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Abstract

The rapid innovation in vehicle related technologies recently led the automo-

tive industry to start focusing on the security of cars and internal networks,

admitting the dangerousness of cyberattack even in a field not usually con-

sidered related to computer science up until some years ago. Since it is a new

field in continuous evolution, much research still needs to be done in order

to produce tools for the development of secure infrastructures and networks

towards the security by design paradigm. In this thesis work we propose a

methodology and its implementation through a tool to help analysts while

designing and assessing the security of vehicle on-board networks. The tool

first performs a risk based analysis on a specific network topology and pro-

pose a set of values to the analyst that help understanding the strong and

weak points of the given architecture, then it evaluates the global security

level of the topology assigning a grade related to the risk and finally, through

those values, proposes multiple countermeasures to improve the architecture

in the prevention against the most dangerous attacks.
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Sommario

L’autoveicolo negli ultimi anni ha certamente subito una forte spinta inno-

vativa. Questo è il frutto di grandi investimenti che l’intera industria auto-

motive più di altre ha voluto fare, per migliorare la sicurezza, la comodità

e l’usabilità dei veicoli a quattro ruote. I primi sistemi di cruise control si

sono evoluti in tecnologie intelligenti in grado di moderare automaticamente

la velocità a seconda della prossimità dell’automobile davanti e di frenare

autonomamente in caso di emergenza (Adaptive Cruise Control); i sensori

che avvisavano il guidatore dell’attraversamento delle righe di corsia si sono

integrati in moderni sistemi che automaticamente apportano correzioni allo

sterzo per mantenere l’autoveicolo in corsia (Active Lane Assist). Paralle-

lamente a queste evoluzioni sono entrate nel abitacolo tecnologie di teleco-

municazioni wireless dapprima destinate solo all’ elettronica di consumo. Se

prima infatti si poteva al massimo trovare esclusivamente una connessione

Bluetooth con il sistema di infotainment della macchina e il ricevitore del

segnale GPS, oggi in diverse automobile troviamo la rete WiFi o persino la

connessione GSM. È chiaro come l’orizzonte di tutto ciò sia da una parte

la guida autonoma (ormai pronta a sbarcare sulle strade) e dall’altra l’IoT

(Internet of Things): i veicoli si scambieranno autonomamente tra di loro

informazioni sul tra�co e sulla potenzialità di scontro con altri veicoli , co-

municheranno con altri apparati lungo le strade come i sistemi di pedaggio,

e↵ettueranno automaticamente chiamate di emergenza in caso di incidente

inviando tutte le informazioni necessarie quali coordinate GPS e altre imple-

mentazioni che solo in parte oggi possiamo immaginare. Per questo motivo,
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in molti casi dobbiamo considerare le nuove automobili non semplicemente

come “macchine intelligenti” ma più come “computer su ruote”.

Tuttavia, l’introduzione di nuove tecnologie come sempre comporta nuovi

rischi alle macchine e agli uomini e nel nostro specifico caso si tratta di quelli

che oggigiorno vengono chiamati “rischi cyber”. Inoltre nello scenario che

noi trattiamo, relativo alle automobili quindi, questi rischi vanno considerati

ancora più pericolosi a causa della natura dei sistemi che possono colpire: es-

sendo infatti le macchine sia dei computer (schermi, dati, telecomunicazioni)

che dei sistemi fisici (motore, sterzo, freni) ed essendo questi due aspetti non

isolati ma interfacciati tra di loro, possono essere classificate come sistemi

cyberfisici e per questa ragione richiedono una attenzione maggiore per le

implicazioni di sicurezza che potrebbero generarsi in caso di manomissione

intenzionale che andrebbero a mettere in pericolo le persone all’interno e nei

pressi del veicolo.

Nel passato la sicurezza informatica, nella maggior parte dei casi, non

era una preoccupazione nella fase di progettazione delle architetture di rete

per le automobili. Difatti i primi studi di cyber security atti a fornire una

valutazione globale di queste reti hanno meno di 10 anni, finché i primi

standard definiti da organismi internazionali quali SAE hanno alimentato

l’interesse dei produttori a prendere in considerazione la sicurezza informatica

fin dalle primissime fasi di progettazione degli autoveicoli.

Nel corso degli anni diversi ricercatori hanno dimostrato la possibilità di

portare a termine attacchi informatici alle automobili con eventuali impli-

cazioni in termini di sicurezza. Quasi la totalità degli attacchi si struttura

in due fasi: inizialmente ottenere l’accesso all’architettura di rete interna

per poter inviare messaggi sul bus di sistema e poi forgiare messaggi su

misura che inneschino risposte specifiche da parte dei componenti in ascolto.

Dapprima gli studi hanno mostrato quali e quante cose si potessero fare

ottenendo l’accesso al bus tramite l’interfaccia di comunicazione per la di-

agnostica (OBD - II): frenare improvvisamente, disabilitare i freni, sterzare,

accelerare, mostrare messaggi sul display e molto altro. Poi i ricercatori

11



hanno voluto investigare la possibilità di perpetrare questi attacchi anche at-

traverso diverse superfici di attacco alcune delle quali accessibili persino da

remoto (lettore CD, Bluetooth, rete WiFi, connessione GSM) ottenendo esiti

positivi. Si può immaginare quindi la pericolosità di questi attacchi relativa-

mente ai danni che potrebbero comportare oltre al basso livello di sicurezza

riscontrato che spinge ancora oggi a nuovi studi della materia.

Risulta chiaro a questo punto quanto ci sia necessità di apportare contro-

misure in fase di progettazione che in qualche modo prevengano tali attacchi.

Ogni esperto di sicurezza tuttavia ha bene in mente il fatto che la sicurezza

totale di un sistema non è mai ottenibile e che quindi le contromisure da

adottare vanno valutate secondo il solito trade o↵ tra costi e benefici dove la

variabile benefici è rappresentata dalla diminuzione globale del rischio. Ciò

che è necessario è quindi attribuire una priorità alle contromisure da adottare

che tengano conto degli assets più sensibili da proteggere. Per rispondere a

questa esigenza viene di solito svolta quella che nel settore è chiamata analisi

del rischio (un processo di identificazione dei possibili attacchi con annessa

una valutazione della pericolosità) e vi sono alcuni studi e documenti già pub-

blicati che espongono come applicarla nel contesto del autoveicolo. Tuttavia

ciò che manca allo stato dell’arte è una metodologia di analisi del rischio

che tenga conto anche delle diverse architetture di rete delle automobili, una

analisi del rischio applicata alla specifica topologia della macchina presa in

considerazione. Per esempio una analisi del rischio che tenga conto del fatto

che la macchina presenti o meno determinate interfacce di comunicazione o

determinati sistemi di “guida autonoma” quali la frenata d’emergenza o il

cruise control. Questo è il primo contributo che proponiamo di apportare

con questo lavoro di tesi: una metodologia e una implementazione (tramite

la programmazione di uno tool) di analisi del rischio basata sulla topologia di

rete. L’importanza di questo strumento la si può comprendere a pieno solo

scoprendo il secondo contributo che questa tesi vuole dare; l’automazione

di un processo di valutazione globale del rischio su diverse vetture perme-

tte di testare e valutare velocemente diverse configurazioni della topologia di
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rete e di conseguenza permette di trovare velocemente le contromisure che

decrementino il valore di rischio maggiormente. E questo è quindi il sec-

ondo contributo che proponiamo: un algoritmo di generazione automatica

di contromisure basato sulla diminuzione del rischio globale di una specifica

architettura.

Per raggiungere questi obbiettivi siamo partiti inizialmente dagli studi

esistenti e dalle metodologie già realizzate che abbiamo modificato per adat-

tarle al nostro bisogno. Siamo partiti quindi dalla definizione delle possi-

bili minacce attraverso la costruzione di alberi d’attacco che rappresentano

i possibili scenari dell’attaccante mostrando come più azioni di basso livello

vengono integrate per ottenere obbiettivi di alto livello. In questo modo abbi-

amo creato una connessione fra l’architettura (le azioni di basso livello sono

state infatti mappate sui diversi componenti) e il rischio (gli obbiettivi di

alto livello sono stati valutati secondo la loro pericolosità) che ci permettesse

di attribuire un valore globale di rischio a una determinata topologia. Poi

abbiamo costruito l’algoritmo di generazione delle contromisure il quale ha

come perno del suo funzionamento proprio la valutazione globale del rischio;

ad ogni step infatti prova tutte le possibili combinazioni di spostamenti di

un componente da un bus all’ altro della topologia oltre a provare possibili

inserimenti di gateway e alla fine applica la contromisura che maggiormente

diminuisce il valore di rischio. L’algoritmo termina quindi con una soluzione

di topologia ottimale che tiene anche conto di eventuali vincoli di proget-

tazione previsti dal produttore.

Una volta sviluppato il tool che implementasse queste metodologie, lo ab-

biamo applicato alle topologie di tre autoveicoli in circolazione e ne abbiamo

constatato la funzionalità anche paragonando i risultati ad altre valutazioni

precedentemente fornite da esperti del settore.

Questa tesi vuole essere quindi un punto di partenza per la progettazione

di nuovi e più precisi strumenti che aiutino i produttori in fase di proget-

tazione a trovare le contromisure prioritarie per produrre automobili sempre

più sicure.
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Chapter 1

Introduction

In last years vehicles and all automotive industry has received a strong in-

novative boost, more than many other technology industries. At first with

the introduction of new safety systems like collision avoidance or lane assist

(figure 1.1) and later with the integration of wireless communication system

like WiFI, GSM or those proposed to implement the V2X paradigm, the car

has exceeded the number of one hundred millions lines of code (more than a

space shuttle or a Boing 777) [2]. For this reason, in many cases we have to

consider new road vehicles not just like “smart cars” but more like “comput-

ers on wheels”. As always, the introduction of new technologies brings new

risks to machines and humans, in this case mostly increasing the so called

“cyber risks”. Moreover, in the specific scenario of vehicles these risk may

be considered even more dangerous due to the nature of systems they can

a↵ect: being cars both computers and physical systems they can be classified

as cyberphysical systems, and for this reason deserve even more attention due

to the safety implication that could be generated by flaws, that may lead to

put in danger people inside or around the vehicle.

In the past, cybersecurity was not a design-phase concern for most vehicle

networks: as a matter of fact, the very first document about a comprehensive

cybersecurity assessment of such networks is less than 10 years old [3,4]. Suc-

cessivly, the appearance of the first standards by SAE [5] fueled the interest
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Figure 1.1: Active Lane Assist and Adaptive Cruise Control

of manufacturers for embedding security considerations into the design phase

of new vehicles and nowadays new analysis tools are rising.

Moreover, we need to consider that the technology used today to protect

vehicles are very often in use for ten years or more, so any design observation

that is applied today needs to ensure that it can last up until 2030 without

having to be physically changed.

If we consider the whole set of attacks that have been proven possible

by multiple researchers [3, 4, 6, 7] we easily understand the importance of

security in vehicles. In fact, in these studies, researchers can manage to put

at risk the privacy and safety of the driver, passengers and people surround-

ing the vehicle also demonstrating the eventual damage that this type of

attacks could cause. For instance they have been able on di↵erent cars to

control the braking, the steering, the acceleration and to show messages on

the display by only accessing the OBD-II port of the vehicle. Subsequently

they also demonstrate the possibility to access the car internal network re-

motely through attack surfaces like the Bluetooth, Wi-Fi, Cellular or other

communication interfaces.

