simplified propagation will result in 

minor differences with the real optimal directions for the deviations on the b-plane (corresponding to a more 

accurate propagation); the underlying general rules described in the following subsections (3.4.2, 3.4.3, 3.4.4) 

remain valid. 

Furthermore, the representation of the b-plane components is shown on the b-plane computed considering the 

unperturbed encounter of the NEO with the Earth, instead of the one relative to the perturbed relative velocity 

of the asteroid with respect to the Earth. This approach does not impair the outcome of the study as the plane 

perpendicular to the nominal relative velocity and the one perpendicular to the perturbed relative velocity are 

very close to each other [22]. 

This study considers a possible deviation starting from 1 d before the encounter up to 6000 d to examine the 

effects of the Δ𝑡 value, i.e. the time between the deflection and the expected close approach, on the direction 

of optimal deviation, as already done by Vasile and Colombo [22]. 

 Maximum Geometric Deviation 

Figure 3.9 and Figure 3.10 show the components of the optimal deviation direction (i.e. the 𝜹𝒗 that maximises 

the corresponding deviation at the MOID) for each NEO in function of the deflection time Δ𝑡 (i.e. the time 

between the deflection and the close-approach), expressed as multiples of the NEO’s orbital period. As already 

done in section 3.3.1, the values of the components are expressed on a total norm of 1 (i.e. a normalised 



67 
 

deflection vector is considered); this approach is equivalent to considering the dimensional velocity vector, as 

stated in section 3.2.3. The normal component is the preferred one for low values of Δ𝑡 until a deviation time 

that differs for each asteroid, but is lower than the value of its orbital period. From this point earlier (i.e. for 

longer deviation times), the tangent component is the most effective one [22]. It should be noted that a deviation 

in the normal direction would yield practically no result if performed at 𝛥𝑡 = 𝑘𝑇𝑁𝐸𝑂. The out-of-plane 

component’s value is not shown, as it is below 10−13. 

 

Figure 3.9: Components of the maximum 𝛿𝑟 deviation direction for 2010 RF12. 
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Figure 3.10: Components of the maximum 𝛿𝑟 deviation direction for 1979 XB. 

As the orbital velocity is higher at the pericentre, this condition will correspond to a local maximum in the 

deviation magnitude, whereas a deflection at the apocentre gives a displacement close to the local minimum [8].  

 Maximum Impact Parameter Deviation 

We can now compare the maximisation of the geometric deviation (see Figure 3.9 and Figure 3.10) to the 

maximisation of the deviation on the b-plane. 

The direction of maximum 𝛿𝑏 increase is different compared with the strategy to maximise the geometric 

distance deviation for small values of Δ𝑡 < 𝑇𝑁𝐸𝑂. This aspect can be appreciated in Figure 3.12 and Figure 3.13, 

which show how the tangent and out-of-plane components dominate the deviation early on for 2010 RF12 and 

1979 XB respectively, later (for larger values of Δ𝑡, i.e. for earlier deflections) to be replaced by the normal 

component and finally by the tangent component, aligning with the maximum 𝛿𝑟 behaviour (i.e. the tangent 

component of the deflection velocity vector prevails for Δ𝑡 values above a given threshold, see section 3.4.1). 
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Figure 3.11: Components of the maximum 𝛿𝑏 deviation direction for 2010 RF12. 

 

Figure 3.12: Components of the maximum 𝛿𝑏 deviation direction for 1979 XB. 
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The oscillations of the normal and out-of-plane components in the neighbourhood of Δ𝑡 = 𝑘𝑇𝑁𝐸𝑂 stem from the 

sign change of those components (which translate to oscillations in the logarithmic representation) and vary for 

each asteroid. 

 Maximum 𝜉 Deviation 

In the present section, the direction of 𝜹𝒗 is optimised in order to maximise the deviation of the 𝜉 component. 

