
Politecnico di Milano
School of Industrial and Information Engineering

Master of Science in Aeronautical Engineering

Air-to-air automatic landing for multirotor UAVs

Advisor: Prof. Marco LOVERA
Co-Advisors: Ph.D. Davide INVERNIZZI

Eng. Mattia GIURATO

Master Thesis by:
Adriano MARINI COSSETTI Matr. 863099
Pietro GIURI Matr. 853735

Academic Year 2017–2018

Acknowledgments

Alla fine di questa appassionante sfida vogliamo dedicare poche parole alle per-
sone che ci hanno aiutato a renderla realtà. In primis, ringraziamo il Professor
Marco Lovera per averci “arruolato” ed averci proposto una tesi tanto impegna-
tiva quanto stimolante. Egli ci ha dimostrato estrema competenza e disponibilità,
nonché incondizionata fiducia.
Il secondo immenso grazie va a Davide Invernizzi, per averci accompagnato sapien-
temente dall’inizio alla fine, dandoci preziosi consigli ed essendo sempre presente.
Ed ancora, a Mattia Giurato, per averci guidato nell’oscuro mondo del laborato-
rio, anche quando non si vedeva nessuna luce in fondo al tunnel.
Inoltre, ringraziamo di cuore Simone Panza per essersi reso disponibile ogni giorno
a risolvere problemi informatici più grandi di noi. Non dimenticheremo mai il
tuo rassicurante: «oplà». Un altro compagno di avventure da ringraziare asso-
lutamente è Paolo Gattazzo, non solo per l’aiuto costante nel risolvere problemi
pratici e nell’eseguire i test, ma anche per l’allegria che ha saputo portare ogni
giorno, un dono che poche persone possiedono. Inoltre, un pensiero va a tutti i
ragazzi del laboratorio che hanno condiviso gioie e dolori, lamenti ed esultanze,
in questi otto interminabili mesi.
Infine ringraziamo i nostri compagni di corso, che hanno reso questa laurea magis-
trale e questo periodo indimenticabili: Simone, che ha condiviso con noi l’intera
esperienza di tesi rendendola “straordinaria”, e poi Alberto, Federico, Nicola e
Stefano. Raramente si incontrano persone speciali come voi, e senza di voi questo
percorso sarebbe stato solo un freddo corso di studi. Speriamo di ritrovarci presto
tutti insieme per condividere un’altra delle nostre sobrie cene, indagando le spe-
cialità culinarie delle nostre magnifiche regioni italiane e chiacchierando, mentre
sorseggiamo del buon vino.
Grazie a tutti.

Abstract

Nowadays, the Unmanned Aerial Vehicles (UAVs) are continuing to enlarge their
market share and research activities about them are growing exponentially. In
particular, the interaction between two or more vehicles during flight, e.g. for-
mation flight and refueling, are getting more and more attention. Dealing with
intelligence, surveillance, and reconnaissance missions the problem of air-to-air
refueling can arise when undertaking long range flights. In the military field, the
Air-to-Air Automatic Refuelling (AAAR) involving fixed-wing drones is object
of large studies and research activities. Also small/medium UAVs suffer from
low autonomy problems, since the overwhelming majority of them has an electric
propulsion system. Another possibility to extend the range of UAVs missions could
be to have a carrier drone, reasonably a fixed-wing one, with several lightweight
multirotors aboard, which can take-off from and land on it. The work conducted
within this thesis is focused on the implementation of a guidance law to obtain
automatic air-to-air landing of a small quadcopter on a bigger hexacopter, both
developed at Aerospace Systems and Control Laboratory (ASCL) in Politecnico
di Milano. The purpose of the thesis is, first of all, to analyze and to simulate
the guidance law in order to investigate its feasibility, then the algorithm is im-
plemented and experimentally validated. Initially, a simulator has been realized,
with a quadrotor model created using an object-oriented multi-body software.
This includes both nonlinear dynamics and aerodynamics. Afterward, a number
of possible algorithms for the landing trajectory generation have been studied.
The feasible ones have been implemented and simulated with the previously built
simulator, extended to two UAVs. Eventually, the guidance laws are validated
through an experimental activity.

Sommario

Oggigiorno, i velivoli a pilotaggio remoto (UAV) continuano ad ampliare la loro
quota di mercato e le attività di ricerca su di loro stanno crescendo esponenzial-
mente. In particolare, l’interazione tra due o più veicoli durante il volo, e.g. volo
di formazione e rifornimento, sta ottenendo sempre più attenzione. Occupandosi
delle missioni di intelligence, sorveglianza e ricognizione, il problema del riforn-
imento di carburante in volo può sorgere quando si intraprendono voli a lungo
raggio. In campo militare, il rifornimento automatico in volo (AAAR) che coin-
volge droni ad ala fissa è oggetto di ampi studi e attività di ricerca. Anche gli UAV
di piccole e medie dimensioni soffrono di problemi di bassa autonomia, poiché la
stragrande maggioranza di loro ha un sistema di propulsione elettrica. Un’ altra
possibilità di estendere l’autonomia di questa classe di UAV potrebbe essere quella
di avere un drone “cargo”, ragionevolmente uno ad ala fissa, con diversi multi-
rotori leggeri a bordo, che possono decollare da e atterrare su di esso. Il lavoro
condotto all’interno di questa tesi è incentrato sull’implementazione di una legge
di guida per ottenere l’atterraggio automatico in volo di un piccolo quadricottero
su un esacottero di dimensioni maggiori, entrambi sviluppati presso l’ Aerospace
Systems and Control Laboratory (ASCL) del Politecnico di Milano. Lo scopo
della tesi è, prima di tutto, di analizzare e simulare la legge di guida per inda-
garne la fattibilità e, in seguito, di implementarla e validarla sperimentalmente.
Inizialmente è stato realizzato un simulatore con il modello di un quadricottero,
creato utilizzando un software di modellazione multi-corpo orientato agli oggetti.
Quest’ultimo include sia la dinamica non lineare che l’aerodinamica del quadriro-
tore. Successivamente, sono stati studiati una serie di possibili algoritmi per la
generazione della traiettoria di atterraggio. Quelli fattibili sono stati implementati
e simulati con il simulatore precedentemente sviluppato, esteso a due multirotori.
Alla fine, le leggi di guida sono state validate attraverso un’ attività sperimentale.

Contents

Acknowledgments I

Abstract III

Sommario V

List of figures XI

List of tables XV

1 Introduction 1

2 Modelling and simulation of multirotor UAVs 5
2.1 Reference axes . 6

2.1.1 Earth axes . 6
2.1.2 Body axes . 6
2.1.3 Rotor fixed axes . 7
2.1.4 Rotor wind axes . 7

2.2 Rotation formalism . 7
2.2.1 Euler angles . 7
2.2.2 The time derivative of Euler angles 10
2.2.3 Quaternions . 11

2.3 Flight dynamics . 12
2.3.1 Kinematics . 12
2.3.2 Equations of motion - linear motion 13
2.3.3 Equations of motion - angular motion 14
2.3.4 Overall states of a rigid aircraft 15
2.3.5 Control forces and moments 15

VIII CONTENTS

2.4 Rotor aerodynamics . 18
2.4.1 Rotor blades motion . 19
2.4.2 Momentum theory . 24
2.4.3 Blade element theory - BET 29
2.4.4 Blade element momentum theory 32
2.4.5 Dynamic inflow model (Pitt and Peters) 33

2.5 Aerodynamic modeling of a quadrotor 34
2.5.1 The multi-body model . 35
2.5.2 Thrust and inflow . 38
2.5.3 Torque and drag forces . 43
2.5.4 Implementation . 49

2.6 Simulation . 54
2.6.1 Dymola-Simulink co-simulation 54
2.6.2 Results . 56
2.6.3 Conclusions . 69

2.7 Experimental results . 70
2.7.1 Quadrotor prototype . 71
2.7.2 Model comparison . 72
2.7.3 Conclusions . 73

3 Problem Formulation 77
3.1 Problem description . 78
3.2 State of the art . 78
3.3 Mathematical formulation . 80
3.4 Suitable algorithms description 84

3.4.1 Three-states bang-bang algorithm 84
3.4.2 Quasi Time-Optimal algorithm 85

4 Digital implementation 87
4.1 Error monitoring and safety procedures 88
4.2 Three-states bang-bang . 89
4.3 Quasi time-optimal . 92

5 Simulation results 97
5.1 Simulation setup . 98
5.2 Three-states bang-bang . 99

CONTENTS IX

5.3 Quasi time-optimal . 103
5.3.1 Sensitivity analysis . 105

5.4 Conclusions . 118

6 Experimental activity 121
6.1 System architecture . 122

6.1.1 Hardware . 122
6.1.2 Software . 126

6.2 Landing pad design . 128
6.3 Experimental results . 130

6.3.1 Three-states bang-bang . 130
6.3.2 Quasi time-optimal . 135
6.3.3 Velocity estimate issue . 137
6.3.4 Final flight test . 141

6.4 Conclusions . 146

7 Conclusions 147

List of Figures

2.1 Quadcopter configuration. 16
2.2 Rotor reference planes:tip-path plane (TPP), no-feathering plane

(NFP), hub plane (HP), and control plane (CP) (picture from [1]). 20
2.3 Aerodynamics of the rotor blade section (picture from [1]). 21
2.4 Air velocity relative to the blade in forward flight [1]. 22
2.5 Flow model for momentum theory analysis of rotor in forward flight

(picture from [1]). 24
2.6 Momentum theory results for the induced velocity in vertical flight

(picture from [1]). 28
2.7 Quadcopter multi-body model overview. 37
2.8 Drag coefficient estimation. 48
2.9 Arm model overview. 53
2.10 Quadrotor multi-body model. 53
2.11 Quadrotor simulator. 56
2.12 Quadcopter subsystem. 57
2.13 Infinity trajectory. 58
2.14 Trajectory set-point. 59
2.15 Quadrotor position and velocity error (BET). 60
2.16 Quadrotor attitude and angular rates error (BET). 60
2.17 Quadrotor thrust coefficient and induced inflow ratio (BET). . . . 61
2.18 Quadrotor H-force and torque dimensionless coefficients (BET). . 62
2.19 Quadrotor H-forces (BET). 63
2.20 Quadrotor throttle percentage (BET). 64
2.21 Quadrotor position and velocity error (lumped parameter). 65
2.22 Quadrotor attitude and angular rates error (lumped parameter). . 65

XII LIST OF FIGURES

2.23 Quadrotor thrust coefficient and induced inflow ratio (lumped pa-
rameter). 66

2.24 Quadrotor H-force and torque dimensionless coefficients (lumped
parameter). 67

2.25 Quadrotor H-forces (lumped parameter). 68
2.26 Quadrotor throttle percentage (lumped parameter). 69
2.27 Quadrotor prototype. 72
2.28 Models comparison: infinity-shape maneuver. 74
2.29 Models comparison: Step maneuver. 75

5.1 Follower, target and desired altitude (bang-bang), ideal case. . . . 100
5.2 Control variables (bang-bang), ideal case. 102
5.3 Follower, target and desired altitude (bang-bang), non-ideal case. 103
5.4 Control variables (bang-bang), non-ideal case. 104
5.5 Null acceleration command iso-lines (QTO). 106
5.6 Position and velocity errors contribution to acceleration command

(QTO). 107
5.7 Errors evolution with different Kp (QTO). 110
5.8 Landing trajectories (QTO). 111
5.9 Follower, target and desired altitude (QTO), ideal case. 113
5.10 Follower and target velocity (QTO), ideal case. 113
5.11 Landing trajectory error (QTO), ideal case. 114
5.12 Acceleration command (QTO), ideal case. 114
5.13 Follower, target and desired altitude (QTO), non-ideal case. . . . 115
5.14 Follower and target velocity (QTO), non-ideal case. 116
5.15 Landing trajectory error (QTO), non-ideal case. 116
5.16 Acceleration command (QTO), non-ideal case.. 117

6.1 Photo of the cage with Optitrack cameras on top 123
6.2 UAVs adopted in the flight tests. 125
6.3 Landing pad CAD assembly. 129
6.4 Follower, target and desired altitude (bang-bang), flight test. . . . 131
6.5 Follower and target velocity (bang-bang), flight test. 132
6.6 Three-states bang-bang control variables. 133
6.7 Three-states bang-bang reference position, zr. 134

LIST OF FIGURES XIII

6.8 Three-states bang-bang reference velocity, żr. 134
6.9 Error monitoring procedure (bang-bang), flight test. 135
6.10 Synchronization failure (bang-bang), flight test. 136
6.11 Acceleration command and up, uv (QTO), unsuccessful test. . . . 138
6.12 UAVs position and velocity (QTO), unsuccessful test. 139
6.13 IMU measurements and velocity estimate of the on board filter. . 140
6.14 Follower, target and desired altitude (QTO), flight test. 141
6.15 Error monitoring procedure (QTO), flight test. 142
6.16 Acceleration command (QTO), flight test. 142
6.17 Landing trajectory error (QTO), flight test. 143
6.18 Follower and target velocity (QTO), flight test. 143
6.19 Air-to-air landing flight test. 145

List of Tables

2.1 Quadrotor mass and geometric properties. 38
2.2 Arm parameters. 51
2.3 Quadrotor model main parameters. 72

5.1 Standard devation of measurement noise. 99
5.2 Three-states bang-bang parameters. 99
5.3 Parameters of quasi time-optimal algorithm. 112

6.1 Ant-1 model main parameters. 125
6.2 Hexa model main parameters. 126
6.3 Standard deviation of velocity estimate. 136
6.4 QTO new parameters. 137

Chapter 1

Introduction

An Unmanned Aerial Vehicle (UAV) is an aircraft without a pilot aboard, which
is able to fly autonomously or could be piloted from the ground. Usually called
drones, in recent years this type of vehicles has met with great interest both
in civil and military fields thanks to their wide range of applications, including
precision agriculture, photography, policing and surveillance, search and rescue,
entertainment, product delivery, aerial inspection and many others.
When referring to an UAV, generally called drone, one usually refers to the cate-
gory of multi-rotor Vertical Take-Off and Landing (VTOL) vehicles provided with
four, six, or eight motors, of small/medium size and remote controlled. Their
versatility in technical operations have pushed the commercial and research com-
munities towards new challenges. New research activities involve the possibility to
remotely command many drones together, following the same path or performing
many task simultaneously. Among the main sub-areas covering the cooperative
control problem of UAVs, formation flight has attracted great interest and has
been widely investigated. Besides multi-rotors formation flight, in the military
field, the Air-to-Air Automatic Refueling (AAAR) involving fixed-wing drones
is object of large studies and research activities. Proceeding further, one may
argue that the possibility to couple formation flight with some air-to-air crucial
operations has not found attention in the multi-rotors field yet.

In this thesis the focus is on the design of guidance laws aimed at providing
a small multirotor with a reference descent trajectory, ending up to an air-to-
air landing onto a larger one. This kind of maneuver is as risky as dangerous.
The propellers wake of a multirotor generates an unsteady flow field around it.

2 Introduction

When two UAVs fly close, they perturb each other. For what regards the air-
to-air landing operation, one drone is always above the other, which constantly
flies in a perturbed regime. The closer are the vehicles, the stronger will be the
aerodynamic disturbances affecting the one below. It is straightforward that the
aerodynamic forces developing on the multirotors vary continuously in this flight
condition. This thesis also proposes a novel approach to build up the dynamic
and aerodynamic model of a quadcopter, representing a further progress in the
modeling procedure of multirotor UAVs. Other obvious considerations regarding
the dimensions and weights of the UAVs can be taken into account, e.g. it is
necessary that the carrier drone must be heavier and larger than the landing
one, in order to stand its weight once the touch down occurs. Even though the
control problem has not been studied, the controllers embedded on-board both
multirotors must be capable of rejecting at least part of the high aerodynamic
disturbances. The hazardous nature of the maneuver makes the design of the
trajectory generation module hard and complex, as the problem is fully three-
dimensional. Thanks to a decoupled approach it is possible to overcome this issue,
by verifying the drones have been synchronized in the same horizontal position for
a certain time at first, and then sending the reference landing path to the smaller
one, provided that it respects the synchronization constraint during the landing
too.
In this work, two innovative control laws are proposed for the landing trajectory
generation purpose. The first one, presented in [2], is based on concept of bang-
bang acceleration commands, while the second is quasi time-optimal.
The thesis is organized as follows:

• Chapter 2 deals with modeling and simulation of multirotor UAV flight;
specifically the aerodynamic dependencies of rotor forces are included in the
model of a quadrotor, making use of an object-oriented multi-body approach.
The experimental evidence of adopting aerodynamic modeling to estimate
a multirotor tracking capability is shown at the end of the chapter. In
the chapter a dynamic and aerodynamic model for quadrotors is shown in
details, and at the end of the chapter the experimental evidence that it
reduces modeling errors during high performance aggressive maneuvers is
proved.

• In Chapter 3 the actual state of the art addressing the multirotor landing

Introduction 3

topic is presented and the problem is mathematically stated. The goal and
the constraints of the landing problem are exposed, and at the end the
control algorithms are introduced.

• The implementation of the trajectory generation module is discussed in de-
tail in Chapter 4. The procedure to verify the synchronization constraint
is described at first, while in the last part of the chapter the mathematical
formulation of the control algorithms is presented.

• The landing maneuver has been simulated and the results are shown in
Chapter 5, for each control law adopted to generate the reference landing
path. Two sets of simulations are performed to quantify the difference be-
tween the ideal simulation environment and the possible execution of the real
flight test, including the working limits of a ground station in the simulation
setup.

• In Chapter 6, after a brief description of the laboratory environment, the
flight test results are illustrated. Finally, the trajectory generation mod-
ule has been tested, performing the air-to-air landing maneuver using two
multirotor UAVs.

Chapter 2

Modelling and simulation of
multirotor UAVs

In this first chapter a novel approach is presented to include rotor aerodynamics
in the physical model of a quadrotor helicopter. Initially, the dynamic model of a
UAV will be described, as well as the adopted conventions and formalism in order
to avoid ambiguities. The classical rotor aerodynamic theories are introduced to
address the thrust aerodynamic dependency. Then, the multi-body model of the
quadcopter is depicted in details. Specifically, two models are proposed, which
differ only in the adopted expression of drag force. After the implementation of
the quadcopter model in Dymola [3], and of the control loop in Simulink [4], some
co-simulations with a Dymola-Simulink interface are performed to evaluate the
aerodynamic influence on the overall performance.
In the final, simulation results of the proposed models are compared with real
flight data, to appreciate the improvement in predicting quadrotor behavior when
aerodynamics is considered in the dynamical model.

6 Modelling and simulation of multirotor UAVs

2.1 Reference axes

In order to analyze correctly the unsteady motion of a flying vehicle it is neces-
sary to define first an inertial reference system, because the basic equations for
the dynamic model of a mechanical system directly apply only in an inertial ref-
erence. Secondly, another reference frame centered in the center of gravity (CG)
of the flying vehicle is needed. Such reference was first introduced by Leonhard
Euler (Basel 1707 - St. Petersburg 1783). More than these, when dealing with
quadrotors or helicopters, suitable rotor reference systems must be used to prop-
erly identify the rotor aerodynamic environment.

2.1.1 Earth axes

Due to the fact that quadrotor UAVs fly indoor or close to the ground, the flat
and non-rotating Earth is assumed. The Earth fixed frame is defined as FE =
{OE, e1E , e2E , e3E}, where the first element is the origin point while the others are
three unit vectors. The origin OE is arbitrary: it could be the intersection of the
equator, the prime meridian and mean sea level. The standard convention used
in aeronautics has e1E pointing North, e2E pointing to the East and e3E aligned
with the direction of gravity, pointing downward. This type of reference frame is
often referred to as NED, clearly meaning North-East-Down. These three axes
are mutually perpendicular and, when referred to in the order N, E, D, form a
right-handed coordinate system.

2.1.2 Body axes

Analysis of the equations of motion of an aircraft is not easy considering a refer-
ence attached to the Earth. Usually a moving reference system centered in the
CG (barycentric) can be profitably used.

For this study, the body reference frame FB = {OB, e1B , e2B , e3B} refers to a
right-handed system of coordinates, rigidly attached to the center of gravity of
the UAV, i.e. OB ≡ CG, and changing orientation with it. The unit vector e1B

lies in the plane of symmetry of the vehicle and points forward, e2B points to the
right wing, normal to the plane of symmetry, and e3B points downward the vehi-
cle, mapping the three dimensional space around the aircraft a little bit differently

2.2 Rotation formalism 7

from the formal concept of NED.

2.1.3 Rotor fixed axes

The rotor fixed frame is defined as FRj = {OR, e1R , e2R , e3R}, where OR coincides
with the center of the rotor. The unit vector e1R lies in the rotor disk plane, it
is aligned with the respective quadrotor arm and points outward; while e3R is
aligned with motor-rotor shaft and points downward. Then, e2R completes the
right-hand rule. Obviously, the subscript j indicates the j-th rotor of the UAV.

2.1.4 Rotor wind axes

Instead, the rotor wind frame is defined as FRW j
= {ORW , e1RW , e1RW , e1RW },

where ORW coincides again with the center of the rotor. The unit vector e1RW

is aligned with the airspeed seen by the rotor and lies in the rotor disk plane.
e3RW is orthogonal to the rotor disk plane and points downward. Lastly, e2RW

completes the right-hand rule. As before, the subscript j indicates the j-th rotor
of the UAV.

2.2 Rotation formalism

2.2.1 Euler angles

One of the methods that allow to switch from a Cartesian coordinate system to
another one is based on the definition of three independent parameters, able to
describe the relative orientation of the two sets of reference axes. The Euler Angles
(φ, θ, ψ) are three independent angular quantities able to do that. Assume that
there are two different reference frames, with the same origin but different axes.
The orientation of the axes is obtained by a sequence of three rotations so as to
bring the two sets to coincide and overlap. The sequence cannot be exchanged,
hence the Euler angles define the transformation of the components of a generic
vector between two sets of axes. (For clarifications, see [5]).

Adopting the to-from notation, a rotation matrix from system A to system B
might be named RB

A . Thus, a vector vA in system A can be resolved to system B,

8 Modelling and simulation of multirotor UAVs

that is vB through the matrix operation:

vB = RB
AvA (2.1)

It is easier to understand how these rotation matrices work by considering rota-
tions about one axis at a time. Rotation about the x-axis does not change the
component of the vector directed along the same axis, but it does change the y
and z components. The rotation matrix that does this transformation is

RX(φ) =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 . (2.2)

In a similar fashion, the following matrices perform rotations about the y-axis and
the z-axis, respectively:

RY (θ) =

cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

 , (2.3)

RZ(ψ) =

cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 . (2.4)

One measures a rotation angle about (around) the axis of its rotation. The user
fixes the location of 0◦ arbitrarily, but once it is fixed it must not vary. The
rotational matrices are orthonormal, which means the columns in the matrices, if
considered as vectors, have unit magnitude (normal), and are mutually orthogonal.
For this reason:

R−1
X (φ) = RT

X(φ),
R−1
Y (θ) = RT

Y (θ), (2.5)
R−1
Z (ψ) = RT

Z(ψ).