For these reasons, while designing new vehicles, connected and full of cy-

berphisical systems, it is extremely important to focus on security especially
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when considering the electronics architecture. The design phase of the ECUs

and all electronic parts of a vehicle comprehends multiple steps, from the

design of the single unit, both from a hardware and software point of view,

to the layout of the on board network topology composed of all the com-

municating units and sensors; the focus of this thesis work is on the latter

one. The main known analyses about this subject have been done by Miller

and Valasek [8], by the european project EVITA [1] and the SAE guidebook

SAE-J3061 [5]. The latter one proposes guidelines for a secure design of on

board networks and it higlights the importance of risk analysis in the de-

sign phase but has not been thought to produce a practical methodology to

evaluate an existing architecture. On the other hand, Miller and Valasek

have been known for their proof of concept attacks first through the OBD-

II port of a vehicle [6] and then through external connections such as Wifi

and cellular networks [9]. Apart these two extremely significant papers they

also proposed an analysis of the on board network of multiple vehicles, which

considered mostly the risks involved with the layouts of the networks and the

ease, for an attacker, to reach safety critical ECUs. Although the analyses

done are complete and well described, what is not proposed in their work is a

way to systematize the process of risk analysis for automotive vehicles. This

has been partially solved by Ruddle et al. [1] in their paper for the EVITA

project: they came out with a methodology to produce risk analyses for

the automotive industry. This type of risk analysis provides risks associated

to each attack but the main limit is that it is not topology based: it does

not depends on the specific car, it gives the same results for each di↵erent

scenario.

Our proposal focuses mainly on three di↵erent contributions:

1. An improved risk analysis methodology based on the one by Ruddle et

al., that maintains part of the core concepts of the well known project

but enables the possibility to create an ad-hoc topology based analysis

for each network.

2. For each di↵erent network, an algorithm to propose optimal solutions
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that focuses on changing the layout of the topology and inserting fire-

walls if needed.

3. An implementation of the aforementioned methodologies to systemati-

cally and automatically retrieve the scores of each network and discover

the optimal solutions, using as inputs only the description of the topol-

ogy itself, without having to create each attack path for each topology.

We have finally analyzed tests performed with the developed tool on three

di↵erent real architecture topologies (the 2014 Jeep Cherokee, the 2014 Audi

A8 and the 2010 RangeRover Sport) to evaluate the program outputs and

we have verified results meaningfulness compared to considerations made by

Miller and Valasek in [8].

The rest of this work is structured as follows: chapter 2 presents the

problem and the goal of the study alongside a background section, chapter 3

presents the whole methodology, focusing first on the attack trees and risk

function used to retrieve the scores for each attack, and then on the algo-

rithms and methods used to obtain from those scores the whole topology

based risk analysis and solution proposals for the specific network. Chap-

ter 4 describes the implementation of the proposed methodologies in a semi

automatic tool while chapter 5 presents the results of our work, comparing

them with other previously evaluations. Finally chapter 6 discusses the re-

sults we found and concludes the thesis with an analysis of possible future

works.
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Chapter 2

Motivation and Background

2.1 Problem Statement

Every security specialist knows that no system is invulnerable and that every

securing problem is a risk management problem with the usual trade o↵ be-

tween risks and costs. In fact preventing every single attack against a system

is more than often infeasible either due to specification requirements or in

terms of costs. These notions also apply to automotive systems and led us

to look for a risk analysis methodology that allows us to find the most risky

attacks. Based on these analysis outputs we could propose specific priori-

tized countermeasures. Prioritization is the keyworld of this work: having

said that we cannot deal with every possible attack, we need to find which

countermeasures have to be done at first in order to minimize the risk.

Vehicle internal networks are quite various, having di↵erent kinds and

amounts of ECUs and di↵erent ways of interconnecting them. It is easy

to understand how the topology of a vehicle influences the risk related to

attacks. A vehicle with no wireless communication interface and no cyber-

physical system is clearly less attackable than a system full of external con-

nections and automatic driving tools. Therefore, threat analysis and risk

assessment process (TARA) needs to be topology based in order to consider

the influence of the architecture on it.
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2.2 State of the art

In this section we present the main studies and works that have been pro-

duced regarding risk analysis in the automotive sector and evaluations on car

internal architecture topologies.

2.2.1 Risk Analysis

EVITA Project

Ruddle et al. produced a paper [1] for the EVITA European project in which

they also described a methodology to produce risk analyses for the automo-

tive on board networks. The way they propose it is by using a technique that

relies on attack trees (a conceptual representation of the necessary steps to

perform an attack) and that enables the analyst that is assessing the secu-

rity of the network to retrieve rankings through a risk function, so that it

is possible for her to analyze a set of possible attacks basing on a common

measurement system. In this way the analyst can understand which are the

more risky attacks and therefore the ones that have higher priority in being

prevented. There are three specific elements of Ruddle et al. proposal that

we focus on improving: the first is that it is not topology oriented, it can

be used to describe the attack path on a general layout but it has not been

thought to change the risk of specific attacks in specific network layouts. The

second is that it requires the analyst to describe, for each attack, the whole

attack path by hand to retrieve the final attack score. Finally, it does not

easily provide solutions to the highlighted vulnerabilities.

SAE

The document J3061 produced by SAE International [5] is a strong cyber-

security guidebook for vehicle systems throughout the entire development

lifecycle process. The authors of the document firmly state the necessity of

a Threat Analysis and Risk Assessment (TARA) process in the design phase
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Figure 2.1: Security requirements determination process

in order to identify cybersecurity goals and then requirements as described

in figure 2.1. The work also cites the EVITA Risk Analysis [1]as one of the

valid methods to implement the TARA process.

2.2.2 Architectures Evaluation

Miller and Valasek

As we already said above, these two researchers in one of their works [8]

proposed an analysis of the on board network of multiple vehicles, which

considered mostly the risks involved with the layouts of the networks and

the ease, for an attacker, to reach safety critical ECUs. They used the in-

formation retrieved by the analysis of the vehicle to propose a ranking that

mainly considered the architecture of the network, the amount of external

attack surfaces and the dangerousness and amount of cyberphysical controls

that the vehicle had such as cruise control and lane assist. These analyses

are well described and very extensive since they considered very di↵erent

topologies, however the main limit is that when they evaluated the architec-

ture of the network (one of the three main factors) they attributed values
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Figure 2.2: Digital I/O channels appearing on a modern car

only based on their personal consideration and knowledge. Having done this

way, they did not provide a standard method to establish the riskiness of an

architecture topology. By the way we used their topologies and rankings as

a valid and trusted benchmark to compare our evaluations.

Checkoway et al.

Concerning architectures but not focusing on topologies, Checkoway et al.

produced a paper [4] that analyzes a large number of attack surfaces. This

work has been an important step towards the study of the subject because

besides providing a general framework about what are the possible entry

points to direct an attack against a car (figure 2.2), it also developed sur-

faces evaluations regarding attack range, attack costs and vulnerability level:

a necessary starting point for every consideration about architecture topolo-

gies.

21



2.3 Goals and Challenges

The main two goals of our work are:

• Topology Based Risk Analysis: define and implement through a

tool a methodology to asses the threats and analyze the risk of a system

considering both the set of possible attacks and the actual internal

architecture topology of the vehicle.

• Automatic Countermeasures Proposition: define and implement

through a tool a methodology to automatically generate countermea-

sures that decrease the global risk of the architecture.

These two goals opens several challenges to overcome. For instance in or-

der to calculate the risk we need to define a risk function and so decide

the parameters that determine the risk, then how this risk function is influ-

enced by the topology. Moreover all these processes need a mapping between

components of the architectures and possible attacks in order to establish a

connection point (influence point) between the two data structures. Regard-

ing the countermeasures proposition we need to define what types of coun-

termeasures can be generated, what prioritization mechanism (optimization

function) and then also which types of constraints can limit this process.
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Chapter 3

Approach

3.1 Overview

Our aim is to devise a topology-based risk analysis methodology for auto-

motive on-board networks and an algorithm that can automatically derive

security solution proposals to improve the security of a vehicle. The set of

proposed solutions might involve both movements in the network layout in

order to protect the most important ECUs by increasing their distance from

attack surfaces, as well as the possibility to insert gateways or other segre-

gation mechanisms that strengthen the security of a specific subnetwork by

shielding it from attack surfaces. In order to obtain both the risk analysis

and the proposed improvements, we need an automated risk evaluation al-

gorithm. In fact solutions proposals will be generated by an algorithm that

at each step will look for the countermeasure that would lead to the highest

decrease of the score output by the risk evaluation methodology.

This evaluation methodology and implementation must take into account

an expansible set of known attacks to automotive on-board networks. In

order to do so, we assign to each attack a grade called “risk value” that

is used to classify its dangerousness and create a ranking. This score is

calculated through a risk function that mainly considers the attack “severity”

(the damage that the attack can cause) and its “feasibility” (the easiness of
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implementation). The latter is obtained taking into account, through the

development of custom attack trees, all possible combinations of single steps

that may enable said attack. The whole process is automated and can be

updated incrementally, supporting the analysts and designers at each step.

3.2 Details

Figure 3.1 may help in understanding the work path in a top down approach

which sums up what has been said above. Starting from our goal that are

the final “Risk Values” of the attacks, we understood that we need a “Risk

Function” to calculate them. Subsequently we understood that the “Risk

Function” needs some input values to elaborate the result and some of these

parameters are the “Feasibility Values”. Finally we realized that in order to

get these values that are related to attacks we need to model somehow the

threats: “Attack Trees”. This final step will be our starting point.

Next subsections are structured as follows: at first in 3.2.1 we will de-

scribe the attack tree designing process, then in 3.2.2 we will present the

risk function and in 3.2.3 how it is applied to attack trees in the context of

an “a priori” (not considering the topology) risk analysis. Subsequently in

3.2.4 we will show how the risk function is combined with an actual system

architecture to provide a “topology based” risk analysis and finally in 3.2.5

we will explain how countermeasures are generated taking advantage of the

risk analysis.

3.2.1 Attack Trees

We choose to model attack and threat scenarios through attack trees [10] in

order to propose a systematic method to support risk analysis. As a matter

of fact, this model shows how low-level actions interact to achieve high-

level objectives through hierarchical diagrams, providing a methodical way

of describing the potential attacks. It is a simple way to describe complex

processes, such as cyberattacks, dividing them into small building blocks
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Figure 3.1: Approach Work Path

which can be modularly assembled. In particular, each parent node in the

tree represents an action that can be completed through children nodes.

We designed very structured trees with a precise level separation orga-

nized in this order:

Goal �! Attack �! Method �! Step �! Action

The root of the tree is always an abstract goal (level 0) which the attacker

wants to obtain. The goal is the final purpose of the attacker, what drives

him to act and it does not consider in any way the means through which

it has to be obtained, which is represented by the attack (level 1). Each

attack can be achieved through di↵erent methods (level 2) which represent

all the ways in which a specific attack can be performed. A method to be

implemented requires a set of steps (level 3) which are all the elements that

must be present or the intermediate objectives that have to be accomplished

to execute that specific method. Finally, even a step can be obtained through

multiplemalicious actions (level 4) which are the basic element of the whole

tree.
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Figure 3.2: General Attack Tree Hierarchy
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Figure 3.3: Steering Attack Tree Example
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As we already said, this hierarchical model needs to be very structured an

must maintain precise relationships among di↵erent levels. In fact we chose

that the relationship between a node and his child nodes could only be of

two types: logical OR or AND. In particular, starting from the higher levels,

an attack is a logical OR combination of methods, a method is a logical

AND combination of steps and finally a step is a logical OR combination of

malicious actions. These rules have to be always respected while build-

ing attack trees otherwise it would not be possible to enable a successive

automatic risk calculation.

Figure 3.2 shows the hierarchy structure described above whereas figure

3.3 presents, as a simplified example, the modelling of an attacker who has

the goal of causing an accident. In this example, the only way to cause an

accident is to steer the car while the driver is not supposed to (although

this one is not the only possible attack able to cause an accident, we made

this supposition for sake of simplicity). To obtain this attack there are two

methods, that we called “Method A” and “Method B”, that are alternatives

(thus in a logical OR relationship). Method A consists of generating a “Lane

Steer Command”, but it requires an ALA (Active Lane Assist) component

to be present, so these two steps are in a logical AND relationship as both are

necessary. In order to generate a steer command the attacker can either force

the ALA to request the vehicle to steer for example through malware injec-

tion, impersonate the ALA in the bus and send himself the forged request or

simulate the environmental conditions which would require to turn, making

so that the ALA acts in an incorrect manner without even reaching it. As

these three Actions are equivalent, they are in an OR relationship. On the

other hand, Method B consists of generating a “Parking Steer Command”

but at the same time the PAM (Parking Assist Module) control unit needs

to receive a “Slow Speed Signal”; in fact in most cases PAM module requests

are ignored if the speed is over a defined threshold. Moreover this method

obviously requires the presence of the PAM module. In order to generate

a parking steer command the attacker can either force the PAM to request
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the vehicle to steer, impersonate the PAM in the bus and send himself the

forged request or simulate the environmental conditions which would require

to turn, making so that the PAM acts in an incorrect manner without even

reaching it. Whereas, to make the PAM receive the signal that the car is

stopped or proceeding slowly the attack can directly transmit the information

on the bus impersonating the sensor or manipulate the sensor to simulate a

slow speed state.

