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Abstract

NAND Flash technology is nowadays one of the most implemented solutions for

highly-performing non-volatile memories. The continuous development of its scaling

processes brought the characteristic cell feature size (F) to values around 15 nm. This

dimension reduction allowed to obtain excellent storage densities, while keeping a low

cost-per-bit ratio, and high read/write performances, overcoming the e�ciency o�ered

by other technologies, such as magnetic hard-disk drives. The dimension reduction of

the arrays led to di�erent stability issues, becoming harder to control the more F was

reduced, making the technological growth di�cult to be carried on. In order to overcome

these issues, a new approach was taken and the array structure was changed. The

third dimension was employed and 3D NAND Flash arrays were developed, allowing

greater storage densities while using a big enough feature size to overcome the mentioned

problems. The new processes involved in the manufacturing of 3D NAND Flash employ

the deposition of the semiconductor material, resulting in a polycrystalline channel.

Reliability represents the most stringent constraint to the technology development

in both planar and 3D arrays, and must be carefully checked. To this aim, accelerated

tests are usually carried out, in which the phenomenon under analysis is speeded up by

application of voltages or temperatures higher than usual. Results are then extrapolated

to normal operating conditions using appropriate relations. For the case of temperature

acceleration, an Arrhenius-like relation is often found, controlled by an activation energy.

The analysis of the temperature dependence of the device characteristics in both planar

and 3D devices becomes of primary importance to understand the extrapolation process.

This is the purpose of this thesis work along with the study of the Meyer-Neldel rule, an

empirical law, usually found in amorphous and polycristalline materials, which links the

activation energy and the prefactor of thermally-activated conduction processes.

Chapter 1 gives an overview of NAND Flash technology, explaining the schematic

layout of the memory array and the performance of the main operations, followed by

the presentation of the scaling trends and the above mentioned issues that took the
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technology to 3D structures. The basic structure of di�erent 3D NAND Flash strings is

given along with the new issues brought by the implementation of this technology.

Chapter 2 describes the known temperature dependences of monocrystalline and

polycrystalline devices with models taken from the literature. Emphasis is given on the

variations brougut by the presence of trap states. At the end of the chapter di�erent

proposed explanations of the Meyer-Neldel rule are presented along with a Meyer-Neldel

analysis performed on a TFT. Such analysis will set the guidelines for the analyses of the

following chapters.

Chapter 3 has the main scope of verify the biunivocal relation that is often given

between the Meyer-Neldel rule and trap states. This investigation is made by the means

of simulations of monocrystalline devices, a nanowire MOSFET and a long-channel

planar MOSFET without any kind of trap states. The results of the simulations are then

analyzed with the aid of MATLAB. The analysis starts from the understanding of the

electrostatic of the devices and employs Arrhenius plots of the current and the charge

from which activation energies and prefactors are extracted. The obtained results are

compared with experimental results and analytical models from the literature.

Chapter 4 presents the results of simulations with trap states of the same nanowire

device presented in Chapter 3 along with the analysis of the Meyer-Neldel rule. The

analysis is again based on the understanding of the underlying physical processes such

as the occupation of the trap states and it employs again Arrhenius plots for the extrac-

tion of activation energies and prefactors. Throughout the chapter the obtained results

are compared with the ones of the previous chapter, highlighting the role of the trap states.
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Sommario

La tecnologia NAND Flash è ad oggi una delle soluzioni più adottate per memorie

non volatili ad alte prestazioni. Il continuo sviluppo dei processi di scaling ha portato

la feature size (F) della singola cella a valori intorno ai 15 nm. Questa riduzione delle

dimensioni ha permesso di ottenere un'ottima densità di archiviazione, mantenendo

un basso costo per bit, e alte prestazioni di lettura/scrittura, superando l'e�cienza di

altre tecnologie, come gli hard disk magnetici. La riduzione delle dimensioni degli array

ha portato a diversi problemi di stabilità, che diventano più di�cili da controllare al

decrescere di F, rendendo sempre più complesso lo sviluppo della tecnologia. Per superare

questi problemi, è stato adottato un nuovo approccio e la struttura dell'array è stata

modi�cata. Sfruttando la terza dimensione sono stati sviluppati array 3D NAND Flash,

consentendo di ottenere una maggiore densità di memoria e una feature size abbastanza

grande da evitare i sopracitati problemi. I nuovi processi coinvolti nella produzione di

stringhe 3D utilizzano la deposizione del materiale semiconduttore e di conseguenza il

canale risultante è fatto di silicio policristallino.

L'a�dabilità rappresenta il vincolo più severo per lo sviluppo tecnologico sia negli

array planari che 3D, e deve essere attentamente controllata. A tal �ne, vengono

solitamente e�ettuati dei test accelerati nei quali il fenomeno in analisi viene acceler-

ato tramite l'applicazione di tensioni o temperature superiori al normale. I risultati

vengono poi estrapolati alle normali condizioni di funzionamento utilizzando opportune

relazioni. Nel caso dell'accelerazione in temperatura, si trova spesso una relazione di

tipo Arrhenius, controllata da un'energia di attivazione. L'analisi della dipendenza dalla

temperatura delle caratteristiche del dispositivo sia nei dispositivi planari che in quelli

3D diventa quindi di primaria importanza per comprendere il processo di estrapolazione.

Questo è lo scopo di questo lavoro di tesi oltre allo studio della regola di Meyer-Neldel,

una legge empirica, solitamente presente nei materiali amor� e policristallini, che col-

lega l'energia di attivazione e il prefattore di processi di conduzione attivati termicamente.

Il capitolo 1 fornisce una panoramica della tecnologia NAND Flash, spiegando
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schematicamente il layout dell'array di memoria e l'esecuzione delle principali oper-

azioni, seguito dalla presentazione dei trend di scaling e dei problemi sopra menzionati

che hanno portato la tecnologia alle strutture 3D. La struttura di base delle diverse

stringhe 3D NAND Flash è poi presentata insieme alle nuove problematiche portate

dall'implementazione di questa tecnologia.

Il capitolo 2 descrive le note dipendenze dalla temperatura delle caratteristiche dei

dispositivi monocristallini e policristallini con modelli tratti dalla letteratura. Particolare

enfasi è data alle variazioni dovute alla presenza di stati trappola. Alla �ne del capitolo

vengono presentate diverse spiegazioni proposte della regola Meyer-Neldel insieme ad

un'analisi della regola eseguita su un TFT. Tale analisi de�nirà le linee guida per le

analisi dei capitoli successivi.

Il capitolo 3 ha lo scopo principale di veri�care la relazione biunivoca che è spesso

data tra la regola di Meyer-Neldel e gli stati trappola. L'analisi viene e�ettuata mediante

simulazioni di dispositivi monocristallini, un MOSFET nanowire ed un MOSFET planare

a canale lungo senza alcun tipo di stato trappola. I risultati delle simulazioni saranno poi

analizzati con l'aiuto di MATLAB. L'analisi parte dalla comprensione dell'elettrostatica

dei dispositivi e utilizza dei gra�ci Arrhenius della corrente e della carica da cui vengono

estratti le energie di attivazione e i prefattori. I risultati ottenuti saranno poi confrontati

con i risultati sperimentali e i modelli analitici presenti in letteratura.

Il capitolo 4 presenta i risultati delle simulazioni con stati trappola dello stesso dis-

positivo nanowire presentato nel capitolo 3 oltre all'analisi della regola di Meyer-Neldel.

L'analisi si basa ancora una volta sulla comprensione dei processi �sici presenti come

l'occupazione degli stati trappola con le variazioni di temperatura e utilizza nuovamente

i diagrammi di Arrhenius per l'estrazione delle energie di attivazione e dei prefattori.

Lungo tutto il capitolo i risultati ottenuti verranno confrontati con quelli del capitolo

precedente, evidenziando il ruolo degli stati trappola.
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Chapter 1

NAND Flash Fundamentals

Nowadays NAND Flash is the elected technology for non-volatile memories. This is

due to their characteristic of having high reading and writing throughput while keeping

a low cost per bit storage capacity. This last characteristic got better and better in the

last years because the feature size (F) of one memory cell keep on reducing in the last

decades due to the fast scaling process reaching 15 nm. This technology managed to reach

magnetic Hard Disk Drives in term of costs and overcome them in term writing and reading

speeds (almost x10), furthermore, because of the absence of mechanical moving parts, they

are way quieter and have a big shock resistance. Here in the �rst chapter an overview

on NAND Flash technology will be given in order to understand their principal working

operations and the underlying physical processes with the objective of understanding how

the scaling process and the reduction of the feature size can a�ect these processes and

damage their stability. The solution to these issues was found in new 3D structures in

order to keep up with Moore's law trend, this solution brought many advantages but has

di�erent drawbacks. The main disadvantage (i.e the use of polysilicon in the fabrication

process) has great consequences on the physic of the devices.

1.1 2D NAND Flash

1.1.1 Array structure

The fundamental element of each cell is the Floating Gate MOSFET (FGMOSFET),

a MOSFET with a conductive layer buried in the gate oxide. This layer allows the

storage of charges which can be translated into one or multiple bits, this conductive layer

take the name of Floating Gate (FG). Many cells are connected in series to create strings

which are connected on one side to a single source-line (SL) while on the other side one

di�erent bit-line is present for each string. Control gates of FGMOSFET on di�erent

2



1.1. 2D NAND Flash
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Figure 1.1: (a) Schematic circuit of a NAND Flash array. WL = word-line, BL = bit-line,
SSL = source-select line, DSL = drain-select line, SL = source-line, DUL = dummy line. (b)
perpendicular section along string. (c) schematic layout of the array (from [1]).
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1.1. 2D NAND Flash
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Figure 1.2: Schematic representation of VT distributions for (a) SLC, (b) MLC e (c) TLC
technologies (from [1]).

strings are formed by shared word-lines (WLs) which are positioned orthogonal to the

strings mentioned above, therefore we obtain a matrix arrangement which allows us to

select the desired cell thanks to the joint use of word-line, Drain Select Line (DSL) and

Source Select Line (SSL). DSL and SSL connect and disconnect each string respectively

to the bit-lines and the source-line. The FGMOSFETs just before SSL and DSL are

called Dummy cells and are controlled by WLs named Dummy Lines (DUL) because

they are not used to actually store any data because their behaviour can be di�erent from

all the other cells in the middle of the string due to border e�ects. All these components

are shown in Fig. 1.1(a).

In Fig. 1.1(c) is depicted a planar view of the memory array, Shallow Trench Insulation

(STI) is clearly visible. The silicon stripes are formed by etching removal on a wafer

followed by the deposition of a dielectric material (light blue in the �gure) which guarantee

the isolation between adjacent strings. In the �gure is also indicated the feature size (F)

which is the width of the silicon stripe. The pitch of the strings and WLs is usually

identical and equal to 2F, therefore the total area of a single cell is equal to 4F 2. A

single cell is highlighted in Fig. 1.1(b) which is a view orthogonal to the AA' line in

Fig. 1.1(c) and orthogonal to the memory array. In this �gure word lines are represented

in gray, �oating gate in red, oxide insulator in light blue; in the bottom we can see the

4



1.1. 2D NAND Flash
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Figure 1.3: Schematic description of the applied voltages to a NAND string contacts fot the
(a) read, (b) program and (c) erase. During the read and program operations the a�ected cell
is, respectively, the one to which VRX and VP is applied. The erase operation, instead, is done
on the whole string (from [1]).

p-doped silicon substrate and the source and drain n+ implantations. Note that every

source and drain is in common between 2 cells. We can �nally de�ne the Net Bit Storage

Density (NBSD) as n
4F 2 , where n is the quantity of storable bits per cell. We will see that

this parameter describes well the improvement with respect to older technologies such as

magnetic hard disk drives.

1.1.2 Array operations

The threshold voltage (VT ) of a cell is de�ned as the gate bias such that the channel

current is above a certain value (usually 10 nA). When charges are injected into the

�oating gate the VT of a cell changes, more speci�cally it rises when the charge on the

�oating gate becomes more negative. This mechanism is the one exploited to store data,

they are related to the charge stored in the �oating gate of the cells.

In Fig. 1.2 is shown how is possible to store multiple bits in a single cell by discretizing

the threshold voltage in 2BPC (Bits Per Cell) levels. One, two and three BPC correspond

respectively to Single Level Cell (SLC), Multiple Level Cell (MLC) and Triple Level Cell

5



1.1. 2D NAND Flash

Figure 1.4: Waveform example of the voltage applied (in red) to the control gateduring the
programming of a NAND �ash in 60 nm technology and the corresponding programmed VT (in
black). In stationary regime 〈∆VT 〉 = ∆VCG, allowing an accurate control of VT (from [2]).

(TLC). Depending on the chosen technology the threshold voltage distribution changes,

the state with the lowest VT usually corresponds to the erased state while higher values

refer to programmed states. The read operations are performed by 2BPC − 1 speci�c

gate voltages named VRX applied to the control gates and measuring the current �owing

through the cell. There are 3 main operations: read, program and erase.

1. Read Operation: as written above the read operation is performed by measuring

the current �owing through the cell when a certain value VRX is applied. All the

other cells that belong to the same string must not limit the string current in order

not to make errors in the reading operation. Hence their gate voltages are set to

a value V pass
R that is well above the maximum threshold voltage to make them

work as pass transistors. The string selection is performed by having DSL and SSL

working as pass transistors by applying a value V SG
R to their control gates. The SL

is grounded while the corresponding BL has an applied voltage VBL,R>0 V so that a

current can �ow through and the value of this current must be a�ected only by the

programming state of the cell. To detect if the threshold voltage of the cell is below

or above the applied VRX a sense ampli�er is used. One of the most important

characteristic of the read operation that must be taken into account is the time

needed to perform such operation: it starts from a few tens of microseconds for

SLC technology, rising for MLC and TLC because they need multiple reading steps.

This time is much longer if compared to other technologies such as NOR Flash.

6



1.1. 2D NAND Flash

Figure 1.5: F values for the NAND Flash manufactured by the leading semiconductor com-
panies from 2001 to 2015. The employment of a 3D Flash technology allows to increment the
technological node while keeping a constant feature size (from International Solid-State Circuits

Conference (ISSCC)).

The origin of this time overhead are all the parasitic resistances and capacitances

along the word-lines. Nowadays di�erent strategies are employed to reduce the

read times, like sequential reads and exploiting the parallelism of multiple strings

all driven by the same set of WLs. The bias con�guration is shown in Fig. 1.3(a)

2. Program Operation: as previously said it consists in injecting electrons into the

Floating Gate till the threshold voltage of that cell will reach a speci�ed value. The

physical process exploited for this operation is called Fowler-Nordheim tunneling.

It allows the �ow of electrons through the oxide layer that separates the silicon

channel and the �oating gate, also called tunnel oxide. The programming bias VP is

relatively high (' 20 V), it is applied on the control gate, being the body grounded,

a strong electric �eld is generated enabling the tunneling. The other cells have a

bias (V P
pass) such that they will work as pass transistors. The string is disconnected

from the source line by applying 0 V to the SS, while the DS is activated with a

voltage higher than 0. The dummy lines are isolated from the string selectors with

a bias VDUL lower than V pass
P . This is shown in Fig. 1.3(b). The string that have

to be programmed has its BL biased at 0 V while the others have the same bias

of their selectors (DS) hence they are disconnected. All this bias scheme is set to

maintain the bias in the selected cell to 0 V, while the capacitive coupling between

the channels of the other cells that share the same WL and the WL make the bias

of these channels to rise. This is called self-boosting and prevent the unwanted

7



1.1. 2D NAND Flash
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Figure 1.6: GBSD technological growth for cells using SLC, MLC e TLC technologies (from [1]).

programming of the other cells. The law that is followed by the threshold voltage

of the programmed cell is:

VT =
q∆n

CPP
(1.1)

where q is the elementary charge, ∆n the number of electrons injected in the

�oating gate and CPP the capacitance between the control and �oating gates.