Any number of rotations can be put together in any order. The resulting cascade

2.2 Rotation formalism 9

can be reduced to a rotation about just three axes. The matrix that performs this
specific action is called an Euler rotation matrix and has the following definition:

TBE (φ, θ, ψ) = RX(φ)RY (θ)RZ(ψ) (2.6)

The subscripts B and E stand for Body and Earth, respectively. The matrix TBE
resolves an Earth-based vector to body axes. Expanding the matrix products, it
results:

TBE (φ, θ, ψ) =

CθCψ CθSψ −Sθ

SφSθCψ − CφSψ SφSθSψ + CφCψ SφCθ

CφSθCψ − SφSψ CφSθSψ − SφCψ CφCθ

 , (2.7)

where a shorthand notation, which is Ca = cos(a) and Sa = sin(a), has been
adopted.

In the following, the transformation related to velocity or acceleration vectors
is mathematically explained:

re =

N

E

D

 , (2.8)

ve =

Ṅ

Ė

Ḋ

 = ṙe, (2.9)

vb = TBE (φ, θ, ψ)ve =

u

v

w

 , (2.10)

where re is the position vector of the aircraft center of gravity in inertial (Earth)
axes, ve is the velocity of the aircraft with respect to the Earth, and vb is the
inertial linear velocity of the aircraft, resolved to body axes.

We can also define the vector of angular position of the aircraft body axes with
respect to the Earth, resolved to the Earth where the elements are roll, pitch and

10 Modelling and simulation of multirotor UAVs

yaw angles.

αe =

φ

θ

ψ

 . (2.11)

2.2.2 The time derivative of Euler angles

The attitude of the aircraft changes with time when an aircraft maneuvers. The
Euler rates are a function of the Euler angles and body-axis angular rates. Euler
angles rotate Euler rates into body-axis angular rates. However, the transforma-
tion is different from the transformation for linear rates as discussed earlier. The
process is complicated by the fact that the Euler angles themselves are involved
in the transformation from Euler to body-axis rates. The process proceeds as
described below. Define the Euler rates as

α̇e =

φ̇

θ̇

ψ̇

 , (2.12)

and the components of the body angular velocity as

ωb =

p

q

r

 . (2.13)

In order to get the angular rates, as illustrated in [5], Euler rates must be consid-
ered individually and resolved to intermediate axes, and then finally to the body
axes. Hence an explicit formulation can be obtained and rewritten in compact
form:

ωb = T−1α̇e, (2.14)

2.2 Rotation formalism 11

where

T−1 =

1 0 − sin(θ)
0 cos(φ) cos(θ) sin(φ)
0 sin(φ) cos(θ) cos(φ)

→ T =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)

 .

Note that T does not depend on ψ and it is singular for θ = ±90◦.

2.2.3 Quaternions

For what concerns the Earth and Body references frame adopted in this study, it
is clear that φ is the roll angle, θ is the pitch angle and ψ is the yaw angle. The
three Euler equations have singularities at θ = ±90◦ (gimbal lock). Furthermore
Euler angles can be integrated up to values outside the normal ±90◦ range of
pitch, ±180◦ range of roll and yaw angles. It is clear that this causes a problem in
the unique identification of aircraft attitude but it is observable that equations are
linear in (p, q, r) but non-linear in terms of Euler angles. A clever solution is the
use of quaternions. In [5], a full and complete description of quaternions properties
is presented, and how to suitably use them in all mathematical processes involving
a representation of rotating vectors in many different system of coordinates.

In the following, the relationship between quaternion

q =

q0

q1

q2

q3

 , (2.15)

and Euler angles is depicted:

q0 = ± (cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2)) ,
q1 = ± (sin(φ/2) cos(θ/2) cos(ψ/2)− cos(φ/2) sin(θ/2) sin(ψ/2)) ,
q2 = ± (cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2)) ,
q3 = ± (cos(φ/2) cos(θ/2) sin(ψ/2)− sin(φ/2) sin(θ/2) cos(ψ/2)) .

(2.16)

12 Modelling and simulation of multirotor UAVs

The rates of change of the quaternion parameters in terms of the three-body-axis
rotational rates (p, q, r) are given by:

q̇ = −1
2

0 p q r

−p 0 −r q

−q r 0 −p
−r −q p 0

q0

q1

q2

q3

 . (2.17)

(2.18)

2.3 Flight dynamics

2.3.1 Kinematics

Let V and a represent the linear velocity and acceleration of the CG of the aircraft
respectively. Let the rotational speed of the aircraft indicated as ω. The dynamic
equilibrium of the aircraft can be expressed by two vectorial equations:

F (a) + F (v) + F (i) = 0,
M (a) +M (v) +M (i) = 0,

where the applied reaction and inertial forces sum up to zero.
Obviously, for an aircraft in flight, reaction forces are null, and we can include

in the applied forces both aerodynamic forces and gravitational ones. Inertial
forces in an inertial frame can be defined as:

F (i) = −dQ
dt
,

M (i) = −dK
dt
− vP ×Q,

(2.19)

where
Q = mV

is the momentum and
K = Jnω

is the angular momentum. m and Jn respectively refer to mass and inertia tensor
and vP is the linear speed of point P, used as a reference point to compute all

2.3 Flight dynamics 13

moments.
In case P ≡ CG then vP ×Q = 0, hence equations (2.19) reduce to:

F (a) = dQ

dt
,

M (a) = dK

dt
.

(2.20)

In order to be able to write the equations of motion considering and including each
term is convenient to express the dynamics with respect to a suitable reference
frame, where quantities are easily readable or known. The following expressions
can be adopted:

V = vb = u e1B + v e2B + w e3B, (2.21)
Q = m(u e1B + v e2B + w e3B), (2.22)
ω = ωb = p e1B + q e2B + r e3B, (2.23)
K = Kx e1B +Ky e2B +Kz e3B. (2.24)

By using Poisson’s formulas, it is possible to express equilibrium equations also in
a non-inertial reference system, see [5]. In this way it is possible to write equations
of motion in body frame:

F (a) = dQ

dt
= Q̇+ ωb ×Q, (2.25)

M (a) = dK

dt
= K̇ + ωb ×K. (2.26)

2.3.2 Equations of motion - linear motion

Expanding 2.25 using 2.22 and 2.23 quantities, it is possible to obtain the dynamic
equations of motion for the linear motion of the aircraft, expressed in its moving
body reference frame. Assumption of constant mass for a moving aircraft is made:

Fx = m (u̇+ qw − rv) ,
Fy = m (v̇ + ru− pw) , (2.27)
Fz = m (ẇ + pv − qu) ,

14 Modelling and simulation of multirotor UAVs

where Fx,Fy and Fz are the non-inertial active forces applied to the aircraft body
axes, defined by e1B , e2B and e3B , respectively. In vectorial notation:

mv̇b + ωb ×mvb = Fext =

Fx

Fy

Fz

 . (2.28)

2.3.3 Equations of motion - angular motion

The same procedure shown previously applies also for (2.26) but some prior def-
initions have to be fixed. Keep in mind that angular momentum is function of
inertia tensor of the aircraft and angular rates. The definition of inertia tensor J
can be introduced

Jn =

Jxx −Jxy −Jxz
−Jxy Jyy −Jyz
−Jxz −Jyz Jzz

 , (2.29)

where the terms are defined as follows:

Jxx =
∫
m

(
y2 + z2

)
dm, Jyy =

∫
m

(
x2 + z2

)
dm, Jzz =

∫
m

(
x2 + y2

)
dm,

Jxy =
∫
m

(xy) dm, Jxz =
∫
m

(xz) dm, Jyz =
∫
m

(yz) dm.

For our purposes, usually small scale UAVs show a symmetry both geometrical
and in the mass distribution with respect to the same plane. If the body frame is
coincident with the symmetry axes of the aircraft body, it follows that (2.29) will
be diagonal because

Jxy = Jxz = Jyz = 0.

Expanding (2.26) using 2.23 and 2.24, the explicit dynamic equations for angular
motion are obtained:

L = Jxxṗ+ qr (Jzz − Jyy) , (2.30)
M = Jyy q̇ + pr (Jxx − Jzz) , (2.31)
N = Jzz ṙ + pq (Jyy − Jxx) , (2.32)

2.3 Flight dynamics 15

where L,M andN are the non-inertial moments applied on the body-axes, defined
by e1B , e2B and e3B , respectively. In vectorial notation:

Jnω̇b + ωb × Jnωb = Mext =

L

M

N

 . (2.33)

2.3.4 Overall states of a rigid aircraft

Nowadays, it is common sense to collect the dynamic variable of interest and
their time derivatives too, in a vector called state vector, but not including the
highest derivative. This is the so-called state-space formulation. The ordering of
the states in the state vector is not important from a mathematical standpoint,
although certain computational economies are realized if three-element sub-vectors
remained grouped as just defined. Once the order of the states in the state vector
has been selected, it must be preserved.

x =

re

vb

ωb

αe

 =
[
N E D u v w p q r φ θ ψ

]T
(2.34)

Therefore, the derivative of the state vector is defined:

ẋ =
[
Ṅ Ė Ḋ u̇ v̇ ẇ ṗ q̇ ṙ φ̇ θ̇ ψ̇

]T

=

TEB (φ, θ, ψ) vb

−ωb × vb + Fext/m

J−1
n (−ωb × Jnωb +Mext)

T (φ, θ)ωb

 .
(2.35)

2.3.5 Control forces and moments

After the introduction of rigid body flight dynamics, the configuration of the
UAV must be taken into account, to state which forces and moments are applied
on the aircraft and be able to describe them in body axes. In Figure 2.1 the
chosen configuration (X-configuration), the label of each propeller, and its rotation

16 Modelling and simulation of multirotor UAVs

Figure 2.1: Quadcopter configuration.

direction are shown. The basic principles of rotor aerodynamics (see [6]) state
that a rotor produces a thrust and a torque depending on many aerodynamic
quantities. Rotor aerodynamics is very complex due to the unsteadiness of the
motion of rotor blades and of the turbulent flow field it generates. For small scale
UAVs thrust and power originated from each propeller is modeled in a very simple
way, neglecting all aerodynamic effects that can influence rotor blades behaviour
during a flight. It is straightforward that the principles of helicopter motion are
very different from multirotor ones, as a helicopter rotor has a mechanical chain
to vary collective and cyclic pitch, which in turn commands rotor’s blades motion,
producing the desired thrust. The basic principle of motion for a small scale UAV
is based just on control forces and moments that arise by simply varying each
rotor-motor angular speed. Recall the classical definitions for rotor thrust T and
power W expressed in [6]:

T = CTρAv
2
tip, (2.36)

W = CWρAv
3
tip, (2.37)

where Ω is the angular speed of the rotor, R is rotor radius, A = πR2 is the rotor
disk area and in turn vtip = ΩR is the local velocity at the blade tip when the rotor
is in hovering condition, CT and CW are thrust and power coefficient respectively.

2.3 Flight dynamics 17

In this way it is possible to define also the torque Q (and torque coefficient CQ)
acting on a single rotor through the relationship between rotor torque and power
W

W = QΩ→ Q = CWρAR
3Ω2 = CQρAR

3Ω2, (2.38)

so in this way

CQ = CW . (2.39)

These definitions are often used to define a simple static relationship between each
propeller angular speed ωi and the corresponding generated thrust and torque
when modeling the flight dynamics of a small scale quadrotor.

Ti = KTω
2
i = CTρAR

2ω2
i , (2.40)

Qi = KQω
2
i = CQρAR

3ω2
i . (2.41)

Denoting with b the distance between the center of gravity and the i-th propeller
it is possible to write the equations of the forces and the moments produced
by the four propellers taking into account the symmetric X -configuration of the
quadrotor.

Fprops =

0
0

KT

4∑
i=1

ω2
i

 , (2.42)

Mprops =

KT

b√
2 (ω2

1 − ω2
2 − ω2

3 + ω2
4)

KT
b√
2 (ω2

1 + ω2
2 − ω2

3 − ω2
4)

KQ (−ω2
1 + ω2

2 − ω2
3 + ω2

4)

 . (2.43)

These forces and moments acting to the quadrotor can be rearranged to realize
the mixer matrix of the motors (χ). χ is a matrix that relates the required thrust
and moments around each axis to the rotational speed of the propellers (that are

18 Modelling and simulation of multirotor UAVs

the actual control input of the quadrotor).

T

L

M

N

 =

KT KT KT KT

KT
b√
2 −KT

b√
2 −KT

b√
2 KT

b√
2

KT
b√
2 KT

b√
2 −KT

b√
2 −KT

b√
2

−KQ KQ −KQ KQ

ω2

1

ω2
2

ω2
3

ω2
4

 = χ

ω2

1

ω2
2

ω2
3

ω2
4

 . (2.44)

It follows that the required rotor-motor angular speeds come from
ω2

1

ω2
2

ω2
3

ω2
4

 = χ−1

T

L

M

N

 . (2.45)

Moreover, besides the control actions generated by the quadrotor, another external
force is represented by gravity. Gravity force is directed downward along the Z
direction of Earth frame, so it must be projected among moving body axes, i.e.:

Fg = TBE (φ, θ, ψ)

0
0
mg

 (2.46)

Other forces to be considered are the aerodynamic ones related to the air resis-
tance, the so-called drag. This force originates from many other aerodynamic
phenomena which take place in a rotor during flight and depends on several quan-
tities which will be analyzed in the next section.

2.4 Rotor aerodynamics

As mentioned before, quadrotor dynamics is obviously influenced by aerodynam-
ics, in particular by unsteady rotor aerodynamics. Nowadays, little literature is
available regarding multirotor aerodynamic interaction. In fact, a quadrotor he-
licopter must face not only classical rotor aerodynamics, but also the continuous
interaction between the four rotor wakes. What happens in a quadrotor wake is
obviously a black box, and since it is out of the object of this thesis it will not be

2.4 Rotor aerodynamics 19

analyzed or modeled.
For what concerns rotor behavior during flight, it is possible to extend the

dynamic model previously introduced in Chapter 2.3, considering the variation of
thrust and drag forces on each rotor, which depends on the local velocity. To be
precise, the climb velocity influences the thrust while the in-plane velocity has a
role in the drag loads.

As is well known in the helicopter literature, thrust depends on many factors.
The overall rotor thrust depends on lift distribution over the rotor. During heli-
copter flight, many phenomena occur: flapping, lagging and pitch motion of each
blade continuously arise to guarantee rotor equilibrium conditions; this makes
rotor aerodynamics unsteady.

Depending on the flight condition, rotor performances can be analyzed. In fact
the helicopter must tilt the thrust in a forward flight thanks to blade flapping.
The rotor disk plane is tilted forward, hence the helicopter velocity projected on
FR has three components. Consequently, the results obtained for a forward flight
condition summarize all the other cases, such as hovering and vertical flight.

The next subsection contains the basic definitions needed, while the ones after
present a brief summary about the well-known aerodynamic theories applied in
helicopter field.

2.4.1 Rotor blades motion

When investigating the angle of attack of a blade, one has always to refer to the
local angle of attack. The lift produced by one blade is distributed along the
span-wise direction. So, each blade section produces a lift force according to its
corresponding angle of attack and relative velocity.

Figure 2.2 summarizes the various reference planes used for the analysis of
helicopter rotor in forward flight. These planes are:

• Hub Plane (HP): it is a plane perpendicular to the rotor shaft in which an
observer would see both flapping and feathering during forward flight. It is
the most complicated for analysis of the rotor, but it is linked to a physical
part of the helicopter. The HP is often used for blade dynamic and flight
dynamic analyses.

• No Feathering Plane (NFP): it is a plane where an observer sees no variation

20 Modelling and simulation of multirotor UAVs

Figure 2.2: Rotor reference planes:tip-path plane (TPP), no-feathering plane
(NFP), hub plane (HP), and control plane (CP) (picture from [1]).

in cyclic pitch: however, the observer will still see a cyclic variation in blade
flapping angle. Normally, NFP is used for performance analysis.

• Tip Path Plane (TPP): it is the plane whose boundary is described by the
blade tip positions. Therefore, an observer will see no variation in flapping.
The TPP is commonly used for aerodynamic analyses, such as rotor inflow
or other wake models.

• Control Plane (CP): it is the plane that represents the commanded cyclic
pitch plane and is sometimes known as the swashplate plane.

In vertical flight, the natural reference plane is the horizontal one. Adding ax-
ial symmetry, the tip-path plane and no-feathering plane are horizontal. The
hub plane is not necessarily horizontal in vertical flight unless the helicopter CG
is on the rotor shaft axis. On the other hand, in forward flight the above de-
scribed reference planes have physical meaning, and due to the asymmetry of the
aerodynamics in that condition, these planes do not in general coincide with the
horizontal plane or with each other. This clarification is made in order to state
that all the following considerations can be done considering any of these reference
planes.

As mentioned in [1], the blade section pitch θ is measured from the reference
plane to the zero-lift line; θ includes the collective and cyclic pitch controls and

2.4 Rotor aerodynamics 21

Figure 2.3: Aerodynamics of the rotor blade section (picture from [1]).

the built-in twist of the blade. As shown in Figure 2.3, the components of the
airspeed relative to the blade are the in-plane velocity uT (tangential to the disk
plane, positive toward the trailing edge), uP (perpendicular to the disk plane,
positive downward), and uR (radial, positive outward). The resultant velocity U
and inflow angle φ of the section are:

U =
√
u2
T + u2

P + u2
R, (2.47)

φ = arctan
(
uP
uT

)
. (2.48)

Then, the section angle-of-attack is:

α = θ − φ. (2.49)

In Figure 2.3 are also depicted the aerodynamic forces on the blade section. The
aerodynamic lift and drag (L and D) are, respectively, normal to and parallel to
the resultant velocity U . The components of the section lift and drag resolved
in the reference plane are Fz and Fx (normal and in-plane, respectively). In
the non-rotating axis system of the adopted reference plane (Figure 2.4), x and

22 Modelling and simulation of multirotor UAVs

Figure 2.4: Air velocity relative to the blade in forward flight [1].

y lie in the reference plane and z is normal to it. The flap and pitch angles are
measured with respect to the reference plane. The forward velocity has magnitude
V and lies in the x-z plane at an incidence angle i (positive for forward tilt of
the disk, see Figure 2.5). The rotor induced velocity u is assumed to be normal
to the reference plane. The advance ratio µ and the total inflow ratio λ are the
dimensionless velocity components parallel to and normal to the reference plane,
respectively:

µ = V cos(i)
ΩR , (2.50)

λ = V sin(i) + u

ΩR = µ tan(i) + λi = λc + λi, (2.51)

where λi is the well-known induced inflow ratio and λc is called climb inflow ratio.

The velocity seen by the blade section is due to the rotor rotation, the heli-
copter forward speed, induced velocity and the blade flap motion. To lowest order
the local tangential and radial components uT and uR are due solely to the rotor

2.4 Rotor aerodynamics 23

rotation (azimuthal position of the blade, ψ) and advance ratio. Hence:

uT (r, ψ) = Ωr + µΩR sin(ψ), (2.52)
uR (ψ) = µΩR cos(ψ), (2.53)

where r is the local radial station of the blade section.
The normal velocity uP has three terms:

1. u, which is the induced velocity of the rotor, plus the component of the free
stream velocity normal to the rotor disk (equation (2.51));

2. rdβ
dt
, which is the angular velocity of the blade about the flap hinge;

3. ΩRβµ cos(ψ), which is a component of the radial velocity uR normal to the
blade when the blade is flapped up by the angle β (see Figure 2.4).

Thus, the normal velocity is

uP (r, ψ) = λΩR + β̇r + ΩRβµ cos(ψ). (2.54)

In deriving the expressions of the velocity components, the flap angle β was as-
sumed to be small, giving sin(β) ≈ β and cos(β) ≈ 1. Another consequence of
small angles assumption is that α = θ − uP

uT
and it is easily shown to be invariant

during a reference plane transformation.
If there is any sideways velocity, it must be taken into account. Total velocity

V will have an advance ratio µ in wind axis coordinates, and it can be decomposed
in rotor coordinates into µ1 and µ2: the dimensionless forward and sideward flight
velocities respectively (see [7]).

It is clear that in case of hovering or climb, neither advancing ratio nor flapping
motion are present, so blade section tangential velocity uT is just due to rotational
speed and uP depends only on λ. In those cases µ includes the rate of climb too,
as TPP is horizontal and perpendicular to rotor relative velocity, i.e.:

λ = u+ vc
ΩR = λi + λc. (2.55)

24 Modelling and simulation of multirotor UAVs

Figure 2.5: Flow model for momentum theory analysis of rotor in forward flight
(picture from [1]).

2.4.2 Momentum theory

After introducing rotor blades velocity components, it is possible to look at rotor
disk performance from a global point of view, considering the rotor disk as a unique
rotating entity. This is the basic assumption of momentum theory which defines
rotor thrust thanks to the actuator disk theory. Obviously, the theory has different
results according to the flight condition, but the expression for thrust is roughly
unique and dependent just on few quantities. For the sake of completeness, see
[1] to understand the theoretical assumptions and the validity of this theory when
applied to forward flight condition.

An appropriate solution for the induced velocity of the helicopter rotor in
forward flight is:

u = T

2ρAU , (2.56)

where A is the rotor disk area. The thrust in forward flight can be also written
as:

T = ṁ2u (2.57)

where ṁ = ρAU is the mass flux through the rotor disk area. In hover and vertical

2.4 Rotor aerodynamics 25

flight

ṁ = ρA (V + u) , (2.58)

where V is the rotor velocity. Obviously V is null in hovering condition while it
is the climb or descent velocity in a vertical flight.
The induced velocity at the disk is u. In the far wake, the velocity w = 2u and is
assumed to be parallel to the rotor thrust vector. Thus a uniformly valid expres-
sion for induced velocity can be obtained by considering the mass flux through the
area A for all operating conditions. This observation was first made by Glauert
(1926).
Momentum conservation gives the rotor thrust shown in equation (2.57), hence
the resultant velocity U passing through the rotor disk is given by:

U2 = (V cos(i))2 + (V sin(i) + u)2 = V 2 + 2V u sin(i) + u2. (2.59)

Eventually the rotor thrust can be explicitly written as

T = 2ρAu
√
V 2 + 2V u sin(i) + u2. (2.60)

From equation (2.60), the expressions of thrust in hover (V = 0, u = uh) and in
vertical flight (V = vc, i = π

2) can derived:

• in hover, Th = 2ρAu2
h,

• in vertical flight, T = 2ρA (vc + u)u.