Another important feature and rule that we can notice from figure 3.3

is that every malicious action (leaf nodes) is mapped on a precise possible

component of the vehicle. This means that smallest building blocks used to

build an attack tree can only be picked up from a set of possible actions on

possible components.

Attack trees allow the model to be strongly modular, making it easy to

add new methods by just combining steps, or by adding new ones. If new

information arises (or new methods are identified) the model can be updated

easily and updates can be propagated throughout the tree chain and through-

out the other steps of our methodology. Also, the high level of abstraction

of the root “goal” component makes it possible to comprehensively address

the set of basic threats to vehicles through only five trees.

We list now the set of attacks that we identified divided in the five goals:

• Causing an accident

– Adaptive Cruise Control DoS

– Collision Avoidance DoS

– Active Lane Assist DoS

– Disable Brakes

– Brake

– Activate Air Bag

– Turn O↵ Headlights

– Lock Steering
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– Steer

– Overheat Engine

– Speed Up

– Turn O↵ Engine

– Engage Seat Belt

• Vehicle theft

– Remote Acceleration

– Key less Ignition

• Ransomware

– Lock Engine

– Lock Brakes

– Lock Doors

• Information theft

– Eavesdrop On Conversations

– Capture Cameras Images

– Get Address Book

– Track Position

• Insurance fraud

– Tamper Odometer

– Hide Crash Info

While we do not claim to provide a complete coverage of all possible (or in-

deed, even all known) attacks, it should be noted that our main purpose is to

propose a methodology through which we can enable automation. Through

this generalization therefore we propose a set of the major known attacks
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and the known paths to implement them, so that it is possible just by im-

plementing our proposal as it is to know how topologies are a↵ected by the

most known and dangerous attacks, but we do not claim to provide the com-

plete set of known automotive attacks. To model these threats and imagine

many possible attack paths we studied in deep the bibliography produce by

expert researchers. We have indeed found many attack methods ideas and

proofs of concept in [3], [6] and [9]; most of the methods focused on two main

steps: access the internal bus network through a communication interface

and then send messages on the bus to trigger specific actions of the listening

components.

Di↵erences from EVITA proposition

The idea of using attack trees in a vehicle environment, per se, is not novel:

the EVITA project also explored it while making their risk analysis [1]. Our

attack tree has a consistent strength in relation to the ones of the EVITA

project though: in their trees there is no structured and clear division be-

tween AND and OR levels. Although at first sight this could seem and

advantage in terms of flexibility, it leads to situations in which high final

objectives and initial actions are on the same level. Our methodology is in-

stead more structured, without actually creating any limitations: although

it may require to create one more step than the EVITA one to complete an

attack tree, it makes possible to structure the same attacks on the same level

of detail. Also, being more structured, it enables a semi automatic analysis

through a tool we propose later in the paper.

More importantly, the novelty of our methodology is mapping the leaf

nodes (low-level actions) onto the components of the network architecture.

For instance EVITA does not di↵erentiate among proximity sensors, light

sensors and speed sensors enclosing them in the category “In car sensors”,

but our final objective, a topology based risk analysis, would be impossible

without distinguishing those components.
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3.2.2 Risk Function

Since our final goal is to highlight the most critical nodes of a vehicular

network, and to propose design improvements, we need to devise a method

and a function to calculate the risk of each attack patch in the tree. In

particular, we need a function that takes as input variables of the the attack

and outputs a risk value. Since it is one of the methodologies recommended

by [5], we use a slightly modified version of the function and ratings proposed

in [1]:

R = riskF (A, S, C)

Where the inputs are:

• Severity (S), a parameter that represents the potential damage that

an attack can cause. It is further broken down in four aspects or types

of e↵ect (Safety, Privacy, Financial and Operational), each one with

a parameter value that can range from S0 (no threat) to S4 (very

significant threat). The four severity levels are defined as in Table 3.1

as proposed in [1].

• Controllability (C), a parameter that has to be considered only when

the severity vector includes a non-zero safety component, and which

represents the potential for the driver to confine the severity of the

outcome. Four di↵erent levels of controllability are considered, from

C1 (avoidance possible through human response) to C4 (situation im-

possible to influence).

• Attack Feasibility
1(A), a parameter that describes how easy is to

complete the attack on a scale from A0 (impossible) to A5 (very easy).

All parameters are related to each specific attack (i.e., level 1 of the attack

tree). Parameters S and C can be defined a priori for the attack, whereas

1This parameter was called “attack probability” in [1], but we decided to change the
name for clarity, as this is evidently not a probability.
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Table 3.1: Attack severity classification scheme (from [1])
Severity

Value

Safety Privacy Financial Operational

0 No injuries. No unauthorized
access to data.

No financial
loss.

No impact on
operational per-
formance.

1 Light or moder-
ate injuries.

Anonymous data
only (no specific
driver of vehicle
data).

Low level loss. Impact not
discernible to
driver.

2 Severe injuries
(survival prob-
able). Light
or moderate in-
juries for multi-
ple vehicles.

Identification of
vehicle or driver.
Anonymous data
for multiple vehi-
cles.

Moderate loss.
Low losses for
multiple vehi-
cles.

Driver aware
of performance
degradation.
Indiscernible
impacts for
multiple vehi-
cles.

3 Life threatening
(survival uncer-
tain) or fatal in-
juries. Severe
injuries for mul-
tiple vehicles.

Driver or vehicle
tracking. Identi-
fication of driver
or vehicle, for
multiple vehicles.

Heavy loss.
Moderate
losses for mul-
tiple vehicles.

Significant im-
pact on perfor-
mance. No-
ticeable impact
for multiple ve-
hicles.

4 Life threatening
or fatal injuries
for multiple ve-
hicles.

Driver or vehicle
tracking for mul-
tiple vehicles.

Heavy losses
for multiple
vehicles.

Significant im-
pact for multi-
ple vehicles.
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instead parameter A is derived through a two-step process: “Action Feasibil-

ity Definition” and “Attack Feasibility Derivation”. Once these two phases

are completed the process goes on with the “Risk Function Application”.

Action Feasibility Definition

In the first step, we evaluate for each leaf node a set of attack require-

ments
2, i.e. the e↵ort needed for the malicious action to be successful. We

use a similar methodology to [1], considering five factors for each malicious

action:

• Elapsed time: the total amount of time to identify a vulnerability,

develop an attack and perform it.

• Specialist Expertise: the general knowledge required by the attacker in

relation to these types of attack.

• Knowledge of the system under investigation: the specific knowledge

of the system needed by the attacker.

• Window of opportunity: the time available to the attacker to access

the exploitable target.

• IT hardware/software or other equipment: all kind of equipment needed

to perform the attack.

We evaluate each of these factors according to Table 3.2, adding up the

requirement values (the higher the value, the higher the di�culty or challenge

for the attacker due to that factor). The result, evaluated according to

Table 3.3, can be correlated to attack feasibility (of course, the higher the

attack requirements, the lower the feasibility).

As an example, let us calculate the attack feasibility of a malicious action

where a connected unit of a vehicle is remotely reflashed with a malicious

firmware:
2Called “attack potential” in [1]
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Table 3.2: Rating of attack requirements aspects (derived from [1])
Factor Level Comment Value

Elapsed Time

 1 day 0
 1 week 1
 1 month 4
 3 months 10
 6 months 17
> 6 months 19
not practical The attack path is not exploitable within a timescale that

would be useful to an attacker.
1

Expertise

Layman Unknowledgeable compared to experts or procificient persons,
with no particular expertise.

0

Proficient Knowledgeable in being familiar with the security behaviour
of the product or system type.

3

Expert Familiar with the underlying algorithms, protocols, hardware,
structures, security behaviour, principles and concepts of se-
curity employed, techniques and tools for the definition of new
attacks, cryptography, classical attacks for the product type,
attack methods, etc.

6

Multiple ex-
perts

Di↵erent fields of expertise are required at an Expert level for
distinct steps of an attack.

8

Knowledge
Public e.g. as gained from the internet. 0
Restricted e.g. Knowledge that is controlled within the developer or-

ganization and shared with other organizations under a non-
disclosure agreement.

3

of system
Sensitive e.g. Knowledge that is shared between discreet teams within

the developer organization, access to which is constrained only
to team members.

7

Critical e.g. Knowledge that is known by only a few individuals, access
to which is very tightly controlled on a strict need-to-know
basis and individual undertaking.

11

Window of

Unnecessary/
unlimited

The attack does not need any kind of opportunity to be real-
ized because there is no risk of being detected during access
to the target of the attack and it is no problem to access the
required number of targets for the attack.

0

Easy Access is required for  1 day and number of targets required
to perform the attack  10.

1

Moderate Access is required for  1 month and number of targets re-
quired to perform the attack  100.

4

Opportunity
Di�cult Access is required for > 1 month or number of targets required

to perform the attack > 100.
10

None The opportunity window is not su�cient to perform the attack
(the access to the target is too short to perform the attack, or
a su�cient number of targets is not accessible to the attacker).

1

Equipment

Standard Readily available to the attacker. 0
Specialized Not readily available to the attacker, but acquirable with-

out undue e↵ort. This could include purchase of moderate
amounts of equipment or development of more extensive at-
tack scripts or programs.

4

Bespoke Not readily available to the public because equipment may
need to be specially produced, is so specialized that its distri-
bution is restricted, or is very expensive.

7

Multiple be-
spoke

Di↵erent types of bespoke equipment are required for distinct
steps of an attack.

9

35



Table 3.3: Attack Requirements to Action Feasibility Table (derived from [1])
Values Attack Requirements Action Feasibility

0-9 Basic 5
10-13 Enhaced-Basic 4
14-19 Moderate 3
20-24 High 2
�25 Beyond High 1

• Elapsed time: some months are required to evaluate the ECU vulner-

abilities and write the malicious firmware, 17

• Specialist Expertise: an expert is required, 6

• Knowledge of the system under investigation: supposing a reverse engi-

neering process there is no requirement in relation to system knowledge,

0

• Window of opportunity: there’s no specific requirement as the vehicle

just has to be turned on, 0

• IT hardware/software or other equipment: some tools may be required

to analyze and reflash the ECU, 4

So the attack requirement value is 27, which corresponds to a rating “High”

and to a feasibility of 2 (on our scale of 0 to 5).

By applying this analysis to all malicious actions we obtain the attack

feasibility for each leaf node in the tree.

Attack Feasibility Derivation

In order to apply the risk function and calculate the risk value of a specific

attack we need the attack feasibility at level 1 of the tree, however we have

only defined action feasibilities at level 4 of the trees (leaf nodes). So we

need a method to automatically calculate attack feasibilities starting from

the action ones and to do this we can combine children level values to derive

each parent level value in the tree. We therefore follow two simple rules: for
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Table 3.4: Feasibilities derivation rules
Children Feasibility

Attack OR of ’Methods’ MaxA(Children Methods)

Method AND of ’Steps’ MinA(Children Steps)

Step OR of ’Actions’ MaxA(Children Action)

Action A(Action) = {1 - 5}

OR nodes, the combined feasibility is the highest of the children feasibility

values (as the attacker will choose the easiest path), whereas for an AND node

the parent node feasibility is the same as the lowest value among its children

as described in table 3.4. These two rules are very simple however we have to

mention that we are no more considering “probabilities” but “feasibilities” so

we are not forced to use values between 0 and 1, furthermore it is an approach

really similiar to the one applied by [1]. In this way, following a bottom-up

precess, we derive the combined feasibility of each step until reaching level 1

attack feasibility.

A practical example of this attack feasibility derivation process is visible

in Figure 3.4.

Risk Function Application

At this point, we can apply the methodology described in [1] to combine

S, C and A into a qualitative risk value, ranging from R0 (no risk) to R8

(unacceptable/extreme risk). We obtain one risk value for each attack and

each risk category: safety risk, privacy risk, operational risk, financial risk.