The method to allow a precise control of the amount of charge injected is called

Incremental Step Pulse Programming (ISPP). It is a sequence of incremental

programming pulses and verify operations. The verify operations check the reached

VT and control that is equal to the desired voltage VPV . The ISPP method is shown

in Fig. 1.4, the time needed are in the order of hundreds of microseconds and few

milliseconds for SLC MLC and TLC respectively [3] [4]. The average time can be

reduced by exploiting the parallelism of the structure.

3. Erase Operation: if writing data is about injecting charge is straightforward that

erasing means removing charges from the �oating gate, the same tunnel mechanism

is exploited. It is not possible to erase one single cell because the substrate bias is

in common between many cells, the area with the same substrate (p-well) bias is

called block (typical size of 4 MB). The electric �eld must be opposite of the one of

the writing operation, therefore all the WLs will be biased at 0 V while the p-well is

set to a high positive bias VE allowing the tunnel of electrons from the �oating gate

to the p-well. In order to reduce the electrical stress on the device, all the string

selectors and source and bit line are left �oating while the dummy lines are biased

to a bias VDUL > 0. The operation takes few milliseconds.
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1.2. Technological growth
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1.2 Technological growth

The demand for big data storage devices never stop rising and brought all the memories

companies to increase the capacity of their products. The improvement of the processes

capabilities allowed by the technological development permitted the reduction of the fea-

ture size F of a factor
√

2 every 2 years. This is completely consistent with the prediction

of the Moore's law as we can see in Fig. 1.5. Another �gure of merit is the Gross Bit

Storage Density (GBSD) that is the memory capacity per unit area of the device, if Cchip

and Achip are respectively the total capacity and total area we have GBSD =
Cchip
Achip

. In

Fig. 1.6 it is reported its agreement with the Moore's law, it can also be seen the vertical

shift between the di�erent technologies SLC MLC and TLC. The miniaturization process

reached a feature size of 15 nm and this brought many drawbacks, analyzed in the next

subsection, that made the companies moving to a 3D structure. Exploiting the third

dimension (i.e. perpendicular to the silicon wafer) it will be shown how it is possible to

increase the GBSD while using a higher feature size, hence avoiding the just mentioned

drawbacks.

1.2.1 Physical scaling issues

The scaling of the feature size brought many advantages in term of GBSD and costs,

but have severe drawbacks in term of stability caused by the reduction of the cell size:

1. Program Noise: The reduction of the cell size implies also a reduction of Cpp which in

turn increases the sensitivity of VT over ∆n. The number of electrons needed to cause
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1.2. Technological growth

Figure 1.8: (a) Example of a 3D simulated current density in a planar MOSFET in which
an atomistic doping has been considered. (b) A �xed electron was placed on the silicon/oxide
interface to simulate a �lled trap and the current density was extracted again (from [6]).

a shift of 100 mV with respect to the feature size F is shown in Fig. 1.7. It decreased

dramatically reaching values in the order of units. Each voltage step during the

ISPP inject a certain number of electrons, if the number needed is very small the

width of the step has to decrease, not to a�ect the accuracy of the programming

operation. Besides, the variability among di�erent cells is not a problem since the

verify operation performed get rid of this source of instability. The increase of the

feature size brought by switching to a 3D architecture can overcome this problem

because the number of electrons needed is increased proportionally with F.

2. Time dependent variabilities on VT : in the tunnel oxide are present some defects

in which electrons can be trapped and the reduction of the dimensions of the

cell enhances the e�ect of these discrete defects. The capturing or releasing of

charges inside these defects are random events that a�ect the threshold voltage

of the cell. Furthermore, also the dopants are discrete and this cause the current

to be percolative, the relative distance between the charge trapped in the defect

and the percolative path of the current strongly a�ects the VT shift. Speci�cally,

a charge closer to the percolation path has a stronger e�ect on the threshold voltage.

The dimension reduction led to increasing issues because the average number

of defects gets smaller with the dimension, making the statistical �uctuation of

this number more and more important for the array operation. The combined

e�ect of this increased statistical �uctuation and the enhanced e�ect of one

single capture/release event has strongly increased the statistical dispersion of the

threshold voltage instabilities, creating big challenges for a correct data retention.

In Fig. 1.8 it is shown the e�ect of a discrete defect on the percolative current while

in Fig. 1.9 we can see an example of instability coming for capturing/releasing in
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Figure 1.9: VT pro�le for three di�erent cells with respect to the retention time. Multiple
program/erase cycles were performed before the measurement (from [1]).

the tunnel oxide defects.

There are two main e�ects: The �rst one is random telegraph noise (RTN) occurring

when tunnel-oxide defects periodically capture and release single charge carriers

from/to the channel of the memory cell, leading to a two-state �uctuation of VT .

RTN a�ects the stability as soon as the program operation is �nished because the

distribution of time constants for capturing, releasing events is very wide. The

second is called postcycling charge detrapping. This phenomenon arises from the

capture of negative charge in the cell tunnel oxide during the program and erase

operations and from the subsequent neutralization of this charge during the idle

periods of data retention. When the captured charges are released the threshold

voltage shifts towards lower values as time elapses as shown in the picture. This

process enlarge the page VT distribution towards lower values. Both the mentioned

phenomena worsen with the number of program/erase cycles performed on the array,

limiting the endurance of the new memory chips to a few 103 program/erase cycles

in the state-of-the-art technologies.

3. Cell-to-Cell Electrostatic Interference: In order to achieve an high GBSD while

reducing F, not only W and L have been reduced but also the relative distance be-

tween cells in the memory array. This made the electrostatic interference between

adjacent cells more and more relevant for the array operation: the charges stored

in a cell signi�cantly a�ect the threshold voltage of adjacent cells. Notwithstanding

that electrostatic interference between neighboring cells may show up any time dur-
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Figure 1.10: Vertical cross section of a NAND Flash array showing the presence of air gaps
between adjacent cells (from [7]).

ing array operation, the most critical phase is during programming. The program

operation causes huge changes in the charge in the �oating gate on the selected cell

and hence a�ects a lot the VT of the adjacent cells, thus enlarging the distribution of

threshold voltages among cells and worsen the performances of the array, requiring

very precise ISPP step to inject the desired charge with a low error. Many solution

to this issues have been studied and implemented, the most successful has been the

introduction of air gaps in-between cells belonging to adjacent WLs as shown in

Fig. 1.10. In this way the dielectric constant is reduced and hence the parasitic

capacitance, limiting this phenomenon.

1.3 3D NAND Flash

As written above the solution of all the issues presented in the previous section was

moving to a 3D structure. The aim was to keeping on increasing the GBSD avoiding the

problems presented in section 1.2. The �rst experiment was done by stacking multiple

2D arrays one on the top of the other. This solution increased the GBSD but did not

have advantages in term of process costs and complexity (i.e the expensive lithographic

steps). The two main solutions are called vertical channel memories and vertical gate

memories. The former is now presented, highlighting the bene�ts and the drawbacks

of the structure, because is the most important array solution to pursue an equivalent

12



1.3. 3D NAND Flash

Figure 1.11: 3D vertical-channel NAND Flash array schematic representation (from [1]).

scaling of the technology.

1.3.1 3D vertical channel array structure

One of the main ideas was that a reduction of the critical lithographic steps could be

achieved if the silicon channel could be implemented orthogonal to the wafer surface. In

Fig. 1.11 is presented the schematic structure of a vertical-channel 3D NAND Flash array.

The silicon channels runs vertically from the substrate to the BLs while the WLs are

planes intersecting the channels. Like in the planar case the �rst and last WLs are select

transistors, their arrangement (one orthogonal to the other) in a matrix-like manner

makes possible to select a single channel and thus a single cell; the cells of this selectors

WLs are dummy cells. The structure implemented is the so called gate-all-around (GAA)

that allows the best electrostatic control of the channel by the gate. With this structure

the quadruple lithographic steps required for the 15 nm planar chip could be avoided,

it has the same GBSD with only 24 layers and a feature size F of 40 nm. The WLs are

made from metal or high-doped polysilicon, the di�erent solution depends on the manu-

facturing process. The substrate, connected to all strings, takes the role of the source line.

In Fig. 1.12 the so-called macaroni structure is shown. This solution has been
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Figure 1.12: Schematic view of a single Macaroni cell (from [1]).

a) b)

Figure 1.13: Representation of the vertical section of a string based on (a) polysilicon �oating
gate and (b) charge trapping in an ONO stack (from [1]).

proposed because the process needed for the production of these structures involves the

deposition of silicon in the etched holes. Thus dangling bonds and lattice distortion will

be present in the deposited silicon, hence the semiconductor will have a polycrystalline

structure, with the presence of defects on the grain boundaries (GBs). To limit the

absolute number of these defects, one solution is to limit the volume of silicon by �lling

the middle of the channel with a cylinder of oxide, called oxide �ller. Di�erent solution

for the data storage have been proposed, in Fig. 1.13 the two principal ones are presented.

In the case a) the solution is similar to the planar case. An isolated �oating gate is

present (red) that have been isolated from the WL by the use of the Inter-poly Dielectric

(IPD). The second solution exploits an high defective material: Oxide-Nitride-Oxide
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Bit Line Source Line

SG
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Slit

Figure 1.14: Rendering of an array based on P-BiCS strings (from [8]). SG stands for Selector
Gate and CG for Control Gate.

(ONO) made of SiO2 − Si3N4 − SiO2. The charge is stored in the defect present in the

nitride layer isolated by the two oxide �lms.

In Figs. 1.14 and 1.15 are respectively shown the Pipe-shaped Bit Cost Scalable (P-

BiCS) presented by Toshiba in 2009 and the Terabit Cell Array Transistor (TCAT) by

Samsung. The main di�erence between this two solutions is that in the latter a p-substrate

is present and thus the erase operation can be performed similar to the planar case. In

the other structure is exploited a phenomenon called Gate Induced Drain Leakage (GIDL)

in which the holes needed for the erasing operation are obtained by a band to band

breakdown.

1.3.2 Reliability tests and temperature

We have already mentioned that a tunneling process is exploited for the operations

of the memory array. This process causes the aging of the device because it damages

the thin insulator layer [9]. Recovery of damages induced by program/erase (P/E)

cycles is a major source of threshold voltage (VT ) instability during data retention for

deca-nanometer NAND Flash memories. This instability represents the worst reliability

issue coming from spurious charge trapping in the tunnel oxide and interface state

creation during repeated (P/E) cycles [10], arising from the possibility for the same oxide

charge to detrap and for interface states to anneal out when cells have to preserve their

data.
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Figure 1.15: Schematic representation of a TCAT NAND Flash string with a zoomed view of
two sections (from [11]).

The amount of cell damage contributing to VT instabilities during data retention is

the result of not only the number of P/E cycles previously performed on the array but

also the time delay between cycles and the cycling temperature [12]. Characterization

tests where P/E cycles are performed in quick succession to minimize the required

experimental time, which is usually referred to as fast-cycling tests, provide only worst

case results for the VT instabilities during data retention. A more realistic test should,

instead, reproduce the time distribution of P/E cycles that is reasonably expected in real

device operation. To this aim, distributed-cycling experiments should be designed, trying

to solve the tradeo� between a low characterization time and a correct reproduction of

the amount of damage at the end of cycling. In so doing, the increase of the cycling

temperature to obtain in a�ordable experimental times the same damage recovery that

should be obtained at the device working temperature on a much longer cycling time

scale appears as the most practical solution.

In particular, the temperature increase is used with the aim of reproducing with short

bake times the same VT instabilities taking place at room temperature on a much longer

time scale. To practically manage the temperature e�ect, an Arrhenius law is usually

assumed to describe the temperature dependence of the time needed to reach a selected

∆VT , introducing, in so doing, an activation energy Ea for the damage-recovery process.
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1.3. 3D NAND Flash

In this framework it is evident that the study of the temperature behavior of the

memory devices is needed along with the investigation on the activation energies involved

in the various processes exploited in the operations of the devices.
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Chapter 2

Temperature dependences

In this chapter the main temperature dependences that a�ect current conduction of

di�erent semiconductor devices are reported. The focus will be on conduction in the sub-

threshold region, because it is the most interesting for the study of the Meyer-Neldel rule.

The �rst device chosen for our analysis is a monocrystalline device such as a planar long-

channel transistor, with a brief review on the interface traps that could a�ect the conduc-

tion, followed by polysilicon devices and their temperature dependences. Grain boundaries

and trap states will be investigated with focus on how temperature changes the occupation

of the trap states. At the end of the chapter a few Meyer-Neldel rule believed origins are

outlined and an example of MNR analysis is reported in detail. Such example will set the

guidelines for the analysis of the rule performed in the thesis work.

2.1 Monocrystalline device

2.1.1 Long channel planar MOSFET

In the depletion N-Type MOSFET a p-type substrate is brought to an inversion

condition at the semiconductor-oxide interface by the bias applied to the gate, Vgs in

Fig. 2.1. The positive bias will bend the conduction band towards the Fermi level,

creating a depletion region from which the holes are pushed away, making the electrons

concentration rise at the interface.

The inversion condition is considered to have been reached when the minority

carriers (electrons) concentration at the interface equals the majority carriers (holes)

concentration in the substrate creating a highly-conductive path between two heavily

n-doped regions: source and drain. If a voltage (Vds) is applied between these two

terminals when the inversion condition is reached, a current will �ow. This state is
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2.1. Monocrystalline device

Figure 2.1: Schematic MOSFET cross section, showing all the biases (grounded source) and
the dimension L: channel lenght; W device width).

known as on-state or above-threshold region, referring to the threshold voltage Vt that

Vgs must reach in order to enable the inversion condition.

Naturally the electron concentration does not follow a step-like relation; the latter is

an approximation of a steep exponential relation, and even for Vgs < Vt enough carriers

are present at the interface to make a current �ow if a bias Vds > 0 between source and

drain is applied. This is called sub-threshold region. This region is the one the analysis

will be focused on because, as it will be shown, it is relevant for the analysis of the

Meyer-Neldel rule.

2.1.2 Subthreshold current

In the subthreshold region the inversion charge is much smaller than the depletion

charge, which is created by the removal of the holes and has the magnitude of the doping

concentration. The inversion charge sheet density is regulated by [13]:

−Qi =

√
εsiqNa

2ψs

(
kT

q

)(
ni
Na

)2

eq(ψs−Vfn)/kT , (2.1)

19



2.1. Monocrystalline device

where ψs is the voltage drop in the silicon substrate, εsi the silicon permittivity, Na the

substrate doping, q the elementary charge, and Vfn = Efn/q is the electron quasi-Fermi

potential at the semiconductor-oxide interface where Efn is the electron quasi-Fermi

level. Since the inversion charge density is small ψs is a function of Vgs only, independent

of Vfn. Hence the electric �eld along the channel direction is small and in turn the drift

current is negligible.

