
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Master of Science in Automation and Control Engineering

Implementation and comparison in

local planners for Ackermann vehicles

AI & R Lab
Laboratorio di Intelligenza Artificiale

e Robotica del Politecnico di Milano

Supervisor: Matteo Matteucci
Co-Supervisor: Alessandro Gabrielli

By: Jordi Ferrer Sánchez
ID number: 875932

Academic Year 2017/2018

Contents

Acronyms VII

Abstract IX

Sommario XI

Acknowledgements XIII

1 Introduction 1

2 State of the art 3

2.1 Motion Planning History . 3

2.2 Dynamic Window Approach . 3

2.3 Timed Elastic Band . 7

2.3.1 Cost Function . 8

2.3.2 Homotopy and Homology . 13

2.4 Model Predictive Control . 14

2.5 ROS . 16

2.5.1 Stage . 19

2.5.2 Navigation Stack . 21

2.6 Car-Like Vehicles . 23

3 Local Planners Implementation 27

I

3.1 Implementation Motivations . 27

3.2 Local Planners Frame . 27

3.2.1 Costmap . 28

3.2.2 Path . 29

3.2.3 Odometry . 29

3.2.4 Footprint . 30

3.3 Dynamic Window Approach . 30

3.3.1 Structure . 30

3.4 Timed Elastic Band . 36

3.4.1 Structure . 36

3.5 Model Predictive Control . 41

3.5.1 Structure . 41

4 Results 47

4.1 Environment . 47

4.2 Simulator . 48

4.3 Tests Setup . 49

4.4 Path tracking . 49

4.4.1 Test 1 . 49

4.4.2 Test 2 . 52

4.4.3 Test 3 . 55

4.4.4 TEB with/without homotopy class . 58

4.5 Obstacle avoidance . 60

5 Conclusions and Future Work 61

List of Figures

2.1 Example situation for a mobile robot. 4

2.2 Velocity space. 5

2.3 Dynamic window. 5

2.4 Heading of the robot. 7

2.5 TEB: sequences of configurations and time differences. 8

2.6 Polynomial approximation of constraint. 9

2.7 Minimal distance between TEB and way point or obstacle. 10

2.8 Relationship between configurations on a circle for non-holonomic kinematics. . 12

2.9 Two homotopy classes. 14

2.10 ROS Computation Graph Level. 17

2.11 ROS Communication between Publisher and Suscriber Nodes. 18

2.12 Rviz framework. 19

2.13 TF keeping track of several frames. 20

2.14 Stage simulator. 20

2.15 Navigation Stack node design. 21

2.16 Local costmap. 22

2.17 Sketch of an ackermann based robot. 24

3.1 Inflation values cost. 29

3.2 DWA control flow. 33

3.3 TEB control flow. 38

III

3.4 Control flow of TEB. 40

3.5 Velocity and obstacle objective function formulated as a hyper-graph. 40

3.6 MPC control flow. 43

3.7 Change from World frame to robot frame. 45

3.8 Cross-track error approximation. 45

3.9 Orientation angle error approximation. 46

4.1 Aster environment. 47

4.2 Stage Simulator. 48

4.3 Path to follow in Test 1. 49

4.4 Distance from robot to path in Test 1. 50

4.5 Distance Box plot Test 1. 50

4.6 Time complexity Test 1. 51

4.7 Velocity Commands Test 1. 51

4.8 Path to follow in Test 2. 52

4.9 Distance from robot to path in Test 2. 52

4.10 Distance Box plot Test 2. 53

4.11 Time complexity Test 2. 53

4.12 Velocity Commands Test 2. 54

4.13 Path to follow in Test 3. 55

4.14 Distance from robot to path in Test 3. 55

4.15 Distance Box plot Test 3. 56

4.16 Time complexity Test 3. 56

4.17 Velocity Commands Test 3. 57

4.18 Time complexity Path 1 TEB with/without homotopy class. 58

4.19 Time complexity Path 2 TEB with/without homotopy class. 58

4.20 Time complexity Path 3 TEB with/without homotopy class. 59

4.21 Path to track. 60

4.22 Distance to obstacle. 60

Acronyms

B* Optimal Timed Elastic Band

DWA Dynamic Window Approach

Ipopt Interior Point OPTimizer

MPC Model Predictive Control

ROS Robot Operating System

RViz ROS visualization

TEB Timed Elastic Bands

VII

Abstract

Motion control plays an important role in autonomous navigation. It can be defined as the
compute of motion control inputs for a collision-free path tracking.

To perform the motion control in path planning, a local planner is used. A good local
planner should take into consideration the capabilities of the vehicle (kinematic and dynamic
constraints), in order to compute feasible movements for the robot.

This work is focused on the local planning problem for non-holonomic vehicles in an (x, y, θ)
space. Three local planners using different methods to compute the command velocities are
implemented in the Robot Operating System (ROS) framework, widely used in the robotics
community.

To fulfill our goal, three ROS nodes are created, the first one uses the Dynamic Windows
Approach algorithm to compute the command velocities. The second uses the Timed Elastic
Band algorithm. The third uses the Model Predictive Control algorithm.

To deal with the non-holonomic vehicle constraints, an Ackermann kinematic model is
used.

IX

Sommario

Il controllo del movimento svolge un ruolo importante nella navigazione autonoma, può essere
definito come il calcolo degli input di controllo del movimento per un inseguimento del percorso
senza collisioni.

Per eseguire il controllo del movimento nella pianificazione del percorso, viene utilizzato
un pianificatore locale. Un buon pianificatore locale dovrebbe prendere in considerazione le
capacità del veicolo (vincoli cinematici e dinamici), al fine di calcolare i movimenti fattibili
per il robot.

Questo lavoro è incentrato sul problema di pianificazione locale per veicoli non-olonomici
in uno spazio (x, y, θ). Tre pianificatori locali che utilizzano metodi diversi per calcolare le
velocità di comando sono implementati nel framework Robot Operating System (ROS), oggi
ampiamente utilizzato nella comunità di robotica.

Per raggiungere il nostro obiettivo, vengono creati tre nodi ROS, il primo utilizza l’algoritmo
Dynamic Windows Approach per calcolare le velocità di comando. Il secondo utilizza l’algoritmo
Timed Elastic Band. Il terzo utilizza l’algoritmo Model Predictive Control.

Per affrontare i vincoli non olonomici del veicolo, viene utilizzato un modello cinematico
di Ackermann.

XI

Acknowledgements

First of all, I would like to express my gratitude to my family, for their never ending support.
Without them, this year and half abroad would not have been possible.

To my couple, to be always there no matter what.

To all my new friends, who introduced me into a new culture and made my stay a great
experience. To my old friends, being there no matter the distance.

To my work supervisor, Prof. Matteo Matteucci, to help me everytime I asked and to give
me that opportunity. And last but not least, to Alessandro Gabrielli and Gianluca Bardaro
for all the support during the development of the tesina.

XIII

A mi familia, por su esfuerzo y apoyo incondicional

Chapter 1

Introduction

Autonomous mobile robot navigation is a field that has experienced a huge growth over the

last decades. It plays a vital role in self-driving cars, warehouse robots, personal assistant

robots, etc. Robots are increasingly operating in indoor environments designed for and shared

with people, environment in which it is key for a robot to avoid unexpected obstacles.

In autonomous mobile robot navigation there are three main problems to underline: lo-

cation, path planning and motion control. The first one lies in finding out where the robot is

located in its current environment; The second one is about, given a goal, to perform a path

that allows the robot to reach it; The last one formulation consists in computing the proper

control inputs to be sent to the robot in order to keep tracking of the given path while it

avoids collisions with obstacles.

When talking about path planning, it can be understood as both problems together, to

generate the path and to follow it. So when refered to path planning two parts can be

distinguished: global planner and local planner.

This work focuses on local planners, in particular on the implementation and adapta-

tion of some planners under the Robot Operating System (ROS), for car-like vehicles, more

specifically for Ackermann geometry.

ROS is a framework nowadays widely used by the robotics community. Its main purpose

is to make the development of robot software more flexible. It is a collection of tools, libraries

and conventions used to interact with different robotic platforms performing complex tasks.

The navigation stack of ROS already contains some local planners, as DWA, but it doesn’t

take into account non-holonomic kinematics as Ackermann.

The planning problem, is not only required to generate plans which are collision-free and

feasible, but they might satisfy a constraint in time, length or energy consumption, there the

1

2 Chapter 1. Introduction

need to switch to optimal planners taking into account the vehicle kinematics, and the ones

provided by ROS do not.

In order to solve that problem, this work implements three local planners. Two already

implemented in ROS as Dynamic Window Approach local planner and Timed Elastic Band

local planner and one which is not, Model Predictive Control local Planner.

The thesis consists of 5 chapters, the 4 chapters that follow this introduction are outlined

below

Chapter 2: this chapter discusses the state of the art. It introduces the basic algorithms used

for the local planners and the framework where they are developed. It also introduces

the vehicles these planners are designed for.

Chapter 3: this chapter discusses the implementation of the planners, the structure they

have, how to handle certain variables and the modifications/adjustments done to work

with Ackermann kinematics.

Chapter 4: this chapter contains the different tests performed and the comparisons between

the planners.

Chapter 5: this chapter corresponds to the conclusions and future recommendations.