In the case of the asteroid 2010 RF12, the maximum 𝛿𝜉 deviation direction alternates between out-of-plane and 

tangent throughout the period, whereas in the case of asteroid 1979 XB the tangent direction is dominant most 

of the time, with a contention between the normal and the out-of-plane components at the beginning of each 

period. Furthermore, the deviation proves very ineffective if performed along the tangent direction at Δ𝑡 =

𝑘𝑇𝑁𝐸𝑂, along the normal direction at Δ𝑡 = 𝑘𝑇𝑁𝐸𝑂 + 𝑇𝑁𝐸𝑂 2⁄  and along the out-of-plane direction for a value of 

Δ𝑡 which varies for each NEO. These patterns can be observed in Figure 3.13 and Figure 3.14. 

 

Figure 3.13: Components of the maximum 𝛿𝜉 deviation direction for 2010 RF12. 
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Figure 3.14: Components of the maximum 𝛿𝜉 deviation direction for 1979 XB. 

It is important to notice how the maximisation of the 𝛿𝜉 component is the only one not featuring a cumulative 

effect with the number of periods of the asteroid, as it can be seen in Figure 3.6. This is to be expected, as the 

maximisation of 𝛿𝑟 and 𝛿𝑏 follow the tangent direction beyond Δ𝑡 = 𝑇𝑁𝐸𝑂, which is expected to mainly cause a 

shift in the time the asteroid reaches the MOID. 

 Maximum 𝜁 Deviation 

Figure 3.15 and Figure 3.16 show how the direction of maximum 𝜁 deviation follows similar rules as the 𝛿𝑏 

maximisation (see section 3.4.2). This result is consistent with the limited effect of the 𝛿𝜉 maximisation beyond 

Δ𝑡 = 𝑇𝑁𝐸𝑂, beyond which the optimal 𝛿𝑏 direction practically coincides with the 𝛿𝜁 one, as the 𝜁 direction is 

related to the phasing, which is more easily modified than the 𝜉-related MOID [21]. 
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Figure 3.15: Components of the maximum 𝛿𝜁 deviation direction for 2010 RF12. 

 

Figure 3.16: Components of the maximum 𝛿𝜁 deviation direction for 1979 XB. 
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 Deflection Strategy to Avoid the Keyholes 

An effective strategy to prevent a resonant return could be to deflect a NEO in such a way that its trajectory 

crosses the encounter b-plane far from any of the calculated keyholes; the distance from the keyholes is aimed 

at providing some robustness to the deflection action towards real-world effects, such as the real deflection not 

corresponding to the expected one. Assuming the asteroid could be deflected a sufficient amount of time before 

the first close approach, a deviation along the 𝜁-axis would be very convenient, as is detailed in chapter 3.4. For 

this reason, a target value of 𝜁 can be selected based on the following criteria: 

 Nominal encounter within a keyhole: the target 𝜁 value is located halfway between the keyhole in 

question and the following one in the direction of increasing modulus of 𝜁; this direction is selected 

considering the fact that deflecting the NEO away from the Earth rather than towards it would be a safer 

manoeuvre in the case the result of the manoeuvre did not correspond to the desired one 

 Nominal encounter between two keyholes: the middle point between the two keyholes is selected as 

the target 𝜁 value 

Figure 3.17 illustrates some examples of the criteria described above. The black circles correspond to nominal 

encounter conditions on the b-plane and the arrows connect them with the associated target 𝜁 values. 
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Figure 3.17: Target 𝜁 values for conditions on the b-plane qualitative example. 

The formulas presented in section 3.2.2.2 can be used to determine the 𝜹𝒗 vector to be applied to the asteroid 

at the deflection coordinates to obtain the desired 𝛿𝜁 deviation on the b-plane through the following procedure: 

1. Determination of the direction of maximum 𝛿𝜁 variation through the eigenvector method 

2. Multiplying the modulus of the unitary 𝜹𝒗 vector by a factor 
𝛿𝜁

𝛿𝜁𝑒𝑖𝑔
⁄ , where 𝛿𝜁𝑒𝑖𝑔 is the displacement 

along the 𝜁-axis obtained with the unitary 𝜹𝒗 vector (resulting from the eigenvector method) 