As described in [1], the assumption that thrust in forward flight (or vertical flight)
is the same as in hovering is usually made, i.e.:

T ∼= Th → u2
h = Uu. (2.61)

Therefore, induced velocity can be always related to the hovering induced velocity:

u = u2
h√

(V cos(i))2 + (V sin(i) + u)2
. (2.62)

26 Modelling and simulation of multirotor UAVs

Expressing hovering induced velocity as a function of CT , it results:

u2
h = T

2ρA = CTρA (ΩR)2

2ρA = CT (ΩR)2

2 . (2.63)

Now, recalling the advancing and inflow ratios definition in equations (2.50) and
(2.51), an analytic implicit equation for induced velocity is obtained:

λi = CT
2
√
µ2 + λ2 . (2.64)

The latter is known as the Glauert inflow formula. It can be directly solved only
knowing µ and λc, otherwise an iterative method must be used.

From equation (2.64) an important relationship is obtained between thrust
and induced inflow in hovering, i.e.

λh =
√
CT
2 . (2.65)

Rearranging equation (2.62) for rotor in vertical flight (climb or descent) it is
possible to derive a relationship between the rate of climb and the induced velocity
u, for a given hovering induced velocity uh. The sign convention (important
when the descent case is considered) is that the thrust is positive upward and the
velocities are positive downward. Suppose that the rotor is climbing at velocity
V :

u

uh

(
V + u

uh

)
= 1. (2.66)

Introducing dimensionless velocities u∗ = u
uh
, V ∗ = V

uh
, equation (2.66) has a

closed form solution:

u∗ = −V
∗

2 +

√
V ∗2 + 4

2 (2.67)

where the positive sign on the second term is taken since u∗ must be positive.
The solution is physically justified for a climb. The climb model cannot be used
with V < 0, because in descent the free stream velocity is directed upward and
therefore the far downstream wake is above the rotor disk. V is negative now,
whereas T , u, and w are still positive.

2.4 Rotor aerodynamics 27

The momentum theory result for the induced velocity in descent is

T = −2ρA(V + u)u

or

u

uh

(
V + u

uh

)
= −1, (2.68)

whose solution is:

u∗ = −V
∗

2 −

√
V ∗2 − 4

2 . (2.69)

This flow condition, where V + u < 0 and V + w < 0 is called the windmill
brake state. The other solution of the quadratic equation for u gives u > 0 and
V + u < 0 as required, but V + w > 0. Thus, the flow in the far wake would be
downward, in contradiction with the assumed flow model. In Figure 2.6, one can
see the validity region of momentum theory solutions. The dashed portions of the
curves are branches of the solution that do not correspond to the assumed flow
state. The line V + w = 0 is where the flow through the rotor disk changes sign.
The lines

V = 0, (2.70)
V + u = 0, (2.71)
V + 2u = 0 (2.72)

divide the plane into four regions, namely the rotor operating conditions:

• the normal working state (climb and hover),

• vortex ring state (VRS),

• turbulent wake state (TWS),

• windmill brake state.

Thus, in the VRS and TWS the flow outside the slipstream is upward while the
flow inside the far wake is nominally downward. Such a flow state is not possible,
so there is no valid momentum theory solution for moderate rates of descent,

28 Modelling and simulation of multirotor UAVs

Figure 2.6: Momentum theory results for the induced velocity in vertical flight
(picture from [1]).

between V = 0 and V = −2uh. However, if the descent is combined with a
forward flight motion, with sufficiently high forward speed,

µ > λh,

no VRS exists, since the wake is swept back.

Since the induced velocity curve is not analytically predictable in this range,
experimental estimates can be used to find a best-fit approximation. There are
several possibilities in the literature, one could be:

u∗ = κ+ κ1V
∗ + κ2V

∗2 + κ3V
∗3 + κ4V

∗4, (2.73)

where κ1, κ2, κ3, κ4 are experimentally determined polynomial coefficients, and κ
is the induced power correction factor, derived from experimental rotor measures
(ideally 1, typical range 1.05÷1.15). Many other models can be found in literature,
see [6] and [1] for completeness.

2.4 Rotor aerodynamics 29

2.4.3 Blade element theory - BET

In [6], a fully developed description of BET for both hover and forward flight is
presented. This theory provides a thrust expression from a differential point of
view, analysing the thrust of an infinitesimal portion of each single blade. As
illustrated above in Section 2.4.1, the incremental lift force of a blade section
depends on its relative velocity and local angle of attack. Recalling equation
(2.48), several reasonable assumptions regarding velocity and angle of attack can
be made:

• U ≈ uT ,

• φ ≈ uP
uT

,

because uP is generally small with respect to uT and so, inflow angle is considered
small.

The resulting incremental lift dL per unit span on the blade element is:

dL = 1
2ρU

2cCLdr = 1
2ρu

2
T cCLα (θ − φ) dr

= 1
2ρu

2
T cCLα

(
θ − uP

uT

)
dr (2.74)

= 1
2ρcCLα

(
θu2

T − uPuT
)
dr

and the incremental drag is:

dD = 1
2ρu

2
T cCDdr, (2.75)

where c is the local blade chord, CL and CD are the lift and drag coefficients
respectively. These forces can be resolved in the rotor disk plane coordinates, see
Figure 2.3:

dFz = dL cos(φ)− dD sin(φ) ≈ dL, (2.76)
dFx = dL sin(φ) + dD cos(φ) ≈ φdL+ dD, (2.77)

because drag is one order of magnitude less than lift usually. In forward flight,
blade element velocities are described by equations (2.52), (2.53), and (2.54). In
BET the aerodynamic effects resulting from uR are neglected. Therefore, the

30 Modelling and simulation of multirotor UAVs

contributions to the thrust and torque are

dT =NbdFz = NbdL, (2.78)
dQ =NbdFxr = Nb (φdL+ dD) , (2.79)

where Nb is the number of blades comprising the rotor. For simplicity, the chord
c and the pitch angle θ are considered constant along the blade (see [8]), and
flapping angle motion is described in the following way:

β = a0 − a1 cos (ψ)− b1 sin (ψ) , (2.80)

β̇ = dβ

dt
= dβ

dψ

dψ

dt
= β

′Ω, (2.81)

where a0 is the coning angle and a1, b1 are the longitudinal and lateral flap angles
respectively. Accordingly, the elementary thrust is:

dT = 1
2NbρcCLα

(
θu2

T − uPuT
)
dr

= 1
2NbρcCLαΩ2R3[θ (y + µ sin (ψ))2 (2.82)

−
(
λ+ yβ

′ + µβ cos (ψ)
)
× (y + µ sin (ψ))]dy,

where y = r
R
is the dimensionless radial position of the blade element. Then, the

resulting thrust can be calculated in two steps:

1. averaging the incremental thrust dT over the azimuth range ψ = 0÷ 2π;

2. integrating the incremental thrust along the blade span-wise direction (y =
0÷ 1).

The result is:

T = 1
4NbcRρΩ2R2

(2
3θ
(
1 + 3µ2/2

)
− λ

)
. (2.83)

Therefore, in forward flight the thrust coefficient is:

CT = 1
4σCLα

(
2
3θ
(

1 + 3µ2

2

)
− λ

)
, (2.84)

2.4 Rotor aerodynamics 31

where

σ = NbcR

πR2 (2.85)

is the rotor solidity ratio (blades area over rotor disk area).

A useful result is provided by BET for hovering and axial flight, when the
blade twist is the ideal one, i.e., θ = θTIP

y
. In this case, it is:

uT = Ωr, (2.86)
uP = vc + u = λΩR. (2.87)

Recalling equations (2.74) and (2.82), it is possible to derive the elementary thrust
coefficient, and to proceed further with dimensionless quantities. Because µ = 0
and β = β̇ = 0, the incremental CT is:

dCT = 1
2σCLy

2dy. (2.88)

Assuming again ideal twist and recalling equation (2.49), it becomes:

CT = 1
2σCLα

1∫
0

(
θ − λΩR

Ωr

)
y2 dy (2.89)

= 1
2σCLα

1∫
0

(
θTIP
y
− λ

y

)
y2 dy (2.90)

= 1
4σCLα (θTIP − λ). (2.91)

The reader can notice the likelihood between equation (2.84) and equation (2.91).
In equation (2.83) a constant pitch angle θ along spanwise direction was assumed,
per each blade. In reality, all blades are twisted. From a mathematical point
of view, equation (2.82), with an ideal twist, gives a nonphysical solution due to
the divergence of thrust at the blade root. On the other hand, equation (2.84)
can be simplified as the quadratic term is negligible with respect to the advance
ratio µ almost all the time, especially for quadrotors. In this manner, the first
term of the AoA dependent on θ can just be formalized as a parameter when used
in a dynamic model, provided that both equations (2.84) and (2.91) respect the
relationship in hovering condition, always true, stated in equation (2.65).

32 Modelling and simulation of multirotor UAVs

2.4.4 Blade element momentum theory

After a careful study on the interdependence between thrust coefficient and veloc-
ity upcoming to the rotor, one can equalize momentum theory and BET solutions,
obtaining suitable equations in terms of λ radial distribution. Let’s see the case
of hovering and axial flight.

The incremental thrust coefficient dCT for momentum theory is:

dCT = dT

ρ (πR2) (ΩR)2

= 2ρ (vc + u)udA
ρ (πR2) (ΩR)2

= 4
(
vc + u

ΩR

)(
u

ΩR

)(
r

R

)
d
(
r

R

)
= 4λλiydy. (2.92)

Equalizing equations (2.92) and (2.88), and expanding lift coefficient as previously
done in equation (2.74), the outcome is:

CL = CLαα = CLα

(
θ − uP

uT

)
; (2.93)

and remembering that in axial flight uP = λΩR and uT = ΩR, it becomes:

CL = CLα (θ − λ) . (2.94)

Hence, an analytic equation for the distribution of λ over the blade is obtained:

λ2 +
(
σCLα

8 − λc
)
λ−

(
σCLα

8 θy
)

= 0, (2.95)

which has a closed form solution. Equation (2.95) has a unique and physically
admissible solution for λ (and so λi), if λc and the local pitch angle θ are known.
In case of ideal twist, inflow is no more dependent on rotor coordinates and it is
constant all over the blade. Just vertical velocity and blade tip twist angle are
the forcing terms in the resulting equation.

2.4 Rotor aerodynamics 33

2.4.5 Dynamic inflow model (Pitt and Peters)

The previous results were derived on the basis of the key assumption that just
axial flight condition is considered, where the inflow distribution is axisymmetric.
In reality, as described in [6], when a rotor moves forward an estimate of inflow
distribution should be taken into account, besides blade pitch and rotor flapping
motions, in order to estimate rotor performance. Many inflow models have been
developed in the literature, aimed to better describe rotor loads in forward flight.
The most famous model present in the literature, exploiting also the dynamics of
inflow, is surely the one by Pitt and Peters. In [7], an article published later than
the first publication about this topic, the authors study the dynamics of rotor
inflow due to all velocity components approaching to rotor blades.

According to [7], the inflow distribution over the rotor is dependent on azimuth
and radial coordinates. In wind-axis coordinates the inflow variation over the rotor
is due to:

1. v0, the uniform variation;

2. vs, the lateral variation;

3. vc, the longitudinal variation.

Consequently, the inflow can be expressed as:

λ (r, ψ) = v0 + vs
r

R
sin (ψ) + vc

r

R
cos (ψ) . (2.96)

The dynamic of v0, vs and vc is governed by the following first-order differential
equations:

M

v̇0

v̇s

v̇c

+ L−1
nl

v0

vs

vc

 =

CT

−CL
−CM

aero

, (2.97)

where M is the apparent mass matrix, Lnl is the non-linear version of the inflow
gains matrix (completely non linear in CT and v0, but linear in CL and CM), CT is
the instantaneous thrust coefficient, and CL and CM are roll and pitching moment
coefficients respectively, in the wind-axis coordinates. Through a transformation

34 Modelling and simulation of multirotor UAVs

matrix T , dependent on the angles between wind-axes and natural rotor coordi-
nates, such as those described in equation (2.2), it is possible to switch to rotor
disk plane:

λ0

λs

λc

 = T T

v0

vs

vc

 . (2.98)

Now, the dynamic inflow equation has the same form, but it involves the inflow
variations in the reference plane already mentioned in previous theories:

M

λ̇0

λ̇s

λ̇c

+ L̂−1

λ0

λs

λc

 =

CT

C1

−C2

aero

. (2.99)

The parameters C1 and C2 represent the lateral roll and longitudinal pitching
moment coefficients. See [7] to recover all the terms belonging to the resulting
non-linear inflow gains matrix in the rotor disk plane L̂. At the end, the normal
induced inflow due to the effect of rotor thrust is:

λi = 1
2

1
0
0

T

L −1

λ̇0

λ̇s

λ̇c

 (2.100)

with L −1 = T TL−1
nl T . As explained in [7], all these equations are expressed in a

normalized time with respect to the rotor speed Ω, i.e.:

λ̇0 = dλ0

dt∗
= dλ0

dtΩ = 1
Ω
dλ0

dt
. (2.101)

2.5 Aerodynamic modeling of a quadrotor

The flight regime of small-sized UAVs is not always the hovering condition, of
course. The accepted nonlinear dynamic quadrotor model is based on a thrust
and torque model with constant thrust and torque coefficients derived from static
thrust tests. Such a model is no longer valid when the vehicle undertakes dy-
namic maneuvers that involve significant displacement velocities. In these cases,

2.5 Aerodynamic modeling of a quadrotor 35

besides the continuous changes in the propellers angular speed, each rotor thrust
is affected by the unsteady aerodynamic field surrounding the rotor itself. Thus,
thrust aerodynamic variations must be taken into account during the flight.

At this point, a suitable aerodynamic model must be implemented, aiming to
represent as close as possible the real rotor aerodynamic forces during flight. To
include the dependency of thrust on the aerodynamic environment, the quadrotor
physical model must comprise all the parts where aerodynamic forces develop, such
as the main central body and the four arms, up to the four rotors. A multi-body
approach allows to define the components of a system, and their constraints, more
easily. A multi-body system can be defined as a system consisting of a number of
interconnected mechanical components, moving in three-dimensional space. This
includes rigid and flexible bodies, as well as free or actuated joints. Specifically, the
Modelica MultiBody library has been used in this work. From the aerodynamic
modeling point of view, each rotor can be considered as a stand-alone entity, as
its aerodynamic performance depends only on its own aerodynamic environment.
The theories presented in Section 2.4 depend on many quantities, such as velocity
V and rotor incidence i, expressed in the rotor disk reference frame FR. Thanks
to the multi-body approach, it is easy to define the aerodynamic environment
surrounding each rotor of the quadcopter. Furthermore, it must be remembered
that the model developed in this thesis does not take into account rotor wake
interactions between the four propellers.

2.5.1 The multi-body model

Modelica is a language for hierarchical, equation-based, object-oriented modelling
of physical systems, developed by the Modelica Association [9]. The main features
of the language which are relevant within the scope of this work are summarized
here. Modelica is an object-oriented language, supporting encapsulation, compo-
sition and inheritance. These features facilitate model development and update.
Elementary models of physical elements are defined in a declarative way by their
constitutive equations, and their interface with the outer world is described by
physical ports (or connectors) without any implied causality, rather than by writ-
ing assignments relating inputs to outputs. The goal of the library is to simplify
modeling and dynamic analysis of rigid multi-body systems, while at the same
time providing efficient simulations of such systems. Arbitrarily complex multi-

36 Modelling and simulation of multirotor UAVs

body systems can be obtained by dragging and dropping the standard library
components into the workspace, and by further connecting them in a suitable way.
Complex models can then be built by connecting elementary models through their
ports; since the ports are a-causal, any connection which is physically meaningful
is allowed without restrictions. The Modelica language includes graphical anno-
tations, which allow to use graphical user interfaces (such as the one provided by
the tool Dymola [3]) to select components from a library, drag them into a dia-
gram, connect them, and set their parameters, thus making the process of model
development highly intuitive for end users.

External forces and torques acting on each rigid body can be assigned by means
of dedicated library components. As an alternative, it is also possible to assign
their motion, or motion, forces and torques jointly. In this latter case, attention
must be payed to not specify more constraints than the system’s actual degrees
of freedom.

A World model must always be present at the top level of a generic Modelica
MultiBody Library model. Within the World model the inertial reference frame
and the gravity field models are defined, jointly with all parameters relevant to
the components animation. The Modelica MultiBody library provides the oppor-
tunity to specify animation properties for all components. This feature proves an
invaluable visual aid for model checking and debugging purposes.

The quadrotor physical model along with its aerodynamics is developed in
Dymola 2018 [3], without the flight control unit. As illustrated in Figure 2.7,
ω1,ω2,ω3 and ω4 are the inputs of the model. These are the four desired motor-
rotor angular speeds, which are computed thanks to the mixer matrix χ as de-
picted in equation (2.45). The output of the model is the quadrotor state, com-
prising:

• position in inertial frame;

• velocity in inertial frame;

• attitude expressed in quaternions;

• angular_rates (p, q, r).

The ground_contact input represent the reaction force applied to the drone when
it lays on ground.

2.5 Aerodynamic modeling of a quadrotor 37

Figure 2.7: Quadcopter multi-body model overview.

The default working reference frame of the Modelica MultiBody library is different
from any of the listed in Section 2.1:

• x-axis points rightward;

• y-axis points upward, opposed to gravity direction;

• z-axis completes the right-hand rule, pointing rearward.

As a consequence, all the output variables must be transformed from this triad to
FE, through a suitable rotation matrix (e.g., equation (2.1)).

The quadrotor prototype modeled in this section is illustrated in details in
Section 2.7.1. Mass, inertia tensor and physical dimensions of the prototype are
necessary to build up the model, as well as the static thrust coefficient. All these
parameters are reported in Table 2.1 . It is easy to figure out that the entire
model has no elastic properties, rather it is designed as rigid.

The main body of the quadcopter has been modeled with a cylindrical shape,
as well as the four arms. The only difference between those rigid bodies is that
the main central body has an assigned mass and inertia, whereas the four arms

38 Modelling and simulation of multirotor UAVs

Name Description Value Unit of measure
mmb Main body mass 1.31 kg
Jxx Main body Inertia tensor x-component 0.035 kg m2

Jyy Main body Inertia tensor y-component 0.035 kg m2

Jzz Main body Inertia tensor z-component 0.05 kg m2

rmb Main body cylinder radius 0.06 m
hmb Main body cylinder height 0.05 m
mrot Rotor mass 0.05 kg
Jrotxx Rotor Inertia tensor x-component 8.54 10−5 kg m2

Jrotyy Rotor Inertia tensor y-component 8.54 10−5 kg m2

Jrotzz Rotor Inertia tensor z-component 4.58 10−5 kg m2

larm Arm length 0.275 m
darm Arm diameter 0.025 m
KT Static Thrust coefficient 2.4619 10−5 N/(rad/s)2

R Rotor radius 0.1524 m

Table 2.1: Quadrotor mass and geometric properties.

are assumed to have negligible mass properties. In that sense, they stand just for
a rigid link connecting each rotor to the central body of the drone. Proceeding
further, within the arm blocks there are the relevant components of the overall
model.

2.5.2 Thrust and inflow

Many rotor aerodynamic models could have been implemented above those de-
scribed in Section 2.4, but one has now to refer to quadrotor flight regimes, not
to helicopter ones.

In [10], an interesting and detailed work about modeling of quadrotor aerody-
namics is presented. A quadrotor, similar to the one used for this work, has been
modeled including aerodynamics at first, then the latter is used along with the
electrical dynamics of a motor-rotor system in the computation and estimation
of electromechanical or aerodynamic mechanical power and thrust of the UAV.
With the estimated power and thrust, two controllers are proposed for the regu-
lation of aerodynamic mechanical power and thrust. In particular, blade element
momentum theory is adopted to determine λ, while equation (2.91) to compute
CT .

2.5 Aerodynamic modeling of a quadrotor 39

In [11], a dynamic inflow model in perturbation version, linearized around the
hovering condition, has been adopted to study the ground effect on a quadrotor.

A quad-copter varies its thrusts by continuously changing angular speed of ro-
tors, which can be considered rigid, due to the absence of hinges and a pitch
control chain. Moreover, flapping phenomenon is just a vibratory effect and does
not deal with rotor equilibrium in flight. For this reason, the most suitable ap-
proach to model inflow variation is the dynamic inflow model proposed in [7], due
to its explicit dependency on rotor rotational speed Ω, as well as rotor velocity
and incidence.

The equations presented in Section 2.4.5 are built in the fixed rotor reference
frame described in Section 2.1.3.
According to the small dimensions of the quad-copter, many reasonable assump-
tions can be made to simplify the dynamic model. The main idea is to consider
just the uniform variation of inflow due to CT variations, because the smaller is
the rotor the more negligible are the inflow lateral and longitudinal contributions.

Equations (2.99) and (2.100) show how to compute λi, but not how to express the
forcing term, that is CT . The most reasonable approach is to express the thrust
coefficient as the resulting one from BET in forward flight considering a constant
pitch angle, namely twist, for the blade; see equation (2.84). Finally, the dynamic
inflow model ends up to be fully nonlinear.
In the following the mathematical formulation of the dynamic inflow model is
presented in details. Differently from the work proposed in [7], just the uniform
variation of the inflow will be addressed. Before proceeding further many quanti-
ties need to be defined.
Three components of velocity in the rotor coordinates are denoted by µ1, µ2 and
λc. The components µ1 and µ2 which represent the nondimensionalized forward
and sideward rotor velocities, are combined to define a resultant forward velocity
µ in the wind-axis system.

µ =
√
µ2

1 + µ2
2. (2.102)

Thus in the wind-axis system the rotor encounters two velocity components, µ
and λc.

40 Modelling and simulation of multirotor UAVs

Then the total inflow through the rotor is represented by λ = λc + λi. The
resultant flow through the rotor can be defined as

VT =
√
λ2 + µ2, (2.103)

and consequently the angle of attack αd of rotor disk plane with respect to the
oncoming flow V can be defined

αd = tan−1 λc
µ
. (2.104)

The next step is to relate the wind-axis coordinates with respect to rotor ones. If
∆ is the angle between rotor fixed reference frame and wind-axis coordinates, it
is possible to write:

sin (∆) = µ2

µ
, (2.105)

cos (∆) = µ1

µ
. (2.106)

Referring to equation (2.97) equation, the following terms must be introduced:

• the apparent mass matrix

M =

8

3π 0 0
0 16

45π 0
0 0 16

45π

 , (2.107)

• the non linear version of inflow gains matrix

Lnl = LV̂ −1, (2.108)

2.5 Aerodynamic modeling of a quadrotor 41

where

L =

1
2 0 − 15

64π

√
1−sin(α)
1+sin(α)

0 4
1+sin(α) 0

15
64π

√
1−sin(α)
1+sin(α) 0 4 sin(α)

1+sin(α)

 ,

V̂ =

VT 0 0
0 V 0
0 0 V

(2.109)

and

V = µ2 + (2λi + λc) (λi + λc)
VT

. (2.110)

The mass-flow parameter matrix V̂ denotes a weighted downstream velocity. VT
is the total resultant flow through the disk and V is the mass-flow parameter due
to cyclic disturbances. The angle α is different from the above cited αd, as this
latter is the rotor angle of attack whereas the first represents the wake angle with
respect to rotor disk. α is always positive, whether the flow comes from above or
below.

