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ABSTRACT 
 

 

 

 

Lithium-ion batteries are prone to aging, which decreases the battery performance. 

Range, cost, and battery life are the central challenges for the development of Li-ion 

battery system for EVs. A sufficient long battery life is necessary to avoid costly 

battery replacements during the vehicle life. This thesis explores the possibility of 

controlling in closed-loop, the aging of the battery. The idea is to control the maximum 

current requested to the battery and to schedule the charging events in order to mitigate 

the battery degradation. Limiting the use of the battery means compromising with 

vehicle performance in terms of maximum accelerations, driving range and charge 

time. The control objective can be therefore defined in minimizing the battery aging 

and, at the same time, guarantying satisfactory vehicle performance. With respect to 

the above closed-loop study, vehicle driving cycle have a great effect on the vehicle 

performance. Generally, real-world driving conditions greatly vary from standard 

driving cycle used for regular tests, as they have sudden changes in the acceleration 

due to the different driving cycle and traffic condition. Moreover, standard driving 

cycle has a considerable effect on the energy consumption and the battery aging which 

leads to the low performance of the vehicle. In order to avoid this issue, an approach 

called Markov process is applied. The Markov process is based on stochastic process 

and probability theory, which is used to design the time-variant driving cycle. 

In addition to it, this thesis deals with the control problem using PSO (Particle swarm 

optimization) algorithm. The control problem is formally defined in an optimization 

framework and an optimal benchmark is obtained for future online battery management 

strategies. 
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CHAPTER 1 
INTRODUCTION  

 

 

1.1 INTRODUCTION  
 

The next few years will be a period of further maturation of the electric vehicle 

industry, nurtured by government support. As a result of tightening vehicle emission 

regulation and extraordinary government incentives are motivating automakers effort 

in research and development in the powertrains, with electrified alternatives to ICE and 

hybrid. The main drawback of the electric vehicle is the limited driving range, 

relatively slow recharge time and high cost compared to traditional fuel-based vehicles. 

The high cost is mostly influenced by the battery pack and its replacement during the 

lifetime of the vehicle: an unresolved challenge is to match the 

 

 

FIG 1 ELECTRIC VEHICLE 
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Lifetime of the battery with the life of the vehicle. The current level is generally high. 

Thus, a controller must manage the electricity requirement for each electric component.  

 

To achieve the desired performance and to prevent the possible abnormal operation. 

One of the main problem electric vehicles are facing is battery related issues, currently 

available options for batteries in electric vehicles are lead-acid batteries, nickel- metal 

hydride batteries, sodium-nickel-chloride batteries (also called ZEBRA batteries), and 

lithium-ion batteries. Lithium-ion batteries are the most common type of batteries for 

transportation applications, because of its high specific energy, high specific power, 

good lifespan attributes and low memory effect, they are currently the most commonly 

used battery technology in modern EVs.  

 

Generally in batteries many different and complex aging mechanisms can be identified 

during batteries lifetime, but macroscopic effects of battery aging lead to loss of total 

storage capacity and the increase of the internal resistance, see[1] in general, battery 

aging can be divided into two main categories: calendar aging and cycle aging. 

Calendar aging is associated with the energy storage and it occurs even if the vehicle is 

not utilized. On the other hand, cycle aging is related to battery utilization (battery 

charge and discharge) and it strongly depends on how the battery is used. Due to the 

complexities of the electrochemical phenomena involved in the aging process, most of 

the studies regarding battery cycle aging are empirical studies [2]-[5]. In these works, 

battery cells are continuously cycled under different conditions and semi-empirical 

models are derived from the collected data relating battery loss of capacity to various 

stress factors like temperature, voltage, SOC, and current. It is well established that 

temperature, Depth of Discharge (DOD), and C-rate are the main stress factors for 

Lithium-ion batteries. This means that cycling a cell at high C-rate, high temperature 

and at high DOD makes the cell degrade faster. 

 

 

1.2 SCOPE AND INNOVATION: 

 
 

 

In this thesis, the idea of controlling in closed-loop the capacity loss of  FEV battery is 

explored. Given that a measure of the remaining battery capacity is available, two 

control actions can be identified in this way: 1) setting the maximum admissible 

current Imax that can be drawn from the battery in order to dampen the current peaks 2) 

limit extreme battery DOD, acting on the vehicle charging management. Ideally, one 

would like to minimize the capacity degradation but this objective is in contrast with 

some desired performance of the vehicle in terms of acceleration, driving range and 
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charge time. Therefore, the control objective can be defined as controlling the capacity 

degradation during the vehicle use and, at the same time, guaranteeing acceptable 

vehicle performance.  

 

 

 

 

Other contribution of this paper consists in the development of control-oriented FEV 

model that can be used to understand and quantify the trade-off existing between 

limiting the battery usage in terms of maximum current Imax and DOD and the vehicle 

performance. The battery thermal management is also included in the model. 

Additionally, the thesis also deals with the parameterizing driving cycle, because 

vehicle driving cycles have a great effect on vehicle performance. If a vehicle 

manufacturer focuses only on a fixed driving cycle there is a risk that controllers of the 

vehicles are optimized for a certain driving cycle and hence sub-optimal solutions to 

real-world driving. To deal with this issue, a new method called Markov process which 

is based on stochastic process and probability theory is used to generate different 

driving cycle. 

 

Furthermore, an offline optimization procedure of the control variables is carried out to 

get some vision of the aforementioned trade-off and to set-up an optimal benchmark 

for future implementation of online control strategies. Therefore, to realize accurate 

battery states estimation and improve the performance of EVs, it is necessary to 

understand the temperature, aging uncertainties to Li-ion battery modeling the 

techniques of overcoming these uncertainties. 
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1.3 ORGANIZATION OF THE THESIS 
 

This thesis is organized as follows: 

In chapter 2, a complete vehicle model able to quantify the effect of 

different driving situations on battery aging. There are three main sub-

models that describe the longitudinal dynamics and the powertrain of the 

vehicle, the battery cell model that describes the capacity loss of the 

battery cell depending on the driving conditions and the thermal 

management module that calculates the power requested to cool down the 

battery. In addition to this, simulations results which are presented to 

demonstrate the effect of the control variables (Imax and DOD) on battery 

capacity loss and vehicle performance. 

 

FIGURE 2EFFECT OF CURRENT LIMITATION ON CELL CAPACITY, DOD FIXED TO 60%

 

FIGURE 3EFFECT OF DOD ON CELL CAPACITY WITHOUT CURRENT LIMITATION 
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Chapter 3 presents a novel methodology to generate stochastic driving 

cycles for the design and control optimization of an electric vehicle 

because using a fixed driving cycle has some sub-optimality where there is 

a repeatability of same data. To deal with the sub-optimality issue, it is 

beneficial to have a method for generating more driving cycle that in some 

sense are equivalent but not identical using an approach based on a multi-

dimensional Markov chain. 

