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Abstract

A novel 3-dimensional shape based algorithm is proposed in order to extend the
domain of the analytical solutions to planeto-centric mission scenarios. The main
peculiarity of the proposed approach stays in the shape belonging to a non linear in-
terpolation of similar and consecutive orbits; this turns out in a more faithful forecast
of the actual transfer shape in real conditions, leading to a better cost-effectiveness
final solution which is ranked in terms thrust, power and fuel consumption for any
combination of initial and final orbits features. Many classical shape based algo-
rithms [3][42][9], in fact, due to the lack of physical meaning, fail whenever orbits
which differ from regular shapes have to be linked, such as highly elliptical or with
strong change in planes. More in details, both the distance from the attractor and
the declination above the plane identified by the initial and final positions – here
defined as reference plane - are parametrized as function of the angular displace-
ment in the reference plane from the initial position by means of non linear inter-
polation between radii and declinations of the departure and arrival orbits. If more
than a single revolution is required the algorithm simply either considers a transfer
arc greater than 360 degrees or introduce fictitious intermediate orbits located via a
numerical procedure to make the thrust peaks constants in each revolution, increas-
ing the degrees of freedom and the flexibility of the shape. The kinematics and the
dynamics are recovered analytically while the thrust and mass profile are obtained
simply integrating Tsiolkovsky’s equation numerically. The tool allows dealing with
multidisciplinary/multiobjectives scenarios [28]: solar panels area needed to sup-
ply the requested thrust can be output as part of the optimal solution as well as the
maximum thrust. Differently from the available literature [37] [15], the algorithm
here proposed includes perturbations and -if consistent with the analyzed scenario
– eclipses to tune the thrust accordingly, still preserving a low computational bur-
den for fast low-thrust high accuracy trajectory design. Either free or imposed time
of flight scenarios are manageable, giving the chance to solve both rendezvous and
topping problems, in interplanetary or planet-centric scenarios. Since the algorithm
is mainly analytical the computational cost is very low and therefore it is suitable for
the selection and optimization of very complex mission scenarios [28].
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ĥREF Ref. plane normal [−]
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Chapter 1

Introduction

One of the main subject in astrodynamics is the design and optimization of space-
craft trajectories. In simple terms, this process involves the determination of a trajec-
tory that, given some constraints, minimizes one or more cost functions [12]. Among
all possible objectives, the most common are certainly the fuel propellant fraction
and the time of flight needed to accomplish the mission. Regarding the constraints,
the initial and final position and, in some cases, also the velocities and the Time of
Flight are typically imposed. In some particular missions other specific constrains
and objectives arise as, just to give few examples, the power available, the time spent
in some dangerous regions (Van Allen belts), the cost up to the launcher, the scientific
drawback (for example the sequence of target visited in an interplanetary trajectory
[28]) and so on. Objectives and constrains, as well as the optimization method itself,
depend mostly on the propulsive system of the spacecraft and the specific mission.
In some cases it is not so clear if something has an objective or constrains nature;
moreover, a powerful and commonly used way to manage constrains that are not
exactly known in the earlier phases of a project (such as the maximum power avail-
able or the maximum thrust level) is to turn a constraint into an objective function
using or a penalty method or a multi-objective optimization algorithm. Mathemati-
cally speaking, the problem of spacecraft trajectories optimization is quite complex,
being composed by seven coupled non linear differential equations [12] (six equa-
tion for 3D position and velocity plus one for the mass), that in general does not
admit an analytic integral solution. Just to make the problem more complex, the mo-
tion of the spacecraft is forced by thrusters and natural perturbations, that at least
depend on the epoch and the spacecraft position, velocity, shape and mass. Some
discontinuities in the mathematical problem can be introduced by vehicles separa-
tions, Gravity assists, instantaneous change in velocity or change in the Reference
Frame. Until 1998 all the spacecraft flown equipped with chemical thrusters only:
this king of thrusters are able to provide an extremely wide range of thrust, from the
smallest with fractions of Newtons to the biggest with thousands or (for launchers
only) millions of Newtons. If a propulsive system is able to provide an high thrust to
weight ratio the time required to change the velocity of the spacecraft becomes small
when compared with the entire trajectory, and therefore it can be approximated with
an impulse maneuver without introducing appreciable errors. In this last case the
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above-mentioned optimal control problem becomes a simpler parametric one: the
problem is still complicated by the presence of mixed integer and continuous vari-
ables but it can be easier managed with derivative free algorithm[12][32][33]. Unfor-
tunately chemical propulsion has an upper limit on the specific impulse in around
500[s] given by the maximum possible ratio between temperature inside the com-
bustion chamber and molecular weight of the expelled gases [22]. For this reasons,
in the last years of the last century, electric propulsion becomes of primary interest:
on the October 24th 1998 NASA successfully launched Deep Space one [35], an inter-
planetary mission that used as primary propulsion an electric ion thruster. Electric
thrusters give enormous advantages if compared with chemical ones [16][39][17] in
terms of Specific impulse, implying a strong reduction of the fuel mass fraction re-
quired for the same mission. On the other hand, an enormous amount of power
per unit thrust is needed [24](between 15 [W/mN] and 40 [W/mN]). Flight proven
thrusters are nowadays able to give in around 0.25[N] of thrust, while next future
implementations, such as Sitael H 20K [40], will be able to have thrust in around
one Newton, with a specific impulse of more than 3000[s], one order of magnitude
higher than bests in-space chemical thrusters. In the lasts decades the continuous
development of electric thrusters makes possible interplanetary missions that be-
fore were well beyond technical feasibility, such as Dawn [30], Hayabusa [29] and
BepiColombo [19]. On the other hand, Electric Propulsion becomes of primary im-
portance in Earth-Centered mission scenarios, especially for Geostationary station
keeping. In 2003 an ESA telecommunications satellite named Artemis [20], due to
a launcher failure, was injected in an orbit lower that GEO and reaches its target
only thanks to its own propulsion system. In the last decades fully electric platforms
have been developed by different industries and it is expected to have an increase of
interest both for commercial and for scientific satellites.

1.1 Low thrust trajectory optimization

Low thrust trajectories optimization is a complex task: the system of equations gov-
erning the dynamics is shown in cylindrical coordinates [42] in equation 1.1.

ṙ = vr

θ̇ = ω

ż = vz

v̇r = − µ√
(r2+z2)3

r + rω2 + T cos(β) sin(α)
m + ar

pert

ω̇ = 1
r

(
T cos(β) cos(α)

m − 2ṙω + at
pert

)
v̇z = − µ√

(r2+z2)3
z + T sin(β)

m + az
pert

ṁ = − T
Isg0

(1.1)

It is composed by six coupled non-linear first order differential equations de-
scribing the position and velocity of the spacecraft plus one additional differential
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equation (Tsiolkovsky equation) that governs the mass variation of the spacecraft.
The only possibility to have exact analytical solution is when purely keplerian mo-
tion with no thrust and no perturbations is considered. In presence of low thrust
control it becomes an optimal control problem. It is necessary to find a control law
(T(t), β(t), α(t)) that, respecting some constrains, is able to lead the spacecraft to the
final position and velocity from the initial ones, minimizing one or more cost func-
tions. Typically this can be managed with a lot of different methodologies[7], that
can be grouped in three macro-categories:

• Direct Methods: A Direct method [13][21] involves the conversion of the con-
tinuous optimal control problem into an high-but-finite dimension parametric
optimal one. This is typically possible via a discretization of the state and the
time (referring to equation 1.1: r, θ, z, vr, ω, vz, m, t) in a finite number of nodes.
In the sub-domains between two consecutive nodes the states are usually ap-
proximated with a continuous simple function (for example a third order poly-
nomial in the Hermite-Simpson method; higher order are also possibles [25])
that must satisfy equations of motion on the nodes. The equations of motion
are threated as constrain, and therefore the algorithm forces the solution to
respect them also on intermediate points [21] [38]. The solution is obtained
using Nonlinear programming techniques in order to manage the size of the
problem. These algorithms are quite robust and allow to easily include tech-
nical constrains and discontinuities[28], but unfortunately their computational
cost is extremely high, since the typical size of the problem is in the order of
hundreds or thousands of unknowns [28] [41] [8]. The algorithm is faster if a
near-optimal solution, that is able also the respect the constrains, is imposed as
guess. Due to the high computational cost of the algorithm, direct methods are
not suitable for fast optimization in large search domain, moreover the classi-
cal non-linear solvers are not able to manage integer variables, that become of
primary importance in these scenarios (for example the sequence of Gravity
assists in an interplanetary trajectory).

• Indirect Methods: In indirect methods the continuous optimal control is turned
into a finite and reduced dimension parametric optimal problem using the Cal-
culus of Variation or the Pontryagin’s principle. Due to the time dependence
of the problem also the Lagrange multipliers are time dependent and possess
their own dynamics, doubling the size of the problem. The problem is con-
verted into a Two Points Boundary Values Problem, having states (xi(t)) and
co-states (λi(t)) as unknowns, that can be solved with a lower computational
cost with respect to direct methods. On the other hand, these methods are less
robust and require that the guess solution is sufficiently close to the optimal
one [12].

• Shape-based Methods: Using Shape-based algorithms the continuous opti-
mal control problem is reverted: a shape, with proper degrees of freedom, is
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assumed for the trajectory and the control law is recovered. Typically some as-
sumption [42][9], such as the tangential direction of the thrust, are assumed in
order to get faster analytical solutions. These methods, working on a subspace
of the problem, are able to give only a suboptimal solution and are extremely
fast if compared with the others [3] [28] [42]. They are well suited for fast search
of sub-optimal solutions in wide search domains using Heuristics algorithms,
with the possibility to use multiple/multidisciplinary objectives [28]. These
solutions can be used or as initial guests for direct or indirect optimizations or
in the earlier phases of the design of a space mission [28].

These lasts methods are the objective of this work and will be deeply discussed
in the following paragraph.

1.2 State of the art and Motivation of the research

The history of analytical solution for trajectories with thrusting spacecraft started in
1953 with the work done by Tsien [26]. In this first work, which has been reworked
also by Battin [6], analytical approximated planar solutions are derived in case of
or radial or circumferential thrust. Other interesting analytical solutions have been
found but they all suffer from some simplifications. Most of shape based algorithms
give the advantage to solve, at least for planar motion, the exact problem. In the lasts
two decades a lot of work have been done in order to make shape-based algorithm
able to solve increasingly complex problems. The first shapes developed, perfectly
summarized in the work by Petropoulos and Sims [3], was able only to solve simple
planar problems without the possibility to impose exact boundary conditions on the
positions and velocities and with no TOF constrain. These algorithms were only
used to have a quickly estimation of the low thrust trajectory cost and to generate
guess trajectories. An important improvement in flexibility of the trajectory and in
precision of the solution was proposed by De Pascale and Vasile [37]; the possibility
to impose exactly BC gives also the chance to include Gravity assist maneuvers [4]
in the trajectory. Conway and Wall developed a new simple but effective shape for
both 2D problems [9] and approximated 3D problems [42] with small displacement
from plane. Other improved shape-based algorithms were found by Novak and
Vasile in [15], in which a new coupling between analytic solution and LQR controller
is presented. Furier series have also been used in order to generate more effective
shapes able to yield solutions nearer to the optimal one [18] All the above-mentioned
shapes, and some other variations proposed by other authors, give very god results
in interplanetary trajectory design: the flexibility of the methods and the reduced
computational costs allow to design and optimize complex mission scenarios, with
mixed integer and continuous variables and with multidisciplinary objective [28].
Unfortunately, all the above mentioned algorithms fail or give bad results whenever
applied in earth-centered scenarios for the following reasons:
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• Number of revolution. Being the planeto-centric dynamics more constrained
with respect to the interplanetary one, the number of revolutions required is
higher: typically hundreds or thousands of revolutions are required. On one
single revolution the osculating elements are almost unchanged, and therefore
it is necessary to develop a shape that is able to replicate this behavior. Al-
gorithms that impose in advance a purely geometrical shape [9][42][3] are not
able to closely follow this dynamic if the orbit is not circular or changes of
plane are presents.

