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Abstract

Systemic capillary leak syndrome (SCLS) is a rare disorder characterized by re-
peated flares of massive leakage of plasma from blood vessels into neighbouring
body cavities and muscles, which results in a sharp decrease in blood pressure,
that can lead to organ failure and death, and typically an increase in body
weight.

The available data analysed in this thesis contains information about a sin-
gle patient having this disease. Some of the variables contained in dataset are
the daily body weight, diastolic and systolic pressure, heart rate of patient. Be-
side this, there are some information that are collected while the patient was
hospitalized, including the type of crisis that the patient had as well as levels of
hemoglobin, hematocrit and neutrophils in the patient’s blood.

The aim of this study is to obtain a statistical description af the dataset, and
appropriate statistical models in order to predict possible future attacks taking
in consideration the most significant features, like the body weight of the pa-
tient.
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Sommario

La sindrome sistemica da aumentata permeabilità capillare (SCLS) è una malat-
tia rara caratterizzata da scoppi ripetuti di fuoriuscite massicce di plasma dai
vasi sanguigni nelle vicine cavità del corpo e muscoli, che si traduce in una forte
diminuzione della pressione sanguigna, che può portare a insufficienze d’organo
e morte. Le crisi possono iniziare con un aumento del peso corporeo.

I dati disponibili analizzati in questa tesi contengono informazioni su un sin-
golo paziente che ha questa malattia. Alcune delle variabili contenute nel set
di dati sono il peso corporeo giornaliero, la pressione diastolica e sistolica e
la frequenza cardiaca. Altre misurazioni sono state raccolte durante i ricoveri
in ospedale del paziente e riguardano il grado di gravità della crisi avuta dal
paziente e livelli di emoglobina, ematocrito e neutrofili.

Lo scopo di questo studio è stata un’esplorazione statistica del set di dati e
un’analisi di alcuni modelli statistici idonei a prevedere possibili crisi future,
sulla base delle caratteristiche più significative, come per esempio il peso cor-
poreo.
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Introduction

In this paper, we analyse the data on a single patient having Systemic capillary
leak syndrome. Systemic capillary leak syndrome (SCLS) is a condition in which
fluid and proteins leak out of tiny blood vessels, into surrounding tissues. This
can result in dangerously low blood pressure and a decrease in plasma volume.
Initial symptoms may include fatigue, nausea, abdominal pain, extreme thirst,
and sudden increase in body weight. Episodes of SCLS vary in frequency, with
some people having one episode in their lifetime, and others having several per
year. The severity also varies, and the condition can be fatal.
The main question that should be answered is whether there exists a statistical
relationship between weight and crisis indicator, i.e. can the future attack be
predicted by daily measuring body weight?

There are two sources of data used in this work. The first one was collected
daily by the patient himself, i.e. he was measuring body weight, diastolic and
systolic blood pressure and heart rate, except on the days when the crisis hap-
pened and he was hospitalized. The other data are collected by physicians,
while the patient was in hospital. Apart from the body weight, diastolic and
systolic blood pressure and heart rate, this data contains also information about
levels of hemoglobin, hematocrit and neutrophils in patient’s blood. Both data
collected by the patient and by physicians are for period from 16.10.2013.until
20.06.2017, but we focused on analysis of data from 18.11.2013 until 31.08.2016.
In this period many attacks occured and during this period immunoglobulin
therapy was applied.

We used two modelling approaches. The model developed for forecasting the
body weight, blood pressure and heart rate of the patient is Autoregressive Inte-
grated Moving Average (ARIMA) model, while for finding the relation between
the body weight and indicator of crisis Bayesian regression models are used.
The first approach was used to check autoregressive type in behaviour of the
daily body weight, suggested by physicians. The second approach was adopted
to answer the main question of the analysis using Bayesian approach through
R packages.

ARIMA models were introduced in Time Series Analysis: Forecasting and Con-
trol by Box and Jenkins. The main reason of choosing ARIMA models in this
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study for the forecasting the patient’s body weight is because they are flexible,
and represent stationary as well as non-stationary time series. They also allow
for accurate prediction of a future outcome.

The first and the most important step in fitting an ARIMA model to the body
weight time series is to determine if the series is stationary and if there is any
significant seasonality that needs to be modelled. If data is non-stationary, we
should identify the order of differencing needed for it to be stationary, d. Dif-
ferencing can help in stabilizing the mean of a time series by removing changes
in the level of a time series, and so eliminating trend and seasonality. In this
study it was suggested to use d = 1 and d = 2. After a time series has been
stationarized and once and seasonality has been addressed by differencing, the
next step in fitting an ARIMA model is to determine Autoregressive (AR), p,
and Moving average (MA), q, terms order.

Estimating the parameters for the ARIMA models is a quite complicated non-
linear estimation problem. There are many approaches to fitting Box-Jenkins
models, but maximum likelihood estimation is the preferred technique. The
likelihood equations for the full ARIMA model are complicated and are not in-
cluded here. See Brockwell and Davis (1991) for the mathematical details.

Model diagnostics suppose checking if the error term is assumed to follow the
assumptions for a stationary univariate process. The residuals should be inde-
pendent and identically distributed from a fixed distribution with a constant
mean and variance. If the ARIMA model is a good model for the data, the
residuals should satisfy these assumptions. For checking residuals correlation,
Box-Ljung test and Autocorrelation and Partial Autocorrelation function plots
are used. If these assumptions are not satisfied, we need to fit a more appro-
priate model. That is, we go back to the model identification step and try to
develop a better model.

Since the indicator of crisis is a binary variable, equal to 1 if the patient was
hospitalized and 0 otherwise, there are many frequentist statistical methods that
could be used for predicting it, as for example generalized linear regression, more
over logistic regression. Our problem was that those approaches assume that
the variables in model have autocorrelation function equal to zero, which is not
the case here. We used Bayesian approach for fitting the regression models of
the body weight and crisis indicator because it allows the use of additional in-
formation on the patient and because it already exists a R package that we know.

The major difference in the frequentist and Bayesian approaches is that in a
frequentist approach, unknown parameters are often, but not always, treated
as having fixed but unknown values that are not capable of being treated as
random variates in any sense, and hence there is no way that probabilities can
be associated with them. In contrast, a Bayesian approach does allow probabil-
ities to be associated with unknown parameters. The Bayesian approach allows
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these probabilities to have an interpretation as representing the scientist’s belief
that given values of the parameter are true. The Bayesian approach is based on
Bayes’ theorem.

In this work we propose a structural time series model. One of the most impor-
tant models for time series is the basic structural model: this consists of a trend,
a seasonal and an irregular component. Our computational results are centred
on the model consisting of a level trend and time dependent components. The
temporal effects are modelled with a fifth order autoregressive process.
Once the regression model is chosen, a prior probability distribution on the
model parameters is specified, representing our knowledge about these parame-
ters before any data is observed. Once the data has been observed, the likelihood
function, that is the distribution of the observed data conditional on parame-
ters, is computed.
The posterior distribution is the distribution of the parameters after taking into
account the observed data. Multiplying the prior distribution with the likeli-
hood function a posterior distribution is provided. For obtaining parameters
of our Bayesian model Markov Chain Monte Carlo (MCMC) is used to sample
from the posterior distribution.
Next and final step is model diagnostics. In this step we are checking if obtained
MCMC chain is converging to the target distribution after infinite iterations.
We used two approaches for checking convergence, the Geweke (1992), com-
pares means calculated from distinct segments of Markov chain, Gelman and
Rubin (1992), computes m independent Markov chains and compares variances
between chains.

The work is organised as follows: in Chapter 1, after a brief introduction to
the theory of time series, we present the main properties of the Autoregressive
Integrated Moving Average models. In Chapter 2 Bayesian statistic for struc-
tural time series models are reviewed. In Chapter 3 we present inference on
ARIMA models for the body weight, blood pressure and heart rate of the pa-
tient and we analysed the data collected by physicians. In Chapter 4 we present
the inference for Bayesian structural models for the body weight and the indi-
cator of crisis.

The open source statistical software ’R’ and various statistical and time series
packages as ’tseries’, ’forecast’ and ’bsts’ were used for this study.
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Chapter 1

Autoregressive Moving
Average Models for time
series

In this chapter we introduce some basic ideas of time series analysis, and an ex-
tremely important class of time series defined in terms of linear difference equa-
tions with constant coefficients, calles Autoregressive moving average (ARMA)
models. Chapter 1 is based on the book by Brockwell and Davis (2002).

A time series {Yt, t ∈ T0} is a set of random variables, each one being recorded
at a specified time t. A discrete-time series is one in which the set T0 of times
at which observations are made is a discrete set, as it is the case for example
when observations are made at fixed time intervals. Continuous-time series are
obtained when observations are recorded continuously over some time interval,
e.g. when T0 =

[
0, 1
]
. Most commonly, a time series is a sequence taken at

successive equally spaced points in time.

Let T0 = {0,±1,±2, . . . }, then the time series {Yt, t ∈ T0} is called discrete
time series. A basic model for representing a discrete time series {Yt, t ∈ T0} is
the additive model:

Yt = µt + γt + εt, t ∈ T0 (1.1)

Model (1.1) is also known as Classical Decomposition, where
Yt is the observation at time t,
µt is the trend at time t,
γt is the seasonal at time t,
εt is the noise disturbance at time t.
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1.1 Stationarity and Strict Stationarity

Definition of autocovariance function. If Y = {Yt, t ∈ T0} is a random
process such that V ar(Yt) < ∞ for each t ∈ T0, then the autocovariance func-
tion γY (·, ·) of Yt is defined by

γY (r, s) = Cov(Yr, Ys) = E[(Yr − E[Yr])(Ys − E[Ys])], r, s ∈ T0. (1.2)

Definition of autocorrelation fuction. The autocorrelation function of the
Yt process is given by:

ρY (r, s) =
γY (r, s)√

var(Yr)var(Ys)
, r, s ∈ T0 (1.3)

Definition of stationarity. The time series {Yt, t ∈ T0} is said to be station-
ary if

1. E[|Yt|2] <∞ for all t ∈ T0,

2. E[Yt] = m for all t ∈ T0,

3. γY (r, s) = γY (r + t, s+ t) for all r, s, t ∈ T0,

Stationarity as just defined is frequently referred to as weak stationarity, covari-
ance stationarity, stationarity in the wide sense or second-order stationarity. For
us however the term stationarity will always refer to the properties specified by
this definition.

If {Yt, t ∈ T0} is stationary then γY (r, s) = γY (r − s, 0) for all r < s ∈ T0. It
is therefore convenient to redefine the autocovariance function of a stationary
time series as the function of the gap h between times t and t+ h, i.e.:

γY (h) ≡ γY (h, 0) = Cov(Yt+h, Yt) ∀t, h ∈ T0 (1.4)

Example(White noise process) A process {Xt} is called white noise, and
is indicated by the acronym WN, if it has the following properties:

E(Xt) = 0 ∀t

E(XtXt−k) =

{
0 k 6= 0

σ2
X k = 0
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The autocorrelation function of the WN process is:

ρX(r, s) = ρX(τ = s− r) =

{
0 τ 6= 0

1 τ = 0

Example(Sinusoidal process) A process {Ct} is called sinusoidal process if:

Ct = Acos(λt) +Bsin(λt) λ ∈ [−π, π], t = 0,±1,±2, . . .

with A and B uncorrelated random variables with zero mean and equal vari-
ances:

E(A) = E(B) = 0

V ar(A) = V ar(B) = σ2

λ is called the angular frequency of the process, T = 2π/λ is the period of the
process and 1/T is frequency. The autocovariance function of the sinusoidal
process Ct is:

γC(r, s) = γC(τ = s− r) = σ2cos(λτ)

Definition of strict stationarity. The time series {Yt, t ∈ T0} is said to be
strictly stationary if the joint distribution of (Yt1 , ..., Ytk)′ and (Yt1+h, ..., Ytk+h)′
are the same for all positive integers k, ∀t1, ..., tk, h ∈ T0.

If T0 = {0,±1,±2, . . . }, the previous definition is equivalent to the statement
that {Y1, Y2, . . . , Yk}′ and {Y1+h, Y2+h, . . . , Yk+h}′ have the same joint distribu-
tion for all positive integers k and integers h.
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1.2 ARIMA models

An autoregressive integrated moving average (ARIMA) model is a generaliza-
tion of an autoregressive moving average (ARMA) model. Both of these models
are fitted to time series data either to better understand the data or to predict
future points in the series. ARIMA models are applied in some cases where
data show evidence of non-stationarity, where an initial differencing step (cor-
responding to the ”integrated” part of the model) can be applied one or more
times to eliminate the non-stationarity.