 

 

FIGURE 4 STOCHASTIC DRIVING CYCLE VS ORIGINAL DRIVING CYCLE 

 

 

Chapter 4, Introduce the Control problem in the optimization framework 

using PSO. A Particle Swarm Optimization (PSO) has been used to solve 

the series of optimization problems using significant tuning parameters 

like swarm size, stall-iteration. The results of the optimization are carried 

out in fixing the weight factor and after we find the sensitivity of the 

weight fact we analysis the control variable with respect to time by 

changing the control horizon. 

 

 

Finally, Chapter 5 covers the conclusion and future work  
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CHAPTER 2 

SYSTEM MODELLING  

 

This chapter discusses the modeling approach for the vehicle. The level of 

acceptable approximation in modeling process defines the efficiency of the 

model. In order to evaluate the energy economy of the vehicle, it is 

necessary to understand the energy flow in different powertrain components 

of the vehicle. The vehicle energy consumption for a prescribed driving 

cycle can be estimated using backward and forward modeling approach. 

Where backward-facing modeling takes the assumption that the vehicle 

meets the target performance, and calculates the component states. Forward 

facing modeling, on the other hand, simulates the physical behaviors of each 

component with control instruction, handles state changes, and generates 

vehicle performance as output. Differently, from this classical approach, the 

model developed in this work is characterized by a mixed forward-backward 

facing approach as shown in the figure 5 below: 

 

FIGURE 5 SCHEME OF THE FULLY ELECTRIC VEHICLE MODEL 
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2.1ELECTRIC VEHICLE MODELING  
 

The majority of the works regarding powertrain sizing and energy 

management utilize a backward-facing approach to model the vehicle. In 

backward approaches, the desired speed is imposed on the vehicle and the 

motor speed, torque and power are calculated backward. Differently, from 

this classical approach, the model developed in this work is characterized by 

a mixed forward-backward facing approach as highlighted in the figure 

above. The forward-facing art consists of the modeling of the driver’s 

response to the desired speed reference and in the modeling of the 

longitudinal dynamics of the vehicle. The backward-facing part, based on 

the power requested to run the vehicle, computes in a backward manner the 

power that is drawn from the battery. Such an approach turned out to be 

necessary for the framework used in this thesis since the basic assumption 

that the vehicle is able to meet the speed profile of the driving cycle does not 

hold. The reader is referred to [11] for more details on forward-facing and 

backward-facing vehicle simulation. The model of the driver is a simple PI 

regulator that requests a certain torque to the electric motor based on the 

speed error e = vref - v. Knowing the motor torque constant kt, The motor 

current can be directly derived from the torque as ireq = τreq/ kt. The requested 

motor current is then saturated to a maximum value Imax that, is considered 

as a control variable to limit the battery current at the cost of limiting also 

the vehicle acceleration. The motor current is then used to calculate vehicle 

speed according to the longitudinal vehicle dynamic equation: 
 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑖𝑚𝑜𝑡𝑠𝑎𝑡

𝑘𝑡𝑘𝑔

𝑅𝑤
−  

1

2
𝜌𝑣2𝐶𝐷𝐴 − 𝐹𝑟𝑜𝑙𝑙 

 

where Kg is the gear ratio, Rw is the wheel radius, Froll is the rolling 

resistance, CD and A are the drag force coefficient and the cross-sectional 

area respectively. 
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2.2BATTERY CELL: 

LITHIUM-ION BATTERIES: 

 

Lithium-ion batteries are the most common type of batteries for transportation 

applications due to high specific energy, high specific power, good lifespan attributes and 

low memory effect, they are currently the most commonly used battery technology in 

modern EVs.  
 

LITHIUM-ION BATTERIES FUNCTION : 

 

 A lithium-ion battery is a rechargeable battery in which lithium ions move between the 

anode and cathode, creating electricity flow useful for electronic applications. In the 

discharge cycle, lithium in the anode (carbon material) is ionized and emitted to the 

electrolyte. Lithium ions move through a porous plastic separator and insert into atomic-

sized holes in the cathode (lithium metal oxide). At the same time, electrons are released 

from the anode. This becomes electric current traveling to an outside electric circuit  

 

FIGURE 6 LI-ION BATTERY 

When charging, lithium ions go from the cathode to the anode through the separator. 

Since this is a reversible chemical reaction, the battery can be recharged. A lithium-ion 

battery cell contains four main components: cathode, anode, electrolyte, and separator. 

Table 1 shows the main components’ functions and material compositions.  
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Table 1 COMPONENTS OF LI-ION BATTERY 

 

 

2.3 BATTERY CELL MODELLING: 

 
 

 
FIGURE 7 AGING MODEL 

 

The batteries electric and thermal behavior should be considered in the cell 

model. The inputs to the cell model are the requested power to the cell 

P_cell and the operating temperature T. The cell is model using three main 
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blocks they are an electrical equivalent circuit, aging model, and SOC 

computation as shown in figure 7 

2.4 AGING MODEL: 
 

The aging model is inspired by the experimental identified in [2”G.suri and 

S.onori “A control-oriented cycle-life model for hybrid electric vehicle Li-

ion batteries]. It is formulated here as a non-linear differential equation 

describing the rate of capacity loss with respect to the Ah processed. 
 

 
 
 

According to the above equation, three stress factors influence the battery 

degradation: cell temperature T, C-rate Ic defined as the operating current 

normalized by the nominal cell capacity Qnom and SOC. Regarding the effect 

of current rate on battery, aging is considered as more than the effect of 

temperature and SOC. Ref[2]where it shows a graph fig where the curvature 

of severity factor (σmap) increases significantly with Ic. This implies that the 

aging of the battery is accelerated under high Ic values. A high-stress zone 

and low-stress zone are defined on the map in order to differentiate between 

different severity conditions with respect to different degrees of aging. 
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FIGURE 8 SEVERITY FACTOR MAP 

 

 

Temperature has two different effects on the battery's performance. As 

temperature increases the efficiency of the battery increases due to the 

decrease in battery equivalent internal resistance. Simultaneously, it also 

aggravates battery aging by accelerating the rate of unwanted side reactions, 

leading to the growth of SEI layer on the electrodes. As shown, the severity 

factor map rises with temperature. As shown in fig 8 are the severity factor 

maps for three different values of SOC that almost overlap with each other 

over the domain of chosen values for Ic and ϴ. But the SOC has a very little 

effect on battery degradation. This result can be explained by the fact that 

the considered range of SOC was limited to 30-75% that is the reasonable 

operating range for a hybrid electric vehicle where the supervisory control 

runs the internal combustion engine at very low and very high SOC. 
 