For the first category, Table 3.6 is used, while for the risks not connected to

safety, Table 3.5 is used (since controllability does not influence the outcome).

Furthermore, for both tables this rule is valid: if a severity level of an attack

is 0, the risk level of the attack related to that severity will be 0 (if an attack

doesn’t have privacy related consequences, there is no privacy risk about that

attack).
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Figure 3.4: Feasibility computation example. In red, the action feasibility de-
fined as described above, and in yellow the derived values for steps, methods
and objectives.

Table 3.5: No safety related severity risk table
Security Risk Level(R) Attack Feasibility

A=1 A=2 A=3 A=4 A=5

Non-Safety Severity

S=1 R0 R0 R1 R2 R3
S=2 R0 R1 R2 R3 R4
S=3 R1 R2 R3 R4 R5
S=4 R2 R3 R4 R5 R6
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Table 3.6: Safety related severity risk table
Control- Safety-related Attack Feasibility

lability Severity A=1 A=2 A=3 A=4 A=5

C=1

S=1 R0 R0 R1 R2 R3
S=2 R0 R1 R2 R3 R4
S=3 R1 R2 R3 R4 R5
S=4 R2 R3 R4 R5 R6

C=2

S=1 R0 R1 R2 R3 R4
S=2 R1 R2 R3 R4 R5
S=3 R2 R3 R4 R5 R6
S=4 R3 R4 R5 R6 R7

C=3

S=1 R1 R2 R3 R4 R5
S=2 R2 R3 R4 R5 R6
S=3 R3 R4 R5 R6 R7
S=4 R4 R5 R6 R7 R8

C=4

S=1 R2 R3 R4 R5 R6
S=2 R3 R4 R5 R6 R7
S=3 R4 R5 R6 R7 R8
S=4 R5 R6 R7 R8 R8

To clarify with an example, let us suppose that for the attack shown in

Figure 3.4 severity and controllability are defined as follows:

• Safety Severity: 3

• Operational Severity: 4

• Privacy Severity: 0

• Financial Severity: 2

• Controllability: 3

• Attack Feasibility: 3

If we apply tables 3.5 and 3.6 to the values above we obtain risk values

(divided in four respective categories) relative to the specific attack. The

result is the following:
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• Safety Risk: 4

• Operational Risk: 3

• Privacy Risk: 0

• Financial Risk: 1

3.2.3 A Priori Risk Analysis

With the terms “a priori” and “topology based” we want to di↵erentiate be-

tween an analysis that doesn’t take the topology into account and an analysis

that does. In fact the two approaches will have di↵erent inputs, di↵erent aims

and di↵erent outputs. An “a priori” risk analysis, not considering a precise

car model or system architecture, is more generic and less precise. Its only

goal is to identify the main risks to be aware while designing a system and

rank them to prioritize countermeasures. It will not be able to automatically

understand if an attack is actually performable on the specific car which is

being designed; this could be done through a “topology based” risk analysis

that will consider instead the actual architecture topology of the system. An

“a priori” analysis applied to di↵erent cars will have the same outcome since

the topology will not influence calculations whereas a “topology based” anal-

ysis applied to di↵erent cars will provide di↵erent outcomes. Having di↵erent

outcomes means that we will be able to evaluate and compare architectures.

Complete Process

The process of the “a priori” risk analysis is exactly the one described until

now and corresponds to applying the risk function to all attacks present in

the attack trees after having defined or derive all parameters. Figure 3.5 may

help synthesizing how the process work: Malicious Actions of the attack trees

are passed through an attack requirement analysis as a first step and from this

phase the Action Feasibility is defined. The generated Action Feasibilities are

then used as inputs of the attack trees to derive Attack Feasibilities. Finally,
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Figure 3.5: Algorithm sequence process (“a priori”)

The Attack Feasibilities alongside the Severity and Controllability of each

attack are passed through the Risk Function to obtain the set of outputs

that we present in next subsection.

Outputs

At the end of the topology-based risk analysis process, we obtain as outputs:

• The attack trees generated from original ones, annotated with up-

dated feasibilities and with risk values for each attack.

• A ranking of the most dangerous attacks, by safety, privacy, finan-

cial or operational risk value.

• A ranking of the most sensitive malicious actions, showing the

actions most involved in dangerous attacks: they can be ranked by

an “importance value” obtained by adding together all the risk values

of attacks in which the malicious action is involved, multiplied by the

feasibility value of the action and by the feasibility value of the method
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in which it appears (to give a higher importance to malicious actions

that are easier to implement or that appear more frequently).

3.2.4 Topology Based Risk Analysis

The core novelty of our approach lies in the topology-based risk assess-

ment. All previous research, to the best of our knowledge, always focused on

analysing the risk either ignoring the actual architecture of the vehicle, or at

best assuming it to be known a priori and fixed, a sort of “black box” that

influences the output but is not a parameter under assessment.

We aim to perform a topology based analysis where we consider only

attacks that are actually achievable given the topology under assessment and

considering the impact of the topology on the feasibility of those attacks, with

the final aim of proposing structural countermeasures.

In order to achieve this, we need to “map” the risk function discussed in

Section 3.2.2 onto the topology model.

The first step is to provide a structure to model the architecture. In most

cases, in-vehicle communications are based on di↵erent buses, on which sig-

nals are transmitted using di↵erent protocols (the typical choice is CAN [11]

but even LIN [12] is quite common). In this thesis we do not consider the

specific di↵erences among such protocols, although the modularity of the

analysis and of the developed tool allows future extensions in this direction

and requirements can be simulated with constraints.

In most such architectures, there are several ECUs connected to a small

number of di↵erent buses. Some ECUs are connected to more then one

bus, acting as gateways. It is natural to represent such topologies using

graph models, in particular star graphs. In these graphs we distinguish two

di↵erent kinds of existing components: either an ECU is connected with

external surfaces and is therefore defined as an attack surface or it is not and

is then consider as a normal ECU. Finally, we map all buses to the attack tree

leaf nodes that are involved in attacks focusing on a bus (i.e. DoS of CAN

Bus) so that the action involves only the specific bus that is being attacked.
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Figure 3.6: Topology example: three buses coloured in blue and multiple
components connected to them (red for attack surfaces and green for other
ECUs)

An architecture topology model example is provided in figure 3.6.

In order to map risks onto the topology, our key intuition is that the only

input of risk functions (attack feasibility, severity and controllability) that

can change due to the topology is the attack feasibility, as controllability and

severity are related directly to the higher levels of the attack tree. Therefore,

if we can link attack feasibility at leaf node level to the topology of the

network, we can apply the very same process described in Section 3.2.2 to

obtain a risk value that is influenced and changes along with the topology.

The only di↵erence we implement when working on the topology based

risk analysis in relation to the risk function is that instead of using the tables

proposed in section II-B to obtain the risk value, which only accept finite

output values, we use the linear functions that represent said tables: for non
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safety risk values (table 3.5) we use

Rx = Ax + Sx � 3

for safety related risk values (table 3.6) we use

Rs = As + Ss + C � 4

Values are then capped at a maximum of 8 and a minimum of 0 if required,

to follow the tables. As in previous “table” version for both functions is

valid this rule: if a severity level of an attack is 0, the risk level of the attack

related to that severity will be 0. Moreover is also valid this other rule: if

the feasibility of an attack is 0, then all risk values of the attack are 0. This

second rule wasn’t considered in “a priori” risk analysis because it wasn’t

permissible that a feasibility could be 0 whereas now this is a possible case.

The impact of topology on attack feasibility can be twofold. The most

trivial impact is that, in some architectures, an attack cannot be performed

because of the absence of a specific required component. For instance, any

attack which has a step where malware should be re-flashed on the Parking

Assist Module of a vehicle cannot be performed if this specific ECU is not

present. We handle this trivial case by setting to 0 (impossible) the feasibility

of any action related to components not found in the topology.

More interestingly, as suggested by Miller and Valasek in [8], the prox-

imity of an ECU to attack surfaces influences the feasibility. For example,

observe Figure 3.6: an injection on the CAN-C bus can happen through mul-

tiple attack surfaces, such as Bluetooth, CD reader and radio receiver. This

is more feasible, for an attacker, than injecting content on a bus that is not

connected to the outside. In order to account for this, we divide components

in two categories: attack surfaces and simple components. Attack surfaces

are all those components that o↵er an opportunity to the attacker to access

the internal network. Not all attack surfaces are equally dangerous, so we

rank them along three dimensions:
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• Cost: a value from 1 to 3 describing the cost and the e↵ort necessary

to break into the component and take control (1 means “high cost”, 3

means “low cost”)

• Surface: a value from 1 to 3 related to the amount of possible new

attack steps that can be done if the attacker obtains control of the

component (1 means few, 3 means many)

• Range: a value from 1 to 3 describing the necessary physical distance

from the vehicle to access the surface (1 means “in car”, 3 means “re-

motely exploitable”)

Once these values are set, they are added up and the result is transformed in

a number between 1 and 3, 1 if the sum is between 1 and 5, 2 if the value is

6, 3 if the value is higher, obtaining a “dangerous parameter” value for every

surface.

Established “dangerous” parameters of the surfaces it is possible to write

a function for the update of the action feasibilities based on the distance

between component and surfaces. To do so we define and use these values

and functions:

• dx: distance between component and surface x defined as number of

minimum hops in the topology graph to reach one node starting from

the other one (minimum value is 1).

• ax: “dangerous” parameters of the surface x (one for each attack surface

of the topology).

• w: is a value called “influence weight” whose objective is to define how

much the topology should influence the action feasibility update (1 =

high influence, 5 = low influence).

• Iw: through a function defined as

Iw = (
NX

x=1

ax
dx

)/w
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we produce the value that is going to update the action feasibility. it

lowers each dangerous parameter value in relation to how far it is from

the considered component, sums all of the resulting values and then

divides the result foir w, lowering the impact of the topology on the

risk assessment if required.

• K: malicious actions of the analyzed component (i.e. for Head Unit

currently the two feasible actions are Root Access and Malware injec-

tion).

• py: feasibility of action y of the component analyzed:

py = py + Iw � 4

w
for each y in K

The function increments the action feasibilities of all those actions con-

cerning components that have a high number of surfaces in their prox-

imity considering the distance and considering the dangerous level of

the surfaces. The factor � 4
w is used to maintain feasibilities around

original values and avoid a saturation of feasibilities values to 5.

Complete Process

Figures 3.7 and 3.8 may help understanding how the whole risk analysis

process work: Malicious Actions are passed through an attack requirement

analysis as a first step, not considering the topology of the specific vehicle.

From this process the Action Feasibility is derived. The topology of the vehi-

cle is then taken into consideration, deleting the impossible actions (making

their feasibility 0) and updating the Action Feasibility of the remaining. The

generated Action Feasibilities are then used as inputs of the attack trees

of all the considered attacks, generating Attack Feasibilities for the specific

topology. Finally, The Attack Feasibilities alongside the Severity and Con-

trollability of each attack are passed through the Risk Function to obtain the

set of outputs that we present in next subsection.
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Figure 3.7: A visual representation of the whole risk analysis process.
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Figure 3.8: Algorithm sequence process (“topology based”)

Outputs

At the end of the topology-based risk analysis process, we obtain as outputs:

• The attack trees generated from original ones, mapped on the topol-

ogy of the vehicle buses, annotated with updated feasibilities and with

risk values for each attack.

• A ranking of the most dangerous attacks, by safety, privacy, finan-

cial or operational risk value.

• A ranking of the most sensitive malicious actions, showing the

actions most involved in dangerous attacks: they can be ranked by

an “importance value” obtained by adding together all the risk values

of attacks in which the malicious action is involved, multiplied by the

feasibility value of the action and by the feasibility value of the method

in which it appears (to give a higher importance to malicious actions

that are easier to implement or that appear more frequently).

• A ranking of the components most traversed by attack paths, ob-
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tained by sorting the components according to the number of paths

they are traversed by, from each attack surface to all components in-

volved in malicious actions.

• A global risk value for the architecture, that can be obtained by

adding together all risk values (safety, privacy, financial, operational)

of each attack. It is a good approximation of an overall risk evaluation

of the architecture.