ARIMA models are generally denoted by ARIMA(p, d, q) where parameters p,
d and q are non-negative integers, p is the order of the autoregressive model, d
is the degree of differencing, and q is the order of the moving-average model.

1.2.1 Autoregressive processes

Definition of AR(1) models. The AR(1) model is defined as:

Yt = a+ bYt−1 + εt (1.5)

where εt is white noise.

An AR(1) process is stationary if and only if |b| < 1.
The moments of a process AR(1) are

E(Yt) =
a

1− b

var(Yt) =
σ2
ε

1− a2

cov(Xt, Xt+τ ) = σ2
ε

aτ

1− a2

Definition of AR(p) models. The notation AR(p) indicates an autoregressive
model of order p = 2, 3, . . . . The AR(p) model is defined as:

Yt = c+ a1Yt−1 + ...+ apYt−p + εt (1.6)

where a1, a2, . . . , ap are the parameters of the model, c is a constant, and εt is
white noise.

Some parameter constraints are necessary for the model to remain wide-sense
stationary. For example, processes in the AR(1) model with a1 ≥ 1 are not
stationary. More generally, for an AR(p) model to be wide-sense stationary, the
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roots of the polynomial zp −
∑p
i=1 aiz

p−i = 0 must lie inside of the unit circle,
i.e., each (complex) root zi must satisfy zi < 1.

1.2.2 Moving average processes

Definition of MA(1) models. Let {εt} be a white noise process with variance
E(εt) = σ2

ε . If
Yt = µ+ εt + bεt−1

with µ, b deterministic constants, then {Yt} is called the moving average process
of order 1(MA(1)). An MA(1) process has mean µ and variance

var(Yt) = (1 + b2)σ2
ε

Definition of MA(q) models. The notation MA(q) refers to the moving av-
erage model of order q = 2, 3, . . . :

Yt = µ+ εt + b1εt−1 + ...+ bqεt−q (1.7)

where µ is the mean of each Yt, b1, . . . , bq are the parameters of the model and
εt, εt−1, . . . , εt−q are white noise errors.

The MA(q) process has mean and variance, respectively,

E(Yt) = µ

V ar(Yt) = σ2
ε(1 + b21 + · · ·+ b2q)

A moving-average model is conceptually a linear regression of the current value
of the series against current and previous (unobserved) white noise error terms
or random shocks. The random shocks at each point are assumed to be mu-
tually independent and to come from the same distribution, typically a normal
distribution, with location at zero and constant scale.

Definition of ARMA models. Given a time series of data Yt where t is
an integer index and the Yt’s are real numbers, an ARMA(p,q) model is given
by:

Yt − a1Yt−1 − ...− apYt−p = εt + b1εt−1 + ...+ bqεt−q (1.8)

Or equivalently: (
1−

p∑
i=1

aiB
i
)
Yt =

(
1 +

q∑
i=1

biB
i
)
εt (1.9)

where B is the lag operator, meaning:

BYt = Yt−1, BkYt = Yt−k (1.10)
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The ai are the parameters of the autoregressive part of the model, the bi are the
parameters of moving average part and the εt are the error terms. The error
terms are generally assumed to be independent, identically distributed variables,
with zero mean and equal variance σ2.

Definition of ARIMA models. An ARIMA(p, d, q) process is given by

(
1−

p∑
i=1

aiB
i
)(

1−B
)d
Yt =

(
1 +

q∑
i=1

biB
i
)
εt (1.11)

Note that, if d = 0, ARIMA(p, 0, q) model is equivalent to ARMA(p, q) model.
And if d = 1, we have that ARIMA(p, 1, q) model applied on series {Yt, t ∈ T0}
is same as if we apply ARMA(p, q) model to series {Y ′t = Yt+1 − Yt, t ∈ T0}.
In general, ARIMA(p, q, d) for {Yt, t ∈ T0} is equivalent to ARMA(p, q) on dif-
ference with lag d of {Yt, t ∈ T0}.

Some well-known special cases arise naturally or are mathematically equivalent
to other popular forecasting models. For example:

• An ARIMA(0,1,0) model is given by Xt = Xt−1 + εt — which is simply a
random walk.

• An ARIMA(0,1,0) with a constant, given by Xt = c+Xt−1 + εt — which
is a random walk with drift.

• An ARIMA(0,0,0) model is a white noise model.

To determine the order of a non-seasonal ARIMA model, a useful criterion is
the Akaike information criterion (AIC). It is written as

AIC = −2log(L) + 2(p+ q + k + 1) (1.12)

where L is the likelihood of the data, p is the order of the autoregressive part
and q is the order of the moving average part. The parameter k in AIC formula
is defined as the number of parameters in the model being fitted to the data.
For AIC, if k = 1 then c 6= 0 and if k = 0 then c = 0.

The objective is to minimize the AIC value for a good model. The lower the
value of AIC for a range of models being investigated, the better the model will
suit the data.

10



1.3 Stationarity tests

Stationarity tests allow verifying whether a series is stationary or not. There are
two different approaches: stationarity tests such as the KPSS test that consider
null hypothesis H0 that the series is stationary, and unit root tests, such as the
Dickey-Fuller test and its augmented version, the Augmented Dickey-Fuller test
(ADF), or the Phillips-Perron test (PP), for which the null hypothesis H0 is on
the contrary that the series possesses a unit root and hence is not stationary.

Unit root

A linear stochastic process has a unit root if 1 is a root of the process’s charac-
teristic equation. Such a process is non-stationary.

If the other roots of the characteristic equation lie inside the unit circle-that
is, have a modulus (absolute value) less than one, then the first difference of
the process will be stationary; otherwise, the process will need to be differenced
multiple times to become stationary.

If a root of the process’s characteristic equation is larger than 1, then it is
called an explosive process.

Unit root processes may sometimes be confused with trend-stationary processes;
it is possible for a time series to be non-stationary, yet have no unit root and
be trend-stationary.

Consider a discrete-time stochastic process {Yt, t = 1, ....,∞}, and suppose
that it can be written as an autoregressive process of order p:

Yt = a1Yt−1 + a2Yt−2 + ...+ apYt−p + εt. (1.13)

Here, {εt, t = 1, ....,∞}, is a serially uncorrelated, zero-mean stochastic pro-
cess with constant variance σ2. For convenience, assume Y0 = 0. If m = 1 is a
root of the characteristic equation:

mp − a1mp−1 − a2mp−2 − ...− ap = 0 (1.14)

then the stochastic process has a unit root.

Augmented Dickey-Fuller test

The Augmented Dickey Fuller (ADF) test is a unit root test for stationarity.

The hypotheses for the test are as follows:

• the null hypothesis H0 is that there is a unit root;
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• the alternative hypothesis differs slightly according to which equation we
are using. The basic alternative is that the time series is stationary (or
trend-stationary).

Before running an ADF test, an inspection of data is needed to figure out
an appropriate regression model. For example, a nonzero mean indicates the
regression will have a constant term. The three basic regression models are:

• No constant, no trend: Yt = a1Yt−1 + εt

• Constant, no trend: Yt = α+ a1Yt−1 + εt

• Constant and trend: Yt = α+ a1Yt−1 + λt + εt

The Augmented Dickey Fuller adds lagged differences to these models:

• No constant, no trend: Yt =
∑p
i=1 aiYt−i + εt

• Constant, no trend: yt = α+
∑p
i=1 aiYt−i + εt

• Constant and trend: Yt = α+
∑p
i=1 aiYt−i + λt + εt

A lag length needs to be chosen to run the test. The lag length should be cho-
sen so that the residuals are not serially correlated. There are several options
for choosing lags: Minimize Akaike’s information criterion (AIC) or Bayesian
information criterion (BIC).

KPSS test

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test figures out if a time se-
ries is stationary around either a deterministic trend or a level trend, or is
non-stationary due to a unit root.

Let {Yt, t = 1, 2, ..., N} be the observerd series for which we wish to test
stationarity. Assume that we can decompose the series into the sum of a deter-
ministic trend, a random walk and a stationary error with the following linear
regression model:

Yt = rt + βt+ εt (1.15)

where rt is a random walk, i.e., rt = rt−1 + ut and ut are independent and
identically distributed (iid) N

(
0, σ2

u

)
, βt is deterministic trend and εt is serially

uncorrelated, zero-mean stochastic process of errors with constant variance σ2
ε .
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To test in this model if Yt is a trend stationary process, namely, the time series
is stationary around deterministic trend, the null hypothesis will be σ2

u = 0,
against the alternative of a positive σ2

u.
In another stationarity case, level stationarity, namely, the series is stationary
around a fixed level, and the null hypothesis is β = 0.

1.4 Estimation and Elimination of the Trend and
Seasonal Components

The first step in the analysis of any time series is to plot the data to see if there
are apparent discontinuities in the series, such as a sudden change of level, or
if there are outlying observations. Inspection of graph may also suggest the
possibility of representing the data as a realization of the process (the ”classical
decomposition” model)

Yt = µt + γt + εt (1.16)

where µt is a slowly changing function known as a trend component, γt is a
function whit known period d and refers to as a seasonal component, and εt is
a random noise component which is stationary.

Our aim is to estimate and extract the deterministic components µt and γt
in the hope that the noise component εt will turn out to be a stationary ran-
dom process. We can then use the theory of such processes to find a satisfactory
probabilistic model for the process εt.

An approach, developed by Box and Jenkins in 1970, is to apply the difference
operator repeatedly to the data Yt until the differenced observations resemble a
realization of some stationary process Wt.

1.4.1 Elimination of a trend in the absence of seasonality

In the absence of a seasonal component the model becomes

Yt = µt + εt, t = 1, ..., n (1.17)

where, without loss of generality, we can assume that E[εt] = 0.

Now we attempt to eliminate the trend term by differencing. We define the
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first differencing operator ∇ by

∇Yt = yt − Yt−1 = (1−B)Yt, (1.18)

where B is the backward shift operator,

BYt = Yt−1. (1.19)

Powers of the operators B and ∇ are defined in the following way

Bj(Yt) = Yt−j (1.20)

∇j(Yt) = ∇(∇j−1(Yt)), j ≥ 1 (1.21)

∇0(Yt) = Yt. (1.22)

If the operator ∇ is applied to a linear trend function µt = at + b, then we
obtain constant function ∇µt = a. In the same way any polynomial trend of
degree k can be reduced to a constant by application of the operator ∇k.
Starting therefore with the model Yt = µt + εt where µt =

∑k
j=0 ajt

j and εt is
stationary with zero mean, we obtain

∇kYt = k!ak +∇kεt (1.23)

that is a stationary process with mean k!ak. These considerations suggest the
possibility, given any sequence {yt} of data, of applying the operator ∇ repeat-
edly until we find a sequence {∇kyt} which can be modelled as a realization
of stationary process. It is often found in practice that the required order of
differencing k is quite small, frequently one or two.

1.4.2 Elimination of both Trend and Seasonality

The method described for the removal of trend can be applied in a natural way
to eliminate both trend and seasonality in the general model

Yt = µt + γt + εt (1.24)

where E[εt] = 0, γt+d = γt and
∑d
j=1 γj = 0.

The technique of differencing which we applied earlier to non-seasonal data
can be adapted to deal with seasonality of period d by introducing the lag-d
difference operator ∇d defined by

∇dyt = yt − yt−d = (1−Bd)yt. (1.25)

(This operator should not be confused with operator ∇d = (1 − B)d defined
earlier.)
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Applying the operator ∇d to the model Yt = µt + γt + εt, where {γt} has
period d, we obtain

∇dYt = µt − µt−d + εt − εt−d (1.26)

which gives a decomposition of the difference ∇dyt into a trend component
(µt − µt−d) and a noise term (εt − εt−d). The trend component, µt − µt−d can
be eliminated using the method already described.

1.5 Model Diagnostic

The residuals from a model are calculated as the difference between the actual
values and the fitted values: ε̂t = xt − x̂t. Each residual is the unpredictable
component of the associated observation.

After fitting a model, it is necessary to check that the assumptions of the model’s
residuals have been satisfied. For checking the iid hypothesis on the errors, we
can check the Autocorrelation Function and the Partial Autocorrelation Func-
tion or resort to Box-Ljung test.

Autocorrelation Function

The correlation between two variables Y1 and Y2 is defined as:

ρ =
E[(Y1 − µ1)(Y2 − µ2)]

σ1σ2
=
Cov(Y1, Y2)

σ1σ2
(1.27)

where E is the expectation operator, µ1 and µ2 are the means respectively for
Y1 and Y2 and σ1, σ2 are their standard deviations.