In the case of FEVs, it is important to account for the effect of high and low 

SOC on battery aging in case the driver wants to exploit the full capacity of 

the battery to extend the range of the vehicle. Previous works such as [5] and 

[13]showed that significant depths of discharge that leads the battery to 

operate below 20% and above 80% of SOC affect the battery aging for this 

reason the aging model includes the penalizing factor α_soc in order to 

provide a faster aging rate at high and low soc. 

The coefficient α_soc is defined as follows: 
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Where c,b,soc_min and soc_max are tuning parameters that can be used to 

shape the penalization function and that is practice, should be identified 

through ad-hoc aging experiment parametrization of α_soc chosen in this 

work. Besides the loss of capacity, battery aging results in an increase of the 

internal resistance R, Inspired by the experimental results published in[14] a 

linear relationship between resistance increment delta R and capacity 

decrement deltaQ  

 
FIGURE 9 CHOSEN PARAMETERIZATION OF WEIGHT USED TO PENALIZE LOW AND HIGH SOC 

 

2.5 ELECTRO EQUIVALENT CIRCUIT MODEL: 
 

There have been many attempts to develop battery models. The most 

common models are the electrochemistry model and the electric circuit 

model. While detailed chemistry-based models have been built to investigate 

the internal dynamics of batteries, these models are generally not suitable for 

the design of electrical systems. On the other hand, circuit-based models 

have been built in terms of electric-circuit parameters, such as capacitances, 

resistances, voltage sources, etc.  
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FIGURE 10 EQUIVALENT CIRCUIT 

 

Here equivalent circuit model has the advantage of a simple structure and a 

clear physical concept.OCV can accurately reflect SOC. If OCV could be 

observed accurately it should be possible to very accurately estimate SOC. 

The circuit contains an ideal power source, an internal resistance, and an 

equivalent RC network .The open circuit voltage V, and the estimation of 

the state-of-charge (SOC) are the outputs of the electrical model 

Open Circuit Voltage The open circuit voltage (OCV) of the battery is the 

stable voltage value of the battery when the battery is left in the open circuit 

condition [11]. Regarding the battery after being charged, the battery 

terminal voltage will gradually decline to a stable value when it is left in the 

open circuit condition; regarding the battery after discharge, the battery 

terminal voltage will gradually rise to a stable value after the load is 

removed. The electromotive force of the battery is basically equal to the 

open circuit voltage of the battery, while the battery electromotive force is 

one of the metrics used to measure the amount of energy stored in the 

battery. Thus, there is a certain relationship between the battery OCV and 

the battery SOC [22]. There are a few ways to obtain OCV, in which the 

stationary method is a direct method and is relatively more accurate 

 

 

2.6 SOC COMPUTATION: 
 



 

11 
 

The battery is modeled by an equivalent circuit comprising a voltage source 

Vcc and its internal resistance R0 in series, and both variables are functions 

of the SOC. Thus, the battery current is given by 

 

 𝑃𝑏𝑎𝑡𝑡 is the power in and out of the battery. SOC is computed from the 

battery current as  

 

 𝑄𝑏𝑎𝑡𝑡  is the battery capacity. In addition to SOC, battery 

temperature is also a state of the battery system model. However, 

in the optimal control system, temperature is not considered as a 

state assuming that an independent battery thermal management 

system will keep the battery temperature at a known desired value. 

 

 

2.7 VEHICLE CHARACTERISTICS: 
 

 

 
FIGURE 11NISSAN LEAF VEHICLE LOAD CURVE 
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For the study, Nissan leaf vehicle parameter powertrain model assumption is 

made on the various components. The vehicle load force, F, as determined 

can be estimated on the coefficients A, B, and C published by the EPA and 

provided in[2] for many vehicles including several EVS and is as follows: 

 

 
 

Where u is the vehicle speed. 

The plot of vehicle load force VS speed is shown. Such a curve can also be 

easily generated using data for the vehicle drag coefficient and rolling 

resistance, as done in [4]. However, the coast-down data curve is really 

useful as it contains additional speed-related losses within the vehicle 

drivetrain in addition to all the external load forces such as drag and rolling 

resistance. 

 

 

 

2.8.POWER TRAIN : 
 

The power that the electric motor has to provide can be calculated from 

torque and speed: 

 

𝑃𝑚𝑜𝑡 =
𝐾𝑡𝑖𝑚𝑜𝑡𝑠𝑎𝑡

𝑣

𝑅𝑤𝐾𝑔
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FIGURE 12 POWER TRAIN MODEL 

In a backward facing approach, the motor is modelled as a simple efficiency 

map depending on torque and speed, therefore the power requested to the 

battery to perform the driving cycle can be calculated dividing the motor 

power by the motor efficiency: 

 

𝑃𝑏𝑎𝑡𝑡𝐷𝐶
=

𝑃𝑚𝑜𝑡

𝜂𝑚𝑜𝑡(𝑘𝑡 𝑖𝑚𝑜𝑡𝑠𝑎𝑡
, 𝜔𝑚𝑜𝑡)

 

 

The power requested to the battery needs to be scaled down to the single cell 

based on the number of cells present in the battery pack. The battery cell 

considered in this work is a commercial A123 cylindrical LiFePO4 cell 

characterized by a nominal voltage of 3.3 V and a nominal capacity of 2.5 

Ah. This particular cell has been chosen as a reference because it is very 

well studied in the literature, nevertheless, the modeling approach used here 

is general and, if accordingly parametrized, can be applied to any other Li-

ion cell. In order to match the voltage and total energy of the Nissan Leaf 

battery pack, 2910 A123 cylindrical cells need to be used. The DOD of the 

battery is controlled through the charging management module: when the 

control schedule a charging event, the charging management block modifies 

the driving cycle in order to stop the vehicle and perform the charging of the 

battery. 
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2.9 THERMAL MANAGEMENT 
 

Li-ion battery is very vulnerable in overheated environments during high C 

rate HEV operations. If the heat is accumulated in the battery package, the 

temperature exceeds certain limitations, which might lead to serious battery 

failure. Especially considering that high temperature will reduce the electric 

resistance at the battery electrode end, an even larger current might be 

resulted and leads to a higher heat generating rate. Therefore, the battery 

temperature should be strictly controlled within a narrow margin and avoid 

this kind of thermal runaway. Forced air or liquid cooling is required 48 in 

EV/HEV’s battery modules to effectively remove the heat. 