The current in this condition is a di�usion one, therefore it will follow:

Jn,diff = kTµn
dn

dx
(2.2)

Performing the integration along the channel direction one obtains:

Ids = µeff
W

L

√
εsiqNa

2ψs

(
kT

q

)2(
ni
Na

)2

eqψs/kT (1− e−qVds/kT ). (2.3)

If Vds is about only 50 mV, the last exponential takes a value one order of magnitude

lower than 1 and can be neglected, leading to:

Ids = µeff
W

L

√
εsiqNa

2ψs

(
kT

q

)2(
ni
Na

)2

eqψs/kT . (2.4)

It should be noted that, to a �rst approximation the current is proportional to charge,

mobility, temperature and dimensions.

2.1.3 Subthreshold slope

To highlight the e�ect of temperature on the subthreshold region, Eq. (2.3) can be

rewritten as function of Vgs assuming that ψs has little deviation from the inversion value

2ψB [14], where ψB = kT
q

ln Na
ni
.

The device parameter

m = 1 +

√
εsiqNa/4ψB
Cox

, (2.5)

where Cox is the unit area oxide capacitance, can also be expressed as:

m = 1 +
Cs
Cox

(2.6)
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since:

Cs =

√
εsiqNa

2ψs
=

√
εsiqNa

4ψb
(2.7)

when the inversion condition is reached.

Therefore:

m =
Cs + Cox
Cox

=
Cs
Ctot

(2.8)

where Ctot is the series of the substrate and oxide capacitances. m can also be interpreted

as the sensitivity of the substrate voltage drop to the gate bias, i.e. ∆Vgs/∆ψs.

Reversing the de�nition of ψB one obtains:

e−
qψB
kT =

ni
Na

. (2.9)

Since the device is operating near the inversion condition and thus the substrate bias ψs

will be close to the inversion value 2ψB, we can express the exponential in Eq. (2.4) in

term of Vgs since Vgs − Vt = m(ψs − 2ψB) and �nally Vgs = Vt +m(ψs − 2ψB). Therefore

Eq. (2.3) can be rewritten as:

Ids = µeff
W

L

√
εsiqNa

4ψB

(
kT

q

)2

eq(Vgs−Vt)/mkT (1− e−qVds/kT ), (2.10)

leading to the expression for the subthreshold slope (STS):

STS =

[
∂ log10 Ids
∂Vgs

]−1
=
mkT

q
ln (10)

[
mV

dec

]
. (2.11)

Since STS, as one can see from the de�nition, is the inverse of the actual I-V relation

slope, higher values mean lower slope values, and hence with the rising of temperature

the I-V slope will get more gentle.

2.1.4 Threshold voltage

Another important temperature e�ect is measurable on the threshold voltage Vt of the

transistor:
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Figure 2.2: Schematic energy-band of a MOS structure, illustrating the presence of interface
states.

Vt =
Eg
2q

+ ψB +

√
4εsiqNaψB
Cox

(2.12)

by di�erentiation we obtain:

dVt
dT

= − 1

2q

dEg
dT

+

(
1 +

√
εsiqNaψB
Cox

)
dψB
dT

(2.13)

with dψB/dT :

dψB
dT

=
d

dT

[
kT

q
ln

Na√
NcNve−Eg/2kT

]
=

− k

q
ln

(√
NcNv

Na

)
− kT

q
√
NcNv

d
√
NcNv

dT
+

1

2q

dEg
dT

(2.14)

Since Nc and Nv are proportional to T
3/2 we have d(NcNv)

1/2/dT = 3
2
(NcNv)

1/2/T and

substituting Eq. (2.14) into Eq. (2.13) we obtain:

dVt
dT

= −(2m− 1)
k

q

[
ln

(√
NcNv

Na

)
+

3

2

]
+
m− 1

q

dEg
dT

. (2.15)

We know from the literature that dEg/dT ≈ −2.5× 10−4 eV/K at room temperature, so

dVt/dT is always negative and typically around -1 mV/K, meaning that the on-state is

reached earlier with rising temperature.

2.1.5 Interface states and interface trapped charge

Many of the solids properties like the band structure and the presence of a forbidden

gap arise from the lattice periodicity. This periodicity terminates at the silicon-oxide
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Figure 2.3: Schematic illustration of electron and hole capture and emission processes at a trap
center located at energy level Et.

interface, leaving dangling bonds at the end of the lattice that create new localized states

with energy in the forbidden gap of silicon [15] as schematically shown in Fig. 2.2. Their

occupancy probability is regulated by the surface-state energy relative to the Fermi level

through the Femi-Dirac statistics.

Interface states have a �xed energy with respect to the energy-band edges at the

interface. If, for example, the conduction band is bent and its edge is shifted downwards

by 0.5 eV the energy of the localized states at the interface will be shifted along by

the same value. In a planar MOSFET at �at bands, with the drain bias set to 0, once

temperature and doping are �xed, the Fermi level Ef is �xed and �at along the direction

perpendicular to the silicon-oxide interface, as are the bands shown in Fig. 2.2. When

gate bias is changed, the bands bend and these states, that move along with the band,

get closer or farther to the Fermi level, changing their occupation probability.

The presence of �xed charges obviously a�ects the electrostatics of the system, in

particular the I-V characteristic. When the gate bias is raised, the induced negative

charges will populate the trap states instead of the conduction band hence reducing the

current �ow. The I-V relation will be more stretched or, in other words, the STS will be

higher. This e�ect can also be explained looking at Eq. (2.11): we have already shown that

the parameter m is the ratio between the substrate capacitance and the total capacitance

between the substrate and the gate, i.e. Cs/Ctot = (Cs+Cox)/Cox. When traps are added,

their capacitance contribution must be added to the numerator, obtaining a higher STS

value, and hence a more gentle rise of the curve:
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Figure 2.4: Idrain vs. Vgate at di�erent temperatures for a 90 nm n-channel MOSFET device
(from [16]).

STS =

[
∂ log10 Ids
∂Vgs

]−1
=
kT

q

Cox + Cs + Ctraps
Cox

ln (10)

[
mV

dec

]
. (2.16)

Trapped electrons and holes cannot contribute readily to the current, but have to

make a transition to the conduction or valence band �rst; interface states can reduce

the conduction current in MOSFETs by trapping electrons and holes. Furthermore,

the trapped electrons and holes can act like charged scattering centers, located at the

interface, for the mobile carriers in a surface channel, and thus lower their mobility [17].

Moreover, interface states can act like localized generation-recombinations centers for

the Shockley-Read-Hall Recombination process, that is a defect-assisted process shown in

Fig. 2.3. Recombination happens when an electron is �rst trapped from the conduction

band and then it is subsequently recombined with a captured hole. Vice versa, traps can

emit a hole and then emit an electron and act as generation centers.

The density of interface states and thus of traps is function of the silicon substrate

orientation and a strong function of the fabrication process [18]. A postmetallization or a

�nal anneal in hydrogen at high temperatues are quite e�ective in minimizing the density

of interface traps and are commonly used in modern device fabrication.

2.1.6 Arrhenius analysis and activation energy

It is meaningful to perform an Arrhenius analysis every time there is a temperature-

activated process which exhibits a relation like:
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Figure 2.5: log Idrain vs 1/kT extracted from the I-V in Fig.2.4 (from [16]).

X = X0e
−Ea/kT (2.17)

In this context the activation energy represents the energy barrier that have to be

overcome for the physical process under analysis to take place.

The starting point for the Arrhenius analysis is to measure or simulate I-V relations at

di�erent temperatures and sample all of them at chosen biases. For every bias the sampled

points will be plotted in a semilogarithmic plot against 1/kT obtaining the Arrhenius plot

of the current. An example is shown in Fig. 2.5, computed from the I-V curves illustrated

in Fig. 2.4. If the current relation is of the type of Eq. (2.17), the logarithm will yield:

lnX = lnX0 −
Ea
kT

(2.18)

hence obtaining straight lines in which the slope will be −Ea and the intercept lnX0.

In our framework it is easy to recognize in Eq. (2.4) the form of Eq. (2.17). Accounting

for the exponential term in the intrinsic concentration, that is ni =
√
NcNve

−Eg/2kT , we

can rewrite the formula as:

Ids = µeff
W

L

√
εsiqNa

2ψs

(
kT

q

)2(√
NcNv

Na

)2

e
q(ψs−Eg/q)

kT . (2.19)

It is important to point out the fact that the coe�cient of the exponential presents
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Figure 2.6: Activation energy vs Vgate for di�erent Vds (from [16]).

temperature dependeces, while in the Arrhenius analysis the exponential coe�cient

is usually assumed to be temperature independent. Moreover, since the temperature

dependence of Eg is very weak (at room temperature it shrinks by 0.25 meV/K when

temperature is increased), the activation energy in the subthreshold region becomes

Ea = Eg− qψs, regulated by the silicon voltage drop ψs. The relation between ψs and the

gate voltage Vgate in the subthreshold region for a planar n-channel MOSFET is known

to be linear and this is con�rmed by the activation energy plot in Fig. 2.6 in the range of

Vgate between 0.4 V and -0.1 V that corresponds to the subthreshold region as illustrated

in Fig. 2.4.

From the activation energy plot one can understand which is the physical process

under analysis from its temperature dependence. For Vgate < −0.1 V in Fig. 2.6, one can

see activation energies that correspond to di�erent GIDL mechanisms depending on the

drain bias applied [16]. For Vgate > 0 V the activation energy decreases toward 0 eV,

showing that the above-threshold regime is weakly temperature-dependent as one can

see from Fig. 2.4.
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Figure 2.7: Energy bands in the substrate showing the silicon voltage drop ψs (from [13]).

2.2 Polycrystalline devices

2.2.1 Grain boundary traps and bulk traps

As written in Sec. 1.3.1 the last memory devices have a polycristalline structure

due to their fabrication process. Polysilicon has a granular structure, in which every

grain is monocrystalline with a random orientation. Grains are separated by grain

boundaries that act as surfaces presenting the features just discussed in Sec. 2.1.5, i.e.

every grain boundary is highly defective with the trap states localized in space at the

grain boundaries with energy within the forbidden energy gap.

Di�erent measurement methods have been proposed to determine the energies at

which traps are located, like the �eld-e�ect conductance analysis method [19] [20] (results

shown in Fig. 2.8) or by measuring low-frequency capacitance�voltage characteristics

and using an extraction algorithm [21] (results shown in Fig. 2.9). It is very important

to have precise information about the trap density of states since this strongly a�ects

the behavior of polysilicon devices like thin �lm transistors (TFT) and cylindrical

gate-all-around (GAA) devices.

In Figs. 2.8 and 2.9 a double exponential trend is highlighted by means of red straight

lines. Since similar distributions have been found in many polyslicon devices, a double
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Figure 2.8: E�ective density of trap states in the gap showing the di�erences before and after
the hydrogenation process. A double exponential trend is observed as indicated from the red
straight lines (from [19]).

exponential distribution like the one shown in Fig. 2.10 has been widely adopted in sim-

ulations for polysilicon devices. These two exponential distributions are the so-called tail

traps and deep traps states respectively with the higher peak concentration and lower

decay constant for the former and vice versa for the latter. In the upper part of the gap

they have an acceptor behavior (i.e. they are negative when �lled), while in the lower part

thay have a donor behavior (i.e. they are positive when empty). So for the mathematical

form of the acceptor traps (the donor ones are similar but starting from the valence band

(Fig. 2.10)):

Nt = gt × e
E−Ec
γ + gd × e

E−Ec
λ (2.20)

Where gt > gd and γ < λ. These distribution will be used throughout all the thesis work.

The occupancy probability of these traps follows the Fermi-Dirac statistics, just like

the occupancy probability of the interface traps discussed in Sec. 2.1.5. If the traps are

uniformly distributed in space, an integration over all the energies in the gap can be

performed to �nd the spatial trap density:
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Figure 2.9: E�etive density of trap states in the gap showing the e�ects of di�erent temperature
and annealing time on the humps at midgap. A double exponential trend is observed as indicated
from the red straight lines (from [21]).

Dt =

∫ Ec

Ev

Nt(E)fD(E)dE. (2.21)

After this integration, the problem of dealing with the space localization of the

traps, i.e. the position of the grain borders remains. To develop suitable models for the

polysilicon devices, a general approach is needed to avoid measurements on every device

to �nd the spatial grain distributions.

2.2.2 Temperature dependence of traps population

It is not possible to obtain a closed analytical form for Eq. (2.21), that must be solved

numerically. The product between fD and the density of states for electrons and the one

for traps shows huge di�erences due to their di�erent localization in the energy spectrum.

More speci�cally, the Fermi level, which is the axis of simmetry of fD, can be located at
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Figure 2.10: Energy distribution of localized trap states in the gap (from [22]).

the conduction band edge in the most extreme case, while the density of states of the free

electrons takes values di�erent from 0 only for energies higher than the energy value of

the conduction band edge. Therefore, half of the Fermi-Dirac distribution function will

be located at energies in which the free electrons DOS is 0 and so will be their product.

The trap density of states, instead, covers almost all the energy gap as fD does and so

their product will take non-zero values for all energies in the gap.

The previously-mentioned integral over all the energies of the bandgap has been com-

puted in order to obtain the spatial density of occupied trap states Dt. After this opera-

tion, Dt can be integrated over all the volume to obtain the absolute number of occupied

traps. The integral in Eq. (2.21) has been computed for:

Nt = gd × e
E−Ec
λ (2.22)

with gd = 5× 1019 cm−3 and for λ = 160 meV and λ = 50 meV.

The integration has been made only for acceptor-like traps, because the donor-type

ones a�ect only the lower half of the gap which is di�cult for the Fermi level to reach in

real physical applications, i.e. they usually are well below the Fermi level and therefore

they are usually occupied and thus neutral. For further sempli�cation, only deep

traps were implemented, because the tail ones have a role only at very low activation

energies (i.e. when the Fermi level is very near the conduction band edge) and the

focus was on the subthreshold region that corresponds to higher activation energies.
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Figure 2.11: Plot of Nt(E) for the two di�erent values of λ and fD for T=200 K and T=500 K
with Ef located at midgap.

The relative di�erence between the spatial density at 500 K and at 200 K, computed as

Dt(500)/Dt(200), depending on the distance Ec − Ef is reported in Fig. 2.12 for two

di�erent λ values.

With the help of Fig. 2.11 it is easier to interpret Fig. 2.12. Temperature has the

only e�ect of stretching the Fermi-Dirac distribution function, the transition from 1 to

0 taking place in a range ' 2kT wide, much smaller than the energy gap of silicon.

When λ becomes smaller, the distribution gets steeper and the temperature e�ect on the

occupation of the traps states gets higher. This fact happens because the total number

of occupied traps is mainly determined by all the occupied traps below the energy at

which fD is 1. When the temperature rises, the point at which fD is 1 shifts towards

lower energies, hence the energy range in which all the traps are occupied shrinks. If

the trap distribution is steeper, the order of magnitude of Nt(E) decreases faster going

towards lower energies and therefore the shrinking of the energy range in which all traps

are occupied will have a greater impact on the total number of occupied trap states.

Coming to Ef one can see that the lower the Fermi level, the higher the temperature

impact on the occupation of the trap states. That is because when Ef is near the con-

duction band the vast majority of the states in the gap are occupied and so the variation

induced by the change of temperature is less visible on a big baseline of occupied states.

