
Scuola di Ingegneria Industriale e dell’Informazione
Dipartimento di Elettronica, Informazione e Bioingegneria
Corso di Laurea Magistrale in Computer Science and Engineering

Tesi di Laurea Magistrale

Temporal Logic for Operator Precedence Words

Candidato:
Michele Chiari
Matricola 881258

Relatore:
Chiar.mo Prof. Dino Mandrioli
Correlatore:
Chiar.mo Prof. Matteo Pradella

Anno Accademico 2017–2018

Prefazione e Ringraziamenti

Il lavoro presentato in questa tesi rappresenta il culmine di un’importante tappa della
mia formazione accademica e personale, essendo anche risultato nella pubblicazio-
ne di un articolo presso la conferenza GandALF 2018 [CMP18]. Desidero porgere un
sentito ringraziamento al Prof. Dino Mandrioli e al Prof. Matteo Pradella per avermi
guidato nella realizzazione di questo elaborato e del suo contenuto in modo attento e
sapiente. Desidero inoltre ringraziare tutti i docenti che hanno preso parte alla mia
formazione scolastica e accademica, e che sono stati anch’essi indispensabili al rag-
giungimento di questo traguardo. In�ne, ringrazio la mia famiglia e in particolare i
miei genitori per il sostegno che mi hanno o�erto.

Contents

1 Introduction 2

2 Visibly Pushdown Languages 5
2.1 Visibly Pushdown Automata . 6
2.2 Visibly Pushdown ω-Automata . 7
2.3 MSO-Logical Characterization of VPLs 8
2.4 Nested Words Temporal Logic . 9

3 Operator Precedence Languages 13
3.1 Operator Precedence Grammars . 14
3.2 Operator Precedence Automata . 21
3.3 Operator Precedence ω-Languages and Automata 28
3.4 MSO-Logical Characterization of OPLs 30

4 Operator Precedence Temporal Logic 32
4.1 Syntax . 33

4.1.1 Shortcuts . 34
4.2 Semantics . 35

4.2.1 Algebraic Structure . 35
4.2.2 The Chain Relation . 35
4.2.3 Operators . 36

4.3 Examples . 39
4.3.1 Parenthesized Expressions . 40
4.3.2 Function Calls and Interrupts 41

4.4 Equivalence between Operators . 44
4.4.1 An adequate set . 45

4.5 Relationship with Nested Words . 45
4.5.1 Containment . 45
4.5.2 Strict Containment . 52

4.6 Model-Checking . 55
4.6.1 Model-Checking for Finite Words 55
4.6.2 Model-Checking for In�nite Words 63

5 Conclusion 67

1

Sommario

Lo scopo del model checking consiste nella veri�ca automatica di proprietà riguardanti
il comportamento di un sistema hardware o software. La complessità delle proprie-
tà da veri�care e dei comportamenti da modellare dipende dal formalismo utilizzato
per esprimere tali proprietà. I più classici di questi formalismi logici, in particolare
LTL, CTL e CTL*, possono soltanto rappresentare proprietà riconducibili ai linguaggi
regolari. Quindi, possono esprimere la semplice conseguenza temporale, l’eventuali-
tà e la necessità passate e future. Comunque, sono limitati alla struttura lineare dei
linguaggi regolari. Recentemente, la letteratura in questo campo ha visto il tentativo
di superare questa restrizione sfruttando famiglie più vaste di linguaggi strutturati,
come i visibly pushdown languages, che permettono di modellare strutture annida-
te. Il lavoro presentato in questa tesi mira ad essere un signi�cativo passo avanti in
questa direzione, considerando la classe degli operator precedence languages. Essi fu-
rono originariamente introdotti da R. W. Floyd con l’intento di generare algoritmi di
parsing e�cienti per i linguaggi di programmazione. Per questo, possono rappresen-
tare una varietà di strutture sintattiche piuttosto vasta, anche se dotate di una forma
non immediatamente visibile. Ciononostante, godono delle fondamentali proprietà di
chiusura che li rendono appropriati per il model checking. Con tale premessa, pre-
sentiamo un nuovo formalismo di logica temporale adatto a esprimere e a veri�care
automaticamente proprietà sugli operator precedence languages. Esploriamo la poten-
za espressiva di questo formalismo dimostrando che esso è almeno espressivo tanto
quanto la sua principale controparte sui visibly pushdown languages, essendo inoltre
basato su una classe di linguaggi ben più vasta. In�ne, proponiamo una procedura
per il model checking basata sulla teoria degli automi, su parole sia �nite sia in�nite.

Abstract

The aim of model checking consists in the automated veri�cation of properties con-
cerning the behavior of a software or hardware system. The complexity of the proper-
ties to be veri�ed and, ultimately, of the behaviors to be modeled, depends on the for-
malism used to express such properties. The most classical of these logic formalisms,
namely LTL, CTL and CTL*, can only tackle properties that can be described as reg-
ular languages. As such, they can express simple temporal consequence, past and
future eventuality and necessity. However, they are constrained into the linear struc-
ture of regular languages. Recently, the literature in the �eld has seen the attempt
at overcoming this restriction by exploiting larger families of structured languages,
such as visibly pushdown languages, which enable the modeling of nested structures.
The work presented in this thesis aims to represent a signi�cant step forward in this
direction, by considering the class of Operator Precedence Languages. They were in-
troduced by R. W. Floyd with the purpose of generating e�cient parsing algorithms
for programming languages. For this reason, they can represent a rather large vari-
ety of syntactic structures, even with a shape not immediately visible. Nonetheless,
they enjoy the fundamental closure properties that make them appropriate for model
checking. On this premise, we present a novel temporal logic formalism suitable to
express and automatically verify properties on operator precedence languages. We
explore the expressive power of this formalism by proving that it is at least as expres-
sive as its main counterpart for visibly pushdown languages, while being based on a
signi�cantly more powerful language family. Finally, we give an automata theoretic
procedure for model checking, for both �nite and in�nite words.

Chapter 1

Introduction

The formal veri�cation of software and hardware systems is one of the topics that
inspired the most intense research e�orts in computer science, and yet, it can be still
considered an open one, at least up to a considerable extent. One of the historical
branches of this research area was the one pioneered by R. W. Floyd and C. A. R.
Hoare, which concerned the direct production of formal proofs for programs written
in structured programming languages. In particular, Hoare Logic consists of a set of
inference rules for program constructs, that can be combined in order to construct a
rigorous formal proof of properties of programs containing such constructs. The pro-
gramming languages targeted by these methods are, however, Turing complete. This,
of course, guarantees their full generality, but it sacri�ces the decidability of most of
the very properties that these formalisms were conceived to prove. Therefore, there
exists no complete and fully automated tool capable of building proofs by means of
the Hoare method, leading to the need to resort to tools that may sometimes yield
inconclusive results or, ultimately, to human ingenuity. While this methods sacri-
�ce decidability to embrace full expressive power, another research branch developed
toward the opposite side of this trade-o�.

Indeed, using a less expressive formalism such as Finite State Machines (FSM) to
model systems allows to exploit its closure and decidability properties, yielding the
theoretical possibility of tools capable of automatically proving or disproving prop-
erties of the system. An early attempt at pursuing this route was made by J. R. Büchi
[Bü60], C. C. Elgot [Elg61] and B. A. Trakhtenbrot [Tra61], who independently gave
a logical characterization to regular languages by means of a Monadic Second Or-
der logic (MSO). This logic formalism allowed the expression of properties on FSMs,
with the theoretical possibility of proving or disproving them algorithmically. Un-
fortunately, the computational complexity of such decision algorithms is intractable
[FG04], hindering the possibility of their practical use.

A considerable breakthrough in the �eld was the introduction of model checking.
While keeping FSMs as the operational formalism to model systems, MSO logic was
substituted with other formalisms that are less expressive, but that admit tractable
decision procedures. The seminal work of A. Pnueli on Linear Temporal Logic (LTL)
[Pnu77] is the �rst step in this direction. LTL expresses properties with respect to a
linear, discrete timeline (linear order), and it has been proved to enjoy the same ex-
pressive power of First Order (FO) logic on such an algebraic structure by H. Kamp
[Kam68]. Given the FSM model of a system, the model checking procedure for LTL
allows to prove or disprove, by generating a counterexample, the truth of an LTL

2

formula on that system. The required computational complexity is exponential in the
length of the LTL formula, which can be considered a�ordable if such a speci�cation is
not too long. Indeed, LTL model checking is PSPACE-complete [SC85]. Subsequently,
other temporal formalisms were conceived with the same intent. Computational Tree
Logic (CTL), by E. M. Clarke and E. A. Emerson, considers a timeline with branching
points, intended to model systems whose behavior can take di�erent execution paths.
The computational complexity of the model checking procedure of CTL is linearly
proportional to the length of the formula and to the size of the system to be veri�ed.
However, its expressiveness is not comparable with LTL, and for LTL properties that
have a CTL counterpart, the former is exponentially more succinct. LTL and CTL
are subsumed by CTL*, which can express all linear properties of LTL on the branch-
ing time that characterizes CTL. CTL* is also PSPACE-complete, as a consequence of
including LTL.

LTL, CTL and CTL* are all limited to expressing regular properties, i.e. properties
such that there exists a FSM accepting all and only strings conforming to them. This
is, indeed, the classical way of performing LTL model checking: given an LTL formula
ϕ, it is possible to build a nondeterministic FSM A with at most 2|ϕ| states accepting
all and only strings that satisfy ϕ [VW86]. Then, due to the closure and decidabil-
ity properties of FSMs, it is possible to verify whether another system modeled as a
FSM A′ satis�es ϕ by building the automaton recognizing the intersection language
between A′ and the complement of A. Finally, the obtained automaton can be tested
for emptiness. If it is not empty, then it recognizes the behaviors of the system that
do not satisfy ϕ.

FSMs accept the class of Regular Languages (RL). RL constitute the lower level
of the Chomsky Hierarchy, being the least expressive. They have a typical linear
structure, their characteristic trait being the repetition of patterns. Despite their sim-
plicity, they found fruitful applications in several �elds of computer science. They
are, however, unsuitable for representing tree-like and nesting structures. For this
reason, in compiler design they can only be used for lexical analysis, being unable to
deal with the most common constructs of programming languages, that are typically
nested. Context-Free Languages (CFL), situated at the level of the Chomsky Hierar-
chy just above RLs, are instead characterized by grammars su�ciently complex to
describe the syntax of programming languages. This greater generality is achieved to
the detriment of several important properties, that are instead enjoyed by RLs. For a
start, CFLs lack e�cient procedures for recognizing them: the most e�cient parsing
procedure for the full CFL class is the Earley algorithm [Ear70], with a cubic com-
plexity. The theory of compiler construction overcame this problem by resorting to
subclasses of CFLs: Deterministic CFLs (DCFL) can be recognized by LR parsers in-
troduced by D. Knuth [Knu65], with a complexity linear in the length of the input
string. A similar issue arises with respect to closure properties: CFLs are not closed
by complement and intersection, and containment and equivalence are not decidable
for them. These properties, that are all valid for RLs, are a fundamental requirement
for model checking, and the lack thereof prevents the extension of model checking
to the CFL class. The same can be said for DCFLs: although they are closed under
complement, and equivalence is decidable for them, they lack closure under union
and intersection, and containment is undecidable. So, it is not possible to follow for
model checking the same route that was followed for programming language parsing.

The need of modeling processes more complex than those allowed by FSM, how-
ever, remains. Attempts at model checking pushdown systems, i.e. systems that show
properties typical of CF languages (indeed, CFLs are recognized by pushdown au-

3

tomata) have been pursued with a variant of alternation-free modal mu-calculus (a
branching time logic) in [BS92], and of LTL and CTL in [BEM97]. These works, how-
ever, express the properties to be proved by means of formalisms that are not more
powerful than RLs.

A signi�cant step forward was made by rediscovering one of the several subclasses
of CFL that were introduced in the past in order to achieve e�cient CF parsing proce-
dures. The class of Input-Driven, or Visibly Pushdown Languages (VPL), while being
strictly wider than RLs, retains all their important closure and decidability properties:
VPLs are closed under the Boolean operations; emptiness, containment and language
equivalence are decidable. Thanks to those properties, R. Alur and P. Madhusudan
gave to VPLs a MSO logical characterization, followed by the development of tem-
poral logics expressing VPL properties: CaRet and, subsequently, NWTL, the latter
being proved to be First-Order complete. Such formalisms were developed, in particu-
lar, in order to model the stack of procedural programs. In their execution traces there
are matched function calls and returns: this nesting structure could not be tackled by
RLs, but VPLs are expressive enough to describe them. Indeed, this nesting structure
is visible in VPLs: their alphabet is partitioned in three sets, one of which contains the
“call” symbols, and another one the “return” symbols, which are matched together by
their recognizing automaton, forming an evident nested structure. The fact that the
structure of VPLs is immediately visible is also common to other subsets of VPLs that
enjoy the same closure properties, such as Parenthesis Languages [McN67], of which
VPLs can be considered a generalization.

This peculiarity of VPLs of having an evident structure is in some sense common to
another linguistic subfamily of CFLs: Operator Precedence Languages (OPLs). They
were introduced by R. W. Floyd [Flo63], also as part of the pursuit of e�cient CFL
parsing. Although their tree-like structure is not immediately visible as in VPLs, in
OPLs it can be easily derived by the precedence relations that hold among terminal
symbols. They were, in fact, speci�cally conceived to represent the typical precedence
relations among arithmetic operations in expressions. As a result, they can be used
to express the syntax of relevant markup or programming languages, such as JSON,
Lua [BCRM+15] and Prolog [DB96]. Also, OPLs strictly include the class of VPLs,
being therefore more expressive. Moreover, their structure, while being implicit in
precedence relations, allows OPLs to retain all the aforementioned closure properties,
namely closure under Boolean operations, but also concatenation and Kleene star, as
well as the decidability of several problems [CRMM78, CRM12]. This makes them
an ideal candidate for the application of model checking to a wider set of properties.
The work presented in this thesis represents an attempt at pursuing this objective. We
present a novel temporal logic formalism, called Operator Precedence Temporal Logic
(OPTL), conceived speci�cally to express OPL properties. We start the investigation
of its expressive power by comparing it to the logic NWTL, based on VPLs. Moreover,
we propose an automata theoretic model checking procedure, that retains the same
complexity class of LTL (and NWTL), i.e. it is exponential in the length of the formula.

The thesis is organized as follows. In Chapter 2 we present the language class of
VPLs, as well as the temporal logic NWTL, which represents the state of the art in
the �eld. In Chapter 3 we present the class of OPLs, characterizing them by means of
generative grammars and a particular class of pushdown automata. Chapter 4 con-
tains the main work of the thesis, since the logic OPTL is presented in this chapter,
it is compared to NWTL and a model checking procedure is given for both �nite and
in�nite words. Finally, Chapter 5 contains concluding remarks, as well as directions
for further research.

4

Chapter 2

Visibly Pushdown Languages

Visibly Pushdown Languages (VPL) are a subset of Deterministic Context-Free Lan-
guages. They were originally introduced in [Meh80] to support e�cient deterministic
real-time parsers for a subset of DCFLs. They have the peculiarity of enjoying many of
the closure properties of Regular Languages, that are not valid for Context-Free Lan-
guages: this is one of the reasons why they were recently revalued in [AM04]. They
are, in fact, closed under Boolean operations, concatenation and Kleene star. For this
reason they have been employed for model checking NWTL, a formalism that will be
presented in Section 2.4. NWTL is the main interesting point of VPLs with respect
to the work presented in this thesis. It was proposed in [AAB+08] as a First-Order
complete temporal logic formalism based on VPLs. We will prove that the temporal
logic we propose, which is presented in Chapter 4, is strictly more expressive than
NWTL which, in turn, represents the state of the art in this topic.

The main feature of VPLs is that they are based on a terminal alphabet Σ parti-
tioned into the three sets Σc, Σr and Σi. Σc contains call symbols, Σr return symbols,
and Σi internal symbols. Call and return symbols have a role similar to, respectively,
open and closed parentheses. In this respect, VPLs can be seen as a generalization
of parentheses languages, from which they di�er because they also allow unmatched
opening and closing symbols. While call and return symbols behave in a typically
context-free fashion, internal symbols may only form strings with properties typical
of regular languages. This partitioning of the terminal symbols makes the syntac-
tic structure of VPL strings immediately visible, highly facilitating parsing of such
strings. These peculiarities of VPLs are better clari�ed in Section 2.1, where their role
in the automata-theoretic characterization of VPLs is shown. Indeed, this particular
partition of the alphabet explains the e�ort put into developing model checking tech-
niques for VPLs: they may be used to model the stack traces of software programs.
Call symbols could be associated to procedure calls, and return symbols to procedure
returns. In actual stack traces, each function call is matched with the return that ter-
minates the same instance of the function. This is a typically context-free property,
which cannot be captured by formalisms based on regular properties, such as LTL,
but can be expressed by VPLs.

We present VPLs by means of their automata theoretic characterization in Sec-
tion 2.1, and we introduce their in�nite word counterpart in Section 2.2. In Section 2.3
we present the characterization of VPLs in Monadic Second Order Logic, and in Sec-
tion 2.4 we describe NWTL, a FO-complete temporal logic formalism on VPLs.

5

2.1 Visibly Pushdown Automata
We will �rst characterize VPLs by means of the class of automata recognizing them.

De�nition 1 (Visibly Pushdown Automaton (VPA)). Let the �nite terminal alphabet
Σ be partitioned into the three disjoint sets Σ = Σc ∪ Σr ∪ Σi. A nondeterministic
VPA over 〈Σc,Σr,Σi〉 is a tuple A = 〈Q, I,Γ, δ, F 〉 where

• Q is a �nite set of states;

• I ⊆ Q is a set of initial states;

• Γ is the set of stack symbol, containing the initial stack symbol ⊥;

• δ = δc ∪ δr ∪ δi is the transition relation, partitioned into the three relations

– δc ⊆ Q× Σc ×Q× (Γ \ {⊥}),
– δr ⊆ Q× Σr × Γ×Q,
– δi ⊆ Q× Σi ×Q.

A VPA is deterministic i� I is a singleton, and the three transition relations are
functions:

δc : Q× Σc → Q× (Γ \ {⊥}), δr : Q× Σr × Γ→ Q, δi : Q× Σi → Q.

The tripartite transition relation determines three kinds of moves. A transition
(p, a, q, γ) with p, q ∈ Q, a ∈ Σc and γ ∈ Γ \ {⊥} is called a push move, because it
pushes symbol γ onto the stack while reading the terminal symbol a, and it causes the
automaton to pass from state p to q. A transition (p, a, γ, q) with p, q ∈ Q, a ∈ Σr and
γ ∈ Γ\{⊥} is a pop move, and it pops γ form the stack, while reading a and bringing
the automaton from state p to q. Finally, (p, a, q) with p, q ∈ Q and a ∈ Σi is an
internal move, and it just causes a state change when reading a without touching the
stack. Internal moves are de�ned in the same way as the transitions of a �nite state
automaton. Also, notice that the next move of the automaton is determined only by
the type of the terminal symbol being read: call symbols cause push moves, return
symbols cause pop moves, internal symbols cause internal moves. Moreover, there
are no ε-transitions, and each move consumes exactly one input character: VPA are
real-time.