Upon the above definition, residuals sample autocorrelations of order k = 0, 1, 2, ...
can be obtained by computing the following expression with the series of esti-
mated errors et:

ρ̂k =

∑n−k
t=1 (et − ē)(et+k − ē)∑n

t=1(et − ē)2
(1.28)

where ē is the sample mean of the estimated residuals.

Partial Autocorrelation Function

The partial autocorrelations measure the linear dependence of one variable af-
ter removing the effect of other variable(s) that may affect both variables. For
example, the partial autocorrelation of order h measures the effect of xt−h on
xt after removing the effect of xt−h+1, xt−h+2, ...xt−1 on both xt−h and xt.
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The 1st order partial autocorrelation of residuals will be defined equal to the
1st order autocorrelation.
The 2nd order (lag) partial autocorrelation is:

Cov(εt−2, εt|εt−1)√
V ar(εt|εt−1)V ar(εt−2|εt−1)

(1.29)

The 3rd order (lag) partial autocorrelation is:

Cov(εt−3, εt|εt−1, εt−2)√
V ar(εt|εt−1, εt−2)V ar(εt−3|εt−1, εt−2)

(1.30)

And, so on, for any lag.

Ljung-Box test

The autocorrelation function (ACF) and partial autocorrelation function (PACF)
are useful qualitative tools to assess the presence of autocorrelation at individ-
ual lags. The Ljung-Box Q-test is a quantitative way to test for autocorrelation
at multiple lags jointly. The null hypothesis for this test is that the first m
autocorrelations between residuals are jointly zero.

The Ljung–Box test may be defined as:
H0 : ”the residuals are independently distributed”
H1 : ”the residuals are not independently distributed”.

The test statistic is:

Q = n(n+ 2)

m∑
k=1

ρ̂k
n− k

(1.31)

where n is the sample size, ρ̂k is the sample autocorrelation at lag k, and m is
the number of lags being tested. Under H0 the statistic Q follows a chi-squared
distribution with h degrees of freedom (χ2

h). For a significance level α, the
critical region for rejecting the null hypothesis of randomness is:

Q > χ2
1−α,h (1.32)

where χ2
1−α,h is the (1-α)-quantile of the χ2

rh. Because the test is applied to
the estimated residuals, the degrees of freedom must account for the estimated
model parameters so that h = m - p - d - q, where p, d and q indicate the number
of parameters from the ARIMA(p, d, q) model fit to the data.
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Chapter 2

Bayesian Statistic for
Structural Time Series

In this chapter is provided an introduction to Bayesian statistical inference, in
quite general terms, how Bayesian data analysis proceeds. At a high level of ab-
straction, Bayesian data analysis is extremely simple, following the same, basic
recipe: via Bayes Rule, we use the data to update prior beliefs. More detailed
theory about the Bayesian paradigm can be found in Jackman (2009).

In several applications there are enough (statistical) information on the most
likely values on the parameters θ to be estimated even before making any exper-
iment or any observation. The information is given by the corresponding prob-
ability density function (pdf) π[θ] that accounts for all the statistical properties
of θ before any observation. Since π[θ] accounts for the statistical properties
before any experiment, this is referred to as a-priori pdf. Bayesian methods
make an efficient use of the a-priori pdf to yield the “best estimate” given both
the observation {yt} and the a-priori knowledge π[θ].

Let Y = (Y1, Y2, . . . , Yn) be random sample from probability distribution f ,
conditionally to some unknown parameters θ, then a Bayesian model is given
by:

Y1, Y2, . . . , Yn|θ ∼ f(y, θ) (2.1)

θ ∼ π(θ) (2.2)

Bayesian inference relies on the Bayes theorem:

P (Ai|E) =
P (E|Ai)P (Ai)

P (E)
=

P (E|Ai)P (Ai)∑n
k=1 P (E|Ak)P (Ak)
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where A1, A2, . . . , An is finite or infinite partition of sample space (Ω,B) such
that P (Aj) > 0 ∀j and P (E) > 0.

Given Equations (2.1) and (2.2), the goal is to calculate a-posterior distribu-
tion π(θ|Y ) for the parameters θ given data Y, this represents an update of
π(θ) after conditioning on the sample data. From Bayesian theorem we get:

π(θ|Y ) =
f(Y |θ)π(θ)

f(Y )
.

where f(Y |θ) is the likelihood and f(Y ) is the marginal distribution of the
data. Since f(Y ) is independent from the parameters θ, we can calculate the
posterior distribution to a constant:

π(θ|Y ) ∝ f(Y |θ)π(θ) .

2.1 Structural Time Series

A structural time series model is defined by two equations. The observation
equation relates the observed data yt to a vector of latent variables αt known
as the state:

Yt = Z ′tθt + εt, εt ∼ N(0, σ2) (2.3)

The transition equation describes how the latent state evolves through time.

θt+1 = Btθt +Rtηt, ηt ∼ N(0, τ2) (2.4)

The error terms εt and ηt are Gaussian and independent of everything else.The
arrays Zt , Bt and Rt are structural parameters. They may contain parameters
in the statistical sense, but often they simply contain strategically placed 0’s
and 1’s indicating which bits of θt are relevant for a particular computation.
A model that can be described by equations (2.3) and (2.4) is said to be in state
space form.

For example, one useful model can be obtained by adding a regression com-
ponent to the popular “basic structural model.” This model can be written
as: 

Yt = µt + +τt + β′Xt + εt

µt+1 = µt + δt + ηt

δt+1 = δt + ξt

τt = −
∑S−1
s=1 τt−s + wt

(2.5)

where εt, ηt, ξt, wt are independent components of Gaussian random noise with
variances σ2

ε , σ
2
η, σ

2
ξ , σ

2
w. The current level of the trend is µt, the current “slope”

of the trend is δt and the seasonal component is τt.
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2.1.1 Local Level Trend

The simplest useful model is the local level model, in which the vector θt is just
a scalar µt. The local level model is a random walk.

yt = µt + εt (2.6)

µt+1 = µt + ηt (2.7)

Here θt = µt, and Zt, Bt, and Rt are all the scalar value 1. The probabilistic

assumptions are εt
iid∼ N(0, σ2) and ηt

iid∼ N(0, τ2).

If τ2 = 0 then µt is a constant, so the data are IID Gaussian noise. In that case
the best estimator of yt+1 is the mean of y1, y2, . . . , yt. Conversely, if σ2 = 0
then the data follow a random walk, in which case the best estimator of yt+1

is yt. Notice that in one case the estimator depends on all past data (weighted
equally) while in the other it depends only on the most recent data point, giving
zero weight to the past data .

2.1.2 Local Linear Trend

The LLT model extends the LL model with a slope:

yt = µt + εt, εt ∼ N(0, σ2
ε) (2.8)

µt+1 = µt + δt + ηt, ηt ∼ N(0, σ2
η) (2.9)

δt+1 = δt + ξt, ξt ∼ N(0, σ2
ξ ) (2.10)

If σ2
ε = 0 the trend is a random walk with constant drift β1; if β1 = 0 the model

reduces to a LL model. If additionally σ2
η = 0 the trend is a straight line with

slope β1 and intercept µ1. If σ2
ξ = 0 but σ2

η = 0 , then the trend is smooth curve
or Integrated Random Walk.

2.1.3 AR(p) model with time varying coefficients

The AR(p) model with time varying coefficients takes the form:

Yt = α0,t + α1,tyt−1 + · · ·+ αp,tyt−p + εt (2.11)

αi,t+1 = αi,t + ηt (2.12)

where we assume that the error terms are independent normals:

εt ∼ N(0, σ2
ε), ηt ∼ N(0, σ2

η)
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2.2 Spike and Slab Variable selection

Equation (2.5) contains a regression component that allows a set of external
factors to contribute to the prediction. Spike and slab variable selection is a
Bayesian variable selection technique that is particularly useful when the num-
ber of possible predictors is larger than the number of observations.

Our problem is now to establish whether Yi is associated with Xk. Let γk = 1 if
βk 6= 0, and γk = 0 if βk = 0. Let βγ denote the subset of elements of β where
βk 6= 0. A spike-and-slab prior may be written

p(β, γ, σ2
ε) = p3(βγ |γ, σ2

ε)p2(σ2
ε |γ)p1(γ) (2.13)

The marginal distribution p1(γ) is the “spike” so named because it places pos-
itive probability mass at zero. In practice it is convenient to simply use an
independent Bernoulli prior for p1(γ):

γ ∼
K∏
k=1

πγkk (1− πk)γk (2.14)

Equation (2.17) is often further simplified by assuming all the πk are the same
value π. A natural way to elicit π is to ask the analyst for an “expected model
size,” so that if one expects p nonzero predictors then π = p/K, where K is the
dimension of the design matrix Xt.

Example: Let us consider general linear model and suppose that we have only
one covariate:

Yi|θi, η
iid∼ f(yi; θi, η) (2.15)

g(θi) = β0 + β1Xi1 (2.16)

β0 ∼ π0(β0) β1 ∼ π1(β1) η ∼ π2(η) (2.17)

We can perform a statistical test to verify: H0 : β1 = 0 vs H1 : β1 6= 0

Then the quasi spike-and-slab prior is:

β1|y1 ∼ γ1N( 0, c21τ
2
1 ) + ( 1− γ1)N( 0, τ1) (2.18)

γ1 ∼ Bernoulli(π1) (2.19)

π1 ∼ Unif( 0, 1) or π1 = 0.5 (2.20)

τ21 is sufficiently small to approximate δ0 function and c21 is sufficiently large.
If:

β1 ∈ [−δ, δ] ⇒ β1 ' 0 (2.21)
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δ = ±τ1

√
2ln( c1) c21
c21 − 1

(2.22)
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Chapter 3

Analysis of data set for
person with Capillary Leak
Syndrome

Here we will introduce the data set and the general goal of analysis, then we
try to find the best models for time series of weight of patient.
Body weight, blood pressure and heart rate are simple measurements that can
be done daily by the patient at home, while other measurements potentially
more fit to explore the syndrome (such as measurements on blood samples)
need professional assistance typically in a hospital. By using weight data and
blood pressure and heart beat rate, it would be interesting to forecast a crisis
with at least some hour anticipation, and even more useful to predict if such
crisis will need hospitalization or can be handled at the patient’s home. Missing
data in the time series are due to the presence of crises, which do not allow the
patient to stay still on the weight. Furthermore, the effectiveness of a therapy
can be possibly assessed by looking at the changes in the model of the weight
series before and after the beginning of the therapy. This can be of help to the
physician, in absence of better indicators of the effectiveness of the therapy.

3.1 Capillary Leak Syndrome

In this section, we will describe Capillary Leak Syndrome, the information about
this disease are collected from reports from Mayo Clinic and NORD (National
Organization of Rare Disorders).

Systemic capillary leak syndrome (SCLS) is a rare disorder characterized by
repeated flares of massive leakage of plasma from blood vessels into neighbour-
ing body cavities and muscles. This results in a sharp drop in blood pressure
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that, if not treated, can lead to organ failure and death. SCLS occurs most
often in adults and the disease is very rare in children.

Also called Clarkson’s disease, this condition can be mistaken for severe re-
actions to widespread infections (septic shock) or severe allergic reactions (ana-
phylactic shock). The frequency of attacks can range from several per year to a
single instance in a lifetime.

Attacks may be triggered by an upper respiratory infection or intense physi-
cal exertion. Attacks are often preceded by one to two days of one or more
nonspecific symptoms that may include:

• Irritability

• Fatigue

• Abdominal pain

• Nausea

• Muscle aches

• Increased thirst

• Sudden increase in body weight

As the fluid leaks out from the bloodstream, blood volume and blood pressure
drop. This can starve tissues in the kidneys, brain and liver of the oxygen and
nutrients they need for normal function.

More than one half of patients have a monoclonal or M protein detected in
the blood. The level of M protein is usually low. The M protein is produced
by what usually amount to small numbers of plasma cells in the marrow. The
M protein itself does not appear to cause the attacks. Recently it has been
suggested that capillary lining cells may be damaged by a factor in the blood,
which is produced during the acute attack. SCLS has been recognized in a
range of racial backgrounds and nationalities. There appears to be no genetic
predisposition to the disease. The cause of SCLS is unknown, and there’s no
known cure. Treatment during episodes aims to stabilize symptoms and prevent
severe complications. The use of intravenous fluids must be monitored carefully.
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Once an attack is underway, treatment is directed toward controlling blood
pressure to maintain blood flow to vital organs as well as preventing excessive
swelling and fluid accumulation.