Chapter 2

State of the art

This chapter shows the state of the art on navigation, starting from motion planning history,

showing the different algorithms implemented and then introducing ROS Navigation Stack.

2.1 Motion Planning History

Path planning research of autonomous mobile robot has attracted attention since the 1970s,

being 1979 the beginning of modern motion planning, when Lozano-Pérez and Wesley [1]

introduced the concept of configuration space (C-space).

On the last past decades, motion planning has become more and more significant since

robots role on industry and also on our daily lives is getting more importance. Many areas of

this problem have been the focus of reaserch and investigation to develop optimal solutions,

such as path planning (i.e. to calculate the path the robot must follow to reach a given goal)

or motion control (i.e. to calculate the control inputs to send the robot in order to follow the

path with free-collision behaviour) by considering robot kinematic and dynamic constraints.

Regarding motion control, and more specifically path motion, many algorithms have been

implemented to keep the path tracking, here we present some of them.

2.2 Dynamic Window Approach

The Dynamic Window Approach (DWA) is an online collision avoidance strategy for mobile

robots developed by Dieter Fox, Wolfram Burgard, and Sebastian Thrun in 1997 [2]. Unlike

other avoidance methods, the dynamic window approach is derived directly from the dynam-

3

4 Chapter 2. State of the art

Figure 2.1: Example situation for a mobile robot.

ics of the robot, and is especially designed to deal with the constraints imposed by limited

velocities and accelerations of the robot.

In a nutshell, the approach considers periodically only a short time interval when com-

puting the next steering command to avoid the enormous complexity of the general motion

planning problem. The approximation of trajectories during such a time interval by circular

curvatures results in a two-dimensional search space of translational and rotational velocities.

This search space is reduced to the admissible velocities allowing the robot to stop safely.

Due to the limited accelerations of the motors a further restriction is imposed on the velocities:

the robot only considers velocities that can be reached within the next time interval. These

velocities form the dynamic window which is centered around the current velocities of the

robot in the velocity space.

Among the admissible velocities within the dynamic window, the combination of transla-

tional and rotational velocity is chosen by maximizing an objective function.

To explain everything in a more understandable way, we consider a robot in the situation

seen in Fig. 2.1. In that situation, the velocity space Vs is generated: possible trajectories

considering the next instant linear and rotational command velocities, represented in Fig.

2.2, where the pairs (v, ω) inside the gray area are forbiden trajectories (robot will collide if

it follows that trajectories), the white area contains the admissible velocities Va.

Considering dist(v, ω) the distance to the closest obstacle on the corresponding curvature,

and v̇b, ẇb the accelerations for breakage, we have Eq. 2.1.

Va = {v, ω | v ≤
√

2 · dist(v, ω) · v̇b ∧ w ≤
√

2 · dist(v, ω) · ẇb} (2.1)

Considering now the velocity space, the robot has a current position (va, ωa) that repre-

2.2. Dynamic Window Approach 5

Figure 2.2: Velocity space.

Figure 2.3: Dynamic window.

sents the actual velocities. The next command velocities sent to the robot must be feasible to

follow considering the dynamic constraints (i.e. the robot accelerations must allow it to reach

the next trajectory in time).

In Fig. 2.3 we see the actual velocity position of the robot, which is the center of the

dynamic window Vd. The dynamic window is generated enlarging the position (va, ωa) by the

robot accelerations and timestep t (Eq. 2.2). All the pairs (v, ω) inside Vd are trajectories

reachable by the robot ”instantly”.

6 Chapter 2. State of the art

Vd = {v, ω | v ∈ [va − v̇ · t, va + v̇ · t] ∧ ω ∈ [ωa − ω̇ · t, ωa + ω̇ · t]} (2.2)

Considering now all the restrictions given above, the set of eligible velocities Vr is the

intersection of the areas:

Vr = Vs ∩ Va ∩ Vd (2.3)

The resulting eligible velocity space is represented by the white area in Fig. 2.3.

The DWA algorithm written in pseudocode:

Algorithm 1 DWA pseudocode

1: function DWA(robotPose, robotGoal, robotModel)
2: laserscan← readScanner()
3: (vallowable, wallowable)← generateWindow(robotV W, robotModel)
4: for (each v in vallowable) do
5: for (each w in wallowable) do
6: dist← findDist(v, w, laserscan, robotModel)
7: breakDist← calculateBreakingDistance(v)
8: if (dist > breakDist) then
9: cost← costFunction

10: if (cost > optimal) then
11: bestv ← v
12: bestw ← w
13: optimal← cost

14: return bestv, bestw

Among the eligible velocities Vr, a trajectory has to be chosen to send to the robot. In

order to make that choice, all the trajectories are evaluated through a cost function. That

cost function can depend on many factors, but usually has the following form.

F (v, w) = α · heading(v, ω) + β · clearance(v, ω) + γ · velocity(v, w) (2.4)

Where α, β and γ are tunnable weights for the following functions.

• heading(v, ω) : measures the alignment of the robot with the target direction (see Fig.

2.4).

• clearance(v, ω) : represents the distance to the closest obstacle that intersects with the

curvature.

• velocity(v, w) : represents the robot velocity in order to maximize it (if γ 6= 0).

2.3. Timed Elastic Band 7

Figure 2.4: Heading of the robot.

2.3 Timed Elastic Band

The Timed Elastic Band (TEB) is an online collision avoidance method for online trajectory

optimization. Timed Elastic Band local planner optimizes locally the robot’s trajectory mini-

mizing the trajectory execution time (time-optimal objective), separation from obstacles and

compliance with kinodynamic constraints such as satisfying maximum velocities and acceler-

ations. It was presented by Christoph Rösmann, Frank Hoffmann, and Torsten Bertram in

2012 [3].

A “classic” elastic band is composed of a fixed number n of geometric waypoints or vehicle

poses Pi. The set of waypoints is described by

Q = {Pi}i=1...n (2.5)

where each waypoint consists of the tupel

Pi =

 xi

yi

θi

 (2.6)

The timed elastic band is augmented by time intervals ∆Ti between two consecutive con-

figurations, resulting in a sequence of n − 1 time differences. In the context of collision the

timed elastic bands merely optimizes the location of intermediate waypoints as there are no

8 Chapter 2. State of the art

Figure 2.5: TEB: sequences of configurations and time differences.

boundary conditions for the final vehicle state. The set of time intervals is given by.

τ = {∆Ti}i=1...n−1 (2.7)

The TEB (Fig. 2.5) consists of the two sets:

B := (Q, τ) (2.8)

2.3.1 Cost Function

The optimal band is calculated by minimizing the objective function

f(B) =
∑
k

γkΓk(B) (2.9)

which is a weighted sum of multiple objectives and soft penalties for constraint violations.

The optimal trajectory B? is given by

B? = min
B

f(B) (2.10)

The objective functions of the TEB belong to two types: constraints such as velocity and

acceleration limits formulated in terms of penalty functions and objectives with respect to

trajectory such as shortest or fastest path (Eq. 2.21) or clearance from obstacles (Eq. 2.13).

Sparse constrained optimization algorithms are not readily available in robotic frameworks

2.3. Timed Elastic Band 9

Figure 2.6: Polynomial approximation of constraint.

(e.g. ROS) in a freely usable implementation. Therefore, in the context of “timed elastic band”

these constraints are formulated as objectives in terms of a piecewise continuous, differentiable

cost function that penalize the violation of a constraint (Eq. 2.11).

eΓ(x, xr, ε, S, n) =


(
x−(xr−ε)

S

)n
for x > xr − ε

0 for x ≤ xr − ε
(2.11)

Where xr denotes the bound, S expresses the scaling, n the polynomial order and ε a small

translation of the approximation.

This function approximates the discontinuous step function (see Fig. 2.6), for example

it imposes a lower limit on the separation between the ego vehicle and the obstacle. The

parameters ε, S, n and xr are chosen such that for all realistic situations the violation of the

hard constraint imposes a much higher penalty than the cost of ordinary objective functions.

Fig. 2.6 shows two different realizations of Eq.2.11. Approximation 1 results from

parameter-set n = 2, S = 0.1, ε = 0.1 and Approximation 2, which is conspicuously a stronger

approximation, result from parameter-set n = 2, S = 0.05 and ε = 0.1. This example shows

an approximation of the constraint xr = 0.4.

An obvious advantage of using a multi-objective optimization framework is the modular

formulation of objective functions. The possible objective functions employed in the TEB are

listed below.

10 Chapter 2. State of the art

Figure 2.7: Minimal distance between TEB and way point or obstacle.

2.3.1.1 Way points and obstacles

The TEB simultaneously accounts for the attainment of the intermediate way points of the

original path and the avoidance of static or dynamic obstacles. Both objective functions are

similar with the difference that way points attract the elastic band whereas obstacles repel

it. The objective function rests upon the minimal separation dmin,j between the TEB and

the way point or obstacle zj (Fig. 2.7). In the case of way points the distance is bounded

from above by a maximal target radius rpmax (Eq. 2.12) and in case of obstacles it is bounded

from below by a minimal distance romin (Eq. 2.13). These constraints are implemented by

the penalty function in Eq. 2.11.

Γpath = eΓ(dmin,j , rpmax , ε, S, n) (2.12)

Γob = eΓ(−dmin,j ,−romin , ε, S, n) (2.13)

According to Fig. 2.6, the signs of the separation dmin,j and the bound romin in Eq. 2.13

must be swapped to realize a bounding from below.