Vice versa when the Fermi level is near the valence band the variation is more evident

because the total number of occupied traps is lower.
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Figure 2.12: Results of the integration in Eq. 2.21 depending on Ec−Ef for di�erent λ values.

2.2.3 Subthreshold slope

In order to analyze the current transport temperature dependence on polysilicon

devices we report here results obtained on Thin-Film-Transistor (TFT) with di�erent

grain boundary concentrations that is here related to the �eld-e�ect-mobility (FE) at

room temperature (the lower FE, the higher the grain boundary concentration).

Speaking about the subthreshold slope with respect to the monocrystalline case, we

have to add the capacitance related to the traps at the grain boundaries. In the monocrys-

talline case in Sec. 2.1.3 the capacitance related to interface traps was neglected because

it was assumed to be su�ciently low. To take it into account we have to modify the value

of m = 1 + Cs/Cox with:

m = 1 +
Cs + Cit
Cox

(2.23)

where Cit is the capacitance related to the traps located at the interfaces. Therefore we

have:

SS =
kT

q
ln (10)

[
1 +

Cs + Cit
Cox

] [
mV

dec

]
(2.24)

This is consistent with Fig. 2.13 that shows how higher grain boundaries concentrations

(i.e. lower FE), which have higher trap concentrations and in turn higher Cit, are found

to have higher subthreshold slopes.

Moreover, higher grain boundaries concentrations (or trap densities) lead to higher
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Figure 2.13: Temperature dependence of subthreshold slope in TFTs with di�erent �eld-e�ect
mobilities at room temperature (from [23]).

temperature dependences. This can be explained by the fact that if Ef is �xed, when

the temperature is raised the total number of occupied traps (or accessible states) gets

higher as shown in the previous section, bringing higher Cit and in turn higher SS.

Polysilicon devices are then found to have higher subthreshold slopes and higher tem-

perature dependences of the subthreshold slopes due to the capacitance added by the

presence of traps states.

2.2.4 Threshold voltage

The typical drain current ID and transconductance gm in a TFT are shown in

Fig. 2.14a as a function of the gate voltage with temperature as a parameter. The e�ect

of the higher temperature is to shrink the subthreshold region by moving to higher bias

the beginning of the subthreshold region and to lower bias the above-threshold region. In

devices without trap states dVt/dT is known to be negative, it is important to point out,

as shown in Fig. 2.14b, that in the polysilicon case the derivative is higher with respect

to the case without trap states.

In order to explain what is happening we have to consider that we are no more

considering a constant Ef with temperature as we have done in the previous cases.
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(a) (b)

Figure 2.14: (a) Typical drain current and transconductance as function of gate voltage in
TFT with temperature as parameter (b) Temperature dependence of threshold voltage in TFTs
with di�erent �eld-e�ect mobilities at room temperature. SOI nMOS data are also shown as a
reference (from [23]).

We then refer to the bands depicted in Fig. 2.15. Fig. 2.15 (a)-(c) shows the bands at

VG = VT along with the surface potential barrier φB1 induced by the charge trapped at

the grain boundary for T = T1 (similar diagrams are illustrated in Fig. 2.15 (d)-(f) at

T = T2 > T1). In Fig. 2.15 (a) and (d) it is clearly shown that qφf (T1) > φf (T2), i.e the

Fermi level rises with increasing temperature at �xed bias: we are thus analyzing a di�er-

ent situation from Sec. 2.2.3 in which the Fermi level was �xed while temperature changes.

The rise of the Fermi level means that the distance between Ef and Ei decrease with

rising temperature (Fig. 2.15 (b) and (e)). From the same �gures one can see that the

fact that this distance is reduced turn into less charge trapped in the interface states.

As a result the potential barrier created by the charge trapped at the grain boundary is

lower (Fig. 2.15 (c) and (f)).

It is known that the threshold condition in TFTs is related to the lowering of the

grain boundary barriers. First, the inversion condition is reached within every single

grain and then the potential barriers are lowered until a threshold value at which the

device pass to the on-state is reached [24]. Therefore the threshold condition will be met

earlier with increasing temperature and, because of its relation with the trap density,

this dependence is enhanched with higher trap densities.

Polysilicon devices are then expected to have a higher threshold voltage dependence

on T with respect to monocrystalline silicon devices. This dependence gets higher with
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Figure 2.15: (a, d) Schematic band diagram of p-type silicon, (b, e) band diagram showing
depth near surface including GB-related interface traps in nMOS-TFT at VG = VT , and (c, f)
surface potential barrier at GB at VG = VT . (a)�(c) at T = T1 , and (d)�(f) at T = T2 > T1
(from [23]).

the rising of grain boundaries and trap densities.

2.2.5 Activation energy

In order to present the changes induced in the activation energy by the presence of

the grain boundaries we analyze the performance of two TFTs, one that substained an

hydrogenation process while the other is unhydrogenated. As mentioned in Sec. 2.1.5 the

hydrogenation process is useful to reduce the total number of trap states, especially the

density of traps energetically located at midgap (examples are shown in Figs. 2.8 and 2.9).

The activation energy is reported in Fig. 2.16. Activation energies are extracted for

a drain bias of 0.1 V and for a temperature range from 0 to 100 C. They are extracted

following the Arrhenius analysis process reported in Sec. 2.1.6.

We have already said that charge trapping at grain boundaries gives rise to potential

barries which impede the transport of carriers across them. Without potential barriers

at the grain boundaries, the activation energy for the drain current depends only on the

di�erence between the energy gap and the silicon voltage drop (surface potential) as

shown in Sec. 2.1.6. If a barrier forms at the grain boundary, then the activation energy

is approximately given by the sum of the energy di�erence mentioned above, plus the
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Figure 2.16: Activation energy versus gate voltage for 3 di�erent TFT's. Filled circles-are for
unhydrogenated TFT with an approximate grain size of 1200 A. Crosses are for hydrogenated
TFT with the same grain size. Open circles are from [25] for a TFT with a grain size of 1200 A.
Data for each device were generated from curves similar to those shown in the inset (from [26]).

barrier height. This sum assumes that the carriers must surmount this barrier by some

emission process, that has been demonstrated elsewhere [27] to be thermionic emission,

which depends exponentially on the barrier height. Hence the addition of a term in the

activation energy.

Therefore, the activation energy is expected to have a slower decrease with increasing

gate voltage as the number of trap states gets higher. That can be explained because

higher concentration of trap states and thus higher localized charges trapped in these

states give rise to higher potential barriers to be overcome and in turn higher energy

contributions to the activation energies derived from such barriers. This is con�rmed

by Fig. 2.16 where unhydrogenated TFT, that has higher trap densities, shows a much

slower activation energy decrease with respect to the hydrogenated TFT.

This also means that the Fermi level is pulled toward the band more slowly, be-

cause while it approaches the band edge, not only mobile carriers are induced in the

band but also �xed charges have to be trapped in the localized states. Higher gate

voltage is then needed to obtain the same current of a TFT with lower trap concentration.

We can conclude that the presence of high trap concentrations at grain boundaries
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Figure 2.17: Semilogarithmic plot of normalized conductivity prefactor vs activation energy for
the symmetric g(E) shown in the inset with di�erent g0 values. In the inset Ec = 0.5 eV,W =
0.4 eV, E0 = 0.1 eV and g∗c , gc, g0 are 1021, 1020, 1015 − 1019 cm−3eV−1 respectively. (from [29]).

strongly a�ects the activation energy of the source to drain current because the presence

of such traps gives rise to potential barriers that have to be overcome by thermionic

emission, adding a term to the activation energy. The slope of the Ea vs VG curve will

therefore be lower.

2.3 Meyer-Neldel Rule

2.3.1 Origin and formulation

The Meyer-Neldel rule (MNR), also known as compensation rule named after the

scientists that �rst observed it in 1937 [28], is an empirical relation between the prefactor

and the activation energy of a thermally-activated process.

The rules states that if a process X obeys the equation:

X = X0e
−Ea/kT (2.25)
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X0 and Ea obey the equation:

lnX0 = X00 + Ea/EMN (2.26)

where X00 is a constant and EMN , de�ned as the Meyer-Neldel energy, is the the inverse

of the slope of the prefactor X0 in a semilogaritmic plot against the activation energy.

The Meyer-Neldel ennergy is an important parameter of the rule, the di�erent physical

explanations of the phenomena that follow the rule aim to �nd a relationship between

this energy and the other physical parameters of the system under analysis.

This rule is valid in a large quantity of materials and processes, and several micro-

scopic explanations have been proposed in the last decades, some of which are brie�y

summarized hereafter.

2.3.2 Proposed MNR explanations

1. Microscopic Explanation: in a work published in 1990 [30] it is proposed that the

MNR can be understood as arising naturally for assisted processes in which the

energy exchanged is much larger than that of a typical excitation, so that the

total required energy is provided by multiple excitations. Semiconductor current

conduction is one of these processes since it is far more likely that the energy

required for an electron to populate the conduction band comes from multiple

phonons instead of from only one large phonon. The number of ways of assembling

these phonons will obviously increase as the total energy barrier increases. The

prefactor has then to be proportional to the number of ways of assembling these

excitations to obtain the MNR.

The mentioned article can be seen as a phenomenological approach widely taken

by many aythors. It considers, as in the Eyring theory [31], that in a reaction the

rate is equal to X0e
−δG/kT , where δG is the di�erence between the free energy of the

state at the peak of an activation barrier and that of the initial state and X0 is a

constant. Since:

δG = δH − TδS, (2.27)

where H is the enthalpy, S the entropy, T the temperature, it is evident that:
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X = X0e
δS/ke−δH/kT . (2.28)

Thus the MNR follows if the activation entropy δS is proportional to the activation

enthalpy δH. As previously said, if the activation energy is large compared to

typical excitations of the system, it becomes necessary to assemble many excitations

for the reaction to take place. As the entropy is proportional to the logarithm of

the numer of di�erent ways of assembling this excitations, δS will increase as δH

increases. The MNR will follow if the two are proportional to each other.

In the mentioned article the authors discuss as an example in which the energy

needed to surmount the enthalpy barrier to a physical process δH is obtained from

multiphonon annihilation. In a simple Einstein model of the phonon spectrum,

with each quantum energy EE, n = δH/EE phonons must be annihilated in the

excitation. Assuming N phonons lie within the interaction volume from which they

can be annihilated, the dimensionless entropy change associated with the excitation

over the barrier is the natural logarithm of the number of ways of assembling n out

of N interacting phonons. Thus:

δS/k = ln

[
N !

n!(N − n)!

]
≈ N ln

[
N

N − n

]
+ n ln

[
N − n
n

]
, (2.29)

where the second expression is obtained from the application of Stirling's approxi-

mation. For n� N :

δS/k ≈ n ln
N

n
≈ δH

EE
lnN (2.30)

from which the desired proportionality is obtained. In fact combining Eqs. (2.28)

and (2.30) one obtains:

X = X0e
δH(lnN)/EEe−δH/kT (2.31)

where, if N is independent of δH, we obtain exactly the MN rule with

EMN = EE/ lnN .

2. Fermi statistical shift: in a work published in 1988 [29] the MNR in tetrahedral

amorphous system is interpreted as naturally arising from the Fermi statistical shift,

i.e. the fact that, when the temperature is changed, the Fermi level moves inside
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the energy gap to respect the charge law conservation. A couple of years before it

was demonstrated [32] that the Fermi statistical shift could reproduce the MNR for

speci�c gap density of states spectrum g(E). The aim of the mentioned work [29]

was to show that the fact that the conductivity σ respects the MNR is the natural

consequence of the presence of a deep well in the density of states g(E) inside the gap.

The demonstration starts by considering a system with steep walls in g(E) spectrum

inside the gap. When temperature is raised the Fermi level always moves towards

the center of the gap due to the Fermi statistical shift. In this situation also the

Fermi temperature derivative dEf/dkT changes considerably with temperature and

is quite sensitive to the position of the Fermi level.

The conductivity can be expressed as σ = σ00exp(−(EC − Ef )/kT ), where σ00 is a

constant. If de�ne EC = 0 for convenience, we can plot:

ln
σ

σ00
=
Ef (kT )

kT
(2.32)

and the the activation energy Ea can be written as:

Ea =
dσ

d(1/kT )
= −Ef + kT

dEf
dkT

. (2.33)

We can �nally write the conductivity as:

σ = σ0e
−Ea/kT (2.34)

where:

σ0 = σ00e
dEf/dkT (2.35)

We can see from Eqs. (2.33), (2.34) and (2.35) that if dEf/dkT linearity to Ef holds

than we have dEf/dkT linearity to Ea as required from the rule. In the mentioned

work this linearity between the Fermi level and its derivative is demonstrated to be a

consequence of the Fermi statistical shift in systems where g(E) presents steep walls.

Therefore the MNR rule arises from the shift of the Fermi level in the gap which is

caused from the steep walls of the g(E) spectrum. The model shows also a relation

between EMN and the density of gap states g(E) (Fig. 2.17).
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Figure 2.18: Arrhenius plot of the current with bias Vds = −0.5V and VG = −10.5V (from [33]).

3. Trap states: it has been shown that, whenever traps, distributed exponentially

in energy, are governing the conduction in electrical materials, a Meyer-Nelder

observation is expected [33]. The demonstration uses the model of Shur and

Hack [34]. Measurements and observations are performed on a TFT FET of

α-sexithiophene (α − T6) in the linear region (Arrhenius plot shown in Fig. 2.18).

The traps follow a model with the traps density that presents an exponential

decrease as shown in Sec. 2.2.1.

An evidence of the MNR is the presence of a temperature, known as the isokinetic

temperature TMN , where the dependence of the current on bias disappears. From

the model of Shur and Hack it is possible to derive a relation between current and

traps density, i.e:

Ids =
qµ0W

L
f(T, λ/k) [Cox(|Vg − Vt|)]2λ/kT−1 Vds (2.36)

where f(T, λ/k) is:

f(T, λ/k) ≈ NV e
−Ef/kT kTε

q

(
πkT/λ

2πελTgF0

)λ/kT
. (2.37)

In these two equations µ0 is the band mobility, λ the exponential decay constant

of the traps distribution as shown in Eq. (2.22), NV the e�ective band density of

states and gF0 the density of deep localized states at the Fermi level. The relation
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between the current and the traps density is contained in the parameter λ.

From Eq. (2.36) one can verify the presence of the isokinetic temperature

TMN = 2λ/k. Hence the authors state that there is a relation between the Meyer-

Neldel parameter TMN and the trap density distribution, such that measuring

the MN parameter through the current could yield information about the trap

distribution. They also state that MNR may arise in other system, from di�erent

conditions and thus that the presence of traps is not a necessary condition for

�nding the rule.

We can conclude that there is no general agreement on the physical reasons for this

general rule which regulates a large number of quite di�erent systems, the �rst has a

general approach speaking of elementary excitations, while the second two explanations

reported link it to the structure of the density of states in the gap.

2.3.3 Example of Meyer-Neldel analysis on TFTs

The interest in this rule applied to semiconductor conduction arose because, as

presented in the Sec. 1.4, new device structures need polysilicon in place of the crystalline

silicon. In such structures, high concentrations of traps at interfaces and grain boundaries

are present and many evidence of relations between the presence of trap states and the

rule have been found. Here we report a very recent MNR analysis [35] performed on

three di�erent TFTs, one amorphous and two polycrystalline with di�erent doping (one

n-type and one p-type) with the aim of outlining the analysis that will be performed on

all the devices throughout the thesis work.