Treatment of a fully developed SCLS episode requires recognition that there
are two phases of the acute attack. The first phase, which often lasts several
days is called the resuscitation phase aimed at controlling the capillary leak and
maintaining blood pressure. In that phase an albumin and fluid leak from the
capillaries into the tissue spaces causes swelling. This loss of fluid has similar
effects on the circulation as dehydration, slowing the flow of oxygen carrying
blood to tissues. The blood pressure falls and the red cells concentrate. Intra-
venous fluid replacement is usually required. In most cases intravenous fluids
must be administered immediately and in high-volume in order to prevent ex-
cessive drops in blood pressure. Constant check of the fluid loss is important
because sustained low blood pressure can damage vital organs such as the kid-
neys.

The second phase of the treatment is sometimes called the recruitment phase as
fluids and albumin are reabsorbed from the tissues. In this phase the capillary
leak has abated and the main threat is fluid overload. Even though the blood
pressure may still be low, it is important to avoid overly aggressive intravenous
fluid administration causing massive swelling of the extremities requiring surgi-
cal decompression. In this procedure the skin of the arms or legs is incised to
release the compressive pressure the retained fluid is having on blood flow to
and from the extremities. Excessive intravenous fluids may also cause accumu-
lation of fluid in the lungs and around other vital organs. Many of the deaths
happen during this recruitment phase. The goal during the acute phase is NOT
to attempt to maintain absolutely normal blood pressure or urine flow but to
maintain the blood pressure at just sufficiently high enough levels to avoid per-
manent damage to vital organs yet spare the patient from the risks of excess
fluid administration.

Monthly infusions of intravenous immunoglobulin (IVIG) can help prevent fu-
ture episodes. Preventive treatment with certain oral medications originally
designed to treat asthma also can be helpful, but these drugs may produce
troublesome side effects, such as tremors.

3.2 Analysis of weights

The goal of this section is to analyse and fit some models to time series of the
weight of a patient measured each day from 16.10.2013 until 20.06.2017.

The model developed for forecasting is an Autoregressive Integrated Moving
Average (ARIMA) model. This model was introduced by Box and Jenkins in
1960 and hence this model is also known as Box-Jenkins model which is used to
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forecast a single variable. The main reason of choosing ARIMA model in this
study for the forecasting is because this model assumes and takes into account
the non-zero autocorrelation between the successive values of the time series
data.

For better analysis, data are first split into three phases:

1. From beginning until 17.11.2013: in this period two-drug therapy was
applied (theophylline and terbutaline), which has been revealed to be ir-
relevant. This period can be taken as a reference for evolution in the
absence of external therapeutic interventions.

2. From 18.11.2013 until 31.08.2016: immunoglobulin therapy (ig vena). Clin-
ically, it is observed that effectivness of therapy decrease, in the begining
the therapy was very effective, but as time was passing, influenc of ther-
apy on patient health was smaller and smaller. From a statistical point of
view, it is interesting to evaluate the evolution of the parameters over time
after each cycle of infusions, taking as zero time the day of the beginning
of the cycle.

3. From 01.09.2016 until 20.06.2017: the therapy consists of plasma exchange
cycles.

Figure 3.1 shows the daily body weight time series:

Figure 3.1: Time series of the daily body weight in the log scale: the two vertical
lines split the time series into the three different subseries.
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We notice difference in variation in these three phases, meaning that in last
two phases we have bigger changes in the body weight, also we can notice some
missing data, which are shown in Figure 3.2 through vertical lines.

Figure 3.2: Time series of the daily body weight regards to time in days: blue
lines represent missing parts of time series.

The dates with missing values are displayed in Figure 3.3:

Figure 3.3: Dates for which values of time series of weights are missing.

The main idea of this project is to examine if each subseries of the weights time
series can be fitted by some of ARIMA(p, d, q) models (introduced in Chapter
2 Section 3). We can do that with the help of auto.arima function, contained
in R package called forecast (more about this package can be found in article
by Hyndman and Khandakar (2008.)). This function gives us the best model
according to AIC value; the smaller AIC value is, the better the model is.
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First stage of ARIMA model building is to identify whether the variable, which
is being forecasted, is stationary in time series or not. By stationary we mean,
the values of variable over time varies around a constant mean and variance.
The time plot of the body weight data in Figure 3.1 above clearly shows that
the data is not stationary. The ARIMA model cannot be built until we make
this series stationary. We first have to difference the time series d times to ob-
tain a stationary series in order to have an ARIMA(p,d,q) model with d as the
order of differencing used. Package forecast contains also function ndiffs which
helps to estimate the number of differences required to make a given time series
stationary ( i.e. parameter d in ARIMA(p, d, q) model).

For checking residuals correlation, it will be used acf, pacf and Box.test func-
tions in the stats package of R.

3.2.1 Fitting ARIMA model to the first phase of the wight
time series

The first part of data is from 16.10.2013 until 17.11.2013.

We start with the estimation of parameter d using function ndiffs and we got
that difference at lag 1 gives us stationary data. Therefore we will search for
the best ARIMA(p, 1, q) model, but also for the best model among all possibles
with d = 2, which was suggested by the team of physicians in charge of the
patient. At the end, as the best model for this subseries, we will choose the
better model among then with respect to both their AIC values and fulfillness
of residuals assumptions.

The best model among all possible ones with d = 1d = 1d = 1

As the result of auto.arima function we have that the best model in this case
is ARIMA(0, 1, 0) and its AIC value is -176.56, meaning:

Xt −Xt−1 = εt (3.1)

where Xt, t ∈ {1, 2, . . . } represents daily log weight time series and εt, t ∈
{1, 2, . . . } are iid variables with zero mean.

The plot for this fitted model is represented on Figure 3.4.
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Figure 3.4: Red line represents the first subseries in the log scale and blue line
is fit of ARIMA(0, 1, 0) model.

From Figure 3.4 we can notice that ARIMA(0, 1, 0) model estimation has a
small delay with respect to the original data.

For residual assumption checking, Box-Ljung test was used and the p-value=
0.1527 is obtained If p-value > 0.05: there is no enough statistical evidence to
reject the null hypothesis. So it can not be assumed that values are dependent.
This could mean that values are dependent anyway or it can mean that they
are independent. But it is not proven any specific possibility, what test actually
said is that we can not assert the dependence of the values, neither can we as-
sert the independence of the values. Regarding this, ACF and PACF plots are
drawn and we can see them in Figure 3.5.
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Figure 3.5: ACF and PACF of residuals for model ARIMA(0, 1, 0), for the time
series of first phase.

Autocorrelation plots are a commonly-used tool for checking randomness in a
data set. This randomness is ascertained by computing autocorrelations for
data values at varying time lags. If random, such autocorrelations should be
near zero for any and all time-lag separations. If non-random, then one or more
of the autocorrelations will be significantly non-zero.
The above plot also contains several horizontal reference lines. The middle line
is at zero. The other two lines are 95% confidence bands.
The ACF plot shows that there is some autocorrelation remaining in the resid-
uals. This means there is some information remaining in the residuals that can
be exploited to obtain better forecasts.
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The best model among all possibles with d = 2d = 2d = 2

The best model in this case is ARIMA(0, 2, 0) and its AIC value is -153.34.
Fitted plot for this model is represented on Figure 3.6.

Figure 3.6: Red line represents the first subseries in log scale and blue line is fit
of ARIMA(0, 2, 0) model

From Figure 3.6 we can notice that ARIMA(0, 2, 0) model is weak in fitting
extremes values of the weight.

P -value = 0.6254 of Box-Ljung test for residual correlation is bigger than the
significance level α = 0.05, which tells us that it can not be assumed that esti-
mated residuals are dependent.
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Figure 3.7 represents ACF and PACF plots of residuals for ARIMA(0, 2, 0)
model.

Figure 3.7: ACF and PACF of residuals for model ARIMA(0, 2, 0).

According to ACF and PACF plots in Figure 3.7 residuals of estimated model
ARIMA(0, 2, 0) are dependent.

From the results obtained in this section, the best model that we got for the first
subseries is ARIMA(0, 2, 0), since for its residuals we have stronger evidence
for stationarity and the difference between AIC value of ARIMA(0, 2, 0) and
ARIMA(0, 1, 0) is small.
The above selected model ARIMA(0,2,0) means that we are fitting ARMA(0,0)
model of second order difference to our time series, i.e second order differencing
to our time series gives times series that is iid with zero mean. Therefore, this
model can be expressed as:

Yt − 2Yt−1 + Yt−2 = εt
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3.2.2 Fittig ARIMA Models to the second and third phases
of the weight time series

In second and third subseries missing values occur. They are shown on Figure
3.2. For dealing with these there are few methods:

1. Ignoring NA values - we ignore them and use auto.arima function on orig-
inal subseries to fit the best models;

2. Predict NA values - we iteratively predict missing values in following steps:

(a) If NA value occurs at time t but weight data are available at times
t−1 and t+1 we do not have missing data, then the estimate of data
xt is the average of xt−1 and xt+1, meaning xt = (xt−1 + xt+1)/2.
For example, on April 18th 2014, the weight is missing, but the day
before, on April 17th 2014, and the day after, April 19th 2014,
weight is measured. If we denote as x170414, x180414 and x190414
weights on 17th April, 18th April and 19th April 2014 retrospec-
tively, our estimated value for 18th April 2014 is given by x180414 =
(x170414 + x190414)/2

(b) If we have sequence of missing data at times t, t + 1, ..., t + k, then
auto.arima is used to fit the best model to series x1, x2, ..., xt−1 and
then data xt, xt+1, ..., xt+k are estimated with help of predict func-
tion, forecast from models fitted by auto.arima and as a result gives
a time series of predictions, used on the best model that we got for
data x1, x2, ..., xt−1.
For example, from February 7th 2015 until February 14th 2015 , the
weight is missing (in total 7 missing values), but, after using method
( a) for estimating x1804214, there are no NA values before 7th Febru-
ary 2015, so first thing that is done is using auto.arima function on
time series starting from 18.11.2013 until 06.02.2015 to fit the best
model, and then prediction function is used to estimate new 7 data
given the best model for data until 07.02.2015.

3. Interpolation of missing data. NA values are estimated using na.interpolation
function from R package imputeTS which fills in missing values according
to some polynomial function.

The most accurate method from the three methods mentioned above is the one
that use na.interpolation function. For the first method, the disadvantage is
that NA values occur randomly, in not equally spaced times. As for second
method, it happens that we have NA values at times t, t + 1, ..., t + k, but the
best model for data x1, x2, ..., xt−1 is such that observation at time m depends
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on l previous data with l < k, meaning, that for estimation of missing data at
times xt+l+1, ..., xt+k we use only estimated values and not original data.
Estimation of missing values using na.interpolation function for second and third
subseries are shown on Figure 3.8 and Figure 3.9:

Figure 3.8: Second phase of time series for the weights in log scale: blue dots
are estimations of NA values using function na.interpolation.

Figure 3.9: Third phase of time series for the weights in log scale: blue dots are
estimations of NA values using function na.interpolation.
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We estimate parameter d for the second and the third subseries, as we did it
for the first phase, and we got that difference at lag 1 gives us stationary data.
Therefore we will search for the best ARIMA(p, 1, q) model, but also for the
best model among all possibles with d = 2.

Using pp.test (that represents Phillips-Perron Unit Root Test in R studio) and
adf.test (that represents Augmented Dickey-Fuller Test in R studio) stationarity
of difference at lag 1 of the second and the third part of data are checked and
the results are:

• For the second phase:
both tests give p-value=0.01, which allows us to reject null hypothesis and
accept that data are stationary.

• For the third phase:
the results of tests are the same as for the second subseries, p-value=0.01,
data are stationary.

ARIMA Models for the second phase

The second part of data is from 18.11.2013 until 31.08.2016.

The best model among all possible with d = 1 is ARIMA(4, 1, 0) and its AIC
value is -6380.66; the fitted plot for this model is represented in Figure 3.10.

Figure 3.10: Red line represents second subseries in log scale: blue line is the
fit of ARIMA(4, 1, 0) model.
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Next, we will investigate the forecast errors of our ARIMA(4,1,0) model, whether
there are any correlations between successive forecast errors.
Ljung-Box test gave as result p-value=0.796, large p-value in the test is sug-
gesting us to accept the null hypothesis that all of the autocorrelation functions
are zero. In other words, we can conclude that there is no evidence for non-zero
autocorrelations in the forecast errors in our fitted model.

ACF and PACF plots are shown in Figure 3.11:

Figure 3.11: ACF and PACF of residuals for model ARIMA(4, 1, 0).