The Li-ion battery cells are sensitive to temperature changes. Consequently, 

their performance will be significantly reduced if the internal chemical 

reaction cannot proceed in a proper temperature range. Long time operation 

under overheated conditions will also decrease the battery cycle life. Here 

we have a control scheme of the thermal management to keep the 

temperature of the cell at a certain reference temperature and two types of 

heat are considered one generated by the cell and other from the atmosphere 

 

 

FIGURE 13 THERMAL MANAGEMENT 
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Electric power is equal to total amount of heat to be dissipated over 

coefficient of the performance of the heater or cooling system. This control 

theory is introduced to track the reference temperature by minimizing the 

temperature fluctuations. We are using a thermal management that consumes 

some current to keep the temperature and this current is requested from the 

driving cycle and some current from the thermal management. 

 

 

FIGURE 14 COMPARISION OF THERMAL MANAGEMENT 

 

There are 3 cases in the graph  

Case 1: Without a thermal management system (blue) – a variation of 

temperature is high. For an instant, if we some certain temperature in the 

ambient, the temperature starts increasing drastically  

Case 2: With thermal management system (green)-the temperature is kept 

constant by the thermal management system. This thermal management 

system draws additional current. In order to keep the battery cool we have to 

pay for extra energy .so the thermal management system will draw 

additional current. 
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Case 3: We assume to have the ideal thermal management (red) Ideal thermal 

management is you don’t pay the extra cost in terms of current. The battery 

temperature is kept at 35 degrees. This allows quantifying additional current 

we have to draw to keep the battery at 35 degrees constant 

 

2.10 IMPORTANT TERMS: 

Various terms have been defined for batteries to characterize their 

performance. Commonly used terms are summarized in the following as a 

quick reference. 

State of Charge (SOC) It is a percentage of instantaneous battery capacity 

left out of total battery capacity. SOC can be calculated by integrating 

battery current over a period of time.  

Depth of Discharge (DOD) the percentage of battery capacity discharged in 

the terms of total capacity is known as depth of discharge. Generally, 

DOD can be related to SOC as follows;   

                  DOD = 1−SOC 

Cell, Module, and Pack A single cell is a complete battery with two current 

leads and separate compartment holding electrodes, separator, and 

electrolyte. A module is composed of a few cells either by physical 

attachment or by welding in between cells. A pack of batteries is composed 

of modules and placed in a single containing for thermal management. An 

EV may have more than one pack of battery situated in a different location 

in the car. 

C-rate C (nominal C-rate) is used to represent a charge or discharge rate 

equal to the capacity of a battery in one hour. For a 1.6 Ah battery, C is 

equal to charge or discharge the battery at 1.6 A. Correspondingly, 0.1C is 

equivalent to 0.16 A, and 2C for charging or discharging the battery at 3.2A. 
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Specific Energy Specific energy, also called gravimetric energy density, is 

used to define how much energy a battery can store per unit mass. It is 

expressed in Watthours per kilogram (Wh/kg) as 

                  Specific Energy = Rated Wh Capacity/Battery Mass in kg 

The specific energy of a battery is the key parameter for determining the 

total battery weight for a given mile range of EV. 

Specific Power Specific power, also called gravimetric power density of a 

battery, is the peak power per unit mass. It is expressed in W/kg as 

Specific Power = Rated Peak Power/Battery Mass in kg 

 Energy Density Energy density also referred to as the volumetric energy 

density, is the nominal battery energy per unit volume (Wh/l). 

Power Density Power density is the peak power per unit volume of a battery 

(W/l). 

Internal Resistance Internal resistance is the overall equivalent resistance 

within the battery. It is different for charging and discharging and may vary 

as the operating condition changes. 

SOC is a critical condition parameter for battery management. Accurate 

gauging of SOC is very challenging, but the key to the healthy and safe 

operation of batteries. 

State of Health (SOH) SOH can be defined as the ratio of the maximum charge 

capacity of an aged battery to the maximum charge capacity when the 

battery was new [7]. SOH is an important parameter for indicating the 

degree of performance degradation of a battery and for estimating the battery 

remaining lifetime. 

SOH =Aged energy capacity / Rated energy capacity 
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2.11 SIMULATION RESULTS: 
 

It is difficult to validate a battery aging model on real vehicle data because 

an ad hoc experimental campaign is very costly and time-consuming. In 

order to give a rough idea of the model validity, the capacity degradation 

calculated by the proposed model is compared with some experimental data 

published online. Despite the great number of vehicle parameters published 

online for the Nissan Leaf, no clear experimental analysis has been found 

regarding its battery aging. Therefore the capacity loss predicted by the 

proposed model has been compared with experimental data published in for 

the Tesla Model S.  

The model is run over a mixed urban-highway Artemis cycle at a constant 

temperature of 30 degrees Celsius.figure15 shows how the capacity 

calculated by the model reproduce reasonably well the capacity loss of the 

Tesla battery. This comparison should be intended as a reasonableness check 

other than a rigorous model validation. 
 

 

 

15FIG-MODEL CAPACITY DEGRADATION SIMULATED OVER A MIXED URBAN HIGHWAY ARTEMIS CYCLE COMPARED 

TO TESLA MODEL S EXPERIMENTAL DATA 

 

In the following, some simulations results are presented to demonstrate the 

effect of the control variables Imax and DOD on battery capacity loss and 

vehicle performance. In a first approximation, it is possible to relate the 

maximum motor current to the maximum allowable cell current through the 

following power balance: 
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𝐼𝑚𝑎𝑥 =
𝐼𝑚𝑎𝑥𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙𝑛𝑜𝑚
𝑛𝑐𝑒𝑙𝑙

𝜔𝑚𝑜𝑡𝐾𝑡𝜂
 

 

 

where η is an average electric motor efficiency. Therefore, in the following, 

the maximum allowable cell current 𝐼𝑚𝑎𝑥𝑐𝑒𝑙𝑙
 is considered as a control 

variable that can be translated in a maximum motor current through the 

approximated relation described by Figure 2 shows the effect of limiting the 

maximum current drained from the battery during a simulation where the 

electric vehicle performed the US Federal Test Procedure (FTP cycle) for a 

total distance of 30000 km. The result is that, for the same travelled distance, 

limiting the maximum current at 0.75 C helps in limiting the loss of battery 

capacity: at 30000 km there is a 0.25% of capacity saved that corresponds to 

an improvement of 10% with respect to the nominal case without current 

limitation. There is a price to pay in controlling the maximum current: 

limiting the maximum current means limiting the maximum acceleration 

during driving and slows down the charging process. 
 