Notice, that the gradient of these objective functions can be interpreted as an external

force acting on the elastic band.

2.3.1.2 Velocity and acceleration

Dynamic constraints on robot velocity and acceleration are described by similar penalty func-

tion as in the case of geometric constraints. Fig. 2.5 shows the structure of TEB. The mean

translational and rotational velocities are computed according to the euclidean or angular

2.3. Timed Elastic Band 11

distance between two consecutive configurations Pi, Pi+1 and the time interval ∆Ti for the

transition between both poses.

vi =

√
(xi+1 − xi)2 + (yi+1 − yi)2

∆Ti
(2.14)

ωi =
βi+1 − βi

∆Ti
(2.15)

Due to the vicinity of configurations the euclidean distance is a sufficient approximation of

the true length of the circular path between two consecutive poses. The acceleration relates

two consecutive mean velocities, thus considers three consecutive configurations with two

corresponding time intervals.

ai =
2(vi+1 − vi)

∆Ti + ∆Ti+1
(2.16)

For the sake of clarity, the three consecutive configurations are substituted by their two

related velocities in Eq. 2.16. The rotational acceleration is computed similarly by considering

rotational velocities instead of translational ones. Considering a differential drive mobile robot,

the relationship between the wheel velocities and the translational and rotational velocities

vi and ωi of the robot center point are computed according to:

vwr,i = vi +
l

2
ωi (2.17)

vwl,i = vi −
l

2
ωi (2.18)

in which the parameter l denotes half of the robot wheelbase.

Differentiating Eq. 2.17 and Eq. 2.18 with respect to time leads to the corresponding

wheel accelerations. The wheel velocities and acceleration are bounded from above and below

according to the manufacturer specifications.

2.3.1.3 Non-holonomic kinematics

Robots with a differential drive only possess two local degrees of freedom. Thus they can only

execute motions in the direction of the robot’s current heading. This kinematic constraint

leads to a smooth path that is composed of arc segments. Thus two adjacent configurations

are required to be located on a common arc of constant curvature as illustrated in Fig. 2.8.

12 Chapter 2. State of the art

Figure 2.8: Relationship between configurations on a circle for non-holonomic kinematics.

The angle θi between the initial configuration Pi and the direction di,i+1 has to be equal

to the corresponding angle θi+1 at the final configuration Pi+1.

If βi denotes the absolute orientation of a robot at the i-th configuration the arc condition

demands Eq. 2.19.

θi = θi+1 ⇔

 cosβi

sinβi

0

× di,i+1 = di,i+1 ×

 cosβi+1

sinβi+1

0

 (2.19)

with the direction vector:

di,i+1 :=

 xi+1 − xi
yi+1 − yi

0


The corresponding objective function

Γk(Pi, Pi+1) =

∥∥∥∥∥∥∥

 cosβi

sinβi

0

+

 cosβi+1

sinβi+1

0


× di,i+1

∥∥∥∥∥∥∥
2

(2.20)

penalizes the quadratic error in the violation of this constraint.

2.3.1.4 Fastest path

Previous “elastic band” approaches obtain the shortest path by internal forces that contract

the elastic band. Since our approach considers temporal information the objective of a shortest

2.3. Timed Elastic Band 13

path we have the option to replace the objective of a shortest path with that of a fastest path,

or to combine those objectives. The objective of a fastest path is easily achieved by minimizing

the square of the sum of all time differences.

Γk = (
n∑
i=1

∆Ti)
2 (2.21)

This objective leads to a fastest path in which the intermediate configurations are uni-

formly separated in time rather than space.

2.3.2 Homotopy and Homology

TEB local planner can sometimes get stuck in a locally optimal trajectory as it is unable

to transit across obstacles. A subset of admissible trajectories of distinctive topologies is

optimized in parallel. The local planner is able to switch to the current globally optimal tra-

jectory among the candidate set. Distinctive topologies are obtained by utilizing the concept

of homotopy/homology classes.

2.3.2.1 Homotopic trajectories

Two trajectories τ1 and τ2 connecting the same start and goal points zs and zg respectively,

are homotopic if and only if one can be continuously deformed into the other without inter-

secting any obstacles. The set of all trajectories that are homotopic to each other is denoted

as homotopy class. In Fig. 2.9 there can be seen two different homotopy classes.

The closed form generic computation of homotopy classes is difficult. So homotopy classes

are substituted by homology classes as they are easier to compute. A homology class defines

a set of homologous trajectories in which elements are homologous to each other.

2.3.2.2 Homologous trajectories

Two trajectories τ1 and τ2 connecting the same start and goal points zs and zg respectively,

are homologous if and only if τ1t−τ2 forms the complete boundary of a 2D manifold embed-

ded in R2 (i.e. going from start to goal with τ1 and coming back with τ2 without surrounding

any obstacle).

14 Chapter 2. State of the art

Figure 2.9: Two homotopy classes.

Homotopy implies homology, but the reverse implication does not hold. However, for most

practicable mobile robot planning scenarios, both definitions can be considered as equivalent.

Multiple trajectory planning, distinguishing several sets of trajectories to optimize using

the concept of homology, is a good solution to avoid local optimums.

2.4 Model Predictive Control

The Model Predictive Control (MPC) is an advanced control method that works in discrete

time. From a set of state values, and with respect to a model, it optimizes a problem around

an objective and gives a sequence of control signals as outputs. The first set of control values

are then used as inputs to the system plant, and after a short period, set as the system time

step, the new state values are measured and the process is repeated.

The beginning of MPC was at Shell Oil Company in 1979 where an idea named as ”Dy-

namic Matrix Control” was presented by Cutler and Ramaker ([9], [10]). DMC was the first

type of predictive control that could be applied in industry. The idea was to handle multi-

variable control systems without any constraints and predict future values for linear systems.

The idea that the algorithm would predict future plant behavior was discovered to lead to a

less aggressive output and a smoother convergence to the target set point.

MPC is based on iterative, finite-horizon optimization of a system model. At time t the

current system state is sampled and a cost minimizing control strategy is computed (via a

numerical minimization algorithm) for a relatively short time horizon in the future H.

In an MPC problem we can distinguish:

• Internal dynamic model of the system.

• History of past control moves.

2.4. Model Predictive Control 15

• Optimization cost function.

With the dynamic model of the system we can predict the future states of the system in

a discrete-time way.

xk+1 = Axk +Buk (2.22)

xk ∈ Rn, uk ∈ Rm (2.23)

Using the current state values we predict one step ahead with the time step H.

xk+1 = Axk +Buk

xk+2 = Axk+1 +Buk+1

...

xk+H = Axk+H−1 +Buk+H−1

This one-step prediction can then be used recursively to find the n-step prediction by

inserting the expression of xk+1 in xk+2, xk+2 in xk+3, etc.

xk+1 = Axk +Buk

xk+2 = A2xk +ABuk +Buk+1

...

xk+H = AHxk +AH−1Buk +AH−2Buk+1 + · · ·+ABuk+H−2 +Buk+H−1

The predictions at time k is then expressed as
xk+1|k

xk+2|k
...

xk+H|k

 =


A

A2

...

AH

xk +


B 0 . . . 0

AB B . . . 0
...

...
. . .

...

AH−1B AH−2B . . . B




uk|k

uk+1|k
...

uk+H−1|k

 (2.24)

where xk+1|k is the one-step prediction at time k.

Intuitively it can be seen that the prediction structure is built such that the decision vari-

ables uk|k . . . uk+H−1|k controls the state trajectory, which is important in trajectory tracking

when we often desire specific predictions.

The deductions seen above are for linear systems, anyway it is possible to apply the same

16 Chapter 2. State of the art

procedure to non-linear systems, linearizing arround the current state of the system.

The problem objective is expressed as a quadratic program. A basic problem formulation

looks like

minimize

H∑
k=1

xTQx+ ∆uTR∆u

subject to

xk+1 = Axk +Buk, k = 1, . . . ,H − 1

x ∈ Rn, u ∈ Rm

uk ∈ U

xk ∈ X

(2.25)

where the objective is minimized over the horizon H with respect to the model, the

variable constraints (X) and possibly control limitations (U). An MPC works in stages and

using the model it predicts plant behavior several steps in the future. The objective is subject

to several iterations depending on the horizon set for the optimization. The resulting output

of the optimization is a sequence of control signals and predictions.

In path following applications the output control trajectory will correspond to predictions

of the vehicles position at a given time step. Only the first control signals u1 will be sent to

the plant and the controller will perform another optimization, where a new control sequence

is calculated. In the new optimization the horizon has therefore moved one step into the

future.

Algorithm 2 Basic MPC control loop

1: Measure xk
2: Solve the problem formulation (2.25) with xk as initial state, where uk is calculated
3: Set uk as input to the plant
4: Repeat steps 1-3

2.5 ROS

The Robot Operating System (ROS) has been developed by Willow Garage and Stanford

University as a part of STAIR project, as a free and open-source robotic middleware for the

large-scale development of complex robotic systems. It is an open-source, meta-operating

system for robots. It provides the services like an operating system, including hardware

abstraction, low-level device control, message-passing between processes, and package man-

2.5. ROS 17

Figure 2.10: ROS Computation Graph Level.

agement [6]. Nowadays it is widely accepted and used in the robotics community. Its main

goal is to make the multiple components of a robotics system easy to develop and share so

they can work on other robots with minimal changes.