α = tan−1 |λ|
µ
. (2.111)

If the matrix T is used to denote the transformation from the rotor disk plane to
wind-axis, then the inflow states and the force vector can be expressed as

CT

−CL
−CM

 = T

CT

C1

C2

 ,

v0

vs

vc

 = T

λ0

λs

λc

 ,
(2.112)

42 Modelling and simulation of multirotor UAVs

where

T =

1 0 0
0 cos (∆) sin (∆)
0 − sin (∆) cos (∆)

 . (2.113)

Passing to fixed rotor coordinate system equation (2.99) is obtained. The non
linear inflow gains matrix in rotor coordinates is

L̂−1 = V̂ T T L−1 T

= V̂L −1
(2.114)

where

L =

1
2 −B sin (∆) −B cos (∆)

B sin (∆) E cos2 (∆) +D sin2 (∆) (D − E) sin (∆) cos (∆)
B cos (∆) (D − E) cos (∆) sin (∆) E sin2 (∆) + E cos2 (∆)

 , (2.115)

and

E = 4
1 + sin (α) , (E −D) = 41− sin (α)

1 + sin (α) ,

D = 4 sin (α)
1 + sin (α) , B = 15π

64

√√√√1− sin (α)
1 + sin (α) .

C1 and C2 represent the lateral roll and longitudinal pitching coefficients respec-
tively. Focusing on the uniform variation of the inflow, the following fully nonlin-
ear differential equation is obtained:

M(1,1)λ̇0 + L̂−1
(1,1)λ0 = CT . (2.116)

Remembering equation (2.101), the latter dynamic model can be converted to:

8
3π

λ̇0

ω
+ VT

(2D
2B2 +D

)
λ0 = CT . (2.117)

where now

λ̇0 = dλ

dt
.

2.5 Aerodynamic modeling of a quadrotor 43

If one expands thrust coefficient CT according to BET (eq. (2.84)) a fully nonlinear
dynamic model for the uniform inflow variation is obtained, i.e.:

8
3π

λ̇0

ω
+ VT

(2D
2B2 +D

)
λ0 = σCLα

4

(
2
3θ
(

1 + 3µ2

2

)
− λ

)
. (2.118)

The next step is to relate the uniform variation of the inflow with the induced
inflow of the rotor:

λi = 1
2VT

(2D
2B2 +D

)
λ0. (2.119)

2.5.3 Torque and drag forces

For what concerns the aerodynamic model of torque and drag forces, two models
are proposed.

2.5.3.1 BET model

The first model makes advantage of the application of BET in forward flight. In
[8], a detailed result is presented for dimensionless coefficients of rotor torque and
H-force in forward flight.
According to BET, the blade element H-force acting on a helicopter rotor is aligned
with the velocity projected on the rotor-disk plane, pointing rearward. The torque
arises from rotor in-plane forces originating on each blade element. Hence they
are:

dH =dFx sin (ψ) = (dD cos (φ) + dL sin (φ)) sin (ψ) , (2.120)
dQ =rdFx = r (dD cos (φ) + dL sin (φ)) . (2.121)

Expanding the latter equations, as previously done for thrust in equation (2.82),
the following expressions can be derived. See [8] for clarifications.

H = 1
2ρNbcRΩ2R2CLα

(
µCD
2CLα

+ 1
2µλθ0

)
, (2.122)

Q = ρNbcRΩ2R3CD
(
1 + 4.67µ2

)
/8 + (Tλ−Hµ)R. (2.123)

44 Modelling and simulation of multirotor UAVs

and the dimensionless coefficients are, respectively:

CH = H

ρAΩ2R2 = σCLα
4

(
µCD
2CLα

− 1
2µλθ0

)
, (2.124)

CQ = Q

ρAΩ2R3 = σCD
(
1 + 4.67µ2

)
/8 + CTλ− CHµ, (2.125)

where the blade section profile drag coefficient CD can be recovered from many
references (e.g. [6] and [8]).

2.5.3.2 Lumped parameter model

The second proposed model for drag forces takes inspiration from the lumped
parameter model presented in [10]. In this reference, an interesting and detailed
estimation of rotor drag like effects is presented. Classical drag models presented
in [6] and [8], developed for full scale rotary wing aircraft, are based on steady-
state forward flight conditions and are developed out primarily with a view to
computing the efficiency of flight regimes, rather than modelling system dynam-
ics.

Let’s denote the in plane velocity of the rotor as

Vh = (Vx Vy 0)T . (2.126)

Each source of drag depends on this velocity. In the following, these sources
are listed:

• Induced drag is due to the backward inclination of aerodynamic force with
respect to the airfoil motion,

DI = −TKIVh; (2.127)

• Profile drag is caused by the transverse velocity of the rotor blades as they
move through the air,

DP = −TKPVh; (2.128)

• Translational drag originates from bending of the induced velocity stream-

2.5 Aerodynamic modeling of a quadrotor 45

tube of the airflow as it goes through the rotor during translational motion,

DT =

TKT1Vh if Vh ≤ w

TKT2 (V sin (i) + u)4 Vh if Vh > w
, (2.129)

where w is a constant velocity depending on the rotor;

• A drag-like force arises from blades flapping motion. If the rotor is very
stiff, the blades do not flap freely to restore equilibrium condition. Flapping
motion just induces a vibratory load, which can degrade rotor performance.
Hence the blade flapping drag force can be modeled as

Dβ = −T
(
A1c

ω

)
Vh, (2.130)

where A1c is a positive scalar constant depending on rotor blades geometry.

The first two sources of drag are the ones collected in the H-force defined in BET.
Finally, a clever consideration on the above drag like effects can be made: except
blade flapping, all the other forces are negligible at low velocities.
Hence, the model for the total drag force generated by the j-th rotor is given by:

Dj = −A1c
Tj
ωj
Vhj. (2.131)

For that a proper estimation of A1c is necessary to predict each rotor drag force
correctly.
For what concerns torque, just its static relation with the thrust is adopted

CQ = CT
κ
, (2.132)

where κ is the static thrust over torque ratio. This parameter is computed in the
static condition (hovering) where, from equation (2.125):

CQhov = (CTλ)hov = CT hov

√
CT hov

2 = CT
3
2
hov√
2
, (2.133)

and
κ = 1

λhov
= 1
λihov

=
√

2
CT hov

. (2.134)

46 Modelling and simulation of multirotor UAVs

2.5.3.3 Drag coefficient estimation

In [10] the drag model adopted was not referred to a multi-body model, hence the
drag was considered as a resistance force applied in quadrotor central body.

D = −
4∑
j=1

Ab1cTVhj . (2.135)

All rotors for the symmetric quadrotor exhibit the same drag properties and see
the same horizontal velocity Vh. This implies that the total drag force acting on
it is:

D = −c̄ TVh, (2.136)

where
c̄ = 4Ab1c = 0.04,

so
Ab1c = 0.01.

Then, the drag force acting on a single rotor is

Dj = −Ab1cTVh. (2.137)

Due to the fact that the quadrotor modeled in [10] was very similar to the pro-
totype object of this modeling process, it is possible to derive the corresponding
A1c suitable for equation (2.131). From equations (2.137), (2.131) the following
equality arises:

Ab1cTVh = A1c
Tj
ωj
Vh. (2.138)

For near hovering condition it is possible to write:

A1c = Ab1c
mg

KTω
2
hov

ωhov

= Ab1c
mg

KTωhov

= 4Ab1cωhov = 4Ab1c

√
mg/4
KT

= 15.51.

(2.139)

2.5 Aerodynamic modeling of a quadrotor 47

This procedure is not obviously enough to have an accurate model of rotor drag.
Expanding equation (2.131) and remarking that a symmetric quadrotor exhibit
the same drag properties, the total drag force can be written as:

D =
4∑
j=1

Dj

=
4∑
j=1
−A1c

CTρAR
2ωj

2

ωj
Vh

= A1cCTρAR
2

 4∑
j=1

ωj

Vh.
(2.140)

The onboard accelerometer measures the specific acceleration of the vehicle with
respect to the inertial frame, expressed in body frame. In other words, the ac-
celerometer measures the sum of all the exogenous accelerations applied to the
UAV. If the accelerometer measurement is:

a = [ax ay az]T

and given that drag force D acts in the horizontal plane of the quadrotor, and
T = −maz, it results:

a = − 1
m

Dx

Dy

T

 (2.141)

From the drag model in equation (2.140), decomposing the translational compo-
nents of the specific acceleration, it is possible to derive A1c as follows:

ax
az

= Dx

T
=
A1cCTρAR

2
(

4∑
j=1

ωj

)
Vhx

CTρAR2

(
4∑
j=1

ωj2

) = A1c

4∑
j=1

ωj

4∑
j=1

ωj2
Vhx,

ay
az

= Dy

T
=
A1cCTρAR

2
(

4∑
j=1

ωj

)
Vhy

CTρAR2

(
4∑
j=1

ωj2

) = A1c

4∑
j=1

ωj

4∑
j=1

ωj2
Vhy.

(2.142)

48 Modelling and simulation of multirotor UAVs

(a) Identification on first data set. (b) Identification on second data set.

(c) Cross-validation on third data set.

Figure 2.8: Drag coefficient estimation.

Using the vehicle velocity measurements Vm along with each motor-rotor angular
speeds ωj, a normalized velocity V̂ can be defined as

V̂ =

4∑
j=1

ωj

4∑
j=1

ωj2
Vm.

Thanks to IMU measurements a, the drag coefficient A1c can be determined.
The quadrotor was asked to move left and right at constant altitude during the
flight test, in order to cover a suitable range of horizontal velocities.

The result of the regressions is shown in Figures 2.8(a) and 2.8(b), where two
different flight data sets are employed.

2.5 Aerodynamic modeling of a quadrotor 49

It is possible to see that the estimated lumped parameter is not so much
different from the one derived analytically. Moreover, a cross validation on a third
data set is performed using the mean of the coefficients previously estimated. See
Figure 2.8(c).

The velocity estimates are not very close to the measured ones only due to the
fact that IMU data, velocity measurements and propellers angular speed are very
noisy. Nevertheless, the drag coefficient estimation can be acceptable, although
better results could have been achieved with better sensors.

In the next section, where the implementation of the quadrotor model will
be discussed, the drag force estimated will be always named H-force, in order to
avoid misunderstanding in the developing of the model.

2.5.4 Implementation

As stated in Section 2.5.1 the advantage of using Modelica MultiBody library is
that the elementary models can be connected through their ports. Moreover, the
Modelica library facilitate model reusability and standardization. Thus the the
rotor arm interface along with all its components were developed just once. This
subsystem was just reused for each of the four rotor arms, just properly linking
them to the main body.

In Figure 2.9, the multi-body implementation of the model for a single rotor
arm is illustrated. The inputs of the inflow1 block are the quadrotor angular rates
ωb and the linear velocity expressed in the body frame vb, depicted in figure with
angular_rates_body and vel_body respectively.

Through the kinematic law

vr = vb + ωb × larm eCG1R

the velocity of each rotor is calculated, where eCG1R is oriented like e1R but centered
in the CG of the quadrotor.

The first order dynamics of the electric motor driving the propeller is modeled

50 Modelling and simulation of multirotor UAVs

with a transfer function with a single pole and unitary gain

ω(s) = G(s)u(s) (2.143)

= 1
1 + sτmot

u(s) (2.144)

where τmot is the time constant related to it, which has been derived experimen-
tally, and u(s) is the required propeller angular speed (see equation (2.45). Then,
the rotational speed generated by the electric motor drives the rotor through a
revolute joint constraint. Lastly, the rotor is modeled as a cylinder too, with an
almost negligible thickness and radius R. The chain from frame_a to the revolute
joint represents the multi-body implementation of the arm, linking the main body
with the rotor.

Aerodynamic modeling of the rotor is implemented in the inflow1 block, while
in load thrust, torque and H-force are calculated from their respective dimension-
less coefficients. From the aerodynamic point of view, the only known quantity,
as it is clear from table, is the hovering thrust coefficient KT at first. Recall-
ing equations (2.41) and (2.65), assuming the classical value for air density, i.e.
ρ = 1.225 kg/m3, it turns out that

CT hov = KT

ρπR4 = KT hov

ρπR4 ≈ 0.01186, (2.145)

λhov =
√
CT hov

2 = 0.077. (2.146)

According to these results it is easy to estimate a very important parameter needed
for the correct model validation, θ0. Remembering equation (2.84), in hovering
condition, i.e.,

µ = 0,
λ = λhov,

it can be obtained

θ0 = 3
2

(
λhov + 4CT

σCLα

)
= 0.2484 rad ≈ 14 0. (2.147)

Even if this twist angle is almost unfeasible on a real blade, it is the proper

2.5 Aerodynamic modeling of a quadrotor 51

parameter to match equation (2.84) with the value found in equation (2.145). In
Table 2.2 all the necessary quantities to build the dynamic inflow model are listed.

As stated in Subsection 2.5.3, within the aerodynamic model two different
proposals for drag and torque model may be implemented. Hereinafter, H-force
will refer to the rotor drag force, whatever drag model is implemented (BET or
lumped parameter), as well as its dimensionless coefficients.

The outputs of inflow1 block are:

• Thrust coefficient, CT ;

• Torque coefficient, CQ;

• H-force coefficients, CHx and CHy;

where CHx and CHy are the components of CH along e1R and e2R directions in the
rotor coordinate system. In the same manner, also the advance ratio µ is split in
µx and µy.

Now, the outputs of the quad-copter model include not only its states but also
the relevant aerodynamic entities for each rotor too, namely:

• λ and λi;

• CT and thrust T ;

• CH and H-force components Hx, Hy;

• CQ and torque Q.

Name Description Value Unit of measure
Nb Number of rotor blades 2 [−]
σ Solidity ratio 0.0852 [−]
ρ Air density 1.225 kg/m3

CD Profile drag coefficient 0.012 [−]
A1c Lumped-parameter drag coefficient 18 [−]
CLα Lift slope coefficient 2π 1/rad
θ0 Blade pitch angle 14 deg
κ Thrust over torque ratio 12.9870 [−]
τmot Motor time constant 0.055257 rad/s

Table 2.2: Arm parameters.

52 Modelling and simulation of multirotor UAVs

Recalling equation (2.35), the definition of forces and moments applied to the
UAV (see Section 2.3.5) must be extended to include each rotor H-forces and
their contribution to the overall torque.

Since the quadrotor has an X -configuration, if one refers to Figure 2.1, the
directions of the arms are enclosed in a vector

γ =
[

135o 45o 45o 135o
]T

and so, according to equations (2.4) and (2.5), the rotation matrix which transfers
each rotor H-force into main body axes is

Rj
arm = Rz

T (γ(j)) =

cos (γ(j)) sin (γ(j)) 0
− sin (γ(j)) cos (γ(j)) 0

0 0 1

where j ∈ [1; 4] refers to the j-th arm. It follows that

Fprops =
4∑
j=1

(
Rj
armF

j
prop

)
=

4∑
j=1

Rj
arm

Hx

Hy

T

j

, (2.148)

Mprops =
4∑
j=1

(
Rj
armM

j
prop

)
=

4∑
j=1

Rj
arm

[larm 0 0
]
∧ F j

prop +

0
0
Qj

.
(2.149)

expressed in the main body frame. Figure 2.10 illustrates the quadrotor Multi-
Body model.

2.5 Aerodynamic modeling of a quadrotor 53

Figure 2.9: Arm model overview.

Figure 2.10: Quadrotor multi-body model.

54 Modelling and simulation of multirotor UAVs

2.6 Simulation

2.6.1 Dymola-Simulink co-simulation

The multi-body model of the quadrotor illustrated in Section 2.5 is not provided
with a control algorithm. It must be intended that a multirotor may be manually
controlled by a pilot, or fly autonomously when it is commanded from a ground
station, sending appropriate references. The autonomous flight is definitively the
hardest challenge in the UAV field. However, in both cases, the vehicle must
embed a stable control law on the onboard Flight Control Unit. Once the control
module has been designed, it must be written in a suitable code using procedural
languages such as C or FORTRAN, to be implemented in the FCU. Procedural
control algorithms, e.g., written as C or MATLAB [12] code, allow the designer to
reuse a wide range of available specific algorithms and routines he/she is confident
with, and also can be directly implemented in the FCU.

Thus, the multi-body model of the quadrotor hardware can easily be coupled
with the Simulink [4] model of the control law, along with the state feedback
procedure ideally provided by sensors, without going through all the trouble of
re-implementing them as Modelica code. Exploiting this flexibility in order to
build simulation models of increasing complexity and accuracy, it was convenient
to perform a co-simulation in a Dymola-Simulink environment. The co-simulation
benefits from all the advantages of the multi-body model implemented in Dymola
2018 [3] along with MATLAB and Simulink versatility. This means that the
quadcopter multi-body model is translated into a Dymola block in a quadrotor
simulator implemented in Simulink.

The outputs of the multi-body model are converted in the proper systems of
coordinates. Position, velocity and attitude are expressed with respect to FE

reference frame, while angular rates refer to a FB body frame.
As can be seen in Figure 2.11, the model is comprehensive of:

• Quadcopter: this block contains the dynamic model implemented in Dymola
2018 [3]. It receives as input the throttle percentage required to each motor-
rotor coupling, Th%i. The outputs of this block are the state vector and
the aerodynamic quantities.

• Set-point: this block generates the reference trajectory that the quadrotor

2.6 Simulation 55

is supposed to follow. The set-point specifies not only the required position
and attitude, but also velocity, acceleration, jerk, angular rates, angular
accelerations and angular jerks.

• Mixer: this subsystem contains the mixer matrix χ, hence the control actions
are translated into required motor-rotor rotational speeds.

• Controller: it includes a suitable control law to make the quadrotor capable
of tracking the given set point. It receives as inputs the state estimate
and produces as outputs the four control variables [T LM N]T . This block
encloses the geometric controller presented in [13].

• Estimate: this block reads the output of the quad-copter block and trans-
forms the signals by discretizing and delaying them. This is a way to take
into account the sampling time of an hypothetical hardware, on which the
control system should be implemented. The considered working frequency
is 100Hz.

Recalling equation (2.44), the KT and KQ parameters are just due to static
CT and CQ, hence in hovering condition. See equations (2.145), (2.133). Thence,
the parameters in the mixer matrix are:

KT = CT hovρAR
2, (2.150)

KQ =
CT 3

2
hov√
2

 ρAR3. (2.151)

56 Modelling and simulation of multirotor UAVs

Figure 2.11: Quadrotor simulator.

2.6.2 Results

In this section, the simulation results of the co-simulation will be presented, mak-
ing use of both aerodynamic models for drag forces. The task performed is a
trajectory tracking and all the aerodynamic quantities will be estimated during
the whole simulated flight. It will be shown that tracking capability of the quadro-
tor is affected by the unsteady aerodynamic variations of thrust, drag and torque.

The set-point is a smooth function of time, defined as:

[
xd vd ad jd Rd ωd ω̇d ω̈d

]T
(2.152)

where:

• xd, vd, ad and jd are the linear reference quantities desired: position, velocity,
acceleration and jerk respectively.

• Rd, ωd, ω̇d and ω̈d instead form the angular references sent to the drone:
attitude matrix, angular velocity, angular acceleration and angular jerk.

Thanks to the use of degree five polynomials, the overall desired position and
attitude could be defined combining several trajectories, specifying for each one
its initial and final positions, velocities, accelerations and attitudes, angular speeds
and angular accelerations. This lead to a set-point with continuous accelerations
and angular accelerations.

2.6 Simulation 57

Figure 2.12: Quadcopter subsystem.

58 Modelling and simulation of multirotor UAVs

Figure 2.13: Infinity trajectory.

Infinity-shape trajectory

Initially the trajectory prescribes the take-off maneuver from the ground, moving
the quad-rotor from a generic point on the ground with non-null yaw angle to
the hovering point in p = [0, 0, h]T with null attitude. Then, at time t = 20s
the quadrotor is requested to move to the starting point of the infinity-shape
trajectory. At time t = 25s the maneuver starts:

xd =

sin(2ωt)
3−cos(2ωt)

cos(2ωt)
3−cos(2ωt)

h

. (2.153)

where t is the simulation time, ω is the angular frequency of the maneuver and h
is the altitude at which the infinity-shape trajectory is performed. The velocity,
acceleration and jerk set-points vd, ad and jd are obtained differentiating with
respect to time equation (2.153). In this case h = −2.5m. In Figure 2.13, the
planar part of the trajectory is plotted. Besides the position set-point, the drone
is required also to keep the roll and pitch angles equal to zero and to change yaw
angle to maintain the e1B direction tangent to the trajectory. This is achieved by

2.6 Simulation 59

Figure 2.14: Trajectory set-point.

imposing:

ψd = arctan (vd(2), vd(1)) ,

ψ̇d = ad(2)vd(1)− ad(1)vd(2)
vd(1)2 + vd(2)2 .

(2.154)

In Figure 2.14, the main references of the infinity-shape trajectory are shown.

60 Modelling and simulation of multirotor UAVs

BET based model

The model has been described in Section 2.5.3.1.
Figure 2.15 shows position and velocity errors, while in Figure 2.16 attitude and
angular rates errors are depicted. It is worth noticing that these errors refer to the
control errors, hence the difference between the quadrotor state and the set-point.
For what concerns aerodynamics, Figure 2.17 shows the induced inflow ratio and
thrust coefficients, whereas Figure 2.18 depicts H-force and torque coefficients.
Finally, Figures 2.19 and 2.20 illustrate the H-force in-plane components for the
four rotors and the throttle percentages required to the motor-rotor system.

Figure 2.15: Quadrotor position and velocity error (BET).

Figure 2.16: Quadrotor attitude and angular rates error (BET).

2.6 Simulation 61

Figure 2.17: Quadrotor thrust coefficient and induced inflow ratio (BET).

62 Modelling and simulation of multirotor UAVs

Figure 2.18: Quadrotor H-force and torque dimensionless coefficients (BET).

2.6 Simulation 63

Figure 2.19: Quadrotor H-forces (BET).

64 Modelling and simulation of multirotor UAVs

Figure 2.20: Quadrotor throttle percentage (BET).

2.6 Simulation 65

Lumped parameter model

The simulation results of the quadrotor model provided with the lumped param-
eter drag model are shown in the following. As done in the previous paragraph,
Figure 2.21 shows position and velocity errors, while Figure 2.22 attitude and
angular rates errors.

Figure 2.21: Quadrotor position and velocity error (lumped parameter).

Figure 2.22: Quadrotor attitude and angular rates error (lumped parameter).