 

 
FIGURE 16EFFECT OF CURRENT LIMITATION ON SPEED REFERENCE TRACKING 

 

 The figure16 shows the actual speed profile of the vehicle compared with 

the FTP reference speed: It is clear how, limiting the current, the vehicle is 

not able to follow the reference during demanding accelerations especially at 

high speeds. It is important to remark that the effect of limiting the 

maximum current on cell capacity is strictly dependent on the driving cycle: 

for the same maximum limit Imaxcell, if the speed profile is very demanding 



 

20 
 

in terms of accelerations, the benefit on the capacity will be relevant. In case 

the speed profile is so smooth that the current request rarely exceeds the 

limit, the effect will be almost negligible. Figure 3 shows the effect of DOD 

on cell capacity. It can be seen that reducing the DOD down to 60% can 

save 1% of battery capacity in the first 30000 km. The price to pay in this 

case is that the range is substantially reduced because 40% of the capacity of 

the battery is not exploited at all. As a side effect, the charging time is 

reduced. In the considered situation, it can be noted that limiting the DOD 

has a more evident effect on battery aging compared to setting a limit on the 

maximum current: this fact is a peculiarity of FEV compared to hybrid 

vehicles. In hybrid powertrains, the battery size is much smaller since it does 

not have to guarantee a long driving range but the battery is subject to higher 

currents in order to power the entire vehicle in EV mode. Furthermore DOD 

usually has a small influence in hybrid vehicles because the supervisory 

controller never runs the battery at extreme SOC values. On the other hand 

FEV are designed with large battery packs resulting in smaller cell currents 

and therefore a smaller current sensitivity on battery degradation. 
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CHAPTER 3 
DRIVING CYCLE GENERATOR  

 

This chapter analyzes electric vehicle behavior, its impact based on using a 

standard driving cycle. A driving cycle also called driving schedule or speed 

profile is a representation of vehicle speed versus time. Vehicle driving 

cycles have a great effect on the vehicle performance. In the above chapters, 

we use a single certification cycle, which is repeated many time to assess the 

performance over specific kilometers, as a drawback, applying single driving 

cycle create sub-optimality, this way we drop some performance in the real 

world. In order to fix this problem, Markov based approach which is based 

on stochastic process and probability theory is used. This chapter contains 

the generation of driving cycle including the process of construction of 

transition probability matrices (TPM) and uses the TMP matrix to generate 

the driving cycle. 

 

DRIVING CYCLE GENERATION PROCEDURE 

3.1 Markov process 
 

Markov Process Markov process theory defines a particular type of 

stochastic process. The generation procedure uses Markov chain due to its 

simplicity in representing an unknown system. Having the Markov property 

means that future states depend only on the present state and are independent 

of the past states. A Markov chain is a sequence of random variables X1, X2, 

X3,...with the Markov property as expressed as 

    P(Xn+1 = xn+1|X1 = x1,X2 = x2,...,Xn = xn) = P(Xn+1 = xn+1|Xn = xn) 
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The set of possible values that the random variables Xn can take is called the 

state space of the chain. The conditional probabilities pij :=P(Xn+1 = j|Xn = i)are 

called transition probabilities. The probability used in the synthesis procedure is 

time independent. The sum of all probabilities leaving a state must satisfy 

The states required to satisfy the Markov property are determined based on 

the assumption that the vehicle dynamics can be simplified using the 

following dynamic equation: 

Fnet=Fprop−FRR−FWR−FGR 

 where Fnet is the net force applied to the vehicle, Fprop is the propulsion force 

from the powertrain, FRR is the rolling resistance force, FWR is the wind 

resistance force, FGR is the grade resistance force and all other external 

forces applied to the vehicle. Vehicle dynamics can be represented using two 

states, namely: 1) vehicle velocity and 2) acceleration. Thus, we select them 

as the states for the Markov chain.  

The methodology based on the Markov process theory mainly consists of 

three steps to generate the driving cycle. Here we use UDDS (city) and 

HWFET (highway) 

1. Discretization of velocity and acceleration profile                                                                          

2. Construction of transition probability matrix(TPM) 

3. Generating the driving cycle 

 

3.2 DISCRETIZATION OF VELOCITY AND ACCELERATION: 
 

In order to generate a TPM matrix, there is a need to discretizing velocity 

and acceleration into a number of time steps. Here we use UDDS(city) and 

HWFET(highway) driving cycle to see the performance difference. Below 

table shows the driving profile discretization in steps of: 
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TYPE  STEPSIZE  

velocity  1.0km/h  

acceleration  0.2m/s^2  

 

Characteristics of driving cycle : 

 

 

3.3 TPM construction: 
 

The TPM matrix contains probabilities to transition from one state to another 

state. Each state is defined by the state variables, velocity, and acceleration. 

To increase the readability, the TPM is constructed as a large matrix 

containing smaller sub-matrices, as  seen in Figure17: 

 

 

 

HWFET 

Duration: 765 seconds 

Total distance:16.45Km 

Average speed:77.7km/h  

 

UDDS 

Duration:1372 

Total distance:12.07Km 

Average speed:31.5Km/h  
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FIGURE 17 TPM CONSTRUCTION 

 

Each state corresponds to a specific element in the TPM, that contains a 

smaller matrix with the transition probabilities. The size of the large matrix 

is determined by the maximum velocity and the absolute maximum 

acceleration combined with the resolutions for velocity and acceleration. 

The number of rows, nr, and columns, nc, are calculated using: 

 

 

For example, if the maximum velocity is 180 km/h, and the resolution is 1 

km/h, there will be 181 columns. If the absolute maximum acceleration is 

8.2 m/s^2, and the resolution is 0.2 m/s^2, there will be 83 rows in the TPM. 

The first column in the matrix corresponds to zero velocity and the middle 

row to zero acceleration. This way first we build the empty large matrix. 
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3.4 PROCEDURE TO PACK EACH SUBMATRIX: 
 

 

 

First, the velocity and acceleration data of the selected driving cycles are 

gathered. Then, the TPM is generated in the form of a 2-D matrix. Once we 

discretize both velocity and acceleration profile, there will be a specific time 

point where both velocity and acceleration points fall within a specific time 

limit you are considering as shown in the figure. (blue-time when velocity 

inside the bin,green-time when acceleration inside the bin,red-times when 

both inside the respective bin).After selecting time tk we have to select time 

tk+1 which is the time next to the point. This way it steps through each input 

driving cycle and saves state transition in the correct sub-matrix. A new row 

is added to the sub-matrix for each time a state is visited, changing the size 

of the submatrix. 

When all driving cycles have been sorted into the TPM, there is a need to 

sort and summarize the sub-matrices. A value of how many times a unique 

 

FIGURE 18 SUB-MATRIX GRAPH 
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transition has occurred is calculated and the transition probabilities are 

derived. 

Probability = count of each unique pair/number of time points in total 

The TPM is constructed as a Matlab structure using Matlab code since there 

is a need to store different kinds of data within it. 
 

 

 

 
 

FIGURE 19 TPM CONSTRUCTION 

 

 

In each cell of the TPM, the probability matrix of the velocity and the 

acceleration at the next time tk+1 are included. Each cell represents the 

conditional probability 

P(vk+1 = v2,ak+1 = a2|vk = v1,ak = a1) at a given cycle velocity and acceleration. 