ROS has three levels of concepts: the Filesystem level, the Computation Graph level, and

the Community level. For our purposes we require to understand the Computation Graph

Level, which is the peer-to-peer network of ROS processes. Its basic elements are shown on

Fig. 2.10 and explained below.

• Nodes: Nodes are processes that perform computation; ROS is designed to be modular,

therefore a robot system is conformed by many nodes, which separates the code and

functionalities, making the system simpler. They are implemented with the use of a

ROS client library as roscpp or rospy.

• Master: The ROS master provides naming registration and lookup to the rest of the

Computation Graph services. The role of the master is to enable individual ROS nodes

to locate each other. Once these nodes have found each other, they communicate in a

peer-to-peer fashion.

• Parameter Server: The parameter server allows data to be stored in a central location.

With the parameter server it is possible to configure the nodes while running or to change

the working parameters of a node.

• Messages: Nodes communicate with each other by passing messages. A message con-

tains data that provides information to other nodes, it is a data structure comprising

typed fields.

18 Chapter 2. State of the art

Figure 2.11: ROS Communication between Publisher and Suscriber Nodes.

• Topics: Messages are routed via a transport system with publish / subscribe semantics.

A node sends out a message by publishing it to a given topic. The topic is a name that

is used to identify the content of the message, therefore a node that is interested in a

certain kind of data will subscribe to the appropriate topic. When a message is received

on a topic, a user callback function is called, this function is in charge of managing the

obtained data; the performed action can even be the simple storage of the data.

• Services: When a topic is published, the data is sent in a many-to-many fashion

(asynchronous), which means a topic can have one or more publishers / subscribers.

This model is not appropriate for request/reply interactions, instead it is done via a

Service, which is defined by a request message and a reply message in a one-to-many

fashion (synchronous), there can be only one server and one or more clients. A node

offers a service under a name and a client uses the service by sending the request message

and awaiting the reply.

• Bags: Bags are the primary mechanism for data logging in ROS, they allow to record

datasets, visualize it, label it, and store for future use. The store data can be played

back and use as if a ROS node was sending it.

Fig. 2.11 shows how the communication happens with a publisher and a subscriber node,

the publisher advertises a message in a topic and the other node will subscribe to the topic

to obtain the message.

In ROS, there is also the possibility to use Timers, they let you schedule a callback to

happen at a specific rate; timers are not to be intended as real-time threads. To use a timer

the user has to start it (can be done during a callback of a topic for instance); once the timer

has been started a callback function is executed, when the operation is finished the timer

must be stopped so that it can be started again later on.

Another important aspect about ROS is that it comes with a 3D visualizer called RViz

(ROS visualization), the idea behind RViz is to provide visualization displays for different

2.5. ROS 19

Figure 2.12: Rviz framework.

ROS messages, it is easy to use, the user only needs to select a display either by the message

type, or search also by the available topic names. For navigation several displays can be used

as Map, Path, Pose, Odometry, TF, etc. Each display has some options that can be setup

like the color, and the topic to subscribe. The visualizer also allows to save a configuration

to be able to use it for a specific application, so there is no need to setup the visualizer every

time. Fig. 2.12 shows an example for setting up RViz displays.

TF is especially important for the navigation implementation. It lets to keep track of

multiple coordinate frames over time (see Fig, 2.13). TF maintains the relationship between

coordinate frames in a tree structure buffered in time, and lets to transform points, vectors,

etc, between any two coordinate frames at any desired point in time.

2.5.1 Stage

Stage is a robot simulator. It provides a virtual world populated by mobile robots and sensors,

along with various objects for the robots to sense and manipulate.

There are three ways to use Stage:

• The Stage program: a standalone robot simulation program that loads your robot con-

trol program from a library that you provide.

• The Stage plugin for Player (libstageplugin) - provides a population of virtual robots

20 Chapter 2. State of the art

Figure 2.13: TF keeping track of several frames.

Figure 2.14: Stage simulator.

for the popular Player networked robot interface system.

• Write your own simulator: the ”libstage” C++ library makes it easy to create, run and

customize a Stage simulation from inside your own programs.

Stage provides fairly simple, computationally cheap models of lots of devices rather than

attempting to emulate any device with great fidelity. This design is intended to be useful

compromise between conventional high-fidelity robot simulations, the minimal simulations

described by Jakobi [11], and the grid-world simulations common in artificial life research

[12]. Stage is intended to be just realistic enough to enable users to move controllers between

Stage robots and real robots, while still being fast enough to simulate large populations. Fig.

2.14 shows a Stage framework example.

2.5. ROS 21

Figure 2.15: Navigation Stack node design.

2.5.2 Navigation Stack

For mobile robot navigation, several tasks are required to solve three main problems: mapping,

localization and path planning. ROS has a set of useful resources for a robot to navigate

through a known, partially known, or unknown environment; using these the robot is capable

of planning and tracking a path while it deviates from obstacles that appear on its path

throughout the course. These resources are found on the Navigation Stack [5].

The Navigation Stack Setup can be seen on Fig. 2.15. The move base node subscribes

to odometry, sensor data, and goal position messages and produces velocity commands to be

send to the mobile base. It can also subscribe to a map, so it can generate a better path with

known information of the environment; the Adaptive Monte Carlo Localization Algorithm is

done to performe the localization part. The Navigation Stack main component is the move

base package, it is divided into global and local path planning modules, and it maintains

a global and local costmap, used by the respective planners, which keep the information of

the obstacles in the environment in the form of an occupancy grid. The global costmap is

initialized with a static map, if one is available, and then it can be updated with data coming

from the sensors. For the other hand, the local costmap is initialized from the global costmap,

taking the local area of the robot (see Fig. 2.16).

For any global or local planner to be used by the move base package, they have to ad- here

to some interfaces defined in the nav core package. The global planner must adhere to the

nav core::BaseGlobalPlanner interface and the local planner to the nav core::BaseLocalPlanner

interface; also they must be added as plugins to ROS in order to work with the navigation

stack.

The current interfaces provided by the Navigation Stack are listed below [7]:

22 Chapter 2. State of the art

Figure 2.16: Local costmap.

• Global Planners

– navfn: Grid-based global planner that uses a navigation function to compute a

path for a robot.

– global planner: Fast interpolated global planner built as a replacement to the

older navfn. This one can use the Dijkstra algorithm or the A*, or if required it

can also behave as the old navfn. The behavior is set through the parameters.

– carrot planner: Simple global planner that takes a user-specified goal point and

attempts to move the robot as close to it as possible, even when that goal point is

in an obstacle.

• Local Planners

– base local planner: Provides implementations of the Dynamic Window and Tra-

jectory Rollout approaches to local control.

– dwa local planner: Modular DWA implementation with a lot cleaner and easier

interface to understand and more flexible y axis variables for holonomic robots than

base local planner’s DWA.

– eband local planner: Implements the Elastic Band method on the SE2 manifold.

– teb local planner: Implements the Timed-Elastic-Band method for online tra-

jectory optimization.

One of the problems of using the navigation stack is that is not very flexible, or easy

to configure. The current implementations of some local planners in ROS implement the

dynamics and kinematics for holonomic robots, but doesn’t take into account all possible

2.6. Car-Like Vehicles 23

non-holonomic robots.

Next section introduces the concept of holonomic and non-holonomic robots, the Ackermann

vehicle and its kinematic constraints.

2.6 Car-Like Vehicles

As we mentioned before, this thesis focuses in motion control for non-holonomic systems,

more precisely for Ackermann vehicles. In this section the Ackermann vehicle is described to

explain the kinematic constraints we take into account to generate the command velocities.

We say a robot is holonomic if all the constraints that it is subjected to are integrable into

positional constraints of the form:

f(q1, q2, ..., qn, t) = 0

Where the variables qi are the system coordinates. When a system contains constraints that

cannot be written in this form, it is to be nonholonomic. Said in other words, a holonomic

system is when the number of controllable degrees of freedom is equal to the total degrees of

freedom.

Nonholonomic systems are characterized by constraint equations involving time derivatives

of the system configuration variables. This usually happens when a system has less controls

than configuration variables. A car-like vehicle has two controls, from the driver’s point of

view the controls are the accelerator and the steering wheel (linear and angular velocities),

but it moves in a 3-dimensional space (x, y, θ), thus not every path in the configuration space

is a feasible path for the vehicle [4].

We represent this problem as the parallel parking problem, a motion planning problem in

mechanics to determine the path a car must take in order to parallel park into a parking space.

It shows clearly why car-like vehicles are non-holonomic (i.e. controllable degrees of freedom

is less than the total degrees of freedom). The front wheels of a car are permitted to turn,

but the rear wheels must stay aligned. When a car is initially adjacent to a parking space, to

move into the space it would need to move in a direction perpendicular to the allowed path

of motion of the rear wheels.

A well known car-like vehicle is the Ackermann vehicle, which has the Ackermann steering

geometry, named after Rudolph Ackermann (1764–1834) who pantented it in 1818. The

motion of an Ackermann based robot, like a car, can be described on first approximation by

24 Chapter 2. State of the art

Figure 2.17: Sketch of an ackermann based robot.

the translational speed and the steering angle, and also by the steering speed.