More formally, a con�guration of a VPA is a triple c = 〈w, q,Π〉, where w ∈ Σ∗ is
the input string, q ∈ Q is the current state and Π ∈ S is the content of the stack, with
S = (Γ \ {⊥})∗{⊥}. Given a string x = a0a1 . . . an ∈ Σ∗, a run of the automaton
is a sequence of transitions c0 7→ c1 7→ · · · 7→ cn such that for every 0 ≤ i ≤ n we
have

• push move: if ai ∈ Σc, then there exists a γ ∈ Γ such that 〈aiai+1 . . . an, qi,Πi〉
7→ 〈ai+1 . . . an, qi+1, γΠi〉, with (qi, ai, qi+1, γ) ∈ δc;

• pop move: if ai ∈ Σr , then there exists a γ ∈ Γ such that 〈aiai+1 . . . an, qi,Πi〉
7→ 〈ai+1 . . . an, qi+1,Πi+1〉 and either γ 6= ⊥ and Πi+1 = γΠi, or γ = ⊥ and
Πi = Πi+1 = ⊥, with (qi, ai, γ, qi+1) ∈ δr ;

• internal move: if ai ∈ Σi, then 〈aiai+1 . . . an, qi,Πi〉 7→ 〈ai+1 . . . an, qi+1,Πi〉
with (qi, ai, qi+1) ∈ δi.

6

A VPA accepts the language

L(A) = {x ∈ Σ∗ | 〈x, qI ,⊥〉 7→∗ 〈ε, qF ,Π〉,with qI ∈ I , qF ∈ F and Π ∈ S}.

Thus, we can introduce the following:

De�nition 2 (Visibly Pushdown Language (VPL)). A language L ⊆ Σ∗ is a VPL if
there exists a VPA A such that L = L(A).

VPLs are a subset of Deterministic Context-Free Languages. Indeed, any nonde-
terministic VPA can be determinized:

Statement 1 (Theorem 2 of [AM04]). Given a nondeterministic VPA A with s states,
an equivalent deterministic VPA Ã can be built with O(2s

2

) states and O(2s
2 · |Σc|)

stack symbols.

The construction of the deterministic automaton is based on a modi�ed subset
construction, that must keep into account the nondeterminism of the stack contents
as well. This is achieved by postponing push transitions until the matching return is
reached, allowing the automaton to chose the correct push transition. The states of
the obtained VPA Ã are made of a set S of pairs of states of A, and a set of states
R. R keeps track of all possible states A may nondeterministically be. S contains
all possible pairs whose �rst component is any state of A, and the second is a state
reached from the �rst while reading the subword beginning after the last unmatched
push. Push transitions store both S and R on stack, so that pop transitions may use
them to determine the correct push transition that would have resulted in a successful
run of A.

Most importantly, VPLs with the same alphabet partition are closed under all
Boolean operations, enabling model checking by means of VPAs.

Statement 2 (Theorem 1 and Corollary 1 of [AM04]). VPLs on a given alphabet par-
tition are closed under union, complementation and intersection.

An automaton accepting the union of two VPLs can be built by simply joining the
state sets, stack alphabets, initial and �nal sets of the VPAs accepting them. Closure
by complementation is a direct consequence of Statement 1, because deterministic
VPAs can be complemented by complementing their set of �nal states. It is possible
to achieve intersection by means of the product construction of both the sets of states
and the stack alphabet, because VPA are real-time, and they are synchronized when
reading the same word under the same alphabet partition.

Moreover, VPLs have other closure properties that are typical of regular languages:

Statement 3 (Theorem 1 of [AM04]). VPLs on a given alphabet partition are closed by
concatenation and Kleene star.

2.2 Visibly Pushdown ω-Automata
VPLs have been extended to in�nite words by de�ning a class of Büchi automata
recognizing them.

De�nition 3 (Büchi Visibly Pushdown ω-Automaton (ωVPBA)). A nondeterministic
ωVPBA over 〈Σc,Σr,Σi〉 is a tuple A = 〈Q, I,Γ, δ, F 〉, whose components are the
same as those in De�nition 1.

7

The semantics of the automaton is de�ned in the same way as for �nite-word
VPAs, except for the fact that computations are in�nite. Given a run of the automaton
ρ, Inf(ρ) is the set of states that occur in�nitely often in ρ. A run ρ of an ωVPBA is
accepting i� at least one �nal state occurs in it in�nitely often, i.e. Inf(ρ) ∩ F 6= ∅.

A class of VPA for in�nite words can also be de�ned with Muller acceptance con-
ditions:

De�nition 4 (Muller Visibly Pushdown ω-Automaton (ωVPMA)). A nondeterminis-
tic ωVPMA over 〈Σc,Σr,Σi〉 is a tuple A = 〈Q, I,Γ, δ, T 〉, whose components are
the same as those in De�nition 1, except for T ⊆P(Q), which is called the table of
the automaton.

The semantics of ωVPMA is also de�ned in the same way as for VPAs, except for
the acceptance condition. A computation ρ of an ωVPMA is accepting i� Inf(ρ) ∈
T . For any ωVPBA or ωVPMA A, a string x ∈ Σω is accepted by A i� one of the
computations of A on it is accepting. The language accepted by the automaton is

L(A) = {w ∈ Σω | A accepts w}.

It is possible to prove that ωVPBAs and ωVPMAs accept the same class of ω-
languages by extending the classical constructions for their ω-regular counterparts.
Di�erently from what happens for VPAs andω-regular Muller automata, bothωVPBA
and ωVPMA cannot be determinized. ωVPLs retain, however, all the closure proper-
ties of VPLs, including being a Boolean algebra:

Statement 4 (Theorems 6 and 8 of [AM04]). ωVPLs on a given alphabet partition are
closed under union, complementation, intersection, concatenation and Kleene star.

2.3 MSO-Logical Characterization of VPLs
The Monadic Second Order Logic characterization of VPLs retraces the classical one
for RLs given by [Bü60, Elg61, Tra61]. Given an alphabet Σ and its partition 〈Σc,Σr,
Σi〉, a wordw is seen as a structure on the setU = {1, . . . , |w|}, with a set of monadic
predicates a(·) ⊆ U such that, for any a ∈ Σ and i ∈ U , a(i) holds i� the character in
position i in w is an a. In order to reason about word positions, a successor relation
succ ∈ U × U is given, so that for any i, j ∈ U we have succ(i, j) i� j = i + 1.
The element that distinguishes the MSO for VPL from the MSO for RL is the binary
matching relation µ ⊆ (U ∪{−∞})× (U ∪{+∞}): for any i, j ∈ U , we have µ(i, j)
i� the symbol in i is a call, and the one in j is its matching return, i.e. the return that
induces the automaton to pop the stack symbol pushed when reading i. An exception
to this de�nition is constituted by pending calls and returns: a position i ∈ U is a
pending call i� µ(i,+∞), and it is a pending return i� µ(−∞, i). Note that, except for
pending calls and returns, theµ relation is one-to-one, and there is no need to quantify
it, because it is immediately determined by the word structure. Moreover, a countable
in�nite set V1 of �rst-order variables is given, typeset as lowercase, boldface letters
at the end of the alphabet, such as x,y, . . . , and interpreted over the single positions
in U . Also, the logic uses a set V2 of second-order (monadic) variables denoted with
uppercase, boldface letters at the end of the alphabet, such asX,Y, . . . , that represent
sets of word positions (subsets of U). The syntax of the MSO logic is the following:

ϕ := a(x) | x ∈ X | succ(x,y) | µ(x,y) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

8

where a ∈ Σ, x,y ∈ V1 and X ∈ V2. Given a word w ∈ Σ+, its semantics is
interpreted with respect to the valuations v1 : V1 → U and v2 : V2 →P(U):

• (w, v1, v2) |= a(x) i� w = w1aw2 and v1(x) = |w1|+ 1;

• (w, v1, v2) |= x ∈ X i� v1(x) ∈ v2(X);

• (w, v1, v2) |= succ(x,y) i� v1(y) = v1(x) + 1;

• (w, v1, v2) |= µ(x,y) i� µ(v1(x), v1(y)), where µ is the matching relation
described earlier, which is given;

• (w, v1, v2) |= ¬ϕ i� (w, v1, v2) 6|= ϕ;

• (w, v1, v2) |= ϕ ∨ ψ i� (w, v1, v2) |= ϕ or (w, v1, v2) |= ψ;

• (w, v1, v2) |= ∃x.ϕ i� there exists a valuation v′1 such that v′1(y) = v1(y) for
any y ∈ V1 \ {x} and (w, v′1, v2) |= ϕ;

• (w, v1, v2) |= ∃X.ϕ i� there exists a valuation v′2 such that v′2(Y) = v2(Y) for
any Y ∈ V2 \ {X} and (w, v1, v

′
2) |= ϕ.

To facilitate the comparison of word positions in formulas, the operator ≤, whose
meaning is the transitive closure of the succ relation, can be used.

A sentence is a well-formed formula with no free variables. Given a sentence ϕ,
the language it denoted is de�ned as

L(ϕ) = {w ∈ Σ+ | w, v1, v2 |= ϕ},

where v1 and v2 are the valuations described earlier.
For example, given an alphabet Σ = {a,b, c,d, e} partitioned as 〈{a,b}, {c},

{d, e}〉, formula
∀x :

(
a(x) =⇒ ∃y.(µ(x,y) ∧ e(y))

)
where ∀x : ϕ is a shortcut for ¬∃x.¬ϕ, denotes the language of words where all as
are matched with a return symbol e. So, the word abece satis�es this formula because
a is matched with the last e, while the string abec does not satisfy it, because a is a
pending call (in fact, e is the matching return of call symbol b).

The MSO logic described above characterizes VPLs:

Statement 5 (Theorem 4 of [AM04]). A language L over a partitioned alphabet Σ is
a VPL i� there exists a sentence ϕ in the MSO logic described in this section such that
L = L(ϕ).

The proof of this theorem has been achieved by giving an e�ective way of trans-
lating a VPA into a MSO sentence, and vice versa.

2.4 Nested Words Temporal Logic
Nested Words Temporal Logic (NWTL) is a temporal logic formalism similar to LTL.
However, the algebraic structure on which it expresses properties is not purely linear,
but contains a matching relation between positions named calls and positions named
returns. In order to present NWTL, we �rst need to introduce nested words, and the
matching relation that characterizes them.

9

1 2 3

a

4

b

5

c

6

d

7

e

8 9

f

10

Figure 2.1: Representation of a nested word.

De�nition 5 (Matching Relation). Given a set U ⊆ N, a matching on U is a triple
〈µ, call, ret〉 where µ ⊆ U × U is a binary matching relation, and call, ret ⊆ U
are two unary relations such that

• if µ(i, j) then call(i), ret(j) and i < j;

• if µ(i, j) and µ(i, j′) both hold, then j = j′, and if µ(j, j) and µ(i′, j) both hold,
then i = i′, i.e. the matching relation is one-to-one;

• if i ≤ j and call(i) and ret(j), then there exists a position i ≤ k ≤ j such
that either µ(i, k) or µ(k, j), i.e. each call position is always matched with the
closest unmatched ret.

De�nition 6 (Nested Word). Given a �nite alphabet Σ, a nested word is a tuple w =
〈U, (Pa)a∈Σ, <, µ, call, ret〉, where

• U = {1, . . . , n} if w has a �nite length n, and U = N if w is in�nite;

• Pa, is the set of positions labeled with a ∈ Σ;

• < is the usual ordering on N;

• 〈µ, call, ret〉 form a matching on U .

Word positions i ∈ U such that call(i) are named call positions, those such that
ret(i) are return positions, and those that are neither a call nor a return are internal
positions. If µ(i, j), we say that i is the matching call of j, and j is the matching
return of i. If a call has no matching return, it is a pending call, and if a return has no
matching call, it is a pending return.

An example of nested word is shown in Figure 2.1. The set call is {3, 5, 8, 9},
the set ret is {2, 6, 7, 10} and all other positions are internal. The matching relation
is µ = {(3, 7), (5, 6), (9, 10)}. Position 2 is a pending return, while position 8 is a
pending call.

The subdivision of positions in nested words strictly recalls the partitioned alpha-
bet of VPLs. Indeed, it can be proved [AM09] that regular languages of nested words
are equivalent to VPLs. Nested words have also been characterized by means of a
class of automata, which can be used for model checking NWTL [AAB+08]. This is,
however, out of the scope of this thesis.

NWTL contains all temporal operators from LTL, plus a few operators that ex-
press properties regarding the matching relation of nested words. It has the following
syntax:

ϕ := > | a | call | ret | ¬ϕ | ϕ ∨ ϕ | #ϕ | #µϕ | �ϕ | �µϕ | ϕ Uσ ϕ | ϕ Sσ ϕ

10

with a ∈ Σ. The semantics of propositional and LTL operators is the usual one. call
and ret hold in positions that are part of the respective sets. The #µ (resp. �µ)
operator imposes the truth of its argument in a position that is the matching return
(resp. call) of the current position. For example, in the word of Figure 2.1, #µe holds
in position 3, and �µa holds in 7. A call (resp. return) position must have a matching
return (resp. call) for #µϕ (resp. �µϕ) to hold, for any ϕ. For example, #µ> does not
hold in 8 because it is a pending call. The operators Uσ and Sσ are called summary
until and since, and they have the usual until and since semantics, except that they
consider summary paths instead of linear paths. Summary paths can either include
consecutive positions, or positions that are in the matching relation, skipping those
in between. For example, the summary path between 2 and 8 is made of positions 2,
3, 7 and 8, skipping all positions between 3 and 7, that are a matched pair. The path
between 2 and 6 instead all positions between them, because there are no matched
call/return pairs between them except 5 and 6, which are consecutive (note that 3
is a call, but its matched return if after 6, so the positions between them cannot be
skipped). Formula ¬b Uσ f holds in position 2 because of the summary path made
of positions 2, 3, 7, 8, 9, which skips all positions between 3 and 7, and in particular
position 4, which contains a b.

More formally, given a nested word w and a position i ∈ U we write (w, i) |= ϕ
to state that NWTL formula ϕ holds in position i of word w.

• (w, i) |= > is always true;

• (w, i) |= a, with a ∈ Σ, i� i ∈ Pa;

• (w, i) |= call i� call(i) holds;

• (w, i) |= ret i� ret(i) holds;

• (w, i) |= ¬ϕ i� ϕ does not hold in i;

• (w, i) |= ϕ ∨ ψ i� one or both of ϕ and ψ hold in i;

• (w, i) |= #ϕ i� (w, i+ 1) |= ϕ;

• (w, i) |= #µϕ i� there exists a position j ∈ U such that µ(i, j) and (w, j) |= ϕ;

• (w, i) |= �ϕ i� (w, i− 1) |= ϕ;

• (w, i) |= �µϕ i� there exists a position j ∈ U such that µ(j, i) and (w, j) |= ϕ;

• (w, i) |= ϕ Uσ ψ i� there exist a position j ≥ i such that (w, j) |= ψ and a
summary path i = i0 < i1 < · · · < in = j between them such that for any
0 ≤ k < n we have (w, ik) |= ϕ;

• (w, i) |= ϕ Sσ ψ i� there exist a position j ≤ i such that (w, j) |= ψ ans a
summary path j = i0 < i1 < · · · < in = i between them such that for any
0 < k ≤ n we have (w, ik) |= ϕ.

The notion of summary path is formalized as follows:

De�nition 7 (Summary Path). A summary path between two positions i, j ∈ U ,
with i < j, is a sequence of positions i = i0 < i1 < · · · < in = j such that for any
p < n

ip+1 =

{
h if µ(ip, h) and h ≤ j,
ip + 1 otherwise.

11

Other variants of summary paths have been proposed: summary-down paths only
follow call edges (from a call to an internal position), internal edges (between two
internal positions) and nesting edges (between a call and the matching return). Sym-
metrically, summary-up paths only follow return edges (from an internal position to
a return), internal and nesting edges. Until and since operators can be de�ned based
on these paths, without increasing the expressive power of NWTL.

Concerning expressiveness, the following de�nitive FO-completeness result has
been achieved:

Statement 6 (Theorem 4.1 of [AAB+08]). NWTL = FO over �nite and in�nite nested
words.

Moreover, a model checking procedure based on automata theory has been given
for NWTL, leading to the following:

Statement 7 (Theorem 5.1 of [AAB+08]). Given a formula ϕ of NWTL, a nondeter-
ministic Büchi nested word automaton accepting the models of ϕ can e�ectively be built
with 2O(|ϕ|) states.

A Büchi nested word automaton accepts regular languages of in�nite nested words.
It is shown in [AM09] that these automata are equivalent toωVPBA. Therefore, NWTL
enables model checking of VPLs.

Bibliographic Notes
The family of VPLs was �rst introduced by K. Mehlhorn in [Meh80], with the intent
of producing a family of automata that could decide their next move only depend-
ing on the next character to be read. They were later reintroduced in 2004 by R.
Alur and P. Madhusudan, who proved the most important closure properties of VPLs
and extended them to in�nite words in [AM04]. Such properties made VPLs ideal
for model checking the temporal logic CaRet they introduced in [AEM04]. More
properties of VPLs were studied in the following years: games with visibly push-
down winning conditions were investigated in [LMS05], in [AKMV05] a syntactic
congruence characterizing VPLs was de�ned, and the problem of minimizing VPAs
was studied. In [AM06] (conference version) and [AM09] (journal version), the al-
gebraic structure called nested word was presented, and regular languages of nested
words were proved to be equivalent to VPLs in linear words. An e�cient algorithm
for deciding word membership for VPL grammars was given in [LTNP07]. Decisive
results regarding temporal logic formalisms based on nested words were reported in
[AAB+08]: NWTL was introduced together with an extension of CaRet including
the within operator, and they were proved to be FO-complete. The closure of VPLs
with respect to the quotient operator was proved in [OS17], and to other language
operations in [OS18].

12

Chapter 3

Operator Precedence
Languages

The family of OPLs (Operator Precedence Languages) was originally introduced by R.
W. Floyd in 1963 [Flo63] with the purpose of supporting the development of e�cient
deterministic parsers for programming languages. The main idea characterizing them
is to assign di�erent precedence relations between terminal characters, similarly to
what happens with arithmetic expressions, in which certain operations must be ex-
ecuted before or after the others (e.g. multiplication always precedes addition, etc.).
Floyd proposed a shift-reduce bottom-up parsing algorithm that exploits these prece-
dence relations between terminals to identify unambiguously each right-hand side,
substituting it with the corresponding left-hand side without the necessity of back-
tracking due to the choice of a wrong rhs. The algorithm uses a stack to keep track
of the previously read terminals and of already reduced rhs. It decides the next move
to be performed by comparing the topmost terminal character on the stack with a
look-ahead of one character. The way the algorithm uses the stack allows to com-
bine independently parsed substrings to achieve the same result of parsing the whole
string, naturally enabling parallel parsing [BVCR+13, BCRM+15].

This is accomplished at the cost of constraining grammar rules to a form that
will be detailed later, and that restricts OPLs to be a subset of DCFLs (Determinis-
tic Context-Free Languages). This determined the loss of interest in this language
family due to the invention of the more general LR(k) parsers, addressing the whole
DCFL family, by D. Knuth [Knu65]. Despite such limitations, the OPL family is wide
enough to express the syntactic constructs found in the most common programming
languages. Floyd showed himself in [Flo63] that the syntax of the Algol 60 program-
ming language could be adapted to this language family by modifying its context-free
grammar. More recently, an OPL-based parser was produced for Prolog [DB96], while
the data description language JSON and the programming language Lua were shown
to be OPLs in [BCRM+15] by appropriately transforming their grammars.