• Eclipses.Nowadays electric propulsion is powered by solar energy only. Even
if the batteries can provide energy to the spacecraft during the eclipse for ’nor-
mal’ operations, the power required by an electric thruster is extremely high
and therefore the solution to thrust in shadow complicates the architecture of
the propulsive system [43][34]. Moreover the usage of batteries in shadowed
regions implies the necessity to have bigger solar arrays in order to recharge
them in sunlight [43]. In order to solve this issues the algorithm shall be able
also to manage discontinuities.

1.3 Structure of the report

The working principle of the algorithm is to turn a complicated multi-revolution
problem in an elevated number of simpler one revolution trajectories. In order to do
that an appropriated number (determined by the algorithm itself ) of intermediate
orbits are introduced and correctly placed. The report follows the two-level structure
of the developed algorithm:

• Chapter 2 is devoted to the presentation of the one revolution shape-based al-
gorithm. After a rigorous parametrization of the three dimensional equations
of motion both the TOF free and constrained architectures are presented. Each
block involved is discussed in details and the most important equations de-
veloped within this work are derived. The numerical techniques adopted are
discussed.

• Chapter 3 is dedicated to the numerical validation of the algorithm developed
in Chapter 2. A sensitivity analysis is performed in order to compute the grav-
ity loss for some common maneuvers in different situations and to test the
effects of the TOF constrain on the solution. An error analysis is conducted to
assess the convergence rate of the algorithm, as well as the required computa-
tional time.

• Chapter 4 is dedicated to the usage of the shape-based algorithm developed in
chapter 2 in multi-revolution mission scenarios. Both the planeto-centric and
interplanetary cases are explained and discussed.
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• Chapter 5 contains some interesting examples for both earth-centered and in-
terplanetary cases.

• Chapter 6 is devoted to the conclusions and to the explanation of some future
improvements.

Nowadays optimization of planetocentric low-thrust trajectories is performed
only using or indirect methods [36][23] or direct methods [8] without tanking into
account eclipses effects. The aim of this research is to develop a shape-based algo-
rithm sufficiently fast and flexible to be able to deal with Earth-centered problem.
Since the number of revolutions is elevate consecutive revolutions are very closer a
shape able to follow this dynamics even in presence of plane changes or elliptical
orbits will be developed.
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Chapter 2

Shape-based algorithms

In this chapter the developed shape-based algorithm will be analyzed in-depth and
derived in both fixed and free TOF formulations starting from the equation of mo-
tion of a thrusting spacecraft via a nonlinear interpolation between departure and
target orbits. The working principle of the algorithm is to compute the attractor dis-
tance and the declination above the reference plane of the trajectory (respectively s
and δ) using a non-linear interpolation between the corresponding functions on the
departure and target orbits. From these the kinematics and the dynamics are recov-
ered using an analytical approach. Following the requirements analysis in section
2.1 the equations of motion for a thrusting spacecraft will be parametrized is sec-
tion 2.2. The general architectures of the algorithms are presented in section 2.3 and
the main blocks are discussed as well as the interpolating functions. In section 2.4,
section 2.5 and section 2.6 the most complex blocks that are common for the two
algorithms are derived and commented.

2.1 Requirements

The aim of this work is to adapt the well-known shape based-approaches [4] [37]
[9] to a planeto-centric environment, with thousands of revolutions, eclipses and
perturbations that can be of the same order of magnitude of the available thrust.
The effect is a transfer trajectory with hundreds or thousands of revolutions and
discontinuities, in which each arc is similar to the nearby. For these reasons the
following requirements have been identified as fundamentals:

1. The algorithm shall link two different states (Modified Equinoctial Elements
[10] or Keplerian Parameters) with the possibility also to impose the time of
flight.

2. The algorithm shall work with any couple of orbits that are physically linkable
with zero radial thrust [42] (every set of orbits for which equation 2.15 is pos-
itive along the whole path ) without show singularities, including polar and
retrograde orbits.

3. The thrust acceleration shall be exactly recovered via an analytical procedure.
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4. The thrust and mass profiles shall be recovered via numerical integration of
Tsiolkovsky equation [14].

5. The required thrust shall tend to zero as the distance between initial and fi-
nal orbits decreases, independently from eccentricity and departure or arrival
anomaly:

lim
∆KP→0

max
(
|T|
m

)
= 0 ∀ e, i, θ1, θ2 (2.1)

The last requirement is necessary in order to have feasible solutions in Earth-centered
mission scenarios: if it is not fulfilled it is not possible to arbitrary reduce the maxi-
mum thrust required simply adding more intermediates orbits. The decision to build
a shape based on nonlinear interpolation between consecutive orbits belong to this
requirement, indeed most of shapes in literature show thrust profile that violates it
if eccentric orbits are considered. Another important advantages using such type of
algorithms is that, as will be shown later, the boundary conditions are automatically
imposed by the interpolating function itself without the necessity to solve equations
at each evaluation.

2.2 Parametrization of low thrust equations

The aims of this section is to formalize the parametrization of the 3D equation mo-
tion of a thrusting spacecraft in cylindrical coordinates. Differently from the work
done by [42] it makes no assumption on small displacement out the plane. The equa-
tions of motion presented in the first chapter can be rewritten as shown in equation
2.2 [11] 

r̈− rθ̇2 = − µ
s3 r + TIN

m sinα

rθ̈ + 2ṙθ̇ = TIN
m cosα

z̈ = − µ
s3 z + TOUT

m

(2.2)

The idea is to parametrize every quantities involved in equation 2.2 as function
of the non-dimensional anomaly x introduced in equation 2.3 and then, under some
typical assumptions [9], recover the thrust, mass and time profiles. Physically ’x(t)’
is the angle between the initial position vector and the projection of the spacecraft
on the reference plane normalized with the total transfer angle ψ, as can be seen in
figure 2.1.

x(t) =
θ(t)

ψ
with x ∈ R ∧ 0 ≤ x ≤ 1 (2.3)

It is supposed to have also an analytical parametrization of the in-plane radius
’r’ and the out-of-plane displacement ’z’, as shown in equation 2.4. In general the
parametrization of these quantities is not unique: the one selected in this work will
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FIGURE 2.1: Spacecraft position in cylindrical and spherical coordi-
nates

be shown later in section 2.5 {
r = r(x)
z = z(x)

(2.4)

The first and second time variation of the in-plane angular displacement can be
easily computed as shown in equation 2.5 and equation 2.6

θ̇ =
dθ

dt
= ψẋ (2.5)

θ̈ =
d2θ

dt2 = ψẍ (2.6)

Since both the in-plane radius and the out of plane displacement are considered
as function of the in-plane non-dimensional anomaly in order to take their first and
second time derivative is necessary to apply the rules for composite function deriva-
tion, as shown respectively in equation 2.7, equation 2.8, equation 2.9 and equation
2.10

ṙ =
dr
dt

=
dr
dx

dx
dt

= r′ ẋ (2.7)

r̈ =
d2r
dt2 =

d
dt
(
r′ ẋ
)
= r′′ ẋ2 + r′ ẍ (2.8)
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ż =
dz
dt

=
dz
dx

dx
dt

= z′ ẋ (2.9)

z̈ =
d2z
dt2 =

d
dt
(
z′ ẋ
)
= z′′ ẋ2 + z′ ẍ (2.10)

These quantities can be substituted into equation 2.2 giving equation 2.11
r′′ ẋ2 + r′ ẍ− rψ2 ẋ2 = − µ

s3 r + TIN
m sinα

2ψr′ ẋ2 + rψẍ = TIN
m cosα

z′′ ẋ2 + z′ ẍ = − µ
s3 z + TOUT

m

(2.11)

from the first two equations of system shown in equation 2.11, that describe the
in-plane motion, is possible to extract the second time derivate of the non-dimensional
anomaly, as shown in equation 2.12 ẍ = 1

r′

[
− µ

s3 r + TIN
m sinα− r′′ ẋ2 + rψ2 ẋ2

]
ẍ = 1

rψ

[
−2ψr′ ẋ2 + TIN

m cosα
] (2.12)

In order to analytically compute the time derivative of ’x’ is necessary to remove
the dependency from the thrust per unit mass in equation 2.12 : this is possible if
and only if the in-plane thrust is supposed to be only tangential to the trajectory [9],
indeed in this case the thrust angle is exactly equal to the flight path angle that can
be easily computed as shown in equation 2.13

tan α = tan γ =
vr

vθ
=

ṙ
rθ̇

=
r′

rψ
(2.13)

Putting together equation 2.13 and equation 2.12 is possible to derive equation 2.14

− µ

s3 r +
TIN

m
sinγ− r′′ ẋ2 + rψ2 ẋ2 =

TIN

m
sinγ− 2

r′2

r
ẋ2 (2.14)

now it is possible to extract the square of the time variation of x as shown in
equation 2.15

ẋ2 =
µr

s3
(

rψ2 − r′′ + 2 r′2
r

) =
Nu
De

(2.15)

taking the time derivate of equation 2.15 is possible to derive also the second time
variation of the non-dimensional anomaly, as shown in equation 2.16 and equation
2.17

ẍ =
1
2

(
Nu′ − ẋ2De′

De

)
(2.16)

{
Nu′ = µr′

De′ = 3 s′
s De + s3

(
r′ψ2 − r′′′ + 2rr′r′′−r′3

r2

) (2.17)
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Since now every time depended quantities is known it is possible to recover from
equation 2.11 the thrust per unit mass as shown in equation 2.18 and equation 2.19.

TIN

m
=

1
cos γ

(
2ψr′ ẋ2 + rψẍ

)
(2.18)

TOUT

m
= z′′ ẋ2 + z′ ẍ +

µ

s3 z (2.19)

In order to recover the mass profile it is necessary to numerically integrate the
Tsiolkovsky equation [22] shown in 2.20, in which the thrust per unit mass magni-
tude can be computed with equation 2.21

dm
dt

= −
∣∣ T

m

∣∣m
ISg0

(2.20)

∣∣∣∣ T
m

∣∣∣∣ = 2

√(
TIN

m

)2

+

(
TOUT

m

)2

(2.21)

A numerical integration is also needed to compute the time vector from the vari-
ation of the non-dimensional anomaly [9] , as shown in equation 2.22

t =
∫ t

0
dτ =

∫ t

0

1
ẋ

dx (2.22)

It is important to underline that, differently from the parametrization proposed
by Wall [42], the one here presented is more general, being suitable for any shape,
and removes the assumptions of low displacements from reference plane. The draw-
back is an increased complexity of the model, as will be shown later in this chapter.

2.3 General Architecture

In this section the general architecture of the algorithm is presented both for the free
and prescribed TOF problems. The main blocks are identified and discussed as well
as requirements of the interpolation functions. It is important to remark that, in
the Matlab implementation, every quantity is a vector of size n in which the i − th
element corresponds to the i− th value of the non-dimensional anomaly x; The non-
dimensional anomaly is a linearly spaced vector between zero and one with size
equal to n and it is passed to the algorithm as a parameter. Being the mass and time
profiles computed via a numerical integration (see equation 2.20 and equation 2.22)
the higher is n the lower is the numerical error: a more detailed error analysis is
proposed in Chapter 3 . The thrust profile belongs to the mass and, therefore, it is
affected by the same error, while the other quantities are exact for any value of n
since they are computed with a fully analytical approach.
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2.3.1 Free Time of Flight

In this section the solution of the problem with no constraints on TOF will be dis-
cussed. Moreover the requirements on the interpolating function χ(x) will be de-
fined and discussed: one of the possible choices will be proposed.

FIGURE 2.2: TOF free algorithm architecture

In figure 2.2 the architecture of the algorithm is presented: it consists of five main
interconnected blocks plus one secondary block in which natural perturbations are
implemented. It can be manually switched on if perturbation effects are desired.

• Transfer definition: This block takes as inputs the departure and arrival states.
Its aims are to compute the reference frame and the transfer angle as shown is
section 2.4. For fastness purposes it compute also the sine and cosine of the an-
gles ψx and ψ(1− x) using the angle transformation formulas. These outputs
are the bases of transfers and are therefore passed to the ’ Departure/Target’
blocks and to the ’Trajectory shaping’ block.