And again, Figures 2.23 and 2.24 show the aerodynamic quantities, inflow and
coefficients. Lastly, Figure 2.25 illustrate the in-plane components of the drag
force on the four rotors. Throttle percentages of the four motor-rotor systems are
depicted in Figure 2.26.

66 Modelling and simulation of multirotor UAVs

Figure 2.23: Quadrotor thrust coefficient and induced inflow ratio (lumped pa-
rameter).

2.6 Simulation 67

Figure 2.24: Quadrotor H-force and torque dimensionless coefficients (lumped
parameter).

68 Modelling and simulation of multirotor UAVs

Figure 2.25: Quadrotor H-forces (lumped parameter).

2.6 Simulation 69

Figure 2.26: Quadrotor throttle percentage (lumped parameter).

2.6.3 Conclusions

It is clear that the controller aims at minimizing the errors between quadrotor
states and its reference set-points. Focusing on Figures 2.20 and 2.26 the differ-
ences in throttle percentage commands between the two models is evident. This
is mostly due to the fact that, as depicted in Figures 2.19 and 2.25, the resistance
forces opposing quadrotor motion are larger for the drag lumped parameter model
than the BET one. This is clearly remarked in Figures 2.18 and 2.24 where the
difference in CH is about one order of magnitude. It is possible to state that
including blade flapping phenomena as a resistant load has a strong effect on
quadrotor performances. This difference in drag forces influence also the track-
ing capability of the quadrotor. During the infinity trajectory each rotor tries to
self-equilibrate itself through blade flapping phenomena, but this never happens
due to rotor rigidity. For this reasons, an higher resistance contribution arises, re-
flecting in higher position and attitude errors especially in the curvilinear stretch
of the trajectory. See Figures 2.21 and 2.22. The higher error is on the north
position, namely the coordinate along which the tighter turn has to be performed.
Lastly, the variation of λi, and consequently of CT and CQ, is significant during

70 Modelling and simulation of multirotor UAVs

climb and descent phases, while it is almost negligible during in-plane motion
except for the turning points. In these precise stretches a consistent variation of
the thrust coefficient is experienced, mostly due to the combined effects of drag
forces and advance ratio µ on CT (see equation (2.84).
Moreover, the torque coefficient has different behavior according to the adopted
model (see Figure 2.18 and Figure 2.17). Focusing on the take-off and landing
maneuvers, the BET based model provides an opposite variation of the torque
with respect to CT and λ ones, even if it is due to the combination of these latter.
Instead, looking at Figure 2.24 and Figure 2.23 CQ is smaller than the one pre-
dicted by BET model and has obviously the same behavior of thrust coefficient
(see equation (2.132)).

2.7 Experimental results

In this section both quadrotor models are compared to flight data. The quadrotor
vehicle, object of the modeling process, is asked to perform the same maneuvers
designed in simulation environment.

The reference trajectories made in the flight tests are:

• Infinity-shape trajectory illustrated in details in Subsection 2.6.2,

• Step maneuver, consisting in an sudden change of the horizontal position
set-point.

The first trajectory consist of continuous and differentiable set of smooth refer-
ences, while the step maneuver does not ensure these properties.
The errors between state and references will be analyzed along all the time his-
tory of the flight tests, focusing on position and attitude errors. Then, they are
compared to the corresponding simulation results in order to show which model,
BET or lumped parameter, predicts the real flight performance better.
It will be also show that using a quadrotor simulator entirely developed in Simulink
[4], devoid of any aerodynamic model,which will be referred as Original simulator,
it is not possible to estimate real performance at all.

2.7 Experimental results 71

2.7.1 Quadrotor prototype

Here it is described only the specific hardware of the quadcopter prototype; for
what concern the whole hardware and software see Section 6.1. The drone is a
quadrotor in X-configuration, i.e. the principal axes of the body frame are not
aligned with the rotor arms, see Figure 2.27. The frame is a Talon V2.0 (Hob-
byKing), made of carbon fibre tubes and aluminium parts. A detailed description
of quadcopter onboard systems is provided in the following paragraphs, while the
main parameters of the drone are reported in Table 2.3.

Companion

It is equipped with Raspberry Pi3 [14], whose specifications are:

• Processor: Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

• Memory: 1GB RAM

• BCM43438 wireless LAN and Bluetooth Low Energy (BLE) onboard

• 100 Base Ethernet

• 40-pin extended GPIO

• 4 USB 2 ports

• 4 Pole stereo output and composite video port

• Full size HDMI

• CSI camera conector

• DSI display port

• Micro SD port

• Upgraded switched Micro USB power source up to 2.5A

72 Modelling and simulation of multirotor UAVs

Figure 2.27: Quadrotor prototype.

Item Value Unit of Measure
MTOW 1.51 kg
Rotor Radius 152.4 mm
Frame Diagonal 550 mm

Table 2.3: Quadrotor model main parameters.

Flight Control Unit

The FCU mounted on this UAV is the R2P (Rapid Robot Prototyping) [15]. It is
an open source HW/SW framework that allows to implement real time architec-
tures. Another feature is that is composed by modules, to be precise four in this
case: USB, RC, IMU and proximity. For further details, see [16] and [17].

2.7.2 Model comparison

For what concerns the infinity trajectory, the performance index chosen to com-
pare the models and the flight data is the evaluation of the control error between
the quadcopter state and the set-point illustrated in Figure 2.14. Focusing on
position and attitude errors, the norm of the position errors and the yaw angle
error are the comparison indexes. The maximum and the mean values of these lat-
ter are evaluated for all the models in simulation environment, and subsequently
compared to flight data.

Due to the fact that drag force always opposes to the motion, the response to
a step position set-point may be different according to the adopted drag model.
Whit this in mind, the response of the models can be compared to the flight data

2.7 Experimental results 73

when the quadrotor is asked to perform the maneuver.

Infinity trajectory

In Figure 2.28(a), the histograms for position error norm are shown, while in
Figure 2.28(c) the same quantities are reported in percentage with respect to
flight data values. Lastly, in Figure 2.28(b) the mean and maximum of yaw error
is plotted.

Step maneuver

In Figure 2.29, the time responses of the quadrotor to the step set-point are
reported. The maneuver is performed at a constant height.

2.7.3 Conclusions

The importance of including the rotor unsteady aerodynamics in the quadcopter
model is proved in Figure 2.28. Specifically, Figure 2.28(c) shows the relative
percentage error between simulation results and flight data, in terms of the norm of
position errors. From the original simulator to the lumped parameter one there is
a clear tendency to get closer to real flight data. With a lumped parameter model,
based on the experimental observations of drag effects, the mean of the norm of the
position control errors is estimated up to 70 %, while its maximum is close to the
50 %. Comparing 2.28(a) and 2.28(b), one can notice that the same tendency is not
verified for the attitude error too. This is probably due to the static model adopted
for torque, which is unable to counteract the drift caused by higher drag forces
experienced on the external rotors during a curvilinear trajectory. As a result,
including blade flapping motion as a source of drag proved to be crucial when
estimating the control errors of a quadrotor, because the aerodynamic theories
adopted for full-sized helicopters may show some limitations when dealing with
multirotor UAVs. The BET H-force is just part of the overall aerodynamic drag
arising during a quadrotor flight, but BET model still provides better results
regarding attitude errors. The combination of the two adopted models, making
use of BET to model the aerodynamic torque as well as the lumped parameter
model for drag forces, will probably match more and more the flight data in terms
of both position and attitude.

74 Modelling and simulation of multirotor UAVs

(a) Norm of position error.

(b) Yaw error.

(c) Percentage error between the models and flight
data performance

Figure 2.28: Models comparison: infinity-shape maneuver.

2.7 Experimental results 75

Figure 2.29: Models comparison: Step maneuver.

76 Modelling and simulation of multirotor UAVs

When the quadcopter is asked to perform a step maneuver, the relation be-
tween the aerodynamic drag and the aerodynamic damping is manifest. Even if
the behavior of the UAV was not so well-defined during the flight test, the rise
time of the models is almost equal to the real one, but according to the different
drag model adopted, the step response is different. In Figure 2.29 it is possible
to see that. For what concerns the flight tests, along the North position step the
Lumped parameter model seems to fit the flight data better, while in East, the
set-point was not reached very well by the quadrotor prototype. As a matter of
fact the higher is the drag, the higher is the aerodynamic damping introduced in
the motion. This latter will affects the overall response of the quadrotor to the
step change in horizontal position. It is possible to see that the lumped parameter
model provides an highly damped response, while BET and the Original Simula-
tor show a critically-damped response, which is just due to the control structure
embedded in the FCU (see [13]).

Finally, it is possible to conclude that the estimation of quadrotor tracking ca-
pability must necessarily make use of a detailed dynamic and aerodynamic model,
which reduces modeling errors during high performance aggressive maneuvers. In
fact, the control error is mostly due to the mismatch between the control actions
and the actual thrusts developed by each rotor, which depend on the aerodynamic
environment. More than the aerodynamic thrust variation, the drag forces play
a crucial role on the quadcopter dynamics. Despite the validity of the classical
aerodynamic theories on full-sized helicopters, they can not be directly applied
on small scale multirotor UAVs. Indeed, a drag model based on the experimental
observations during flights is recommended, to properly catch all the drag sources
developing on a multirotor UAV. For this reason, further work has to be done to
refine the aerodynamic model of a UAV, especially as regards the drag coefficient
estimation.

Chapter 3

Problem Formulation

In the first part of this chapter, the problem is described in general terms. Thus, an
overview of works related to our problem is presented. In the last but one section,
the problem is formulated. The adopted approach is described and motivated, as
well as the objective and constraints. In the last part of the chapter, the suitable
algorithms adopted for the procedure are presented.

78 Problem Formulation

3.1 Problem description

The objective of this work is to perform autonomous landing of a small UAV,
hereinafter referred to as follower, on a larger one, hereinafter referred to as tar-
get, while both are flying.

The problem is clearly three-dimensional but, for the sake of simplicity, is de-
coupled: the first part deals with trajectories synchronization in the horizontal
plane, while the second regards the descent of the follower drone on the target
one. The main focus of this thesis is on the latter problem.

In-plane synchronization is the first safety constraint. Only when the follower
is in the same (N,E) position of the target, or in its neighborhood, the landing
maneuver can start. This constraint must be verified for the entire duration of
the descent, otherwise the procedure is stopped.

The safety constraints do not concern just in-plane synchronization. As a matter
of fact, continuous feedback of the target drone altitude is used to design real-time
reference landing trajectory. The main reason of this approach is that the target
may voluntarily vary its altitude or experience vertical oscillations caused by the
aerodynamic perturbations, originating from the follower’s rotors wake.

3.2 State of the art

Surprisingly, nothing similar has been performed yet. Many articles treating the
UAV landing topic can be found in literature but none of them deals with a flying
landing target. In this section, an overview of some recent research studies is
provided.

[2] proposes a novel controller structure to achieve fast, safe and precise land-
ing of a quadrotor on a vertically oscillating platform. The control structure
consists of three modules: motion estimation, trajectory generation and tracking
control. In the tracking control module, an ARC (Adaptive Robust Controller) is
designed to perform non-linear ground effect compensation and, hence, to enable
accurate trajectory tracking. In the trajectory generation module, a time-optimal

3.2 State of the art 79

reference trajectory for the quadrotor is generated such that it converges from
the initial height precisely to the platform height with zero relative velocity (for
smooth landing). The landing time duration is as short as possible, and physi-
cal safety constraints (position, velocity, acceleration bounds etc.) are satisfied
during the entire landing process. Lastly, in the motion estimation module, UAV
and platform positions are estimated on-line from only the measurement of the
relative distance between them, as well as the inertia measurement of the UAV.
An UKF (Unscented KalmanFilter) is constructed and the estimated parameters
are fed to the other two modules in real time.

[18] describes a vision-based algorithm to control a VTOL UAV while tracking
and landing on a moving platform. It makes use of image-based visual servoing
(IBVS) to track the platform in two-dimensional image space and generate a veloc-
ity reference command, used as the input to an adaptive sliding mode controller.
IBVS is computationally cheaper since it is less sensitive to the depth estimation
allowing for a faster method to obtain this estimate. To enhance velocity tracking
of the sliding mode controller, an adaptive rule is described to account for the
ground effect experienced during the maneuver. Finally, the IBVS algorithm is
integrated with the adaptive sliding mode controller for tracking and landing.

Outside the UAV field, [19] discusses non-linear methodologies that can be em-
ployed to devise real-time algorithms suitable for guidance and control of space-
crafts during asteroid close-proximity operations. A combination of optimal and
sliding control theory provide the theoretical framework for the development of
guidance laws that generates thrust commands as function of the estimated space-
craft state. Such algorithms can be employed for autonomous targeting of points
on the asteroid surface (soft landing , Touch-And-Go (TAG) maneuvers). The
guidance algorithm has its root in the generalized ZEM/ZEV feedback guidance
and its mathematical equations are naturally derived by properly defining a slid-
ing surface as function of Zero-Effort-Miss and Zero-Effort-Velocity. The latter
enables the augmentation of the energy-optimal guidance law by a sliding mode
that ensures global stability for the proposed algorithm.

Moreover, many research studies about trajectory tracking rely on quasi time-

80 Problem Formulation

optimal control algorithms.
[20] proposes a hybrid controller that ensures global convergence of the error

dynamics to zero for a saturated multidimensional double integrator in presence
of a time-varying reference. Such a controller combines a local linear feedback,
which ensures the tracking in the presence of small errors (local mode), and a
global stabilizing quasi time-optimal controller, which handles large errors and
the saturation (global mode). The proposed switching hybrid logic is applied
also to the reference. In global mode, the reference trajectory is slowed down to
promote the stabilization task. Once in local mode, the controller speeds up the
reference to restore the nominal behavior.

[21] proposal regards nonlinear proportional-integral (PI) and proportional-
integral-derivative (PID) controllers combining time-(sub)optimality with linear
control robustness and anti-windup properties for first-order and second-order in-
tegrator systems. A complementary contribution is the introduction of an integral
action with anti-windup properties (wind-up may cause multiple bouncing be-
tween minimal and maximal values of the control, which worsens the overshoot
problem) into the control law, under the constraint of ensuring global asymptotic
stability. For illustration purposes, the proposed PID solution is applied to the
longitudinal headway control of a vehicle following another vehicle.

Last, but not the least, [22] proposes a family of nonlinear state feedback global
stabilizers for all planar linear systems which are globally stabilizable by bounded
inputs. This family is parametrized by a nonlinear function whose selection can
yield quasi time-optimal responses, where the “quasi” is required to achieve local
exponential stability of the closed-loop. The arising trajectories are quasi time-
optimal for arbitrarily large initial conditions; in this sense the proposed nonlinear
control law may be very useful for embedded control applications with strong
computational constraints.

3.3 Mathematical formulation

In this thesis, a control structure capable of performing an autonomous landing
of a UAV on another one, while the second is flying (to be precise hovering, at
least for a first attempt) is proposed. The task is challenging and hazardous.
The proposed structure consists of: a motion monitoring module, a trajectory gen-

3.3 Mathematical formulation 81

eration module and a tracking control module. In the tracking control module,
there are the built-in controller of the adopted flight control units. They are capa-
ble of tracking a given position and yaw reference with very good performances.
The design of an ad hoc controller for this task is beyond the topic of this thesis.
In the trajectory generation module, the desired set-point is generated, such that
the follower converges from the initial height to the landing pad, mounted on the
target. Last, but not least, the motion monitoring module manages the feedback
position measurements and checks the safety of the whole procedure. Then, the
state measurements and the safety variables feed the trajectory generation mod-
ule. The last two modules run on the ground control station.

Now, the problem is formulated from a mathematical point of view. As seen
in Chapter 2, the states of the UAVs are collected in a vector (2.34); so, with
same meaning of notation but referring to the two drones, the states vectors are:

xt,

xf ,
(3.1)

where the subscripts t and f respectively refer to target and follower.
The landing objective is:

lim
t→tf

Nf (t)
Ef (t)
Df (t)

−

Nt(t)
Et(t)
Dt(t)

 =

0
0
−εD

 (3.2)

where tf is the time in which the the procedure is terminated and εD is a positive
defined tolerance. To be more precise, at t = tf the follower is hovering at a
desired height (εD) above the target.

Clearly, the landing procedure is subject to physical constraints. The first one
is on the down component of position:

Df < Dt t > t0 (3.3)

where t0 is the start time of the landing maneuver. This means that the follower
must be always above the target from starting time onward. In addition, the

82 Problem Formulation

relative velocity between the vehicles must be zero at final time, i.e.:

lim
t→tf

Ṅf (t)
Ėf (t)
Ḋf (t)

−

Ṅt(t)
Ėt(t)
Ḋt(t)

 =

0
0
0

 (3.4)

At this point, there are two possible approach to solve the problem:

• a fully three dimensional solution,

• a decoupled one.

Considering that the UAVs involved are multi-rotors, one can understand that
the more reasonable method to move one close to the other is on a vertical path.
Hence, the chosen strategy is to decouple the problem in:

• horizontal plane synchronization,

• vertical approach.

Lastly, the relative navigation problem has not been studied in this work. The
absolute positions of the drones are known by means of a motion capture system.
Thanks to this, it will be possible to obtain requirements for the design of the
relative navigation module, which is one of the future works to be done.

Now, the two parts of the problem are described in details.

Horizontal plane synchronization

The horizontal plane synchronization is continuously checked before and for all the
duration of the landing maneuver. This is done through an averaging procedure.
The mean error computation at time t takes into account the relative in-plane
errors occurred in the past time history, within a time interval of length Ta:

ēN(t) = 1
Ta

∫ t

t−Ta
(Nf (τ)−Nt (τ)) dτ,

ēE(t) = 1
Ta

∫ t

t−Ta
(Ef (τ)− Et (τ)) dτ.

(3.5)

3.3 Mathematical formulation 83

In order to respect the synchronization constraint the following relation

ēp(t) =
√
ē2
N(t) + ē2

E(t) ≤ ε, (3.6)

must be satisfied for a given time Tm, where ε is a small positive value. If both
conditions are verified the procedure is considered safe, and so permitted. The
detailed explanation of the safety procedures will be discussed in Section 4.1.
It follows that the circular area, centered in (Nt, Et) and with radius ε, is the
acceptable region in which the follower drone should be for all the duration of the
landing maneuver.

Vertical approach

Now looking at the vertical approach, the objective described in equation (3.2)
turns out to be:

lim
t→tf

(Df (t)−Dt(t)) = −εD. (3.7)

As long as the synchronization is obtained and checked, the focus of the procedure
is on the generation of a vertical landing trajectory for the follower.

The landing trajectory is computed starting from an acceleration command, whose
characteristics will be described in the next sections. As a consequence, both the
algorithms needs a second-order integrator to get the desired trajectory:

ẍ = u, (3.8)

where u is the control variable, namely the reference acceleration. For different
reasons, it has upper and lower bounds, hence:

amin < u < amax, (3.9)

where amin and amax are respectively the climb and descent acceleration limits
(signs due to NED convention).

In the next section, the trajectory generation algorithms will be described in

84 Problem Formulation

details.

3.4 Suitable algorithms description

Among the studied algorithms, only two proved to be suitable for our purpose.
In the next sections, they will be presented.
They are used for the landing trajectory generation. The implementation is revis-
ited because UAVs have their own controllers onboard, which can receive in input
just the position set-point, and aim to minimize position tracking errors at best.

3.4.1 Three-states bang-bang algorithm

The algorithm is taken from [2], where it was originally used together with an
ad hoc controller, but here only the trajectory generation module is retained and
re-adapted taking into account safety factors.
Firstly, notice that the algorithm is one dimensional, built on z-axis pointing up-
ward from ground, and it works with relative quantities.

The objective and the criteria listed in Section 3.3 lead to an optimization problem,
as stated in [2], to obtain fast, safe and precise landing. According to Pontryagin’s
theorem, the optimal solution is a bang-bang type control law. The novelty is that
it involves three states, instead of the classical two. This peculiarity is very useful
in the case of multi-rotors, because it avoids abruptly changes in the angular speed
of rotors, therefore the aerodynamic disturbances generated are reduced. Hence,
the acceleration has three possible values:

• maximum downward acceleration,

• zero acceleration,

• maximum upward deceleration.

The decision process, whereby the proper input is chosen, is based on a test tra-
jectory, i.e. the prediction of the future relative vertical motion between follower
and target. Starting from arbitrary initial conditions (position and velocity) as-
suming that the maximum upward acceleration is applied, the algorithm predicts

3.4 Suitable algorithms description 85

when the relative velocity will be zero. Based on the relative position at that time
instant, the control action is chosen:

• if the future relative position is lower or equal to zero it means that the
follower will hit the target, so the maximum downward deceleration (hence
upward acceleration) should be applied,

• if the future relative position is greater than zero two are the possible situ-
ations:

– if the velocity limit has already been reached then no acceleration is
applied, maintaining the maximum descent velocity,

– else apply downward acceleration to reach it.

Then, as stated in equation (3.8) the reference acceleration is integrated twice
to get the reference velocity and position. Eventually, the reference trajectory to
feed the follower is calculated.

3.4.2 Quasi Time-Optimal algorithm

The second proposed algorithm for the landing trajectory generation is based on
the concept of sub-optimal, or quasi time-optimal control illustrated in [22].

Since the double integrator depicted in equation (3.8) is a linear system, sev-
eral tachniques are suitable for control design. In fact, it is the basic model for
several real systems, such as electrical and mechanical system. Therefore, its
stabilization is widely studied in the literature; however, in practical implementa-
tions, non linearities have to be considered.
The family of nonlinear state feedback global stabilizers can be parameterized by a
nonlinear function whose selection can yield quasi time-optimal responses, where
the “quasi” is required to achieve local exponential stability of the closed-loop.
A nonlinear state feedback control law is proposed for the purpose of landing tra-
jectory generation. The output of the control algorithm is an acceleration com-
mand depending on position and velocity errors between the two drones, which
in turn it is integrated twice to get the landing trajectory.

For what concerns saturation levels, different acceleration bounds are set. In

86 Problem Formulation

order to provide a quasi-time optimal descent phase in a safe manner, the down-
ward acceleration is bounded to a very low value. On the contrary the upward
acceleration limit is as higher as to have a fast response whenever the target moves
up suddenly.

When being close to obtain the landing objective depicted in equation (3.7), the
switching between the saturation levels is not discontinuous as for a bang-bang
type solution, but it has a linear dependency on the position error. It follows
that the proposed control law is locally Lipschitz and extremely close to being
time-optimal, thus yielding quasi optimal responses for all signal ranges while pre-
serving the robustness properties of a Lipschitz state-feedback. Then the arising
reference trajectories are quasi time-optimal for arbitrarily large initial conditions.
Hereinafter this algorithm will be referred as to QTO.