OPLs will be presented presented from di�erent perspectives in this chapter. First,
in Section 3.1 they will be de�ned by means of the class of grammars that generate
them, introduced by Floyd in his seminal paper [Flo63]. The automata-theoretic and
MSO characterizations of the OPL family came only decades later, and will be pre-
sented in Sections 3.2 and 3.4, respectively. Moreover, in Section 3.3, we present the
generalization of OPLs to in�nite words. In Sections 3.1 and 3.3, the most important

13

S → G throw | S callH ret | ε
G→ S callC

C → F callC | F
F → F callH ret | ε
H → H handleT | F
T → T throw | T callH ret | K throw | ε
K → T callC

Figure 3.1: Production rules of grammar Gthrow, with axiom S. Strings generated by
this grammar represent a stack trace, with function calls (call) and returns (ret).
Functions may throw exceptions (throw), that unwind the stack until a handler
(handle) is encountered. The axiom, S, generates a sequence of calls either in-
terrupted by a throw, or closed by a matching ret. In the �rst case, a sequence
of interrupted calls is generated by G and C . Otherwise, F generates only match-
ing call/ret pairs. Inside the �rst level of such pairs, H generates sequences of other
matching call/ret pairs (throughF) or handlers (H), that are be followed by T , which
generates either matching call/ret pairs, or throw statements that are caught by this
handler, possibly interrupting other calls (K). Note that the only di�erence between
S and T is that the latter can generate sequences of throws that do not interrupt any
call.

closure properties proved for OPLs will be presented. These properties, some of which
do not hold for larger language families such as DCFLs and CFLs, are particularly im-
portant for the subject of this thesis, because they enable the de�nition of a sound
temporal logic based on OPLs and, most importantly, model checking of properties
expressed in such a formalism.

3.1 Operator Precedence Grammars
OPGs (Operator Precedence Grammars) are a family of generative grammars de�ned
by constraining the more general context-free grammars. They are a subset of oper-
ator grammars.

De�nition 8 (Operator Production Rule). A grammar production rule is in Operator
Form if its right-hand side contains no adjacent non-terminal symbols.

De�nition 9 (Operator Grammar). An Operator Grammar is a context-free genera-
tive grammar that contains only production rules in operator form.

Any context-free grammar may be transformed into Operator Grammar form
[Har78].

Figure 3.1 shows the production rules of an operator grammar. Operator grammar
form allows us to de�ne precedence relations between pairs of terminal characters.
These relations depend on the structure of right hand sides of production rules, and
contain information about the structure of the resulting abstract syntax tree. Thus,
automata and parsing algorithms for OPLs can infer from them which next move is

14

S

S

ε

call H

H

F

ε

handle T

T

T

K

T

ε

call C

F

ε

call C

F

ε

call C

F

ε

throw

throw

throw

ret

Figure 3.2: Abstract syntax tree of string call handle call call call throw throw
throw ret according to grammar Gthrow of Figure 3.1.

15

L(S) = {call, throw} R(S) = {ret, throw}
L(G) = {call, throw} R(G) = {call, ret}
L(C) = {call} R(C) = {call, ret}
L(F) = {call} R(F) = {ret}
L(H) = {call,handle} R(H) = {ret,handle, throw}
L(T) = {call, throw} R(T) = {ret, throw}
L(J) = {call, throw} R(J) = {call, ret}

Figure 3.3: Left and right terminal sets of grammar Gthrow of Figure 3.1.

the most appropriate. Let Σ be the set of terminal symbols. We say that two ter-
minals a, b ∈ Σ are equal in precedence if they appear in the rhs of a grammar rule
consecutively or separated by at most one non-terminal, and we write a .

= b. If two
terminals are equal in precedence, they appear at the same level of an abstract syntax
tree. If a appears at the immediate left of a subtree such that b is the leftmost leaf
of its fringe, or the leftmost terminal leaf after a single non-terminal leaf, we say a
yields precedence to b, and we write a l b. Finally, if b is at the immediate right of
a subtree that has a as either its rightmost leaf or its rightmost terminal leaf after a
non-terminal, we say that a takes precedence from b, and we write a m b. Figure 3.2
shows the abstract syntax tree of the grammar of Figure 3.1. It is immediate to note
that calll handle, because handle appears to the left of the subtree generated by
B, which follows call in the �rst production. Conversely, handle m ret, because
handle appears in a subtree to the immediate left of ret, with only a non-terminal
(I) to its right. Moreover, call .= ret, because they appear in the same rhs, separated
only by non-terminal B.

More formally, let V be a set of non-terminal characters.

De�nition 10 (Left/Right Terminal Sets). Let G be an operator grammar. The left
and right terminal sets of A ∈ V are

LG = {a ∈ Σ | A⇒∗G Baα}
RG = {a ∈ Σ | A⇒∗G αaB}

where α ∈ (Σ ∪ V)∗ and B ∈ V ∪ {ε}.

Figure 3.3 shows the left and right terminal sets of the example grammarGthrow.

De�nition 11 (Precedence Relations). Let G be an operator grammar, α, β ∈ (Σ ∪
V)∗ and a, b ∈ Σ. The precedence relations l (yields precedence), .= (equal in prece-
dence) and m (takes precedence) are de�ned as follows:

al b ⇐⇒ ∃A→ αaDβ with D ∈ V and b ∈ LG(D);
a
.
= b ⇐⇒ ∃A→ αaBbβ with B ∈ V ∪ {ε};

am b ⇐⇒ ∃A→ αDbβ with D ∈ V and a ∈ RG(D).

Note that the precedence relations enjoy none of the typical properties of order
relations, such as re�exivity, transitivity, etc. Given an operator grammar G, it is

16

call ret handle throw
call l .

= l m
ret m m m m

handle l m m l
throw m m m m

Figure 3.4: OPM Mthrow of grammar Gthrow of Figure 3.1.

possible to obtain from it the precedence relations that hold for each pair of terminals,
de�ning its Operator Precedence Matrix MG.

De�nition 12 (Operator Precedence Matrix (OPM)). Given an Operator Grammar
G, its Operator Precedence Matrix MG is a partial function MG : (Σ ∪ {#})2 →
P({l, .=,m}) such that, for each pair (a, b) ∈ Σ × Σ, MG

ab is the set of precedence
relations that hold between a and b according to G. For any a ∈ Σ, MG

a# = {l} and
MG

#a = {m}, and MG
= { .=}.

We say MG is con�ict-free i� for any a, b ∈ Σ we have |MG
ab| ≤ 1; and that MG

is complete i� the function is total. Two con�ict-free OPMs M and M ′ are compatible
i� their union is con�ict-free, i.e. i� for any a, b ∈ Σ, eitherMab = M ′ab, orMab = ∅
or M ′ab = ∅.

The special symbol # is used as a delimiter for strings of OPLs, and its signi�-
cance will be clearer in the following sections. An operator precedence alphabet is a
pair (Σ,M) where Σ is a terminal alphabet and M is a con�ict-free OPM de�ned
on it. Figure 3.4 shows the OPM of grammar Gthrow: ({call, ret,handle, throw},
Mthrow) is an operator precedence alphabet.

The precedence relations strictly depend on the shape of the abstract syntax tree
associated to a string by an operator grammar. An OPM summarizes the rules that
generate such a structure. Therefore, the presence of a con�ict in the OPM results in
ambiguity in the interpretation of certain strings with respect to the structure given to
them by the grammar. Conversely, a con�ict-free OPM can assign a unique structure
to each string. This fact is at the base of OPL parsing techniques, and of many of their
interesting closure properties.

De�nition 13 (Operator Precedence Grammar (OPG)). An Operator Grammar G is
an Operator Precedence or Floyd Grammar i� the associated OPMMG is con�ict-free.

De�nition 14 (Operator Precedence Language (OPL)). An Operator Precedence Lan-
guage is a language generated by an OPG.

Matrix Mthrow of Figure 3.4 is con�ict-free: this means grammar Gthrow of Fig-
ure 3.1 is and OPG, and the language it generates is an OPL.

The most important normal form for OPGs is Fischer Normal Form:

De�nition 15 (Fischer Normal Form (FNF) [Fis69]). An OPG is in FNF i� its produc-
tion rules are invertible (i.e. no rhs is associated to more than one non-terminal), and
it has no renaming rules (i.e. of the form V → V ′) and no empty rules (i.e. V → ε)
except those having the axiom as their left hand side.

17

For any OPG, an equivalent grammar in FNF can be built algorithmically [Har78].
Grammar Gthrow of Figure 3.1 can be transformed in FNF by eliminating copy rules
and ε-productions, and introducing new non-terminals to factor out common rhs.
The fact that grammar rules in FNF are invertible is crucial for the possibility of e�-
cient parsing of OPLs. Although OPL parsing is not the main topic of this thesis, its
predisposition to parallelism is remarkable, and it may result to be interesting also in
the perspective of parallel model checking. Hence, we report Algorithm 1, which is
a parsing algorithm for OPL. It builds bottom-up the syntax tree of the input string
by recognizing right-hand sides of production rules as soon as they have been read
completely, with the help of a look-ahead of one character when performing reduc-
tions. Its moves are completely deterministic, because they are driven by precedence
relations, and because the rules of the input grammar are in FNF, and hence when a
rhs has been recognized, the non-terminal at its lhs is determined uniquely.

Input: (α, head , end , S).
α ∈ Σ ∪ V is the input string, containing both terminal and non-trminal
symbols; head and end are integers marking the beginning and the end of
the substring of α to be parsed; S is the initial content of the stack. The stack
contains pairs (Z, p) ∈ (Σ ∪ V ∪ {#})× {l, .=,m,⊥}, where p = ⊥ if
Z ∈ V , and it encodes the precedence relation between Z and the previous
symbol otherwise. For sequential parsing, initially α = β# for some β,
head = 1, end = |α|, S = (#,⊥).
do

X := α(head);
Y := the topmost terminal in S ;
if Y lX then push (X,l); head := head + 1;
else if Y .

= X then push (X,
.
=); head := head + 1;

else if X ∈ V then push (X,⊥); head := head + 1;
else if Y mX then

if S does not contain any l then push (X,m); head := head + 1;
else

Let S = (Xn, pn) . . . (Xi,l)(Xi−1, pi−1) . . . (X0, p0) where
pj 6= l with i < j ≤ n;
if Xi−1 ∈ V (so pi−1 = ⊥) and ∃A→ Xi−1Xi . . . Xn then

in S replace (Xn, pn) . . . (Xi,l)(Xi−1, pi−1) with (A,⊥)
else if Xi−1 ∈ Σ ∪ {#} and ∃A→ Xi . . . Xn then

in S replace (Xn, pn) . . . (Xi,l) with (A,⊥)
else parsing error;

end
end

while head < end or (head = end and S 6= (B,⊥)(a,⊥) with B ∈ V and
a ∈ Σ ∪ {#});
Output: S

Algorithm 1: Operator Precedence Parsing.

The reason why the stack contents are taken as part of the input, and the input
string may contain non-terminals, is the use of this algorithm for parallel parsing.
Indeed, it is possible to split the input string, and then execute this algorithm on all
parts in parallel. Since not all reductions can be performed if only part of the string is
parsed, all instances terminate with a non-empty stack, whose contents can be split

18

#l calll handlel calll calll callm throw m throw m throw m retm#

Figure 3.5: The string whose syntax tree is depicted in Figure 3.2, with precedence
relations shown and chains highlighted with arrows joining their contexts.

in a part SL that does not contain any l symbol, and a part SR that does not contain
any m. In order to join the partially parsed substrings, Algorithm 1 can be launched
with SR as the initial stack and the sequence of terminal and non-terminal symbols
in SL as the input string. This process can be repeated until all chunks of the string
have been parsed, and the resulting stack content cannot be split.

As we previously remarked, given an OP alphabet, its OPM gives a sort of “hidden”
structure to strings on that alphabet. This intuition of structure is formalized by the
notion of chain.

De�nition 16 (Chain). Let (Σ,M) be an OP alphabet.
A simple chain is a string a0a1 . . . anan+1 such that a0, an+1 ∈ Σ∪ {#}, for any

1 ≤ i ≤ n we have ai ∈ Σ, Ma0an+1 6= ∅, and the precedence relations a0 l a1
.
=

· · · .= an m an+1 hold. We write a0 [a1 . . . an]an+1 to mean that such a string is a
simple chain.

A composed chain is a string a0x0a1x1 . . . anxnan+1 such that a0 [a1 . . . an]an+1 is
a simple chain, and for any 0 ≤ i ≤ nwe have xi ∈ Σ∗ and either xi = ε or ai [xi]ai+1

is a simple or composed chain. We write a0 [x0a1x1 . . . anxn]an+1 , meaning that such
a string is a composed chain.

Given a chain a[x]b, a, b ∈ Σ ∪ {#} are called the context of the chain, while
x ∈ Σ+ is called its body.

Figure 3.5 shows an example word, with the chains it contains according to OPM
Mthrow. Notice how bodies of chains are enclosed into the l and m relations. Mul-
tiple chains can have the same character as the left or right parts of their contexts.
There is a strict relationship between the chains in a string and the production rules
of the grammar that generate it, especially if it is in FNF. For example, the body of the
chain call[handle . . . throw]ret clearly corresponds to the rhshandle I of grammar
Gthrow, and therefore to non-terminalH . Moreover, I corresponds to the body of the
chain handle[call . . . throw]ret, generated by S throw, and so on. The .

= relation is
strictly connected with the length of right hand sides of production rules. Indeed, if
we have a0

.
= a1

.
= · · · .= an−1

.
= an then, according to De�nition 11, a grammar

generating the same string must contain a rule with rhsA0a0A1 . . . an−1An−1anAn,
where Ais, 0 ≤ i ≤ n, are possibly missing non-terminals. For this reason, if an
OPM contains a “cycle” of terminals in the .

= relation, no OPG compatible with it can
be de�ned, unless we allow regular expressions in rhs [CP17]. On the other hand,
.
=-cyclic OPMs pose no problem with the automata presented in Section 3.2.

Given an OP alphabet (Σ,M) and a string x ∈ Σ∗, due to the fact that M is
con�ict-free there is at most one way to represent #x# as a composed chain. More
formally:

De�nition 17 (Compatible string). A string x ∈ Σ∗ over (Σ,M) is compatible with
M i�:

19

• for each pair of consecutive terminals a, b in x, we have Mab 6= ∅;

• for each substring x′ = a0x0a1x1 . . . anxnan+1 of #x#, if a0 [a1 . . . an]an+1 is
a simple chain and for any 0 ≤ i ≤ n either xi = ε or ai [xi]ai+1 is a chain, then
Ma0an+1

6= ∅.

If M is complete, then every string in Σ∗ is compatible with it.
OPLs enjoy the most signi�cant closure properties that apply to regular languages,

but not to general context-free languages. In particular, the fact that they form a
Boolean algebra enables model checking based on this language set, which is the main
result of this thesis.

Statement 8 (Corollary 5.7, Theorems 5.8 and 5.9 of [CRMM78]). The class of OPLs
is closed under union, complementation and intersection.

The above results were proved by de�ning an algebraic lattice of OPGs and the
respective OPLs. From their proofs follows the fact that, given an OP alphabet (Σ,M),
the universal language with respect to Boolean closure properties is Σ∗ only if M is
complete.

Moreover, OPLs enjoy other important closure properties:

Statement 9 (Statement 12 of [CRM12]). The class of OPLs is closed with respect to
string reversal.

Statement 10 (Statement 13 of [CRM12]). The class of OPLs is closed with respect to
pre�x and su�x operations.

Statement 11 (Theorem 15 of [CRM12]). OPLs with compatible OPMs are closed under
concatenation.

Statement 12 (Theorem 16 of [CRM12]). OPLs with OPMs that contain no .
=-cycles

are closed under Kleene star.

Finally, another important property of OPLs is that they strictly include the class
of VPLs, and consequently also Parenthesis Languages.

Statement 13 (Theorem 5 of [CRM12]). For any visibly pushdown automaton A, an
OPG G such that L(G) = L(A) can be e�ectively constructed.

The resulting grammar is built by pairing each call symbol with a return sym-
bol that can be matched with it according to the transitions of the VPA. Each ad-
missible pair is used as the right hand side of a grammar rule, optionally insert-
ing a non-terminal symbol between them, generating other substrings with balanced
call/return pairs. Rules containing only a call or a return symbol, with possibly other
non-terminal symbols, are included if the VPA accepts strings with pending calls or
returns. The so obtained OPG is characterized by the OPM of Figure 3.6a, which
assigns a precedence relation to each pair of terminal symbols depending on which
partition of the VPL alphabet they belong to. Call and return symbols are always equal
in precedence. Between them, other matched calls and returns can appear: indeed,
calls yield precedence to other calls. Conversely, internal symbols take precedence
from any other symbol: this way, they form a linear descending branch in the syntax
tree, similar to those produced by regular grammars. Finally, returns also take prece-
dence from any other symbol, because they close the right hand sides of the grammar
rules. In Section 3.2, we present a class of automata that recognize OPLs. The reader

20

Σc Σr Σi
Σc l .

= l
Σr m m m
Σi m m m

(a)

b c d e f
b l .

= m
c m
d m
e l .

=
f

.
=

.
= l

(b)

Figure 3.6: Figure (a) is the OPM of an OPG obtained by translating a VPA, while (b)
is the OPM of language L123.

may compare the moves induced by this OPM in one of such automata with those of
VPA, �nding out that they are strictly related. For example, the fact that internal sym-
bols take precedence form other symbol makes the automaton pop the corresponding
symbol from the stack right after it has been pushed, actually determining a behavior
similar to that of FSMs.

It is also possible to prove that this containment relation between VPLs and OPLs
is strict.

Statement 14 (Theorem 6 of [CRM12]). The VPL family is strictly included in the OPL
family.

This can easily be proved by noticing that the language L123 = L1 ∪ L2 ∪ L3,
which is the union of the three languages

L1 = {bncn | n ≥ 1}, L2 = {fndn | n ≥ 1}, L3 = {en(fb)n | n ≥ 1},

is OPL but not VPL. Indeed, strings that are part of L1 impose that b is a call and c
is a return; while strings in L2 impose that f is a call and d a return. Conversely, L3

requires b or f to be a return. This is not consistent with the alphabet partition of
VPLs, whose sets must be disjoint. Instead, L123 can be proved to be an OPL, with the
OPM in Figure 3.6b.

3.2 Operator Precedence Automata
Operator Precedence Automata (OPA) are an automata-theoretic formal model that
completely characterizes OPLs. They are left-to-right automata based on a pushdown
store, but with a prede�ned stack alphabet.

De�nition 18 (Operator Precedence Automaton (OPA)). An OPA is a tupleA = 〈Σ,
M,Q, I, F, δ〉, where:

• (Σ,M) is an operator-precedence alphabet (i.e. Σ is a set of terminals and M
is an OPM on Σ);

• Q is a set of states (disjoint from Σ);

• I ⊆ Q is the set of initial states;

• F ⊆ Q is the set of �nal states;

21

• δ ⊆ Q × (Σ ∪ Q) × Q is the transition relation, and it is the union of three
disjoint relations

δshift ⊆ Q× Σ×Q, δpush ⊆ Q× Σ×Q, δpop ⊆ Q×Q×Q.

An OPA is deterministic i� I is a singleton and the three components of δ are
(partial) functions:

δshift : Q× Σ→ Q, δpush ⊆ Q× Σ→ Q, δpop ⊆ Q×Q→ Q.