Fig. 2.17 shows a sketch of an ackermann architecture. The important parameters of this

kind of configurations are:

• wheel base (l): is the distance between the front and rear axles of the robot.

• track (W): is the distance between the left and right wheels

• wheel diameter (d): diameter of the robot wheel.

• center of mass (C): position of the center of mass of the robot, which is considered

the point of rotation of the robot.

The inner and outer front wheels have different steering angles to avoid slipping (δi and

δo respectively), and the resulting steering angle for the whole robot (taken at the center of

mass) can be computed as:

δ =
cot(δi) + cot(δo)

2
(2.26)

Also, the rear wheels have different angular speeds when the robot is turning (ωi for the

inner wheel and ωo for the outer one), and the equivalent translational speed for the whole

robot (taken at the center of mass) can be computed as:

v = dπ
ωi + ωo

2
(2.27)

2.6. Car-Like Vehicles 25

The kinematic model of the vehicle is composed by the following tree differential equations.


ẋ = v · cos(θ)
ẏ = v · sin(θ)

θ̇ = v tan(δ)
l

(2.28)

x Cartesian position along the x-axis

y Cartesian position along the y-axis

θ Orientation of the vehicle

δ Steering angle

v Linear velocity

We name the angle δ the Ackermann steering angle.

The position of an object in a two dimensional space is completely defined by the position

of its center of mass (x, y) and its orientation θ, and a trajectory in a two dimensional space is

given by a temporal sequence of these variables. Therefore, in order to estimate the trajectory

the robot will follow given the translational speed and the steering angle, first it is necessary

to compute the turn radius of the center of mass:

R = d

√
a2 +

l2

tan2(δ)
(2.29)

The distance traveled by a vehicle in a given amount of time ∆t for a given translational

speed v can be computed as the circular arc. However, the angle of the circular sector is

unknown a priori, so the distance is approximated by:

L = v∆t (2.30)

The error of this approximation increases with the speed of the robot and the interval of

time considered. However, for small periods and relatively low speeds this error can be ignored.

26 Chapter 2. State of the art

Chapter 3

Local Planners Implementation

This chapter shows the implementation of the three planners introduced before.

3.1 Implementation Motivations

As previously mentioned, the scope of this work is to implement three local planners making

use of ROS framework. move base is a structured node which provides the opportunity to

solve navigation problem on robots in an easy way, but, on the other hand, its structure is

rigid. It depends on plugins, which are dynamically loadable classes that are loaded from

a runtime library. For example the DWA or TEB ROS local planners can dynamically be

loaded and used by the navigation stack, but most part of the variables and parameters can

not be accessed. However, the main reason is not all planners support Ackermann kinematics,

so to be able to apply navigation to a robot with Akermann geometry the decision made was

to implement the global and local planners by our own.

3.2 Local Planners Frame

The local planners implemented are stored in a ROS package, the files are distributed accord-
ing the following structure.

package
cfg/
include/
launch/
src/
CMakeLists.txt
package.xml

27

28 Chapter 3. Local Planners Implementation

The computation of the command velocities depends on the local planner, but the main

structure of the nodes is hold in a similar way: how the costmap is stored and updated, how

the global plan is recived and stored, etc.

3.2.1 Costmap

The local planner needs the local costmap to know the environment arround the robot and

perform all the calculations properly. By means of the costmap 2d package [13], the costmap

can be stored in a 2D or 3D occupancy grid and updated properly by sensors data.

To store the costmap a subscriber must be declared first. It is suscribed to the topic where

the local costmap data is published: "/local/costmap/costmap". Everytime new data

is published to the topic, the callback function costmap cb callback is called. It receives

the data in a message of the type nav msgs::OccupancyGrid ::ConstPtr. It stores

the information of the costmap, which must be sent to the local planner. To do so a cost

translation must be done, while the message recived stores the costmap with values between

−1 : 100 the local planner asks for a costmap with values in the range 0 : 255.

message costmap state

0 0 no obstacle

99 253 inscribed obstacle

100 254 lethal cost

−1 255 unknown

Values 0/0 (no obstacle), 100/254 (lethal cost/obstacle) and −1 : 255 (unknown) are clear.

But the values between 1/1 and 99/253 represent the distance from an obstacle to the robot.

To avoid collisions, the costmap is inflated. An inflation is the process of propagating

cost values out from occupied cells that decrease with distance. So as seen in Fig. 3.1, the

obstacles are inflated. All cells at a distance equal or less than the robot inscribed radius are

for sure making the robot collide (inscribed obstacle); all cells at more distance, but less than

the circumscribed radius are possible colliding placements, depending on robot orientation.

The cells not in collision danger but close enought to an obstacle are given a value grater than

0, in order to make the path move away from obstacles when evaluating the cost function.

3.2. Local Planners Frame 29

Figure 3.1: Inflation values cost.

3.2.2 Path

The path must be received and stored in order to track it. To do so the subscriber must

be declared first. Like the costmap subscriber, it is subscribed to the topic "/path",

where data is published. The function called when new data is published to this topic is

path cb callback.

The data received is a message of the type nav msgs::Path::ConstPtr, which is

stored in current path. To send then the path to the local planner the path is converted

to type std::vector<geometry msgs::PoseStamped>, which is a vector of positions

without directions, except the last one, which is the goal we want to reach with a certain

orientation.

3.2.3 Odometry

The position, orientation and velocity of the robot are obtained through the odometry topic

/odom. It is indispensable to have this information, which gives us the actual state of the

robot. In our case, an Ackermann vehicle, the position, the steering and the linear velocity.

30 Chapter 3. Local Planners Implementation

3.2.4 Footprint

An important information to compute several calculations is the robot footprint (i.e. the area

the robot occupy). As this information is constant, at least in our robot, it is uploaded from

parameters and stored.

The footprint can be represented by several geometric objects: “point”, “circular”, “line”,

“two circles”, “polygon”. In our case it is represented has a rectangular polygon, with 4

points.

3.3 Dynamic Window Approach

The ROS DWA local planner dwa local planner [14] doesn’t support the Ackermann kine-

matics, so the implementation performed must take them into account when generationg the

possible trajectories.

3.3.1 Structure

3.3.1.1 Dependencies

The package implemented has dependencies on the following ROS packages.

base local planner is the basic local planner to overwrite.

ackermann local planner contain Ackermann kinematics.

roscpp is a client library to quickly interface with ROS Topics, Services, and Parameters.

map msgs defines messages commonly used in mapping packages.

ros base is a metapackage which extends ros core and includes other basic non-robot tools

like actionlib, dynamic reconfigure, nodelets, and pluginlib.

nav msgs defines the common messages used to interact with the navigation stack.

nav core provides the BaseGlobalPlanner, BaseLocalPlanner, and RecoveryBehavior inter-

faces.

geometry msgs provides messages for common geometric primitives such as points, vectors,

and poses. These primitives are designed to provide a common data type and facilitate

interoperability throughout the system.

3.3. Dynamic Window Approach 31

costmap 2d provides an implementation of a 2D costmap that takes in sensor data from

the world, builds a 2D or 3D occupancy grid. This package also provides support

for map server based initialization of a costmap, rolling window based costmaps, and

parameter based subscription to and configuration of sensor topics.

The dependencies on this packages are defined on CMakeLists.txt and package.xml

files.

From the ackermann local planner we get the necessary interface for the local planner. The

ackermann local planner depends on base local planner as well, inheriting important functions

listed here (see the BaseLocalPlanner class in the nav core package for more details):

• computeVelocityCommands: This function is periodically called to get a new ve-

locity command for the robot. This function returns true if a feasible motion command

has been found and false otherwise.

• initialize: This function is called at construction time to initialize all the necessary

parameters of the local planner. It returns either false or true depending on whether

the initialization failed or not respectively.

• isGoalReached: This function is periodically called to check whether the target posi-

tion has been reached (it returns true) or not (it returns false).

• setPlan: This function is called once for each new navigation target or when re-planning

is necessary, immediately after the makePlan function of the global planner returns a

valid plan. This function return true or false depending on whether the new global plan

could be set properly or not, respectively.

3.3.1.2 Files

On DWA local planner package we can distinguish the following files:

• cfg/dwa params.yaml: It contains all the parametes needed for the local planner.

• include/costmap utils.h: To save the costmap recived from a Publisher.

• include/Dwa Planner configuration.h: All the variables and parameters are de-

clared.

• include/dwa planner.h: The velocity comands are calculated and sent.

32 Chapter 3. Local Planners Implementation

• include/local planner utils.h: Functions used by the other files.

• launch/local dwa.launch: To launch out local planner node.

• src/Dwa Planner.cpp: Subscribers, Publishers and callback functions declared.

3.3.1.3 Implementation

Two class objects are used form the package ackermann local planner:

• AckermannPlannerUtil which is a helper class implementing infrastructure code

many local planner implementations may need. It was modified in order to not use

it as a plugin. Main functions used are:

– void reconfigure callback

Sets class parameters.

– void initialize

Initializes the object to call other functions.

– bool get goal

Gets global plan goal.

– bool set plan

Sets the path to follow.

– bool get local plan

Gets the local plan to follow.

AckermannPlanner which is the class implementing the local planner.

– AckermannPlanner

Constructor for the planner, it has AckermannPlannerUtil as input.