• Departure/Target orbit analysis: These blocks take as input the data coming
from the Transfer definition one. They compute some important geometrical
quantities that will be used for the interpolation of the shape. The output in-
cludes all the quantities computed in section 2.6 and they are passed directly
to the ’Transfer shaping’ block.

• Trajectory shaping: This block takes as input the geometries of departure and
target orbits computed in the previous blocks and an interpolating function. It
computes the exact geometry of the transfer using the non-linear interpolation
between departure and target orbits as explained in section 2.5. The output
includes the whole geometry and is directly passed to the ’Control law’ block
and to the ’Natural perturbation’ one.
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• Natural perturbations: This block takes as inputs the trajectory and computes
the acceleration due to the natural perturbations (J2 effect). The output, con-
sisting of the acceleration, is sent to the ’Control Law’ Block. This block is not
fundamental, and can be manually switched on if needed.

• Control Law: This block takes as input the geometry of the transfer and the
natural perturbation acceleration. The control law, as well as the time vector
are computed via a mixed numerical-analytical procedure. In order to com-
pute the time vector, equation 2.22 is integrated using an high order multi-step
predictor-corrector scheme (Adams-Bashford-3 Adams-Multon-4 [1]), while
for the mass profile the same integration scheme is used to integrate Tsiolkovsky
equation[14] (equation 2.20). These integrations can be performed both for-
ward and backward: in this way it is possible to solve both problems with
imposed dry mass or imposed wet mass. The thrust indeed is computed as
the element-wise product of the mass and thrust acceleration vectors (eventu-
ally corrected with natural perturbations). Since this block presents two ODE
to be solved, it is one of the most time consuming. Anyway it is important
to underline that typically an ODE solver spends most of the time to evaluate
the function to be integrated but, as can be seen in equation 2.22 and equa-
tion 2.20 these information have been yet computed during previous blocks,
and are therefore available. Moreover, the selection of an accurate integration
scheme is necessary to reduce the number of computation nodes, keeping the
numerical errors low.

Boundary conditions

The boundary conditions to be imposed are simply the initial and final state. They
are imposed directly on the interpolating function as requirements, indeed it is easy
to show that the same interpolating function can be used for every trajectory. As first
requirement the interpolating function χ(x) shall be continuous with its derivatives
till the third order in the domain [0; 1]. The boundary conditions are expressed in
cylindrical coordinates as follows:

• Position: Looking at equation 2.33, equation 2.36 and equation 2.37, it is easy
to derive that initial and final conditions on positions (in plane radius r(x) and
out of plane displacement z(x)) are automatically satisfied if the interpolating
function satisfies equation 2.23

{
χ(0) = 0
χ(1) = 1

(2.23)

• Velocity: From the definition of the radial velocity (ṙ) in equation 2.7 and the
out of plane velocity (ż) in equation 2.9 it is clear that r′, z′, ẋ must match the
corresponding quantities of the initial state for x = 0 and final state for x = 1.
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If the previous conditions are verified the boundary conditions on transversal
velocity are automatically satisfied, being this velocity defined as vr = rψẋ.
The requirements on r′ and z′ at the initial and final point can be directly de-
rived from equation 2.34 and equation 2.35 and are summarized in equation
2.24 {

χ′(0) = 0
χ′(1) = 0

(2.24)

For the initial and final conditions on ẋ, it is necessary to look at equation
2.15 in which appears also the second derivatives of r, therefore it is necessary
to impose boundary conditions also on r′′. From equation 2.34 is possible to
derive the conditions on χ shown in equation 2.25

{
χ′′(0) = 0
χ′′(1) = 0

(2.25)

In the examples presented in this work the seventh order polynomial function
shown in equation 2.26 was selected.

χ(x) = −20x7 + 70x6 − 84x5 + 35x4 (2.26)

It is easy to show that this function satisfies the above-mentioned boundary con-
ditions. Moreover, it is easy to prove that this interpolation function leads to solu-
tions with null initial and final thrust: typical undesired peaks at the beginning and
the end of the transfer arc (see the thrust profile obtained in [42] and [9]) are avoided.

2.3.2 Constrained Time of Flight

In this section the solution of the problem with constrained TOF will be discussed.
Moreover, requirements on the interpolating functions χ(x) will be defined and
some possibilities will be explored. In figure 2.3 the architecture of the algorithm
is presented: it consists of six main blocks interconnected plus one secondary block
in which natural perturbations can be implemented.

• Transfer definition:This block takes as inputs the departure and arrival states.
Its aims is to compute the reference frame and the transfer angle as shown
is section 2.4. For fastness purposes, it computes also the sine and cosine of
the angles ψx and ψ(1− x) using the angle transformation formulas. These
outputs are the bases of the transfers and are therefore passed to the ’ Depar-
ture/Target’ block and to the ’TOF solver’ block.

• Departure/Target orbit analysis: These blocks take as input the data coming
from the Transfer definition one. They compute some important geometrical
quantities that will be used for the interpolation of the shape. The output in-
cludes all the quantities computed in in section 2.6 and it is passed directly to
the ’TOF solver’ block.
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FIGURE 2.3: constrained TOF algorithm architecture

• TOF solver: The aim of this block is to impose a prescribed time of flight to
the shape. In order to do that, the shape itself shall contain a further degrees
of freedom not fixed with the boundary conditions mentioned in the previous
section. This degrees of freedom is included in the interpolating function: an
eight order polynomial that, after the imposition of the boundary condition
above-mentioned, reads as in equation 2.27

χ(x, a) = asx8 − (20 + 4as)x7 + (70 + 6as)x6 − (84 + 4as)x5 + (35 + as)x4

(2.27)

In order to force the time of flight to be equal to the desired one, it is necessary
to numerically solve equation 2.28 in the unknown a

TOF−
∫ t

0

1
ẋ(a)

dx = 0 (2.28)

this can be easily done using a newton algorithm initialized with a = 0. It is
easy to prove that for this value the shape in equation 2.27 is exactly equal to
the one adopted for TOF free problem (see equation 2.26), this guarantees a fea-
sible guess for the solver that is also close to the solution, making the conver-
gence faster. The integral presents in equation 2.28 shall be solved numerically
at each step of the Newton solver [1]. For this purpose a Cavalieri-Simpson
integration scheme [1]is adopted in order to guarantee an acceptable compro-
mise between numerical error reduction and fast computation. The function
ẋ(a) can be computed at each step using equation 2.15. The output of this block
is the interpolating function, that is passed to the trajectory shaping block.



16 Chapter 2. Shape-based algorithms

• Trajectory shaping: This block takes as input the geometries of departure and
target orbits computed in the previous blocks and the interpolating function. It
computes the exact geometry of the transfer using the non-linear interpolation
between departure and target orbits as explained in section 2.5. The output
includes the whole geometry and is directly passed to the ’Control law’ block
and to the ’Natural perturbation’ one.

• Natural perturbations: This block takes as inputs the trajectory and computes
the acceleration due to the natural perturbations (J2 effect). The output, con-
sisting of the acceleration, is sent to the ’Control Law’ Block. This block is not
fundamental, and can be manually switched on if needed.

• Control Law: This block takes as input the geometry of the transfer and the
natural perturbation acceleration. The control law, as well as the time vec-
tor are computed via a mixed numerical-analytical procedure. The block is
identical to the one described in the previous section, and all considerations
proposed are still valid for this case.

2.4 Reference frame and transfer angle definition

The selection of the Reference Frame for each transfer arc is fundamental in order to
have easier boundary conditions for the shape. The selected RF can be seen in Figure
2.4 and it contains both the initial and final position vectors. The first step to define
the RF is to select the reference plane: two different cases can be identified. If the
initial and final position vectors are not aligned, the normal of this plane is defined
as shown in equation 2.29. It can be seen that the selection of the reference frame
is slightly different from the one suggested in [9] in order to include also polar and
retrograde orbits.  ĥREF =

ri∧r f

|ri∧r f | i f ri ∧ r f · hi > 0

ĥREF = − ri∧r f

|ri∧r f | i f ri ∧ r f · hi < 0
(2.29)

If the initial and final position vector are aligned, the previous definition makes
no sense since the magnitude of their cross product is zero. In this case the solution
is not unique and, in theory, it doesn’t affect the solution while in real implementa-
tion numerical errors make some choices inconvenient. A good solution was found
through the selection of a reference plane which normal is the normalized mean of
the initial and final one, as shown in equation 2.30

ĥREF =
hi + h f∣∣hi + h f

∣∣ (2.30)

The first axis of the reference frame is coincident with the initial position vector while
the third is coincident with the reference plane normal ĥREF. The second axis com-
pletes the right-handed orthonormal set. The developed shape gives bad results if
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the transfer angle is lower than π; moreover, if this value is near zero, it can give
complex results in equation 2.15. Since one of the requirements is to have no sin-
gularities, a further revolution is considered if the transfer angle is lower than π in
order to have ψ always in the domain [π; 3π] as shown in equation 2.31.{

ψ = 2π + arccos
(
r̂i · r̂ f

)
i f ri ∧ r f · ĥREF > 0

ψ = 2π − arccos
(
r̂i · r̂ f

)
i f ri ∧ r f · ĥREF < 0

(2.31)

FIGURE 2.4: RF definition

It is important to remark that selecting this reference frame the declination of the
initial and final positions are zero producing easier boundary conditions (see section
2.3.1) that can be imposed directly to the interpolating function. This can be done
outside the algorithm and requires only one evaluation for all transfers.

2.5 Trajectory computation

In section 2.2 it was supposed to have an analitycal parametrization for the in-plane
radius and out-of-plane displacement, as shown in equation 2.32{

r = r(x)
z = z(x)

(2.32)
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The aim of this section is to define this parametrization and to derive all the
geometrical quantities needed for the other blocks.

Differently from most of the literature [9] [42] [3] in which meaningless functions
are used for the parametrization, here these quantities are selected in order to make
the solution closer to the real dynamics: the idea is that if the thrust is low, the trans-
fer path will be similar to the initial orbit at the beginning. The more the spacecraft
approach the target, the closer will be its trajectory to the final orbit.

FIGURE 2.5: Spacecraft position in cylindrical and spherical coordi-
nates

In order to traduce this idea into equations, r and z are expressed as function
of the declination over the referencer plane and the attractor distance, as shown in
figure 2.5, using equation 2.33: indeed, as will be shown in this section, it is quite
easy to find a meaningful analytical description of the shape in spherical coordinates
[15]. {

r = s cos δ

z = s sin δ
(2.33)

In section 2.2 appear also some derivatives of these quantities: they can be com-
puted with equation 2.34 and equation 2.35
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r′ = −sδ′ sin δ + s′ cos δ

r′′ = − (2s′δ′ + sδ′′) sin δ +
(
s′′ − sδ′2

)
cos δ

r′′′ = −
[
3 (s′′δ′ + s′δ′′) + s

(
δ′′′ − δ′3

)]
sin δ + [s′′′ − 3δ′ (s′δ′ + sδ′′)] cos δ

(2.34){
z′ = sδ′ cos δ + s′ sin δ

z′′ = (2s′δ′ + sδ′′) cos δ +
(
s′′ − sδ′2

)
sin δ

(2.35)

The declination δ and the attractor distance s are then parametrized using a non-
linear interpolation between departure and arrival orbits, as shown in equation 2.36
and equation 2.37

δ(x) =
(

δ2(x) − δ1(x)

)
χ(x) + δ1(x) = ∆δ(x)χ(x) + δ1(x) (2.36)

s(x) =
(

s2(x) − s1(x)

)
χ(x) + s1(x) = ∆s(x)χ(x) + s1(x) (2.37)

from which is possible to compute the derivatives with respect to x needed to
compute the position variation, as shown in equation 2.38 for the declination and
equation 2.39 for the attractor distance

δ′ = ∆δ′χ + χ′∆δ + δ′1
δ′′ = ∆δ′′χ + χ′′∆δ + 2∆δ′χ′ + δ′′1
δ′′′ = ∆δ′′′χ + χ′′′∆δ + 3∆δ′′χ′ + 3∆δ′χ′′ + δ′′′1

(2.38)


s′ = ∆s′χ + χ′∆s + s′1
s′′ = ∆s′′χ + χ′′∆s + 2∆s′χ′ + s′′1
s′′′ = ∆s′′′χ + χ′′′∆s + 3∆s′′χ′ + 3∆s′χ′′ + s′′′1

(2.39)

As can be seen from the previous equations, this block needs as input also decli-
nations and attractor distances of the initial and final orbits.