Despite its importance for the semantics of an OPA, the stack alphabet is not in-
cluded in the above de�nition, because it is derived from Σ andQ. Let Γ = Σ×Q: the
stack alphabet is Γ′ = Γ∪{⊥}, where⊥ is the initial symbol. We denote elements of
Q as p, pi, q, qi, . . . and elements of Γ as [a, q], with a ∈ Σ and q ∈ Q. We also de�ne
the following notations:

• symbol([a, q]) = a and symbol(⊥) = #;

• state([a, q]) = q;

• given a stack containing Π = (πn . . . π1⊥) with πi ∈ Γ for 1 ≤ i ≤ n and
n ∈ N,

symbol(Π) =

{
symbol(πn) if n ≥ 1,
if n = 0.

A con�guration of an OPA is a tuple 〈w, q,Π〉withw ∈ Σ∗#, q ∈ Q and Π ∈ Γ∗⊥.
A run or computation of the automaton is a sequence of moves, or transitions between
di�erent con�gurations c1 7→ c2, of the three following kinds:

• push move: if symbol(Π)l a then 〈ax, p,Π〉 7→ 〈x, q, [a, p]Π〉, with (p, a, q) ∈
δpush ;

• shift move: if a .
= b then 〈bx, q, [a, p]Π〉 7→ 〈x, r, [b, p]Π〉, with (q, b, r) ∈ δshift ;

• pop move: if am b then 〈bx, q, [a, p]Π〉 7→ 〈bx, r,Π〉, with (q, p, r) ∈ δpop .

Shift and pop moves can never occur if the stack only contains the initial symbol ⊥.
Only push and shift rules consume input characters; push moves insert a new symbol
on top of the stack, while shift moves only update the topmost symbol. Pop moves
remove the topmost stack symbol, updating the current state accordingly; they use
the input symbol as a sort of a look-ahead, leaving it to be read by the next push or
shift move. Notice the close analogy between grammar rules and stack moves that
is determined by precedence relations: the automaton performs a push move if it
encounters a character that yields precedence to another one, which means a new rhs
starts there, and a new symbol is pushed on stack to keep track of it. A shift move
occurs when two consecutive terminals that are equal in precedence are found: since
they must be part of the same rhs, the topmost stack symbol is updated. A pop move
occurs when the terminal contained in the topmost stack symbol takes precedence
from the current input character: this means the computation reached the end of
the subtree containing the rhs related to the topmost stack symbol. A pop move is
therefore analogous to a non-terminal reduction.

The OPA accepts the language

L(A) = {x ∈ Σ∗ | 〈x#, qI ,⊥〉 7→∗ 〈#, qF ,⊥〉,with qI ∈ I and qF ∈ F}.

22

q0# #

q1

q2

q3

q4

q5call

q5

call

call

ret

handle

q0

q1

q3

q4

call

q1

call

throw
q3

call

q0

q4

call

q3

throw

Figure 3.7: OPA based on OPM Mthrow of Figure 3.4. The initial state is q0. When
the automaton reads a call from this state, it pushes it on stack, and starts two non-
deterministic computations: one of them goes in state q1, and the other one in state
q4. The computation in state q1 is accepting (i.e. ends in q0 with an empty stack)
only if the next outermost call has a matching ret, rejecting if it ends with an un-
handled throw. Inside the outermost call/ret pair can appear other such pairs (q1),
or handle statements (q3), which can be followed by other handles, throws (q3),
matched call/rets (q1), or calls interrupted by a throw (q4). The computation which
goes on with state q4 only accepts calls that are interrupted by a throw, possibly in-
terleaved with matched call/rets (q1).

23

st
ep

in
pu

t
st

at
e

st
ac

k
1

c
a
ll
h
a
n
d
le

c
a
ll
c
a
ll
c
a
ll
th

ro
w

th
ro

w
th

ro
w

re
t#

q 0
⊥

2
h
a
n
d
le

c
a
ll
c
a
ll
c
a
ll
th

ro
w

th
ro

w
th

ro
w

re
t#

q 1
[c
a
ll
,q

0
]⊥

3
c
a
ll
c
a
ll
c
a
ll
th

ro
w

th
ro

w
th

ro
w

re
t#

q 3
[h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

4
c
a
ll
c
a
ll
th

ro
w

th
ro

w
th

ro
w

re
t#

q 4
[c
a
ll
,q

3
][
h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

5
c
a
ll
th

ro
w

th
ro

w
th

ro
w

re
t#

q 4
[c
a
ll
,q

4
][
c
a
ll
,q

3
][
h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

6
th

ro
w

th
ro

w
th

ro
w

re
t#

q 4
[c
a
ll
,q

4
][
c
a
ll
,q

4
][
c
a
ll
,q

3
][
h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

7
th

ro
w

th
ro

w
th

ro
w

re
t#

q 4
[c
a
ll
,q

4
][
c
a
ll
,q

3
][
h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

8
th

ro
w

th
ro

w
th

ro
w

re
t#

q 4
[c
a
ll
,q

3
][
h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

9
th

ro
w

th
ro

w
th

ro
w

re
t#

q 3
[h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

10
th

ro
w

th
ro

w
re

t#
q 3

[t
h
ro

w
,q

3
][
h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

11
th

ro
w

th
ro

w
re

t#
q 3

[h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

12
th

ro
w

re
t#

q 3
[t
h
ro

w
,q

3
][
h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

13
th

ro
w

re
t#

q 3
[h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

14
re

t#
q 3

[t
h
ro

w
,q

3
][
h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

15
re

t#
q 3

[h
a
n
d
le
,q

1
][
c
a
ll
,q

0
]⊥

16
re

t#
q 1

[c
a
ll
,q

0
]⊥

17
#

q 2
[r
e
t,
q 0

]⊥
18

#
q 0

⊥

Fi
gu

re
3.8

:A
cc

ep
tin

g
co

m
pu

ta
tio

n
of

th
e

O
PA

of
Fi

gu
re

3.7
.(

O
nl

y
th

e
ac

ce
pt

in
g

on
e

of
th

e
se

ve
ra

ln
on

-d
et

er
m

in
ist

ic
co

m
pu

ta
tio

ns
is

re
po

rte
d.

)

24

Figure 3.7 shows an example of an OPA based on OPMMthrow of Figure 3.4, while
Figure 3.8 shows the computation accepting string call handle call call call throw
throw throw ret. In Figure 3.7 and the following ones, initial states are represented
with an entering arrow, while �nal states have an exiting arrow and are circled. Push
transitions are represented with a solid arc, shift moves with a dashed arc, and pop
moves with a double arrow. The arcs of push and shift moves are labeled with the
terminal symbol they read, while those of pop moves are labeled with the state they
pop from stack.

The concept of chain, presented in De�nition 16, has a relevant relation with the
moves an OPA preforms while reading it. In general, every time the automaton reads
the �rst terminal of the body of a chain, it does so with a push move; the next terminals
of the same body are processed with shift moves, and a pop transition occurs at the
end of the body. This behavior is formalized by the notion of support of a chain.

De�nition 19 (Support of a chain). Le A be an OPA. A support for the simple chain
a0 [a1 . . . an]an+1 is any computation path of A of the form

q0
a1−→ q1

a2
99K . . .

an−1

99K qn−1
an
99K qn

q0
=⇒ qn+1.

A support for the composed chain a0 [x0a1x1 . . . anxn]an+1 is any computation
path of A of the form

q0
x0; q′0

a1−→ q1
x1; q′1

a2
99K . . .

an
99K qn

xn; q′n
q′0=⇒ qn+1,

where, for any 0 ≤ i ≤ n, if xi = ε then qi = q′i and, otherwise, qi
xi; q′i is a support

for the simple or composed chain ai [xi]
ai+1 .

We denote as q0
x; qn+1 the support for a chain whose body is x.

Indeed, given an automaton on an OP alphabet (Σ,M), if it performs a compu-
tation 〈xb, qi, [a, qj]Π〉 7→∗ 〈b, qk,Π〉, then qi

x; qk , and a[x]b is a chain on that
alphabet.

Given an OPAA, the shape of its transition relation δ and the sets I and Q deter-
mine which of the strings on the terminal alphabet Σ compatible with the OPM M
are accepted by the automaton, and thus part of L(A). In particular, the following
automaton can be introduced:

De�nition 20 (Operator Precedence Max-Automaton). The OP Max-Automaton over
a given an OP alphabet (Σ,M) is de�ned asA(Σ,M) = 〈Σ,M, {q}, {q}, {q}, δmax 〉,
where δmax (q, q) = q and δmax (q, c) = q for any c ∈ Σ.

The OP Max-Automaton over (Σ,M) accepts all strings on Σ compatible with
OPM M , i.e. it has a support for every chain in such strings. The language it accepts
is called the max-language or universal language of (Σ,M). The importance of this
last de�nition will be clearer when analyzing the logical aspects of OPLs.

In De�nition 18 we introduced both nondeterministic and deterministic OPA:
these two classes of automata are actually equivalent. Indeed, with respect to non-
determinism, OPLs behave more similarly to regular languages that to other context-
free subclasses.

Statement 15 (Theorem 2.4 of [LMPP15]). Given a nondeterministic OPA A with s
states, an equivalent deterministic OPA Ã can be built with 2O(s2) states.

25

The determinization of an OPA is similar to the classic one for Finite State Au-
tomata, because sets are used as the states of Ã, in order to keep track of nondeter-
ministic computations. However, the state of an OPA consists not only of the actual
current state, but also of the stack contents. Indeed, the main issue to be addressed
in the construction of Ã is to keep track of which push and pop transitions where
performed in each execution path. For this reason, the states of Ã are sets of pairs of
states of A. Each pair keeps track of a di�erent execution path; the �rst state in the
pair is the actual current state of the simulated path, while the second one keeps track
of the state of the automaton before the previous push transition in the simulated path.
Whenever a pop move occurs, the second component of each pair is retrieved from
the corresponding pair stored in the popped stack symbol. This way, the automaton
can exploit the stack in order to keep track of the whole sequence of nondeterministic
choices made during each computation.

The stack of the automaton is used in a similar way to keep track of previous com-
putations when deriving an OPA equivalent to a given OPG, yielding the following
result:

Statement 16 (Theorem 3.1 of [LMPP15]). Given an OPG G, an OPA A such that
L(G) = L(A) can be built with O(m2) states, wherem is the sum of the lengths of the
right-hand sides of the rules of G.

In order to sketch the construction of an OPA from a given OPG G, we will as-
sume without loss of generality that G has no empty or copy rules, except possibly
those whose left-hand side is the axiom. The automaton is built in such a way that
its successful computations correspond to reconstructing bottom-up the mirror of the
rightmost derivation of the input string according to G. The automaton performs a
push move every time it encounters the beginning of a new rhs of a rule in G, a shift
move every time it �nds a terminal symbol inside a rhs, and multiple nondetermistic
pop moves when it reaches the end of one or more rhs, one for each non-terminal the
is the lhs of the ending rhs. Non-determinism is used only to address the fact that G
may not be in FNF, and its rules may not be invertible, so when a rhs is recognized,
the corresponding lhs must be guessed nondeterministically. The states of the au-
tomaton are pairs whose left component is the rhs currently being reconstructed, and
the right one is the rhs that was being built before the last push move. Every time a
push move occurs, the current state is stored on stack, so its contents can be used to
reconstruct the whole chain of pending rhs. We will not go into deeper details regard-
ing this construction, referring the interested reader to [LMPP15]. Figure 3.9 shows a
successful computation of an automaton derived from a slightly modi�ed version of
grammar Gthrow, where copy and empty rules have been removed. Notice that this
run is isomorphic to the one of Figure 3.8.

It is also possible to build an OPG generating the language accepted by a given
OPA:

Statement 17 (Theorem 3.5 of [LMPP15]). Given an OPA A, and OPG G such that
L(G) = L(A) can be built.

For this construction, we will assume that the OPM of A does not contain .
=-

cycles, so that there is an upper bound to the length of the right-hand sides of the
resulting grammar G. Otherwise, we could resort to a generalized version of OPGs
that allows regular expressions in rhs [CP17]. Let A = 〈Σ,M,Q, I, F, δ〉: the equiv-
alent grammar G has tuples (a, q, p, b) ∈ Σ ×Q ×Q × Σ as non-terminals, written
as 〈ap, qb〉. Then,

26

st
ep

in
pu

t
st

at
e

st
ac

k
1

c
a
ll
h
a
n
c
a
ll
c
a
ll
c
a
ll
th

r
th

r
th

r
re

t#
〈ε
,ε
〉

⊥
2

h
a
n
c
a
ll
c
a
ll
c
a
ll
th

r
th

r
th

r
re

t#
〈c
a
ll
,ε
〉

[c
a
ll
,〈
ε,
ε〉
]⊥

3
c
a
ll
c
a
ll
c
a
ll
th

r
th

r
th

r
re

t#
〈h

a
n
,c
a
ll
〉

[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

4
c
a
ll
c
a
ll
th

r
th

r
th

r
re

t#
〈c
a
ll
,h

a
n
〉

[c
a
ll
,〈
h
a
n
,c
a
ll
〉]
[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

5
c
a
ll
th

r
th

r
th

r
re

t#
〈c
a
ll
,c
a
ll
〉

[c
a
ll
,〈
c
a
ll
,h

a
n
〉]
[c
a
ll
,〈
h
a
n
,c
a
ll
〉]
[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

6
th

r
th

r
th

r
re

t#
〈c
a
ll
,c
a
ll
〉

[c
a
ll
,〈
c
a
ll
,c
a
ll
〉]
[c
a
ll
,〈
c
a
ll
,h

a
n
〉]
[c
a
ll
,〈
h
a
n
,c
a
ll
〉]
[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

7
th

r
th

r
th

r
re

t#
〈C

,c
a
ll
〉

[c
a
ll
,〈
c
a
ll
,h

a
n
〉]
[c
a
ll
,〈
h
a
n
,c
a
ll
〉]
[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

8
th

r
th

r
th

r
re

t#
〈C

,c
a
ll
〉

[c
a
ll
,〈
h
a
n
,c
a
ll
〉]
[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

9
th

r
th

r
th

r
re

t#
〈K

,h
a
n
〉

[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

1
0

th
r
th

r
re

t#
〈K

th
r,
h
a
n
〉

[t
h
r,
〈K

,h
a
n
〉]
[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

1
1

th
r
th

r
re

t#
〈I
,h

a
n
〉

[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

1
2

th
r
re

t#
〈I

th
r,
h
a
n
〉

[t
h
r,
〈I
,h

a
n
〉]
[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

1
3

th
r
re

t#
〈I
,h

a
n
〉

[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

1
4

re
t#

〈I
th

r,
h
a
n
〉

[t
h
r,
〈I
,h

a
n
〉]
[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

1
5

re
t#

〈I
,h

a
n
〉

[h
a
n
,〈
c
a
ll
,ε
〉]
[c
a
ll
,〈
ε,
ε〉
]⊥

1
6

re
t#

〈H
,c
a
ll
〉

[c
a
ll
,〈
ε,
ε〉
]⊥

1
7

#
〈c
a
ll
H

re
t,
c
a
ll
〉

[r
e
t,
〈ε
,ε
〉]
⊥

1
8

#
〈S

,ε
〉

⊥

Fi
gu

re
3.9

:A
cc

ep
tin

g
co

m
pu

ta
tio

n
of

th
e

O
PA

de
riv

in
g

fro
m

gr
am

m
ar
G

t
h
r
o
w

.(
th

ro
w

an
d
h
a
n
d
le

ha
ve

be
en

ab
br

ev
ia

te
d.

)

27

• for every support q0
x; qn+1 of a simple chain a0 [x]an+1 , with x = a1a2 . . . an,

add to G the rule
〈a0q0, qn+1

an+1〉 → a1a2 . . . an

• for every support q0
x; qn+1 of a composed chain a0 [x]an+1 , with x = x0a1x1

a2 . . . anxn, add to G the rule

〈a0q0, qn+1
an+1〉 → Λ0a1Λ1a2 . . . anΛn

where Λi = 〈aiqi, q′iai+1〉 if xi 6= ε, and Λi = ε otherwise, for any 0 ≤ i ≤ n.

Introduce non-terminal S as the axiom of G. For every obtained non-terminal 〈a0q0,
qn+1

an+1〉, if a0 = an+1 = #, q0 is initial and qn+1 is �nal, then add the rule S →
〈a0q0, qn+1

an+1〉. If ε is accepted by A, add S → ε.
Thanks to Statements 16 and 17, we can claim that OPLs are the language class

associated to both OPGs and OPAs.

3.3 Operator Precedenceω-Languages andAutomata
Languages containing strings of in�nite length are useful to describe many processes,
such as executions of never-terminating computer programs, which are nowadays
widespread in many environments. Languages of in�nite words, ofω-languages, were
�rst introduced as an extension of regular languages by Büchi [Büc62]. In [LMPP15],
ωOPLs are introduced as the in�nite counterpart of OPLs, and di�erent families of
automata capable of recognizing them are de�ned.

As usual, the set of all in�nite strings on a set of terminals Σ is denoted as Σω .
In order to introduce ωOPLs, we must �rst rede�ne the notion of compatibility of a
string with an OPM. Given an OP alphabet (Σ,M), we say that a string w ∈ Σω is
compatible withM if and only if all (�nite) pre�xes ofw are compatible withM . Thus,
the ω-language made of all in�nite words w ∈ Σω compatible with M is denoted as
LωM ⊆ Σω . We can now characterize ωOPLs by means of two di�erent de�nitions of
ωOPAs.

De�nition 21 (Büchi Operator Precedenceω-Automaton (ωOPBA)). A nondetermin-
istic ωOPBA is a tuple A = 〈Σ,M,Q, I, F, δ〉, whose components are the same as
those de�ned for OPAs in De�nition 18.

Note that, in the in�nite case, OPMs are de�ned as functions with domain (Σ ∪
{#})×Σ, because the symbol # can only appear at the beginning of an in�nite string.
The transition semantics of ωOPBAs are de�ned in the same way as for OPAs, as well
as the notions of con�guration and computation, the latter being in�nite in this case.
In the following, with “∃ωi” we mean “there exist in�nitely many values of i”. Let
w ∈ Σω be an in�nite string and ρ be a computation of a ωOPBA on it. We de�ne
Inf(ρ) = {q ∈ Q | ∃ωi.〈wi, q,Πi〉 ∈ ρ} as the set of states appearing in�nitely often
in con�gurations in ρ. A computation ρ of an ωOPBA A is successful if there exists a
�nal state qf ∈ F such that qf ∈ Inf(ρ). String x ∈ Σω is accepted by A i� one of its
computations on x is successful: the ω-language recognized by A is the set

L(A) = {w ∈ Σω | A accepts w}.

28

Similarly, it is possible to de�ne an automaton for ωOPLs with Muller accepting
conditions.

De�nition 22 (Muller Operator Precedence ω-Automaton (ωOPMA)). A nondeter-
ministic ωOPMA is a tuple A = 〈Σ,M,Q, I, T , δ〉, where Σ, M , Q, I and δ are the
same as those de�ned for OPAs in De�nition 18, while T ⊆P(Q) is called the table
of the automaton.

A computation ρ of an ωOPMA is successful i� Inf(ρ) ∈ T , i.e. the set of states
recurring in�nitely often in ρ is part of the table T . The notions of string acceptance
and accepted language are de�ned accordingly, as for ωOPBAs.