It should be noted that the presented technique features some displacement along the 𝜉-axis (i.e. a change in 

the MOID) in addition to the desired one along the 𝜁-axis (i.e. a change in the encounter phasing), as the selected 

direction only guarantees the conditions to obtain the maximum value of 𝛿𝜁 for a given modulus of 𝜹𝒗 and value 

of Δ𝑡. The displacement along 𝜉 can however be disregarded, as it is considerably smaller with respect to the 

one along 𝜁 (see section 3.4.4).  
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A convenient strategy to determine the optimal deflection direction would be represented by the inversion of 

Equation 3.6, which would determine the exact 𝜹𝒗 associated with a given 𝛿𝜁. This technique can however not 

be applied, as the invertibility of matrix 𝑻𝜹𝜻 is not guaranteed. The best way to solve the problem at hand 

therefore remains the procedure detailed in this chapter. 

 Comparison with the Maximisation Strategies 

The algorithm presented in this chapter is based on a different concept compared to what has been done in the 

previous optimisation strategies (see sections 3.2.3 and 3.4). The aim of the previous optimisations was the 

maximisation of the relative quantity on the b-plane (𝑏, 𝜉 or 𝜁), whereas the present technique aims for specific 

positions on the b-plane, as specified above. 

In the case that a limited modulus of 𝜹𝒗 is available, the outcome of the maximisation strategies and of the 

keyhole-avoiding method could coincide if the latter features a target 𝜁 value with a greater absolute value than 

the nominal encounter’s; this is the case in the example from section 4.3. 
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4 Results for the Avoidance of Resonant Encounters 

A fundamental premise to the application in this chapter is that the results featured in this section are obtained 

through a Two-Body Problem (2BP) propagation of the coordinates of both the asteroid and the Earth since their 

initial conditions, provided by SPICE’s ephemerides data [30], and are therefore not fully representative of the 

real conditions, all the while maintaining their general validity. This is done to better highlight the theoretical 

value of the theory derived in chapter 3 as a preliminary design tool for a mission to subsequently be refined in 

the framework of the 𝑛-body problem (nBP); this could therefore be a possible extension of the present work. 

 Propagation Considerations 

While the gravitational effects determining the trajectories of both the celestial bodies and the spacecraft 

featured in this dissertation are based on a patched two-body approach (the gravity of the Sun and the Earth are 

considered one at a time), with the exception of the 𝑛-body propagation used in section 2.9.1, several types of 

propagators have been examined during the thesis work: 

 Heliocentric Keplerian two-body motion 

 Patched two body approach exclusively considering the gravitational effect of the Earth inside its SOI and 

the one of the Sun when outside of it 

 n-body approach based on the sum of the gravitational effects of the Solar System planets 

The comparison between the results obtained by means of these propagators as well as the ephemerides data 

provided by the SPICE toolkit [30] have brought to light a very significant problematic when integrating the 

position of a body undergoing a fly-by of a planet, as already highlighted by many authors [12] [32]. 

As can be observed in Figure 4.1, the post-fly-by coordinates of 2010 RF12 obtained with the different propagators 

diverge significantly between each other, leading to very different patterns in the distance of the asteroid from 

the Earth. A different behaviour is present after the first flyby in Figure 4.2, while the previously described 

phenomenon takes place after the second flyby. This effect is mainly due to the fly-by perturbing the orbit of the 

NEO differently in function of the pre-encounter conditions, which vary between the cases as the different types 

of propagations slowly diverge starting from the same initial conditions. The first flyby in Figure 4.2 does not 

exhibit a very significant difference between the post-fly-by trajectories, as the limited propagation time since 

the initial conditions has not allowed for a sufficient differentiation between the encounter conditions of the 

different propagators. 
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It should be noticed that the divergence of the propagated nBP conditions up to the fly-by in Figure 4.1 is 

sufficient to cause the asteroid not to enter the Earth’ SOI at the close approach; thus the encounter is only 

registered in the case of the SPICE ephemerides. 

 

Figure 4.1: Comparison between the different methods of propagation in the case of a late fly-by. 
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Figure 4.2: Comparison between the different types of propagation in the case of an early fly-by. 