On the other hand, from Figure 3.11 we can conclude that there is no signifi-
cant autocorrelation between residuals for model ARIMA(4, 1, 0). It is clearly
evident from the ACF and PACF plots in Figure 3.11 above that none of the
autocorrelation coefficients between lag 1 and 30 are breaching the significant
limits i.e. all the ACF values, except two, are well within the significant bounds.
This means ACF and PACF concluded that there is no autocorrelations in the
forecast residuals (or standard errors) at lag 1 to 30 in the fitted ARIMA(4,1,0)
model.
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The best model among all possible with d = 2 is ARIMA(5, 2, 0) and its AIC
value is -6118.28; the fitted plot for this model is represented in Figure 3.12:

Figure 3.12: Red line represents the second phase data in log scale: blue line is
fit of ARIMA(5, 2, 0) model.

As far as the analysis of residuals correlation:
Ljung-Box test gave as result p-value=0.01975, small p-value tells us that it can
be assumed that estimated residuals from ARIMA(5, 2, 0) model are depen-
dent. To investigate further whether there are any correlation between sucessive
forecast errors, we will plot the ACF and PACF of the forecast errors. Figure
3.13 represents ACF and PACF plots of estimated residuals for ARIMA(5, 2, 0)
model.

Figure 3.13: ACF and PACF of estimated residuals for model ARIMA(5,2,0).
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By looking at Figure 3.13 seams that the residuals are correlated.

ARIMA Models for the third phase

The third phase of data is from 01.09.2016 until 20.06.2017.

The best model among all possible with d = 1 is ARIMA(4, 1, 2) and its AIC
value is -1714.59; the fitted plot for this model is represented in Figure 3.14:

Figure 3.14: Red line represents third part in log scale: blue line is the fit of
ARIMA(4, 1, 2) model.

As far as analysis of residuals correlation:
Ljung-Box test gave as result p-value=0.9435, which tells us that it can not
be assumed that estimated residuals for ARIMA(4, 1, 2) model are dependent.
This is confirmed by the ACF and PACF plots of residuals autocorrelation be-
tween lag 1 and lag 25. ACF and PACF plots of residuals for ARIMA(4, 1, 2)
model are shown in Figure 3.15.
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Figure 3.15: ACF and PACF of residuals for model ARIMA(4, 1, 2).

From Figure 3.15 we can conclude that there is no significant autocorrelation
between residuals for model ARIMA(4, 1, 2).

The best model among all possible with d = 2 is ARIMA(5, 2, 0) and its AIC
value is -1635.28; the fitted plot for this model is represented in Figure 3.16:

Figure 3.16: Red line represents the third subseries in log scale: blue line is fit
of ARIMA(5, 2, 0) model.
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Moving to analysis of residuals correlation:
Ljung-Box test gave as result p-value=0.3645, which tells us that it can not be
assumed that estimated residuals for ARIMA(5, 2, 0) model are dependent.
Figure 3.17 represents ACF and PACF plots of estimated residuals forARIMA(5, 2, 0)
model.

Figure 3.17: ACF and PACF of residuals for model ARIMA(5,2,0).

Furthermore, from Figure 3.17 it can be observed that the estimated residuals
are uncorrelated.
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3.2.3 Conclusion

Finally, Table 3.1 summarises the result obtained in this section for each of the
fitted ARIMA model in our three subseries.

Phase ARIMA AIC Ljung-Box

First
ARIMA(0, 1, 0) -176.56 0.1527
ARIMA(0, 2, 0) -153.34 0.6254

Second
ARIMA(4, 1, 0) -6380.66 0.976
ARIMA(5, 2, 0) -6118.28 0.01975

Third
ARIMA(4, 1, 2) -1714.59 0.9435
ARIMA(5, 2, 0) -1635.28 0.3645

Table 3.1: Table of results

The best fit model is selected based on Akaike Information Criterion (AIC)
value. The ideq is to choose a model with minimum AIC value. In Table 3.1
are displayed AIC values for models, as well as p-values of Ljung-Box test for
correlation of estimater residuals for each model.

In addition, the best model that we get for the first subseries is ARIMA(0, 2, 0),
since for its residuals we have stronger evidence for stationarity and the differ-
ence between AIC value of ARIMA(0, 2, 0) and ARIMA(0, 1, 0) is small.
As for second and third subesries, we can cleraly observe in the table above
that the lowest AIC values are for ARIMA(4, 1, 0) for second part of the body
weight time series and for ARIMA(4, 1, 2) for third phase. Another thing we
can validate by looking at p-values of Ljung-box test that the forecast errors of
this two models are not correlated and hence this two models can be the best
predictive models for making forecasts of the second and the third subseries.
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3.3 Fitting ARIMA models to nine subseries of
weight

Our goal in this section is to inspect if NA values that occur in weight time
series affect in fitting ARIMA models to data. In order to check results we ob-
tained in Section 3.3 and Section 3.4 (they are shown in Table 3.1), the second
and third time subseries of weight are divided into totally 9 parts, with respect
to missing data (sequences of NA values are skipped, if only one day with NA
value occurs, its value is estimated with the average of previous and following
day).

New subseries are:

1. from 18.11.2013 until 06.02.2015,

2. form 14.02.2015 until 21.11.2015,

3. from 30.11.2015 until 05.02.2016,

4. from 08.02.2016 until 07.06.2016,

5. from 30.08.2016 until 22.11.2016,

6. from 29.11.2016 until 03.04.2017,

7. from 07.04.2017 until 06.05.2017,

8. from 16.05.2017 until 01.06.2017,

9. from 04.06.2017 until 20.06.2017,
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On Figure 3.18 are displayed plots for all nine subseries:

Figure 3.18: Nine subseries of time series of weight.
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First thing we do is to find the best model among all ARIMA(p, d, q) models
with d ∈ {0, 1} and the best model among all ARIMA(p, d, q) models with
d = 2, in both cases auto.arima function is used. Next thing that is going to be
done is to compare results obtained for nine subsreries with the results obtained
for the second and the third phase in Section 3.4.

Period ARIMA AIC Box-Ljung

18.11.2013-06.02.2015
ARIMA(3, 1, 3) –3258.03 0.705
ARIMA(5, 2, 0) -3101.23 0.07866

14.02.2015-21.11.2015
ARIMA(3, 1, 4) -1872.7 0.9023
ARIMA(5, 2, 0) -1872.3 0.05334

30.11.2015-05.02.2016
ARIMA(2, 1, 2) -425.67 0.6565
ARIMA(2, 2, 2) -411.46 0.8581

08.02.2016-07.06.2016
ARIMA(0, 1, 0) -647.54 0.08204
ARIMA(5, 2, 0) -681.69 0.3742

30.08.2016-22.11.2016
ARIMA(3, 1, 0) -475.53 0.7711
ARIMA(5, 2, 0) -446.31 0.8435

16.05.2017-01.06.2017
ARIMA(0, 0, 2) -109.48 0.9104
ARIMA(0, 2, 0) -83.86 0.524

04.06.2017-20.06.2017
ARIMA(0, 1, 0) -96.85 0.7667
ARIMA(0, 2, 0) -82.28 0.2204

Table 3.2: Table of results

From Table 3.2 it can be noticed that data from 07.04.2017 until 06.05.2017,
data from 16.05.2017 until 01.06.2017 and data from 04.06.2017 until 20.06.2017
are different from other 6 subseries of weight time series, which may be consid-
ered as due to sort time interval of this three subseries.

Comparing results in Table 3.1 and Table 3.2 it can be also observed that there
is no need for dividing data into 9 subseries, that division in three phases is good
enough for analysis. Also it can be perceived that the best models for data from
18.11.2013 until 31.08.2016 and data from 01.09.2016 until 20.06.2017 in both
cases are actually ARIMA(5, 2, 0), since for all six subseries (not including last
three), that were analysed in this section, have ARIMA(5, 2, 0) as one of the
two options for best model.
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3.4 Seasonality

In time series data, seasonality is the presence of variations that occur at specific
regular intervals called period. If seasonality is present, it must be incorporated
into the time series model. Multiple boxplots can be used as a tool to detect
seasonality.The boxplot shows the seasonal difference between group patterns
quite well, but it does not show within group patterns. If there is significant
seasonality, the boxplots between groups shoud differ.

For time series for weight from 18.11.2013 until 31.08.2016, it will be checked
two seasonalities, one with period d = 5 and another with period d d = 20, ow-
ing to the fact that the period between two consecutive immunoglobuline(IG)
therapies is in avegare 21 days, the first subseries contains all first days of IG
therapy, the second subseries contains all second days of IG therapy, and so on
until the twentieth subseries which contains all Twentieth days ot therapy.

Seasonality with period d = 5

In order to check this seasonality, data from 18.11.2013 until 29.08.2016 is di-
vided into five subseries in following way:
If x1, x2, x3, ..., xn represent the weight from 18.11.2013 until 31.08.2016, than
the first subseries contains all xi such that i mod 5 = 1, i.e. x1, x6, x11, ...,
the second subseries contains all xi such that i mod 5 = 2, i.e. x2, x7, x12, ...,
and so on until the fifth subseries which contains all xi such that i mod 5 = 0,
i.e. x5, x10, x15, ....

Figure 3.19 shows the boxplots for five subseries:

Figure 3.19: Box plots for five subseries in log scale.

From the Figure 3.19 it can be observed that there is no seasonality with period
d = 5, since all five boxplots have almost identical shape.
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Seasonality with period d = 20

Since the period between two consecutive immunoglobuline therapies is 20 days,
goal of examining this seasonality is to see if therapy influences weight of patient.

In order to check this seasonality, data from 18.11.2013 until 29.08.2016 is di-
vided into twenty subseries with respect to first day of immunoglobulin therapy,
meaning that first subseries contains all first days of therapy, second subseries
contains all second days and so on.

On Figure 3.20 are shown box plots for twenty subseries:

Figure 3.20: Box plots for twenty subseries in log scale: verical line is median
of data from 18.11.2013 until 29.08.2016.

From the Figure 3.20 we can conclude that there is no also seasonality with
period d = 20.
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3.5 Analysis of blood pressure and heart beat

In this section we fit Autoregressive Integrated Moving Average (ARIMA) mod-
els to the time series for the patient’s diastolic and systolic blood pressure and
for patient’s heart beat. Analysis in this section follows the same steps as anal-
ysis in Section 3.2.

3.5.1 ARIMA model for heart beat rate

Time series for heart rate (HR) of the patient is shown in Figure 3.21.

Figure 3.21: Heart beat rate time series.

The best model among all possible with d = 1 is ARIMA(2, 1, 4)and its AIC
value is 6970.23; the fitted plot for this model is represented in Figure 3.22:
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Figure 3.22: Red line represents heart rate time series: blue line is the fit of
ARIMA(2, 1, 4) model.

As far as the analysis of residual correlation:
Ljung-Box test gave as result p-value=0.9536, large p-value in the test suggests
that all autocorrelation functions are zero, meaning that we can conclude that
there is no evidence for non-zero autocorrelation in the estimated residuals for
ARIMA(2, 1, 4) model.

ACF and PACF plots are shown in Figure 3.23:

Figure 3.23: ACF and PACF of estimated residuals for ARIMA(2, 1, 4) model.

From the ACF and PACF plots in Figure 3.23 it is evident that there is no
autocorrelation in the forecast residuals in the fitted ARIMA(2, 1, 4) model.
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The best model among all possible with d = 2 is ARIMA(5, 2, 0) and its AIC
value is 7319.01; the fitted plot for this model is represented in Figure 3.24:

Figure 3.24: Red line represents heart rate time series: blue line is the fit of
ARIMA(5, 2, 0) model.

As far as the analysis of residual correlation:
Ljung-Box test gave as result small p-value, which tells us that it can be assumed
that the estimred error terms from ARIMA(5, 2, 0) model are dependent. To be
sure about this, we will plot ACF and PACF of residuals. Figure 3.25 represents
ACF and PACF plots of estimated residuals for ARIMA(5, 2, 0) model.

Figure 3.25: ACF and PACF of estimated residuals for ARIMA(5, 2, 0) model.

By looking at Figure 3.25 seems that the residuals are correlated.
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3.5.2 ARIMA model for systolic blood pressure

Time series for systolic blood pressure (SBP) of the patient is shown in Figure
3.26.

Figure 3.26: Systolic blood pressure time series.