ωOPBAs and ωOPMAs have the same expressive power, i.e. they can recognize
the same set of language, which coincides with ωOPLs. The deterministic versions
of these automaton classes are strictly less expressive than their nondeterministic
counterparts. This is true even with the Muller acceptance conditions, that were in-
troduced for regular ω-languages to obtain deterministic automata with the same ex-
pressive power of their nondeterministic versions. ω-automata with other accepting
conditions can be de�ned, but the sets of languages they can recognized are more
restricted. For this reason, we omit their de�nitions and refer the reader to [LMPP15]
for their complete presentation.

Moreover, we now extend the notion of generalized Büchi accepting conditions
[CVWY92] to ωOPBA, since they are needed in Section 4.6.2.

De�nition 23 (Generalized Büchi Operator Precedence ω-Automaton (ωOPGBA)).
A nondeterministic ωOPGBA is a tuple A = 〈Σ,M,Q, I,F , δ〉, where Σ, M , Q, I
and δ are the same as those de�ned for OPAs in De�nition 18, while F ∈P(Q) is a
collection of sets of Büchi-�nal states.

A computation ρ of an ωOPGBA A is accepting i� for any Fi ∈ F there exists a
state qFi

∈ Fi such that qFi
∈ Inf(ρ), i.e. if at least one state for each one of the �nal

sets in F appears in�nitely often in ρ. The notions of string acceptance and accepted
language are de�ned accordingly.

It is possible to transform an ωOPGBA into an ωOPBA with the classic “counting
construction” [BK08]. Otherwise, an equivalent ωOPMA AM can be built from any
ωOPGBA AG by including in the table T of AM all and only those subsets of Q that
satisfy the generalized Büchi acceptance condition of AG, i.e. those containing at
least one state from each one of the sets in F . Conversely, an ωOPBA is trivially an
ωOPGBA with a single acceptance set. Thus, ωOPGBAs can accept the same class of
languages as ωOPBAs and ωOPMAs.

Many of the properties stated in Section 3.1 can be extended to the in�nite coun-
terpart of OPLs, the most important one being the fact they form a Boolean algebra:

Statement 18 (Theorems 7.5, 7.6 and 7.7 of [LMPP15]). The class of ωOPLs is closed
under union, complementation and intersection.

Moreover,

Statement 19 (Theorem 7.8 of [LMPP15]). The language obtained by concatenating a
�nite OPL and an ωOPL remains an ωOPL.

Finally, the inclusion of VPLs in OPLs holds for the in�nite counterparts as well:

Statement 20 (Theorem 6.1 of [LMPP15]). The inclusion relation statingL(ωBVPA) ⊆
L(ωOPBA) holds, i.e. ωVPL ⊆ ωOPL.

29

Properties on ωOPLs have been proved by resorting to their automata-theoretic
characterizations, di�erently from those of �nite OPLs, which rely on OPG construc-
tions.

3.4 MSO-Logical Characterization of OPLs
A Monadic Second Order Logic has been formulated for OPLs as well. Like the MSO
logic for VPLs, it is based on the traditional one for RLs. We will therefore only detail
the di�erences with the one presented in Section 2.3. Indeed, the latter is charac-
terized by the matching relation µ. The MSO for OPLs substitutes it with the chain
relation Mχ. The main di�erence between the two is that µ is one-to-one, while Mχ

is not. Moreover, µ is given by the VPL alphabet partition, which su�ces to de�ne the
structure of a word because of the real-time nature of VPA. In OPLs, the word struc-
ture is given by an OPM, depending on the characters that surround a given substring,
and not by characters of the substring itself, as for VPLs. With respect to the abstract
syntax tree of a string, while the µ relation holds between the leftmost and rightmost
leaves of a subtree, the Mχ relation holds between the two terminals immediately to
the left and to the right of such a subtree, either at the same level (.=), or at a higher
level (l and m). Indeed, the Mχ relation holds between the two characters determin-
ing the context of the subtree whose frontier is delimited by them. As suggested by
its name, the Mχ relation is based on the concept of chain presented in De�nition 16.
More formally, given an OP alphabet (Σ,M), Mχ(x,y) holds in a string #w# i�
#w# = w1aw2bw3, |w1| = x, |w1aw2| = y, and a[w2]b is a simple or composed
chain. The word w is surrounded by two # characters in positions 0 and |w|+ 1 that,
as usual, yield precedence to every other character, which in turn takes precedence
from #. This way, the whole word w is the body of the chain with the two # as its
context, andMχ(0, |w|+1). Again, note that the two positions in theMχ relation are
not part of the body of the chain, but they are its context. For this reason, one of them
may be part of the context of multiple chains, which leads to the fact that Mχ is not
one-to-one. Notice the resemblance of this relation with the behavior of OPAs and
of the OPL parsing algorithm: the structure is inferred by a lookback and lookahead
character, which are the context of the chain.

For example, with reference to the word of Figure 3.5, the formula

∀x :
(
throw(x) =⇒ ∃y.(handle(y) ∧Mχ(y,x))

)
is true for strings where each throw is caught by a handle statement. A string
containing a throw statement that forms a chain with the left # delimiter would not
satisfy it.

This MSO logic completely characterizes OPLs:
Statement 21 (Theorem 4.2 of [LMPP15]). A language L over an OP alphabet (Σ,M)
is an OPL i� there exists an MSO sentence ϕ such that L = L(ϕ).

Again, the proof of this theorem consists in an e�ective procedure to translate a
given OPA into a MSO formula, and a given MSO formula into an equivalent OPA.

Bibliographic Notes
As we already stated, OPLs were �rst introduced in [Flo63], in which OPGs were
de�ned and an e�cient parsing algorithm presented. In 1969, the Fischer Normal

30

Form for OPGs was introduced in [Fis69]. Later, in 1978, OPLs were proved to form
a Boolean algebra in [CRMM78]. In Section 3.1 we presented the de�nition of OPGs
given in this paper. Then, the interest in OPLs faded away. It was resumed in 2010,
when other important closure properties of OPLs (namely closure with respect to
reversal, su�x/pre�x extraction, concatenation, and Kleene star) and the inclusion of
the VPL and BALAN language families were proved (cf. [CRM12]). At the same time,
a �rst attempt at characterizing OPLs by means of a family of pushdown automata
was made in [LMP11]. An MSO characterization of OPLs was given in [LMP13], and
the ω-version of OPLs was introduced in [PPLM13]. The subjects of the last three
mentioned papers are more extensively and exhaustively detailed in [LMPP15]. In
particular, OPAs are presented in Section 3.2 as de�ned in this paper. Moreover, this
paper investigates the relationships of various alternative de�nitions of ω-OPAs with
respect to their expressive power, and closure properties of ω-OPLs are proved in it.
Concurrently, the bene�ts introduced by OPLs in parallel parsing were investigated
theoretically in [BCRMP13] and practically in [BVCR+13, BCRM+14, BCRM+15]. A
weighted version of OPLs was later introduced in [DDMP17], and the more general
language family of Higher Order OPLs was introduced in [CP17]. For an extensive
and self-contained survey of OPLs and a comparison with other signi�cant subsets
of the CFL family, the reader may refer to [MP18] (the presentation of OPLs given in
this chapter follows this paper substantially).

31

Chapter 4

Operator Precedence
Temporal Logic

In this chapter we report on Operator Precedence Temporal Logic (OPTL), the main
result of this thesis. It is a novel temporal logic formalism based on operator prece-
dence words, an algebraic structure compatible with OPLs. Such a structure consists
of a linear sequence of word positions, similarly to other common temporal logics
such as LTL, associated to an OPM, that gives a more complex, tree-like structure
to such positions. It permits to express a much wider variety of context-free proper-
ties, not being limited to those recognized by �nite state automata and their in�nitary
counterparts. The context-free structure of operator precedence words is tackled by
means of the chain relation. It is based on the concept of chain (De�nition 16), which
characterizes the structure given by an OPM to compatible strings. In particular, two
word positions are in the chain relation if they are the context of a chain, i.e. if there
is a chain body between them. This way, pairs of word positions are put in relation:
this somewhat resembles the matching relation of nested words (De�nition 6), upon
which the logic NWTL is based (cf. Section 2.4). However, the matching relation of
nested words has a signi�cant limitation: it is one-to-one, restricting any position to
be in relation with only one di�erent position. This is enough for expressing many
context-free properties, and in particular those that only put in relation unique pairs
of objects: indeed, formalisms such as NWTL have been proposed in order to model
the behavior of the stack of a program, where to each procedure call is associated a
single return statement. However, there are cases in which it could be useful to con-
sider a single position in relation with many other positions. Sticking to the example
of procedures, many instances may be interrupted by an exception or an interrupt,
instead of their normal return statement. In this case, it would be useful to be able
to put the interrupting event in relation with the call statements of the procedure in-
stances it arrests. This cannot be easily modeled with nested words. Even resorting
to pending calls, which do not have a matched return, is limiting, because it does not
allow to model the eventual recovery after the interruption. In this context, the main
advantage of OPTL over NWTL arises: it naturally allows a single position to be in
relation with several others, because the chain relation is not one-to-one. Thus, an
exception or interrupt event can be put in relation with multiple call statements, as
shown in the examples of Chapter 3, or in those of the following sections.

The peculiarities of OPTL are presented in detail in this chapter. First, the syntax

32

l call l handle l call l call l call m throw m throw m throw m ret m
pa pb pc pd t1 t2 t3 pa

0 1 2 3 4 5 6 7 8 9 10

Figure 4.1: An example of execution trace, according to Mthrow.

of OPTL is presented in Section 4.1, with a few explanatory examples. Then, in Sec-
tion 4.2, we report its formal semantics. More structured examples and use cases of
properties that can be expressed in OPTL are available in Section 4.3. After present-
ing OPTL as a logic formalism, we proceed by investigating some of its properties. In
particular, in Section 4.4 we show that some operators of OPTL are not necessary, be-
cause they can be expressed by other operators, and we point out an adequate subset
thereof. The relationship between OPTL and NWTL, on which we already informally
commented, is thoroughly investigated in Section 4.5. Finally, a fundamental step for
the actual utilization of OPTL is made: an automata theoretic model checking proce-
dure is given in Section 4.6 for both �nite an in�nite words.

4.1 Syntax
The proposed Operator Precedence Temporal Logic (OPTL) is based on the following
syntax:

ϕ := a | ¬ϕ | (ϕ ∧ ϕ) | #ϕ | #χϕ | �ϕ | �χϕ
| (ϕ U ϕ) | (ϕ U� ϕ) | (ϕ S ϕ) | (ϕ S� ϕ)

| (ϕ U� ϕ) | (ϕ S� ϕ)

where a ∈ AP , andAP is the set of atomic propositions. Moreover, � is one or more
of the symbols l, .= and m, and � ∈ {↑, ↓}.

Before de�ning the formal semantics of the operators above, we will provide an
intuition of their meaning by means of a few examples based on the OP word of
Figure 4.1, interpreted with respect to the OPM of Figure 3.4. As usual, chains are
highlighted by arrows joining their context. The position labels typeset in bold are
the structural labels: the OPM gives a structure to the word based on them, ignoring
other labels, which treated as simple atomic propositions. In this case, atomic propo-
sitions are used to associate a speci�c procedure to each statement. First, procedure
pa is called (pos. 1), and it installs an exception handler in pos. 2. Then, three nested
procedures are called, and the innermost one (pd) throws a sequence of exceptions,
which are all caught by the handler. Finally, pa returns, uninstalling the handler.

The syntax of OPTL contains all the familiar operators from LTL: the # and �
symbols denote the next and back operators, while the undecoratedU andS operators
are LTL until and since. The #χ and �χ operators, which we call matching next and
matching back, express properties on string positions in the chain relation (which will
be formally de�ned later on) with the current one. For example, formula #χthrow is
true in positions containing a call to a procedure that is terminated by an exception
thrown by an inner procedure, such as 3 and 4 of Figure 4.1, because pos. 3 forms

33

a chain with pos. 6, in which throw holds, and so on. Formula �χhandle is true
in handled throw positions, such as 6, 7 and 8, because e.g. pos. 2 forms a chain
with 6, and handle holds in 2. The U� and S� operators, called operator precedence
summary until and since, are inspired to the homonymous Uσ and Sσ operators from
NWTL, and are path operators that can “jump” over chain bodies; the symbol � is a
placeholder for one or more precedence relations allowed in the path (e.g. Ul .= or
Uml and so on). Formula (call ∨ throw) Um ret is true in pos. 3 because there is a
path that jumps over the chain between 3 and 6, and goes on with positions 7, 8 and 9,
which are in the m relation: pos. 3 and from 6 to 8 satisfy call∨ throw, while pos. 9
satis�es ret. InU� andS�,� is a placeholder for ↑ or ↓; these peculiar path operators
are called hierarchical until and since, and they express properties about the multiple
positions in the chain relation with the current one: their associated paths can dive up
and down between such positions. For example, throw U↑ t3 and throw S↓ t1 hold
in pos. 2, because there is path 6-7-8 made of ending positions of chains starting in
2, such that throw holds until t3 holds (or throw has held since t1 held). Formulas
callU↓ pc and callS↑ pb hold in pos. 6, because of path 3-4, made of positions where
a chain ending in 6 starts, and whose labels satisfy the appropriate until and since
conditions.

Many relevant properties can be expressed in OPTL: formula 2[handle =⇒
#χret], where 2ψ is a shortcut for ¬(> U ¬ψ), holds if all exception handlers are
properly uninstalled by a return statement. Formula 2[throw =⇒ ¬(> S↑ pb)] is
false if procedure pb is terminated by an exception; and formula ¬(> U↑ (throw ∧
> U↓ call)) is true in handles catching only throw statements not interrupting any
procedure. These properties may not be expressible in NWTL, because its nesting re-
lation is one-to-one, and fails to model situations in which a single entity is in relation
with multiple other entities.

4.1.1 Shortcuts
In order to facilitate the composition of complex formulas, we provide shortcuts for
the most commonly used constructs. The symbols> and⊥ always stand for a tautol-
ogy and a contradiction, respectively: > ≡ ϕ∨¬ϕ and⊥ ≡ ϕ∧¬ϕ, for any formula
ϕ. Moreover, for any two formulas ϕ and ψ, ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ).

The following globally operators are de�ned:
Linear globally: 2ϕ ≡ ¬(> U ¬ϕ);

Operator globally: 2�ϕ ≡ ¬(> U� ¬ϕ) where � is replaced with the symbols in O,
for any set O ⊆ {l, .=,m};

Hierarchical globally: 2�ϕ ≡ ¬(> U� ¬ϕ) where � ∈ {↑, ↓}.
Similarly, the following eventually operators can be de�ned:

Linear eventually: 3ϕ ≡ > U ϕ;

Operator eventually: 3�ϕ ≡ >U� ϕ where � is replaced with the symbols in O, for
any set O ⊆ {l, .=,m};

Hierarchical eventually: 3�ϕ ≡ > U� ϕ where � ∈ {↑, ↓}.
In order to obtain clearer formulas, parentheses can be removed by applying the

following precedence rules:
• unary operators have higher precedence over all binary operators;

34

• temporal binary operators (U and S) have a higher precedence than ∧ and ∨;

• temporal binary operators (U and S) are right-associative, with no distinction
based on their type;

• ∧ takes precedence over ∨.

4.2 Semantics
4.2.1 Algebraic Structure
The semantics of OPTL is based on the word structure 〈U,MP(AP), P 〉 where

• U = {0, 1, . . . , n, n+ 1}, with n ∈ N, is a sequence of word positions;

• MP(AP) is an operator precedence matrix on P(AP);

• P : U →P(AP) is a function that associates each word position inU with the
set of atomic propositions that hold in that position, with P (0) = P (n+ 1) =
{#}.

Since the word structure is based upon subsets of AP , in the following we will
denote them with lowercase letters such as a ∈ P(AP), even though they are sets.
For any two positions i, j ∈ U , we will write i � j, with � ∈ {l, .=,m}, to imply
that, given the two sets of propositional letters a = P (i) and b = P (j), the relation
a� b holds according to the OPM MP(AP).

Because de�ning an OPM on P(AP) is quite impractical, the set of atomic propo-
sitions AP will often be partitioned in the two sets Λ and Σ. Λ is a set of generic
propositional letters, that can be associated to any word position without restrictions.
Σ is the set of structural labels, whose elements will be typeset in boldface. These
labels de�ne the structure of the word with respect to OP relations: OPMs will be de-
�ned on Σ, and the corresponding matrix on P(AP) will be derived by transposing
the relations de�ned on elements of Σ to subsets of AP containing those elements:
if the relation a � b holds with a,b ∈ Σ, � ∈ {l, .=,m} and a ∈ a ⊂ AP and
b ∈ b ⊂ AP , then a� b. Of course, each position is associated to only one structural
symbol in Σ, while relations between subsets ofAP containing more than one of such
symbols are left unde�ned. If MΣ is the OPM on Σ, it must be complete for OPTL to
be able to express the universal language Σ∗.

Another example of OP word is shown in Figure 4.3. In the example, Σ = {+,∗,
e,#}, where # is an additional symbol that yields precedence to all other elements
of Σ, and from which all other structural labels take precedence. The word contains
also the propositional letters in Λ = {a,b, c,d, e, f}, displayed under structural labels
in the �gure. The OPM is shown in Figure 4.2, and it can be used to infer OP relations
between subsets of AP : for example, {e, a}m {+}.

4.2.2 The Chain Relation
The formal semantics of OPTL is based on the chain relation, which allows us to
express properties on the structure of OP words by means of the concept of chain
presented in De�nition 16. Since the context-free structure given to a string by an
OPM can be fully characterized by this concept, the chain relation gives to OPTL a

35

+ ∗ e
+ m l l
∗ m m l
e m m

Figure 4.2: Operator Precedence Matrix of grammar GAE1 from [MP18].

l e m + l e m ∗ l e m ∗ l e m ∗ l e m + l e m

a b c d e f

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.3: Example of an operator precedence word. Structural labels are in bold face,
and the structure is de�ned by the OP Matrix of Figure 4.2. The χ relation is shown
by arrows: there is an arrow between positions i and j i� χ(i, j).

considerable advantage in expressive power over the regular properties expressible
in LTL.

De�nition 24 (Chain Relation χ). The relation χ ⊆ U × U holds between two po-
sitions i < j if i and j are the context of a chain. More formally, let i = i1 <
i2 < · · · < in−1 < in = j be the consecutive positions between i and j, and let
w = a1a2 · · · an−1an be a string on P(AP) such that for any k ∈ {1, . . . , n} we
have ak = P (ik). We write χ(i, j) if a1 [a2 · · · an−1]an is a simple or composed chain.

For any two positions i, j ∈ U , i < j, the maximal forward chain relation −→χ ⊆
U × U is de�ned as follows:

−→χ (i, j) ⇐⇒ j = max{k ∈ U | χ(i, k)}.

Similarly, the maximal backward chain relation←−χ ⊆ U × U is de�ned as
←−χ (i, j) ⇐⇒ i = min{k ∈ U | χ(k, j)}.

Note that the two maximal chain relations are one-to-one.
In Figure 4.3, word positions that form the context of a chain are linked by an

arrow: for example, positions 2 and 6 are in the chain relation (χ(2, 6)), and the chain
they form is not forward-maximal (¬−→χ (2, 6)), but it is backward-maximal (←−χ (2, 6)).
Conversely, the chain between positions 2 and 10 is forward-maximal (−→χ (2, 10)).

4.2.3 Operators
Propositional Operators and Symbols

For any word w and a ∈ AP , we have (w, i) |= a i� a ∈ P (i). The not (¬) and and
(∧) symbols have the usual semantics from propositional logic.