In the reported work the e�ective medium approximation [22] is assumed, taking into

account only acceptor traps with a double exponential distribution like Eq. (2.20):

gTA(E) = gcd × e
E−EC
Ed + gct × e

E−EC
Et (2.38)

the values of the various parameters for the 3 di�erent TFTs are reported in Fig. 2.19.

The spatial traps densities Nt and Nd, respectively tail and deep traps, can be obtained by

integrating over all the energies of the gap as in Eq. (2.21) where the only parameter is Ef .
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Figure 2.19: Model parameters and fundamental electrical parameters for three kinds of TFTs
(from [35]).

The density of free electrons n can be obtained by integrating the DOS distribution

of the conduction band gn(E):

n(Ef ) =

∫ ∞
EC

gn(E)fD(E)dE (2.39)

where:

gn(E) =
2NC

π1/2kT 3/2

√
E − EC (2.40)

with NC from Fig. 2.19.

Based on the gradual channel approximation, the 1-D Poisson's equation along the

channel depth (x) can be expressed as:

∂2ψ

∂x2
=

q

εs
(Nd +Nt + n) (2.41)

where ψ is the potential and εs is the dielectric constant of the semiconductor channel.

Referring to Fig. 2.20 we de�ne ψs as the potential drop between the Si-SiO2 interface

and the substrate where the bands are �at. As already explained, when the bands bend

with the gate bias, Ef remains constant, but the values of Nt, Nd and n change because

they depend on the distance between Ef and EC (or EV for the holes of p-channel TFT).

Mathematically we have ψ(x) = (Ef −Ei − qψB)/q, where qψB is the di�erence between

Ef and Ei at the back channel. Using F (ψ) =
[
2
∫ ψ
0

(
∂2ψ
∂x2

)
dψ
]1/2

with F electric �eld,

and substituting Ef with ψ(x), trapped and free charges can be obtained as a function of

the potential. Following the Pao-Sah model, the sheet density of trapped (Qd and Qt for
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Figure 2.20: Energy bands diagram of TFTs along the channel depth and the de�nition of
energy bands parameters (from [35]).

deep and tail traps) and free charges Qf in the channel can be obtained as:

Qd(ψs) = q

∫ ψs

0

Nd

F (ψ)
dψ (2.42)

Qt(ψs) = q

∫ ψs

0

Nt

F (ψ)
dψ (2.43)

Qf (ψs) = q

∫ ψs

0

n

F (ψ)
dψ (2.44)

the sum of the densities above is the total sheet charge density in the channel Qi(ψs).

Using Gauss's law and knowing that the voltage in the channel is Vgc = Vgs − Vcs,

where Vgs is the applied gate voltage and Vcs is the local channel potential, one can obtain

Qf as a function of Vgc or Vcs, although these are not explicit functions and have to be

solved numerically for any given Vgc. So the drain current is �nally derived as:

Id = µ
W

L

∫ VD

0

Qf (Vcs)dVcs (2.45)

where µ is the band mobility for electrons. The derived model �ts very well with the

measurements.
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Figure 2.21: Arrhenius plot of Ids for di�erent Vgs values for a-IGZO TFTs. The value of the
slope Ea and the intercept Id0 are also shown (from [35]).

As presented in Sec. 2.1.6, to perform the Arrhenius analysis after obtaining the I-V

relations at di�erent temperatures one samples all of them at chosen biases. For every

bias the sampled points will be plotted in a semilogarithmic graph against 1/kT obtaining

the Arrhenius plot of the current as shown in Fig. 2.21. If the current relation is of the

type of Eq. (2.25) the logarithm will yield:

ln Ids = ln Id0 −
Ea
kT

(2.46)

hence obtaining straight lines in which the slope will be −Ea and the intercept ln I0.

If one assumes that the prefactor I0 takes a form like:

Id0 = Id00e
Ea/EMN (2.47)

applying another natural logarithm and making a graph will lead to a form like Eq. (2.26),

such that the inverse of the slope in the graph will be the Meyer-Neldel energy EMN that

is a constant that de�nes the relation, Fig. 2.22 illustrates the Meyer-Neldel plot for the

three analyzed TFTs.

Referring to the model here reported some approximations can be made to the ana-

lytical formulas in order to �nd meaningful relations between some physical parameters

and EMN considering that the Meyer-Neldel rule holds in the subthreshold region.

45



2.3. Meyer-Neldel Rule

Figure 2.22: Dependence of Id0 on Ea for the three analyzed TFTs in log scale. The values of
the respective EMN are shown. The lines are the linear �ts for the extraction of the Meyer-Neldel
energy (from [35]).

1. With the 0 K approximation, i.e. all states above Ef are empty and all below are

occupied, Nd can be simpli�ed as Nd ' gcd × Ed × e
−(EC−Ef )

Ed .

2. With the Maxwell-Boltzmann approximation the electron density can be approxi-

mated with n = NC × e
−(EC−Ef )

kT .

Noting that Ec is a function of x (Fig. 2.20), the sheet density of trapped charge as in

Eq. (2.42) can be obtained by integrating Nd along the channel depth x over the channel

thickness tch. Using the approximation just presented one obtains:

Qd = q

∫ tch

0

gcd × Ed × e
−(EC (x)−Ef )

Ed dx (2.48)

and de�ning f(x) ≡ e−(EC(x)−Ef )/Ed , according to the mean value theorem for integration

there always exist x1 ∈ (0, tch) so that f(x1) can be taken out of the integral, obtaining:

Qd = qgcdEdf(x1)tch x1 ∈ (0, tch) (2.49)

46



2.3. Meyer-Neldel Rule

Figure 2.23: Calculation result of δd, δf and ratio for a-IZGO TFTs in the subthreshold region.
(from [35]).

Similarly one can integrate n over the channel thickness, and de�ne a function g(x) ≡
e−(Ec(x)−Ef )/kT such that with the mean value theorem for integration one obtains:

Qf = qNCg(x2)tch x2 ∈ (0, tch) (2.50)

It is now useful to de�ne two functions:

δd =
EC(x1)− Ef
EC(0)− Ef

δd > 1 (2.51)

and

δf =
EC(x2)− Ef
EC(0)− Ef

δf > 1 (2.52)

Knowing that for small VD Qf is uniform along the channel length so that Eq. (2.45)

can be reduced into Id = µ(W/L)VdQf , and with further considerations and approxima-

tions about the ratios between Qf , Qd and Qt and some algebra reported in [35] one can

�nally write Id in the following form:

Id = Id0e
−δf (EC(0)−Ef )/kT (2.53)
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2.3. Meyer-Neldel Rule

Id0 = Id00e
δd(EC(0)−Ef )/Ed (2.54)

Id00 = µCoxVD
W

L

NC

gcdEd

[
Vgs − VFB −

(
Eg
2q
− ψB −

EC(0)− Ef
q

)]
. (2.55)

One should note that this is an expression consistent with the Pao-Sah model and it

is a MNR rule form, where the key parameters are:

Ea = δf (EC(0)− Ef ) (2.56)

and the MN energy EMN is:

EMN = δfEd/δd (2.57)

The consistency between the Pao-Sah model and the Meyer-Neldel rule has then been

demonstrated. The Meyer-Neldel energy is then related to three parameters: Ed, δd and

δf . The �rst one has a simple meaning, is the slope of the deep traps DOS distribution

while the other two are more complicated. They brought information related to the band

bending. From Eqs. (2.51) and (2.52) one can see that they depend on the gate voltage,

this may take to infer that the Meyer-Neldel energy is not constant in this model, but

EMN depends on their ratio and in Fig. 2.23 is shown that their ratio is a slowly varying

function.

To conclude, a Meyer-Neldel relation has been obtained starting from the Pao-Sah

model. Meyer Neldel energy is related to the trap DOS distribution and to the ratio

between trapped and free charges and how this a�ects the bands bending. In the next

chapters a similar analysis will be performed on di�erent devices in order to understand

if the rule stems from the traps contribution or other contributions are present.
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Chapter 3

Meyer-Neldel rule in monocrystalline

devices

In this chapter the presence of the MNR in monocrystalline devices without trap states

will be deeply investigated. This choice has been made to verify the hypothesis that the

MNR is related to the presence of trap states in the gap. In the beginning the physical

models implemented are illustrated, followed by the introduction to the nanowire MOSFET

that has been simulated and the approximations adopted. The Arrhenius analysis will then

be exposed and the underlying physical processes will be depicted. Moreover the results of

the simulations will be compared with the results of analytical formulas from the literature.

At the end of the chapter the same analysis will be performed on the well know planar

MOSFET to clarify the role of the cylindric geometry.

3.1 Nanowire MOSFET

3.1.1 TCAD simulation setup and physical models

The results illustrated from now on were achieved using the tools provided by

Synopsys Sentaurus TCAD [36] and with the aid of MathWorks MATLAB.

First the simulated string structure is de�ned with Sentaurus Structure Editor

(SDE), then a mesh, for the �nite element method, is generated with Sentaurus Mesh

(SNMESH), the simulations were �nally performed using Sentaurus Device (SDEVICE).

The use of a commercial product such as the Sentaurus TCAD suite simpli�ed the

implementation of the physical models described in the following, allowing a quick setup

of the project environment, which would not have been possible with an in-house solution.

49



3.1. Nanowire MOSFET

Figure 3.1: Cylindrical nanowire MOSFET simulated by TCAD. Figure not in scale.

All the devices presented in this chapter are simulated without trap states: neither at

the Si− SiO2 interface, neither distributed in the bulk to simulate the grain boundaries'

traps, i.e the e�ective medium approximation that will be explained in the next chapter.

The aim of neglecting all the trap states is to verify in the �rst place if the MNR is

present only in devices with localized states in the gap as presented in the previous chapter.

Along with the trap states other physical e�ects will be neglected in the analysis:

1. Bandgap narrowing : the silicon bandgap has been assumed constant and equal to

Eg = 1.124 eV; its dependences on temperature and on heavy doping have been

neglected.

2. Incomplete ionization: all dopants are assumed to be ionized at every temperature.

3. Quantum mechanics : quantum con�nement e�ects are neglected.

4. Mobility temperature dependence: electron mobility is assumed constant.

The current conduction is based on a drift and di�usion model, Fermi-Dirac distri-

bution is always implemented.

3.1.2 Geometrical structure

In Fig. 3.1 the geometrical structure of the nanowire transistor is reported, the

cylinder height is 1.15 µm, in Fig. 3.2 a vertical and horizontal cross sections are

illustrated along with the silicon doping concentration and dimensions.

The two heavy doping implants (one is shown in Fig. 3.2 (a)) are made to avoid

parasitic resistances towards the source or the drain conctacs which are located at the

two bases of the silicon cylinder.
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3.1. Nanowire MOSFET

(a) (b)

Figure 3.2: (a) Magni�cation on the heavy doping implant of a cross section of the cylinder in
Fig. 3.1 with a plane passing through the axis of the cylinder. The doping pro�le is also shown.
AB=16 nm, CD=36 nm, EF=56 nm. (b) Horizontal cross section of the cylinder in Fig. 3.1 with
a plane perpendicular to the axis of the cylinder crossing one of the two heavy doping implants
at the beginning and end of the cylinder.

The layer for data storage has not been included in this work, the gate contact is

shown with a purple line in Fig. 3.2 and covers all the lateral surface of the cylinder

allowing an optimal electrostatic control on all the semiconductor channel. In memory

devices as presented in Sec. 1.3 there are multiple WLs to access di�erent cells, here the

device works as a long cylindrical capacitor. The cylinder height ensure that the drain

bias applied would not change signi�cantly the elctrostatics in the channel region.

3.1.3 Charge investigation and impact of the drain bias

In Sec. 2.3.3 it was shown that, as a �rst approximation, the drain current depends

on the dimensions of the device, the mobility, the drain bias applied and the free charge

carriers in the channel. Here we want to verify in �rst place the absence of the MNR in

monocrystalline devices. Since the current depends mostly on the free charges present

in the channel we have chosen to perform this �rst check on the simulated Qf − VG

characteristics.

In Fig. 3.3 free charges in the channel for 7 temperatures between 200 K and 500 K

with di�erent drain biases are shown. For easier anaytical comparison with formulas

from the literature, charges are reported as densities per unit length (unit 1/cm). It is
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Figure 3.3: Free charges in the channel Qf vs. VG, with and without bias applied on the drain.
Temperatures from 200 K to 500 K with steps of 50 K.
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Figure 3.4: (a) Activation energies extracted from Qf − VG in Fig. 3.3 relations without drain
bias applied (b) Charge density prefactor extracted from Qf − VG relations in Fig. 3.3.

easy to see how a small bias on the drain does not modify the density of free charges

in the channel. This was expected, as written above, because the string is long enough

(1.15 µm) to mitigate the e�ect of this bias.

Following the Arrhenius analysis illustrated in the previous chapter, the activation

energy is extracted by the means of an Arrhenius plot along with the intercept in

1/kT = 0, from which also the prefactor Q0 is extracted.

Fig. 3.4b shows the prefactor Q0, one can see at �rst glance that in a wide region the

prefactor is linear in a semilogarithmic plot, hence it has an exponenatial relation with

the activation energy for the process, that is the condition to follow the MNR. The fact
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Figure 3.5: ID vs. VG, with VD = 50 mV for the nanowire shown in Fig. 3.1. Temperatures
from 200 K to 500 K with steps of 50 K.

that a device without trap states follows the MNR is an absolute novelty, no similar case

can be found in the literature.

3.1.4 Current investigation and impact of the mobility

In order to escape the doubt that the MNR found in the Qf − VG relation is only

an error related to the fact that we analyzed the free charges in the place of the cur-

rent, the same Arrhenius analysis, performed on the Id−VG relation, is hereafter reported.

In Fig. 3.5 the Id − VG relation is reported for 7 temperatures between 200 K and

500 K with and without the temperature dependence of the mobility as indicated by the

graph labels (T0 = 300 K). The main di�erences are found in the o� state and in the

above threshold region which are not of interest for the MNR investigation.

With the temperature dependence, a zero temperature coe�cient point in which all

the curves with di�erent temperature take the same value is present. After that point,

with the rising of temperature the current decreases due to the mobility degradation.

We therefore expect the activation energy to change sign for the µ = f(T ) curves.

In Fig. 3.6a it is shown that the activation energy reaches negative values for a

T-dependent mobility as expected. The two curves have a slightly di�erent absolute

value but the shapes of the curves are very similar, moreover the interesting part for
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Figure 3.6: (a) Activation energy extracted from the ID−VG curves in Fig. 3.5 by an Arrhenius
analysis. (b) Current prefactor extracted from the ID − VG curves in Fig. 3.5 by an Arrhenius
analysis.

the Meyer-Neldel analysis is the subthreshold region which ends before the separation

between the two curves become signi�cant.

In Fig. 3.6b we can see again the mark of the MNR. Hence we can be sure that

the MNR behavior shown in Fig. 3.4b is not an error related to the use of the charge

in the place of the current. Moreover we can see in the �gure that the curve with the

T-dependent mobility is horizontally shifted in activation energies and has a vertical shift

of approximatively one order of magnitude. Apart from these two rigid shifts the shape

of the curves is identical, hence the assumption of constant mobility would not a�ect the

investigation of the rule.