Chapter 4

Digital implementation

In the first part of this chapter, the motion monitoring module is described. The
first element of the module computes the errors, which are used consequently to
define some safety flags. Then, the trajectory generation module is presented.
In particular, the three-states bang-bang and the QTO algorithms are presented
from the mathematical point of view.

88 Digital implementation

4.1 Error monitoring and safety procedures

Given the fact that the air-to-air landing maneuver is hazardous, a number of
safety checks are performed before and during the execution.

The first step is to compute position and velocity errors, namely:

ep =

Nf

Ef

Df

−

Nt

Et

Dt

 =

eN

eE

eD

 , (4.1)

ev =

Ṅf

Ėf

Ḋf

−

Ṅt

Ėt

Ḋt

 =

ėN

ėE

ėD

 . (4.2)

As one can understand, position synchronization is investigated in order to make
the follower land precisely inside the central part of the target drone, as close as
possible to its center of gravity. In reality the target should be equipped with a
landing pad with the same size as the acceptable safe region.

Knowing the previous information, the safety flag can be defined. The latter
variable indicates if the landing is safe or not. The procedure to compute it is the
following:

1. Calculate the mean value of theN and E errors in the interval [t(k−n); t(k)]:

eN = 1
n

k∑
i=k−n

(N (i)
f −N

(i)
t),

eE = 1
n

k∑
i=k−n

(E(i)
f − E

(i)
t),

(4.3)

where n is the number of samples included in the average computation and k
is the sample index at the current time. It is straightforward that n is related
to the averaging time Ta (see Section 3.3) through the working frequency.
In turn the absolute value of the mean position error is

|e| =
√
e2
N + e2

E. (4.4)

4.2 Three-states bang-bang 89

2. From the first time instant in which it is true that:

|e| < ε,

t ≥ t0,
(4.5)

update a counter variable c, which is initially zero for t < t0. If the norm of
the in-plane position errors exceeds the bound ε, namely

√
e2
N + e2

E > ε,

c is immediately reset to zero.

3. If the counter value is greater then a defined threshold c̄, then the flag
takes unit value, meaning that the operation is safe, otherwise it is set to
zero. Given the working frequency of the algorithm, the time interval over
which the above conditions are satisfied is known. Hence, one can choose
the counter threshold in order to monitor in-plane synchronization for the
desired amount of time, Tm.

When the safety flag equals one, the in-plane synchronization is assumed to be
acceptable to perform the landing because the follower is in a small neighborhood
of the target. If during the landing maneuver the safety flag switches back from
one to zero, the follower is asked to stop the descent. Whenever the safety flag
switches again to be one, the initial conditions for the second-order integrator are
reset to the actual relative position and velocity.

Another variable indicates if the landing procedure is started; its value becomes
one as soon as safety flag equals one for the first time. This variable is necessary
to switch the guidance law from the general set point to the landing one.

The last variable checks if the follower has arrived below the minimum relative
position εD. When it happens the values is one, otherwise it is zero.

4.2 Three-states bang-bang

In this section, the three-states bang-bang algorithm is presented. Before it,
convention and useful definitions must be given.

90 Digital implementation

Convention

As already explained, the algorithm works only in the z-coordinate. The conven-
tion followed in the implementation is opposite to the NED one, i.e., the z-axis is
positive upward, so that a positive acceleration is needed to stop while approach-
ing the target. For this reason, error vectors and state vectors in input to the
algorithm have sign changed.

Definitions

Here is a list of the main definitions:

zr is the reference trajectory, which is given as set point to the follower,

zd is the target altitude,

za := zr − zd is the relative trajectory.

Algorithm

The reference trajectory zr(t) is generated respecting the following conditions and
constraints:

1. The initial values are the follower position and velocity:

zr(t0) = −Df (t0), (4.6)
żr(t0) = −Ḋf (t0). (4.7)

2. The final value for position is equal to the target one increased by the safety
tolerance εD, while for velocity it is equal to the target one:

zr(tf) = −Dt(tf) + εD, (4.8)
żr(tf) = −Ḋt(tf), (4.9)

such that the follower reaches a certain height above the target and hovers
maintaining the relative distance till the thrust-off command.

4.2 Three-states bang-bang 91

3. The reference position, velocity and acceleration are constrained, as already
mentioned:

zr(t) > −Dt(t) + εD,

|żr(t)| ≤ żrmax, t ∈ [t0; tf]
z̈rmin ≤ z̈r ≤ z̈rmax,

(4.10)

where żrmax is the limit reference velocity, z̈rmin is the maximum downward
acceleration and z̈rmax is the maximum upward acceleration. In the above,
the position constraint means the follower is always above the target UAV.

4. The landing is as fast as possible.

Now, from the initial relative position and velocity, the problem is reduced to the
generation of z̈a to satisfy the above criteria, and then integrate to get za, ża.
Subsequently, the references zr, żr are computed by adding actual position and
velocity of the target, zd, żd respectively.
According to Pontryagin’s theorem, the optimal solution z̈a is a bang-bang type
control law, with three states: downward, zero or upward relative acceleration.
In the following, it is explained the decision process through which one of the
possible values is assigned to the relative acceleration. If za(t) = 0, it means that
the follower is already on the target so that the landing process is terminated.
Else, a future “test trajectory” is defined (za(τ), ża(τ)), ∀ τ ≥ t, starting from
the current state (za(t), ża(t)) and considering that the limit upward acceleration,
z̈rmax, is given:

za(τ) = za(t) + ża(t)(τ − t) +
∫ τ

t

∫ τ

t
(z̈rmax − z̈d(τ2)) dτ2 dτ1

= za(t) + ża(t)(τ − t) + 1
2 z̈rmax(τ − t)

2 − zd(τ) + zd(t)

+ żd(t)(τ − t)

ża(τ) = ża(t) +
∫ τ

t
(z̈rmax − z̈d(τ1)) dτ1

= ża(t) + z̈rmax(τ − t)− żd(τ) + żd(t)

(4.11)

If (z̈rmax− z̈d(τ)) > 0, then this trajectory will intersect the x-axis (i.e., ża(τ) = 0)
only once. The time instant of this intersection is denoted as ts, which is the

92 Digital implementation

solution of the equation ża (τ) = 0 for τ , i.e.,

ża(t) + z̈rmax (τ − t)− żd(τ) + żd(t) = 0. (4.12)

Hence, the corresponding future relative position is za(ts). Now, there are three
cases:

• If za(ts) ≤ 0, even producing the full deceleration the follower will still hit
the target. Thus, the full deceleration has to be applied.

• If za(ts) > 0 and ża(t) ≤ −żrmax − żd(t), it means that with the full de-
celeration the follower will stop at a position higher than the desired one.
Thus, for time-optimality purposes, full deceleration does not have to be
made at this point. However, the velocity of the follower already reaches its
maximum downward limit. Thus, z̈a(t) is taken as −z̈d(t) to maintain the
landing velocity at its limit.

• If za(ts) > 0 and ża(t) > −żrmax− żd(t), the case is the same as the previous
one except for the fact that the velocity limit has not been reached yet.
Thus, z̈a(t) is taken as its lower limit to make a full downward acceleration.

Concisely, the decision process is written in mathematical terms as:

z̈a =

z̈rmin − z̈d(t) if za(t) > 0 ∧ za(ts) > 0 ∧ ża(t) > −żrmax − żd
z̈d(t) if za(t) > 0 ∧ za(ts) > 0 ∧ ża(t) ≤ −żrmax − żd
z̈rmax − z̈d(t) if za(t) > 0 ∧ za(ts) ≤ 0.

(4.13)

The last part of the procedure requires a double integration to get (za(t), ża(t)).
The initial conditions are the relative position and velocity measured at t0.

4.3 Quasi time-optimal

In this section, the quasi time-optimal control for trajectory generation is pre-
sented. The double integrator is the basic model for several real systems, such as
electrical and mechanical systems. Therefore, the stabilization of the quasi time-
optimal control of a double integrator has been widely studied in the literature.
When designing controllers for these systems, in light of saturation, quite often

4.3 Quasi time-optimal 93

one seeks for solutions of the bang-bang or time-optimal types, so that the control
input authority is fully exploited most of the time. These considerations place
the basis for the development of the quasi time-optimal control law to generate
the reference landing trajectory. The control effort is named u, which is the accel-
eration command to be integrated twice to get the landing path for the follower
drone.

Definitions

Let M > 0 and m < 0 denote two real numbers. In what follows, satMm denotes
the saturation function defined on R by

satMm (x) =

M x ≥M

x if x ∈ (m,M)

m x ≤ m

(4.14)

Remark: if m = −M the saturation function is denoted by satM(x).
Also define the discontinuous signMm function as follows:

signMm (x) =

M x > 0

0 if x = 0

m x < 0.

(4.15)

Algorithm

Since a double integrator is a linear system, several techniques are suitable for
control design. Particular efforts have been placed in the design of controllers
that explicitly consider the saturation phenomenon. Considering the second-order
integrator

ẍ = u, (4.16)

with the bound constraints as previously, i.e., m ≤ u ≤ M . As stated in [21] the
time-optimal control associated with this system that takes x to zero in minimal

94 Digital implementation

time can be written as

u (x, ẋ) = signMm

(
−
(
x+ ẋ|ẋ|

2a

))
, a =

M if x ≥ 0

−m if x < 0
(4.17)

This feedback law is discontinuous at points (x, ẋ) where x+ ẋ|ẋ|
2a = 0 and also on

the line x = 0.
It is in particular discontinuous at the desired equilibrium point (x, ẋ) = (0, 0).
As pointed out before, the advantage of having a locally Lipschitz (instead of
a discontinuous, bang-bang) feedback consists in better robustness to noise and
disturbances; moreover, in a neighborhood of the origin it is desirable to have a
linear control law in order to have at least local exponential stability.
In order to ensure continuity one may consider the following approximation,

u (x, ẋ) = satMm

(
−Kp

(
x+ ẋ|ẋ|

2a (x, ε)

))
, (4.18)

where Kp plays the role of a “ proportional gain ”, with

a (x, ε) = M −m
2 + M +m

2 sat1
(
x

ε

)
, (4.19)

and ε a small positive number.
Note that a (x, ε) is constant and equal to M in the case when M +m = 0, hence
with symmetric saturation levels.
Now, a shortcoming of the above approximation is that it does not yield a (local)
rate of convergence uniformly as fast as exponential, due to the quadratic velocity
correction term involved in the time-optimal feedback law. In [21] this issue is
taken care of by adding a complementary linear velocity term as follows:

u (x, ẋ) = satMm

(
−Kp

(
x+ ẋ|ẋ|

2a (x, ε)

)
−Kvẋ

)
, (4.20)

with Kv > 0 playing the role of a “ derivative gain ”. Rearranging (4.20) it is
possible to write:

u (x, ẋ) = satMm

(
−Kp

(
x+ ẋ

(
|ẋ|

2a (x, ε) + Kv

Kp

)))
, (4.21)

4.3 Quasi time-optimal 95

At this point, one aims to benefit of the properties of both control theories, so the
Lipschitz nonlinear control law and the local linear one can be blended by choosing
the maximum value between |ẋ|

2a(x,ε) and Kv
Kp

. This is obtained by introducing a
maximum function

γmax = max
((

|ẋ|
2a (x, ε)

)
,
Kv

Kp

)
. (4.22)

In order to reduce the computational effort, the generic maximum function max {a1, a2}
can be approximated as

n
√
a1n + a2n,

with n a positive value greater than one.
Applying this property it is possible to rearrange equation (4.22) as follows

γmax = n

√√√√(|ẋ|
2a (x, ε)

)n
+
(
Kv

Kp

)n
. (4.23)

Indeed, the linear approximation of the above feedback at the desired equilibrium
(x = 0, ẋ = 0) is the PD controller

u (x, ẋ) = −Kpx−Kvẋ

whose proportional and derivative gains, Kp and Kv, can be determined by ap-
plying classical rules of linear control theory. Then, the designed control law is
Lipschitz continuous, ensuring global convergence, and is a quasi time-optimal
control of the double integrator. However, in a neighborhood of the origin the
above nonlinear control law can induce a highly oscillatory behaviour; hence, it is
advisable to introduce a local linear feedback inducing a critically damped local
response. For instance, the choice

Kv = 2
√
Kp (4.24)

yields two closed-loop poles equal to −
√
Kp and ensures a critically-damped re-

sponse with no overshoot. Thus, combining equation (4.24) with equation (4.21),

96 Digital implementation

the nonlinear quasi time-optimal control law can be written as

u (x, ẋ) = satMm (−Kp (x+ ẋγmax)) =

= satMm

−Kp

x+ ẋ

 n

√√√√√(|ẋ|
2a (x, ε)

)n
+
 2√

Kp

n

 . (4.25)

Given the landing objective named in equation (3.2) for the landing purposes it
is clear that

x = Df − (Dt − εD) = ep,

ẋ = Ḋf − Ḋt = ev.
(4.26)

Recalling the double-order integrator definition in equation (4.16), in order
to improve local convergence another term must be included in equation (4.25),
when tracking a varying reference trajectory is required. See [20].
This additional term is simply the acceleration of the reference to follow ur, that
is the target drone vertical acceleration for this problem.

ur = D̈t. (4.27)

From equations (4.16),(4.26) it can be proved that

D̈f = D̈t + u = u+ ur. (4.28)

Finally the overall acceleration command for the follower, resulting from the quasi
time-optimal non linear state feedback control law for landing trajectory genera-
tion, is

ac (ep, ev) = ur + u =

= D̈t + satMm

−Kp

ep + ev

 n

√√√√√(|ėv|
2a (ep, ε)

)n
+
 2√

Kp

n

 .
(4.29)

Then, the reference landing trajectory zdf for the follower is computed by
means of a double integration of the acceleration command ac.

Chapter 5

Simulation results

In this chapter, the simulation results for the landing maneuver are shown, ac-
cording to the control algorithm embedded in the trajectory generation module.
The two multirotors are assumed to be quadrotors. In simulation environment
the two quadcopters involved in the air-to-air landing maneuver are identical,
because the goal is just to analyze and verify the efficiency of both algorithms.
For the sake of simplicity, the models of the two UAVs refer to the aerodynamic
multi-body model described in details in Chapter 2. The maneuver is undertaken
just in the vertical direction, hence no in-plane drag force arises even though each
rotor thrust of the follower is influenced by its descent flight. According to the
conclusions stated in Section 2.7.3 about the two drag models proposed, both
of them will show the same aerodynamic effects for a vertical flight, hence each
model accurately predicts the follower performance.

The simulations are performed in ideal and non-ideal conditions; in this latter
case reasonable measurement noise is added and the set-point is discretized. In the
last part of the chapter, some considerations are made about differences between
the two cases.

98 Simulation results

5.1 Simulation setup

In this section, the trajectories commanded to the two drones are delineated. Fur-
thermore, the conditions of the simulations are described.

The target is asked to perform a vertical oscillating trajectory, i.e.:

Nt = 0

Et = 0

Dt = A sin
(

2πt
τ

)
+ ht

(5.1)

where A = 0.05m is the amplitude of the oscillation, τ = 9 s the period of the
oscillations and ht = −2.5m the mean altitude.
On the other hand, the follower climbs to hf = −4.5m and then it receives as
in-plane set-point:

Nf = Nt

Ef = Et.
(5.2)

Thereafter, when it is safe, it starts to land.
For the sake of clarity, all the plots presented start at the time t0, so that take-off
and initial positioning are cut away from the representation.

Firstly, both algorithms are simulated in ideal conditions. Secondly, two actions
are taken to perform simulations that are as close as possible to reality, namely:

• discretize the set-point at 10Hz

• add white noise to the state estimate feedback, to reproduce real sensors
measurements. Table 5.1 shows the estimated standard deviation of the
measurement noise.

For what concern safety procedures, recalling Section 3.3, the averaging time is
Ta = 10 s, whilst the monitoring time for the average errors is Tm = 5 s. Instead,
the bound for in-plane synchronization is ε = 0.05m, this value is chosen to have
the follower safely inside the landing pad area (see Section 6.2).

5.2 Three-states bang-bang 99

Quantity Standard deviation Unit of measure
n 0.001 m
e 0.001 m
d 0.01 m
ṅ 0.01 m/s
ṅ 0.01 m/s
ṅ 0.02 m/s
φ 0.1 deg
θ 0.1 deg
ψ 0.1 deg
p 0.1 deg /s
q 0.1 deg /s
r 0.1 deg /s

Table 5.1: Standard devation of measurement noise.

Parameter Value Unit of Measure
z̈rmax 0.001 [m/s2]
z̈rmin -0.05 [m/s2]
żrmax 0.05 [m/s]

Table 5.2: Three-states bang-bang parameters.

5.2 Three-states bang-bang

In the bang-bang control algorithm just three parameters need to be set to have a
safe and slow descent. The maximum and minimum vertical acceleration limits are
definitely responsible for the landing trajectory. Imposing a small value for z̈rmax,
the decision process forces the follower to decelerate earlier. Otherwise, with a
large value, there will be a strong brake just when the follower is close to the
target. On the other hand, the downward acceleration limit z̈rmin determines how
fast the maximum downward velocity will be reached. Specifically, the velocity
limit żrmax has been chosen to have a slow descent. In Table 5.2 the selected
parameters are shown. The target acceleration feedback z̈d necessary to compute
the relative acceleration z̈a (see equation (4.13)) is provided by the quadrotor
multi-body model referred to the target, implemented in Dymola [3].

100 Simulation results

Figure 5.1: Follower, target and desired altitude (bang-bang), ideal case.

Ideal environment simulation

In Figure 5.1, one can see the follower and target down position, as well as the
final desired altitude for the follower, namely Dt − εD. The vertical lines indicate
key time instants of the procedure, precisely:

t0 : already described in Section 3.3, is the start time of the landing maneuver.

t1 : is the time instant in which the safe flag assumes unit value for the first time.

t2 : is the first time in which the relative position set point za computed in the
landing algorithm is less or equal to zero.

The time necessary to complete the maneuver, called tgo, is:

tgo = t2 − t1 = 38 s.

5.2 Three-states bang-bang 101

The control variables computed by the algorithm are depicted in Figure 5.2. The
relative trajectory za starts at a value equal to za(t1) = |Df | − |Dt| − εD, in this
way the follower will stop the maneuver at za(t2) = |Dt| + εD. Moreover, in the
three plots is clearly visible the influence of the target motion, in this case oscil-
lating. The algorithm is clearly able to converge to the target, by means of a slow
and safe descent trajectory. The guidance law, thanks to the target acceleration
feedback, reflects the target motion onto the velocity and position set-points of
the follower, generating a landing trajectory which perfectly matches the desired
altitude at the end.

Non-ideal environment simulation

As already mentioned, the second simulation environment analyzed is built con-
sidering discrete set-point and white noise as disturbance. The reference position
is computed through a discrete time double integration on z̈a, making use of back-
ward Euler method.
In Figure 5.3, the landing maneuver with these changes is shown. Looking at
Figure 5.4, one can clearly see the effect of noisy estimate on the control vari-
ables, especially acceleration and velocity. The main difference with respect to
the ideal case is in terms of the time of descent, namely tgo = 23 s. The reason
lies in the difference between the initial conditions. Even though the standard
deviation of the white noise added to the position and velocity estimates is small,
when the control law is switched on by the safety flag, the initial conditions for
the double integration are noisy enough to affect the algorithm convergence time.
The generated trajectory has a very small slope, due to the value assigned to ve-
locity and acceleration limits, listed in Table 5.2. Although the difference in the
initial conditions is not so relevant, the time needed to reach the final conditions,
having a small acceleration can significantly change. This reflects the possibility
to have a faster or slower descent trajectory, according to the values of position
and velocity errors when the descent starts. In particular, the velocity error is the
most influential term: comparing Figure 5.4(b) and Figure 5.2(b) one can notice
that the initial value of ża not only changes in value, but also in sign.

Secondly, the follower trajectory after t2 does not precisely match the desired
altitude (dashed line) several times more than in the continuous case. However,

102 Simulation results

(a) Relative position, za

(b) Relative velocity, ża

(c) Relative acceleration, z̈a

Figure 5.2: Control variables (bang-bang), ideal case.

5.3 Quasi time-optimal 103

Figure 5.3: Follower, target and desired altitude (bang-bang), non-ideal case.

these crossings are not affecting the effectiveness of the algorithm since they are
of negligible entity.

5.3 Quasi time-optimal

The Quasi time-optimal algorithm relies on many parameters, hence a perfor-
mance investigation is necessary. At first saturation levels M and m must be
defined, as well as the neighborhood ε of the desired position x = 0 in which the
switching function a (x, ε) makes the control law Lipschitz. When being close to
the landing pad, the follower must track any target vertical motion. Then, a fast
response with the maximum upward acceleration is desired whenever the target
moves up. In that way the follower would not hit the target on its landing pad.
This stringent requirement is the reason for choosing ε as small as possible.

104 Simulation results

(a) Relative position, za

(b) Relative velocity, ża

(c) Relative acceleration, z̈a

Figure 5.4: Control variables (bang-bang), non-ideal case.

5.3 Quasi time-optimal 105

It follows that the maximum upward acceleration m (minimum saturation level
according to FE) must be larger. Instead, the maximum downward acceleration
must be small to have a safe and slow descent, so to have the least dangerous
possible impact with the landing pad.

5.3.1 Sensitivity analysis

The most arduous choice regards Kp. Recalling equations (4.16), (4.25) it is clear
that the proportional gain plays the role of the natural frequency of the double
integrator, while Kv is responsible of the damping in the control law. The relation
between critical damping and natural frequency in a second order system

ẍ+ 2ξωnẋ+ ω2
nx = 0

is the same provided by equation (4.24) to ensure a critically damped local re-
sponse.
A performance analysis is required on global convergence (arrive close to the target
without overcoming it in a safe manner, in reasonable time) and local convergence
(track any target vertical motion when being close to it) of the quasi time-optimal
algorithm.

The QTO control should decrease both position and velocity errors smoothly,
avoiding the bouncing around the desired equilibrium (x, ẋ) = (0, 0). Once it has
been reached, hence ep = ev = 0, the acceleration command u will be zero.
However, a null acceleration command may occur even before reaching the equi-
librium, if position and velocity errors compensate each other, i.e.:

ev = −

√
Kp

2 ep. (5.3)

In this situation, if
√
Kp < 2, the velocity error is lower than the position one.

According to this consideration, one may seek to set Kp very low, but this choice
has its drawbacks too. When position and velocity terms compensate each other
within the control law (equation (5.3) is verified), for a given position error close
to zero, there could be some residual velocity error, depending on the value for

106 Simulation results

Figure 5.5: Null acceleration command iso-lines (QTO).

Kp adopted in the algorithm. See Figure 5.5.