3.2.5 Countermeasures Generation

Besides o↵ering all of the indicators listed in Section 3.2.4, which can be

analysed by the designer to implement bespoke defence mechanisms and

evaluate their impact (as briefly described in 3.2.5), our approach can also

automatically suggest countermeasures for the proposed network topology.

As we already stated, the distance between attack surface and target ECU

plays a crucial role in defining the risk, so changes of the topology could

better the architecture evaluation.

In order to help architecture designers to improve topologies and de-

crease the global risk, we developed an algorithm that, starting from the

original topology, proposes changes trying to reach a local optimum for the

risk value. In particular, at each step the algorithm looks for the action that

decreases the risk value the most, among two types of architectural counter-

measures:topological changes or insertion of security gateways (i.e., firewall

components).

The algorithm tries, first, all possible shifts of a component from a bus

to another. After each movement, it recomputes the global risk value of the

architecture. After trying all possible changes (separately), the algorithm

saves the one that produces the maximum reduction of risk.

In a second phase, the algorithm tries to replace each component with

a gateway, and to attach the component to that gateway. In this way, it

increases the distance amongst components, so that attack surfaces have less
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Figure 3.9: Gateway Insertion Example: a gateway has been added (coloured
pink) between the “Apps and Internet” component and the rest of the net-
work.

influence in increasing attack feasibility. After trying all possible insertions,

the algorithm saves the one that produces the maximum reduction of risk.

In Figure 3.9 we show an example of gateway insertion in the topology pre-

viously presented in Figure 3.6.

Finally, the algorithm proposes the action among all the ones attempted

that produces the largest decrease of risk value. After having confirmed this

first best action, the topology is updated, and the algorithm can be rerun

to find the “next best” action to perform. The complete process is the one

described in figure 3.10.

As the knowledgeable reader might have noticed, many of the structural

changes randomly proposed by such an algorithm would violate design con-

straints. For instance, the algorithm may propose to move the Adaptive

Cruise Control ECU far away from Speed Sensor for risk reasons relative

to the bus in which ACC is communicating but this distance between ACC

50



Figure 3.10: Countermeasure Generation Process

and Speed Sensor could generate an unacceptable latency. To overcome this

problem we add to the algorithm a list of requirements that have to be

verified before proposing any change. The algorithm accepts two kind of

requirements:

• DisMax, A, B: distance between component A and component B

must be lower than this value

• DisMin, A, B: distance between component A and component B must

be grater than this value

This list of requirements is completely programmable by the designer or

by the analyst. One of the requirement that we choose to add by default

is the impossibility to have two consecutive linked gateways as it would be

useless.

Pruning

The evolution of the algorithm often generates topologies that need to be

fixed, therefore after each step the algorithm checks and corrects any problem

that has been produced amongst these:

• Useless Bus: if a bus becomes empty due to all components connected

to it being moved to another subnetwork the bus is removed.
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• Useless Gateway: if a bus is removed leaving a gateway connected

only to one single component, the gateway is removed.

• Gateway Chain: if the only components that are communicating on a

bus are two gateways, one can be removed alongside the bus inbetween

them.

Termination and cost based regularization

After each termination the countermeasures algorithm moves a maximum

of one component or inserts only one gateway. The process can then be

run again on the new topology until there is no movement or gateway that

decreases the risk value of a topology, which makes it a local minimum.

Supposing that the algorithm is run until its local minimum and without

any distance constraint inserted the final result is a network in which every

component is shielded by a gateway and ”owns” a bus. To avoid this solution

which is clearly not optimal in real world scenarios due to time and cost

limitations it is possible to add distance constraints amongst all components,

which leads to faster and more realistic final configurations.

Analysis of the risk analysis outputs

Apart the automatic countermeasures proposals described above it is also

possible for an analyst to consider the outputs of the risk analysis to under-

stand which other countermeasures to apply and how to apply them. It is

not possible to push the risks to a value of 0 mainly for economic reasons but

the analysis of the outputs makes it possible to focus on the most important

ones.

Considering the Attack Rankings it is possible to understand which

attacks have to be prioritized in terms of countermeasures.

Analyzing Action Rankings an analyst can understand which are the

actions that are mainly applied in attacks, considering both the number

of attacks who apply that action both the dangerousness of those attacks.
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Through these information it is possible to derive if some other countermea-

sures are required for a specific action that is involved in many attacks. For

instance bus injection is one of the most common actions and the analyst can

consider if, for a specific bus, it may be required to improve cryptography or

if an intrusion detection system [13] could be a solution.

Finally considering Path Value Ranking it is possible to understand

which are the components that are mostly traversed by attacks paths, still

considering the dangerousness of each attack which involves that component.

This gives an interesting view on the components that are key nodes of the

architecture, from an attacker point of view. The analyst can then decide for

example to implement the software security of said component, or implement

a firewall to ensure its security.
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Chapter 4

Implementation Details

4.1 Tool overview

As introduced before, we developed a tool to perform the risk analysis and

countermeasures proposals in a semi automatic way. The program takes

as input three files (XML) and combines them to build a complete attack

tree. These three files are “components.xml”, “steps.xml”, “trees.xml” and

contain respectively: a list of actions on components, a list of steps, a list of

attacks and methods. Then the tool imports a topology file (XML) that can

be chosen by the user among di↵erent loaded topologies and subsequently

it performs the analysis logging the outputs on the console and producing

some output files. Finally it starts the countermeasures generation that can

be carried forward step by step or directly until the terminal configuration

that is the local optimum point. The main procedure code is contained in a

script (Python) named “main.py” that calls functions and algorithms defined

in another file (Python) named “functions.py”.

In building the tool we have used these coding languages and libraries:

• Python: an object oriented programming language that we used to

write scripts, functions and algorithms.

• XML (eXtensible Markup Language): a markup language that
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we used to write data files (input and output files) in a structured and

hierarchical way.

• NetworkX: a python supporting library to create, update and analyse

graph structures (useful for topologies).

• xml.etree.ElementTree: a python supporting library to parse .xml

files and handle them as trees.

• xml.dom: a python supporting library to dynamically access and up-

date the content, structure, and style of an .xml document.

• matplotlib.pyplot: a python plotting library that can produce a va-

riety of di↵erent types of figures (useful to print topology graphs).

4.2 Details

4.2.1 Input Files and Scripts

components.xml

This file contains the list of all the components available in the tool to build

topologies and steps of the attack trees. Each component has an “ID” pa-

rameter made of three upper-case characters and a set of malicious actions

(sub-levels of the component) virtually performable on the specific compo-

nent. A “name” parameter and an “action feasibility” parameter (which is

defined as described in 3.2.2) are associated with each action. In listing 4.1

is shown an excerpt from the code related to the component PSS that is

Proximity Sensors module, the BUS and the Active Lane Assist module.

steps.xml

This file contains the list of all the steps that can be used to build methods

of the attack trees. Each step has an “ID” parameter made of two digits and

a set of malicious actions (sub-levels of the step) that can be alternatively
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Listing 4.1: Excerpt from components.xml relative to the actions parameters
of three specific components: PSS, BUS and ALA.

<component id = "PSS"> <!-- Proximity sensors-->
<action name= "MalwareFlashed" rank="2"> </action>
<action name= "Manipulate" rank="3"> </action>
<action name= "DoS" rank="4"> </action>

</component>
<component id = "BUS"> <!-- Generic bus that could be CAN -->

<action name= "DiagnosticInj" rank="2"> </action>
<action name= "Inject" rank="2"> </action>
<action name= "Listen" rank="4"> </action>
<action name= "DoS" rank="4"> </action>

</component>
<component id = "ALA"> <!-- Active lane assist module -->

<action name= "MalwareFlashed" rank="2"> </action>
<action name= "DoS" rank="3"> </action>
<action name= "Present" rank="99"> </action>

</component>

performed to complete the specific step. The actions are identified through

the “ID” parameter of the component and the “action” parameter that needs

to correspond to one of the ”name” parameters of the actions in components

file. In listing 4.2 is shown an excerpt from the code related to the step 16.

trees.xml

This file contains the list of all the attack methods related to each attack in

the tree. Each attack has a “name” parameter, five integer parameters (safety

severity, privacy severity, financial severity, operational severity, controllabil-

ity) and a set of methods (sub-levels of the attack) that can alternatively

performed to complete the specific attack. Then each method is composed

by a set of steps identified through the “ID” parameter and described through

the “name” sub-tag. In listing 4.3 is shown an excerpt from the code related

to the attack “Steer”, the same tree described in figure 3.3.
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Listing 4.2: Excerpt from steps.xml relative to all possible actions to obtain
the step with ID equal to 16

<step ID= "16">
<name> Generate accelleration command </name>
<component id= "ACC" action= "MalwareFlashed">

Request accelleration
</component>
<component id= "ECM" action= "MalwareFlashed">

Enter accelleration command
</component>
<component id= "PCM" action= "MalwareFlashed">

Enter accelleration command
</component>
<component id= "BUS" action= "Inject" to="ECM">

Transmit accelleration request
</component>
<component id= "BUS" action= "Inject" to="PCM">

Transmit accelleration request
</component>
<component id= "PSS" action= "Manipulate">

Fake proximity sensors conditions
</component>
<component id= "PSS" action= "MalwareFlashed">

Fake proximity sensors conditions
</component>
<component id= "BUS" action= "Inject" to="ACC">

Insert fake proximity data
</component>

</step>
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Listing 4.3: Excerpt from trees.xml relative to possible methods to obtain
the “Steer” attack

<attack name="Steer" Ss="4" Sp="0" Sf="4" So="4" C="3">
<method>

<step ID="14">
<name> Generate lane steer cmd </name>

</step>
<step ID="34">

<name> ALA is present </name>
</step>

</method>
<method>

<step ID="05">
<name> Receive slow speed signal </name>

</step>
<step ID="15">

<name> Generate parking steer cmd </name>
</step>
<step ID="35">

<name> PAM is present </name>
</step>

</method>
</attack>
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Listing 4.4: Excerpt from a topology.xml example file made of three buses:
CAN A, CAN B, and CAN c.

<data>
<bus id="CAN_A" type="BUS">

<component id="HUM"> </component>
<component id="SCM"> </component>
<component id="PCM"> </component>
<component id="ECM"> </component>
<component id="TPM"> </component>

</bus>
<bus id="CAN_B" type="BUS">

<component id="HUM"> </component>
<component id="ACC"> </component>
<component id="PAM"> </component>
<component id="ALA"> </component>
<component id="APP"> </component>

</bus>
<bus id="CAN_C" type="BUS">

<component id="HUM"> </component>
<component id="ICM"> </component>
<component id="CDR"> </component>
<component id="BLU"> </component>
<component id="RAD"> </component>

</bus>
</data>

topology.xml

This file contains the topology of the specific architecture considered. There

is the list of buses present in the architecture and (as sub-levels) the list of

every component that communicates through that specific bus. Each bus

is identified though “ID” string parameter and a “type” parameter describ-

ing the bus category (wireless / wired). Then each component is identified

through an “ID” parameter using the same reference system used in “com-

ponents.xml” and “steps.xml” files. In listing 4.4 is shown the complete code

of the same topology example described in figure 3.6.
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main.py

This file contains the main procedure code of the tool. It is a sequence of

python statements and function calls modularly assembled in order to easily

modify or update the program. All functions called from the main code

are defined in an other file called “functions.py” which is imported at the

beginning of the code. The main code basically follows this sequence:

1. Import libraries

2. Import input files: components, steps, trees

3. Merge the three input files to build a unique tree

4. Import topology file (selected by the user among a set of architectures)

5. Check data structure integrity

6. Build topology graph

7. Update action feasibilities (topology based)

8. Calculate attack feasibilities

9. Calculate initial risk values

10. Run countermeasures algorithm

11. Calculate final risk values

12. Generate outputs

4.2.2 Algorithms

In this section we present the key points behind the implementation of the

two most particular algorithms. Both of them are coded through one or more

python functions in the file named “functions.py” and they are called from

the main code. The two algorithms that we chose to highlight are:
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• Attack Tree Building and Buses Mapping

• Countermeasures Generation

Attack Tree Building and Buses Mapping

The aim of this algorithm is to integrate information contained in the four

XML input files concerning attack trees and topology in order to create a

single data structure: a unique attack tree. The program considers the data

structure contained in the file named “trees.xml” as the main tree to which

append branches defined in the others two files (“steps.xml” and “compo-

nents.xml”). At first the tool merge steps structures with the main tree

structure by appending the first ones to the corresponding step ID parame-

ter in the main tree (the second one). In figure 4.3 is shown the final data

structure as result of the merging of figure 4.1 with figure 4.2. Then, once

the topology is loaded and topology graph is build, the tool updates action

feasibilities contained in “components.xml” file by inspecting distances de-

scribed in the graph and sets to 0 all feasibilities concerning components that

are not present in the topology.