On the one hand, these results corroborate what has been stated in section 2.9.1, as the propagation between 

encounters does not exhibit large discrepancies between the methods in the short term. On the other hand the 

fine differences between the propagation methods can produce significant changes when analysing close-

approaches and this phenomenon should be taken into consideration if trying to expand the present work to 

consider a more realistic 𝑛-body propagation aimed at obtaining the accurate return coordinates of an asteroid 

to Earth. In the following sections of this chapter, as already stated, the optimisation will be performed in the 

patched two-body problem framework. 

 Optimal Deflection 

 Optimal Deflection of 2010 RF12 

Let us consider a fictitious situation in which the 2095 encounter of 2010 RF12 with the Earth takes place in one 

of the b-plane’s keyholes, specifically the (6,5) one, leading to a potential dangerous return of the NEO in the 

year 3001. This condition would clearly be highly undesirable and a deflection mission to the asteroid would be 

recommended. The values of the Keplerian parameters assumed for both the Earth and the NEO are the ones 

previously detailed in Table 1. 
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An effective strategy to prevent the expected resonant return could be to deflect 2010 RF12 in such a way that 

its trajectory crosses the 2095 encounter b-plane far from any of the calculated keyholes. For the scope of this 

example, the asteroid is assumed to be deflected 400 d before the first close approach, allowing to apply the 

strategy described in chapter 3.5. The target deflection will therefore be a 𝛿𝜁 value equal to half the distance 

between the current keyhole (6,5) and the next one in the direction of increasing 𝜁 (7,6). 

Figure 4.3 depicts the orbits of the Earth and the modified NEO (corresponding to the fictitious encounter 

conditions, i.e. modified compared to the original NEO), before and after the deviation. Figure 4.4 portrays the 

b-plane of the encounter; the resonant circles in the figure are computed analytically and therefore do not 

correspond with the numerical keyholes. The coordinates of the keyholes considered for the optimal deflection 

strategy, as well as the chosen target 𝜁 value are shown as asterisk symbols. Finally, Figure 4.6 displays the 

propagation of the post-fly-by conditions corresponding to the nominal conditions for the fictitious encounter 

and the deviated conditions obtained through the optimisation strategy in the form of the distance of the NEO 

from the Earth. The line corresponding to the nominal conditions clearly exhibits a return of the asteroid to the 

Earth, whereas the propagation of the deviated NEO suggests that the following encounter has been avoided. 

 

Figure 4.3: Orbits of the Earth and the asteroid (modified and deviated). 
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Figure 4.4: B-plane of the 2095 close approach of 2010 RF12 with the Earth featuring the initial and deviated conditions. 

 

Figure 4.5: Distance of the nominal and deviated 2010 RF12 from the Earth. 

The optimal deviation, based on the procedure presented in this section and the assumed data, is obtained for 
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𝒅𝒗𝒕𝒏𝒉 = {
2.7284
0.0012
−0.0002

} ∙ 10−1  m s⁄  

(expressed in the tangent-normal-out-of-plane frame of the asteroid) even though a weaker deflection could be 

sufficient to avoid the following encounter. The computed value should be considered as having an “ideal” 

magnitude to provide a degree of robustness to the obtained result to face the disturbances due to effects that 

have not been considered; in particular the perturbation of the Keplerian heliocentric motion due to the 

presence of the other planets or the effects of the non-ideal deflection of the asteroid. 

It should be noted that, even though the current ephemerides values do not anticipate the return featured in 

this example, the uncertainty associated with the orbital parameters of the NEO resulting from their 

determination through astronomical observations is such that a condition similar to the one presented here 

could potentially arise. 