Once we have shown that both the current and charge prefactors show a MNR

behavior we perform a comparative analysis to make sure of the abscence of di�erences

between them. This last validation step is required since we decided to work with the

charges relation throughout all the thesis work. This decision has been made to allow

easier comparison with analytical formulas from the literature, because the current

relation is usually obtained by integration of the charge in the channel as a function of

the source-drain bias. Therefore using the charge for the analysis will save one integration

step and in turn the analytical formulation is expected to be easier and to have closed form.

In Fig. 3.7 a comparison between free charges and current as a function of the gate

bias is shown. We can see that apart from the order of magnitude the curves are quite

similar, hence we expect similar activation energies and prefactors.
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Figure 3.7: (a) Free charges Qf vs. VG (b) Current ID vs. VG. Temperatures from 200 K to
500 K with steps of 50K.

-0.5 0 0.5 1 2

V
G
 [V]

0.0

0.2

0.4

0.6

0.8

1.0

E
a
 [

e
V

]

E
a
 extracted from Q

f

E
a
 extracted from I

D

(a)

0 0.2 0.4 0.6 0.8

E
a
 [eV]

10
7

10
8

Q
0
 [

c
m

-1
]

Q
0
 [cm

-1
]

I
0
 [A]

10
-7

10
-6

I 0
 [

A
]

(b)

Figure 3.8: (a) Activation energies Ea extracted from 3.7a and from 3.7b (b) Prefactors Q0

and I0 extracted from 3.7a and from 3.7b.

In Fig. 3.8 activation energies and prefactors extracted from Fig. 3.7 are reported.

Fig. 3.8a shows almost identical activation energies for the two processes while the

prefactors di�er from several orders of magnitude. Even with this magnitude di�erence

the left and right y-axis, which are di�erent, both cover 2 orders of magnitude and thus

the represented shapes are very similar and both show the exponential region with almost

the same slope.

We are now sure that the Meyer-Neldel analysis can be performed on the free charges

present in the channel. Moreover, we can neglect the e�ect of the drain bias because of

the chosen device. The already shown little mobility impact is not to take into account

while investigating the charge because the latter does not depend on it.
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Figure 3.9: Qf as a function of VG. Between the two continuous grey line the region in which
all temperatures follow the pure subthreshold relation is highlighted, i.e. a pure exponential
relation, that is linear in this semilogarithmic plot. The dashed grey line signs the end of the
subthreshold relation for the lowest temperature. Temperatures from 200 K to 500 K with steps
of 50 K.
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Figure 3.10: (a) Activation energy extracted from Qf−VG relations in Fig. 3.9 with the voltage
spans highlighted (b) Charge density prefactor extracted from Qf − VG relations in Fig. 3.9.
The grey lines corresponds to the activation energies at the intersections with the grey lines in
Fig. 3.10a.

3.1.5 Prefactor regions correlations

Fig. 3.9 shows the same Qf − VG relations of Fig. 3.7a in which two zones are

highlighted. Between the two continuous grey line, from −0.35 V to 0.25 V, there is

the region in which the highest temperature is in the pure subthreshold region, i.e. the

Qf − VG relation is purely exponential. Since the highest temperature is the last that

enters the subthreshold region and the �rst leaving it, between these two grey lines all
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3.1. Nanowire MOSFET

(a) (b)

Figure 3.11: (a) Schematic illustration of a vertical cross section of the device. (b) Schematic
illustration of the device's half in which the Poisson' equations is solved.

the curves follow an exponential relation.

The dashed grey line at VG = 0.44 V marks the end of the pure subthreshold region

for the lowest temperature, between this line and the continuous one at VG = 0.25 V we

have that some temperatures have already left the pure subthreshold trend while others

are still following the pure exponential relation that characterizes the above mentioned

region. We will refer to this region as the transition region between the pure subthreshold

region and the above-threshold one.

Fig. 3.10 shows the corresponding zones in the activation energy and prefactor plots.

Fig 3.10a reports the same vertical lines of Fig. 3.9 and illustrates that, as previously

said, the activation energy is perfectly linear in the subthreshold region and deviates

from this trend in the transition region. The Ea values at which the vertical grey lines

intercept the curve are 0.9, 0.31 and 0.07 eV, reported in Fig. 3.10b by means of vertical

grey lines. It can be seen that in the pure subthreshold region the prefactor is constant,

while there is a good agreement between the exponential region of the prefactor, i.e. the

region in which the MNR is respected, and the transition region reported in Fig. 3.10.

The nanowire MOSFET is a so-called �oating substrate device. This means that,

with the exceptions of the source and drain contacts at the two cylinder bases, there

is only the gate bias imposed to the channel. The Poisson's equation is usually solved
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Figure 3.12: Voltage drop Vs between the center of the cylinder and the silicon oxide interface
for the lowest (200 K) and highest (500 K) temperatures.

exploiting the cylindrical simmetry; in the radial direction the device can be considered

as a 1-D device with the gate bias imposed on one side and left �oating on the other side

(Fig. 3.11b). The electron quasi-Fermi level is imposed by the source and drain biases,

set to 0 V in our case. The situation is schematically depicted in Fig. 3.11.

We de�ne the silicon voltage drop Vs as the potential di�erence between r = R

and r = 0 (Fig. 3.11b). From the electrostatic point of view the switch from the pure

subthreshold region to the transition region seems to be a mark of the bands' bending.

In Fig. 3.12 one can see that the pure subthreshold region corresponds to the region in

which Vs remains constant for all the temperatures, while the entering in the transition

region is marked by the point in which Vs(T = 500 K) starts rising. The transition

region ends when Vs stops to be constant for the lowest temperature.

The fact that the voltage drop Vs remains constant over a wide range of gate voltages

is a mark of the combined e�ect of the �oating device structure and the small silicon

volume. Assuming that the �atband voltage is 0 V and that the device is undoped and

gate, source and drain biases are set to 0 V, the electrons quasi-Fermi level is located at

midgap and the bands are �at since no charge is present. When the gate bias is raised, the

bands will start to bend only when the electrons coming from source and drain conctacts

will be enough to create a non-neglectable electric �eld and hence potential drop along

with bands bending. Till that moment the charge amount must rise with rising gate bias

but the bands must remain �at. Therefore there is a rigid shift of the bands to take the

electron quasi-Fermi level closer to the conduction band and increase the electron density.
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Figure 3.13: (a) Energy bands plot in the radial direction for gate bias VG = 0.13 V. The
structure is composed by 8 nm of silicon followed by the silicon oxide insulator. (b) Energy
bands plot in the radial direction for gate bias VG = 0.44 V. In both �gure it can be noted that
the conduction band is �at but with the rising of the gate bias the conduction band get closer
to the elctrons quasi-Fermi level.

This process is con�rmed by Fig. 3.13a in which we can see thatthe conduction band

is �at at VG = 0.13 V and Fig. 3.13b, where the gate bias is raised to 0.44 V, and the

band is still �at, but the Fermi level is closer to the conduction band. At VG = 1.325 V

(Fig. 3.14) the electron quasi-Fermi level (always �xed at 0 V by the source and drain

contact) is inside the conduction band and the induced charge bends the conduction band.

We have just shown a correlation between the MNR and the transition region of the

Qf -VG characteristic. The entering in the transition region happens when the highest tem-

perature stops to follow a pure exponenatial relation, which occurs, as shown in Fig. 3.12,

when Vs starts to take values di�erent from 0 V and hence the bands bend. This bending

takes place when the charge brought by the electrons induced by the rising gate bias cre-

ates a strong enough electric �eld. This is an evidence for the correlation of the MNR with

the self-consistency of the bands: as soon as the induced electrons have an e�ect on the

energy bands, the system does not follow the pure exponential relation of the subthreshold

region. When this happens at di�erent biases for di�erent temperatures, because with

lower temperatures come lower induced charge, we have the transition region and in turn

we found a charge prefactor that follows the MNR.

3.1.6 Frozen-band analysis

At the end of the previous subsection a correlation between the presence of the

transition region and the following of the MNR was presented. In order to �nd more

evidence of this theory we want to introduce the concept of frozen bands.
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Figure 3.14: Energy bands plot in the radial direction for gate bias VG = 1.325 V. The structure
is composed by 8 nm of silicon followed by the silicon oxide insulator. The induced charge is
high enough to bend the band.

In our region of interest the Fermi-Dirac distribution is well approximated by the

Maxwell-Boltzmann distribution since the Fermi level is far enough from the conduction

band. The induced charges are regulated by this equation [13]:

n = NC × e−(EC−Ef )/kT , (3.1)

where the temperature dependences are contained in the prefactorNC which has a T 3/2 de-

pendence, in the denominator of the exponential and in the numerator. Actually, di�erent

temperatures will have, in general, di�erent energy bands and hence di�erent numerators.

With frozen bands we mean that we will compute the band pro�le for the lowest

temperature (200 K) and use it to compute the induced charges also for the higher

temperatures. In this way we are turning o� the self-consistency of the Poisson equation,

the band pro�le will not be a�ected by the charge induced by the rise of temperature.

With the rising of temperature the population of the electronic states will change (NC

and T in Eq. (3.1)) while the band pro�le in the numerator will be frozen at the lowest

temperature. The result is shown in Fig. 3.15. It should be noted that in the pure

subthreshold region there is a perfect agreement for each temperature. This means that

in the pure subthreshold region the bands are identical for each temperature and induced

electrons have a totally negligible e�ect.
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Figure 3.15: Comparison between the free charges calculated with and without self-consistency.
Temperature from 200 K to 500 K with steps of 50 K.
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Figure 3.16: (a) Activation energies extracted from Qf -VG relations in Fig. 3.15 (b) Prefactors
extracted from Qf -VG relations in Fig. 3.15.

By performing this analysis we can search for another evidence of the correlation

between the MNR and the transition region. In the frozen bands case we expect the

absence of the transition region and hence of the MNR. That is because if its presence

is brought by the fact that the induced charge at di�erent temperatures starts to bend

the bands at di�erent biases, with the frozen bands we use the same bands for all

temperatures and in turn the leaving of the pure exponential relation must occurr at the

same bias for each temperature.

The activation energies and prefactors extracted from the Qf -VG relations in Fig. 3.15

are shown in Fig. 3.16. Our hypothesis on the e�ect of the frozen bands on the MNR

turned out to be true: the exponential relation between the prefactor and the activation
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Figure 3.17: Arrhenius plot of the charges presented in Fig. 3.15 in the pure subthreshold
region. The charge obtained with and without the self-consistency are identical and follow a
pure exponential relation as one can see from the perfect �t with the dashed lines. The vertical
grey line marks the intercept from which the prefactor is extracted.

energy is absent in the prefactor extracted from the frozen curves as shown in Fig. 3.16b.

As a �nal remark one should note that also in the prefactor calculated from the frozen

relation there is a small activation energy interval, around the dashed grey line in

Fig. 3.16b, in which the prefactor decreases. An explanation of this fact is presented in

the next subsection by means of Arrhenius plots.

We have then found a proof of the fact that the MNR is present in the charge, and

in turn in the current, relations of a monocrystalline device and it is related to the

self-consistency of the energy bands. The fact that higher temperatures bring higher

induced charges makes the Qf -VG relations at di�erent temperatures to deviate from the

pure exponential relation at di�erent biases. The voltage span that starts when highest

temperature leaves the pure exponential relation and ends when the lowest temperature

does the same thing has been called transition region and whitin it the induced free

charges and thus the current follow the MNR.

3.1.7 Arrhenius plots

In the previous subsections we have presented a correlation of the MNR with a

transition region in which the Qf − VG relations with the higher temperatures have

stopped to follow a pure exponential relation while the lower temperatures are still

following it.
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Figure 3.18: (a) Arrhenius plot of the transition region of the charges in Fig. 3.15 along with
exponential �tting dashed lines (b) Magni�cation of the Arrhenius in Fig. 3.18a to show the
deviation from the exponential trend.

In this subsection we present the Arrhenius plots for the analysis just reported with

focus on two di�erent regions: the pure subthreshold and the transition one. It will

turn out that the MNR in this system may derive also from the extraction method,

questioning its validity. Moreover, an investigation on the decrease of the prefactor

obtained from the frozen charges will be shown.

Fig. 3.17 shows the Arrhenius plot for the charges in Fig. 3.15 in the subthreshold

region with and without the self-consistency (dashed lines are the exponential �ts). The

�gure shows another proof of the fact that the mobile charges do not have any e�ect

on the bands in the pure subthreshold region since the charge values obtained with and

without the frozen bands are identical. Moreover, Fig. 3.17 con�rms that in the pure

subthreshold region the relation between the charge and the activation energy is purely

exponential since there is no deviation from the exponential �t which is linear in the

semilogarithmic plot.

Fig. 3.18 shows instead that outside the pure subthreshold region the charge relations

deviates from the exponential trend. The light blue curve at VG = 0.25 V is located at

the boundary between the pure subthreshold and transition region, the �t shows that at

this bias the exponential relation is still valid for every temperature (each empty circle

in the plot represents one temperature). The other two lines, whose biases are located

in the transition region, show how, with the rise of temperature, the deviation from the

exponential trend is more and more evident.

Without the self-consistency we expect the exponential relation to hold also at high
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Figure 3.19: Arrhenius plot of the charges presented in Fig. 3.15 in the transition region with
and without the frozen bands. In the transition region the frozen bands have a noticeable e�ect.
The vertical grey line marks the intercept from which the prefactor is extracted.

temperatures. Fig. 3.19 con�rms our hypothesis. The point located at 1/kT = 58 eV−1

is obviously the same with and without the frozen bands, it is the reference point for the

band calculation. The more the biases are afar from the pure subthreshold region and

the higher the temperatures, the bigger the di�erence between the case with the frozen

bands ad the self-consistent one. From the graph one can also see that the prefactor of

the frozen case, i.e. the intercept of the dashed �tting lines with the vertical grey line,

remains constant. The self-consistent one, instead, decreases. This decrease, which is

linear on this semilogarithmic plot is the exponential decrease related to the MNR.

We can then infer that the self-consistency of the bands and the extraction method

can lead to the MNR. In Fig. 3.18 it is evident that we performed an exponential

�t with points that were deviating from a pure exponential relation. These little

deviations, due to the semilogarithmic plot, turn out in a linear decrease of the log-

arithm of the prefactor and �nally in the exponential decrease that we linked to the MNR.

The fact that evidence of MNR can be related to experimental errors and extraction

methods is already present in the literature [37] [38]. Here we want to point out that in

MNR analysis of semiconductor devices, the risk of relating the MNR to such e�ects is

relevant since the vast majority of devices presents I-V characteristics with exponential

trends in some voltage ranges that are abandoned when a threshold condition is met and

this threshold condition varies with temperature, as in the case that we have here analyzed.
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Figure 3.20: Comparison between the prefactors extracted with and without the frozen bands
for two di�erent temperature ranges. The vertical grey line marks the begin of the descending
region for the frozen prefactor extracted from the 200-500 K temperature range. The prefactor
extracted from the 75-500 K temperature range is still �at at the same activation energy.

With reference to the previously mentioned descending trend of the prefactor

extracted from the charges obtained with the frozen bands, we have hypothesized that

it is related with the bias at which, for the reference temperature, the self-consistency

is no longer neglectable. In other words we expect the descending region of the frozen

prefactor to take place at activation energies corresponding to the bias at which, for the

reference temperature, the induced charges start to have an e�ect on the bands. This

fact happens because when the bands start to bend the rise of the gate bias will induce

less charges, and then the point located at 1/kT = 58 eV−1 will take a slightly smaller

value with respect to the case in which the bands are blocked. Hence the straight line

toward 1/kT = 0 eV−1 will give a smaller prefactor.