2.6 Initial and final orbit analysis

In this section attractor distances along the departure and arrival orbits as well
as their declinations over the reference plane are derived as function of the non-
dimensional variable x. These quantities are necessary to compute the shape of the
trajectory (see equation 2.36 and equation 2.37) as well as their derivatives till the
order shown in equation 2.38 and equation 2.39.

2.6.1 Declinations over the reference plane

The declinations over the reference plane of the departure and arrival orbits can be
computed as function of x considering the projection of these orbits on the celestial
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sphere, as shown in figure 2.6.

FIGURE 2.6: angular motion

Departure orbit

Let’s start considering the spherical triangle ABC shown in figure 2.6. The cosine
of the angle α1 is equal to the angle between the normals of the initial and reference
planes and can be computed with equation 2.40

cos α1 = ĥ1 · ĥREF (2.40)

For the sine of the same angle it is necessary to determine if A is the ascending or
descending node with equation 2.42 and then compute it with equation 2.41 [14]. In
this way the declination will have the correct sign with no necessity to split the two
cases, reducing as results the weight of the algorithm.

sin α1 = ξ1

√
1− cos α1

2 (2.41)

{
ξ1 = 1 i f vi · ĥREF > 0
ξ1 = −1 i f vi · ĥREF < 0

(2.42)

The declination δ1 can be computed as function of the non-dimensional anomaly
x applying the sine theorem at the spherical triangle ABC, keeping into account that
the angle in B̂ is equal to π

2 due to the definition of declination [6].

sin δ1 = sin α1
sin(ψx)
sin β1

(2.43)
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Since in equation 2.34 and equation 2.35 appear also the first, second and third
derivatives of this quantity. it is necessary to derive equation 2.43 three time, as
shown in equation 2.44, equation 2.45 and 2.46.

δ′1 =
ψ sin α1 cos (ψx)− β′1 cos β1 sin δ1

cos δ1 sin β1
(2.44)

δ′′1 =
−ψ2 sin α1 sin (ψx) + sin β1 sin δ1

(
δ′21 + β′21

)
cos δ1 sin β1

+

− 2δ′1β′1 cos δ1 cos β1 + β′′1 sin δ1 cos β1

cos δ1 sin β1
(2.45)

δ′′′1 =
−ψ3 sin α1 cos (ψx) + sin β1 sin δ1 (3δ′1δ′′1 + 3β′1β′′1 )

cos δ1 sin β1
+

+
− cos β1 cos δ1 (3δ′1δ′′1 + 3β′1β′′1 ) + cos β1 sin δ1

(
3δ′21 β′1 + β′31 − β′′′1

)
cos δ1 sin β1

+

+
sin β1 cos δ1

(
3β′21 δ′1 + δ′31

)
cos δ1 sin β1

(2.46)

As can be seen in the previous equations it is necessary to compute also the angle
β1 and its derivatives. It can be done applying the cosine theorem to the spherical
triangle ABC , as shown in equation 2.47

β1 = arccos (sin α1 cos(ψx)) (2.47)

The last equation can be derived three times giving as results equation 2.48, equa-
tion 2.49 and equation 2.50.

β′1 = ψ sin α1
sin (ψx)

sin β1
(2.48)

β′′1 =
ψ2 sin α1 cos (ψx)− cos β1β′21

sin β1
(2.49)

β′′′1 =
−ψ3 sin α1 sin (ψx)− 3β′1β′′1 cos β1 + β′31 sin β1

sin β1
(2.50)

Since we will need also the angle ∆L1(see figure 2.6) for the determination of the
distance from attractor, the sine and cosine spherical theorem can be applied to the
spherical triangle ABC as show in equation 2.51{

sin (∆L1) =
1

sin α1
sin δ1

cos (∆L1) = cos (ψx) cos δ1
(2.51)
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The previous equation can be derived in order to compute the first, second and
third derivatives of the angle ∆L1 as shown in equation 2.52, equation 2.53 and equa-
tion 2.54.

∆L′1 =
δ′1

sin α1 cos (ψx)
(2.52)

∆L′′1 =
δ′′1 + ψ sin α1 sin (ψx)∆L′1

sin α1 cos (ψx)
(2.53)

∆L′′′1 =
δ′′′1 + 2ψ sin α1 sin (ψx)∆L′′1 + ψ2 sin α1 cos (ψx)∆L′1

sin α1 cos (ψx)
(2.54)

These quantities will be fundamental for the attractor distance determination, as
will be shown later.

Target orbit

Considering now the triangle BDE in figure 2.6 it is possible to compute the cosine
of the angle α2 with equation 2.55.

cos α2 = ĥ2 · ĥREF (2.55)

Also in this case, in order to correctly compute the sine of the angle α2, it is
necessary to determine if the node E is ascending or descending: It can be done
using equation 2.57. The sine of the angle α2 can be computed as shown in equation
2.56;

sin α2 = ξ2

√
1− cos α22 (2.56)

{
ξ2 = 1 i f v f · ĥREF < 0
ξ2 = −1 i f v f · ĥREF > 0

(2.57)

The declination δ2 can be computed as function of the non-dimensional anomaly
x applying the sine theorem at the spherical triangle EBD keeping into account that
the angle B̂ is equal to π

2 for construction.

sin δ2 = sin α2
sin(ψ(1− x))

sin β2
(2.58)

As for the departure orbit analysis also in this case it is necessary to compute the
first, second and third derivatives of the declination δ2 as shown in equation 2.59,
equation 2.60 and equation 2.61.

δ′2 =
−ψ sin α2 cos (ψ(1− x))− β′2 cos β2 sin δ2

cos δ2 sin β2
(2.59)
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δ′′2 =
−ψ2 sin α2 sin (ψ(1− x)) + sin β2 sin δ2

(
δ′22 + β′22

)
cos δ2 sin β2

+

− 2δ′2β′2 cos δ2 cos β2 + β′′2 sin δ2 cos β2

cos δ2 sin β2
(2.60)

δ′′′2 =
ψ3 sin α2 cos (ψ(1− x) + sin β2 sin δ2 (3δ′2δ′′2 + 3β′2β′′2 )

cos δ2 sin β2
+

+
− cos β2 cos δ2 (3δ′2δ′′2 + 3β′2β′′2 ) + cos β2 sin δ2

(
3δ′22 β′2 + β′32 − β′′′2

)
cos δ2 sin β2

+

+
sin β2 cos δ2

(
3β′22 δ′2 + δ′32

)
cos δ2 sin β2

(2.61)

The angle β2 and its derivatives present in the previous equations can be com-
puted by means of the cosine theorem applied at the spherical triangle EBD, as
shown in equation 2.62. The derivation of this equation leads to equation 2.63, equa-
tion 2.64 and equation 2.65

β2 = arccos (sin α2 cos(ψ(1− x))) (2.62)

The last equation can be derived three times giving as results equation 2.63, equa-
tion 2.64 and equation 2.65.

β′2 = −ψ sin α2
sin (ψ(1− x))

sin β2
(2.63)

β′′2 =
−ψ2 sin α2 cos (ψ(1− x))− cos β2β′22

sin β2
(2.64)

β′′′2 =
ψ3 sin α2 sin (ψ(1− x))− 3β′2β′′2 cos β2 + β′32 sin β2

sin β2
(2.65)

Since we will need also the angle ∆L2(see figure 2.6) for the determination of the
distance from attractor the sine and cosine spherical theorem can be applied to the
spherical triangle EBD as show in equation 2.66{

sin (∆L2) =
1

sin α2
sin δ2

cos (∆L2) = cos (ψ(1− x)) cos δ2
(2.66)

The previous equation can be derived in order to compute the first, second and
third derivatives of the angle ∆L2 as shown in equation 2.67, equation 2.68 and equa-
tion 2.69. These quantities will be fundamental for the attractor distance determina-
tion, as will be shown later.

∆L′2 =
δ′2

sin α2 cos (ψ(1− x))
(2.67)
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∆L′′2 =
δ′′2 − ψ sin α2 sin (ψ(1− x))∆L′2

sin α2 cos (ψ(1− x))
(2.68)

∆L′′′2 =
δ′′′2 + 2ψ sin α2 sin (ψ(1− x))∆L′′2 + ψ2 sin α2 cos (ψ(1− x))∆L′2

sin α2 cos (ψ(1− x))
(2.69)

2.6.2 Attractor distances

In order to compute the shape of the trajectory, it is necessary to compute the dis-
tance from the attractor as function of x for both departure and arrival orbits. The
selection of Modified Equinoctial Elements[10] makes the analytical computation of
the desired quantities easier, therefore it is adopted in this phase. The first step is to
determine the longitude (intended as the sixth Modified Equinoctial Element) along
the departure orbit as function of x, as shown in equation 2.70 (see also figure 2.6)
together with its variation, in equation 2.71. L1 is the initial longitude of the satellite
on the departure orbit.

l1(x) = L1 + ∆L1(x) (2.70)

l′1(x) = ∆L′1(x) (2.71)

Now it is easy, using the angle transformation formulas, to compute the sine and
the cosine of the longitude as function of x with equation 2.72.{

sin l1(x) = sin(L1) cos(∆L1(x)) + cos(L1) sin(∆L1(x))
cos l1(x) = cos(L1) cos(∆L1(x))− sin(L1) sin(∆L1(x))

(2.72)

In a similar way, the same quantities are computed also for the target orbit, as
shown in equation 2.73, equation 2.74 and equation 2.75. L2 is the final longitude of
the satellite on the arrival orbit.

l2(x) = L2 − ∆L2(x) (2.73)

l′2(x) = −∆L′2(x) (2.74)

{
sin l2(x) = sin(L2) cos(∆L2(x))− cos(L2) sin(∆L2(x))
cos l2(x) = cos(L2) cos(∆L2(x)) + sin(L2) sin(∆L2(x))

(2.75)

From now, the formulation is identical for the departure and arrival orbit and
therefore it will be shown with the generic index i. The attractor distance can be
computed using equation 2.76, in which qi is defined as shown in equation 2.77

si(x) =
pi

qi(x)
(2.76)
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qi(x) = 1 + fi cos li(x) + gi sin li(x) (2.77)

As shown in section 2.2, the first, second and third derivatives of s are needed
to solve the problem. These quantities are computed respectively in equation 2.78,
equation 2.79 and equation 2.80

si(x)′ = −
piq′i
q2

i
(2.78)

si(x)′′ = 2
piq′2i
q3

i
−

piq′′i
q2

i
(2.79)

si(x)′′′ = −6
piq′3i
q4

i
+ 6

piq′iq
′′
i

q3
i
−

piq′′′i
q2

i
(2.80)

The derivatives of q that appear in the lasts equation can be computed using
equation 2.81, equation 2.82 and equation 2.83.

qi(x)′ = (− fi sin li + gi cos li)∆L′i (2.81)

qi(x)′′ = (1− qi)∆L′2i + q′i
∆L′′i
∆L′2i

(2.82)

qi(x)′′′ = −q′i∆L′2i + 3(1− qi)∆L′i∆L′′i + q′i
∆L′′′i
∆L′i

(2.83)

Despite the high number of equations to be evaluated, the algorithm is very fast.
Indeed, the presence of repeated terms allows a strong reduction of the numbers of
required FLOPS, by computing them only one time. Moreover, the vector structure
of each variable allows an efficient vectorization of the algorithm: an higher number
of evaluations are possible with only one set of instructions.
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Chapter 3

Numerical validation and
performance analysis

In this chapter some simple examples are proposed in order to crosscheck the result-
ing trajectory and to test the performance of the algorithm, both for imposed or free
TOF. All examples are performed with Matlab R2017b on a laptop with a sixth gen-
eration Intel i7 processor working at 2.6 GHz. For the examples of this chapter no
parallel computation is performed, since one of their aims is to test the speed of the
algorithm. The crosschecking of the trajectory was performed integrating the equa-
tion of motion 3.1 using the control law computed with the shape based approach,
eventually corrected with perturbation effects. The integration scheme selected is a
simple but effective explicit Runge-Kutta of the fourth order (RK4) [1][14]. The sys-
tem of ordinary differential equations is integrated over the anomaly instead of the
time since the first is for construction a linearly spaced vector.

dr
dθ = vr

ω
dz
dθ = vz

ω

dvr
dθ = 1

ω

(
− µ√

(r2+z2)3
r + rω2 + T cos(β) sin(α)

m

)
dω
dθ = 1

rω

(
T cos(β) cos(α)

m − 2ṙω
)

dvz
dθ = 1

ω

(
− µ√

(r2+z2)3
z + T sin(β)

m
1
ω

)
dt
dθ = 1

ω
dm
dθ = − T

Isg0

1
ω ;

(3.1)

All the analytical derivatives shown in chapter 2 have been checked and com-
pared with numerical derivatives using an high order finite difference scheme ( 6th

order central finite difference) The specification of the spacecraft selected for these
example are listened in table 3.1.