– ∼AckermannPlanner
Destructor for the planner.

– void reconfigure

Reconfigures the trajectory planner.

– bool check trajectory

Check if a trajectory is legal for a position/velocity pair.

– base local planner::Trajectory find best path

Given the current position and velocity of the robot, find the best trajectory to

exectue.

3.3. Dynamic Window Approach 33

Figure 3.2: DWA control flow.

– void update plan and local costs

Take in a new global plan for the local planner to follow, and adjust local costmaps.

– bool set plan

Sets new plan and resets state.

In Fig. 3.2 the flow of the DWA node implemented is shown.

When the node is initialized, it waits for the ‘/local costmap’ topic to be published. Once

that happens, the costmap is stored and the AckermannPlannerUtil and AckermannPlanner

objects are initialized. When the global planner publishes the ‘/path’ topic, the message is

stored and the loop to genertate the command velocities starts.

Inside the command velocity loop, the robot position and velocity are deduced from

‘/odometry’ topic. The transformed plan (local path) is actualized (i.e. prune the points

already passed and take in the new ones inside the local window). The local cost and plan

are then updated from laser information (i.e. obstacles updated and, in case some of them

make the current plan infeasible, the plan is updated). The Ackermann state is a structure

containing the robot transversal velocity, steer angle and steer velocity current state, which

is updated before computing the command velocities. Once they are computed, they are sent

to robot servos and the loop starts again if goal has not been reached.

DWA Implementation

As seen in section 2.2 the procedure to generate the command velocities with the DWA algo-

rithm are: to find the window of feasible motion commands in state space, to generate a set

34 Chapter 3. Local Planners Implementation

of trajectories within this window, to evaluate that set through a cost function.

Window generation

The first step is to find out which are the maximum translational velocity and steering

angle (i.e. the dynamic window) that can be achievable in the given time interval, taking

into account that the final translational and steering velocities must be 0. After finding the

boundaries of the dynamic window, a finite number of samples will be taken in each of the

two dimensions of the window in order to generate all the trajectory candidates.

Given that the number of samples is finite, and in general small in order to reduce the

overall computational complexity of the algorithm, it makes no sense to use a fixed time

interval to compute the dynamic window because, when the robot is close to a goal, only a

small subset of all the computed trajectories will be feasible to reach the goal (those with

small translational speeds).

Therefore, a variable time interval is used in terms of the distance to the goal d and the

current translational speed vt of the robot, as shown in Eq. 3.1.

Tsim =
d

vt
(3.1)

To compute the boundaries of the dynamic window, the current state of the robot, in terms

of current translational velocity and current steering angle and velocity, is needed. Also the

dynamic parameters of the robot are needed, that is the maximum translational acceleration

and deceleration and the maximum steering velocity, acceleration and deceleration.

If the time required to accelerate to the maximum velocity Tacc and to decelerate to a

complete stop Tdec are smaller than the desired time internal, the boundaries of the dynamic

window are the maximum and minimum velocity. However, if the given time interval is not

enough to accelerate to the maximum velocity, one or both of the boundaries of the dynamic

window must be reduced.

To compute the maximum and minimum velocities:

vmax =

{
Tsimaccmax

2 + vi
2 if Tacc + Tdec ≥ Tsim

vmax if Tacc + Tdec < Tsim

vmin =

{
−Tsimaccmax

2 + vi
2 if Tacc + Tdec ≥ Tsim

vmin if Tacc + Tdec < Tsim

(3.2)

3.3. Dynamic Window Approach 35

For the steering angle window boundaries, a similar procedure is followed.

Trajectory generation

Once the boundaries of the dynamic window have been computed as explained, it is time

to generate a set of trajectory candidates to be evaluated.

The boundaries define a two dimensional subspace with all the feasible values of transla-

tional speed and steering angle. Since it is not computationally feasible to evaluate all the

possible candidate pairs, an uniform sampling is performed in both dimensions, and a reduced

set of candidate pair is generated.

For each pair of steering angle and translational speeds, the resulting trajectory is gener-

ated for the desired time interval using the kinematic and dynamic constraints of the robot.

Each trajectory is then evaluated with a set of cost functions. The usual costs functions used

to evaluate each trajectory are:

• oscillation: This cost function penalizes trajectories that would change the motion

direction in order to avoid oscillations.

• obstacles: This cost function eliminates the trajectories that would collide with an

obstacle, either an static one from the map or a dynamic one detected by the sensors.

• path: This cost function evaluates the trajectory in terms of how close it is to the

planned path.

• goal: This cost function evaluates the trajectory in terms of how close the final position

reached by the trajectory is to the global (or local) goal.

Each cost function assign a cost to the trajectory, and the total cost assigned to it is the

weighted sum of all these costs. Some of the cost functions may discard the trajectory without

assigning any cost (trajectories that would collide with an obstacle for example).

36 Chapter 3. Local Planners Implementation

Heading cost function

Due to the motion limitations introduced by the kinematic constraints of an ackermann

based robot, it is useful to introduce a new cost function to be evaluated. This cost function

compares the heading of the robot in several points along the candidate trajectory with the

heading of the desired path, and assigns a cost proportional to the angular difference in all

evaluated points (the greater the error, the greater the cost).

Once the two closest points are found, a vector representing the slope of each curve is

generated by using the current and the previous points, vseg for the global path segment and

vtraj for the candidate trajectory. With these two vectors, the heading difference for a single

point is computed.

∆θ = atan2

(
vseg × vtraj
vseg · vtraj

)
(3.3)

The heading differences at all evaluation points are accumulated and then multiplied by

a scale factor.

3.4 Timed Elastic Band

The ROS TEB local planner teb local planner [15] supports Ackermann kinematics, the main

modification needed is to not perform the local planner as a plugin.

3.4.1 Structure

3.4.1.1 Dependencies

The package implemented has dependencies on the following ROS packages.

base local planner is the basic local planner to overwrite.

teb local planner ack is the teb local planner package modified in order to use its functions

without the need to implement it as a plugin.

roscpp is a client library to quickly interface with ROS Topics, Services, and Parameters.

map msgs defines messages commonly used in mapping packages.

ros base is a metapackage which extends ros core and includes other basic non-robot tools

like actionlib, dynamic reconfigure, nodelets, and pluginlib.

3.4. Timed Elastic Band 37

nav msgs defines the common messages used to interact with the navigation stack.

geometry msgs provides messages for common geometric primitives such as points, vectors,

and poses. These primitives are designed to provide a common data type and facilitate

interoperability throughout the system.

costmap 2d provides an implementation of a 2D costmap that takes in sensor data from

the world, builds a 2D or 3D occupancy grid. This package also provides support

for map server based initialization of a costmap, rolling window based costmaps, and

parameter based subscription to and configuration of sensor topics.

The dependencies on this packages are defined on CMakeLists.txt and package.xml

files.

From the teb local planner ack we get the necessary interface for the local planner. The

teb local planner ack depends on base local planner as well.

3.4.1.2 Files

On TEB local planner package we can distinguish the following files:

• cfg/teb params.yaml: It contains all the parametes needed for the local planner.

• include/costmap utils.h: To save the costmap recived from a Publisher.

• include/Teb Planner configuration.h: All the variables and parameters are de-

clared.

• include/teb planner.h: The velocity comands are calculated and sent.

• include/teb planner utils.h: Functions used by the other files.

• launch/local teb.launch: To launch out local planner node.

• src/Teb Planner.cpp: Subscribers, Publishers and callback functions declared.

3.4.1.3 Implementation

One class object is used from the package teb local planner ack:

• TebLocalPlanner which is the class implementing the local planner. Main functions

used are:

38 Chapter 3. Local Planners Implementation

Figure 3.3: TEB control flow.

– TebLocalPlanner

Constructor of the planner.

– ∼TebLocalPlanner
Destructor of the planner.

– void initialize

Initializes the teb planner.

– bool setPlan

Set the plan that the teb local planner is following.

– bool computeVelocityCommands

Check if the goal pose has been achieved.

– bool isGoalReached

Check if the goal pose has been achieved.

In Fig. 3.3 the flow of the TEB node implemented is shown.

When the node is initialized, it waits for the ‘/local costmap’ topic to be published. Once

that happens, the costmap is stored and the TebLocalPlanner object is initialized. When

the global planner publishes the ‘path’ topic, the message is stored and the loop to genertate

the command velocities starts.

Inside the command velocity loop, the robot position and velocity are deduced from

‘/odometry’ topic. The transformed plan (local path) is actualized (i.e. prune the points

3.4. Timed Elastic Band 39

already passed and take in the new ones inside the local window). The obstacles are then

updated from laser information. Then the planner is called, which generates the timed elastic

band and optimizes it. The velocity commands are then obtained and sent to robot. The

loop starts again if goal has not been reached.

TEB Implementation

Fig. 3.4 shows the control flow of the implemented TEB. In the initialization phase an initial

path is recived and transformed to a timed elastic band. At each iteration, the algorithm

dynamically adds new configurations or deletes previous ones in order to adjust the spatial

and temporal resolution to the remaining trajectory length or planning horizon.

The optimization problem is transformed into a hyper-graph and solved with large scale

optimization algorithms for sparse systems which are contained in the ”g2o-framework” [16].