The best model among all possible with d = 1 is ARIMA(4, 1, 3) and its AIC
value is 7446.87; the fitted plot for this model is represented in Figure 3.27:

Figure 3.27: Red line represents systolic blood pressure time series: blue line is
the fit of ARIMA(4, 1, 3) model.
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As far as analysis of estimated errors:
Ljung-Box test gave as the result p-value=0.9438, which tells us that it can not
be assumed that estimated residuals for ARIMA(4, 1, 3) model are dependent.
This is confirmed by the ACF and PACF plots of residuals autocorrelation. ACF
and PACF plots of residuals for ARIMA(4, 1, 3) model are shown in Figure 3.28.

Figure 3.28: ACF and PACF of estimated residuals for ARIMA(4, 1, 3) model.

The best model among all possible with d = 2 is ARIMA(1, 2, 2) and its AIC
value is 7479.16; the fitted plot for this model is represented in Figure 3.29:

Figure 3.29: Red line represents systolic blood pressure time series: blue line is
the fit of ARIMA(1, 2, 2) model.
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Moving to analysis of residuals correlation: Ljung-Box test gave as result p-
value=0.661, which tells that it can not be assumed that estimated residuals for
ARIMA(1, 2, 2) model are dependent.
Figure 3.30 represents ACF and PACF plots of estimated residuals forARIMA(1, 2, 2)
model.

Figure 3.30: ACF and PACF of estimated residuals for ARIMA(4, 1, 3) model.

From Figure 3.30 we conclude that the forecast errors are uncorrelated.
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3.5.3 ARIMA model for diastolic blood pressure

Time series for diastolic blood pressure of the patient is shown in Figure 3.31.

Figure 3.31: Diastolic blood pressure time series.

The best model among all possible with d = 1 is ARIMA(1, 1, 2) and its AIC
value is 6765.2.

As far as the residuals correlation: Ljung-Box test gave as result p-value=0.9776,
which tell us that there is no evidence for non-zero autocorrelation in the es-
timated residuals for ARIMA(1, 1, 2) model. From ACF and PACF plots of
errors, shown in Figure 3.32, we can confirm that residuals are not dependent.
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Figure 3.32: ACF and PACF of estimated residuals for ARIMA(1, 1, 2) model.

The best model among all possible with d = 1 is ARIMA(5, 2, 0) and its AIC
value is 7174.61.

Moving to the residuals correlation: Ljung-Box test gave as result p-value=0.009552,
small p-value suggests that it can be assumed thet the estimated residuals of
ARIMA(5, 2, 0) model are correlated.

ACF and PACF plot are displayed in Figure 3.33:

Figure 3.33: ACF and PACF of estimated residuals for ARIMA(5, 2, 0) model.

Looking at Figure 3.33 it can be concluded that residuals for ARIMA(5, 2, 0)
model are dependent.
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3.5.4 Desriptive analysis of blood pressure and heart beat

The goal of analysis in this section is to see if there are big changes in blood
pressure and heart beat rate on the day of crisis comparing to the day before
and day after the crisis.

Figure 3.34: Left figure: boxplots of systolic blood pressure; right figure: box-
plots of diastolic blood pressure.

Figure 3.35: Boxplots of heart beat rate
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From the boxplots in Figure 3.34 and Figure 3.35 we can see that the systolic
and diastolic pressure are decreasing during crisis days, while heart beat rate is
increasing.
Average decrease of the systolic pressure from day before crisis to day of crisis
is equal to 23, while from two days before crisis to crisis day SBP decreases in
average for 28.25.
Average decrease of the diastolic pressure from day before crisis to day of crisis
is equal to 10, while from two days before crisis to crisis day SBP decreases in
average for 12.
Average increase of heart beat from day before crisis to day of crisis is equal to
26, while from two days before crisis to crisis day HR increases in average for
29.5.
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3.5.5 Conclusion

Table 3.3 summarises the result obtained in this section for each of the fitted
ARIMA model in our three time series.

ARIMA AIC Ljung-Box

HR
ARIMA(2, 1, 4) 6970.23 0.9536
ARIMA(5, 2, 0) 7319.01 6.396×10−5

SBP
ARIMA(4, 1, 3) 7446.87 0.9438
ARIMA(1, 2, 2) 7479.16 0.661

DBP
ARIMA(1, 1, 2) 6765. 0.9776
ARIMA(5, 2, 0) 7174.61 0.009552

Table 3.3: Table of results

The best fit model is selected based on Akaike Information Criterion (AIC)
value. The ideq is to choose a model with minimum AIC value. In Table 3.3
are displayed AIC values for models, as well as p-values of Ljung-Box test for
correlation of estimated residuals for each model.

In addition, the best model that we get for the heart rate is ARIMA(2, 1, 4),
since for its residuals we have stronger evidence for stationarity and the smaller
AIC value.
As for blood pressure series, we can clearly observe in the table above that the
lowest AIC values are for ARIMA(4, 1, 3) for systolic blood pressure time series
and for ARIMA(1, 1, 2) for diastolic blood pressure. Another thing we can vali-
date by looking at p-values of Ljung-box test that the forecast errors of this two
models are not correlated and hence this two models can be the best predictive
models for making forecasts of the systolic and diastolic blood pressure time
series.
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3.6 Analysis of data collected in hospital

In this section we will use data set with information about the patient collected
in hospital during the crisis periods. This data set contains levels of hemoglobin,
hematocrit and neutrophils in patient’s blood in times when he was hospital-
ized, but also weight during these days, and other information.

Another thing that is done in this part is the descriptive analysis of hemoglobin,
hematocrit and neutrophils. The goal is to see if there are big changes in their
level in blood on the day of crisis comparing to the other days, but mostly to
the day before and day after the crisis.

3.6.1 Descriptive statistics

Medical information about normal ranges of hemoglobin, hematocrit and neu-
trophils used in this subsection are taken from MedicineNet.

Hemoglobin

Hemoglobin is the protein molecule in red blood cells that carries oxygen from
the lungs to the body’s tissues and returns carbon dioxide from the tissues back
to the lungs.

The hemoglobin level is expressed as the amount of hemoglobin in grams (gm)
per decilitre (dL) of whole blood, a decilitre being 100 milliliters.

The normal range for hemoglobin depend on the age and the gender of the
person. The normal ranges for men after middle age: 12.4 to 14.9 gm/dL.

Table 3.4 reports minimum, maximum, average and standard deviation of
the level of hemoglobin in the blood of our patient on the days before crisis,
crisis day and days after crisis.

Period MIN MAX AVERAGE STAN DEV
Day before crisis 8.8 14.5 12.12 1.98

Crisis day 15.2 22.4 18.8 2.16
Day after crisis 10.3 20.9 15.24 3.75

Table 3.4: Table of descriptive statistics for hemoglobin
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Looking at minimum and maximum for both crisis days and not crisis days,
we can observe that hemoglobin level of our patient differs from normal level
of hemoglobin, it goes below but also above its normality. This conclusion is
expected, since the state of our patient implies both losing or getting plasma.
Another thing that we can notice from Table 3.4 is that during the crisis days
level of hemoglobin is higher. This statement is tautological, given the expla-
nation of how a crisis is defined, given before. To be sure of this observation
we will check the boxplots of days before crisis, days after crisis and crisis days
that are shown in Figure 3.36.

Figure 3.36: Boxplot of hemoglobin levels during days before crisis, days after
crisis and crisis days

From the boxplots in Figure 3.36 we can see that the level of hemoglobin of the
patient the day before crisis is inside the hemoglobin normal range and that
during the days after crisis it can go above the normal range. As for the crisis
days, the data confirm that there is a relevant increase of the hemoglobin level
during attacks.
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Hematocrit

The hematocrit blood test determines the percentage of red blood cells (RBC’s)
in the blood. Blood is composed mainly of red blood cells and white blood
cells suspended in an almost clear fluid called serum. The hematocrit test in-
dicates the percentage of blood by volume that is composed of red blood cells.
Since hemoglobin is the protein molecule in red blood cells, hematocrit and
hemoglobin levels are strictly correlated and so we expect same observations as
above.

Normal values for the hematocrit test vary according to age, sex, pregnancy,
altitude where people live, and even vary slightly between various testing meth-
ods. The following are reported ranges of normal hematocrit levels for males:
42%− 54%.

Table 3.5 reports minimum, maximum, average and standard deviation of level
of hematrocit in blood of our patient crisis on the days before crisis, crisis day
and days after crisis.

Period MIN MAX AVERAGE STAN DEV
Day before crisis 25.8 44.3 37.34 6.88

Crisis day 44.5 65.9 55.4 6.23
Day after crisis 32.4 61.1 46.34 10.21

Table 3.5: Table of descriptive statistics for hematrocit

As for hemoglobin, if we look at minimum and maximum for both crisis days
and not crisis days, we can observe that hematrocit level of our patient differs
from the normal level of healthy person, it goes below but also above its nor-
mality.

From Table 3.5 we find that during crisis days level of hematrocit is higher
than general. Again, to be sure of this observation we will check boxplots of
days before crisis, days after crisis and crisis days which are represented in
Figure 3.37.
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Figure 3.37: Boxplot of hemtrocit levels during days before crisis, days after
crisis and crisis days

From Figure 3.37 we see that during days before crisis level of hematrocit is
lower than normal range of hematocrit, also it can be confirmed that hema-
trocit level in blood is higher for crisis days than during periods without crisis.

Neutrophils

Neutrophils are a type of white blood cell. In fact, most of the white blood cells
that lead the immune system’s response are neutrophils. There are four other
types of white blood cells. Neutrophils are the most plentiful type.

White blood cells produce chemicals that fight antigens by going to the source
of the infection or inflammation.

Neutrophils are important because, unlike some of the other white blood cells,
they are not limited to a specific area of circulation. They can move freely
through the walls of veins and into the body tissues to immediately attack all
antigens.

Normal neutrophils percentage level is 55% − 70% of white blood cells, while
for the absolute neutrophil count the reference range in adults varies by study,
but 1500 to 8000 cells per microliter is typical. We study both percentage level
and absolute count of neutrophils of our patient.
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Table 3.6 and Table 3.7 show minimum, maximum, average and standard de-
viation of percentage level and absolute count of neutrophils in blood of our
patient during the days before crisis, crisis day and days after crisis.

Period MIN MAX AVERAGE STAN DEV
Day before crisis 49.5606 77.2627 67.2790 10.2063

Crisis day 57.1010 89.0444 76.4884 9.9923
Day after crisis 47.4255 87.4812 73.0185 13.0615

Table 3.6: Table of descriptive statistics for percentage level of neutrophils

Period MIN MAX AVERAGE STAN DEV
Day before crisis 2.8 13.3 6.4 3.925

Crisis day 3.9 26.09 14.961 7.462
Day after crisis 3.5 31.83 15.656 9.097

Table 3.7: Table of descriptive statistics for absolute count of neutrophils

Also for neutrophils, if we look at minimums and maximums in Table 3.6 and
Table 3.7 for both crisis days and not crisis days, we can observe that neu-
trophil level of our patient differs from normal level of healthy person, it goes
much more above its normality.

From Table 3.6 it seems that during crisis days percentage level of neutrophils
is higher than the days before crisis. While as from Table 3.7 for absolute count
it can be observed that it is much lower in the day before crisis than in days of
crisis and days after crisis. Again, to be sure of this observation we will check
box plots of days before crisis, days after crisis and crisis days.
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Figure 3.38: Boxplot of neutrophils levels during days before crisis, days after
crisis and crisis days

Figure 3.39: Boxplot of absolute count of neutrophils during days before crisis,
days after crisis and crisis days

Looking the boxplots in Figure 3.38 and Figure 3.39 we can confirm that there
is gtowth between neutrophils percentage levels during crisis days and during
days before crisis in both percentage and absolute level of neutrophils. Another
thing we can notice is that during crisis days and days after crisis, both levels
of neutrophils are above their normal level range.
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Weight

As for levels of hemoglobin, hematocrit and neutrophils in patient’s blood, we
will also compute descriptive statistics for the weight of the patient during the
days before crisis, days after crisis and crisis days in order to check if crisis
effects patient’s body weight.

In Table 3.8 are presented minimum, maximum, average and standard devi-
ation of level of hemoglobin in blood of our patient.

Period MIN MAX AVERAGE STAN DEV
Crisis day 60.5 69.4 65.7 2.37

Day before crisis 58.5 67.2 63.7 3.3
Day after crisis 61.2 71.8 66.4 3.2

Table 3.8: Table of descriptive statistics for the body weight of the patient

It can be observed from Table 3.8 that weight of patient grows during crisis
days comparing to days before crisis. To be sure about this observation we will
check the boxplots of days before crisis, days after crisis and crisis days which
are shown in Figure 3.40.