TABLE 3.1: Spacecraft specifications

Spacecraft feature Value
Specific Impulse [s] 3800
Dry mass[kg] 1000
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3.1 TOF free algorithm

In this section the TOF free algorithm is tested. As shown in chapter 2, the algorithm
solves the full 3D equation of motion with no approximations, therefore it is quite
general and can work for a wide range maneuvers. Anyway the typical application
of TOF free algorithms is the multi-revolution topping in planeto-centric scenario: as
will be explained in detail in chapter 4 those complex missions are thrated as consec-
utive simpler single revolution trajectories. Therefore, as first step, it is necessary to
investigate the performance of the algorithm on simpler single revoluton missions.
The objective of this section are manly two:

• Verification: the first purpose is to prove the formal correctness of the devel-
oped algorithm with numerical results regardless the efficency and the effec-
tiveness of the output trajectory. In order to do that an unrealistic single revo-
lution transfer between different orbits on different planes is implemented.

• Performance analysis: the second purpose is to test the performance of the
algorithm in terms of computational time, convergence rate and costs for dif-
ferent single revolution trajectories. A sensitivity analysis is also performed in
order to show the effectiveness of the developed shape algorithm for different
realistic Geocentric trajectories.

3.1.1 Verification

In order to shown and verify the algorithm, an unrealistic mission scenarios is sup-
posed around the Moon. The objective is to move a spacecraft between the two
different positions on different orbits. It is important to underline that here no opti-
mization was performed: initial and final anomaly have been selected randomly and
the Time of Flight was left free. The decision to implement a technical unfeasible tra-
jectory belongs both to the necessity to make plots and graphs more readable and
to stress the algorithm. As can be seen from the initial and final Keplerian Elements
in table 3.2, the transfer include a strong change of plane combined with an high
energy increase. The eccentricity and the argument of pericenter are also changed.

TABLE 3.2: Departure and Arrival states

Keplerian Element Initial State Final State
Semi-major axis [DU] 4.5 7
Eccentricity [-] 0.2 0.1
Inclination [deg] 5 15
RAAN [deg] 0 10
Argument of pericenter [deg] 20 5
True Anomaly [deg] 10 350

The resulting trajectory is shown in figure 3.1 together with its numerical verifi-
cation. The errors on the final position and velocity are null, since they are imposed
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a priori, while the relative error on the Time of Flight and the fuel mass using 100
computational nodes are respectively 2.3 · 10−7 and 4.2 · 10−5: a good approximation
for almost all scenarios. If the output trajectories are used only for initial mission de-
sign or as guests for direct optimization processes they will be also more precise than
necessary: a reduction of the number of nodes can be considered.

FIGURE 3.1: Spacecraft trajectory

The output control law and mass profile are reported in figure 3.2 as function of
the angular displacement θ from the initial position vector.

FIGURE 3.2: a) Control law b) Mass profile

In figure 3.1 and figure 3.2 it is possible to see also the perfect matching of the
numerical crosscheck: the error between this solution and the analytical one tends to
zero if the number of nodes increases. The strong change of plane is traduced in an
elevate out of plane thrust angle for almost the whole trajectory. The required thrust
is in around 10N, well beyond technical capabilities [17]. Even if the trajectory is not
feasible, it explains quite well the working principle of the algorithm.
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FIGURE 3.3: Attractor distance

FIGURE 3.4: Declinations
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In figure 3.3 and figure 3.4 the quantities from which all the kinematic and dy-
namics are recovered (see equation 2.37 and 2.36) are shown together their deriva-
tives: also for these quantities the numerical verification matches exactly the analyt-
ical one.

It is easy to recognize that s and δ have been obtained via a non-linear interpo-
lation of the corresponding quantities of the departure and arrival orbits. Moreover,
being the derivative a linear operator also the derivatives of s and δ are non-linear
combinations of the corresponding functions. Due to the requirements of the inter-
polating function identified in section 2.3 the trajectory matches exactly the geome-
try of the departure orbit at the starting point and of the arrival one at the ending
point. For shake of completeness the osculating elements are reported in figure 3.5:
the link between the spacecraft trajectory and the initial and final orbit is not so in-
tuitive as happens in spherical or cylindrical coordinates.

FIGURE 3.5: Osculating element
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3.1.2 Performance analysis

The performance analysis is carried out in two different steps: firstly, a sensitivity
analysis is performed in order to tests the effectiveness of the algorithm if compared
with impulsive maneuvers in a wide range of working conditions for Earth-centered
scenarios. The second step consists in an analysis of computational effectiveness and
convergence rate in different conditions.

Sensitivity cost analysis

One of the most important parameter of merit of a low thrust trajectory is the gravity
loss factor: it shows how a specific maneuver is more expensive in therm of ∆V when
compared to the corresponding impulsive one, as shown in equation 3.2.

Gloss = 100
(

∆Vlow

∆Vimpulsive
− 1
)

(3.2)

In figure 3.6 the gravity losses are reported for different maneuvers in different
conditions of eccentricity and semi-major axis, while in figure 3.7 is reported the
corresponding required thrust. All the low thrust maneuvers are performed in one
revolution, from pericenter to pericenter.

FIGURE 3.6: Gravity Losses
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FIGURE 3.7: Thrust required

The domain of the sensitivity analysis covers all the Geocentric orbits with semi-
major axis ranging from 1[DU] to 6.6108[DU] (GEO orbit) and eccentricity ranging
from 0 to 0.6: it means that almost every Geocentric orbit of commercial interest is
included in this analysis. Looking at figure 3.6, it is possible to see that the effective-
ness of every maneuver is almost independent from the semi-major axis while it is
more affected by the eccentricity, especially for large values (more than 0.3). Regard-
ing the thrust required, as expected from theory, it decreases while the semi-major
axis increases. More in detailed it is important to underline that:

• Semi-major axis variation (∆a) : The low thrust trajectory is here compared
with the optimal elliptic Hohman transfer. It is interesting to show that the cost
of low thrust trajectory converges to the Hohman one if the eccentricity goes
to zero and the gravity losses remain below 10% for eccentricity values lower
than 0.3. The required thrust strongly decreases as the semi-major axis grows,
as expected from theory, for any values of the eccentricity.

• Eccentricity variation (∆e) : Also in this case the low thrust trajectory cost
is compared with the optimal elliptic Hohman transfer. In this case the lim-
itation of the developed algorithm and, more in general, of every low thrust
optimization method that requires the continuity of the thrust is underlined.
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Indeed the change of eccentricity is extremely ineffective with respect to the
impulsive domain: more that the double of ∆V is required. This undesired
behavior can be better understood looking at some in-literature available tra-
jectories[21][2] optimized with direct methods in which the solution shows a
typical bang-bang structure with the spacecraft thrusting only near the apsis.
Any solution, in which the continuity of the thrust is imposed in advance, will
be surely sub-optimal and, the higher is the eccentricity of the orbit the lower
will be the effectiveness.

• Change of plane (∆i) : A direct and general comparison between low thrust
and impulsive trajectories is not so easy as in the previous cases since the solu-
tion will be strongly affected by the specific plane of the orbit and the direction
of the apsis line. In this work the best and the worst cases have been explored:
any possible solution will be between them. The optimal solution for the im-
pulsive case is when the maneuver takes place at the apocenter (upper surface
is figure 3.6), while the worst cases is when the change of plane is performed
at the pericenter (lower surface is figure 3.6). In figure 3.7 it is possible to see
that the thrust required for the low thrust maneuver is affected by both the
semi-major axis and the eccentricity. While the effect of the semi-major axis is
the same as in the previous maneuvers, the higher is the eccentricity the lower
is the thrust required, indeed the most demanding change in plane (see figure
3.7) takes place near the apocenter, that is farther from the attractor in high
elliptical orbits than in low elliptical one.

• In-plane apsis line rotation (∆ ω)): The rotation of the apsis line is extremely
convenient if compared with the impulsive case, since it takes only a few per-
centage of the impulsive one. The thrust peak is strongly affected by the ec-
centricity and the semi-major axis of the orbit: the higher is the eccentricity, the
higher is the thrust required.

From the previous considerations, it is clear that the algorithm gives results very
close to the optimal one if low elliptical transfer with high energy changes and mod-
est change in plane are considered. Mission scenarios such as deployment of mul-
tiple satellites in LEO or multi-objective GEO topping problem could benefit from
this algorithm.

Convergence rate and CPU time

One of the biggest advantages of this algorithm, and in general of all shape-base
algorithms, is the fastness. In figure 3.8 it is shown the CPU time as function of
the number of computational nodes. For typical application, as will be further in-
vestigate in this chapter, between 15 thousands and 20 thousands revolution can be
evaluated each second. The aforementioned graph shows a quasi bilinear trend: the
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discontinuity between 250 and 300 computational nodes belongs to the way the al-
gorithm is implemented. As mentioned in chapter 2 the MATLAB implementation
benefits to the vectorization of the algorithm: a single set of instruction works for all
the nodes. This is true till the saturation of the memory on the processor itself, that
probably happens in the above-mentioned range.

FIGURE 3.8: Computational Time

The error on final position and velocity is null independently from the number
of computational nodes used, being these quantities computed with a full analytical
approach. On the other hand, fuel mass and time of flight belong to numerical inte-
gration, and therefore a convergence analysis is needed in order to quickly estimate
the error and the number of computational nodes required.

In figure 3.9 it is shown the trend of the ten-based logarithm of the relative errors
of the fuel mass and time as function of the computational nodes and the orbital
eccentricity. It is important to underline that the resultant relative errors are almost
uncorrelated with the maximum thrust required if the thrust is low enough to al-
low a smooth variation of the osculating elements, as happens in realistic situations.
For most common trajectories, with thrust equal or lower than one Newton and ec-
centricities not so high, between 50 and 100 computational nodes are sufficient to
guarantee a relative error on the fuel mass around 10−5 and of 10−6 on the time
of flight. Moreover, for fast and rough approximations only few tens of points are
sufficient to contain the relative error on both quantities below 10−2.



36 Chapter 3. Numerical validation and performance analysis

FIGURE 3.9: Relative error: logarithmic scale based on 10

The algorithm was also tested in non-realistic scenarios and, provided that the
trajectory is feasible, it is always possible to reach a certain relative error increasing
the number of computational nodes.