With a given small velocity error, the smaller is the Kp, the larger is the position
error.
From this first observation, one may conclude that a small Kp frequently provides
a null acceleration command during the descent, even when the follower has just
started the landing maneuver, but it is still far from the target.
On the contrary, with a given small position error, the larger is the proportional
gain, the larger is the velocity error.
Then, it is possible to state that when coming closer to the target, a high Kp may
give rise to a null acceleration command with large velocity error, resulting in a
continuously bouncing motion of the follower.
Now let’s consider separately the position and velocity errors contribution to the
control law, and call them

up = −Kpep, (5.4)

uv = −2
√
Kpev. (5.5)

When u ≈ 0 these contributions are the same but opposed in sign

up = −uv.

5.3 Quasi time-optimal 107

(a) Position error term (b) Velocity error term

Figure 5.6: Position and velocity errors contribution to acceleration command
(QTO).

It is possible to compare the position and velocity errors whenever the accelera-
tion command is null and so, when both contributions compensate each other.
From Figures 5.6(a), 5.6(b) it is clear that a control law with Kp < 1 provides
very weak control efforts up and uv, regardless of both errors. This means that
u = 0 occurs many times during the descent and that the local convergence will
be reached in an infinite time, confirming what previously stated. On the other
hand, Kp ≥ 1 provides larger slope of the control efforts with respect to position
and velocity errors. This means that a null acceleration command is given only
when the follower is close to the target, resulting in a faster local convergence.
There is a drawback of choosing a much large Kp. When being close to the target
(ep ≈ 0), the control effort up is high. It follows that to have a null acceleration
command, a consistent velocity error is induced. The control law aims to mini-
mize the latter with a significant control effort uv, and later on, when the next
null acceleration command occurs, there is still a residual position error. This
phenomenon happens continuously: while the control aims to minimize one of the
errors, the other one increases, and viceversa.
That is the cause of the bouncing motion around the equilibrium point when
adopting large Kp values.
From this result one may conclude that Kp ≥ 4 provides a faster descent rate
(u = 0 only close to the target), but makes the follower bounce locally around the
target, whereas Kp < 1 cause a slow descent with no local convergence in a finite

108 Simulation results

time.

Hence it is reasonable to conclude that

1 ≤
√
Kp < 2 (5.6)

is the acceptable range in order to have a safe, smooth descent in a reasonable
time and a good local convergence of position and velocity errors.

A set of simulations were performed to understand which is the most suitable
Kp ensuring the satisfactory behavior. In reality, accelerometer measurements of
a flying vehicle are very noisy and unavailable in real time to be used in feedback.
As a consequence, referring to equation (4.25), the target acceleration D̈t, i.e. ur,
will not be used when analyzing the performances of the QTO algorithm. Finally,
the QTO control has been tuned assuming that

ur ≈ 0, (5.7)

hence

ac (ep, ev) = u. (5.8)

In Figures 5.7(a), 5.7(b),5.7(c), 5.7(d) the envelope of position and velocity er-
rors during the landing maneuver is shown. According to previous statements,
when using large proportional gains, the local convergence is affected by bouncing
effects. See figures 5.7(a), 5.7(b). The error envelope revolves around the equilib-
rium point, just crossing it without reaching it.

Making use of a smaller Kp instead increases the local convergence. Looking at
Figure 5.7(d) it is possible to notice that the error path crosses many times the
u = 0 iso-line due to errors compensation, having null acceleration commands
even when the follower is far from the target.
At the final condition the limits of a control law with Kp = 1 are clear: (ep, ev)
is closely surrounding the equilibrium point, never reaching it. This behavior re-
flects the phase lag between target and follower trajectories.

5.3 Quasi time-optimal 109

(a) Kp = 22

(b) Kp = 1.52

110 Simulation results

(c) Kp = 1.252

(d) Kp = 1

Figure 5.7: Errors evolution with different Kp (QTO).

5.3 Quasi time-optimal 111

Figure 5.8: Landing trajectories (QTO).

The best performance is achieved with Kp = 1.252 as shown in Figure 5.7(c).
The evolution of (ep, ev) crosses the u = 0 iso-line having always a non-null accel-
eration command until the follower get close to the target. Many null acceleration
command can be found in the final condition, once the control law has minimized
both position and velocity errors, reaching the local convergence. The follower
is properly tracking the target drone now: global and local convergence are fully
satisfied. Finally Figure 5.8 compares the landing trajectories of each simulation,
showing in details all the peculiarities due to different choice of Kp, from the
bouncing effect and the phase lag up to the local convergence satisfied. The com-
promise between the performances shown in Figures 5.7(d), 5.7(c) and Figure 5.8
dictates the choice for the proportional gain. Kp is set to 1.152.
Referring to equation (4.23) n is high enough to let the nonlinear part of the
control law work just during the initial part of the descent. In Table 5.3 the con-
trol law parameters used in this sensitivity analysis are reported, together with
the optimal Kp found. In the next sections, the same parameters are adopted to
simulate the maneuver.

112 Simulation results

Parameter Value Unit of measure
M 0.15 [m/s2]
m -0.6 [m/s2]
ε 0.01 [m]
Kp 1.3225 [1/s2]
n 4 [−]

Table 5.3: Parameters of quasi time-optimal algorithm.

Ideal environment simulation

As previously mentioned, the reference trajectory is computed integrating twice
the acceleration command u, with no ur in feedback. In Figure 5.9 the target
and follower vertical positions are shown, along with the follower desired altitude,
referred to as Dt − εD.
Unlike the case of the three-states bang-bang algorithm, the quasi time-optimal
control law is continuously fed by the position and velocity errors, so the definition
of t2 is slightly different. In this case t2 is the first time in which the follower has
arrived to the desired vertical position, namely

Df = Dt − εD.

As depicted in Figure 5.9, now the time necessary to reach the local convergence

tgo = t2 − t1 = 10 s. (5.9)

It is worth noticing that the small phase lag between target and follower position
may be caused by the combination of QTO control algorithm performance and
flight control unit delay implemented in the model. This negligible phase lag can
be seen in Figure 5.10 too. In Figure 5.11 the error between the landing set
point and the target altitude is illustrated, with a close zoom in the final part
of the simulation. At the end, the reference trajectory seems to have a small
delay, resulting in small and acceptable error of less than 1 cm. The acceleration
command depicted in Figure 5.12 clearly oscillates around its zero value at regime,
simply due to the fact that is not provided with the target acceleration ur. That is
the main cause of the small delay between reference landing trajectory and target
motion.

5.3 Quasi time-optimal 113

Figure 5.9: Follower, target and desired altitude (QTO), ideal case.

Figure 5.10: Follower and target velocity (QTO), ideal case.

114 Simulation results

Figure 5.11: Landing trajectory error (QTO), ideal case.

Figure 5.12: Acceleration command (QTO), ideal case.

5.3 Quasi time-optimal 115

Figure 5.13: Follower, target and desired altitude (QTO), non-ideal case.

Non-ideal environment simulation

Now the same trajectory illustrated in the previous section is simulated suppos-
ing to have real sensors aboard of the drone, providing measurements and noisy
estimates regarding the state of both UAVs. The reference position is computed
through a discrete time double integration on u, not having the target acceleration
as a feedback again and making use of backward Euler method. Clearly the
time to reach the local convergence is slightly increased. Now

tgo ≈ 11 s.

From the results illustrated in Figures 5.13 and 5.15, the algorithm is able to reject
the noise disturbance included in the model and the air-to-air landing maneuver
is successfully performed. Instead, Figure 5.14 shows the large impact of having
noisy measurements for both drones velocity. The velocity error is not always
minimized because the acceleration command, depicted in Figure 5.16, is fed with
both the position and velocity noisy measurements, and results to be very different
from the ideal one (see Figure 5.12). For this reason, the velocity feedback may
give some problems when the noise is added to the estimate. One may obviously

116 Simulation results

Figure 5.14: Follower and target velocity (QTO), non-ideal case.

Figure 5.15: Landing trajectory error (QTO), non-ideal case.

5.3 Quasi time-optimal 117

Figure 5.16: Acceleration command (QTO), non-ideal case..

assert that also this control law, as the three-states bang-bang, is more sensitive
to the velocity noisy data instead the position ones, even if the time to descent tgo
is not so affected. It is worth reminding that the global convergence of the control
law is provided by the nonlinear term in equation (4.21), which is relevant in the
initial part of the maneuver. Instead, close to the target, the local convergence
is provided only by the linear term ensuring the critical damping. As a results,
dealing with significant velocity errors (Figure 5.14) and negligible position ones
(Figure 5.13), the guidance law rejects the noise disturbance in a longer time with
respect to the ideal case.

118 Simulation results

5.4 Conclusions

In this chapter, the results of simulations in ideal and non-ideal conditions have
been presented. As expected, there are some differences between the two cases.

Looking at the three-states bang-bang algorithm, one can notice that the time
to perform the landing maneuver decreases when noise and discrete set-point are
considered. This is imputable to the noise added to the state estimates, specif-
ically for position and velocity. The actual state measurements are used only
as initial conditions for the double integration, and the open-loop nature of the
algorithm means that the added noise could lead to faster or slower descent tra-
jectories, according to the random value assumed by the velocity error at the start
of the descent. Even this may be seen as a disadvantage, the control law rejects
this initial perturbation and provides always a safe, neither steep nor aggressive
landing maneuver.
On the other side, QTO algorithm does not show the same drawback but the
trajectory generated is steeper and faster than the one provided by the first guid-
ance law. Unfortunately, the velocity error is not fully compensates locally when
approaching to the target, and, if one has to deal with greater noise standard
deviations, the landing may be aborted. On the other hand, if the landing ma-
neuver happens without any wind-up behavior, the time needed to conclude the
procedure is almost equal in the two cases.
One may argue that the saturation levels of QTO, M and m, and the constraints
of three-states bang-bang, żrmax, z̈rmin and z̈rmax, play a crucial role. Unfortu-
nately, these limits are not comparable. As a matter of fact, in the first algorithm
z̈rmin and z̈rmax are the only possible values of the acceleration used to compute
the position set-point, while in the second one the acceleration could assume each
value inside the range [m;M]. Furthermore, in the three-states bang-bang the
decision process is based on a future test trajectory, this implies that the lower is
z̈rmax the earlier the upward acceleration starts and the longer is the time needed
to perform the landing (see Section 4.2). In addition, the QTO guidance law is
a closed-loop nonlinear state feedback control, so the acceleration command con-
tinuously feels the position and velocity errors during the landing, and it does
everything to rapidly decrease the errors. The time tgo mainly depends on the de-
scent saturation level M , which it cannot be small as z̈rmin. In fact, the nonlinear

5.4 Conclusions 119

part of the control law prevails on the linear one when the follower is far from the
target, and the acceleration reaches its maximum value. Truly, both saturation
levels must be chosen to guarantee the local convergence too, whenever the target
trajectory is vertically oscillating.

Chapter 6

Experimental activity

This chapter is divided into three sections. In the first one the system archi-
tecture is presented: firstly the hardware used and then the respective software
adopted. The central section illustrates the design constraints for the landing pad
construction, and the adopted solution to face both mechanical and aerodynamic
requirements is proposed. The last part of the chapter shows the experimental
results of the air-to-air automatic landing between two multirotors, making use
of both guidance laws previously tested in simulation environment. The chapter
ends with the evaluation of the experimental results, comparing the performance
of the two guidance laws.

122 Experimental activity

6.1 System architecture

6.1.1 Hardware

The hardware used to run the system is heterogeneous and here is provided a
detailed description of the machines involved in the project.

6.1.1.1 Ground station

A desktop pc, whose characteristics are listed below, work as ground station:

• Processor: Intel Core(TM) i56500 CPU @ 3.20GHz

• Memory: 16 GB

• Storage: 230 GB

• Network: Intel Gigabit CT Network Adapter

On this machine, we will run an Ubuntu virtual machine which has the following
specifications:

• Processor: 1 Core

• Memory: 4 GB

• Storage 25 GB

• Network: Virtual adapter

6.1.1.2 Motion capture

The motion capture system is Motive Optitrack [23], we use eight Opitrack Prime
13 cameras [24], arranged on a square. The cameras define a flight volume of
25m3 and the drones can fly without obstacles inside it, see Figure 6.1.
The cameras are connected to a Netgear Prosafe 28PT GE POE [25] switch
through Gigabit Ethernet cables.
In order to be seen by the Optitrack system, every drone must be equipped with
markers set in different configurations, which differentiate the drones from each
other.

6.1 System architecture 123

Figure 6.1: Photo of the cage with Optitrack cameras on top

6.1.1.3 Flight control unit

The flight control unit (FCU) adopted is the Pixfalcon, which belongs to the
family of the Pixhawk [26]:

• Main SystemonChip: STM32F427

– CPU: 180 MHz ARM Cortex M4 with single precision FPU

– RAM: 256 KB SRAM (L1)

• Failsafe SystemonChip: STM32F100

– CPU: 24 MHz ARM Cortex M3

– RAM: 8 KB SRAM

• Wifi: ESP8266 external

• GPS: U-Blox 7/8 (Hobbyking) / U-Blox 6 (3D Robotics)

• Connectivity:

– 1x I2C

– 1x CAN (2x optional)

– 1x ADC

– 4x UART (2x with flow control)

– 1x Console

124 Experimental activity

– 8x PWM with manual override

– 6x PWM / GPIO / PWM input

– S.BUS / PPM / Spektrum input

– S.BUS output

6.1.1.4 Companions

Intel Edison The companion computers are of two types. The first kind
is the Intel Edison [27], which is a general purpose computer with the following
specifications:

• Atom 2Core (Silvermont) x86 @ 500 MHz

• Memory: LPDDR3 1 GB

• Storage: 4 GB EMMC

Raspberry Pi Zero The second one is Raspberry Pi Zero [28], with the
following specifications:

• Processor:

– Broadcom BCM2835

– contains an ARM1176JZFS (ARM11 using an ARMv6architecture core)

• Memory: 512MB LPDDR2 SDRAM

• USB OnTheGo port

• Mini HDMI

• 40pin GPIO header

• CSI camera connector

6.1.1.5 Drones

The two multirotors involved in the mission adopt the same general configuration,
but have different hardware. Indeed, they are equipped with a flight control unit
connected to a companion microcomputer by the serial port. The microcomputer
communicates with the ground station through the Wi-Fi connection.

6.1 System architecture 125

(a) Ant-1 drone. (b) Hexa drone.

Figure 6.2: UAVs adopted in the flight tests.

Item Value Unit of measure
Rotor Radius 35 mm
MTOW 0.200 kg
Frame Diagonal 160 mm

Table 6.1: Ant-1 model main parameters.

Ant-1 This drone is a quadrotor in X-configuration, i.e.. the principal axes
of body frame are not aligned with motor arms, and it is the follower drone in
the mission. The multirotor is illustrated in Figure 6.2(a). The frame is cut from
a laminated carbon fiber plate of 3mm thickness. It is equipped with Raspberry
Pi Zero and PixFalcon. The main parameters of the machine are summed up in
Table 6.1.

Hexa This drone is an exacopter, i.e.. it has six coplanar rotors at 60o one
from the adjacent ones, see Figure 6.2(b). The frame is cutted from a laminated
carbon fiber plate of 3mm thickness too. It is equipped with Intel Edison and
PixFalcon. It refers to the target UAV in the operation, and the main parameters
of the drone are listed in Table 6.2.

126 Experimental activity

Item Value Unit of measure
Rotor Radius 100 mm
MTOW 0.9 kg
Frame Diagonal 400 mm

Table 6.2: Hexa model main parameters.

6.1.2 Software

We now list the software adopted to execute the algorithm in a real environment.
The principal software used to manage the distributed architecture is ROS Ki-
netic Kame [29]. ROS is a robotic middleware with a structure which is mainly
publisher-subscriber which can manage more machines in a distributed environ-
ment. The central part of the ROS architecture is a node called ROS core, which
manages the topics of the system and the subscriptions. The ROS core offers also
other functionalities, such as the Parameter Server or the possibility to advertise
services. The Parameter Server is a central infrastructure, which is responsible
for storing configuration parameters loaded by the nodes of the system. These
parameters can be retrieved by other nodes and used if necessary. Instead, a ROS
service is a sort of remote function call. One node can advertise the service, which
can be called by any other node. The call is synchronous, so the caller is blocked
until the caller has executed its callback function. The ROS architecture is based
on queues, threads and callback functions, but most of the provided tools hide
part of the implementations of the distributed environment.

6.1.2.1 Ground station

The ground station runs Windows 10 Pro [30] and the software used to virtualize
a Desktop machine is VMware [31]. On the virtual machine is installed Ubuntu
16.04 LTS [32] in order to run software needed and available only for Unix systems.

On Windows operating system we launch the Motive Optitrack software [23],
which allows to calibrate and control the cameras for position tracking. It then
provides the streaming of the positions of the markers identified by the cameras
and sends it to the Ubuntu operating system using a multi-cast IP address. Here,
the information is converted by a ROS node and sent through the ROS topics,
which are read by the drones. In this way, each drone knows exactly its position.

6.1 System architecture 127

This conversion node is an open source node called Mocap which can be found on
GitHub [33]. On Ubuntu side, we launch the ROS core, which manages all the
ROS nodes and topics.

6.1.2.2 Raspberry Pi Zero

The Raspberry Pi Zero executes a dedicated version of Debian operating system,
which is Raspbian. The version used is Raspbian Jessie 4.4 [34].

6.1.2.3 Intel Edison

The Intel Edison runs a version of Debian called Jubilinux, at version 0.1.1 [35].

6.1.2.4 Companions

Both companions, the Raspberry and the Edison, are provided with ROS Kinetic
and both have to execute some ROS nodes in order to communicate with the
other drones.

Both of them run Mavros nodes [36] which can be downloaded from GitHub
and manage the conversion of the information taken from the ROS topics to the
serial port and vice versa. Indeed, the ROS messages are converted into Mavlink
messages and sent through the serial port to the Pixfalcon autopilot. The same is
done for the Mavlink messages from the autopilot, which are published on ROS
topics.

The second kind of ROS node run by the companions is a custom consensus
node, which loads the desired trajectory and sends the next set point to the Mavros
node.

6.1.2.5 Pixfalcon

The Pixfalcon FCU is flashed with PX4 Pro Autopilot [37], an open source
firmware downloadable from GitHub. The release used is the v1.5.5.

6.1.2.6 Additional software

We use Matlab R2016B [12] to process the data, to plot the graphs and to validate
some theoretical results. This document is written in LATEX [38], while the
versioning control platform used are GitHub [39] and GitLab [40].

128 Experimental activity

6.2 Landing pad design

It is clear that make the follower UAV land on the target one is not a straightfor-
ward issue. The practical execution of the air-to-air automatic landing maneuver
does not deals with only the trajectory generation issue, but also with the neces-
sity to have a support which land onto. For this reason, a landing pad is created
to assist in the procedure.

The design requirements are divided in two fields:

• mechanical,

• aerodynamic.

The mechanical ones are:

• avoid interference between the rotors,

• the structure must be stiff enough to withstand the impact at the touchdown
and support the follower weight,

• furthermore, it should be light, axisymmetric and of low height in order not
to affect the CG position of the target drone,

• the shape of the pad should be concave to keep the follower inside, once it
is landed. Moreover, this let the target maneuver safely once the land is
concluded.

On the other hand, in the final part of the approach the aerodynamic requirements
come into play, namely the follower should stop far enough from the target:

• to avoid “ground effect” caused by the pad surface,

• to minimize the aerodynamic disturbances due to the propellers wake.

As always, the requirements are conflicting, so a compromise is needed. The
mechanical requirements are easily satisfied by realizing the structure thanks to
the use of 3D printing. The material used is polylactic acid (PLA), a common
commercial, low cost, biodegradable and bio-active material. This guarantees very
light structure, considering also the low weight of the follower UAV (see Section

6.2 Landing pad design 129

(a) Front view. (b) Side view.

(c) Top view.

Figure 6.3: Landing pad CAD assembly.

6.1.1.5), and availability. The height selected is about 65mm, giving priority to
maintain the CG of the target drone as close as possible to the nominal position.

It is necessary to describe the final part of the maneuver to address the aero-
dynamic interaction problem. For clear safety reason, the land should happen
in the most safe way, neither dangerously hitting nor bouncing onto the landing
pad: the follower should stop and hover slightly above the pad, then the thrust-
off command is sent and the follower lands. While hovering above the pad, the
wake exiting from the follower rotors impinging on the pad surface is a source of
disturbances for the target. On the other hand, when being close to the platform,
the “ground effect” may influence the follower actual position, destabilizing the
final crucial operation. These effects are limited by piercing the surface. Their
minimization is improved by larger holes, which let the follower propellers wake
flow downward. Due to the axis-symmetry of the pad, this airflow equally affects
the thrust of each rotor of the target, according to what shown in Section 2.5.2,
reducing the disturbances caused by the airflow. The landing pad designed is
depicted in Figure 6.3.

130 Experimental activity

6.3 Experimental results

In this last section, experimental results are shown. In Section 5.1 the target was
asked to perform a vertical oscillatory motion just to have a fictitious represen-
tation of the perturbed flight condition during the whole operation. In the flight
test, on the contrary, the target drone is asked to stay in hovering at constant
altitude. For what concerns the follower, the maneuver is exactly equal to the one
simulated, i.e.: take-off, positioning above the target, move to the target in-plane
position and land on it.

The trajectory generation module needs both position and velocity of the two
multirotors and the acceleration of the target one. Unfortunately, the measure-
ment of acceleration is too noisy to be used in the landing control law (see also
Section 5.3.1). So, the target acceleration is assumed to be null, during the whole
procedure. Instead, the velocity estimate, available on-line, comes from an on-
board filter, fusing the position measurements and the IMU data. Lastly, the
position measurement is directly taken from the motion capture system.

In the figures regarding the flight tests, a time t3 is indicated. It is defined as
the time instant in which the thrust-off command is given.

6.3.1 Three-states bang-bang

In [2], the target platform motion was estimated using an UKF, assuming it is
sinusoidal. On the contrary here the position raw measurement is used to feed
directly the algorithm, together with the velocity estimate, obtained as described
above. The parameters of the algorithm are the one used in simulation environ-
ment, see Table 5.2. Since the acceleration of the target is not taken into account,
it results: z̈a = z̈r. Clearly, only z̈a is reported in Figure 6.6(c).