36

Simple Temporal Operators

For any wordw and position i ∈ U , and for any well-formed formula ϕ, the following
logical operators are de�ned:

• (w, i) |= #ϕ i� (w, i+ 1) |= ϕ;

• (w, i) |= �ϕ i� (w, i− 1) |= ϕ;

• (w, i) |= #χϕ i� there exists a position j ∈ U such that−→χ (i, j) and (w, j) |= ϕ;

• (w, i) |= �χϕ i� there exists a position j ∈ U such that←−χ (j, i) and (w, j) |= ϕ.

In Figure 4.3, (w, 6) |= #χ∗ because−→χ (6, 8) and (w, 8) |= ∗, and (w, 6) |= �χ+
because←−χ (2, 6) and (w, 2) |= +.

Path Operators

A path of length n ∈ N between two string positions i, j ∈ U is a sequence of
positions i1 < i2 < · · · < in, with i ≤ i1 and in ≤ j. Given a set of paths Π, an until
operator can be de�ned as follows: for any word w and position i ∈ U , and for any
two well-formed formulas ϕ and ψ, (w, i) |= ϕ UΠ ψ i� there exist a position j ∈ U ,
j ≥ i, and a path i1 < i2 < · · · < in between i and j in Π such that (w, ik) |= ϕ
for any 1 ≤ k < n, and (w, in) |= ψ. A since operator can be de�ned analogously:
for any position j ∈ U , (w, j) |= ϕ SΠ ψ i� there exists a position i ∈ U , i ≤ j,
and a path i1 < i2 < · · · < in between i and j in Π such that (w, ik) |= ϕ for any
1 < k ≤ n, and (w, i1) |= ψ. Note that, with the de�nitions above, a path from i to j
does not necessarily start in i and end in j, but it can also begin and end in positions
between them. This, however, will only be true for hierarchical paths.

Three di�erent types of until and since operators are de�ned, based on the classes
of paths described in the following paragraphs.

Linear Operators. A linear path of length n ∈ N between i and j is a sequence
of positions i = i1 < i2 < · · · < in = j such that for any 1 ≤ k < n, we have
ik+1 = ik + 1.

The until and since operators based on linear paths are denoted as U and S , re-
spectively; they correspond to the linear operators from classic LTL.

Summary Operators. Let O ⊆ {l, .=,m} be a set of operator-precedence rela-
tions. A forward operator summary path between positions i and j is a sequence of
positions i = i1 < i2 < · · · < in = j such that, for any 1 ≤ k < n,

ik+1 =

{
h if −→χ (ik, h) and h ≤ j;
ik + 1 if ik � ik + 1 with � ∈ O, otherwise.

The operator-summary until is de�ned by considering this class of paths as the set Π,
and it is denoted as U�. Since the existence of these paths depends on the chosen
set of OP relations, � is replaced with the relations contained in O. For example, the
until operator on paths allowing only the l and .

= relations is denoted as Ul .=; and
the one that only allows the l and m relations is denoted as Uml.

A Forward OP Summary path with O = {l,m} between positions 4 and 7 of the
OP word of Figure 4.3 is shown in Figure 4.4a. It skips the body of the maximal chain

37

. . . e ∗ e ∗ l e ∗ . . .

b c d

3 4 5 6 7 8

(a) Example of Forward OP Summary path.

e + l e m ∗ e ∗ l e ∗ . . .

a b c d

1 2 3 4 5 6 7 8

(b) Example of Forward OP Summary path.

e m + e ∗ e ∗ e . . .

a b c d

0 1 2 3 4 5 6 7

(c) Example of Backward OP Summary path.

Figure 4.4: Examples of OP Summary paths on the OP word of Figure 4.3. OP relations
are shown then the path includes the linear edge between consecutive positions, and
an arrow is shown when the path skips the body of a chain. Position numbers included
in the paths are typeset in boldface.

−→χ (4, 6), and, because all chains starting from 6 end after position 7 and l ∈ O, it
ends there. This path witnesses the truth of (w, 4) |= ∗ Uml d. Note that the bodies
of chains that are not maximal are not skipped: Figure 4.4b shows a path of the same
kind from 2 to 7, which also includes position 3. Since the chain from 2 to 4 is not
forward-maximal, all paths starting in 2 and ending before 10 must include position
3, and ∗ Uml d does not hold in 2, because it would require (w, 3) |= ∗.

A backward operator summary path between positions i and j is a sequence of
positions i = i1 < i2 < · · · < in = j such that, for any 1 < k ≤ n,

ik−1 =

{
h if←−χ (h, ik) and h ≥ i;
ik − 1 if ik − 1� ik with � ∈ O, otherwise.

The operator-summary since is based on this class of paths and it is denoted as S�,
replacing � with the precedence relations contained in O. It is de�ned analogously
to the operator-summary until.

An example of Backward OP Summary path with O = {l,m} is displayed in
Figure 4.4c. It starts in position 1 and, since it is not part of the context of any chain
and m ∈ O, it continues with position 2; it then skips the body of the backward
maximal chain←−χ (2, 6). This path is a witness for (w, 6) |= (+ ∨ ∗) Sml a.

Hierarchical Operators. A yield-precedence hierarchical path of length n ∈ N
starting in i ∈ U is a sequence of word positions i1 < i2 < · · · < in, with i < i1,
such that for any 1 ≤ k ≤ n we have il ik and χ(i, ik); moreover, there is no i′k that
satis�es these two properties and ik−1 < i′k < ik .

38

+ e ∗ e ∗ e ∗ e +

b c d e

2 3 4 5 6 7 8 9 10

(a) Example of yield-precedence hierarchical path.

+ e ∗ e ∗
b c

2 3 4 5 6

(b) Example of take-precedence hierarchical path.

Figure 4.5: Examples of hierarchical paths on the OP word of Figure 4.3. (The positions
that are part of the paths are typeset in boldface.)

The yield-precedence hierarchical until and since operators are based on this class
of paths and they are denoted as U↑ and S↓, respectively. Additionally, for the until
operator i1 must be the leftmost position enjoying the above properties (i.e. there
is no i′k s.t. i < i′k < i1 enjoying them), and for the since operator in must be the
rightmost.

Figure 4.5a shows an example of a yield-precedence hierarchical path, made of
positions 4, 6 and 8. Note that position 10 is not part of the path because, although
χ(2, 10), the symbol at position 2 does not yield precedence to the one at position 10
(in fact +m+ according to the OP matrix of Figure 4.3). This path witnesses the fact
that (w, 2) |= ∗ U↑ (# e), and (w, 2) |= ∗ S↓ (�b).

Similarly, a take-precedence hierarchical path of length n ∈ N ending in j ∈ U is
a sequence of word positions i1 < i2 < · · · < in, with in < j, such that for any
1 ≤ k ≤ n we have ik m j and χ(ik, j); there exists no position i′k that satis�es these
two properties and ik < i′k < ik+1.

The take-precedence until and since operators are based on this class of paths,
and they are denoted as U↓ and S↑ respectively. For the until operator, i1 must be the
leftmost position enjoying these properties, and for the since operator in must be the
rightmost (i.e. there is no i′k , in < i′k < j, that satis�es them).

In Figure 4.5b, the only position that is in the m relation with position 6 and that
forms a chain with it is 4: the only take-precedence hierarchical path with respect to
6 is made of this sole position. It witnesses, for example, (w, 6) |= > U↓ ∗.

4.3 Examples
Before presenting further results regarding OPTL, we provide in this section two more
thorough examples demonstrating the expressive its capabilities. The reader may �nd
them helpful for better familiarizing with OPTL.

39

+ ∗ L M e
+ m l l m l
∗ m m l m l
L l l l .

= l
M m m m
e m m m

Figure 4.6: Operator Precedence matrix of grammar GAEP from [MP18].

4.3.1 Parenthesized Expressions
The following example relies on the grammarGAEP from [MP18], whose OP matrix
is shown in Figure 4.6. This OP matrix is an extension of the one in Figure 4.2, as it
also includes open and closed parentheses.

l e m + l e m ∗ l L l e m + l e m M m

1 2 3 4 5 6 7 8 9 10 11

1. Parentheses are used only when needed:

2[L =⇒ (�(∗ ∨#χ∗) ∧3↑+)].

Every time an open bracket ‘L’ occurs, either the previous position or the po-
sition right after the matched closing bracket must contain a ‘∗’. The former
requirement is achieved with a simple linear back operator. For the latter, it
must be noted that, according to the OP matrix, the open bracket must be pre-
ceded by either a ‘+’ or another ‘L’. Since all terminals yield precedence to L,
and M takes precedence from them all, the position preceding L must form the
context of a chain along with the next after M: an abstract next operator can be
used to make sure M is followed by a ‘∗’.
Finally, one of the subexpressions inside the brackets must contain a ‘+’. Since
‘∗’ takes precedence from ‘+’, the latter must be at the root of the parsing
subtree between L and M, forming the context of a chain with L. A hierarchical
eventually 3↑ can be used to enforce this last requirement.

2. There cannot be more than two consecutive multiplications:

2[∗ =⇒ ¬(#χ(∗ ∧#χ∗))].

Since ‘+’ yields precedence to ‘∗’, which yields precedence to ‘L’ and ‘e’, consec-
utive occurrences of ‘∗’ must be sub-expressions of ‘+’ and there must be either
an ‘e’ or a matched pair of brackets between them. Because ‘∗’ takes prece-
dence from itself, each occurrence of this operator must be a sub-expression of
the one to its right, if present, and form with it the context of the outermost

40

chain starting from there. It is therefore possible to “hop” from a ‘∗’ to the next
one by iterating the abstract next operator #χ. In order to forbid three or more
consecutive multiplications, it su�ces to state that it must not be possible to
do two of such hops, starting from an occurrence of ‘∗’ and landing on another
one of them.

3. Parentheses cannot have more than two nesting levels:

2[L =⇒ ¬# (¬M Uml (L∧# (¬M Uml L)))].

The above formula works by forbidding all paths that contain three or more
nested parentheses. Once an open parenthesis is found, an OP summary opera-
tor that allows only the l and m relations is evaluated on the next position. Its
paths can both jump over matched pairs of parentheses, ignoring them, and end
between them, going through subexpressions. For the whole until to be true,
those paths must end when a second open parenthesis is found, that is followed
by another path that terminates in a third open parenthesis. The negation in
front of the outermost until operator prevents the occurrence of such a scenario,
and the whole formula is only true if the expression does not contain more than
two nested parentheses. Note that both until operators cannot jump past the
closed parenthesis matched with the �rst ‘L’, because the ¬M subformula is used
as the left-hand side of both the until operators.

4.3.2 Function Calls and Interrupts
The following word represents a program computation, with nested function calls that
can be truncated by interrupts. In the �rst and second rows, the atomic propositions
associated to each position are displayed. The ones on the �rst row, in bold face,
denote the structural role of the position, and the precedence relations among them
are shown.

#lcalllf
.
= f

.
=calllcalllfmret

.
= f

.
= f mret

.
= f

.
= f mintl i mservem#

pb wr pa pa rd

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

The word structure is determined by the following OP Matrix, where the structural
labels of Σ are written in bold face:

call ret int serve f i
call l .

= m l
ret

.
= m m .

=
int l .

= l
serve m .

= m .
=

f
.
= m m .

=
i

.
= m .

=

41

Assuming that read (rd) and write (wr) labels cannot be associated to call or ret
positions, OPTL allows us to express the following properties on the execution �ow.

1. If precondition ρ holds whenever a function is called, then the function returns
with postcondition θ holding:

2[(call ∧ ρ) =⇒ #χ(θ ∧ ret)].

This is a classical procedure pre-/post-condition requirement. Because of the
structure given to the word by the OP matrix, every call position forms the
context of a chain with the ret or int position that terminates its body. The
abstract next operator #χ evaluates its argument in such position. Note that
this formula is false whenever a function is terminated by an interrupt, and not
a regular return.

2. If precondition ρ holds when a function is called and its execution is stopped
by an interrupt, then postcondition θ holds:

2[(call ∧ ρ ∧#χint) =⇒ #χθ].

In this case the abstract next operator is used to distinguish whether a function
terminates regularly or due to an interrupt.

3. If a procedure writes to a variable, it will read said variable before writing to it
again, regardless of what happens in nested function calls:

2[wr =⇒ #(¬wr U
.
= rd) ∧ ¬# (ret ∨ int)],

where wr and rd are atoms associated to write/read positions. This formula
uses an OP summary until that only allows the .

= precedence relation. The
paths it considers jump over subcalls by skipping all subchains; none of them
can enter the body of a subcall or exit from the current function frame, because
any such path would include two position in the l or m relation, respectively.
Subformula ¬#(ret ∨ int) prevents the until operator from entering the outer
function frame in case the write position is immediately followed by a ret or
an int.

4. A procedure and its subcalls can never write to a variable:

2[call =⇒ 2l .=¬wr].

The globally operator is based on a summary until that only allows relations l
and .

=. It evaluates ¬wr on paths that can both skip function bodies and enter
them, by including call positions and the subsequent internal positions, which
are in the l relation with them.

5. If a procedure writes to a variable, it is read by the procedure itself or by any
sub-call, and it is not written to before having been read:

2[call =⇒ #(ret ∨ int∨

2l .=[wr =⇒ #(¬wr ∧ (ret =⇒ �χ(2l .=¬wr))) Ul .= rd])].

42

The �rst 2l .= operator imposes the truth of the subsequent subformula in all
positions in the body of the main function call and of all subcalls in which a
write action occurs. The outermost until operator asserts that non other write
can occur before a read action: for every ret in its paths, a 2l .= globally oper-
ator is evaluated starting from the matching call (reached by the abstract back
operator �χ), which ensures that no write action is performed in any subcall.
Note that a linear next operator is applied to the left-hand side of the outermost
until operator, so that the formula is correct even if the position right after the
write operation contains a ret or an int.
Also, the abstract back operator is only applied in ret positions whose match-
ing call position occurs after the write operation: it is not possible to “jump”
back, before the write position. In fact, the paths considered by the outermost
Ul .= operator cannot possibly include such a ret position, because they would
include a m relation between the said position and the preceding one.

6. Function pa can be called recursively at most one time (at most two instances
of it can be active at once):

2[(call ∧ pa) =⇒ #¬(3l .=(call ∧ pa ∧#(3l .=(call ∧ pa))))].

The above statement means that each time a call to pa appears, it cannot hap-
pen that two nested calls to the same function are performed in its body. The
negated formula after the �rst next operator has in fact the purpose of entering
the body of the �rst instance of the function by means of the 3l .= eventually
operator, looking for another function call, whose body is searched for a third
call by the rightmost eventually operator. If no such call is found, it means that
there are no more than two nested calls to pa.

7. While function pa is being executed, no interrupt can occur:

2[int =⇒ ¬3↓pa].

Due to the structure of the OP matrix, all calls form the context of a chain with
the int that breaks them. So, in order to assert the above claim, it is su�cient
to search all calls linked to an int position, looking for proposition pa. This
is done by the hierarchical eventually operator 3↓, which considers all chains
that end in the current position from the outermost to the innermost, and is
true if its operand is true in the starting position of at least one of such chains.
Negating this operator means asserting that in none of those calls pa holds,
which can also be expressed with 2↓¬pa.

8. If an interrupt occurs during the execution of procedure pb, then the innermost
instance of pb must have written to a certain variable:

2[int =⇒ (3↓pb =⇒ ¬pb S↑ (pb ∧#(3
.
=wr)))].

First, subformula 3↓pb checks if at least one of the functions interrupted by the
current int position is an instance of pb. If this is true, then the hierarchical
since operator S↑ �nds the innermost call to pb, and it asserts that there must
be at least a write in its body. Note that the OP summary eventually only allows
the .

= relation, which prevents its paths from entering subcalls.

43

9. No interrupt can occur during a recursive call to procedure pb:

2[int =⇒ ¬3↓(call ∧ pb ∧#(3l .=(call ∧ pb)))].

Every time there is an int position, this formula asserts that the body of none of
the calls to pb it interrupts can contain another call (i.e. a recursive call) to the
same procedure. This is achieved with a combination of the hierarchical and
OP-summary eventually operators 3↓ and 3l .=, as explained in the previous
examples.

4.4 Equivalence between Operators
In this section, we show that OP summary until operators can be used in place of the
hierarchical operators, by providing a translation scheme for them.

First, we de�ne some auxiliary formulas: for any a ∈P(AP), formula

σa ≡

(∧
`∈a

`

)
∧

(∧
`∈(AP\a)

¬`

)

is true only in positions labeled with the set of atomic propositions a. Second, in order
to be able to express OP relations in OPTL formulas, we de�ne

ξal ≡
∨

b∈P(AP)|alb

σb

which is true only in positions labeled with a set b ∈P(AP) such that alb. Formula
ξma, which identi�es positions labeled with a set b ∈ P(AP) such that b m a, with
a ∈P(AP), is de�ned similarly.

The yield-precedence hierarchical until operator U↑ can be translated as follows:

ϕ U↑ ψ ≡
∨

a∈P(AP)

[
σa ∧#

((
�χ σa =⇒ (ϕ ∧ ξal)

)
Um .= (�χ σa ∧ ξal ∧ ψ))].

Let us say the formula is evaluated in position i ∈ U , labeled with set a ∈ P(AP).
The general idea behind this translation is to let an OP summary until run from i+ 1
to a position j such that χ(i, j) and i l j, in which ψ holds. We use �χσa and ξal
to ensure both requisites, respectively. In all positions between i and j that form the
context of a chain with i, ϕ needs to be true: sub-formula �χσa =⇒ (ϕ ∧ ξal)
is used in the left-hand side of the OP summary until operator for this purpose. ξal
ensures that all positions that form a chain with i are in l relation with it, so that the
path cannot pass j and continue with positions that form a chain with other positions
labeled with a.

Since the OP relations depend on the sets of atomic propositions labeling i and j,
separate instances of this formula are needed for each a ∈ P(AP), and they are all
or-ed together.

The yield-precedence hierarchical since operator S↓ can be translated as follows:

ϕ S↓ ψ ≡
∨

a∈P(AP)

[
σa ∧#χ

((
(�χσa ∧ ξal) =⇒ ϕ

)
Sm

.
=
(
�χ σa ∧ ξal ∧ ψ

))]
.

44

The reasoning behind this formula is similar to the previous one. This time we have
the OP summary until operator starting from the rightmost position that forms a chain
with the current position i, and going backwards until the position right after i, where
it must stop because it does not allow the l OP relation. Since the position that forms
a maximal forward chain with i could also be in the .

= relation with i, formula ξal is
needed on both sides of the OP summary until operator.

The translating formulas for ϕ U↓ ψ and ϕ S↑ ψ can be obtained in analogous
ways.

It must be noted that the size of the translations described in this section is expo-
nential in the length of the initial formula. In fact, let n = |AP |: |σa| = Θ(n) and
consequently |ξal| = O(n2n). If β is the translation of α = ϕ U↑ ψ, then in the
worst-case scenario in which both ϕ and ψ contain other hierarchical operators, we
have |β| = O((2n)|α||ξal|) = O(n22n|α|).

4.4.1 An adequate set
The above results allow us to state the following:

Theorem 22. The set of operators {¬,∧,#,�,#χ,�χ,U ,S ,U�,S�} is adequate for
OPTL.

We conjecture that a similar result could be obtained also for the linear until and
since operators, allowing us to remove U and S from this set.