3.2 TOF imposed algorithm

The imposition of time of flight for the one revolution trajectory makes no sense
in earth-centered scenarios since the dynamics is much more constrained with re-
spect to interplanetary trajectories. The multi-revolution rendezvous in low thrust
environment is an extremely complex task, and cannot be performed considering
directly the time of flight on each arc as degrees of freedom, indeed thousands de-
grees of freedom should be used. Moreover the resulting domain of possible Time
of flights for one revolution in planeto-centric problems is extremely tight and there-
fore it is almost useless to take it as degree of freedom. For these reasons, the perfor-
mance analysis in this section will be performed with interplanetary trajectories. In
this section, after a numerical verification of the algorithm with the same example
presented in the previous section, a performance analysis will takes place in order
firstly to investigate the sensitivity of the results with respect to the imposed TOF in
different conditions and then to show its computational cost.

3.2.1 Numerical Verification

In order to test the algorithm the same Lunar example of the previous section is
considered. The difference is that the time of flight is now imposed to the shape.
It is considered as a degrees of freedom in a quasi newton optimization algorithm
(MATLAB f mincon function ) having as objective the minimization of the fuel con-
sumption. The resulting trajectory is shown in figure 3.10, while the control law and
the mass profile are shown in figure 3.11. Also in this example 100 nodes have been
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used for the computation of the trajectory. The relative error on the fuel mass and
on the time of flight are respectively 2 · 10−4 and 4.3 · 10−4. The growth of the error
between free and imposed time of flight is due to the necessity to numerically solve
the time equation (equation 2.28) as explained in chapter 2: the newton solver is ini-
tialized with as = 0 (this makes the interpolation function equals to the one used
for the TOF free algorithm, guaranteeing the existence of the initial guess) and takes
only five steps to converge with a residual lower to 10−6. The above-mentioned er-
ror arises to the integral present in equation 2.28 that has to be numerically solved at
each step using a Cavalieri-Simpson quadrature scheme. The adoption of an higher
order integration scheme was tested, but the benefits in term of error reduction are
not sufficient to justify the increase in CPU time.

FIGURE 3.10: Spacecraft trajectory

FIGURE 3.11: a) Control law b) Mass profile

As can be seen in table 3.3, the increased flexibility of the shape (see the shapes
specifications in chapter 2 for further details) results in a trajectory that better fits
the dynamics. The fuel mass required, as well as the maximum thrust needed and
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the time of flight are lower if compared with the solution obtained with free time of
flight.

TABLE 3.3: Comparison between algorithms

Algorithm TOF free TOF imposed
Fuel Mass [kg] 7.15 6.60
Maximum thrust [N] 10.48 6.61
Time of Flight [hours] 24.02 23.05

This flexibility is well suited for multi-objective optimization of interplanetary
trajectories.

3.2.2 Performances analysis

In this section a performance analysis is executed in order to test the sensitivity of
the solution with respect to the time of flight, the convergence rate and the com-
putational time required by the algorithm. Regarding the sensitivity analysis it is
important to underline that, being the TOF free algorithm a particular solution of
the TOF imposed one, the trends shown in the previous section are still valid and
they can be seen as a suboptimal cases for this algorithm.

Sensitivity cost analysis

The sensitivity analysis is performed with a simple single revolution (it means a
transfer angle between π and 3π, as explained in details in Chapter 2) Earth-Mars
rendezvous, with null initial and final relative velocity and using the same space-
craft specification adopted in the previous examples, that are summarized in table
3.1. The analytical ephemerids adopted are the ones suggested by the NASA-JPL
Solar System Dynamics team, available at [31]. The main mission parameter are
summarized in table 3.4: the domain of the TOF for the trajectory is extremely wide
for a single revolution transfer, while the departure date is kept fixed since the aim of
this example is only to test the sensitivity and the convergence basin of the algorithm
and not to find a global optimal solution.

TABLE 3.4: Mission parameters

Parameter Value
Departure Date 11th May 2022
TOF [days] from 490 to 820

As can be seen from figure 3.12, the convergence radius of the algorithm is wide
and the fuel mass and thrust optimal solutions are quite close. For both it is present
a plateau in which the distance from optimal solution is low: as will be shown later,
this fact allows an high flexibility when more complex scenarios are taken into ac-
count.
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FIGURE 3.12: Sensitivity with respect to the TOF

Convergence rate and CPU time

As expected, the TOF imposed algorithm is slower if compared with the TOF free
algorithm due to the necessity to numerically solve equation 2.28. In figure 3.13 is
possible to see the computational cost of the algorithm: more than 8.5 thousands of
revolutions can be computed each second if 100 computational nodes are adopted, a
number that, as mentioned before, is capable to give relative errors on the mass and
time of flight in the order of magnitude of 10−4. Also in this case it is present a step
in the computational time around 250 nodes: the reason is the same that of the TOF
free algorithm, indeed the required memory is not affected by the additional steps
required to solve equation 2.28.
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FIGURE 3.13: CPU time
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Chapter 4

Use of the shape-based algorithms
in multi-revolution scenarios

The algorithms presented in chapter 2 can link two different states in a single rev-
olution (namely with a transfer angle between π and 3π, as explained in 2), any-
way most of the trajectories, both in interplanetary and geocentric scenarios, involve
more than one revolution. Typically in interplanetary trajectories few revolutions are
sufficient to reach any possible target [9][28][30], while in planetary environments
hundreds or thousands are needed. Moreover in interplanetary trajectories the time
of flight is a fundamental constrain, since no phasing maneuver can be done due
to the high orbital period. In planeto-centric environment the time of flight is not
a constrain but an objective, indeed it could be in the order of months while phas-
ing maneuvers could be easily performed in hours or days. For these reasons the
two cases are threated in different sections: in the first section the more complicated
planeto-centric algorithm is explained, while in the second two possible solution of
the interplanetary problem, with different costs and benefits, are explored.

4.1 Use of the shape based algorithm in planeto-centric mis-
sion scenarios

In this section it is explained how the shape-based algorithm presented in chapter 2
can be successfully used to solve complex multi-revolution scenarios. The necessity
of a dedicated section for this task arises to the fact that in planeto-centric environ-
ment hundreds or thousands of revolutions are needed to move the satellite from an
orbit to another. The classical way [9][42] to deal with multi-revolution problems is
to consider an ’augmented’ transfer angle, as shown in equation 4.13. Unfortunately,
this solution works quite well for a very low number of revolutions (typically less
than three or four), as will be shown in chapter 5.

ψ = ψ + 2πNrev (4.1)

Moreover, this strategy implies the continuity of the thrust over the whole tra-
jectory, making impossible to switch off thrusters during eclipses. For these reasons
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this solution will not be adopted for planeto-centric trajectories: in the following
sections two different approaches with different requirements and peculiarities are
suggested and analyzed. As underlined in chapter 3, the adoption of the imposed
TOF algorithm on multi revolutions problems is not straightforward and it can’t be
directly applied if the number of revolutions exceeds some units. On the other hand,
in chapter 2 it was proved that using the free TOF algorithm it is only possible to im-
pose or the initial position and epoch, or the final one. It means that if it is needed
to move a spacecraft between different orbits without the necessity to constrain both
the exact position and time on the departure and final orbits, the TOF free algorithm
can works. Instead, if it is necessary to link exactly two different time dependent
positions without the possibility to perform a further phasing maneuver, a different
strategy is needed. It is important to underline that, being the TOF free algorithm
able to impose exactly the epoch (and the mass) or at the beginning or at the end,
most of the practical problems, such as orbit injection and rising, can be solved with
the first strategy.

4.1.1 Multi-revolution trajectories with free TOF

This algorithm allows to link two different states with an high number of revolu-
tions imposing exact boundary conditions on the position and forcing or the initial
or the final date and mass. The working principle is to generate a family of inter-
mediate orbits placed in such a way as to make the thrust peaks constant, and in
a sufficient number to not exceed the maximum available thrust. The full multi-
revolution trajectory is then threated as series of easier one revolution trajectories
that are solved with the TOF free algorithm presented in chapter 2. The departure
and arrival anomalies are selected in order to thrust only in sunlight: in the kth arc
the starting point coincides with the exit from the eclipse on the kth intermediate
orbit, while the target point is the entrance of the eclipse on the kth + 1. During the
eclipses phases the motion is keplerian if the perturbation effects are switched-off,
otherwise it is perturbed only by the natural forces. If an intermediate orbit doesn’t
experience any phase in shadow, one fictitious eclipse of null duration is introduced
in order to maintain the same structure of the algorithm.

Algorithm description

Before introducing the architecture scheme it is important to formalize the problem:
the initial and final states are imposed as Modified Equinoctial Elements (MEE), as
shown in equation 4.2. {

MEEi = [pi, fi, gi, hi, ki, Li]

MEE f = [p f , f f , g f , h f , k f , L f ]
(4.2)
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Since the algorithm can work both forward and backward in time, two different
but similar formulations are available: for sake of brevity only the forward algorithm
is deeply analyzed. The steps involved are the following:

1. initialization of the problem: at the first step of the algorithm the spacecraft
is at the initial state, while the desired is the final one, therefore equation 4.3
holds.


MEE1 = MEEi

MEE2 = MEE f

mk(0) = Minitial

tk(0) = 0

(4.3)

with k = 1 since the first trajectory has to be designed.

2. Positioning the k-th intermediate orbit: the spacecraft is in the position de-
scribed by MEE1 with mass mk(0) and the time after departure in tk(0). The
objective is to place the kth intermediate orbit in such a way that the maxi-
mum thrust required is equal to the maximum available one. Accordingly to
equation 4.4 the position of the intermediate orbit depends on the value of the
parameter ηk: the higher is ηk the higher will be the gap between the current
orbit and the intermediate one and so the higher will be the thrust required.



pk = (p2 − p1) ηk + p1

fk = ( f2 − f1) ηk + f1

gk = (g2 − g1) ηk + g1

hk = (h2 − h1) ηk + h1

kk = (k2 − k1) ηk + k1

(4.4)

The exact position on the intermediate orbit, described by the sixth parameter
Lk, is depending on the other five Modified Equinoctial Elements computed
in equation 4.4 since, as said before, it must coincide with the entrance on the
eclipse, no matter if it is real or fictitious. The model adopted for the eclipse
is the standard cylindrical one. It is important to underline that, being the
shadowed region function of the time due to the Earth motion around the sun,
it has to be computed at each kth step. The desired value of ηk is found solving
numerically equation 4.5 in which the term max (T(ηk)) is the maximum thrust
required during the kth trajectory that can be computed using the TOF free
algorithm presented in chapter 2.

max (T(ηk))− Tavailable = 0 (4.5)
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The numerical solution of equation 4.5 in general is not straightforward since
there are points in which its continuity is not guaranteed, as well as the exis-
tence of the solution itself. The adopted solution is an hybrid Newton-Bisection
algorithm developed ad-hoc. As first step, the algorithm tries to solve the
equation with Newton method, then if it fails, the algorithm tries again with
the Bisection method. If also in this case the algorithm fails in reaching a pre-
defined tolerance in a certain number of iterations, the equation is transformed
into an inequality, as shown in equation 4.6.

max (T(ηk))− Tavailable < 0 (4.6)

The last inequality can always be solved since the developed shape-based al-
gorithm fulfill the requirement in equation 4.7

lim
∆MEE→0

max
(
|T|
m

)
= lim

ηk→0
max

(
|T|
m

)
= 0 (4.7)

If the value of ηk found with previous equations is equal or greater than one
it means that the thrust available on-board is sufficient to reach the final posi-
tion MEE2, as can be seen from equation 4.4: in this case ηk is automatically
switched to one and the kth trajectory is computed again; the algorithm stops.
Otherwise if ηk is between 0 and 1 it is necessary to prepare the states for the
next step using equation 4.8: the new starting position is the exit from the
eclipse of the kth intermediate orbit, the initial mass of the spacecraft on the
trajectory k + 1 is exactly equal to the final mass of the trajectory k since during
the eclipse no fuel is consumed. The time after departure at the beginning of
the k + 1 trajectory is equal to the arrival time of the trajectory k plus the time
spent in shadow (∆teclipse)

MEE1 = MEEk

MEE2 = MEE f

mk+1(0) = mk(1)
tk+1(0) = tk(1) + ∆teclipse

(4.8)

The value of k is then increased and the algorithm goes back to the beginning
of point 2. The cycle stops when ηk is equal or greater to one.