 Influence of the Deflection Time on the Optimal Deflection 

The modulus of the 𝒅𝒗 vector required to deviate the asteroid in the desired position along the 𝜁-axis on the b-

plane strongly varies in time, as the deviation along the aforementioned axis is a cumulative effect in time, as 

can be appreciated in Figure 3.8. For this reason, the cost (in terms of 𝒅𝒗) of the deviation generally decreases 

with the value of Δ𝑡; with the exception of a periodic effect that however features a limited magnitude and 

therefore does not change the validity of this consideration. Figure 4.6 illustrates the norm of the 𝒅𝒗 vector 

required to obtain the optimal deflection from section 4.2.1 considering a time span going from 1 d to 5 y. 
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Figure 4.6: Cost of the deviation to obtain a given 𝑑𝜁 in function of the deviation time. 

A further consideration on the combination of 𝒅𝒗 and the deflection timing can be made observing Figure 4.7, 

which represents the deflection on the b-plane corresponding to a fixed 𝒅𝒗 vector over an arc of time. In this 

case the deflection resulting from the optimal 𝒅𝒗 for a deflection 400 d before the first encounter (as featured 

in section 4.2.1) is applied to deflections up to 5 y before the close approach. It can be noted how, for a value of 

Δ𝑡 in the 600 − 800 km range, the deviation results in moving the encounter from the (6,5) keyhole to the (7,6) 

one, thus only postponing the possibility of an impact. 

The simple maximisation of the deviation along a given direction is therefore not always the most convenient 

deflection strategy in the long run, as it could inadvertently place the NEO in a keyhole (as is the case in Figure 

4.7). A deviation aimed at minimising the risk of a resonant return must therefore be controlled in the magnitude 

of the deviation itself, in addition to the direction of deviation. A notable exception is the deflection of an asteroid 

very close in time to an impact, for which the deviation cannot take advantage of the growth of the displacement 

along the 𝜁-axis in time and the NEO must be distanced from the impact conditions as much as possible, 

disregarding resonance concerns if necessary. 
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Figure 4.7: Deviation on the b-plane for a fixed 𝒅𝒗 and varying 𝛥𝑡. 

 Deflection Mission Preliminary Design 

In this section, a fictitious mission to deflect an incoming asteroid will be analysed, based on what has been done 

by Colombo et al. [31]. As already done in section 4.2, the 2095 encounter of 2010 RF12 with the Earth will be 

taken into consideration and a two-body propagation will be employed for this study. The same initial Keplerian 

parameters as those featured in Table 1 are considered in this simulation. 

To this purpose, a set of parameters concerning the NEO, the impactor spacecraft and the boundaries of the 

mission parameters are assumed in accordance with the choices made by Colombo et al. [31]. Such parameters 

are detailed in Table 6, Table 7 and Table 8 respectively. 

The mission is assumed to be composed by the escape of the impactor from the Earth, followed by a Deep-Space 

Manoeuvre (DSM) to place it on an impact trajectory with the hazardous body. The first section, as stated at the 

beginning of this study, is obtained by simple Keplerian propagation of the heliocentric coordinates at the 

departure from Earth, whereas the orbit arc connecting the location of the DSM and the position of the NEO is 

the result of the Lambert problem solution. 
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The earliest possible departure from Earth is limited by the warning time; the trajectory between the departure 

and the arrival to the asteroid is limited by the maximum Time Of Flight (TOF), during which the DSM can be 

performed. The DSM is considered to take place instantaneously and the same assumption holds true for the 

deviation of the asteroid. In particular, the latter is modelled as 

𝒅𝒗 =
𝑚𝑆/𝐶

𝑚𝑁𝐸𝑂
(𝒗𝑺/𝑪 − 𝒗𝑵𝑬𝑶) 

where 𝑚𝑆/𝐶, 𝑚𝑁𝐸𝑂, 𝒗𝑺/𝑪 and 𝒗𝑵𝑬𝑶 are the mass of the spacecraft, the mass of the NEO, the velocity vector of 

the spacecraft and the velocity vector of the NEO at the time of the impact respectively. 