In Figure 6.4, the down position of the two drones are reported, together
with the desired final altitude. The time to complete the land is higher than in
simulation, i.e. tgo = 52 s. The reason lies in the absence of the acceleration term,
z̈d. Since the acceleration is bounded by the constraint values z̈rmin and z̈rmax],
the landing trajectory has a smaller slope so the maneuver will be slower and the
time-to-land will obviously increase. Additionally, it is evident that the target
drone is flying in a perturbed airflow field during the whole landing procedure.
Furthermore, the aerodynamic interaction between the two is visible in the final

6.3 Experimental results 131

Figure 6.4: Follower, target and desired altitude (bang-bang), flight test.

part of the approach, where the target drone suddenly moves upward. The
maneuver is successfully completed even though the velocity estimates have a
little bias and are quite noisy, specially for the target multirotor. See Figure 6.5.
In Figures 6.6(a), 6.6(b) and 6.6(c), the control variables of the algorithm, za,
ża and z̈a are reported. They respects perfectly the theory illustrated in Section
4.2. It is evident that the integration of the acceleration without the target one
z̈d is smoother and devoid of oscillations. From Figure 6.6(c), one can see that
the downward and the null acceleration commands are given for a very limited
amount of time, while the deceleration one is prevailing during the descent. This
behavior perfectly reflects what explained in the theory and in the simulation, i.e.
a small value of z̈rmax implies the deceleration command is given earlier and for
a longer time. Now, looking to Figures 6.7 and 6.8, the reference position and
velocity are plotted. Referring to Figure 6.7, the aerodynamic effects described
in Figure 6.4 are once again evident, and when the target drone suddenly moves
upward the set-point adapts consequently. In Figure 6.8, the reference velocity
żr exceeds a little its maximum limit żrmax since the algorithm works in discrete
time. Comparing Figures 6.6(b) and 6.7 it is possible to observe the mismatch in
the sign of ża and żr respectively. This is caused by the large noise affecting the

132 Experimental activity

Figure 6.5: Follower and target velocity (bang-bang), flight test.

6.3 Experimental results 133

(a) za.

(b) ża.

(c) z̈a.

Figure 6.6: Three-states bang-bang control variables.

134 Experimental activity

Figure 6.7: Three-states bang-bang reference position, zr.

Figure 6.8: Three-states bang-bang reference velocity, żr.

velocity estimate of the target drone, reported in Figure 6.5. The advantage of
using only relative quantities and adding the target position zd just at the end, is
that this guidance law is unaffected by the unsatisfactory estimate of the target
velocity.
For what concerns the error monitoring, in Figure 6.9 the norm of the average
errors, ē, is reported in the time interval [t0; t3]. The dashed line indicates the ε
bound, described in Section 3.3. From the first time ē does not exceed the bound,
the means are monitored for the time interval Tm, indicated between the dotted
lines, and if they respect the ε limit, the safety flag switches on. The norm of
the average errors shows a clear tendency to go towards ever smaller values. In
addition, in the top-right part of the figure, the in-plane positions of the follower

6.3 Experimental results 135

Figure 6.9: Error monitoring procedure (bang-bang), flight test.

in the same time interval are plotted over the safety region. Lastly, an extract
of another test is reported in order to clarify the safety procedure in case of failed
synchronization. In Figure 6.10, one can see what happens when the safety flag
returns to zero value after the starting of the landing maneuver, i.e. the norm of
the actual in-plane position errors exceed the chosen bound. In this situation, the
set-point is “frozen”, namely it is assumed equal to the last valid value. This is
observably in the region between the dotted lines.

6.3.2 Quasi time-optimal

In the experimental tests of the quasi time-optimal algorithm, some problems
have been encountered, despite it perfectly works in simulation environment. The
major problem again is the velocity estimate of the target, because it is biased
and very noisy. Due to the closed-loop nature of the guidance law, receiving both
position and velocity errors in feedback, the convergence of the algorithm is not
granted. With this in mind one may seek to tune again the relevant parameters
of this guidance law, namely ξ, ε and Kp. Referring to the non-ideal environment

136 Experimental activity

Figure 6.10: Synchronization failure (bang-bang), flight test.

Quantity Standard deviation Unit of measure
ṅ 0.05 [m/s]
ė 0.05 [m/s]
ḋ 0.1 [m/s]

Table 6.3: Standard deviation of velocity estimate.

simulations performed in Chapter 5 the standard deviations of the white noise
related to velocity, listed in Table 5.3 can be rearranged to match the estimates
provided by the on-board filters. The new values assumed are listed in the fol-
lowing in Table 6.3. Then a Monte Carlo simulation of the landing maneuver
has been conducted on the controlled system with the uncertain values of the
parameters. By evaluating per each simulation the amount of time in which the
follower is located in the neighborhood of the desired position, namely Dt − εD,
the optimal parameters have been found. Moreover, for practical reasons, the
downward acceleration limit M has been reduced. The new parameters involved
in the control algorithm are listed in Table 6.4. After this additional tuning,
a flight test has been made. The designed maneuver is the same described in
Section 6.3.1. Because the landing reference trajectory is obtained by integrating

6.3 Experimental results 137

Parameter Value Unit of measure
Kp 0.89 [1/s2]
ξ 0.35 [−]
ε 0.027 [m]
M 0.05 [m/s2]
m -0.6 [m/s2]

Table 6.4: QTO new parameters.

twice the acceleration command, the noise affecting the velocity estimates enters
in the loop and degrades the performance of the algorithm. In Figure 6.11(a) the
acceleration command is reported. When the follower is close to the target the
acceleration terms related to position and the velocity errors often compensate
each other, resulting in the acceleration command crossing many times the zero
value. Recalling the definition of the acceleration terms declared in Chapter 5,
respectively up and uv, Figure 6.11(b) shows their anomalous behavior. Besides,
the position and velocity errors are not minimized at all. As a consequence, the
landing maneuver is not fully accomplished, and, the follower stops at a certain
altitude above the target as depicted in Figure 6.12(a). In Figure 6.12(b) it is
possible to see the nonsense values assumed by the target velocity estimate Ḋt,
which seems to stabilize around 0.1m/s, even if its altitude is almost constant.

6.3.3 Velocity estimate issue

This issue has been investigated by analyzing the target on board IMU measure-
ments when the target is still on ground. At the beginning, the follower is hovering
far from the target, and then moves above it. Look at Figure 6.13(a): until 300 s
the accelerometer measurement detects only the gravity field, but when the fol-
lower suddenly moves above the target, the acceleration sensor is influenced by
the follower’s propellers wake. Once the accelerations are integrated in the on
board filter, the drift in the velocity estimate arise, as shown in Figure 6.13(b).
That is the reason of the offset of the velocity estimate visible in Figure 6.12(b).
Since no other velocity estimator was available for this kind of tests, to overcome
this issue the algorithm has been modified to work without the target velocity.

138 Experimental activity

(a) Acceleration command.

(b) up, uv.

Figure 6.11: Acceleration command and up, uv (QTO), unsuccessful test.

6.3 Experimental results 139

(a) Position.

(b) Velocity.

Figure 6.12: UAVs position and velocity (QTO), unsuccessful test.

140 Experimental activity

(a) Accelerometer measure.

(b) Velocity estimate.

Figure 6.13: IMU measurements and velocity estimate of the on board filter.

6.3 Experimental results 141

Figure 6.14: Follower, target and desired altitude (QTO), flight test.

6.3.4 Final flight test

Another identical test has been conducted by imposing a null target velocity in
the control loop. Figure 6.3.4 depicts the altitude of both multirotors during the
landing maneuver. Now the air-to-air automatic landing has been successful. The
follower starts the descent at time t1 but after few seconds it has to face a sudden
synchronization failure. The locus of points of the in-plane position errors be-
tween the multirotors is depicted in Figure 6.3.4 as well as their average ē. With
this safety check it is clear now the whole safety procedure: even if the average is
acceptable, the safety flag is reset to zero whenever the follower exceeds the posi-
tion error bound; the follower stops the descent, positioning above the hexacopter
as expected. Looking at Figure 6.3.4 it can be appreciated that the acceleration
command is reset to zero during this time frame. Then, the position error be-
tween the reference landing trajectory and the target altitude is shown in Figure
6.3.4, where the stop of the descent is evident between 55 s 60 s. Referring again
to Figure 6.3.4, once the landing maneuver starts again, the follower approaches
to the target drone, and at time t2 it enters in the tolerance band εD.

142 Experimental activity

Figure 6.15: Error monitoring procedure (QTO), flight test.

Figure 6.16: Acceleration command (QTO), flight test.

6.3 Experimental results 143

Figure 6.17: Landing trajectory error (QTO), flight test.

Figure 6.18: Follower and target velocity (QTO), flight test.

144 Experimental activity

Similarly to what prescribed by the three-states bang-bang guidance law, after
t2 the landing set-point is fixed to the hexacopter altitude minus a positive toler-
ance, smaller than εD for practical reasons. Then, after waiting for the follower
to hover for 0.5 s inside the bound, the thrust-off command is sent. The evidence
of the touch down is clearly visible in the last seconds, looking at Figure 6.3.4.
Finally, it can be appreciated that the the whole landing maneuver lasts almost
23 s, due to the synchronization failure occurred soon after the start. Anyway,
if one considers just when the descent starts againg at 60 s, the descent time is
greater than the one predicted by the simulation results, hence tgo ≈ 15 s. As one
can imagine, this is obviously due to the reduction of the descent saturation level
M .

Figure 6.19 shows the key points of the maneuver.

(a) The two UAVs are taking-off.

(b) The follower is positioning above the target, waiting for synchronization.

(c) The follower is approaching the target.

(d) The follower is hovering inside the bound εD, waiting for thrust-off command.

(e) The thrust-off command is executed.

(f) The target drone is landing with the follower aboard.

6.3 Experimental results 145

(a) (b)

(c) (d)

(e) (f)

Figure 6.19: Air-to-air landing flight test.

146 Experimental activity

6.4 Conclusions

The three-states bang-bang control concludes the landing even though the accel-
eration z̈d is not considered. The actual position and velocity of the follower are
taken just as initial conditions for the double integration, while the target ones
are continuously used to generate the reference landing path. Since the velocity
estimate is significantly noisy the initial conditions can randomly vary, and, as a
consequence, the maneuver results to be slower than the simulated one. Instead,
the quasi time-optimal guidance law needs to be fed back by both position and
velocity errors during the landing maneuver. The problem of having noisy and
rough velocity estimates in the closed-loop has been analyzed and initially faced
by means of a new tuning of the control parameters via a Monte Carlo simulation.
In the first attempt, the descent was not even completed, so a test campaign to
identify the estimation problem regarding the target velocity has been conducted.
Once the problem has been identified and referred to the on board estimator of the
hexacopter, the algorithm has been modified and the task has been accomplished
successfully. One may conclude that both guidance laws have been satisfactory
for the landing purpose, providing the air-to-air automatic landing in two dif-
ferent manners. The three-states bang-bang algorithm generates a slow descent
trajectory, and the control variable are unaffected by the poor performance of
the on-board filters. On the contrary, despite the initial synchronization failure,
the QTO algorithm provides an higher descent rate to the landing trajectory,
remarking the time-optimality idea behind itself.

Chapter 7

Conclusions

In this thesis, the air-to-air landing maneuver for multirotor UAVs has been stud-
ied. The problem is of great interest in UAV operations, such as search and
rescue and surveillance. The purpose of the work was to simulate, to implement
and to experimentally validate a guidance law able to generate a landing reference
trajectory. Two different solutions were proposed.

The conducted activities start with an introductory chapter, in which the mod-
eling of a quadrotor is presented. Firstly, the formalisms and the classical aero-
dynamic theories for rotors, namely blade element theory, momentum theory and
dynamic inflow, are recalled. Secondly, the model is built with an object-oriented
multi-body approach, including the rotor aerodynamics, which influences thrust
and drag forces. Then, the model is imported in Simulink, in which the controller
and state feedback procedure is implemented, and a co-simulation is performed.
This chapter ends with the evaluation of the simulation results, along with the
experimental validation of the model.
In the third chapter, the air-to-air landing problem is introduced in general terms
and all the investigated algorithms are listed and briefly explained. Afterward, the
problem is formulated from a mathematical point of view. The adopted approach
is presented and motivated. In the last section, the two suitable control laws, a
three-states bang-bang and a quasi time-optimal one, are described.
In the fourth chapter, the digital implementation of the error monitoring module
and of the trajectory generation module is addressed. For what concerns the lat-
ter, the two algorithms proposed are described in details.
The fifth chapter deals with the simulation of the guidance laws. The simulation is

148 Conclusions

performed by means of the tool described in the first chapter, simply extended to
two UAVs. Initially, the desired trajectories are specified. To enhance the reality
of the simulation, white noise on estimates feedback and set-point discretization
are added to the model. Furthermore, in the case of the quasi time-optimal al-
gorithm, a sensitivity analysis, regarding the choice of the relevant parameters, is
performed and commented. Since only the Simulink model of the quadrotor was
available, the two UAVs simulated are identical. Hence, the performance of the
control laws are commented from a qualitatively point of view.
The final chapter reports the results of the experimental activity. At the begin-
ning, a detailed description of the system architecture is provided. In the middle
section, the landing pad design is shown. Finally, the flight test results for both
control laws are presented and commented.

The realization of the automatic air-to-air landing maneuver, has been an
enormous challenge. To help future developments, here some recommendations
are gathered:

• the velocity estimate is of crucial importance. Therefore, high precision
hardware is advised to obtain an higher quality estimator, e.g. IMU, when
fusing it with a motion capture system measurement in a Kalman filter.
Otherwise, one can filter the estimates afterwards.

• To complete the landing, a thrust-off command must be given. Hence, a
landing pad is needed to avoid collision between the drones (rotors) in the
case of not perfectly vertical land. Furthermore, the pad helps to keep the
follower UAV inside, when the target is maneuvering.

• The major problems encountered regard the communication network (ROS),
so it is suggested to find a lighter and more reliable middle software.

While working on this thesis, it was not sure that the results would be positive.
Since the feasibility of the air-to-air landing has been proven, the future works
can now focus on the improvement of performances. Some of the topics that is
worth to develop are listed.

• Firstly, a pre-processing of the acceleration data is needed to avoid drift in
velocity estimate. In alternative, the vertical velocity estimator could be
tuned to make it robust with respect to the follower wake disturbance.

Conclusions 149

• The relative navigation problem could be addressed by means of an onboard
camera, able to recognize a graphic pattern printed on the target drone, such
as a QR code. This would make the full procedure autonomous.

• The usage of a camera will also solve the problem of in-plane synchroniza-
tion. Otherwise, a consensus control law could be implemented to perform
independently the synchronization.

• The most interesting application of this work is the search and rescue oper-
ation. It is reasonable to imagine that a fixed-wing or a carrier multirotor
UAV will carry a certain number of lightweight sensors-equipped multirotors
from the base of (the) operation to the site of the emergency; then, they
will take-off, inspect the area, provide a first medical aid and come back
and land on the carrier. Finally, the drone will return to the base to let
the rescuers analyze the collected data and decide a rescue plan. Clearly,
a fixed-wind drone can not hover, therefore the landing procedure must be
executed while the carrier is loitering. Thus, in laboratory that real case
could be reproduced by sending a circular reference trajectory to the target
drone.

Bibliography

[1] W. Johnson, Rotorcraft Aeromechanics. Cambridge University Press, 2013.

[2] B. Hu, L. Lu, and S. Mishra, “Fast, safe and precise landing of a quadrotor
on an oscillating platform,” in American Control Conference, Chicago, USA,
2015.

[3] Dassault Systemes, “Dymola.” https://www.3ds.com/it/
prodotti-e-servizi/catia/prodotti/dymola.

[4] MathWorks, “Simulink.” https://www.mathworks.com/products/
simulink.html.

[5] G. Guglieri and C. E. Riboldi, Introduction to Flight Dynamics. Celid, 2014.

[6] G. J. Leishman, Principles of helicopter aerodynamics (second edition). Cam-
bridge University Press, 2006.

[7] D. A. Peters and N. HaQuang, “Dynamic inflow for practical applications,”
Journal of the American Helicopter Society, vol. 33(4), pp. 64–68, 1988.

[8] A. R. S. Bramwell, D. Balmford, and G. Done, Bramwell’s Helicopter Dy-
namics. Elsevier Butterworth-Heinemann, 2001.

[9] The Modelica Association, “Modelica Home Page.” https://www.modelica.
org.

[10] M. Bangura, Aerodynamics and Control of Quadrotors. PhD thesis, The
Australian National University, 2017.

[11] F. Riccardi and M. Lovera, “Dynamic inflow and ground effect in multirotor
UAV attitude dynamics,” in 43rd European Rotorcraft Forum, Milan, Italy,
2017.

 https://www.3ds.com/it/prodotti-e-servizi/catia/prodotti/dymola
 https://www.3ds.com/it/prodotti-e-servizi/catia/prodotti/dymola
 https://www.mathworks.com/products/simulink.html
 https://www.mathworks.com/products/simulink.html
https://www.modelica.org
https://www.modelica.org

152 BIBLIOGRAPHY

[12] MathWorks, “Matlab.” https://www.mathworks.com/products/matlab.
html.

[13] D. Invernizzi, M. Lovera, and L. Zaccarian, “Geometric tracking control of
underactuated VTOL UAVs,” in American Control Conference, Milwaukee,
USA, 2018.

[14] R. Pi Foundation, “Raspberry Pi 3 model b.” https://www.raspberrypi.
org/products/raspberry-pi-3-model-b/, 2015.

[15] A. Bonarini, M. Matteucci, M. Migliavacca, and D. Rizzi, “R2P: An open
source hardware and software modular approach to robot prototyping,”
Robotics and Autonomous Systems, vol. 62, no. 7, pp. 1073–1084, 2014.

[16] P. Gattazzo, “Nonlinear control of a tilt-arm quadrotor UAV,” Master’s the-
sis, Politecnico di Milano, School of Industrial and Information Engineering,
2017.

[17] M. Giurato, “Design, integration and control of a multirotor UAV platform,”
Master’s thesis, Politecnico di Milano, School of Industrial and Information
Engineering, 2015.

[18] D. Lee, T. Ryan, and H. J. Kim, “Autonomous landing of a VTOL UAV on a
moving platform using image-based visual servoing,” in IEEE International
Conference on Robotics and Automation, Saint Paul, USA, 2012.

[19] R. Furfaro, B. Gaudet, D. Wibben, J. Kidd, and J. Simo, “Development of
non-linear guidance algorithms for asteroids close-proximity operations,” in
AIAA Guidance, Navigation and Control Conference, Boston, USA, 2013.

[20] M. Andreetto, D. Fontanelli, and L. Zaccarian, “Quasi time-optimal hybrid
trajectory tracking of an n-dimensional saturated double integrator,” in IEEE
Conference on Control Applications, Buenos Aires, Argentina, 2016.

[21] M.-H. Hua and C. Samson, “Time sub-optimal nonlinear PI and PID con-
trollers applied to longitudinal headway car control,” International Journal
of Control, vol. 84, no. 10, pp. 1717–1728, 2011.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

BIBLIOGRAPHY 153

[22] F. Forni, S. Galeani, and L. Zaccarian, “A family of global stabilizers for
quasi-optimal control of planar linear saturated systems,” IEEE Transactions
on Control of Network Systems, vol. 55, no. 5, pp. 1175–1180, 2010.

[23] Motive, “Optitrack.” http://optitrack.com/products/motive.

[24] Prime, “Motive Prime 13.” http://optitrack.com/products/prime-13.

[25] Netgear, “Prosafe 28PT GE POE.” https://www.netgear.com.

[26] L. Meier, “Px4 Autopilot.” http://www.pixhawk.org, 2008.

[27] Intel, “Intel Edison Compute Module.” https://software.intel.com/
en-us/iot/hardware/edison, 2014.

[28] R. Pi Foundation, “Raspberry Pi Zero.” https://www.raspberrypi.org/
products/pi-zero/, 2015.

[29] O. S. R. F. OSRF, “ROS.” http://www.ros.org.

[30] Microsoft, “Windows 10 Pro.” https://www.microsoftstore.com/store/
mseea/it_IT/pdp/Windows-10-Pro/productID.320433200.

[31] VWware, “VMware.” https://www.vmware.com.

[32] Canonical, “Ubuntu 16.04 lts.” https://www.ubuntu.com.

[33] K. Gravel and A. Bencz, “Mocap Optitrack.” https://github.com/
ros-drivers/mocap_optitrack.

[34] R. Pi Foundation, “Raspbian Jessie 4.4.” https://www.raspberrypi.org/
downloads/raspbian/.

[35] Emutex, “Jubilinux.” http://www.jubilinux.org.

[36] L. Meier, “Mavros.” https://github.com/mavlink/mavros.

[37] L. Meier, “Px4 Firmware.” https://github.com/PX4/Firmware, 2008.

[38] L. Project, “LaTeX.” https://www.latex-project.org.

[39] GitHub.com, “GitHub.” https://github.com.

[40] GitLab.com, “GitLab.” https://about.gitlab.com.

http://optitrack.com/products/motive
http://optitrack.com/products/prime-13
 https://www.netgear.com
 http://www.pixhawk.org
 https://software.intel.com/en-us/iot/hardware/edison
 https://software.intel.com/en-us/iot/hardware/edison
https://www.raspberrypi.org/products/pi-zero/
https://www.raspberrypi.org/products/pi-zero/
http://www.ros.org
https://www.microsoftstore.com/store/mseea/it_IT/pdp/Windows-10-Pro/productID.320433200
https://www.microsoftstore.com/store/mseea/it_IT/pdp/Windows-10-Pro/productID.320433200
https://www.vmware.com
https://www.ubuntu.com
https://github.com/ros-drivers/mocap_optitrack
https://github.com/ros-drivers/mocap_optitrack
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
http://www.jubilinux.org
https://github.com/mavlink/mavros
 https://github.com/PX4/Firmware
 https://www.latex-project.org
 https://github.com
 https://about.gitlab.com

	Acknowledgments
	Abstract
	Sommario
	List of figures
	List of tables
	Introduction
	Modelling and simulation of multirotor UAVs
	Reference axes
	Earth axes
	Body axes
	Rotor fixed axes
	Rotor wind axes

	Rotation formalism
	Euler angles
	The time derivative of Euler angles
	Quaternions

	Flight dynamics
	Kinematics
	Equations of motion - linear motion
	Equations of motion - angular motion
	Overall states of a rigid aircraft
	Control forces and moments

	Rotor aerodynamics
	Rotor blades motion
	Momentum theory
	Blade element theory - BET
	Blade element momentum theory
	Dynamic inflow model (Pitt and Peters)

	Aerodynamic modeling of a quadrotor
	The multi-body model
	Thrust and inflow
	Torque and drag forces
	Implementation

	Simulation
	Dymola-Simulink co-simulation
	Results
	Conclusions

	Experimental results
	Quadrotor prototype
	Model comparison
	Conclusions

	Problem Formulation
	Problem description
	State of the art
	Mathematical formulation
	Suitable algorithms description
	Three-states bang-bang algorithm
	Quasi Time-Optimal algorithm

	Digital implementation
	Error monitoring and safety procedures
	Three-states bang-bang
	Quasi time-optimal

	Simulation results
	Simulation setup
	Three-states bang-bang
	Quasi time-optimal
	Sensitivity analysis

	Conclusions

	Experimental activity
	System architecture
	Hardware
	Software

	Landing pad design
	Experimental results
	Three-states bang-bang
	Quasi time-optimal
	Velocity estimate issue
	Final flight test

	Conclusions

	Conclusions