As an example, starting at a state characterized by 41 mi/h and 0.2 m/s2, the 

probability of acceleration increasing in the next step to 0.4 and velocity to 

42 mi/h is 0.343, while the probability of cruising at exactly the same speed 

with zero acceleration is only 0.0132. 
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3.5DRIVING CYCLE CONSTRUCTION  
 

When a TPM has been created, it is possible to start generating driving 

cycles. The process starts by calculating the desired driving cycle duration. 

The process starts in the idle state (zero velocity and acceleration). The first 

transition is leaving the idle state and the driving cycle is then built up 

through generating a random number. whenever the random number is less 

than the cumulative probability of individual bin choice them we jump to 

that bin and record it at the next time step. The iterative process continues 

until the desired duration is exceeded at the same time as the end state has a 

velocity equal to zero. 

 

3.6 RESULTS OF DRIVING CYCLE GENERATOR: 

 

The driving cycle is generated for two scenarios: 

One for the city (UDDS) and other for HWFET(highway).The original 

driving cycle is in blue line and the stochastic driving cycle is in red line.you 

can see the graph generated looks  

 

 

FIGURE 20 CYCLE GENERATED-A 
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This way for each simulation we get different driving cycle by changing the 

TPM value each time. Here we are presented for two different driving style. 

 

 

FIGURE 21 CYCLE GENERATED-B 
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CHAPTER 4 
OPTIMIZATION FRAMEWORK AND PSO 

 

Optimization is an important activity in many fields of science and 

engineering. A lot of modeling, design, control and decision making 

problems can be formulated in terms of mathematical optimization. The 

classical framework for the optimization is the minimization (or 

maximization)of the objectives, given the constraints for the problem to be 

solved. Many design problems, however, are characterized by multiple 

objectives, where a trade-off amongst various objectives must be made, 

leading to under or over-achievement of different objectives. Our broader  

idea is to create a closed loop optimization controller, by setting the 

reference for the future driving cycle using Markov based process. In this 

chapter, to manage the battery degradation in EV we have to consider 

several trade-offs. It is interesting to further analyze the trade-off in an 

offline optimization framework, which helps in real-time. In order to create 

an optimal benchmark for online control strategies. 

 

4.1 PERFORMANCE INDEX AND OPTIMIZATION HORIZON: 

 

Define four indexes of performance: Jlife, Jspeed, Jcharge, Jrange. Consider an 

optimization horizon during horizon only the first element of the optimal 

control sequence is applied. In the vehicle, the SOC varies as we use the 

energy, here you let the driver accelerate and at each control horizon the 

algorithm will decide what is the maximum current allowed and how much 

the driver is allowed to cycle. At the next time steps, the prediction horizon 
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moves forward and the process is repeated. In each control horizon, Imax and 

DOD are optimized to minimize the cost function of the equation. 

 

 

  

 

Considering an optimization horizon [0; tend], we can define Jlife as the 

capacity degradation over the considered time horizon normalized by the 

traveled kilometers: 

𝐽𝑙𝑖𝑓𝑒 =
Q(0) −  Q(tend)

∆km
 

 

 

Jspeed is defined as the root mean square value of the speed difference 

between the cycle reference and the actual speed of the vehicle: 
 

Jspeed= √
1

𝑡𝑒𝑛𝑑
∫ (𝑣𝑟𝑒𝑓 (𝜏) − 𝑣(𝜏)

𝑡𝑒𝑛𝑑

0
)2𝑑𝜏 

 

 

This index represents the driveability of the vehicle. Jcharge and Jrange are the 

root mean square values of the charge time and driving range calculated over 

the charging events in the considered time horizon: 
 

 

                                   Jcharge=√
1

𝑁
∑ 𝑡𝑐ℎ𝑎𝑟𝑔𝑒(𝑖)

2𝑁
𝑖=1  
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                                  Jrange=√
1

𝑁
∑ 𝑟𝑎𝑛𝑔𝑒2𝑁

𝑖=1 (𝑖) 

 

 

where N is the total number of charging events performed on the horizon. 

During the vehicle life, ideally one would like to minimize the battery aging 

Jlife and the charge time Jcharge, maximize the driving range Jrange and to 

perfectly follow the speed reference i.e. minimizing Jspeed .  

Of course, this objective functions are in contrast with each other and more 

specifically, the minimization of Jlife is in contrast with the other terms. The 

multi-objective optimization problem can be reduced to a single-objective 

optimization problem that consists in finding the optimal control variables 

DOD, Imax_cell to minimize a weighted summation of the various terms: 
 

 

Jtot=αchargeJcharge + αspeedJspeed – αrangeJrange + αlifeJlife 

 

Depending on the weight αlife, αcharge, αrang, αspeed one can give more 

importance to one or more aspects of the problem over the other. 

 

4.2 WITHOUT APPLYING OPTIMIZATION ALGORITHM: 

 

 Below you can see the aging of the battery without applying the 

optimization algorithm. 
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FIGURE 22 WITHOUT CONTROL STIMULATION 

This is the result of the stimulation which represents the cost function given 

above, here we consider 30-hour experiment. 

Jcharge-Each point in the graph represents a single charge. Every 3 hour we 

have to recharge that recharging time takes 45 min which depends on SOC. 

Jrange-Each point represents the range we are able to cover in every single 

charge. 

Jlife –In 30 hours we lose 0.01 Ah. This is the one we use in the cost function  

Jspeed-This is the difference between drivers request and real speed of the 

vehicle. 

This graph is not an optimization model, here it just shows the aging of the 

battery using an experiment  

 

4.3 OPTIMIZATION METHOD 
 

The objective of this study is to quantify the trade-off between battery aging 

and performance of the vehicle. Weight factor αlife, αrange, αspeed, αcharge are 
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chosen to make Jlife , Jspeed, Jcharge, Jrange have the same weight in the cost 

function. While the optimization has been performed several times with 

different values of αl, followingly check the optimization performance of the 

control variable over time. 