3. Trajectory analysis: For fastness purposes, the previous block gives as out-
puts only the initial/final mass and the time of flight. If more information
are needed once the intermediate orbits are placed this block is activated and
compute all the kinematics and dynamics quantities of the trajectory. The com-
putational time required by the algorithm is in around 50% higher if this block
takes place, therefore in the optimization of complex mission scenarios it is
better to run it only on a limited number of solutions.
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The backward version of the algorithm involves the same steps, with some im-
portant differences:

• Now the initial state is the arrival one, and the desired is the departure one,
therefore equation 4.3 is substituted with equation 4.9.


MEE1 = MEE f

MEE2 = MEEi

mk(1) = M f inal

tk(1) = 0

(4.9)

• The mass imposed in equation 4.9 is the final one instead of the initial one
and the variable tk(x) now means ’time before the arrive’ instead of ’time after
departure’ ant it is a negative quantity.

• The kth intermediate orbit is integrated itself backward in time, therefore the
update of the states becomes the one shown in equation 4.10 instead of the one
in equation 4.8.


MEE1 = MEEi

MEE2 = MEEk

mk+1(1) = mk(0)
tk+1(1) = tk(0)− ∆teclipse

(4.10)

It means that the final mass to be imposed to the kth + 1 single revolution tra-
jectory is the initial one computed for the kth revolution, as happens for the
time.

The effect of having both the forward and backward direction for the trajectory
design allows to keep into account more scenarios. The architecture of the algorithm
is presented in figure 4.1 for completeness.
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FIGURE 4.1: Multi-revolution algorithm architecture
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Example of multi-revolution trajectory

In order to better understand the working principles and the steps involved in the
multi-revolution algorithm proposed, a very simple planar example is here reported:
The mission consists in the design of a trajectory able to link the equatorial and
circular orbits indicated in table 4.1; the departure epoch is fixed at the 20 July 2020.

TABLE 4.1: Departure and Arrival states

Keplerian Element Initial State Final State
Semi-major axis [DU] 1.7 4
True Anomaly [deg] 0 free

The spacecraft has an initial wet mass of 800 kg, a maximum available thrust of
40 N and a specific impulse of 3800 s. The output trajectory is quite explicative and
it is reported in figure 4.2.

FIGURE 4.2: Spacecraft Trajectory

Since the initial mass is imposed the direction of the algorithm will be forward:
the problem is solved from the initial orbit, finding firstly the position of the first
intermediate orbit and then going on in the loop described in the previous section.

As can be seen from figure 4.3, the thrust peaks are all aligned at 40 N with the
only exception of the last one, indeed, as mentioned in the theoretical description, in
general the last revolution examined doesn’t saturate the available thrust. The differ-
ent angular length of the trusted arcs is obviously due to the presence of the eclipse
that is different for each intermediate orbit. Also in the mass profile in figure 4.3 it
is possible to see the effects of the eclipse phases in which no fuel in consumed. As
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FIGURE 4.3: a) Thrust required b) Mass profile

introduced before when the intermediated orbits don’t intercept the Earth shadow
region a fictitious eclipse of zero length is introduced. It can be appreciated on both
figure 4.2 and 4.3 in the last intermediate revolution, in which the switch-on and the
switch-off positions are coincident.
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4.2 Use of the shape based-algorithm in interplanetary mis-
sion scenarios

Interplanetary trajectories design and optimization introduces some other issues and
constrains/objectives that is necessary to identify and formalize. Regardless from
the technology adapter the thrust is linearly related with the power available: typ-
ically a specific power between 15 W

mN and 40 W
mN is needed. By definition in inter-

planetary trajectories the variation of the distance from sun is not negligible and, in
most of the cases, it can affect the available power of around one order of magnitude
if solar arrays are used as primary power sources due to the dependence of the solar
flux to the inverse of the square of the distance [43].

Solar panels are affected by aging effects that reduces the amount of available
power during time. This aging effect can be estimated between 2% and 4% [34] de-
pending on the technology adopter for the solar panels. Interplanetary missions can
lasts decades [28][30], therefore the amount of available power is also function of the
total time of flight. These effects can be merged together in a unique constrain that,
for shake of fastness in the convergence of the optimizer and flexibility in the mis-
sion design, is threated as an objective. The physical quantity that synthesize all the
above-mentioned issues is obviously the solar panel surface needed to accomplish
the mission. It can be performed evaluating equation 4.11 [43] in each computational
nodes and considering the maximum value.

ASA(x) =
kT + Pss

ηtot cos φ (1− β)t φEarth
s2

(4.11)

In equation 4.11 k is the power per unit thrust, Pss is the power consumption
of the rest of the spacecraft, η is the efficiency of the power production/conversion,
cos(φ) is the cosine of the sun angle, β is the aging factor of the solar panels and φEarth

is the solar flux at 1 [AU]. The sun-angle can be supposed a-priori or computed point
by point from the control law, if the geometry of the spacecraft is known. Since the
optimal solution is the same for every positive multiple of the objective function,
equation 4.11 can be simplified in order to generate an objective function that is less
dependent from the specific parameter of the spacecraft giving the objective function
in equation 4.12.

obj = MAX

[
T(x)s(x)2

(1− β)t(x)

]
(4.12)

This objective function,that due to the presence of the aging effect tries to contain
also the Time of Flight, can be used [28] inside a multi-objective multidisciplinary
genetic algorithm together with the fuel mass. It is possible also to impose a con-
strain on the maximum thrust or introduce it as a third objective function: in this last
case the Pareto front allows to select directly the solution that better fits the require-
ments and the constrains of the mission. In the following paragraph two different
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approaches are reported.

Augmented transfer angle

The peculiarities of interplanetary trajectories identified at the beginning of this
chapter allow the possibility to use a simple ’Augmented Transfer Angle’ strategy to
take into account multiple revolutions, as indicated in equation 4.13 and impose the
necessity to use the imposed TOF algorithm in order to guarantee the rendezvous
conditions.

ψ = ψ + 2πNrev (4.13)

This strategy is extremely fast since reduces as much as possible the degrees of
freedom and requires only one evaluation of the shape-based algorithm for each
element of the population in the global optimization algorithm, on the other hand
the flexibility of the shape is limited to the time of flight.

If one or two revolution are required this strategy is convenient and valid, other-
wise is better to move to the ’intermediate orbit placement’.

Intermediate orbit parametric placement

This solution consists in the adoption of N intermediate orbits, in which N is one of
the degrees of freedom of the global optimization algorithm, placed using a parame-
ter ε that is itself part of the optimization vector. This solution is a good compromise
between flexibility and fastness, indeed, theoretically speaking, one can use directly
all the parameters of the intermediate orbits as degrees of freedom, but the size of
the problem grows rapidly, vanishing all the benefits of the shape based approach.
The position of the nth intermediate orbit is described by equation 4.14, in which it
is easy to prove that, being ε > 0 all the intermediate orbits (1 < n < N + 1) are
placed between the departure and arrival one.

MEEn =
(

MEE f −MEEi
) 1

eε − 1

(
eε n

N+2

)
+ MEEi (4.14)

The exponential distribution was selected among different possibilities because
of its capability to give good results also with a quite elevate value of N.
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Chapter 5

Test Cases

In this chapter some mission scenarios are proposed and solved for both interplane-
tary and geocentric trajectories. The missions have been selected and designed with
the double intent of stress as much as possible the developed models and to be of
engineering interest. All the examples have been performed using MATLAB 2017b
on a laptop equipped with a sixth generation quad-core Intel processor working at
2.6 GHz.

5.1 Electric orbital rising to GEO

Geostationary orbit is of primary interest for commercial satellites, especially for
telecommunication purposes. The specific energy of GEO is high, and therefore the
injection on this orbit typically requires a big effort, both from a technical and eco-
nomical points of view. For a commercial satellite there are typically two possibilities
to reach this orbit, with different advantages and disadvantages:

• Geostationary Transfer Orbit: The launcher provides the energy required to
reach an high elliptical transfer orbit (GTO), then the spacecraft shall perform
an apogee maneuver with its own propulsion system to make the orbit circular
and change the orbital plane. This solution reduces a lot the specific cost of the
launch but requires a strong propulsion unit on the spacecraft capable to give
a ∆V between 1, 5 km/s and 2 km/s. Using chemical thrusters this implies
that almost one half of the launched mass consists of propellant needed for
the orbit injection. It is important to underline that this strong, massive and
costly system is completely useless for the rest of the lifetime of the satellite,
since station keeping and end of life disposal maneuvers can be performed
also with smaller and cheaper thrusters.

• Direct Injection: The launcher directly performs the maneuvers required to
inject the satellite on or nearby the Geostationary orbit. This solution removes
the necessity of a strong propulsive unit, reduces the amount of on-board pro-
pellant and so the mass to be launched. Unfortunately, the high specific energy
of the GEO orbit precludes this solution for small and cheep launchers, such
as VEGA, making necessary the usage of more expensive heavy launchers.



52 Chapter 5. Test Cases

No matter the way a GEO satellite is injected in orbit, its lifetime is affected by
the amount of on-board propellant for station keeping and attitude maneuvers. For
this reason, in the lasts decades full electric platforms have been designed and suc-
cessfully launched: the specific impulse is at least one order of magnitude higher if
compared with chemical thrusters and so the fuel consumption is much lower. On
2001 an Ariane 5 launcher fails the injection of the ESA satellite Artemis [20], leav-
ing it at an height of 17000 kilometers: the satellite was successfully injected in GEO
orbits in 2003 using its station-keeping ion thrusters, preventing the loss of the satel-
lites. The new generations of thrusters under development [40][24] could open the
way to commercial solutions for the insertion of satellites in geostationary orbit by
means of electric thrusters[17]. The biggest disadvantage of this solution nowadays
is the time required [Ramos] [2], in the order of some months, that for commercial
activities is not welcomed, but the continue advance in the electric propulsion field
gives hope for an application in the next future.

In this scenario the possibility to launch a satellite in GEO using electric propul-
sion is explored. The satellite, with the specifications listed in table 5.1, is firstly
placed in a parking orbit by the European VEGA launcher [5], and then with its own
propulsion unit reaches GEO.

TABLE 5.1: Spacecraft specifications

Spacecraft feature Value
Specific Impulse [s] 3800
Dry mass[kg] 800
Maximum Thrust [N] 0.5

The inclination of the parking orbit is fixed at 5.4 [deg], the minimum reachable
from the Kourou without a plane change, and the standard parking orbit plane for
VEGA [5]. The apocenter and pericenter radii are considered as degree of freedom
for the optimization process. Their values can range from 1.03 [DU] to 6.6108 [DU],
including therefore any possible intermediate orbit between LEO and GEO. Due to
the inclination of the Earth rotation axis, the eclipses encountered by a satellite above
LEO orbits are strongly affected by the period of the year: a satellite in GEO goes in
Earth shadow only nearby the equinoxes [11]. Since in this example the spacecraft is
supposed to be able to thrust only in sunlight, the solution will depend also on the
season of the GEO arrival therefore the two opposite cases (arrival at the equinoxes
or at the solstices) will be discussed. In order to highlight the importance of having
included the eclipses in the model also the solution without them will be reported.
Figure 5.1 shows the costs in term of fuel and TOF for any possible combination
of the degrees of freedom considered for a GEO insertion during a solstice. As in-
troduced in chapter 3, high elliptical trajectories are penalized by the shape-based
methods and appear inconvenient both for time of flight and mass.
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FIGURE 5.1: Solstice opportunities considering eclipses effects

FIGURE 5.2: Equinox opportunities considering eclipses effects
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FIGURE 5.3: Opportunities neglecting eclipses effects

FIGURE 5.4: Opportunities including disposal maneuver



5.1. Electric orbital rising to GEO 55

Figure 5.2 and figure 5.3 show the same costs for the injection during the equinoxes
and without considering the eclipses effects respectively. In order to fulfill the nor-
mative on space debris prevention, in figure 5.4 it is also reported the costs for the
same scenario including into the constraints also the propellant needed by the last
stage of the launcher to perform a disposal maneuver. This disposal maneuver con-
sists in a reduction of the altitude of the perigee at 150 [km] with a single impulsive
maneuver. Red lines represent the launchable mass using VEGA launcher: since a
complete set of information for the launcher is not available, data are extrapolated
applying the Tsiolkovsky equation to the last stage of the launcher (AVUM) from
the reference orbit available on the user-manual [5]. The time optimal problem was
solved for all the above-mentioned cases using a Nelder-Mead simplex algorithm
[27][1] modified with a penalty method in order to force the solution to show an
initial mass lower than the launchable one on the same orbit. The decision to adopt
a derivative-free algorithm arises from the fact that, being the number of revolution
discrete, the time of flight is not continue.