Another operation executed in this phase is buses mapping. In fact,

some actions in the tree are referred to the component BUS but architecture

topologies have many buses so the tool needs to know which of the buses is

the one it has to consider at each step. In order to facilitate this operation all

actions concerning buses are coded with an additional information: a “to”

parameter that indicates where to find the bus. For instance the last action in

listing 4.2 is an injection on the bus relative to the Adaptive Cruise Control;

then the tool will look in the topology graph for the bus in which ACC is

communicating and will substitute the id BUS with the actual component

bus id that could be CAN A for instance.

Finally the program appends these updated action feasibilities to the

main tree and moves on to the risk calculation.
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Figure 4.1: Logical representation of “trees.xml”

Figure 4.2: Logical representation of “steps.xml”

Figure 4.3: Logical representation of the merging result between “trees.xml”
and “steps.xml”
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Countermeasures Generation

The aim of this algorithm is to obtain an optimal configuration through

incremental changes that step by step improve the topology from the point

of view of security risk. The algorithm at the beginning evaluates the initial

risk value and initialize the variable “minimum risk” with this value then it

tries all possible changes (all possible movements of a component from a a

bus to an other one and all possible gateways insertions). After each topology

change it checks the constraints and optimize the topology (pruning), then

it updates action feasibilities and recomputes attack feasibilities and risk

values. If the new risk value is less than the “minimum risk” value it updates

the minimum risk value with this new value and it saves this movement as

the one to perform at the end (supposing constraints not violated). After

each risk calculation it restores the initial topology in order to try an other

modification. At the end the algorithm applies definitely the movement that

produces the minimum risk value. If the initial risk value is equal to the

final risk value the algorithm terminates as there is no better topology to

be generated without violating a constraint, otherwise if the final risk is less

than the initial risk the algorithm recursively calls itself to find the next

best change. In figure 4.4 a scheme is shown of the algorithm as previously

described.

4.2.3 Outputs

In this subsection we describe how the outputs presented in section 3.2.4 are

shown to the user.

• Console: through the terminal the tool prints out the ranking of the

most dangerous attacks as in the example screenshot of figure 4.5, the

ranking of the most sensitive malicious actions, the ranking of the most

traversed component and the global risk value. Moreover it shows

the coloured topology graph of the initial architecture and of the all

intermediate configurations until the optimal solution as the example
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Figure 4.4: Flow chart about countermeasures generation algorithm
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Figure 4.5: Console Screenshot Example

showed in figure 4.6.

• Tree.xml: this output file is a version of the complete and unique

attack tree generated from the merging of the di↵erent files with all

the feasibilities and risk values updated. An excerpt of example of this

file is shown in listing 4.5.

• Components.xml: this output file is a version of the input compo-

nents file updated with the importance and rank values and cleaned

by removing components not present in the topology. An excerpt of

example of this file is shown in listing 4.6.
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Figure 4.6: Topology Solution Output Example
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Listing 4.5: Output Tree excerpt relative to the attak “ACC DoS”
<attack C="1" Rf="3.375" Ro="2.375" Rp="0" Rs="2.375"

Sf="3" So="2" Sp="0" Ss="2" name="ACC DoS" Feasibility="3.375">

<method Feasibility="3.375">
<step ID="06" Feasibility="3.375" to="ACC">

<name> Prevent data receiving </name>
<component action="DoS"

id="CAN_HS" Feasibility="3.375" to="ACC">
Flood the bus

</component>
</step>

</method>

<method Feasibility="2.1666666666666665">
<step ID="25" Feasibility="2.1666666666666665">

<name> Disable ACC </name>
<component action="MalwareFlashed"

id="ACC" Feasibility="1">
Disable

</component>
<component action="RootAccess"

id="HUM" Feasibility="2.1666666666666665">
Request disabling

</component>
<component action="MalwareFlashed"

id="HUM" Feasibility="1.1666666666666665">
Request disabling

</component>
<component action="MalwareFlashed"

id="ICM" Feasibility="1.1666666666666665">
Request disabling

</component>
<component action="Inject"

id="CAN_HS" Feasibility="1.375" to="ACC">
Transmit disabling request

</component>
</step>
<step ID="32" Feasibility="5">

<name> ACC is present </name>
<component action="Present"

id="ACC" Feasibility="5">
ACC is present

</component>
</step>

</method>
</attack>
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Listing 4.6: Output Components excerpt relative to five specific units
<component id="PAM">

<action importance="325.4351851851852"
name="MalwareFlashed" rank="2.3333333333333335">

</action>
<action importance="0"

name="DoS" rank="3.3333333333333335">
</action>
<action importance="0.0"

name="Present" rank="5">
</action>

</component>
<component id="ICM">

<action importance="332.93750000000006"
name="MalwareFlashed" rank="2.3333333333333335">

</action>
<action importance="0"

name="DoS" rank="3.3333333333333335">
</action>

</component>
<component id="DCM">

<action importance="130.4875"
name="MalwareFlashed" rank="2.2">

</action>
<action importance="0"

name="DoS" rank="3.2">
</action>

</component>
<component id="ITM">

<action importance="0"
name="MalwareFlashed" rank="1.4000000000000001">

</action>
<action importance="0"

name="DoS" rank="2.4000000000000004">
</action>

</component>
<component id="LSS">

<action importance="28.00000000000001"
name="MalwareFlashed" rank="1.4000000000000001">

</action>
<action importance="48.00000000000003"

name="Manipulate" rank="2.4000000000000004">
</action>
<action importance="0"

name="DoS" rank="3.4000000000000004">
</action>

</component>
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Chapter 5

Experimental Validation

In this chapter we will present our results concerning the application of the

tool on three di↵erent architecture topologies: the 2014 Jeep Cherokee, the

2014 Audi A8 and the 2010 RangeRover Sport. The reason behind these

choices is the necessity to find benchmarks for our results. These three topolo-

gies have been studied by Miller and Valasek in [8] where they made a general

evaluation of the security of their networks focusing on the network topology,

the number of cyberphysical systems and the number of attack surfaces. We

analyse first the a priori risk analysis results, then the topology based risk

analysis results and finally the generated countermeasures proposals for all

architectures.

5.1 Goals

While executing our tests, we are mainly interested in verifying the mean-

ingfulness of three results:

• A Priori Risk Analysis: we don’t have a valid benchmark to eval-

uate these results since the analysis contained in the paper written by

Ruddle et al. [1] for the EVITA project proposed di↵erent attack trees.

However we will verify results consistency and meaningfulness and we

will analyze how they will evolve in the context of the topology based
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analysis.

• Topology Based Risk Analysis: to evaluate these results we will

compare them with the analysis contained in [8] by Miller and Valasek.

• Countermeasures Generation: since our tool is the first proposition

that generates automatically these type of solutions, we don’t have any

other benchmarks to compare these results, so we will limit to explain

some considerations about the reasonableness of the optimal solutions.

5.2 Dataset

The dataset consists of the input files mentioned in subsection 4.2.1 where

the topology file changes in di↵erent tests and it is picked from the afore-

mentioned three topologies: the 2014 Jeep Cherokee, the 2014 Audi A8 and

the 2010 RangeRover Sport. We choose these architectures for a specific rea-

son: the risk analysis evaluation provides a set of values that can be useful

by themselves but are also extremely clearer if compared with other results,

specially while providing a proof of the validity of our own results. So we

choose the topology that scored best (RangeRover), the worse (Jeep) and

one in between (Audi) in Miller and Valasek tests to confront their outcomes

with our ones. Listings 5.1, 5.2 and 5.3 show the three topologies represented

using the components available in the tool and coded in XML files as pre-

viously described. Figures 5.1, 5.2 and 5.3 show the graph representation of

the topologies.

5.3 Test Execution and Results

5.3.1 A Priori Risk Analysis

Concerning the risk analysis applied to our attack trees without considering

any topology implication we obtained the results showed in listings 5.4, 5.5,

5.6 and 5.7. They are excerpt of the console outputs about safety risk attack
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Listing 5.1: Range Rover topology file (XML)

<data>
<bus id="CAN_MS" type="BUS">

<component id="SJB"> </component>
<component id="DCM"> </component>
<component id="RKE"> </component>
<component id="ICM"> </component>
<component id="HUM"> </component>
<component id="PSS"> </component>
<component id="RAD"> </component>
<component id="OBD"> </component>
<component id="TPM"> </component>

</bus>
<bus id="CAN_HS" type="BUS">

<component id="ECM"> </component>
<component id="ABS"> </component>
<component id="ACC"> </component>
<component id="SJB"> </component>
<component id="TCM"> </component>
<component id="ICM"> </component>
<component id="STM"> </component>
<component id="ASS"> </component>
<component id="OBD"> </component>
<component id="TPM"> </component>

</bus>
</data>
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Listing 5.2: Jeep topology file (XML)

<data>
<bus id="CAN_C" type="BUS">

<component id="ABS"> </component>
<component id="ACC"> </component>
<component id="TCM"> </component>
<component id="PAM"> </component>
<component id="STM"> </component>
<component id="ALA"> </component>
<component id="PCM"> </component>
<component id="ESM"> </component>
<component id="ICM"> </component>
<component id="PSS"> </component>
<component id="OBD"> </component>
<component id="RAD"> </component>
<component id="RKE"> </component>
<component id="BLU"> </component>
<component id="TPM"> </component>
<component id="CEL"> </component>
<component id="APP"> </component>
<component id="HUM"> </component>

</bus>
<bus id="CAN_IHS" type="BUS">

<component id="DCM"> </component>
<component id="ICM"> </component>
<component id="OBD"> </component>
<component id="RAD"> </component>
<component id="BLU"> </component>
<component id="CEL"> </component>
<component id="APP"> </component>
<component id="HUM"> </component>

</bus>
<bus id="LIN" type="BUS">

<component id="ICM"> </component>
<component id="PCM"> </component>
<component id="DCM"> </component>
<component id="STM"> </component>
<component id="ITM"> </component>
<component id="LSS"> </component>

</bus>
</data>
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Listing 5.3: Audi topology file (XML)

<data>
<bus id="DriveTrain_CAN" type="BUS">

<component id="ECM"> </component>
<component id="ABS"> </component>
<component id="BAG"> </component>
<component id="TCM"> </component>
<component id="ALA"> </component>
<component id="STM"> </component>
<component id="ASS"> </component>
<component id="OBD"> </component>

</bus>
<bus id="Convenience_CAN" type="BUS">

<component id="DCM"> </component>
<component id="RKE"> </component>
<component id="SCM"> </component>
<component id="SJB"> </component>
<component id="TPM"> </component>
<component id="OBD"> </component>

</bus>
<bus id="Gateway_CAN" type="BUS">

<component id="ICM"> </component>
<component id="OBD"> </component>

</bus>
<bus id="DistanceControl_CAN" type="BUS">

<component id="ACC"> </component>
<component id="OBD"> </component>

</bus>
<bus id="MOST_Ring" type="BUS">
<component id="HUM"> </component>

<component id="OBD"> </component>
<component id="RAD"> </component>
<component id="CEL"> </component>
<component id="APP"> </component>

</bus>
</data>
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Figure 5.1: Range Rover Topology representation