4.5 Relationship with Nested Words
This section explores the relationship between OPTL and NWTL from [AAB+08],
presented in Section 2.4. In particular, we will prove in Section 4.5.1 that OPTL is at
least as expressively powerful as NWTL, and in Section 4.5.2 that this containment
relation is actually strict.

4.5.1 Containment
The purpose of this section is to prove that NWTL ⊆ OPTL. To do so, we will �rst
show a way to translate a nested word into an OPTL word with signi�cantly sim-
ilar properties, and we will then proceed to devise a translation scheme for NWTL
formulae.

Given any nested word NW = 〈U, (Pa)a∈Λ, <, µ, call, ret〉 it is possible to
build an equivalent algebraic structure for OPTL as OW = 〈U ′,MNW , P ′〉. Let
U = {1, . . . , n}, then ifNW is �nite,U ′ = U∪{0, n+1}; if it is in�niteU ′ = U∪{0}.
The set of propositional letters is AP = Λ ∪ Σ with Σ = {call, ret, i,#}; and the
P ′ function is de�ned for any i ∈ U as

P ′(i) = {a ∈ Λ | i ∈ Pa} ∪


{call} i� call(i);
{ret} i� ret(i);
{i} otherwise.

Also, P ′(0) = P ′(n+ 1) = {#}. Finally, the OP-matrix MNW is de�ned as follows,

45

call ret i
call l .

= l
ret

.
= m .

=
i

.
= m .

=

Figure 4.7: Sketch of the OP-matrix MNW : the symbols in Σ are used as representa-
tive elements for the subsets of AP .

1 2 3 4

a

5 6 7 8 9

b

10

Figure 4.8: Representation of a nested word example.

for any a, b ∈P(AP) such that # /∈ a ∪ b:

MNW
(a,b) =


{l} i� call ∈ a ∧ ret /∈ b;
{m} i� call /∈ a ∧ ret ∈ b;
{ .=} i� (call /∈ a ∧ ret /∈ b) ∨ (call ∈ a ∧ ret ∈ b).

If # ∈ a but # /∈ b, then MNW
(a,b) = {l}; if # ∈ b but # /∈ a, then MNW

(a,b) = {m}.
The structure of MNW is shown in Figure 4.7. Note that, since in nested words no
position can be both a call and a return, no word position of OW can be labeled with
more than a single element of Σ, and we need not care about subsets of AP that
contain both call and ret.

An example nested word is drawn in Figure 4.8, and its translation into an OPTL
word is shown in Figure 4.9. In the translation, all the call positions form the context
of a chain with the matched return, unless they are consecutive. Therefore, we will be
able to use the chain relation to translate the matching relation of nested words, except
for consecutive call/return positions, which will have to be considered separately.
Also, unmatched returns and calls form a chain with the �rst and last ‘#’ positions,
respectively.

We will now prove a few properties regarding the translating OPTL structure, and
the relationship between the NWTL matching relation µ and the OPTL chain relation
χ.

l i m ret
.
= call l i

.
= call

.
= ret m ret

.
= call l call

.
= ret m #

a b

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.9: Translation into an OPTL structure of the nested word of Figure 4.8.

46

Lemma 23. For any two distinct positions i, j ∈ U , i < j, if χ(i, j) holds then call ∈
P ′(i) and ret ∈ P ′(j).

Proof. χ(i, j) means that i and j are the context of a chain, simple or composed. In
both cases, according to De�nition 16, position i must yield precedence to the next
position, i + 1: i l i + 1. According to matrix MNW , only call positions can yield
precedence to any other position (unless # ∈ P ′(i), which is not the case), and
therefore call ∈ P ′(i). Similarly, any position can take precedence from a return
position only, and since j−1 must take precedence from j, we have ret ∈ P ′(j).

In Lemma 24 we will prove that, due to the de�nition ofMNW , relation χ inOW
is one-to-one if restricted to U ; i.e. for any i, j, j′ ∈ U if χ(i, j) and χ(i, j′) then
j = j′, and for any i, i′, j ∈ U if χ(i, j) and χ(i′, j) then i = i′. Note that the above
claim is not valid for positions 0 and n+ 1: indeed, we have χ(0, j) for all j ∈ U that
are unmatched returns, and χ(i, n+ 1) for all unmatched calls i ∈ U .

Lemma 24. Relation χ in OW is one-to-one, if restricted to U .

Proof. Suppose there exists a position i ∈ U such that multiple chains start in i and
end in distinct positions in U , i.e. there exist positions j1, . . . , jn−1, jn ∈ U such that
i < j1 < · · · < jn−1 < jn and χ(i, jk) for any 1 ≤ k ≤ n. Then, consider the
outermost chain, χ(i, jn): it must be a composed chain, because it contains the chain
χ(i, jn−1). It must therefore be of the form ai [wiajn−1 . . .]

ajn , wherewi is the body of
the chain that has positions i and jn−1 as its context: ai [wi]ajn−1 forms a chain. By the
de�nition of composed chain, ai [ajn−1

ajn−1+1 . . .]
ajn must be a simple chain, which

implies ailajn−1
. But we also haveχ(i, jn−1), and because of Lemma 23 call ∈ P ′(i)

and ret ∈ P ′(jn−1). Therefore, according to MNW , we have ai
.
= ajn−1 , which

contradicts our previous claim that χ(i, jn).
An analogous reasoning can be applied to prove that there exists no position j ∈ U

such that multiple chains starting in U end in j.

The following de�nitions will be useful in the proofs of the next lemmas.

De�nition 25 (Nesting Depth). Given a nested word w, based on the set of positions
U and nesting relation µ, its nesting depth ndNW (w) is de�ned as follows:

ndNW (w) =


0 i� ∀i, j ∈ U : ¬µ(i, j);
max{ndNW (wi+1,j−1) + 1

| i, j ∈ w ∧ µ(i, j)}
otherwise;

where wi+1,j−1 is the subword of w delimited by positions i+ 1 and j − 1, included.
Given an Operator Precedence word x, based on the set of positions U and chain

relation χ, its nesting depth nd(x) is de�ned as:

nd(x) =


0 i� ∀i, j ∈ U : ¬χ(i, j);
max{ nd(y) + 1

| i, j ∈ x ∧ χ(i, j) ∧ y ⊂ xi,j}
otherwise;

where y is a proper subword of xi,j .

The nesting depth of the nested word of Figure 4.8 is ndNW (w) = 2, while the
nesting depth of the OPTL word of Figure 4.9 is nd(x) = 1.

47

Lemma 25 shows that, when translating a nested word into an OPTL word, the µ
relation of the former is re�ected into the χ relation that holds in the latter. This is,
as we observed previously, not true for consecutive positions.

Lemma 25. For any i, j ∈ U such that j > i+ 1, we have µ(i, j) i� χ(i, j).

Proof. Given two word positions i, j ∈ U , we will �rst prove µ(i, j) =⇒ χ(i, j), by
induction on the nesting depth ndNW (wi,j) of the subword wi,j delimited by them.

Base case. If ndNW (wi,j) = 1, there cannot be any matched call-return pairs be-
tween i and j. Moreover, since µ(i, j), i is a call and j is a return, the positions
between them cannot be unmatched calls or returns, and they must be all in-
ternal positions. Therefore in OW we have call ∈ P ′(i), ret ∈ P ′(j) and
i ∈ P ′(k) for any k ∈ U such that i < k < j. So, the subword is structured as
il (i+ 1)

.
= · · · .= (j − 1)m j, and i and j are the context of the simple chain

i[(i+ 1), . . . , (j − 1)]j .

Inductive step. If ndNW (wi,j) = n > 1, suppose that for any h, k ∈ U , k > h + 1,
if ndNW (wh,k) < n then µ(h, k) =⇒ χ(h, k). Let i, j ∈ U , j > i + 1, be
such that ndNW (wi+1,j−1) < n. Then, the word delimited by them is in the
form aixiai+1xi+1 . . . xj−1aj−1xjaj , where, for any p such that i ≤ p ≤ j,
ap = ε or it is an internal position, and either xp = ε or xp is a nested word
of nesting depth lower than n of the form xp = cpyprp, with call(cp) and
ret(rp). Also, since by the de�nition of the µ there cannot be unmatched calls
or returns between i and j, we are sure µ(cp, rp) and, since the nesting depth
of this subword is lower than n by hypothesis, also χ(cp, rp). Consequently, in
OW we have i ∈ P ′(ap) (if any), call ∈ P ′(cp) and ret ∈ P ′(rp), and the
subword contains the structure ai l ci

.
= ri

.
= ai+1

.
= · · · .= cj

.
= rj m aj ,

which is a simple chain. Moreover, all substrings cpyprp also form a chain,
which allows us to state that wi,j is a composed chain.

The proof of χ(i, j) =⇒ µ(i, j) relies on the fact that, according to Lemma 23,
if χ(i, j) then call ∈ P ′(i) and ret ∈ P ′(j), which, by construction of P ′, implies
call(i) and ret(j). The de�nition of the µ relation in De�nition 5 states that, with
the above conditions holding on i and j, there exists i ≤ k ≤ j such that either µ(i, k)
or µ(k, j). We will now prove by induction on the nesting depth nd(wi,j) of the OP
subword delimited by i and j that the said k coincides with i or j.

Base case. If nd(wi,j) = 1, then χ(i, j) is a simple chain, i.e. between i and j there
are no other chains besides χ(i, j). According to MNW , this can happen only
if all positions strictly between i and j are either labeled with i, or if they are
positions labeled with call immediately followed by a position labeled with
ret, which must not be j because the χ relation is one-to-one in this case
(Lemma 24). In the latter case, since there is surely no other call/return po-
sition between such pairs, they must all be in relation µ. Therefore, there is
no k between i and j that is either a call or a return and that is not matched
with another return or call, respectively. Because the µ relation is one-to-one
by de�nition, surely µ(i, j).

Inductive step. Suppose nd(wi,j) = n > 1, and for any h, k ∈ U with nd(wh,k) < n,
if χ(h, k) then µ(h, k). The body of chain χ(i, j) can contain positions labeled
with i or consecutive call/return pairs that are in relation µ as we argued before.

48

Also, the chain is composed, and it contains subchains of depth lower thann. By
the inductive hypothesis, the positions that are contexts of such subchains are
in relation µ, and none of them coincides with i or j or the context of another
chain, because of Lemma 24. Therefore, because the µ relation is one-to-one,
we can conclude that there are no unmatched call or return positions between
i and j that could be paired with one of them, and µ(i, j) must hold.

The following lemma establishes a correspondence between summary paths in
NWTL and OP Summary paths in OPTL, enabling the translation of NWTL summary
until operators with their operator-precedence counterparts.

Lemma 26. Given any two word positions i, j ∈ U , i ≤ j, the summary path between
i and j inNW coincides with the Operator Precedence summary path between the same
positions based on precedence relations O = {l, .=,m} in OW .

Proof. This proof relies on the de�nition of summary path in NWTL, given in Def-
inition 7, and of Operator Precedence Summary Paths, whose de�nition is given in
Paragraph 4.2.3. Note that, due to the fact that the chain relation is one-to-one in
OW (Lemma 24), we have χ(i, j) ⇐⇒ ←−χ (i, j) ⇐⇒ −→χ (i, j) for any i, j ∈ U .
Therefore, OP Forward and Backward Summary paths coincide, and we will simply
refer to them as OP Summary Paths in the following. Moreover, since we will con-
sider OP Summary Paths based on the set of all possible OP relationsO = {l, .=,m},
the second case of the de�nitions of OP Summary Paths always applies when the �rst
does not.

We will prove that, given two positions i, j ∈ U , i ≤ j, the summary path πNW =
{h1, h2, . . . , hn} with i = h1 < h2 < · · · < hn = j coincides with the OP summary
path πOW = {k1, k2, . . . , km} with i = k1 < k2 < · · · < km = j, i.e. n = m and
hp = kp for any 1 ≤ p ≤ n. The proof is structured by induction on the distance
between i and j.

Base case: i = j. Since by the de�nitions of both classes of paths the �rst position is
always included, we have πNW = πOW = {i}.

Inductive step: i− j > 0. Suppose that for any j′ < j, the summary path π′NW be-
tween i and j′ coincides with the OP summary path π′OW between the same
two positions. Let π′ be the path between i and j − 1: by the inductive hy-
pothesis, it is both a summary path in NW and an OP summary path in OW .
The composition of the paths πNW and πOW between i and j depends on how
position j is labeled.

ret ∈ P ′(j) ⇐⇒ ret(j) : Suppose j is a matched return in NW , and that
its matched call is in position k ≥ i. In this case, π′ is in the form i =
i1 < i2 < · · · < k < · · · < j − 1 and, by the �rst case of De�nition 7,
πNW is in the form i = i1 < i2 < · · · < k < j. By Lemma 25, if
k 6= j − 1 then µ(k, j) implies χ(k, j), which falls in the �rst cases of
the de�nitions of OP summary paths. Therefore, also πOW is in the form
i = i1 < i2 < · · · < k < j. If k = j − 1 we have j − 1

.
= j because j − 1

is a call and j is a ret, which falls in the second case of the de�nition of
OP summary path, yielding to the same form of πOW .
If, instead, j is a matched return whose matched call is before i or if it is
an unmatched return, the second case of both de�nitions allows path π′ to

49

1 2 3 4

a

5 6 7 8 9

b

10

Figure 4.10: Outline of the summary path between positions 1 and 9 of the nested
word of Figure 4.8.

i m ret
.
= call i call ret ret

.
= call l call ret #

a b

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.11: The OP summary path between positions 1 and 9 of the OPTL word of
Figure 4.9. (Only precedence relations between positions that are part of the path are
shown.)

be concatenated with j: the path between i and j is π = πNW = πOW =
π′ ∪ {j}.

call ∈ P ′(j) ⇐⇒ call(j) : If j is a matched call position, the corresponding
return must be in a position strictly greater than j, which prevents from
applying the �rst case of the de�nitions of both summary paths and OP
summary paths. If it is an unmatched call, it forms a chain with n + 1,
which is surely beyond j. Therefore, in both cases position j is simply
concatenated to the path between i and j − 1, which is the same for both
nested words and OP words.

i ∈ P ′(j) : Again, this trivially falls in the second case of the de�nitions of
both classes of paths, and position j is concatenated to π′, yielding π =
πNW = πOW = π′ ∪ {j}.

Figures 4.10 and 4.11 show the structural analogy between a summary path in a
nested word, and the OP summary path between the same positions of its translation
into an OPTL word.

Now that we have established a certain degree of isomorphism between nested
words and their proposed translation into OPTL structures, we can proceed further
by giving a translation scheme between NWTL formulae on nested words and OPTL
formulae on the corresponding OPTL structure.

Theorem 27 (NWTL ⊆ OPTL). Given an NWTL formula ϕ, it is always possible to
translate it to an OPTL formula ϕ′ such that, for any nested word w and position i, if
w is translated into an OP word w′ as described at the beginning of Section 4.5, then
(w, i) |= ϕ i� (w′, i) |= ϕ′, with i ∈ U .

Proof. Let w′ be an OP word constructed from w as described at the beginning of
Section 4.5. For any NWTL formula ϕwe will denote as ϕ′ = α(ϕ) the OPTL formula

50

that satis�es (w, i) |= ϕ i� (w′, i) |= ϕ′. The translation function α is de�ned as
follows:

α(>) = >;

α(a) = a for any a ∈ Λ. This follows from the construction of w′: a ∈ AP , and P ′
is de�ned so that i ∈ Pa i� a ∈ P ′(i).

α(call) = call because, by construction, call ∈ P ′(i) i� call(i), for any i.

α(ret) = ret;

α(¬ϕ) = ¬α(ϕ);

α(ϕ ∨ ψ) = α(ϕ) ∨ α(ψ);

α(#ϕ) = #α(ϕ) : in NWTL (w, i) |= #ϕ i� (w, i + 1) |= ϕ; and since w and w′
share the set of word positions U , we have (w′, i) |= #ϕ′ i� (w′, i + 1) |= ϕ′

also in OPTL, with ϕ′ = α(ϕ).

α(�ϕ) = �α(ϕ) holds, similarly;

α(#µϕ) = (call U
.
= (ret ∧ α(ϕ))) ∧ ¬ret. For convenience, let γ ≡ callU

.
= (ret∧

α(ϕ)).
In NWTL we have (w, i) |= #µϕ i� there exists a word position j such that
µ(i, j) and (w, j) |= ϕ. Because of Lemma 25, if such a position j exists and
j > i+ 1 then also χ(i, j) holds and, since the χ relation is one-to-one in this
case (Lemma 24), we have −→χ (i, j).
Now, consider the path only made of i and j. It is an OP summary path, because
it falls in the �rst case of the de�nition. Since by construction call ∈ P ′(i) and
ret ∈ P ′(j), if α(ϕ) holds in j, then γ is satis�ed.
Note that the OP summary until in γ can only be true on the {i, j} path con-
sidered above. In fact, none of the paths it allows can terminate in a position
strictly between i and j, because it only allows the .

= OP relation. Moreover,
no such path can go beyond j: since the only chain that starts in i has j as its
context, j must be always included in the path, and because call /∈ P ′(j), the
said until operator is only veri�ed if the path ends in j. Therefore, γ is false if
α(ϕ) does not hold in j.
If i and j are such that µ(i, j) but j = i+ 1, then the two positions do not form
a chain. However, since call ∈ P ′(i) and ret ∈ P ′(j) we have i .= j, and the
path made only of i and j is valid for the U

.
= operator. Moreover, this path is

also the only one allowed by such operator, because longer paths would surely
include j, which is not a call. So, γ is equivalent to the given NWTL formula
also in this case.
Finally, if (w, i) 6|= #µϕ because position i is not a matched call, then also
the translating formula is false. In fact, if i ∈ P ′(i) then γ is false because
call /∈ P ′(i) and ret /∈ P ′(i). If i is an unmatched call, then χ(i, n + 1), but
ret /∈ P ′(n+ 1), so the path {i, n+ 1} cannot be considered by γ. Also, i+ 1
cannot be a return: if it is an internal position, then any path longer than 1
position must include it, which falsi�es both arguments of the until operator; if
it is another call, then il i+ 1, which cannot be part of any path because the

51

until operator in γ only allows the .
= relation. If i is a return position, then the

translating formula is trivially falsi�ed by the right-hand side of the ∧ operator.

α(�µϕ) = (ret S
.
= (call ∧ α(ϕ))) ∧ ¬call : this case is justi�ed by a reasoning sim-

ilar to the previous one.

α(ϕ Uσ ψ) = α(ϕ) Um .=l α(ψ) : due to Lemma 26, we know that for any two po-
sitions i and j in w, the summary path between them coincides with the OP
Summary Path in w′ allowing all operator precedence relations. So, the set
of summary paths starting from position i in w corresponds to the set of OP
summary paths starting from i in w′. The de�nitions of the OP summary until
operator in OPTL and of the summary until operator in NWTL are therefore
equivalent, and the latter can be translated into an instance of the former.

α(ϕ Sσ ψ) = α(ϕ) Sm
.
=l α(ψ) : the correctness of this translation can be shown

similarly to that of the summary until operator.

Since we have shown that every NWTL formula ϕ can be e�ectively translated
into an equivalent OPTL formula α(ϕ), by induction on the syntactic structure of ϕ
we can conclude that NWTL ⊆ OPTL.

For example, take formula ϕ = (¬a)Uσ b. The nested word of Figure 4.8 satis�es
ϕ, and this is witnessed by the summary path outlined in Figure 4.10. According to
Theorem 27, ϕ can be translated into formula

ϕ′ = (¬a) Um .=l b.