The mass of the spacecraft before hitting the asteroid is given by the formula 

𝑚𝑆/𝐶 = 𝑚𝑆/𝐶0
∙ 𝑒

−
Δ𝑣𝐷𝑆𝑀

𝐼𝑠𝑝𝑔0
⁄

 

where 𝑚𝑆/𝐶0
 is the initial mass of the spacecraft, Δ𝑣𝐷𝑆𝑀 is the norm of the DSM, 𝐼𝑠𝑝 is the spacecraft engine’s 

specific impulse and 𝑔0 is the Earth’s gravitational acceleration at sea level. 

NEO mass 1.3614 ∙ 109 kg 

Table 6: NEO parameters. 

Spacecraft specific impulse 300 s 

Spacecraft initial mass 300: 8000 kg 

Launcher excess velocity 3 km s⁄  

Table 7: Spacecraft parameters. 

Warning time 9 y 

Maximum Time Of Flight (TOF) 1 ∙ Τ𝑁𝐸𝑂 

Table 8: Mission parameters. 

The results of the problem at hand are obtained through a multi-objective optimisation aimed at achieving the 

maximisation of the distance of the deviated point from the closest keyholes while minimising the spacecraft 

initial mass required for the mission. The optimiser returns the results corresponding to different mission 

parameters amongst the possible combinations allowed by the initial data (departure time, TOF, departure mass, 

DSM timing) during its search for the optimal condition. These values will be displayed in the following figures 

alongside the resulting optimal mission ones. 

Figure 4.8 presents an overview of the trajectory of the spacecraft resulting from the multi-objective 

optimisation. Figure 4.9 and Figure 4.10 portray the results of the deflections on the b-plane (represented by 
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circle symbols ranging from dark blue to yellow) alongside the numerical keyholes; the two keyholes closest to 

the nominal and deflected coordinates on the b-plane are highlighted by two red circle symbols. A colour-bar 

flanks the figures to express the distance of the deflected points from the nearest keyhole for each of the 

computed conditions (the same colour-bar will be present in the flowing figures). Figure 4.11 shows the 

distribution of the deflection between the 𝜉 and 𝜁 components; it is important to note the difference in the axes’ 

scales. Figure 4.12 describes the correlation between the initial spacecraft mass and the deflection result, in the 

form of the distance from the nearest keyhole, for each of the deflection conditions returned by the optimiser. 

Finally, Figure 4.13 depicts the minimum warning time required for the mission (i.e. the difference between the 

encounter time and the departure time for each of the considered mission parameters combination) as well as 

the corresponding spacecraft mass before the collision with the NEO. 

 

Figure 4.8: Optimal trajectory combination for the deflection mission. 
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Figure 4.9: B-plane of the encounter containing the points corresponding to the possible deflections. 

 

Figure 4.10: Zoom-in of Figure 4.9. 



87 
 

 

Figure 4.11: Deviation along the 𝜉 and 𝜁 axes of the b-plane. 

 

Figure 4.12: Correlation between the initial spacecraft mass and the deflection result. 



88 
 

 

Figure 4.13: Correlation between the spacecraft mass at the deflection point and the warning time required for the deflection mission. 

From Figure 4.10 it can be seen how the most effective strategy for the deflection aimed at maximising the 

distance from the nearest keyhole corresponds to a displacement along the 𝜁-axis in the direction of the second 

nearest keyhole. This result corroborates what has been stated in section 3.4, according to which most of the 

deviation for values of Δ𝑡 in excess of the NEO’s orbital period happens along the 𝜁-axis. It should be noted that 

the monotone nature of the results featured in this section depends on a multitude of parameters, which, in this 

case, do not allow for a deviation beyond the middle point between the two keyholes. For this reason, the 

outcome of the application of the maximisation of the distance from the nearest keyhole can be compared to 

the maximisation of the distance from the planet under the assumed conditions. 