In the first method different value of αlife, a total horizon of 30,000 km of the 

FTP cycle and a control horizon of 3000 Km have been chosen for the 

optimization. On the other hand, the specific position of αlife is secured for a 

control horizon of 1000 Km of the ‘ArtRoad’ cycle is considered. In 

practice, in each control horizon, Imax and DOD are found to minimize the 

overall cost function given below: 

 

 

 

4.4 OPTIMIZATION SOLUTION IS SOLVED USING PSO 
 

Particle swarm optimization (PSO) algorithms are nature-inspired 

population-based metaheuristic algorithms originally accredited to Eberhart, 

Kennedy, and Shi. These algorithms mimic the social behavior of birds 

flocking and fishes schooling. Starting to form a randomly distributed set of 

particles (potential solutions), the algorithms try to improve the solutions 

according to a quality measure (fitness function). The improvisation is 

performed by moving the particles around the search space by means of a set 

of simple mathematical expressions which model some interparticle 

communications. These mathematical expressions, in their simplest and 

most basic form, suggest the movement of each particle toward its own best-

experienced position and the swarm’s best position so far, along with some 

random perturbations.  
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 PSO Algorithm works : 

 

The PSO algorithm works by simultaneously maintaining several candidate 

solutions in the search space. During each iteration of the algorithm, each 

candidate solution is evaluated by the objective function being optimized, 

determining the fitness of that solution. Each candidate solution can be 

thought of as a particle “flying” through the fitness landscape finding the 

maximum or minimum of the objective function. Initially, the PSO 

algorithm chooses candidate solutions randomly within the search space. 

The figure shows the initial state of a four-particle PSO algorithm seeking 

the global maximum in a one-dimensional search space. The search space is 

composed of all the possible solutions along the x-axis; the curve denotes 

the objective function. It should be noted that the PSO algorithm has no 

knowledge of the underlying objective function, and thus has no way of 

knowing if any of the candidate solutions are near to or far away from a 

local or global maximum. The PSO algorithm simply uses the objective 

function to evaluate its candidate solutions and operates upon the resultant 

fitness values. 

 

 

Figure 23 Pso algorithm 
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Each particle maintains its position, composed of the candidate solution and 

its evaluated fitness, and its velocity. Additionally, it remembers the best 

fitness value it has achieved thus far during the operation of the algorithm, 

referred to as the individual best fitness, and the candidate solution that 

achieved this fitness referred to as the individual best position or individual 

best candidate solution. Finally, the PSO algorithm maintains the best fitness 

value achieved among all particles in the swarm, called the global best 

fitness, and the candidate solution that achieved this fitness called the global 

best position or global best candidate solution.  

 

 

Figure 24 Flow chart of PSO algorithm 

 

 

The PSO algorithm consists of following steps, which are repeated until 

some stopping condition is met. 

 1. Evaluate the fitness of each particle 

 2. Update individual and global best fitnesses and positions 
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 3. Update velocity and position of each particle. The first two steps are 

fairly trivial. The fitness evaluation is conducted by supplying the candidate 

solution to the objective function. Individual and global best fitnesses and 

positions are updated by comparing the newly evaluated fitnesses against the 

previous individual and global best fitnesses and replacing the best fitnesses 

and positions as necessary. The velocity and position update step is 

responsible for the optimization ability of the PSO algorithm. The velocity 

of each particle in the swarm is updated using the following equation: 

 

 

 

4.5 BASIC TUNING PARAMETER OF PSO ALGORITHM : 
 

Fundamentals of the PSO technique are stated and defined as follows: 

SwarmSize: Number of particles in the swarm, an integer greater than 1.  

SelfAdjustmentWeight(c1): Weighting of each particle’s best position when 

adjusting velocity. A finite scalar with default 1.49  

SocialAdjustmentWeight(c2): Weighting of the neighborhood’s best position 

when adjusting velocity. A finite scalar with default 1.49  

MaxIterations: Maximum number of iterations particle swarm takes. 

Stall iterations.(eg-for sall iteration 5) Bestfval- Best (lowest) objective 

function value found. 

Number of iterations since the last change in Bestfval.  

 



 

37 
 

Table 2 STALL ITERATION EXAMPLE 

 

 

 

 

4.6 IMPACT OF WEIGHT FACTORS IN THE COST FUNCTION: 

VARYING DIFFERENT αlife: 

 

A Particle Swarm Optimization (PSO) has been used to solve the series of 

optimization problems using a swarm size of 200 particles. The results of the 

optimization for different values of αl are summarized in Figure 25 

 

 

 

 

 

 

 

 

Figure 25 Pareto-front like representation of the battery Vs 
vechicle performance 
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The first three plots represent the trade-off between Jlife and the other 

performance indexes, the fourth plot represents the mean values of the 

optimal control variables over the entire horizon. For low-medium values of 

αl (green and yellow dots), the optimal control action mainly results in 

reducing the DOD with a consequent reduction of the driving range. For this 

range of αl,  Imax_cell is also reduced from 3C to 2C causing a slow down of 

the average charge time. Driveability is not affected in this range since Jlife is 

reduced without affecting Jspeed: this is due to the fact that the FTP cycle 

never demands for long periods of time battery currents over 2C, therefore 

the accelerations performance of the vehicle are not modified. As we 

increase the weight of battery aging (red dots), the control action results in 

reducing the maximum current below 1C and in a consequent deterioration 

of the acceleration performance (Jspeed ). Furthermore, the optimal control 

variables for a value of αl located at the ’elbow’ of the Pareto curve (yellow-

orange dots) are computed over a horizon of 200000 km, a value that usually 

approaches the vehicle useful life. The control variables along with the 

capacity loss are plotted in the time domain in Figure26 

 

 

 
FIGURE 26 TIME HISTORY OF THE OPTIMAL CONTROL VARIABLE 
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As it can be seen, larger control efforts are used in the first 50 thousand 

kilometers: DOD is limited below 50 % and the cell current is limited below 

2C. After the first 50 thousand kilometers, the optimal DOD and Imaxcell settle 

around a constant value of 50% and 2.5 C respectively. This behavior is due 

to the fact that the aging degradation rate is higher for the first thousands Ah 

processed by the battery, motivating a greater control effort in the first 

thousands of kilometers compared to the rest of the vehicle life. The capacity 

plot in Figure shows how the optimal control sequence performs compared 

to using constant DOD and Imax over the entire vehicle life. A very limited 

DOD and Imax (es: 40% and 1.5 C respectively) produces the highest 

remaining capacity but strongly limit the range and the other vehicle 

performance for the whole vehicle lifespan. More relaxed constraints on 

DOD and Imax (es: 50% and 2.5 C respectively) allows better performance 

but results in a higher capacity degradation. The optimal control sequence 

stands in the middle: it limits the battery stress in the first part of the vehicle 

life and then reduces the control effort after 50000 kilometers. 