TABLE 5.2: Time optimal constrained solutions

Model Eclipses Eclipses and disposal No eclipses
Arrival epoch Equinox Solstice Equinox —-
Fuel Mass [kg] 62.30 61.72 71.5 61.59
TOF [days] 83.89 79.84 98.47 66.5
Revolutions [-] 280 279 425 214
rp parking [DU] 1.8994 1.9019 1.6517 1.8816
ra parking [DU] 1.9030 1.9029 1.6524 1.9207
CPU time [s] 23 31 41 12

From the results listed in table 5.2, it is clear that the time optimal strategy con-
sists of a quasi circular switching orbit with a radius of around 2 [DU]. The fuel
consumption is similar for all the trajectories while the time of flight increases be-
tween 20% and 25% if eclipses are considered. The effect of the injection season is
much smaller: this is due to the fact that, even if nearby the equinoxes eclipses are
present at any distance from ground, the fraction of time spent in shadow decreases
with the radius. The CPU time highlights the capability of the algorithm to find
sub-optimal solutions for multi-revolutions discontinuous trajectories very quickly:
in these simulations 50 computational nodes have been used for the optimization
processes and 100 for the plot of the final trajectory. All optimization processes have
been initialized with the reference VEGA parking orbit (200 [km] x 1500 [km] height
LEO orbits), the differences in the CPU times between the solutions reflect the dif-
ferent number of revolutions required and the increase in complexity if eclipses are
encountered. In literature there is no database with time optimal solutions of GEO
rising problems including eclipses in the model, therefore the only crosscheck can
be done with the solutions without them. The solution found within this work is
aligned with the ones available in literature [tizio35][Ramos] . For sake of complete-
ness in figure 5.5 is reported the 3D trajectory for the case with eclipse and disposal
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maneuver that represents the most complex solution among the ones listed in table
5.1. It is easy to see that the distribution of the density of the intermediate orbits is
much higher near the Earth. Regarding the eclipses it is possible to see the distor-
tion of the shadow region caused by the motion of the Earth around the Sun and, as
lower effect, the plane changes.

FIGURE 5.5: Time optimal trajectory with eclipses and launcher dis-
posal maneuver

5.2 Earth-Mars rendezvous

The Earth-Mars rendezvous problem is a classical scenario for validation of low
thrust trajectories design. The problem is identical to the one solved in [37]. In
table 5.3 and table 5.4 are listed the spacecraft parameters and the search domain
respectively.

TABLE 5.3: Spacecraft specifications

Spacecraft feature Value
Specific Impulse [s] 3000
Dry mass[kg] 1000
Maximum Thrust [N] 0.22

The thrust required and the fuel mass fraction over the whole search domain are
reported in figure 5.9; white regions are the ones in which or the thrust exceeds 1 [N]

or the fuel mass fraction exceeds 0.5 [−]. The Thrust optimal and fuel mass fraction
optimal solutions are also reported: it is evident that for this algorithm the search
domain proposed by Vasile is too small and therefore both the optimal solutions are
located at the border of the domain. Anyway, inside the domain it is possible to
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TABLE 5.4: Search domain

Range
Departure Date from 2028 to 2031
Time of Flight [days] from 600 to 1000
Number of revolutions [-] from 0 to 3

recognize two convenient regions in which the thrust and the fuel mass fraction are
low even for Time of Flight reduced.

FIGURE 5.6: Thrust and fuel mass fraction required

TABLE 5.5: Optimal solutions

Solutions fuel optimal thrust optimal
Departure Date 8 May 2030 3 May 2030
TOF [days] 1000 1000
Thrust required [N] 0.208 0.207
Fuel Mass fraction [kg] 0.1777 0.1778
Revolutions [-] 1 1
CPU time [s] 8.7 4.7

In table 5.5 the thrust and fuel mass fraction optimal solutions are reported: it
can be seen that they are almost equivalent and are extremely similar to the ones
that can be found in [37], in which the fuel mass fraction ranges between 0.177 and
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FIGURE 5.7: Number of revolution required

0.188 and the TOF ranges between 717 and 998; In these trajectories 100 computa-
tional nodes have been used. This solution was found using the build-in MATLAB
Genetic Algorithm function (’ga’) with a population of 100 individual and a stan-
dard stopping criteria based on the average changes on the cost function (less than
10−6). The developed algorithm doesn’t give any advantages in term of optimality
of the solution in this scenario and slightly penalize the TOF. The only advantage is
that it requires only 5-10 seconds to run instead of the 10 minutes mentioned in [37].

FIGURE 5.8: Earth Mars trajectory

The output optimal trajectory is reported in figure 5.8 while the control law and
the fuel mass consumption are reported in figure 5.9.
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FIGURE 5.9: a) Control law b) Mass profile

5.3 Earth-Nereus Mission

This scenario was selected to underline the ability of the shape based algorithm to
find near optimal solution when high elliptical orbits are considered. Nereus is a
Near Earth Object with an high elliptical orbit on a plane slightly different with
respect to the Earth one; the full set of Keplerian element referred to the 1st January
2000 is reported in table 5.6.

TABLE 5.6: Nereus Keplerian elements

Keplerian Element Value
Semi-major axis [AU] 1.4896
Eccentricity [-] 0.36026
Inclination [deg] 1.4238
RAAN [deg] 69.127
Argument of pericenter [deg] 112.66
True Anomaly [deg] 314.76

It is important to underline that the pericenter of Nereus orbit is located nearby
the Earth’s one, therefore a quasi ballistic solution with a non zero escape velocity is
expected if or the spacecraft’s fuel mass fraction or the thrust required are selected as
objectives. In order to try to find the best trajectory an extremely wide search space
is considered: the degrees of freedom and their ranges are reported in table 5.7.

TABLE 5.7: Search domain

Range Optimum
Departure Date from 2030 to 2050 9th February 2042
Time of Flight [days] from 500 to 1500 690.5
Number of revolutions [-] from 0 to 2 1
vin f departure [km/s] from 0 to 6 5.93
vin f in plane angle [deg] from -90 to +90 -8.07
vin f out of plane angle [deg] from -90 to +90 44.79



60 Chapter 5. Test Cases

Regarding the optimization process, the MATLAB genetic algorithm is adopted
with a population of 1000 individuals and the optimal trajectory is obtained after 5
minutes with 100 computational nodes. As can be seen from the output trajectory
reported in figure 5.10, the launcher inserts the spacecraft, that has the specification
listed in table 5.3, directly in a quasi ballistic orbit, as expected from theory. The
only use of the thrusters is the relative approach phase to Nereus, that is reported
for sake of completeness in figure 5.12; slightly more than 10 mN of thrust are suffi-
cient. Control law and fuel consumption are reported in figure 5.11: as can be easily
derive the fuel mass fraction is only 0.0052. The degrees of freedom associated to the
optimal solution are listed in table 5.7.

FIGURE 5.10: Earth Nereus trajectory

FIGURE 5.11: a) Control law b) Mass profile

This example shows that the developed algorithm is capable to manage also high
elliptical orbits in interplanetary trajectories: this is possible only because the pecu-
liarity of the shape is to be a non-linear interpolation between arrival and departure
orbits.
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FIGURE 5.12: Spacecraft-Nereus distance

5.4 Bepi-Colombo comparison

In order to try to prove the capabilities of the algorithm in real situation it was also
tested in comparison with an arc of the exact flight plan of the BepiColombo ESA
spacecraft. Since the flight plan was developed keeping into account the effect of
interplanetary perturbations, the exact ephemerids and not only continuous thrust,
this algorithm shows not so god results: it takes 30 kg of propellant for an arc that
will takes only around 5 kg in the real plan. The thrust peak is also higher with
respect to the Bepi-Colombo one. As better explained in chapter 6 one possibility to
reduce this discrepancy could be to consider directly the perturbations on the shapes
of the trajectories and including ballistic arcs. Anyway shape-based algorithms are
not thought to outputs optimal flight plans, so the above-mentioned discrepancy
will always be present, even if reduced.





63

Chapter 6

Conclusions and future works

The goal to develop a shape-based algorithm able to deal with Earth-centered sce-
narios is achieved and, especially when utilized in multi-revolution problems, the
developed methodology shows some great advantages. The first is the extremely
low computational cost that makes the algorithm suitable for the optimization of
complex mission scenarios. This computational speed belongs to the decision to in-
clude directly the boundary conditions in the interpolating functions, avoiding the
necessity to compute them at each step (as happens in some classical shape-based
algorithms [9][42]) and to the attention posed on the selection of light numerical
techniques able at the same time to contain the numerical error. The MATLAB im-
plementation required a big effort since the usage of build-in function was reduced
to the minimum: almost every function, from the most complex, such as ’fminsearch’
(that implements Nelder-Mead simplex algorithm) to the simpler, such as dot and
cross products, have been rewritten in order to be as light as possible. The vectorial
structure of the single revolution algorithm is quite effective if less than 200 nodes
are adopted, and guarantees a further reduction on the computational cost. In order
to further improve the speed of the algorithm some strategies have been identified:

• C porting: the reduced number of build-in functions adopted makes easy a
future porting in C language, that is more efficient if compared with MATLAB
[1]. The only part of the algorithm that will be developed from scratch or taken
from literature is the Heuristic algorithm.

• GPU computing: most of Heuristic algorithms evaluate independently at each
step a wide number of individuals. If the Heuristic algorithm is parallelized on
a GPU the advantages are enormous, being common GPUs made by hundreds
of cores.

The eclipse are included in the model with a simple but effective strategy, that shows
also a good robustness even if an elevate number of discontinuities is introduced:
this is possible mainly thanks to the particular combined Newton-Bisection algo-
rithm discussed in chapter 4. The proposed interpolating functions show an ac-
ceptable degree of flexibility, anyway a further analysis can be performed in order
to explore more performing shapes, maybe introducing two different interpolating
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functions for the planar and out of plane motions. In the developed algorithm Natu-
ral Perturbation can be implemented only a-posteriori in order to correct the control
law: another possible future improvement is the implementation of the perturba-
tions directly on the intermediate orbits, in this way the resulting interpolated kine-
matics will be closer to the real dynamic. In order to do that without increase to
much the computational weight the perturbed intermediates orbits will have to be
determined with an analytical (or semi-analytical) approach.
Another interesting possible expansion of the algorithm is the inclusion of the time
of flight constrain on the multi-revolution planeto-centric trajectories. This could
be obtained using the TOF free multi-revolution algorithm for the whole trajectory
excluded the lasts revolutions, in which the TOF is constrained in order to reach a
moving target.

Regarding the interplanetary trajectories the developed algorithm shows an im-
provement on the solution optimality with respect to the in-literature available [3][42]
only if high elliptical orbits are considered, otherwise the developed algorithm shows
results with a similar optimal fuel mass fraction[37] but with a larger Time of Flight,
making it inconvenient. Also in the interplanetary case case the computational speed
is elevate and allows to threat complex problems. The biggest disadvantages in in-
terplanetary trajectory is underlined with the BepiColombo comparison: if the solu-
tion is compared with an exact flight plan costs are different. It is evident the lack
of a detailed dynamical model in interplanetary environment: in this case a direct
optimization algorithm is obviously preferable. Anyway the developed shape based
algorithm can be successfully used for the generation of a guest trajectory for direct
optimization and can be also used in the firsts phases of a mission design.
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