The deflection applied to the asteroid in the case of the selected optimal deflection is 

𝒅𝒗𝒕𝒏𝒉 = {
−1.4581
−1.3736
−0.0637

} ∙ 10−3  m s⁄  

(expressed in the tangent-normal-out-of-plane frame of the asteroid), as returned by the optimiser. It can be 

noted how the tangent and normal components feature the same order of magnitude despite the deviation 

occurs at mjd2000 = 3.2807 ∙ 104, around 5.4 periods of the NEO before the encounter, a sign that the more 

realistic mission profile cannot guarantee the optimal deviation direction based on what has been detailed in 

section 3.4.4. Furthermore the magnitude of the deviation is considerably lower than the one corresponding to 
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the optimal deflection of the same asteroid in section 4.2.1, which is to be expected considering the difference 

in the value of Δ𝑡, as is apparent in Figure 4.6.  
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5 Conclusions 

In this thesis, the theory behind the b-plane has been presented in detail, as derived by Tisserand [24], Öpik [26] 

and Valsecchi et al. [19]. A numerical technique to compute the b-plane keyholes was then introduced and 

applied to the case of an elliptical Earth orbit and non-coincident position of a NEO with the planet’s. 

The deflection problem was modelled through the use of proximal motion equations and Gauss’ planetary 

equations, providing a convenient analytical maximisation technique, following what had already been done by 

Vasile and Colombo [22]. The maximisation technique was then extended to the impact parameter and the single 

axes of the b-plane and an analytical correlation between the deflection velocity vector and the displacement on 

the b-plane was presented. The correlation between the deflection and the resulting displacement along the 𝜁-

axis of the b-plane was employed to define an optimisation strategy aimed at avoiding the keyholes, thus 

reducing the probability of a resonant return of the NEO to the Earth. 

These tools have later been applied in the case of the optimal deflection of asteroid 2010 RF12 aimed at avoiding 

the keyhole positions and for the preliminary design of a mission aimed at providing the optimal deflection of 

the aforementioned NEO considering the limitations imposed by a possible deflection mission. It has been found 

that the deflection, if performed sufficiently in advance (see section 3.4), is most effective if aligned with the 

direction tangent to the asteroid velocity and results in a displacement on the b-plane predominantly in the 

direction of the 𝜁-axis (corresponding to a variation in the close-encounter phasing). This result has been used 

to define the optimal deflection strategy aimed at avoiding a future resonant return, which has proven effective 

in the ideal, unbounded case (see section 4.2.1) and viable in the preliminary mission design (see section 4.3). 

Indeed the displacement obtained along the 𝜁-axis in the realistic case would be sufficient to avoid a keyhole in 

the case the nominal encounter coordinates on the b-plane were near it.  

It should be noted that a two-body approach has been considered to model the gravitational effects for the scope 

of this thesis, as stated throughout the present report. Such an approximation poses an obvious limitation to the 

validity of the obtained results, especially when considering a long-term propagation of the predicted effects. 

This approach was necessary in order to obtain some of the closed-form solutions presented in this paper, such 

as the aforementioned optimisation techniques and the exact return in the case of an encounter taking place in 

a keyhole. Nevertheless, the presented results retain their general validity, as discussed in the respective results 

sections, and can serve as a starting point from which to start analysing a real close approach situation, 

comparing the obtained results with a more accurate propagation technique. Another important limitation 

affecting the correlation between the results presented in this thesis and the real parameters of the encounters 

between asteroids and our planet concerns the reliability of our knowledge of the orbital parameters of the 
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NEOs. These are in fact hard to determine through telescope observation and more accurate measurements are 

only possible when they get closer to the Earth. 

To tie to one of the limitations of the presented formulation of the problem, future developments of this work 

could feature the development of a numerical approach to precisely determine the shape and position of 

keyholes in the case of an 𝑛-body propagation. A second possible addition to this thesis could be represented by 

the propagation of a set of initial conditions instead of a single set of coordinates to account for the probability 

factor associated with the determination of an asteroid’s orbital parameters. Furthermore, the definition of a 

more comprehensive strategy to determine the optimal deviation on the b-plane could be developed, possibly 

taking into consideration the timing of the expected returns associated to each keyhole, as well as the cost of 

each of the manoeuvres required to safely avoid them. Lastly, the modelling of the impact between the 

spacecraft and the NEO could be improved by considering the uncertainty due to the lack of precise knowledge 

about its shape, rotation and composition, giving rise to a breadth of possible resulting deviations.   
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