Figure 5.2: Jeep Topology representation
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Figure 5.3: Audi Topology representation

ranking, privacy risk attack ranking, operational risk attack ranking and fi-

nancial risk attack ranking respectively. From these results we first ascertain

the correctness of the algorithm in calculating the risk given severity, feasi-

bility and controllability parameters. Moreover we notice the meaningfulness

of the results because of di↵erent reasons: for instance in the privacy risks

ranking (5.5) the only attacks with a risk value di↵erent from 0 are the four

attacks relative to information theft; this observation is coherent with the

fact that attacks not oriented to steal information don’t represent a privacy

risk. Similarly in the financial risk ranking (5.7) the attacks at the top of

the ranking are two attacks relative to frauds since, even if they are not

the only ones that cause financial damages, they have very easy methods to

be implemented. Finally we generally recognize a good consistency in the

resulting ordering of the risks even if this consideration can not be scientifi-

cally proved. For instance in the safety risks ranking (5.4) there is a strong

di↵erence between the attack “Disable Brakes” valued 7 and “ALA DoS”

(Deny of service of active lane assist) valued 3; in fact even if they have a
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Listing 5.4: A priori Safety Risks Ranking excerpt (first 8 attacks)

Rs = 8
Rs = 7

DisableBrakes
Feasibility: 4
Severity: 4
Controllability: 3

Rs = 6
LockSteering

Feasibility: 4
Severity: 3
Controllability: 3

Steer
Feasibility: 3
Severity: 4
Controllability: 3

Rs = 5
ACD DoS

Feasibility: 4
Severity: 3
Controllability: 2

Brake
Feasibility: 3
Severity: 3
Controllability: 3

ActivateAirbag
Feasibility: 3
Severity: 3
Controllability: 3

Rs = 4
SpeedUp

Feasibility: 3
Severity: 3
Controllability: 2

Rs = 3
ALA DoS

Feasibility: 4
Severity: 2
Controllability: 1
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Listing 5.5: A priori Privacy Risks Ranking excerpt (first 10 attacks)

Rp = 8
Rp = 7
Rp = 6
Rp = 5
Rp = 4
Rp = 3

CaptureImagesFromCameras
Feasibility: 2
Severity: 4

TrackPosition
Feasibility: 2
Severity: 4

Rp = 2
EavesdropOnConversations

Feasibility: 2
Severity: 3

Rp = 1
GetTheAddressBook

Feasibility: 2
Severity: 2

Rp = 0
RemoteAcceleration

Feasibility: 2
Severity: 0

KeylessIgnition
Feasibility: 2
Severity: 0

TamperOdometer
Feasibility: 4
Severity: 0

HideCrashInfo
Feasibility: 4
Severity: 0

ACC DoS
Feasibility: 4
Severity: 0

ACD DoS
Feasibility: 4
Severity: 0
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Listing 5.6: A priori Operational Risks Ranking excerpt (first 11 attacks)

Ro = 8
Ro = 7
Ro = 6
Ro = 5
Ro = 4

DisableBrakes
Feasibility: 4
Severity: 3

Brake
Feasibility: 3
Severity: 4

LockSteering
Feasibility: 4
Severity: 3

Steer
Feasibility: 3
Severity: 4

SpeedUp
Feasibility: 3
Severity: 4

LockEngine
Feasibility: 3
Severity: 4

LockTheBrakes
Feasibility: 3
Severity: 4

Ro = 3
RemoteAcceleration

Feasibility: 2
Severity: 4

KeylessIgnition
Feasibility: 2
Severity: 4

ACC DoS
Feasibility: 4
Severity: 2

ACD DoS
Feasibility: 4
Severity: 2
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Listing 5.7: A priori Financial Risks Ranking excerpt (first 11 attacks)

Rf = 8
Rf = 7
Rf = 6
Rf = 5

HideCrashInfo
Feasibility: 4
Severity: 4

Rf = 4
TamperOdometer

Feasibility: 4
Severity: 3

ACC DoS
Feasibility: 4
Severity: 3

ACD DoS
Feasibility: 4
Severity: 3

ALA DoS
Feasibility: 4
Severity: 3

DisableBrakes
Feasibility: 4
Severity: 3

LockSteering
Feasibility: 4
Severity: 3

Steer
Feasibility: 3
Severity: 4

Rf = 3
RemoteAcceleration

Feasibility: 2
Severity: 4

KeylessIgnition
Feasibility: 2
Severity: 4

Brake
Feasibility: 3
Severity: 3
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similar implementation simplicity, the first one is much more dangerous and

less controllable.

5.3.2 Topology Based Risk Analysis

Concerning the topology based risk analysis applied to the three real archi-

tecture that we chose, our tool produced multiple results, as follow:

1. Risk Values: Table 5.2 shows the calculated risk values concerning

the four risk categories and the total value for each architecture. This

results is the best one in showing how our results are consistent with

the ones of Miller and Valasek (Table 5.1 shows how the two researchers

evaluated them) as the overall value of the worst architecture is much

greater than the best one. This means that our methodology and tool

takes both the the presence of surfaces or cyber physical systems and

the topology well into account.

2. Attacks Ranking: Listing 5.8 shows the five most dangerous attacks

for each specific network. Due to the high potential damage of some

attacks they tend to have high rankings, but in relation to the position

of di↵erent units inside the car network they actually are more or less

considered. This shows the influence of the topology on the attacks

ranking. By the way, we remind to the reader that the influence is a

parameter that can be tuned according to the needs or considerations

of the analyst.

3. Actions Importance Listing 5.9 shows the dangerousness of di↵erent

attacks on specific buses (in the RangeRover topology). In relation to

the ECUs available on a specific network this output helps understand

which are the most endangered ones and which kinds of attacks can be

more disruptive if implemented. In this specific case CAN HS is more

important to protect due to the number of cyberphysical systems like

ABS and Adaptive Cruise Control that are connected to it.
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Table 5.1: Miller and Valasek results regarding the security of three vehicles:
“–” means least hackable, “++” means most hackable)

Car
Attack Network Cyber

Surface Architecture Physical

2008 Range Rover Sport - – -
2014 Audi A8 ++ – +

2014 Jeep Cherokee ++ ++ ++

Table 5.2: Risk Evaluation Results regarding the security of three vehicles
RangeRover Audi Jeep

Safety 23.916 37.866 49.583
Privacy 0.000 12.466 14.333
Financial 25.000 37.358 54.500
Operational 32.000 42.358 60.500
Total 80.916 130.050 178.916

4. Most Traversed Components Ranking: Listing 5.10 shows the

path values ranking of the components in the Audi topology. It de-

scribes how many attacks traverse each component considering the

specific network topology. Since OBD is the core of the topology, it

is the most traversed component as it also analysed from the tool.

5.3.3 Countermeasures Proposal

Di↵erently than with risk analysis, there are no analyses of countermeasure

proposals known to the authors, which makes the comparison of our solutions

with already validated state of the art proposals impossible, therefore we aim

to describe this results and show their feasibility without making comparisons

with any previous work. For clarity we still use the same three topologies

used for the risk analysis results section.

The final solutions we found optimal have been obtained after inserting

multiple constraints on the networks and are visible in 5.4, 5.5 and 5.6. Said

constraints are a limit on the maximum distance between every component

and the HUM and OBD to ensure that the final solution does not become a
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Listing 5.8: Attacks Ranking regarding three vehicles (first 5 attacks)

RangeRover
Risk Value = 13.125 , corresponding attack: DisableBrakes
Risk Value = 12.125 , corresponding attack: LockSteering
Risk Value = 9.5 , corresponding attack: Brake
Risk Value = 8.5 , corresponding attack: SpeedUp
Risk Value = 8.125 , corresponding attack: ACC DoS

Audi
Risk Value = 14.625 , corresponding attack: DisableBrakes
Risk Value = 13.625 , corresponding attack: LockSteering
Risk Value = 10.625 , corresponding attack: Steer
Risk Value = 9.625 , corresponding attack: ACC DoS
Risk Value = 9.625 , corresponding attack: ALA DoS

Jeep
Risk Value = 18.0 , corresponding attack: DisableBrakes
Risk Value = 17.0 , corresponding attack: LockSteering
Risk Value = 15.5 , corresponding attack: Steer
Risk Value = 13.5 , corresponding attack: Brake
Risk Value = 13.0 , corresponding attack: ACC DoS

Listing 5.9: Buses Actions Importance in RangeRover

CAN_MS
DiagnosticInj = 35.16406249999999
Inject = 54.12239583333331
Listen = 0
DoS = 0

CAN_HS
DiagnosticInj = 61.700737847222214
Inject = 348.9468315972222
Listen = 0
DoS = 380.162109375
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Listing 5.10: Paths Values in Audi

OBD has a paths value of: 583.0
MOST_Ring has a paths value of: 447.0
DriveTrain_CAN has a paths value of: 306.0
Convenience_CAN has a paths value of: 301.0
HUM has a paths value of: 144.0
CEL has a paths value of: 139.0
APP has a paths value of: 135.0
RKE has a paths value of: 123.0
RAD has a paths value of: 119.0
TPM has a paths value of: 119.0
DistanceControl_CAN has a paths value of: 84.0
ECM has a paths value of: 42.0
ACC has a paths value of: 42.0
ALA has a paths value of: 30.0
ICM has a paths value of: 30.0
Gateway CAN has a paths value of: 30.0
ABS has a paths value of: 24.0
SCM has a paths value of: 18.0
TCM has a paths value of: 18.0
DCM has a paths value of: 12.0
STM has a paths value of: 0
SJB has a paths value of: 0
BAG has a paths value of: 0
ASS has a paths value of: 0
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sequence of single components interconnected by gateways (results maximum

distance is 6 for the Audi and 5 for the other topologies). The final risk value

has lowered for all three networks, going from 178,9 to 105 for the Jeep, from

130 to 87,6 for the Audi and from 80,9 to 65 for the RangeRover.

These solutions are not necessarily feasible as we anticipated before, more

constraints may be required between multiple components to ensure that the

network could be operable in real world scenarios. Not knowing the actual

requirements for these specific network we propose a solution with one of

the only constraints we know is probably required, which is that the MOST

ring of the Audi should remain with the same components on it as those

components are probably not compatible with other architectures. In figure

5.7 it is possible to see how the algorithm (with maximum distance constraint

set to 5) modifies the structure of the network following this constraint about

MOST ring. The final risk value is 114, so it is still possible to optimize the

network but significantly less than without constraint.

Solutions without constraints are completely meaningless since they build

chains of components one behind the other with an excess of gateways inser-

tion as shown in figures 5.8, 5.9 and 5.10.

Finally, as the algorithm makes one step at a time, we implemented the

possibility for the analyst to see the development of the countermeasures

step by step, giving him the chance to stop at the solution he reputes most

valid. In this way the analyst can avoid to let the algorithm reach solutions

that are unfeasible in real world scenarios. Consider for example 5.11: this

is the first step proposed by the algorithm for the Audi architecture, which

represents the insertion of a gateway inbetween the OBD component and the

other part of the network, and decreases the risk value from 130.05 to 114.75.

The decrease of risk for each possible attack is visible in listing 5.12. If the

analyst reputes this an optimal solution he can simply stop. The second step

proposed by the algorithm (once accepted the first one) is the move of the

Head Unit Module to the bus named DriveTrain CAN as shown in figure

5.12 and it decreases the risk value from 114.75 to 110.68. The decrease of
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risk for each possible attack is visible in listing 5.13.

As a last note regarding the algorithm, it often chooses to apply a gateway

instead of moving a component, which is a predictable behaviour due to the

gateway adding distance from every other component. This solution may be

too expensive in some cases, making it preferable to apply movements. For

this reason it could be worth adding a cost function that makes it possible

to change the importance of one action over the other. Currently the only

preference towards movements comes when two potential solutions one of

each kind have the same risk value, in which case the movement is chosen

instead of the gateway. We leave di↵erent possible improvements to future

works.