The required hyper-graph is a graph in which the amount of connected nodes of one single

edge is not limited. Therefore an edge can connect more than two nodes. The TEB problem

(Eq. 2.9 and 2.10) can be transformed into a hyper-graph that has configurations and time

differences as nodes. They are connected with edges representing given objective functions Γk

or constraint functions. Fig. 3.5 shows an example hyper-graph with two configurations, one

time difference and a point shaped obstacle. The velocity bounding objective function requires

the mean velocity which relates to the euclidean distance between two configurations and the

required travel time. Hence it forms an edge connecting those states of B. The obstacle

requires one edge which is connected to the nearest configuration. The node representing

the obstacle is fixed (double circle), thus its parameters (position) cannot be changed by

optimization algorithms.

After verifying the optimized TEB, control variables v and δ can be calculated to directly

command the robot drive system. Before every new iteration, the re-initialization-phase checks

new and changing way-points which can be useful if way-points are received after analyzing

short-range camera or laser-scan data.

40 Chapter 3. Local Planners Implementation

Figure 3.4: Control flow of TEB.

Figure 3.5: Velocity and obstacle objective function formulated as a hyper-graph.

3.5. Model Predictive Control 41

3.5 Model Predictive Control

ROS doesn’t include any local planner solving the motion problem by MPC, to implement

this planner an MPC problem has been set out and solved.

3.5.1 Structure

3.5.1.1 Dependencies

The package implemented has dependencies on the following ROS packages.

base local planner is the basic local planner to overwrite.

ackermann local planner contain Ackermann kinematics.

ifopt ipopt provides a unified Eigen-based interface to use Ipopt (Nonlinear Programming

solver) [17].

roscpp is a client library to quickly interface with ROS Topics, Services, and Parameters.

map msgs defines messages commonly used in mapping packages.

ros base is a metapackage which extends ros core and includes other basic non-robot tools

like actionlib, dynamic reconfigure, nodelets, and pluginlib.

nav msgs defines the common messages used to interact with the navigation stack.

geometry msgs provides messages for common geometric primitives such as points, vectors,

and poses. These primitives are designed to provide a common data type and facilitate

interoperability throughout the system.

costmap 2d provides an implementation of a 2D costmap that takes in sensor data from

the world, builds a 2D or 3D occupancy grid. This package also provides support

for map server based initialization of a costmap, rolling window based costmaps, and

parameter based subscription to and configuration of sensor topics.

The dependencies on this packages are defined on CMakeLists.txt and package.xml

files.

42 Chapter 3. Local Planners Implementation

3.5.1.2 Files

On MPC local planner package we can distinguish the following files:

• cfg/mpc params.yaml: It contains all the parametes needed for the local planner.

• include/costmap utils.h: To save the costmap recived from a Publisher.

• include/MPC Planner configuration.h: All the variables and parameters are de-

clared.

• include/mpc planner.h: The velocity comands are calculated and sent.

• include/mpc planner utils.h: Functions used by the other files.

• include/mpc utils.h: Auxiliary functions used to set out MPC problem.

• include/MPC.h: MPC problem class.

• launch/local mpc.launch: To launch out local planner node.

• src/MPC Planner.cpp: Subscribers, Publishers and callback functions declared.

• src/MPC.cpp: MPC functions defined here.

3.5.1.3 Implementation

In Fig. 3.6 the flow of the MPC node implemented is shown.

When the node is initialized, it waits for the ‘local costmap’ topic to be published. Once

that happens, the costmap is stored and the AckermannPlannerUtil object is initialized

in order to keep tracking of the transformed plan. When the global planner publishes the

‘/path’ topic, the message is stored and the loop to genertate the command velocities starts.

Inside the command velocity loop, the robot position and velocity are deduced from

‘/odometry’ topic. The transformed plan (local path) is actualized (i.e. prune the points

already passed and take in the new ones inside the local window). Then the MPC problem

is setted out and solved. The velocity commands are then obtained and sent to robot. The

loop starts again if goal has not been reached.

3.5. Model Predictive Control 43

Figure 3.6: MPC control flow.

MPC problem Implementation

As said previously, the MPC problem is solved making use of the Ipopt solver. To do so first

it is needed to prepare the problem.

The state of the system x̂k is

x̂k =



xk

yk

θk

vk

ctek

eθk


Where ctek is the cross-track error (roughly the distance from the track waypoints) and

eθk is the orientation angle error, both to be minimized in order to keep tracking of the path.

The input of the system will be

uk =

[
δk

ak

]

Where δk and ak are the steer angle and acceleration respectively.

44 Chapter 3. Local Planners Implementation

The kinematic model to predict further states is

xt+1 = xt + vt · cos(θt) · dt

yt+1 = yt + vt · sin(θt) · dt

θt+1 = θt +
vt
L
· δt · dt

vt+1 = vt + at · dt

ctet+1 = ydest − yt + (vt · sin(eθt) · dt)

eθt+1 = θt − θdest +
vt
L
· δt · dt

(3.4)

Deduced from (2.28), where for calculation simplifications δt is written instead of tan(δt)

and ydest and θdest are the y position and θ orientation desired at time t.

At every iteration to calculate the velocity commands a new MPC problem has to be set

out, the procedure is as follows.

The first H points of the transformed plan (local path) are stored into p, where H is

the MPC horizon. Then a transformation between frames is applied in order to simplify

calculations (see Fig. 3.7):

rx = (px − x) · cos(θ)− (py − y) · sin(−θ)

ry = (px − x) · sin(−θ) + (py − y) · cos(θ)
(3.5)

A translation and a rotation is applied to p to obtain the reference path r, seen from robot

frame (i.e. we can consider zero the current x, y and θ of the robot state).

So the initial state of the system is

x̂0 =



0

0

0

v0

cte0

eθ0


The path to follow r is then approximated by a polynomial f of order 3.

3.5. Model Predictive Control 45

Figure 3.7: Change from World frame to robot frame.

Figure 3.8: Cross-track error approximation.

f(x) = k3x
3 + k2x

2 + k1x+ k0 = y (3.6)

From which we have the following relation.

cte0 = f(0) = k0 (3.7)

As seen in Fig. 3.8.

46 Chapter 3. Local Planners Implementation

Figure 3.9: Orientation angle error approximation.

If f is derived from respect to x, the result is

∂f(x)

∂x
= 3k3x

2 + 2k2x+ k1 =
∂y

∂x
(3.8)

From Fig. 3.9 can be deduced then the relation.

θ = atan
(y
x

)
eθ0 = θ0 − θdes0 = −atan

(
∂y

∂x

)∣∣∣∣
0

= −atan(k1)
(3.9)

Once the initial state is obtained, and the predictions calculated with (3.4) model, the

function to minimize will be

F (x) =

H∑
k=0

(ctek+eθk+‖vk−vref‖)+

H−1∑
k=0

(‖δk‖+‖ak‖)+

H−2∑
k=0

(‖δk+1−δk‖+‖ak+1−ak‖) (3.10)

Where the first part make the robot to keep tracking of the path with a reference veloc-

ity, the second part makes to keep the tracking with the minimum possible steer angle and

acceleration, and the third part avoids robot oscillation as the difference between consecutive

inputs is minimized (i.e. the changing of inputs must be smooth).

The variables are subject to constraints depending on the vehicle kinematic and dynamic

limits, as steer angle and acceleration limits, maximum velocity, etc.

Chapter 4

Results

In this section we present some tests performed with the three local planners. The first

tests we make the robot to track different paths without unkown obstacles, to compare the

performance following the path. On the last one we add unknown obstacles, to compare the

performance avoiding collisions.

4.1 Environment

The map where the experiments are carried out is a map of a real environment. It is 203 ×
217m2 , with a resolution of 0.25m, meaning that the grid is conformed by 812× 868 cells, to

which we refer as Aster map.

Figure 4.1: Aster environment.

47

48 Chapter 4. Results

4.2 Simulator

For the simulations we used Stage in ROS, the robot simulator introduced previously.

For its usage first the world must be defined, it contains:

• window: the size, center, rotation and scale of the space must be defined.

• floorplan: for the floorplan a path to the bitmap to be used is specified, as well as its

size, and position in the window.

• robot: the model of the robot to be used.

In Stage the mobile robot base models are called position model, our simulated robot was

created as a position model and named carlike robot. The carlike robot contains three laser

models situated in front of the vehicle, on the left and on the right corners. For localization

we used a gps, since the simulator returns the true global position. To define the kinematics,

Stage has three option: diff, omni, and car, the last one was selected as it accounts for the

Ackerman vehicle kinematics, it has velocity and steering angle, plus the wheelbase value is

set. All the parameters setted are based on a real robot.

Fig. 4.2 shows the view of the simulator using the Aster map. The red box represents the

robot mobile base, while the green parts represent the data from the laser sensors.

Figure 4.2: Stage Simulator.

4.3. Tests Setup 49

4.3 Tests Setup

For setting up the different tests we have written two nodes, test local plan pub and

test local plan sub, the first one publishes the path message, while the second node

subscribes to the results data, to be stored and analyzed later on. For the publisher node, a

timer and a publisher, for the path, have been defined. The different paths are stored in a

rosbag file and sent by the publisher node. The timer activates a flag publish. When the flag

is set, the path is charged by the node and published, afterwards, the node stops.

The most important results for us are the computing time and the distance to path and ob-

stacles, the planner nodes are publishing these values inside a std msgs::Float64MultiArray

message in a topic called /results.