Figure 3.40: Boxplots of the body weight days before crisis, days after crisis and
crisis days

From boxplots in Figure 3.40 we can notice difference between weight of patient
during days before crisis and during other days (both crisis days and days after
crisis), but most important during crisis days. Measurements confirm that dur-
ing crisis days patient gains weight.
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If we compare body weights between crisis days and days after crisis, it can be
said that weight continuous to grows up to plus 1kg.

3.6.2 Fitting ARIMA model to full weight time series

We recall that in the analysis obtained in Section 3.4.1 there were 48 missing
observation on body weight because patient was admitted to the hospital. Now
we join the body weight data from hospital to the time series analuyed in section
3.4.1 (from 18.11.2013 until 31.08.2016). Now there are no missing data in the
body weight.

Our goal now is to find the best ARIMA model for newly obtained data and
compare it with results we got in Section 3.4.1 in order to check if NA values
influence analysis.

The best model among all possible with d = 1 is ARIMA(4, 1, 5) and its AIC
value is -6328.24, the fitted plot for this model is represented in Figure 3.41:

Figure 3.41: Red line represents new weight time series in log scale: blue line is
the fit of ARIMA(4, 1, 5) model.

As far as analysis of residuals correlation:
Ljung-Box test gave as result p-value=0.9709, which tells us that it can not be
assumed that estimated residuals are dependent.
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ACF and PACF plots of estimated residual for ARIMA(4, 1, 5) model are shown
in Figure 3.42:

Figure 3.42: ACF and PACF of residuals for model ARIMA(4, 1, 5).

From Figure 3.42 we can conclude that there is no significant autocorrelation
between residuals for model ARIMA(4, 1, 5).
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The best model among all possible with d = 2 is ARIMA(5, 2, 0) and its AIC
value is -6035.49, the fitted plot for this model is represented in Figure 3.43:

Figure 3.43: Red line represents new weight time series in log scale: blue line is
fit of ARIMA(5, 2, 0) model.

Moving to analysis of residuals correlation:
Ljung-Box test gave as result p-value=0.005792, which tells us that it can be
assumed that estimated residuals of ARIMA(5, 2, 0) are dependent. To investi-
gate further wether there are correlation between successive estimated errors, we
will observe ACF and PACF plots. ACF and PACF plots of estimated residuals
are shown in Figure 3.44.
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Figure 3.44: ACF and PACF of residuals for model ARIMA(5,2,0).

From Figure 3.44 can be observed that the residuals are correlated.

If we compare AIC values and p-values ofARIMA(4, 1, 5) model andARIMA(5, 2, 0)
model we get that the best model for weight time series in period from 18.11.2013
until 31.08.2016 is ARIMA(4, 1, 5) since its AIC value is smaller. In Section
3.4.7 we have that the best model for the weight time series in the same period
is ARIMA(4, 1, 0), considering this, we will fit also this model to the complete
weight time series. The AIC value of this model is −6310.6, its fitted plot is
represented in the Figure 3.45.
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Figure 3.45: Red line represents new weight time series in log scale: blue line is
fit of ARIMA(4, 1, 0) model.

As far as analysis of residuals correlation:
P -value of Ljung-Box test is 0.4784, which tells that it can not be assumed that
estimated residuals are correlated.

ACF and PACF plots of residuals of ARIMA(4, 1, 0) model are shown in Figure
3.46:

Figure 3.46: ACF and PACF of residuals for model ARIMA(4,1,0).

From Figure 3.46 we can conclude that there is no significant autocorrelation
between residuals for model ARIMA(4, 1, 0).

70



F
ig

u
re

3.
47

:
R

ed
li

n
e

re
p

re
se

n
ts

n
ew

w
ei

gh
t

ti
m

e
se

ri
es

in
lo

g
sc

a
le

:
b

lu
e

li
n

e
is

fi
t

o
f
A
R
I
M
A

(4
,1
,0

)
m

o
d

el
a
n

d
ci

rc
le

s
a
re

m
is

si
n

g
va

lu
es

fr
om

S
ec

ti
o
n

3.
4.

1

71



3.6.3 Conclusion

From analysis obtained in Section 3.7.1 we see that by measuring every day the
level of hemoglobin, neutrophils and hematrocit in patient’s blood, it is possible
to predict crisis; if increasing in their level is noticed, it can be assumed that
the attack is coming to happen. Aapart from the hemoglobin, neutrophils and
hematrocit levels, there are other features in the patient’s data, as pressure and
heart rate, that allow us to assess that there is an attack.
As for weight concerns, it can be confirmed that weight grows during crisis days,
but for better understanding relationship between body weight and crisis, we
should examine the change in weight at least two days before crisis, not only
one. In Figure 3.48 are shown boxplots of the body weight of two days before
crisis, days before crisis, crisis days and days after crisis.

Figure 3.48: Boxplots of the body weight two days before crisis, days before
crisis, crisis days and days after crisis.

From Figure 3.48 we notice that boxplots of the body weight two days before
crisis and day before crisis have almost the same shape and we can confirm
already observed, that during crisis days patients’s weight increases.

Finally, Table 3.9 summarises the result obtained in Section 3.7.2.

ARIMA AIC Ljun-Box
ARIMA(4,1,5) -6328.24 0.9709
ARIMA(5,2,0) -6035.49 0.005792
ARIMA(4,1,0) -6310.6 0.4784

Table 3.9: Table of results from Section 3.7.2
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In this study, the ARIMA(4, 1, 0) was the best candidate model selected for
forecasting the body weight time series from 18.11.2013 until 31.8.2016 since
the difference between its AIC value and AIC value of ARIMA(4, 1, 0) is small
and the sucessive residuals in ARIMA(4, 1, 0) are not correlated and since
ARIMA(4, 1, 0) model has less parameter to estimate.
Hence we can coclude that the selected ARIMA(4, 1, 0) model seem to provide
an adequate predictive model for the body weight time series from 18.11.2013
until 31.08.2016, meaning that weight at time t can be estimated by weights
measured in previous five days, i.e. weights at times t−1, t−2, t−3, t−4, t−5.
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Chapter 4

Bayesian regression models
for the body weight and for
the indicator of crisis

In this chapter the goal is to find regression models for the time series of the
body weight and the indicator of a crisis. As covariates, we us diastolic blood
pressure (DBP) and systolic blood pressure (SBP), heart rate (HR) and the
indicator of crisis (= 1 if at day t crisis occured or = 0 otherwise). To do this, it
will be used Bayesian statistics, more precisely we will use bsts R package and
its bsts function. The first thing to do when fitting a bsts model is to specify
the contents of the latent state vector αt. The bsts package offers a library of
state models, which are included by adding them to a state specification (which
is just a list with a particular format). The state specification is passed as an
argument to bsts, along with the data and the desired number of MCMC iter-
ations. The model is fitted using an MCMC algorithm. The returned object is
a list (with class attribute ”bsts”).

4.1 Regression models for the body weight

Data included also a variable denoting increasing levels of crisis, from 0 to 4,
where

0 stands for no crisis,

1 stands for crisis without resorting in hospital,
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2 stands for crisis with hospitalization and infusion of liquids but not of va-
soactive amines,

3 stands for crisis with hospitalization and infusion of both liquids and va-
soactive amines

4 stands for crisis with death danger.

As we seek an algorithm to predict if next crisis would necessitate hospitaliza-
tion or not, in our dataset five increasing levels of crisis from 0 to 4 have been
simplified. Here we decided to distinguish only two levels ”0” which represents
no crisis and crisis without hospitalization (0 and 1 from our dataset), and ”1”
which represents other three levels, when patient was hospitalized.

4.1.1 Model with only Local Level Trend for weight time
series

Let us fit a bsts model with just the linear trend. The first thing to do when
fitting a bsts model is to specify the contents of the latent state vector µt. The
bsts package offers a library of state models, which are included by adding them
to a state specification (which is just a list with a particular format). The state
specification is passed as an argument to bsts, along with the data and the
desired number of MCMC iterations. We recall that the local level trend model
is:

yt = µt + εt, t = 1, 2, . . . (4.1)

µt+1 = µt + ηt (4.2)

µ1 ∼ N(µ, σ2
1) (4.3)

εt
iid∼ N(0, σ2), ηt

iid∼ N(0, τ2) t = 1, 2, . . . (4.4)

Function AddLocalLevel adds a local level trend state component to an empty
state specification. This function contains arguments:

• Sigma.prior : An object created by SdPrior function describing the prior
distribution for the standard deviation of ηt.

• Initial.state.value: An object created using NormalPrior function, de-
scribing the prior distribution of the the µ1.
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SdPrior function specifies an Inverse Gamma prior for a variance parameter,
but inputs are defined in terms of a standard deviation. It contains the following
arguments:

• Sigma.guess: A prior guess at the value of standard deviation.

• Sample.size: The weight given to sigma.guess.

This puts a Gamma(α, β) prior on 1/σ2:

• Shape(α)= sigma.guess2 × sample.size/2

• Scale(β)= sample.size/2

NormalPrior function specifies a Normal(µ, σ2) prior on µ1. Its arguments are:

• Mu(µ): the mean of prior distribution

• Sigma(σ1): the standard deviation of prior distribution

• Initial.value: the initial value of parameter being modeled in the MCMC
algorithm.

There are several plot methods available. The default plot method plots the
credible interval of model state, of µt against time t. Figure 4.1 and 4.2 show
the estimated local level trend, where blue circles in Figure 4.1 represent orig-
inal data of the body weight time series. Other plot methods can be accessed
by passing a string to the plot function. For example, to see the contributions
of the individual state components, pass the string ”components” as a second
argument.
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Figure 4.1: Local Level Trend model for weight time series

Figure 4.2: Trend for weight time series

Now, as far as the convergence, since bsts function returns a bsts object that
contains several MCMC and an MCMC creates a sample from the posterior
distribution, we usually want to know whether this sample is sufficiently close
to the posterior to be used for analysis. There are several standard ways to
check this, but I used the traceplot and the Gelman-Rubin diagnostic that eval-
uates MCMC convergence by analysing the difference between multiple Markov
chains. The trace plot shows the sampled values of a parameter over time. This
plot helps us to judge how quickly the MCMC procedure converges in distri-
bution, that is, how quickly it forgets its starting values. Gelman and Rubin
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propose a convergence test based on 2 or more parallel chains. Their method
is based on a comparison of the within and between chain variances for each
variable. Large differences between these variances indicate nonconvergence.
See Gelman and Rubin [1992] for the detailed description of the method.

Gelman diagnostics is contained in coda R package, the function name is gel-
man.plot. The trace plots of the variance of εt and of ηt are shown in Figure
4.3, whereas in Figure 4.4 are their Gelman plots.

Figure 4.3: Trace plot for Local Level Trend model

Figure 4.4: Gelman plot for Local Level Trend model

Figure 4.3 and Figure 4.4 suggest that the MCMC chains have reached conver-
gence.
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4.1.2 Model with Local Level Trend and AR(5) for weight
time series

The analysis in Section 3.7.2 suggests that the best model for the body weight
time series in period from 18.11.2013 until 31.08.2016 is ARIMA(4, 1, 0), hence
AR(5) model is added to the local level trend:

yt = α0,t + α1,tyt−1 + · · ·+ α5,tyt−5 + εt, t = 1, 2, . . . (4.5)

αi,t+1 = αi,t + ηt (4.6)

εt ∼ N(0, σ2
ε), ηt ∼ N(0, σ2

η) (4.7)

Figures 4.5 and 4.6 show the estimated local level trend with AR(5), where the
traceplots of variance of εt and variance of ηt in Figure 4.7 and their Gelman
plots in Figure 4.8 suggest that the MCMC chains are converging.

Figure 4.5: Local Level Trend with AR(5) model for weight time series
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Figure 4.6: Components of model

Figure 4.7: Trace plot for Local Level Trend with AR(5) model
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Figure 4.8: Gelman plot for Local Level Trend with AR(5) model

Gelman plots of AR(5) coefficients in Figure 4.9 are indicating that also coeffi-
cients are converging.

Figure 4.9: Gelman plot for coefficients of AR(5) model
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4.1.3 Local Level Trend with AR(5) and linear regression
for weight time series

Our main task is to find regression model for weight time series depending on
SDP and DBP, heart beat and on whether day t was the crisis day, the day before
crisis, the day after crisis or otherwise. Model representation is the following:
yt = α0,t +

∑5
i=1 αi,tyt−i + aSBPt + bDBPt + cHRt + dDayIndt + εt,

αi,t+1 = αi,t + ηt

εt ∼ N(0, σ2
ε), ηt ∼ N(0, σ2

η)

t = 1, 2, . . .