To verify this hypothesis we decided to run a simulation with the bands frozen at 75 K.

We expect that the prefactor with the frozen bands at 75 K will start to decrease at higher

biases and thus lower activation energies with respect to the one computed with the frozen

bands at 200 K, since with lower temperatures come lower induced charges and then the

point at which the self-consistency will be no longer neglectable will come at higher biases.

Fig. 3.20 seems to con�rm our hypothesis. The prefactor extracted with the bands

computed at 75 K starts to descend at lower activation energies with respect to the one

with the bands calculated at 200 K. All the prefactors plotted in the �gure are normalized

with respect to the value that they take in the pure subthreshold region where they are
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Figure 3.21: Comparison between the Qf -VG relations computed by the simulator and the
Qf -VG relations obtained with Eq. (3.2). Temperatures from 200 K to 500 K with steps of 50 K.

�at.

3.1.8 Analytical and numerical comparison

To conclude the analysis on this nanowire device we present here a comparison

between the results of our simulations and an analytical model found in the literature,

both for the induced free charges and the prefactors. Moreover, the Meyer-Neldel energy

EMN extracted from the exponential region of the prefactor of our simulations will be

compared with the Meyer-Neldel energy obtained in the TFT analysis presented at the

end of the second chapter.

It has been demonstrated [39] that the free charges in the subthreshold region of an

undoped nanowire MOSFET follow:

Q = Q0 exp

(
VGS − V0 − Vfn

Vth

)
(3.2)

here V0 = ∆ϕ+ (kT/q) ln (8/δR2) and Vth = kT/q; where ∆ϕ is the work-function di�er-

ence between the gate and instrinsic silicon, Q0 = (4εsi/R)(kT/q) and δ = q2ni/kTεsi.

Combining the de�nitions written above we can rewrite the equation to clarify the

temperature dependences in the subthreshold region:

Q =
qR
√
NCNV e

−Eg/2kT

2
exp

(
q(VGS −∆ϕ− Vfn)

kT

)
(3.3)
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Figure 3.22: Comparison between the prefactors extracted from the frozen and self-consistent
charges relations and the ones obtained from the analytical formulation in Eq. (3.2).

the temperature dependence is hence contained in the Nc and Nv terms in

ni =
√
NCNV e

−Eg/2kT and in the exponential term.

Fig. 3.21 shows a perfect agreement between the free charges values obtained in our

simulations and the analytical model. We can rewrite Eq. (3.3) including the energy gap

dependence in the exponential term obtaining:

Q =
qR
√
NCNV

2
exp

(
q(VGS −∆ϕ− Vfn − Eg/2q)

kT

)
(3.4)

In this equation the prefactor qR
√
NCNV /2 contains a temperature depedence in

√
NCNV

that goes with T 3/2 and will a�ect our analytical comparison, because the prefactor of

the MNR is expected to be temperature-independent. The analytical activation energy

turns out to be: Ea = q(VGS−∆ϕ−Eg/2q), where we neglected the electron quasi-Fermi

potential because it is constant and equal to 0 in our device, as imposed by the source

and drain biases.

Fig. 3.22 shows the comparison of the prefactors extracted from the Arrhenius analysis

with and without the frozen bands and the 7 di�erent prefactor values calculated with

Eq. (3.4), one for each temperature. The absolute value di�ers by one order of magnitude

at maximum, we think that this error depends on the fact that the prefactors with the

Arrhenius analysis are extracted assuming that they do not contain any temperature

dependence. The fact that the analytical prefactors are constant for all the activation

energies is coherent with the correlation between the decrease of the prefactor and the
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Figure 3.23: Prefactor extracted from the transition region of the Qf -VG relations in Fig. 3.9
along with the the inverse of the slope in the semilogarithmic plot EMN , i.e. the Meyer-Neldel
energy.

fact that the relation stop to follow the exponential trend. One can see from Fig. 3.21

that the red curves are perfect straight lines, because the model reported in Eq. (3.2)

is valid only in the pure subthreshold region (i.e. it is purely exponential) and not in

the transition one. The fact that the analytical prefactor is �at like the frozen one is

another evidence of the fact that the presence of the MNR in this device may depends

on the extraction method that assumes an exponential relation which is not present at

certain biases for some temperatures under analysis. One may argue that the fact that

the transition region is absent in the analytical model depends on the approximation

introduced to derive Eq. (3.2). This will be investigated with the planar MOSFET analy-

sis, whose relations contain little approximations, that will be exposed in the next section.

To conclude the analysis of the MNR in a nanowire MOSFET we report the extracted

Meyer-Neldel energy EMN , which is the inverse of the slope of the prefactor in a semilog-

arithmic plot against the activation energy. Fig. 3.23 shows the value of 80 meV, similar

to the ones shown in Fig. 2.22 at the end of chapter 2. In that work the extracted EMN

value was also correctly predicted by an analytical model that linked it to the trap states

distribution, while we obtained the same value in a device with any kind of state in the

gap. We will search for explanation of this discrepancy either by performing the same

analysis on a planar device more similar to the TFT analyzed in the cited work, either

by including trap states in our analysis as it will be done in chapter 4.
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Figure 3.24: Qinv-VG relations for 7 temperatures from 200 K to 500 K with steps of 50 K
along with the comparison with the values obtained from Eq. (3.5).

3.2 Long N-channel planar MOSFET

3.2.1 Device and environment

The simulated device is a standard long N-channel planar MOSFET, like the one

presented at the beginning of chapter 2. The channel length is 1 µm, the substrate is

heavily p-doped with a concentration Nd = 1018 cm−3. The oxide and substrate thickness

are respectively 7 nm and 1 µm. With this thickness we are sure that the substrate

will not be fully depleted for any gate bias and then the device will follow the standard

long channel MOSFET relations. Source and drian bias are always set to 0 V, hence the

device works like a capacitor as the nanowire MOSFET presented in the previous analysis.

We have assumed the same approximations taken in the nanowire MOSFET analysis

presented in the previous section. We will hence base our analysis on the inversion charge

present in the channel region in the place of the current, since the latter is proportional

to the derivative of the former, on the temperature and on the mobility as one can see

from Eq. (2.2). We will then neglect the mobility dependence and we will reduce the

dependence on temperature, since the charge depends on T while the current on T 2.

3.2.2 Simulation results and analytical comparison

In Fig. 3.24 the simulated Qinv-VG relations are reported for 7 temperatures from

200 K to 500 K with steps of 50 K, along with the same relations obtained from the
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Figure 3.25: Qinv-VG relations for 7 temperatures from 200 K to 500 K with steps of 50 K, the
veritcal grey lines highlight the pure subthreshod and the transition region.

analytical expression for the subthreshold region that we report here:

Qinv =

√
εsiqNa

2ψs

(
kT

q

)(
ni
Na

)2

eq(ψs−Vfn)/kT . (3.5)

As indicated from the units used, all the curves reported are carrier concentrations per

unit area (1/cm2). We can see that there is a perfect agreement from the beginning

of the subthreshold region and also in the transition to the above-threshold region.

The analytical Qinv values are not obtained in a fully theoretical fashion. The values

substituted in the analytical formula are taken from the results of the simulations.

An important parameter in this analytical analysis is ψs, i.e. the voltage drop in the

substrate, since it appears both in the prefactor and in the activation energy. In fact, by

rewriting Eq. (3.5) in order to make all the exponential dependencies explicit we obtain:

Qinv =

√
εsiqNa

2ψs

(
kT

q

)(√
NcNv

Na

)2

e
q(ψs−Eg/q)

kT (3.6)

where the prefactor shows two main dependecies: one on ψ
−1/2
s and one on the temper-

ature, either explicit either with another factor T 3 in
√
NCNC . The numerator of the

exponential is the activation energy for the process, we therefore have Ea = Eg−qψs that
is coherent with the Arrhenius analysis presented in Sec. 2.1.6.
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Figure 3.26: (a) Activation energy extracted from the charge relations in Fig. 3.25 along with
the computed analytical value (b) Prefactor extracted from the charge relations in Fig. 3.25 along
with the computed analytical value for T=350 K. All the vertical grey lines are the same as in
Fig. 3.25.

3.2.3 Pure subthreshold and transition regions

As presented in Sec. 3.1.5 we can identify two zones, the pure subthreshold and the

transition one, as they were de�ned before. In Fig. 3.25 are reported the same Qinv-VG

relations of Fig. 3.24 with the vertical grey lines that indentify the two di�erent zones.

From Fig. 3.26 we can see again that the activation energy is linear in the pure sub-

threshold region and that the exponential trend of the prefactor is again correlated with

the transition region as de�ned before. The vertical grey lines in Fig. 3.26a are located

at the same bias as in Fig. 3.25. The vertical grey lines in Fig. 3.26b are located at the

activation energies at which the vertical grey lines intersect the curve in Fig. 3.26a.

3.2.4 Analytical comparison and Arrhenius plots

To better understand the behaviors of activation energy and prefactor it is useful to

look at the analytical comparisons shown in Fig. 3.26. Similar trends can be observed

in the pure subthreshold zone. We know from Sec. 2.1.6 that the Ea = Eg − qψs and

from Eq. (3.6) that the analytical prefactor follows a ψ
−1/2
s trend. Hence the analytical

prefactor will be described by (Eg − Ea)−1/2 as shown in Fig. 3.26b. We believe that the

di�erences between the two prefactors are mainly due on the fact that the analytical

one is temperature-dependent (the shown one was computed with T=350 K) while the

extracted one is independent of temperature and it performs a sort of average.

The fact that the analytical prefactor does not deviate from the trend in the transition
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Figure 3.27: (a) Arrhenius plot of the charges in Fig. 3.25 in the transition region as indicated
from the label. The vertical grey line marks the intercept for the extraction of the prefactor (b)
Magni�cation on the highest temperature points of Fig. 3.27a in order to show the deviation
from the exponential trend that makes the �t deviates and in turn the prefactor to decrease
exponentially.

region suggests that the exponential trend of the prefactor is again due to the self-

consistency and the extraction method as described in the nanowire MOSFET analysis.

In this case the analytical formulation shows good agreement also in the transition

region, this fact falsi�es the idea that the absence of an exponential trend in the prefactor

could be related to the approximations made. In Fig. 3.27a it is shown the Arrhenius

plot for 4 gate bias values in the transition region. In Fig. 3.27b the magni�cation on

the highest temperature points shows the deviation from the exponential trend that is

responsible for the exponenial trend of the extracted prefactor. As a �nal remark we

show in Fig. 3.28 that the extracted Meyer-Neldel energy for the transition region of the

planar MOSFET is almost the same value of the nanowire MOSFET shown in Fig. 3.23.

We can conclude that the cylindric geometry and the the fact that the nanowire

MOSFET is a �oating substrate device have some e�ects on the prefactor: in the pure

subthreshold region the prefactor extracted from the nanowire MOSFET is constant

while the one extracted from a planar transistor shows a descending trend. The presence

of a region in which the prefactor shows an exponential trend, instead, is not related to

the speci�c device that is under analysis. We have concluded that it is related to the

self-consistency of the energy bands and the transition region in which not every curve

used for the Arrhenius analysis follow the same trend. This fact is dependent on the

temperature range under analysis since a wider temperature range will have a larger

transition region, vice versa for a narrower temperature range.
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Figure 3.28: Prefactor extracted from the transition region of the Qf -VG relations in Fig. 3.25
along with the the inverse of the slope in the semilogarithmic plot EMN , i.e. the Meyer-Neldel
energy.

We pointed out that in the analysis of MOSFET devices this e�ect must be taken into

account since a large quantity of devices present exponential trend in the subthreshold

region that are gradually abandoned towards the above-threshold region.
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Chapter 4

The impact of traps

The purpose of this chapter is to investigate the role of trap states in a Meyer-Neldel

rule analysis. The analysis will be performed on the same cylindrical device presented in

the previous chapter, with identical assumptions and approximations. The analysis will

start with the investigation on how di�erent trap distributions a�ect the Q−V character-

istic, followed by the e�ect of the trap states on the electrostatics, the energy bands, and

the MNR. At the end of the chapter an overview on the phenomenon is given in which

both e�ects are taken into account: the one presented in the previous chapter and the traps

one.

4.1 Trap models

The simulated device is the nanowire MOSFET presented in Sec. 3.1 with the same

assumptions and approximations. Trap states are implemented in the e�ective medium

approximation, i.e. uniformely distributed in the whole silicon volume. It has beeen

demonstrated [22] that polycrystalline devices can be modelled with an e�ective medium

approximation in which the grains and their localization are neglected and the traps are

considered uniformly distributed in the whole silicon volume. This approach is more

and more valid as the number of grains in the volume considered gets higher. That is

because the trapped charges at the grain borders form a potential barrier that conduction

electrons have to overcome. As the number of potential barriers rise their e�ect can be

mediated.
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Figure 4.1: Qf − VG relations for three di�erent trap distributions.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

V
G
 [V]

0

0.3

0.6

0.9

1

E
a
 [

e
V

]

β=1x10
19

 cm
-3

λ=160 meV

β=1.3x10
19

 cm
-3

λ=120 meV

β=2x10
19

 cm
-3

λ=80 meV

(a)

0 0.3 0.6 0.9 1

E
a
 [eV]

10
8

10
9

10
10

10
11

10
12

Q
0
 [

c
m

-1
]

β=1x10
19

 cm
-3

λ=160 meV

β=1.3x10
19

 cm
-3

λ=120 meV

β=2x10
19

 cm
-3

λ=80 meV

(b)

Figure 4.2: (a) Activation energies as a function of gate bias VG for the Qf − VG relations
shown in Fig. 4.1. (b) Prefactors as a function of activation energy Ea for the Qf − VG relations
shown in Fig. 4.1.

As already mentioned, only deep trap states will be implemented, since they are the

only trap states that a�ect the subthreshold region. The trap state distributions used are

purely exponential, like the one in Eq. (2.20). The chosen peak concentrations (β from

now on) are similar to the ones presented in the reported work at the end of Chapter 2 [35].

Fig. 4.1 shows the free charges Qf as a function of the gate bias VG for di�erent

β and decay constants (λ from now on). λ and β have been chosen such that their

product is constant and hence the total number of traps in the gap is �xed for �xed volume.

Even if di�erent trap distributions bring slightly di�erent Qf − VG relations as shown

in Fig. 4.1, the activation energies and prefactors illustrated in Fig. 4.2 show negligible
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4.2. Simulation results
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Figure 4.3: Trap state distributions for three di�erent β. These distributions are used through-
out this chapter for the Meyer-Neldel analysis.

di�erences, meaning that the relevant parameter is the total number of traps, and not λ

and β. We have therefore chosen to perform the analysis only for λ = 160 meV and to

vary β. In Fig. 4.3 the deep trap state distributions used in the thesis work are shown.

We have arbitrarily chosen three β values leaving λ unaltered.

4.2 Simulation results

4.2.1 Free and trapped charges

Fig. 4.4 shows the Qf − VG relations for di�erent temperatures and for the three

di�erent trap concentrations shown in Fig. 4.3, along with the case without traps for

comparison. We can see that the lowest trap concentration almost does not a�ect the

characteristic with respect to the monocrystalline case. The e�ect of the trap states is

more visible with the increase of the traps concentration and completely changes the

Q− V curve in the highest concentration case.