When the path is received by the local planners, they keep track of it. When the robot

reaches the goal, the results are published on the topic /results. When this happens, the

subscriber node takes the information and saves it into a rosbag file.

To plot the information we have used MATLAB, since it has the possibility to easily open

and parse rosbag files.

4.4 Path tracking

4.4.1 Test 1

In this Test the robot must follow the path in Fig. 4.3.

Figure 4.3: Path to follow in Test 1.

In Fig. 4.4 we evaluate the distance from the robot to the path for the 3 different planners.

50 Chapter 4. Results

Figure 4.4: Distance from robot to path in Test 1.

It can be seen the planner with more distanc to path is the DWA (Fig. 4.5), while the one

following path closely is the MPC. Anyway, the oscillation shown up in the MPC planner is

much higher, which means it has a less robust performance. the TEB planner keeps tacking

closer than DWA but still it has a more oscillatory behavior.

Figure 4.5: Distance Box plot Test 1.

Regarding the time complexity, looking at Fig. 4.6 it can be seen DWA is the planner that

takes more loops to arrive to the goal, but the planner taking more time to do so is TEB. It

is necessary to emphasize that TEB is the only planner not showing a linear relation between

loops and calculation time, the point of slope change is the time in which the robot faces the

turn.

4.4. Path tracking 51

Figure 4.6: Time complexity Test 1.

The last comparison is between the velocity commands sent to the robot (Fig. 4.7). In

the y direction velocity it is 0, as an Ackermann vehicle can not move sideways. In the x

direction MPC and TEB are able to perform the tracking in higher velocity, the TEB reduces

velocity when facing the turn, which is properly way to drive. In rotation velocity, all local

planners behave similiarly, though MPC has a more oscillatory behaviour.

Figure 4.7: Velocity Commands Test 1.

52 Chapter 4. Results

4.4.2 Test 2

In this Test the robot must follow the path in Fig. 4.8.

Figure 4.8: Path to follow in Test 2.

In Fig. 4.9 we evaluate the distance from the robot to the path for the three different

planners. We can observe that DWA and TEB planners, when facing a turn, cross the global

path. As it is an absolute distance, it can be seen because of the ’M’ shape on the graphic

with the middle point at zero value (arround 250). Instead, the MPC planner keeps on the

same side of the global path while performing the turn. MPC is again the planner with the

most oscillatory behaviour.

Figure 4.9: Distance from robot to path in Test 2.

In Fig. 4.10 can be seen TEB is the planner keeping more distance from path while

following it. Still MPC is the planner with more erratic behaviour.

4.4. Path tracking 53

Figure 4.10: Distance Box plot Test 2.

At Fig. 4.11 the results are similar to the ones obtained in the previous Test.

Figure 4.11: Time complexity Test 2.

At Fig. 4.12 we can see DWA is the planner with more stable velocity along the tracking,

but its also the one having more problems to reach the goal, as seen on the rotational velocity

graphic. TEB performs more pronunciated turns.

54 Chapter 4. Results

Figure 4.12: Velocity Commands Test 2.

4.4. Path tracking 55

4.4.3 Test 3

In this Test the robot must follow the path in Fig. 4.13.

Figure 4.13: Path to follow in Test 3.

In Fig. 4.14 we evaluate the distance from the robot to the path for the 3 different planners.

The most robust behaviour is DWA,, while MPC has oscillatory performance.

Figure 4.14: Distance from robot to path in Test 3.

56 Chapter 4. Results

In Fig. 4.15 by other hand it can be seen MPC is the planner varying less the mean

distance along all the path.

Figure 4.15: Distance Box plot Test 3.

At Fig. 4.11 the results are different from the ones obtained in previous Tests. In this

case the planner to take more time to reach the goal is DWA.

Figure 4.16: Time complexity Test 3.

At Fig. 4.17 we can see DWA is the planner with more stable velocity along the tracking,

4.4. Path tracking 57

while MPC oscillates along all the path.

Figure 4.17: Velocity Commands Test 3.

58 Chapter 4. Results

4.4.4 TEB with/without homotopy class

In the time complexity Figures from last Tests, it can be seen that the TEB local planner

doesn’t have a linear behaviour. The reason is because of the parallel planning in distinctive

topologies (homotopy class). This requires much more CPU resources, since multiple trajec-

tories are optimized at once, thus the time complexity increases and, as explained, not in a

linear way (as the amount of different homotopic classes depends on the environment).

Figure 4.18: Time complexity Path 1 TEB with/without homotopy class.

Figure 4.19: Time complexity Path 2 TEB with/without homotopy class.

4.4. Path tracking 59

Figure 4.20: Time complexity Path 3 TEB with/without homotopy class.

From Fig. 4.18 to 4.20 it can be seen disabling the parallel planning increases the planner

performance in time complexity terms. Specifically, the efficiency increases from 3 to 10 times.

60 Chapter 4. Results

4.5 Obstacle avoidance

This Test compares the distance the DWA and TEB planners hold from an unknown obstacle

(i.e. not previously known from global costmap). The MPC planner is not included as it is

not able to avoid unknown obstacles.

Figure 4.21: Path to track.

To compare them, both planners are supposed to follow a straight path (Fig. 4.21), where

in the middle there is an obstacle they must avoid. The distance both planners keep along

the path is shown in Fig. 4.22.

Figure 4.22: Distance to obstacle.

Both planners perform a similar trajectory, avoiding the obstacle. The minimum distance

of DWA planner to the obstacle is 1.83 while for TEB planner it is 1.88.

Chapter 5

Conclusions and Future Work

In this work we have implemented three local planners for autonomous vehicles, the first based

on the Dynamic Window Approach algorithm, the second on the Timed Elastic Band and the

third on the Model Predictive Control.

Even if MPC is the local planner showing less distance to path on all tests performed, its

behaviour is more oscillatory than the others and, together with the fact that it is not able

to avoid unknown obstacles, it is not a planner that can be used on real robots yet.

Both TEB and DWA have a good performance keeping track of the path and avoiding

obstacles, still, DWA is better computationally speaking if TEB uses parallel planning. By

the way, TEB without parallel planning has better performance than DWA.

The Ackermann kinematics incorporation to three planners has been successful, generating

movements that vehicles with that geometry can perform.

The future work to do should focus on the recovery behaviour, in order to restart the

planning if the robot is stuck or the behaviour is too oscillatory. It can be improved also the

communication global/local planners, to have a better performance. In the last place, the

MPC local planner should be modified in order to be able to avoid unknown obstacles.

61

62 Chapter 5. Conclusions and Future Work

Bibliography

[1] T. Lozano-Pérez, and M. A. Wesley. “An algorithm for planning collision-free paths among

polyhedral obstacles,” Commun. ACM, vol. 22, no. 10, pp. 560–570, Oct. 1979.

[2] D. Fox, W. Burgard, and S. Thrun (1997). ”The dynamic window approach to collision

avoidance”. Robotics & Automation Magazine, IEEE. 4 (1): 23–33.

[3] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram (2012) ”Trajectory

modification considering dynamic constraints of autonomous robots”. Proc. 7th German

Conference on Robotics, Germany, Munich, pp 74–79.

[4] J.-P. Laumond, S. Sekhavat, and F. Lamiraux. ”Guidelines in Nonholonomic Motion Plan-

ning for Mobile Robots”, 04 2006, vol. 299.

[5] A. Koubaa, ”Robot Operating System (ROS): The Complete Reference (Volume 1)”, ser.

Studies in Computational Intelligence. Springer, 2016, vol. 625.

[6] Robot operating system. Accessed on 07.01.2018. [Online]. Available:

http://wiki.ros.org/ROS/Introduction

[7] nav core. Accessed on 18.01.2018. [Online]. Available: http://wiki.ros.org/nav core

[8] J.K. Fredlund, and K.S. Sulejmanovic. ”Autonomous driving using Model Predictive Con-

trol methods”, Lund University, Department of Automatic Control, Box 118 SE-221 00

LUND, 2017.

[9] D. Dougherty and D. Cooper. ”A practical multiple model adaptive strategy for single-loop

mpc”, 2002.

[10] J. Löfberg. ”Minimax approaches to robust model predictive control”, 2003.

[11] N. Jakobi (1997) ”Evolutionary Robotics and the Radical Envelope of Noise Hypothesis”,

Adaptive Behavior Volume 6, Issue 2. pp.325 - 368.

63

64 BIBLIOGRAPHY

[12] S. Wilson (1985) ”Knowledge Growth in an Artificial Animal”, Proceedings of the First

International Conference on Genetic Agorithms and Their Applications. Hillsdale, New

Jersey. pp.16-23.

[13] costmap 2d. Accessed on 15.01.2018. [Online]. Available: http://wiki.ros.org/costmap 2d

[14] dwa local planner. Accessed on 23.01.2018. [Online]. Available:

http://wiki.ros.org/dwa local planner

[15] teb local planner. Accessed on 17.02.2018. [Online]. Available:

http://wiki.ros.org/teb local planner

[16] R. Kümmerle. et al. g2o: ”A General Framework for Graph Optimization”, Proc. of the

IEEE Int. Conf. on Robotics and Automation (ICRA), May 2011.

[17] Ipopt solver. Accessed on 06.03.2018. [Online]. Available: https://projects.coin-

or.org/Ipopt