(4.8)

where DBPt represents diastolic pressure at time t, SBPt is systolic pressure
at time t, HRt is heart rate at time t and DayIndt is categorical time series
equal to ”c” if day t was crisis day, equal to ”b” if day t was day before crisis,
equal to ”a” if day t was day after crisis and equal to ”o” otherwise.

Summary of the estimates of the parameters in (4.7) is in Table 4.1.

mean sd mean.inc sd.inc inc.prob
HR 0.01 0.00 0.01 0.00 1.00

DBP -0.01 0.00 -0.01 0.00 0.97
SBP -0.00 0.00 -0.01 0.00 0.10

DayIndc -0.01 0.05 -0.31 0.14 0.02
DayIndo -0.00 0.02 -0.15 0.15 0.01
DayIndb -0.00 0.00 -0.08 0.11 0.00

(Intercept) 0.00 0.00 0.00 0.00 0.00

Table 4.1: Posterior estimates of the regression coefficients

The last column in Table 4.1, inc.prob, is the probability that shows how much
important is variable for regression; the smaller it is the less significant the
variable is. With respect to this we can observe that DayInd can be removed.
Also maximum pressure has a small probability with respect to minimum pres-
sure and heart beat. Since minimum and maximum pressure are correlated(
cor(mass,min) = 0.641311) it is expected that only one of this two features is
relevant for regression model for the body weight time series.
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Considering previous results, we will fit model with minimum blood pressure
and heart beat as only covariates. Summary of reduced model is shown in Table
4.2.

mean sd mean.inc sd.inc inc.prob
HR 0.01 0.00 0.01 0.00 1.00

DBP -0.01 0.00 -0.01 0.00 1.00
(Intercept) 0.00 0.00 0.00 0.00 0.00

Table 4.2: Posterior estimates of the regression coefficients of reduced model

From Table 4.2 we see that for both covariates inc.prob = 1, meaning that they
are important for predicting body weight.

As fas as AR(5) coefficients in (4.7) , Table 4.3 reports their posterior esti-
mates.

Mean SD
α1 1.13 0.21
α2 -0.70 0.28
α3 -0.17 0.27
α4 0.29 0.25
α5 -0.06 0.20

Table 4.3: Posterior estimates of AR(5) coefficients

For checking convergence ofAR(5) coefficients it is used Geweke method. Geweke
proposes a convergence diagnostic based on standard time series methods. The
test is appropriate for use with single chains when convergence of the mean of
the sampled variables is of interest. For each variable, the chain is divided into
2 ”windows” containing the first 10% and the last 50% of the iterates. If the
whole chain is stationary, the means of the values early and late in the sequence
should be similar.
Its convergence diagnostic Z is the difference between these 2 means divided by
the asymptotic standard error of their difference. As the chain length goes to
infinity, the sampling distribution of Z ∼ N(0, 1) if the chain has converged.
Hence values of Z which fall in the extreme of tails of a standard normal distri-
bution suggest that the chain was not fully converging early on (i.e. during the
1st window).
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From the Geweke diagnostic of AR(5) coefficients, that is shown in Table 4.4,
it can be concluded that the chains are converging.

var1 var2 var3 var4 var5
0.9962343 -1.2693594 1.9515477 -1.4228130 0.3131044

Table 4.4: Gewek diagnostic of AR(5) coefficients

Geweke plot shows what happens to Geweke’s Z-score when successively larger
numbers of iterations are discarded from the beginning of the chain. The first
half of the Markov chain is divided into nbins− 1 segments, then Geweke’s Z-
score is repeatedly calculated. The first Z-score is calculated with all iterations
in the chain, the second after discarding the first segment, the third after dis-
carding the first two segments, and so on. The last Z-score is calculated using
only the samples in the second half of the chain.
Geweke plots for AR(5) coefficients can be seen in Figure 4.10.

Figure 4.10: Geweke plots for AR(5) coefficients
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4.2 Regression for crisis indicator

Now we look for a Bayesian regression model where response is ”crisis”, the bi-
nary time series we have introduced in Section 4.1, i.e. crisist = 1 if patient was
hospitalized at time t and 0 otherwise. Our goal now is to estimate regression
model of type:{

crisist = ayt + bSBPt + cDBPt + dHRt + intercept+ εt

εt ∼ N(0, σ2
ε)

(4.9)

where yt is weight time series, SBPt represents systolic pressure, DBPt is dias-
tolic pressure, HRt is heart rate and intercept is a constant.

Posterior estimates are shown in Table 4.5.

mean sd mean.inc sd.inc inc.prob
DBP -0.00 0.00 -0.00 0.00 0.19

y -0.00 0.00 -0.00 0.00 0.09
HR 0.00 0.00 0.00 0.00 0.02
SBP -0.00 0.00 -0.00 0.00 0.02

(Intercept) 0.00 0.00 0.00 0.00 0.00

Table 4.5: Posterior estimatets of regression coefficients in (4.9)

From the last column in Table 4.5 we conclude that maximum pressure and
heart beat can be removed. Summary of Model without maximum pressure and
heart beat is shown in Table 4.6.

mean sd mean.inc sd.inc inc.prob
y -0.00 0.00 -0.00 0.00 0.23

DBP 0.00 0.00 0.00 0.00 0.21
(Intercept) 0.00 0.00 0.00 0.00 0.00

Table 4.6: Posterior estimates of regression coefficients of reduced model

Looking at Table 4.6 we can say that minimum pressure and weight influence on
crisis. Descriptive statistics of coefficients for model with weight and minimum
pressure as covariates are represented in Table 4.7.
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(Intercept) y min
1 Min. :0 Min. :-0.003931 Min. :-0.0006352
2 1st Qu.:0 1st Qu.: 0.000000 1st Qu.: 0.0000000
3 Median :0 Median : 0.000000 Median : 0.0000000
4 Mean :0 Mean :-0.000100 Mean : 0.0000913
5 3rd Qu.:0 3rd Qu.: 0.000000 3rd Qu.: 0.0000000
6 Max. :0 Max. : 0.002411 Max. : 0.0019196

Table 4.7: Descriptive statistics of coefficients for reduced model

4.3 Conclusion

In this study, the Bayesian statistic was used in order to find the best regression
models for the body weight time series and for crisis indicator time series. The
reason for using it is its possibility to combine AR models and linear regression
in one model and its capabilities to fit regression models where output is binary
time series.

Since in Section 3.7.2 we got that ARIMA(4, 1, 0) can be the best model for
the the body weight time series in period from 18.11.2013 until 31.08.2106, in
this section for this time series we fitted AR(5) model adding some regression
models to it. As the result we got that the best model for the body weight in
this period is:

yt = 1.13×yt−1−0.7×yt−2−0.17×yt−3+0.29×yt−4−0.06yt−5−0.01×DBPt+0.01×HRt+εt

As fas as crisis indicator, the study showed that diastolic pressure and body
weight have influence on it.
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Chapter 5

Conclusions and further
developments

In Section 3 we fitted ARIMA models to the time series of the body weight
in three different time periods, the first is from 16.10.2013 until 17.11.2013, the
second is from 18.11.2013 until 31.08.2016 and the third is from 01.09.2016 until
20.06.2017. For the first subseries the best model shows to be ARIMA(0, 2, 0),
which can be expressed as:

Yt − 2Yt−1 + Yt−2 = εt

As for second and third subesries, we can observe that the best models are
ARIMA(4, 1, 0) and ARIMA(4, 1, 2), retrospectively. The models are given by:

• ARIMA(4, 1, 0) :

(1 + 0.0203B1 + 0.2871B2 + 0.3769B3 + 0.2643B4)(Yt − Yt−1) = εt

• ARIMA(4, 1, 2):

(1−0.3821B1−0.1047B2+0.2064B3−0.3647B4)(Yt−Yt−1) = εt−0.3164εt−1−0.5454εt−2

where Yt is the body weight of the patient at time t, εt are independent, iden-
tically distributed variables, with zero mean and equal variance and B is lag
operator, meaning:

BYt = Yt−1, BkYt = Yt−k

89



From this three models, we can observe that there is difference between the
body weight in first period and the second two. The model for the first period
suggests that the body weight at time t depends on the body weights in pre-
vious two days, i.e. at time t − 1 and t − 2, while the models for the second
and third period suggest that the body weight in day t depends on previous five
days; days t − 1, t − 2, t − 3, t − 4 and t − 5. We can assume that the reason
for this change in the body weight is immune globulin (IG) therapy since in the
second period the patient was having monthly infusions of immune globulin.
According to this models and analysis done in Section 3.4 we can conclude that
there are no differences between the second and third phase, i.e. the patient’s
body weight does not change after ending with immune globulin therapy.
Pineton de Chambrun M., Gousseff M., Mauhin W. found study published in
2017 that preventive treatment with IG was the strongest factor associated with
survival in people with SCLS. As far as our patient, looking at the available data
we notice that in third period the attacks do not occur, we can suppose that
this therapy had strong effect also on our patient, but we can not assume that
attacks totally stopped since we do not have information from 20.06.2017 until
now.

From analysis in Section 3.5 we obtained the best ARIMA models for the time
series for the patient’s diastolic and systolic blood pressure and for patient’s
heart beat.
The best model that we got for the heart rate is ARIMA(2, 1, 4). As for blood
pressure series, we observed that the best models are ARIMA(4, 1, 3) for sys-
tolic blood pressure time series and ARIMA(1, 1, 2) for diastolic blood pressure.
In this section, from descriptive analysis, we also noticed that the systolic and
diastolic pressure decrease from day before crisis to day of crisis, while heart
rate increases.
Average decrease of the systolic pressure from day before crisis to day of crisis is
equal to 23 mmHg, while from two days before crisis to crisis day SBP decreases
in average for 28.25 mmHg.
Average decrease of the diastolic pressure from day before crisis to day of crisis
is equal to 10 mmHg, while from two days before crisis to crisis day DBP de-
creases in average for 12 mmHg.
Average increase of heart rate from day before crisis to day of crisis is equal to
26 bpm, while from two days before crisis to crisis day HR increases in average
for 29.5 bpm.

From analysis obtained in Section 3.7.1 we see that by measuring every day
the level of hemoglobin, neutrophils and hematrocit in patient’s blood, it is pos-
sible to predict crisis. If increase in their level is noticed, it can be assumed that
the attack is coming to happen. Moreover, if we notice the following changes:

• increase in hemoglobin level bigger or equal to 5 gm per dL,

90



• increase in hematrocit level bigger or equal to 15%,

• increase in absolute count of neutrophils bigger or equal to 7 cells per liter,

• increase in percentage level of neutrophils bigger or equal to 9%

take a caution on possible attack and patient should be hospitalized.
Apart from the hemoglobin, neutrophils and hematrocit levels, there are other
features in the patient’s data, as pressure and heart rate, that allow us to assess
that there is an attack. As for weight concerns, it can be confirmed that weight
grows during crisis days. In this study, the ARIMA(4, 1, 0) was the best candi-
date model selected for forecasting the body weight time series from 18.11.2013
until 31.8.2016, and its formula is:

(1 + 0.0354B1 + 0.2779B2 + 0.3817B3 + 0.2700B4)(Yt − Yt−1) = εt (5.1)

where Yt is the body weight at time t.

As the result of Bayesian analysis in Section 5 we got that the best model
for the body weight is:

yt = 1.13×yt−1−0.7×yt−2−0.17×yt−3+0.29×yt−4−0.06yt−5−0.01×DBPt+0.01×HRt+εt

As fas as crisis indicator, the study showed that diastolic pressure and body
weight have influence on it.

In the end, to predict future attack, after all analysis in this study it is suggested
to continue with measuring not only the body weight but also blood pressure
and heart rate every day. If significant changes in their values occur we should
assume that crisis is coming. More specific, if we notice the following changes:

• increase in the body weight bigger or equal to 0.8kg,

• decrease of the systolic pressure bigger or equal to 20 mmHg,

• decrease of the diastolic pressure bigger or equal to 10 mmHg,

• increase of the heart rate bigger or equal to 25 bpm
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we should pay attention and patient should be hospitalized.

In order to keep the patient’s health stable , since by looking at available data
we notice that the length of immune globulin therapy was from three to five days
and since this therapy is said to be the most effective, we propose to use ARIMA
models that we fitted to time series for heart rate, systolic and diastolic blood
pressure and body weight in order to predicting their values for three to five
days in advance, and if we observe variations in estimated values as mentioned
above we can suppose attack in the following days and that patient should be
hospitalized and he should start receive IG therapy .
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