The fact that the trap e�ect gets stronger with the rising of the gate bias is coherent

with the trap distribution analytical formulation: we can see from Fig. 4.3 that the

number of states rises exponentially going towards the conduction band. With the

rising of the gate bias, the electron quasi-Fermi level gets closer to the conduction band,

increasing the number of available trap states. This e�ect is clearly visible in Fig. 4.4

looking at the green curves: for low gate bias the green lines overlap with the black lines

obtained without any trap. When the gate bias is high enough, the number of occupied
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Figure 4.4: Qf − VG relations for the three di�erent trap distributions shown in Fig. 4.3.
Temperature from 200 K to 500 K with steps of 50 K.

states reaches a value such that the trapped charge creates an electric �eld that bends

the bands and modi�es the Q− V relation with respect to the case without traps.

This phenomenon is con�rmed by Fig. 4.5. The �gure shows, for the lowest temper-

ature, the silicon voltage drop between the middle of the channel and the silicon-oxide

interface as de�ned in Chapter 3. In that chapter the black curve of Fig. 4.5 was shown

and it was explained that Vs was blocked to 0 for a wide range of gate bias because, due

to the small silicon volume, the induced electrons were not enough to create an electric

�eld that could bend the bands: this is the blocked bands region. One can easily see

that in the highest trap concentration this region is absent. This happens because the

trapped charge is enough to bend the bands even at low gate bias. For the other trap

concentrations a blocked band region is present but the point at which the charges start

to bend the bands is located at lower biases.

Another important feature that can be seen in Fig. 4.4 is that the free charges with

and without traps converge to the same value as the gate bias increases. This suggests

that for gate biases high enough the trapped charges are not relevant for the electrostatic.

In order to con�rm this we can look at Fig. 4.6. We can see that at a certain gate bias

the trapped charges saturate, suggesting that the Fermi level reached the conduction

band, while the free charges keep on rising reaching a point in which they are the only

relevant charges from an electrostatic point of view.

From Fig. 4.6 we can �nd another proof of the temperature behavior of the trap
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Figure 4.5: Silicon voltage drop Vs at T=200 K between the center of the cylinder and the
silicon oxide interface as de�ned in Chapter 3. For the highest traps concentration there is no
blocked bands region.

states: when free charges are irrelevant, in the subthreshold or blocked bands region, the

temperature has barely any visible e�ect on the trapped charge, as pointed out from

the theoretical analysis on the trap occupation in Chapter 2. Vice versa, when the free

charges become relevant from the electrostatic point of view, di�erent temperatures lead

to di�erent amounts of trapped charges. This happens because the free charges are

strongly temperature-dependent and the total amount of charges (free and trapped) is

substantially determined by the gate bias applied. If the total number of charges has to

remain constant and the free charges rise with temperature, the trapped ones have to

decrease.

4.2.2 Activation energy and prefactor

In Fig. 4.7 we can see that the curves split up and that their separation gets bigger

with the rise of the trap concentration. Morevoer, we can also see that the decrease of

the activation energy with the rising of the gate bias gets gentler when a higher number

of traps is present. This happens because when the quasi-Fermi level moves inside the

energy gap, it modi�es the occupancy of the trap states, populating more and more

states with electrons as it gets closer to the coduction band. The trapped charge will

create the silicon voltage drop shown in Fig. 4.5, rising the potential in the �oating

silicon volume. Therefore, when trap states are present, we need higher biases to bring

the quasi-Fermi level at the same distance from the conduction band that we get without
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Figure 4.6: Free charges Qf and trapped charges Qt as a function of the gate bias VG for 7
di�erent temperatures from 200 K to 500 K with steps of 50 K.

traps, hence the slower decrease of the activation energy.

Fig. 4.8 shows the prefactors as a function of the activation energies in Fig. 4.7,

extracted from the relations in Fig. 4.4. We can see that for the lowest trap concentration

almost nothing changed from the monocrystalline case and hence we can ascribe the

exponential region of the prefactor to self-consistency of the bands and the extraction

method e�ect shown in the previous chapter. As the trap concentration rises (green

curves), we can see that the exponential decrease is gentler with respect to the previous

case. To understand what is happening it is useful to look �rst to the highest trap

concentration case. The blue curve has only one slope from Ea = 0.8 eV towards 0 eV and

the two pure-subthreshold and transition regions seem to be absent. Looking at Fig. 4.4

we can indeed see that all the curves seem to follow the same relation for each bias, the

transition region in which some curve follows a pure exponential relation while others

are deviating being absent. We infer that all the blue curves are in a pseudo-subthreshold

region for every bias higher than −0.3 V (when they separate from the other curves) in

the graph. The exponential region of the prefactor and hence the MNR, in this case,

does not seem to be related to the self-consistency brought by free electrons and the

extraction method. The absence of a transition region and therefore the traps related

Meyer-Neldel relation of the prefactor will be veri�ed in the following.

Coming back to the green curves we can observe an intermediate behavior, where two

di�erent competing phenomena are present: the self-consistency related one presented in

the previous chapter and the emergence of a pseudo-subthreshold region in which the MNR
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Figure 4.7: Activation energy Ea as a function of the gate bias VG extracted from the relations
in Fig. 4.4.

is respected. The �rst one gives the steep decrease of the prefactor of the monocrystalline

case, the second mitigate this decrease towards gentler slopes like the one of the blue

curves.

4.2.3 Arrhenius plots

In Fig. 4.9 the Arrhenius plot of the Qf − VG relations for the lowest trap con-

centration is shown. From Fig. 4.9a it can be seen that the prefactors extracted

from the yellow and green curves, that correspond respectively to VG = 0.39 V and

VG = 0.47 V, show an exponential decrease, while Fig. 4.9b con�rms that this exponential

trend derives from the fact that the highest temperatures deviate from the exponential �t.

Fig. 4.10 shows the same Arrhenius plots for the highest trap concentration. The

biases chosen for the Arrhenius plots are located in the region in which the activation

energies and the charges deviate from the case without traps as one can see from Figs. 4.4

and 4.7. In Fig. 4.8 we can see that an exponential trend is present for all the biases

shown in Fig. 4.10. From the magni�cation illustrated in Fig. 4.10b we can notice that

all the points which correspond to the di�erent temperatures follow the �t quite well,

the extraction method related e�ect, due to the deviation from the trend of the highest

temperatures is absent in this case.

We have shown the absence of the transition region in the highest trap concentration

case. All the Qf − VG characteristics follow the same relation, regardless of the tem-
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Figure 4.8: Prefactors Q0 as a function of the activation energies Ea in Fig. 4.7 extracted from
the relations in Fig. 4.4.

perature. This phenomenon takes place because the trap concentration is so high that

the electrostatics is mainly governed by the trap states for all the biases under analysis.

As we have shown by analytical formulas and simulations, the occupancy of the trap

states has a very weak dependence on temperature and this is the reason why with the

rising of temperature we do not �nd a deviation from the trend followed by the lower

temperatures and hence a transition region that led to the MNR as in monocrystalline

case.

The beginning of the pseudo-subthreshold takes place at the bias in which the trapped

charges have an e�ect on the bands (Figs. 4.4 and 4.5). The descending trend of the

prefactor also starts from the activation energy that corresponds to that bias and hence

we can infer that the MNR shown by the blue curve in Fig. 4.8 is again related to a

self-consistent e�ect of the bands. Di�erently from the case without trap states the elec-

trostatic is here governed by the trapped charge: when enough trap states are populated

by electrons, a non neglectable electric �eld is present and in turn the bands bend. More-

over, the transition region presented in the previous chapter is absent, in its place we can

see only one trend that we have called pseudo-subthreshold.

4.2.4 Frozen band analysis

In order to �nd another proof of the presence of two di�erent phenomena as argued

in Sec. 4.2.2 about the green curves of Fig. 4.4, we can perform the frozen analysis as

previously described in Sec. 3.1.6. In the frozen analysis the bands are calculated at a
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Figure 4.9: (a) Arrhenius plot of the Qf − VG relations for the lowest trap concentration. (b)
Zoom on the highest temperature of Fig. 4.9a highlighting the deviation from the �t of the yellow
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Figure 4.10: (a) Arrhenius plot of the Qf − VG relations for the highest trap concentration.
(b) Zoom on Fig. 4.9a highlighting the absence of curves deviating substantially from the �t.

reference temperature of 200 K and then they are used for all the temperatures. Since

the population of the trap states almost does not depend on temperature, the e�ect of

the trapped charges on the electrostatics is expected to be the same at 200 K and 500 K

and hence we do not expect any di�erences between the frozen and self-consistent case

when the electrostatic is controlled by the trapped charges. Moreover, since free charges

are strongly temperature-dependent, we expect to shut down their e�ect on the bands

and the related MNR behavior as shown in Chapter 3, but not the e�ect of trapped

charges. Fig. 4.11 shows the Qf − VG relations at 500 K with and without the frozen

bands for all the trap concentrations and con�rms our hypothesis. The fact that the

highest trap concentration shows no di�erences between the frozen and self-consistent

case gives us another proof of the fact that, in this case, the free electrons do not a�ect
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Figure 4.11: Qf − VG relations at 500 K with and without the frozen bands for all the trap
concentrations. The frozen bands are calculated with the lowest temperature as done in Sec. 3.1.7.

the electrostatics of the system even at high bias; the electrostatics is governed by the

trapped charges.

Figs. 4.12 and 4.13 shows activation energies and prefactors computed with and

without the frozen bands. We can see from Fig. 4.12 that there are no di�erences for the

highest trap concentration as we expected. Going to lower trap concentrations the curves

obtained with and without the frozen bands start to separate when the free charges

induced are able to a�ect the electrostatics.

Fig. 4.13 illustrates the prefactors obtained with and without the frozen bands and

con�rms the presence of the MNR in systems with trap states and their relation with

the self-consistency of the bands. The lowest trap concentration shows the same trend

of the monocrystalline case, but with the rising of the trap concentration we can �nd

exponential regions of the prefactors even with the frozen bands. This happens because

with the frozen bands we shut down the e�ect of the free electrons on the bands but

we could not do the same for the trapped ones, these electrons create an electric �eld

that bends the bands and the MNR in the frozen case with trap states arise from this

self-consistency.
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Figure 4.12: Activation energies extracted from the Qf − VG relations in Fig. 4.11.
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Figure 4.13: Prefactors extracted from the Qf − VG relations in Fig. 4.11.

4.2.5 Meyer-Neldel energy

To conclude our analysis on the device with trap states we show here the obtained

Meyer-Neldel energies with and without the frozen bands for the two highest trap

concentrations; the lowest trap concentration has been neglected since it shows only little

di�erences from the monocrystalline case. The results are shown in Fig. 4.14 and Fig. 4.15.

The fact that the MNR behaviors related to the band bending brought from the

free and trapped electrons are di�erent phenomena can be seen in Fig. 4.14: for this

trap concentration (β = 5 × 1019 cm−3) the band bending derives from both free and

trapped electrons. When the bands are frozen we get rid of the e�ect on the bands of
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Figure 4.14: Exponential region of the prefactors with and without self-consistency extracted
from the Qf−VG relations for the trap concentration with β = 5×1019 cm−3. The Meyer-Neldel
energies EMN are also shown.

the free electrons but not of the one related to trapped ones as described in the previous

subsection, in fact the resulting EMN for the frozen case (dashed line) is similar to

the the ones of the β = 5 × 1020 cm−3 case (Fig. 4.15) in which the free charges have

negligible e�ects. Vice versa, when the bands are not frozen and the bands bending

come from both trapped and free electrons, the slope of the continuous curve in Fig. 4.14

is more similar to the ones shown in Chapter 3 related to the band bending caused by

the free electrons, even if the trap presence makes the decrease less steep. The resulting

EMN for the continuous line in Fig. 4.14 is a sort of average. As a �nal evidence of our

hypothesis we can see that in Fig. 4.15 the two curves have a very similar EMN since the

free electrons are negligible regardless of the frozen bands.

We can see that there is a correlation between the trap concentration and the

Meyer-Neldel energy, even if we were not able to write an analytic formulation for this

correlation as it has been done in the work reported at the end of chapter 2 [35]. The

abscence of an analytical formulation in our trap analysis is related to the lack of closed

analytical form for the free charges in a nanowire device with trap states.

We can also see that the EMN that we believe to be related to bands bending caused by

the trapped charges is very di�erent from the one obtained in the work cited in Chapter 2,

while the EMN that we believe to be related to the self-consistency related to free electrons

and the extraction method (the continuous green curve in Fig. 4.14) takes a very similar

value. This fact may suggest that the EMN reported in the cited work was not trap-
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Figure 4.15: Exponential region of the prefactors with and without self-consistency extracted
from the Qf−VG relations for the trap concentration with β = 5×1020 cm−3. The Meyer-Neldel
energies EMN are also shown.

related, even if the analytical analysis performed in the work predicts the measured value.

Deeper investigation on this two competing e�ects is needed to better understand the

origin of the MNR.
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Conclusions

In this work we have investigated the Meyer-Neldel rule (MNR) in various MOSFET

devices. The MNR is a relation linking the prefactor of an Arrhenius-like relation with

the activation energy, and has been widely reported in the literature for amorphous and

polycrystalline MOSFET devices. In particular, the Meyer-Neldel energy (EMN , the key

parameter of the MNR) has been claimed to be related to the energy distribution of

traps within the energy gap.

Our results call this interpretation into question, based on thorough numerical

simulation of the temperature behavior of MOSFETs. In particular, we show that even

in a MOSFET devoided of any trap, the MNR can still be observed over a suitable bias

(hence, activation energy) range. To provide an interpretation of this unexpected result,

we conducted ad hoc simulations where the electrostatic of the device was calculated at

a reference temperature of 200 K and then the computed bands were used to calculate

the charges induced by the raising of temperature without letting them modify the

bands accordingly to their presence, in fact shutting down the self-consistency of the

bands. Since the population of the trap states almost does not depend on temperature,

the e�ect of the trapped charges on the electrostatics is expected to be the same at

every temperature, while free charges are strongly temperature-dependent. We have

therefore shown that with these simulations we could not see the e�ect on the bands of

the free charges induced by the raising of temperature, while almost nothing changed

with temperature increase when enough trap states were present. In the monocrystalline

case, with the aid of the method just described, the MNR was absent. Hence we have

found an evidence of the correlation between the self-consistency of the bands and the

MNR. This result is an absolute novelty since there is no similar case reported in the

literature. The obtained EMN for the two monocrystalline devices have been found to be

very similar to the one found in the reported MNR analysis at the end of Chapter 2 that

was performed on a polycrystalline TFT.

Since with the method described above we could get rid of the e�ect of the free
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charges we were also able to get rid of the MNR related to their e�ect on the bands

and then to isolate the e�ect of the trapped charges. We have then discovered that the

presence of enough trap states led to the MNR. This fact was again correlated with

the self-consistency of the bands: the MN behavior took place at biases for which the

trapped charges were enough to bend the bands. The EMN in this case was found to be

very di�erent from the one of the monocrystalline case.

We can conclude that our evidence seem to question the interpretation of the MNR

that is currently found in the literature. Deeper investigation are needed to verify the

relation between the MNR and the self-consistency of the bands and its presence in

monocrystalline devices. Moreover, experimental measures are needed to con�rm what

has been found in the simulations.
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