We finally append this log file excerpt (5.11) that could help in explaining

the process of gateway insertion decision of the algorithm during the first step

when applied to the Audi topology:

Listing 5.11: Countermeasures algorithm proceeding

2018-07-04 18:59:50,665 Trying to insert a GW in ECM
2018-07-04 18:59:50,675 MAX Distance Violation: HUM ECM 6
2018-07-04 18:59:50,682 Constraints violated
2018-07-04 18:59:50,694 Trying to insert a GW in ABS
2018-07-04 18:59:50,705 MAX Distance Violation: HUM ABS 6
2018-07-04 18:59:50,712 Constraints violated
2018-07-04 18:59:50,724 Trying to insert a GW in BAG
2018-07-04 18:59:50,736 MAX Distance Violation: HUM BAG 6
2018-07-04 18:59:50,742 Constraints violated
2018-07-04 18:59:50,754 Trying to insert a GW in TCM
2018-07-04 18:59:50,765 MAX Distance Violation: HUM TCM 6
2018-07-04 18:59:50,771 Constraints violated
2018-07-04 18:59:50,784 Trying to insert a GW in ALA
2018-07-04 18:59:50,795 MAX Distance Violation: HUM ALA 6
2018-07-04 18:59:50,804 Constraints violated
2018-07-04 18:59:50,820 Trying to insert a GW in STM
2018-07-04 18:59:50,831 MAX Distance Violation: HUM STM 6
2018-07-04 18:59:50,837 Constraints violated
2018-07-04 18:59:50,849 Trying to insert a GW in ASS
2018-07-04 18:59:50,861 MAX Distance Violation: HUM ASS 6
2018-07-04 18:59:50,867 Constraints violated

85



2018-07-04 18:59:50,884 Trying to insert a GW in OBD
2018-07-04 18:59:50,944 New risk = 114.75
2018-07-04 18:59:50,957 Trying to insert a GW in DCM
2018-07-04 18:59:50,968 MAX Distance Violation: HUM DCM 6
2018-07-04 18:59:50,974 Constraints violated
2018-07-04 18:59:50,986 Trying to insert a GW in RKE
2018-07-04 18:59:50,999 MAX Distance Violation: HUM RKE 6
2018-07-04 18:59:51,005 Constraints violated
2018-07-04 18:59:51,018 Trying to insert a GW in SCM
2018-07-04 18:59:51,029 MAX Distance Violation: HUM SCM 6
2018-07-04 18:59:51,035 Constraints violated
2018-07-04 18:59:51,048 Trying to insert a GW in SJB
2018-07-04 18:59:51,066 MAX Distance Violation: HUM SJB 6
2018-07-04 18:59:51,075 Constraints violated
2018-07-04 18:59:51,092 Trying to insert a GW in TPM
2018-07-04 18:59:51,105 MAX Distance Violation: HUM TPM 6
2018-07-04 18:59:51,111 Constraints violated
2018-07-04 18:59:51,123 Trying to insert a GW in OBD
2018-07-04 18:59:51,169 New risk = 114.75
2018-07-04 18:59:51,182 Trying to insert a GW in ICM
2018-07-04 18:59:51,193 MAX Distance Violation: HUM ICM 6
2018-07-04 18:59:51,200 Constraints violated
2018-07-04 18:59:51,272 Trying to insert a GW in ACC
2018-07-04 18:59:51,283 MAX Distance Violation: HUM ACC 6
2018-07-04 18:59:51,290 Constraints violated
2018-07-04 18:59:51,312 Trying to insert a GW in OBD
2018-07-04 18:59:51,357 New risk = 114.75
2018-07-04 18:59:51,370 Trying to insert a GW in HUM
2018-07-04 18:59:51,380 MAX Distance Violation: HUM SCM 6
2018-07-04 18:59:51,385 MAX Distance Violation: HUM ECM 6
2018-07-04 18:59:51,391 MAX Distance Violation: HUM TCM 6
2018-07-04 18:59:51,396 MAX Distance Violation: HUM ABS 6
2018-07-04 18:59:51,401 MAX Distance Violation: HUM STM 6
2018-07-04 18:59:51,406 MAX Distance Violation: HUM ACC 6
2018-07-04 18:59:51,415 MAX Distance Violation: HUM ALA 6
2018-07-04 18:59:51,422 MAX Distance Violation: HUM ICM 6
2018-07-04 18:59:51,427 MAX Distance Violation: HUM DCM 6
2018-07-04 18:59:51,432 MAX Distance Violation: HUM SJB 6
2018-07-04 18:59:51,438 MAX Distance Violation: HUM BAG 6
2018-07-04 18:59:51,443 MAX Distance Violation: HUM ASS 6
2018-07-04 18:59:51,448 MAX Distance Violation: HUM TPM 6
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Figure 5.4: RangeRover Optimal Solution with Max-Distance Constraints

2018-07-04 18:59:51,453 MAX Distance Violation: HUM RKE 6
2018-07-04 18:59:51,459 Constraints violated
2018-07-04 18:59:51,471 Trying to insert a GW in OBD
2018-07-04 18:59:51,522 New risk = 114.75
2018-07-04 18:59:51,535 Trying to insert a GW in RAD
2018-07-04 18:59:51,578 New risk = 125.84999999999997
2018-07-04 18:59:51,591 Trying to insert a GW in CEL
2018-07-04 18:59:51,635 New risk = 125.84999999999997
2018-07-04 18:59:51,648 Trying to insert a GW in APP
2018-07-04 18:59:51,698 New risk = 122.45476190476191
2018-07-04 18:59:51,712 ----> I decided to insert a GW in OBD
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Figure 5.5: Audi Optimal Solution with Max-Distance Constraints

Figure 5.6: Jeep Optimal Solution with Max-Distance Constraints
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Figure 5.7: Audi Solution with Max-Distance and Most-Ring Constraints

Figure 5.8: RangeRover Optimal Solution without Constraints
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Figure 5.9: Audi Optimal Solution without Constraints

Figure 5.10: Jeep Optimal Solution without Constraints
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Figure 5.11: Audi intermediate solution after first step
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Listing 5.12: Attacks Risks Variation after first step
I have created a GW in OBD
Risk Variation = 1.125 , corresponding attack: RemoteAcceleration
Risk Variation = 1.125 , corresponding attack: ACC DoS
Risk Variation = 1.125 , corresponding attack: ALA DoS
Risk Variation = 1.125 , corresponding attack: DisableBrakes
Risk Variation = 1.125 , corresponding attack: Brake
Risk Variation = 1.125 , corresponding attack: ActivateAirbag
Risk Variation = 1.125 , corresponding attack: LockSteering
Risk Variation = 1.125 , corresponding attack: Steer
Risk Variation = 1.125 , corresponding attack: SpeedUp
Risk Variation = 1.125 , corresponding attack: LockDoors
Risk Variation = 0.75 , corresponding attack: KeylessIgnition
Risk Variation = 0.75 , corresponding attack: OverheatEngine
Risk Variation = 0.75 , corresponding attack: LockTheBrakes
Risk Variation = 0.6 , corresponding attack: TurnOffHeadlights
Risk Variation = 0.4 , corresponding attack: LockEngine
Risk Variation = 0.2 , corresponding attack: EavesdropOnConversations
Risk Variation = 0.2 , corresponding attack: CaptureImagesFromCameras
Risk Variation = 0.2 , corresponding attack: GetTheAddressBook
Risk Variation = 0.2 , corresponding attack: TrackPosition
Risk Variation = 0.0 , corresponding attack: TamperOdometer
Risk Variation = 0.0 , corresponding attack: HideCrashInfo
Risk Variation = 0.0 , corresponding attack: ACD DoS
Risk Variation = 0.0 , corresponding attack: TurnOffEngine
Risk Variation = 0.0 , corresponding attack: EngageSeatBelt
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Figure 5.12: Audi intermediate solution after second step
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Listing 5.13: Attacks Risks Variation after second step
Ho spostato HUM in DriveTrain_CAN
Risk Variation = 1.4 , corresponding attack: TurnOffHeadlights
Risk Variation = 0.933 , corresponding attack: LockEngine
Risk Variation = 0.466 , corresponding attack: CaptureImagesFromCameras
Risk Variation = 0.466 , corresponding attack: GetTheAddressBook
Risk Variation = 0.466 , corresponding attack: TrackPosition
Risk Variation = 0.33 , corresponding attack: EavesdropOnConversations
Risk Variation = 0.0 , corresponding attack: RemoteAcceleration
Risk Variation = 0.0 , corresponding attack: KeylessIgnition
Risk Variation = 0.0 , corresponding attack: TamperOdometer
Risk Variation = 0.0 , corresponding attack: HideCrashInfo
Risk Variation = 0.0 , corresponding attack: ACC DoS
Risk Variation = 0.0 , corresponding attack: ACD DoS
Risk Variation = 0.0 , corresponding attack: ALA DoS
Risk Variation = 0.0 , corresponding attack: DisableBrakes
Risk Variation = 0.0 , corresponding attack: Brake
Risk Variation = 0.0 , corresponding attack: ActivateAirbag
Risk Variation = 0.0 , corresponding attack: LockSteering
Risk Variation = 0.0 , corresponding attack: Steer
Risk Variation = 0.0 , corresponding attack: OverheatEngine
Risk Variation = 0.0 , corresponding attack: SpeedUp
Risk Variation = 0.0 , corresponding attack: TurnOffEngine
Risk Variation = 0.0 , corresponding attack: EngageSeatBelt
Risk Variation = 0.0 , corresponding attack: LockTheBrakes
Risk Variation = 0.0 , corresponding attack: LockDoors
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Chapter 6

Conclusions and Future Works

This thesis focused on threat assessment in the design phase of vehicular

internal networks aimed to identify possible countermeasures to be adopted.

We proposed a methodology to make a security risk analysis on automotive

architectures which is able to propose risk values for di↵erent attack scenarios

(described as attack trees) di↵erentiating the results according to the di↵erent

topologies and assigning a global risk evaluation to each of them. Then we

also proposed an algorithm that suggests countermeasures related to the

specific architecture reaching a local optimum with the aim of minimizing

the global risk evaluation of the topology.

Both of the propositions have been implemented through a simple python

tool which we hope can help analysts while studying the architecture of a

vehicle, whether while designing the network of a new vehicle or assessing

the network of an already existing one.

The methodology results, obtained through the application of the tool to

three real topologies, have been compared with already known analyses from

known experts of the field to prove their correctness and they also showed

the hints richness that can be deduced. On the other hand, countermeasure

proposals, not having any already existing work to which we could compare

them, have been analysed and appear to be functional to the scope of the

work leading to coherent local optimal solutions.
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Figure 6.1: Google’s first self-driving concept

However we still recognize some limitations in our works:

• Attack Trees are not exhaustive. In fact we didn’t consider some

new scenarios like attacks to the eCall [14], attacks to the eToll [15],

tra�c manipulation attacks or remote autonomous drive. Moreover the

attack methods that we hypothesized are not the only ones possible and

they could also evolve very much in next years. So future works may

consider to improve our database adding di↵erent known attacks and

completing the list with less known ones.

• Every component can act as a gateway. One of the weakest

assumptions that we made in our methodology is that every component,

if hacked, could potentially be a gateway if it is communicating on

two di↵erent buses. This is not always true since a component could

only listen on a bus so future works may improve the tool by better

investigating this possibility in order to restrict this assumption.

• Simplified Gateways. The only e↵ect that causes the insert of a

gateways in a topology is the distance increase among components.

Future works may implement in the algorithm an automatic generation

of firewall rules for a better shielding of the networks segments.

• Local optimum. Final solutions obtained by the countermeasures
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generation algorithm do not reach a global optimum but only a local

optimum. This means that the final topology configuration is just the

incremental result of small adjustments made step by step starting

from the initial configuration. Future works may consider the design of

an algorithm that identifies the global optimal topology structure only

starting from the components list and requirements.

• Costs. Our countermeasures algorithm doesn’t di↵er countermea-

sures considering the costs: every countermeasure implicitly requires

the same expense. Future works may consider to improve the tool by

embedding cost evaluations in the decision phase of the algorithm.

Furthermore, next studies may consider a further development of the

tool developing di↵erent countermeasures which may complement the ones

we already propose and it may be interesting to study the outputs of the tool

changing the base values or changing how the tool considers the importance

of some attacks and solutions.

New technologies will arrive (6.1) and new risks will arise. The more cars

will be connected, the more attackers will have access points to enter vehicles

networks. For these reasons in the future, automotive industry will have to be

very e�cient in concentrating costs and investments where is more important

knowing that it’s not possible to easily prevent all attacks. Approaches like

the one described in this thesis could facilitate this process, approaches that

aim to prioritize countermeasures following mainly the risk minimization.
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