 

 

4.7 OPTIMIZATION PERFORMANCE ANALYSIS WITH RESPECT TO 

TIME: 
 

It is important to study how the optimization performance of the two control 

variable DOD, Imax change over time. The above-discussed results for the 

simulation for 30,000 km with a control horizon of 3000 km is chosen and 

found the sensitivity of αl. Here to analyze control variable with respect to 

time we are fixing the αl and see how the actual value of the cost function 

changes by varying the control horizon. So, here we consider 1000km as our 

control horizon(i.e optimal variable changes from 2,4,8). Considering 

ARTroad driving cycle. There are some parameters set for the optimization 

framework is given below : 
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Table 3 PARAMETERS FOR OPTIMIZATION 

 

   

 

 

 

 

 

 

Effect of swarms: 
 

There are different tunning parameter in PSO. In that swarm, size is 

considered as an important parameter. To study how population size affects 

both accuracy and optimization time. A small population size provides a 

small mapping of the search space, possibly resulting in a premature 

convergence. On the other hand, a large population size will considerably 

increase the computation effort. So that what study of population size is 

considered to be an important parameter. Here we have solved the 

optimization problem by varying the swarm size between 10 to 400 for three 

different values of stall iteration (i.e 2,5,10). From the table, we can see 

swarm size between 200 and 250 being an optimal value after that After that 

the optimal value keep on increasing by increasing the simulation time. 

 

 

 

Parameter 

 

Settings 

Swarm size 10,100,150,200,250 

Stall iteration 2,5,10 

Inertial weight [0.1 , 1.1 ] 

Self-adjustment weight 1.49 

Socialadjustment weight 1.49 

Cycle name Artroad 
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FIGURE 27 GRAPH AND TABLE FOR DIFFERENT SWARM SIZE AND STALL ITERATION-2 

 

We are repeating the same for stall iteration 5 and 10 by varying the swarm 

size between 10 to 400. From the results, we could conclude saying that if 

we keep on increasing the swarm size we don’t get a better accuracy and 

also we lose simulation time. From the results, we could see 200 seems to be 

the best optimal population number, swarm size 200 gives a better accuracy 

and satisfactory simulation time. Also we found from the result that even if 

we increase the swarm size with less stall iteration number we don’t find an 

optimal results ,this way we found that Jopt is increasing instead of 

decreasing, after a while we just keep on increasing the time but we do not 

get an optimal value(accuracy)but when we try to increase the stall iteration 

limit we have some satisfactory results . This shows that stall iteration places 

an important role in finding the optimal population number. To find the 

global minima of 200 particles is enough. And the optimal value of the cost 

function is 1239. 
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FIGURE 28 GRAPH AND TABLE FOR DIFFERENT SWARM SIZE AND STALL ITERATION -5 

 

 

 

FIGURE 29 GRAPH AND TABLE FOR DIFFERENT SWARM SIZE AND STALL ITERATION -10 
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4.8 DIVIDE THE CONTROL HORIZON: 
 

After finding the optimal swarm size, which guide to solve the optimization 

problem by changing the control horizon which by increasing the optimal 

variable by dividing the control horizon.The optimal variable(i.e 2,4,8) by 

setting km_end as 1000 km. 

 

Table 4 CONTROL HORIZON STALL ITERATION 5 

 

 

From the table, we can see that DOD is limited between 33 to 37 % and cell 

current is limited in a specific bound. for the swarm size 200 and stall 

iteration 5. As we keep on increasing the optimal variable the, optimal best 

value also increase this shows that we did not give the particle enough time 

to reach the optimal position in the search space. So next we tuned the 

parameter of the stall iteration. In the next simulation, we try to increase the 

stall iteration to 10.Hence, we give an algorithm much more time to find the 

best value. 
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USING STALLITERATION 10: 

 
Table 5 CONTROL HORIZON STALL ITERATION 10 

 

 

From the above table using stalliteration value as 10, the DOD is limited 

below 40% and the current Imax is limited below a specific bound 

respectively for the optimized population size 200 and the optimal best value 

is noted as 1018. This shows that stall iteration plays an important role to 

find the optimal results. Also when we keep on increasing the predictive 

horizon we are attaining the global best value.On the other hand, we also 

lose simulation time. 

4.9 VALIDATE THE ABOVE BEST FIT : 
 

In the above discussions we found several optimal values for a different 

case, but how do we check the how good are our optimal value? 

 

We have control over the optimization parameter. In order to verify our 

results we have to take a random control variable without using the 

controller i.e we do not limit the current and on the contrast, we will take a 

value by using the controller i.e where the current is limited. In order to 

justify the results, we consider the best value 1239 which is drawn from the 

figure 25. And found the gain points between without control and with 

control are fair values. 
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Table 6 GAIN POINTS B/W WITH CONTROL AND WITHOUT CONTROL 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

DOD for 

without 

control  

without 

control 

values  

Best f(x) value 

obtained with 

control(30%dod 

for the 

correspondent 

value)  

Gain of 

points 

between 

without 

control 

and with 

control  

Percentage 

of the gain 

of points 

b/w without 

control  to 

with control  

90%  56820  1239  55581  98%  

80%  13067  1239  11828  91%  

70%  2849  1239  1610  56%  

60%  1612  1239  373  23%  

50%  1419  1239  180  13%  

40%  1320  1239  81  6.1%  

30%  1370  1239  131  9.5%  

20%  1365  1239  126  9.2%  

10%  1325  1239  86  6.4%  
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CHAPTER 5 
CONCLUSION AND FUTURE WORK  

 

 

In this thesis, the problem of controlling in closed-loop, the battery aging of 

an FEV has been defined. An ad-hoc electric vehicle model has been 

developed for this specific purpose. Furthermore, the existing trade-off 

between limiting battery usage in order to mitigate its degradation and 

vehicle performances has been explored in an optimization framework. The 

algorithm used to optimize the control variable is using particle swarm 

optimization(PSO) technic. This offline optimization framework gives us a 

benchmark that poses the basis for future implementations of online aging 

management strategies. The result presented for optimization framework 

was using the driving cycle(FTP). Here we also study about driving cycle, 

because the driving cycle have a great impact on vehicles performance. This 

work also, introduces to a novel method to parametrize a driving cycle, 

required as input in powertrain design studies. The attributes considered is 

velocity and acceleration using Markov chain theory. Where different 

driving cycle is generated using TPM matrix. The generated cycle is 

equivalent to the standard certified driving cycle. This way we can avoid the 

risk of using the fixed driving cycle and improve the performance of the 

vehicle by not repeating the same data (i.e) to avoid repeatability in the 

driving cycle. The result presented here of One for the city (UDDS) and 

other for HWFET(highway).In future work, the performance of each cycle is 

measured and use it for the optimization work this way we can decrease the 

simulation time in the optimization frame work. 
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FUTURE WORK: 
 

The idea for some extensions and improvements arises during the work with 

the project. Some of the ideas are to focus on analyzing the sensitivity of the 

optimal control solution to different driving cycles and some for how to 

improve the accuracy of the driving cycle generated using Markov process 

by improving the data points because the data points to generate using the 

present driving cycle were not sufficient.This way we can improve the 

accuracy of the driving cycle and extend furthermore by comparing the 

performance of each driving cycle and apply it in the optimization 

framework to study the performance of the vehicle. 
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