Indeed, ϕ′ is satis�ed by the OPTL structure of Figure 4.9, where the OP summary
path of Figure 4.11, which covers the same positions as the one of Figure 4.10, is a
possible witness for its truth.

4.5.2 Strict Containment
In order to prove that OPTL is strictly more expressive than NWTL, we rely on the
fact that the family of Operator Precedence Languages strictly contains Visibly Push-
down Languages, and nested words are based upon the latter. This fact was proved
in [CRM12], whose authors introduced a language that is OP but not VP (cf. State-
ment 14). This language is L123 = L1 ∪ L2 ∪ L3, and it is the union of the three
languages

L1 = {bncn | n ≥ 1}, L2 = {fndn | n ≥ 1}, L3 = {en(fb)n | n ≥ 1}.

First, we need to prove that there exists an OPTL formula that denotes L123, i.e. that
is true for all and only the strings that are part of the language. We start by giving a
simpler formula that denotes L1.

Lemma 28. Language L1 is denoted by formula

λ1 = 2
[(
b =⇒ (#χc ∨#c)

)
∧
(
c =⇒ (�χb ∨�b)

)]
,

with respect to the OP matrix of Figure 4.12a.

52

b c
b l .

=
c m

(a)

b c d e f
b l .

= m
c m
d m
e l .

=
f

.
=

.
= l

(b)

Figure 4.12: OP matrices of languages L1 (4.12a) and L123 (4.12b).

Proof. The OP matrix of Figure 4.12a allows cs to be followed by other cs only, con-
straining strings to the form bncm, with n,m ≥ 0. We must show that λ1 holds on a
string if and only if it is balanced (n = m).

If a string is balanced, each b forms the context of a chain with a distinct c, except
for the one that is immediately followed by a c (Figure 4.13a). In the former case,
#χc holds in positions labeled with b, while �χb holds in those labeled with c. In
the latter, #c and �b hold, respectively.

On the other hand, unbalanced strings adhere to the pattern shown either in Fig-
ure 4.13b or 4.13c. Because bs take precedence form # only, those in excess can form
a chain with the terminator symbol only, and #χc does not hold in such positions. A
similar statement can be made for positions in excess labeled with c, in which �χb
is false.

Formulas that denote L2 and L3 can be devised similarly. We can therefore obtain
a formula that denotes the whole L123:

Lemma 29. Language L123 is denoted by the formula

λ123 = (b ∨ f ∨ e) ∧ (b =⇒ λ1) ∧ (f =⇒ λ2) ∧ (e =⇒ λ3),

with respect to the OP matrix of Figure 4.12b, where λ1 is de�ned in Lemma 28, and

λ2 = 2
[(
f =⇒ (#χd ∨#d)

)
∧
(
d =⇒ (�χf ∨�f)

)]
,

λ3 = 2
[
¬c ∧ ¬d
∧
(
e =⇒ (#χf ∨#f)

)
(4.1)

∧
(
f =⇒ (�χe ∨�e) ∧#b

)
(4.2)

∧ (b =⇒ �f)
]
. (4.3)

Proof. Formula λ123 distinguishes whether the string belongs toL1,L2 orL3 by look-
ing at the label of the �rst string position, which is then used as the antecedent of im-
plications whose consequent is the λi formula that denotes language Li. This works
because each one of those languages contains strings that begin with a letter di�erent
from the others, and b∨ f ∨e makes sure that no string starting with a di�erent letter
is accepted.

We have already proved in Lemma 28 that λ1 denotes L1 under the OP matrix of
Figure 4.12a. With respect to b and c, the OP matrix of Figure 4.12b only di�ers from

53

l b l . . . l b l b
.
= c m c m . . . m c m #

(a)

l b l . . . l b l b l . . . l b l b
.
= c m c m . . . m c m #

(b)

l b l . . . l b l b
.
= c m c m . . . m c m c m . . . m c m #

(c)

Figure 4.13: Di�erent possible structures for strings according to the OP matrix of
Figure 4.12a. The string in (4.13a) is balanced, the one in (4.13b) contains more bs
than cs, and the one in (4.13c) has more cs than bs.

the latter because bs can be followed by fs (bm f). However, strings where at least a
b is followed by an f would not satisfy subformula #c that must hold in all positions
labeled with b, according to λ1, which is therefore still su�cient to denote L1.

A similar reasoning proves that λ2 correctly denotes L2, taking into account that,
despite f

.
= b, an f followed by a b would violate #d.

Formula λ3 denotes L3 in an analogous way: implications (4.1) and (4.2) make
sure es are balanced with fs, while #b and �f in (4.2) and (4.3) make sure each f is
followed by a b. Moreover, ¬c∧¬d prevent strings containing spurious letters from
being accepted.

Now that we have proved that language L123 can be expressed in OPTL, we can
state the following:

Theorem 30 (NWTL ⊂ OPTL). OPTL is strictly more expressive than NWTL.

Proof. In Theorem 27 we proved that for each NWTL there exists an equivalent OPTL
formula. We must now prove that there exists at least an OPTL formula for which no
equivalent NWTL formula can be given.

The authors of [AAB+08] proved that NWTL model checking can be performed
for any NWTL formula by building a nondeterministic Büchi nested word automaton
(BNWA) that only accepts runs satisfying that formula. As shown in [AM09], regular
languages of nested words correspond to the family of visibly pushdown languages,
and BNWAs can only accept such languages. In particular, language L123 was proved
not to be a VPL in [CRM12], and therefore it cannot be denoted by any NWTL formula.
However, in Lemma 29 we proved that L123 can be denoted by OPTL formula λ123:
consequently, there exists no equivalent NWTL formula.

54

Note that this result follows from the fact that OPTL is based on a wider class of
languages than NWTL, and it says nothing about the expressiveness of OPTL when
restricted to nested words.

4.6 Model-Checking
In this section, we present a model checking procedure for OPTL, �rst limited to �-
nite words, and later extended to in�nite words. This procedure allows to e�ectively
build a nondeterministic OPA recognizing models of an OPTL formula with at most
a number of states exponential in the length of the formula.

4.6.1 Model-Checking for Finite Words
Model-checking of OPTL formulas on �nite words is performed by following an au-
tomata theoretic approach. Given an OPTL formula ϕ, we will show how to build a
nondeterministic Operator Precedence Automaton A that only accepts models satis-
fying ϕ. Such an automaton is de�ned as A = 〈P(AP),MP(AP),Atoms(ϕ), I, F,
δ〉, where 〈P(AP),MP(AP)〉 is an operator precedence alphabet made of all subsets
of atomic propositions; Atoms(ϕ) is the set of atoms of ϕ, used as the states of A;
I and F are the sets of initial and �nal states, respectively; and δ ⊆ Atoms(ϕ) ×
(P(AP) ∪Atoms(ϕ))×Atoms(ϕ) is the transition relation.

We will �rst illustrate the way the automaton checks the satisfaction of linear
next and back operators, which is analogous to LTL model checking, while all other
operators will be separately treated afterwards. In order to de�ne Atoms(ϕ), we
de�ne Cl(ϕ), the closure of formula ϕ. Cl(ϕ) is the smallest set such that:

• ϕ ∈ Cl(ϕ);

• AP ⊆ Cl(ϕ);

• if ψ ∈ Cl(ϕ) and ψ 6= ¬θ for any OPTL formula θ, then ¬ψ ∈ Cl(ϕ);

• if any of ¬ψ, #ψ or �ψ is in Cl(ϕ), then ψ ∈ Cl(ϕ);

• if any of ψ ∧ θ or ψ ∨ θ is in Cl(ϕ), then ψ ∈ Cl(ϕ) and θ ∈ Cl(ϕ).

The set Atoms(ϕ) contains all sets Φ ⊆ Cl(ϕ) such that

• for every ψ ∈ Cl(ϕ), ψ ∈ Φ i� ¬ψ /∈ Φ;

• if ψ ∧ θ ∈ Φ, then ψ ∈ Φ and θ ∈ Φ;

• if ψ ∨ θ ∈ Φ, then ψ ∈ Φ or θ ∈ Φ.

The set of initial states I consists only of those atoms that contain ϕ, but not contain-
ing any � formula.

The way the three components δpush , δshift and δpop of the transition relation δ
are de�ned is crucial to enforce the satisfaction of temporal operators.

Push and shift transitions: for any Φ,Θ ∈ Atoms(ϕ) and a ∈ P(AP), (Φ, a,Θ) ∈
δpush and (Φ, a,Θ) ∈ δshift i�

1. for any p ∈ AP , p ∈ Φ i� p ∈ a;

55

2. #ψ ∈ Φ i� ψ ∈ Θ;
3. �ψ ∈ Θ i� ψ ∈ Φ;

Pop transitions: for any Φ,Θ,Ψ ∈ Atoms(ϕ), (Φ,Θ,Ψ) ∈ δpop i� Ψ is the smallest
set such that

4. Φ ⊆ Ψ;
5. for any p ∈ AP , p ∈ Φ i� p ∈ Ψ.

The satisfaction of linear next and back operators is ensured by shift and push
transitions, similarly to regular automaton transitions in LTL.

Note that constraint (4) prevents pop transitions from removing formulas inserted
by linear next operators. This is required because pop transitions do not actually
process terminal symbols, but shift and push transitions do: all formulae that hold
in a string position must be present in the state right before one of such transitions
consumes the related terminal symbol.

Finally, the set of the �nal states F must be de�ned, so that no string is accepted
if any of the requirements of temporal operators in formula ϕ have not been satis�ed.
So, of course for any Φ ∈ Atoms(ϕ) and #ψ ∈ Cl(ϕ), Φ 6∈ F if #ψ ∈ Φ. Also, we
must impose that AP ∩ Φ = {#}, because the automaton would otherwise accept
strings as if there was any other subset of AP in place of the terminal symbol #.

Matching-Next (#χ) Operator

Model checking of this operator works by exploiting the automaton’s stack to propa-
gate its requirements. In order to do this, the #χs and #χend auxiliary operators must
be introduced: if #χψ ∈ Cl(ϕ), then ψ,#χsψ,#χendψ,∈ Cl(ϕ). The satisfaction
of formula #χψ is ensured by constraints on the automaton’s transitions. For any
Φ,Θ,Ψ ∈ Atoms(ϕ) and a ∈P(AP), (Φ, a,Θ) ∈ δpush i�

1. if #χψ ∈ Φ, then #χsψ ∈ Θ and #χendψ 6∈ Θ;

(Φ, a,Θ) ∈ δshift i�

2. if #χψ ∈ Φ, then #χsψ ∈ Θ and #χendψ 6∈ Θ;

3. if #χsψ ∈ Φ, then also ψ ∈ Φ, #χendψ ∈ Φ, and #χendψ 6∈ Θ;

(Φ,Θ,Ψ) ∈ δpop i�

4. if #χsψ ∈ Θ, then #χsψ ∈ Ψ;

5. if #χsψ ∈ Φ, then also ψ ∈ Φ, #χendψ ∈ Φ, and #χendψ 6∈ Ψ.

In order to better explain how the above rules allow an automaton to check the #χ
operator, we will refer to an example automaton built to recognize words that satisfy
formula #χa, with respect to the OP matrix of Figure 4.14. For the sake of simplicity,
Figure 4.15 shows only part of this automaton. Figure 4.16 shows an accepting run of
the automaton, while Figure 4.17 shows a rejecting one.

In general, the automaton reads subsets ofAP with push and shift transitions. Due
to rule 1 from the previous section, when the automaton is in state Φ ∈ Atoms(ϕ),
it can only read symbols containing all and only the atomic propositions in Φ: this
is why push transition arcs in Figure 4.15 are labeled with all and only the atomic

56

a b c
a m l l
b m m l
c m m l

Figure 4.14: OP Matrix that will be used in the examples of Section 4.6.1.

propositions in the source state. Also, we use the convention stated in Section 4.2.1,
so the precedence relations are inferred from the structural labels typeset in boldface,
and each state must contain exactly one of them.

To model-check the #χ operator, the automaton proceeds in the following way:
suppose it is in state Φ ∈ Atoms(ϕ), with #χψ ∈ Φ, and let a ∈ P(AP) be the
terminal symbol that is about to be read. Then, the auxiliary operator #χsψ is inserted
into the next state thanks to constraint (1) (cf. step 1-2 of Figure 4.16). If a had been
read by a shift transition, constraint (2) would have ensured this. If the symbol a is
in the l relation with the next one, the latter triggers a push transition that stores
the next state, containing #χsψ, on top of the stack. Then the automaton proceeds
normally, until the last symbol b of the context of the innermost chain starting in
a is reached. This symbol triggers a pop transition that pops the previously stored
state containing #χsψ from the stack and, thanks to constraint (4), forces it into the
subsequent automaton state (cf. step 3-4 of Figure 4.16). Then, if a push transition
occurs, it means the current chain is not maximal: the transition simply stores the
state, again containing #χsψ, onto the stack, and the process is repeated. If, instead,
the next transition is a shift or a pop, then the chain ending in b is maximal, and ψ
must be enforced in the state that will hold when b is processed: this is ensured by
constraints (3) and (5) (cf. step 6-7 of Figure 4.16, and the last step of Figure 4.17, where
this rules cause string rejection). These two rules also enforce #χendψ in the current
state, marking the satisfaction of #χψ: this way, (1) and (2) also block computations
in which a chain does not start in a, but ψ holds into the next symbol.

Of course, the auxiliary operators #χs and #χend must be excluded from the
constraint that enforces containment of the previous state in the next one in pop
transitions, because once the appropriate maximal chain is reached, it must not be
propagated further.

As for the �nal states, note that an accepting run of the operator precedence au-
tomaton must end with the stack containing the initial symbol only: this already
ensures that the requirements of the #χ operators are satis�ed, because the stack
symbols containing their auxiliary operators must all be popped from stack. The only
exception is the last stack symbol before the initial one: the transition that pops it is
not followed by another pop or shift transition, which would block the computation
if the requirements of any #χ operator had not been satis�ed. Therefore, for any
formula #χψ ∈ Cl(ϕ), we must exclude from F all atoms containing #χsψ or #χψ.

Matching-Back (�χ) Operator

This time, only one auxiliary symbol is needed: if �χψ ∈ Cl(ϕ), then ψ,�s
χψ ∈

Cl(ϕ). For any Φ,Θ,Ψ ∈ Atoms(ϕ) and a ∈ P(AP), (Φ, a,Θ) ∈ δpush and
(Φ, a,Θ) ∈ δshift i�

1. if �χψ ∈ Φ, then �s
χψ ∈ Φ; and

57

a,#χa
q1

#
b,#χsa

q2

b
q3

a
q4

a,#χsa,#χenda

q5

#

q6
#

#,#χsa,#χenda

q7
#

a

b

q2

bb

q2 q1

a

q4

q2

Figure 4.15: Partial representation of the automaton built to recognize words satisfy-
ing formula #χa, with respect to the OP matrix of Figure 4.14. Since its large size
would make the whole automaton impractical to be represented, we only show the
states and transitions involved in the runs shown in Figures 4.16 and 4.17. Note that
the symbols read by the automaton are subsets of AP , but when they are singletons,
we represent them with the only proposition they contain.

step input state stack
1 a l b m b m a m# {a,#χa} ⊥
2 b m b m a m# {b,#χsa} [a, {a,#χa}]⊥
3 b m a m# {b} [b, {b,#χsa}][a, {a,#χa}]⊥
4 b m a m# {b,#χsa} [a, {a,#χa}]⊥
5 a m# {a} [b, {b,#χsa}][a, {a,#χa}]⊥
6 a m# {a,#χsa,#χenda} [a, {a,#χa}]⊥
7 a m# {a} ⊥
8 # {#} [a, {a}]⊥
9 # {#} ⊥

Figure 4.16: A computation of the automaton built for formula #χa accepting string
“abba”.

step input state stack
1 a l b m b m# {a,#χa} ⊥
2 b m b m# {b,#χsa} [a, {a,#χa}]⊥
3 b m# {b} [b, {b,#χsa}][a, {a,#χa}]⊥
4 b m# {b,#χsa} [a, {a,#χa}]⊥
5 # {#} [b, {b,#χsa}][a, {a,#χa}]⊥
6 # {#,#χsa,#χenda} [a, {a,#χa}]⊥

Figure 4.17: A non-accepting computation of the automaton for formula #χa read-
ing string “abb”. The run cannot proceed further because no pop transition can be
performed due to constraint (5), and the stack cannot be emptied.

58

2. if �s
χψ ∈ Θ, then ψ ∈ Φ, unless �χψ ∈ Θ;

(Φ,Θ,Ψ) ∈ δpop i�

3. if �s
χψ ∈ Ψ, then �s

χψ ∈ Θ.

Also, if Φ ∈ I , then �χψ 6∈ Φ.
The way the�χ operator is processed is similar to that of the #χ operators, except

that it works backwards. If �χψ holds in the automaton’s state Φ right before a
symbol b ∈ P(AP) is consumed by a shift or push transition, then the auxiliary
operator �s

χψ is enforced in Φ. If such transition is preceded by a pop transition, then
at least a chain ends in b, and the maximal chain is the one related to this last pop
transition: constraint (3) stores�s

χψ into the state popped from stack. This latter state
must have been put into the stack by a push transition: if this transition is preceded
by another pop transition, then the automaton is ahead of the beginning symbol a ∈
P(AP) of the maximal chain ending in b (there must be another chain in between),
and �χψ is again enforced into the previous stack symbol by such pop transition. If
the push transition is preceded by a shift or another push, then the automaton has
just reached a, and ψ must be enforced there (constraint (2)). This last constraint
requires that �χψ does not hold in the state where the shift/push transition brings
the automaton, because otherwise �χψ would be satis�ed even if ψ held in a word
position and �χψ in the consecutive one, which is wrong because there would not be
any chain between the two positions.

Path Operators

If formula ϕ contains any until or since operator, the automaton must be generated
with the following additional rules.

Operator Precedence Summary Until. For any Φ ∈ Atoms(ϕ) and O ⊆ {l, .=,
m}, if ψ UO θ ∈ Φ then ψ, θ,#χ(ψ UO θ),#(ψ UO θ) ∈ Cl(ϕ). Also, ψ UO θ ∈ Φ i�
at least one of the following holds:

1. θ ∈ Φ,

2. ψ ∈ Φ and #χ(ψ UO θ) ∈ Φ, or

3. ψ ∈ Φ and #(ψ UO θ) ∈ Φ.

If (1) holds, then ψ UO θ is trivially true; if (2) holds, the path skips the body of a
chain starting in the current position, where ψ holds; if (3) holds, then ψ is true in
the current position and the path continues in the next one. In the latter case, we
must make sure the path is followed only if the current position and the next one are
in one of the precedence relations contained in O. The following constraint must be
added to the de�nition of the transition relation: if only (3) holds in a state Φ and
ψ UO θ ∈ Φ, then for any a, b ∈ P(AP) and Θ ∈ Atoms(ϕ), with b = Θ ∩ AP ,
we have (Φ, a,Θ) ∈ δpush ∪ δshift only if a � b and � ∈ O. We need not impose
constraints on pop transitions because they do not consume input symbols, and they
preserve the same subset of AP contained in the starting state.

Furthermore, for any Φ ∈ Atoms(ϕ), if Φ ∈ F then ψ UO θ 6∈ Φ, unless θ ∈ Φ.

59

Operator Precedence Summary Since. For any Φ ∈ Atoms(ϕ) and O ⊆ {l, .=
,m}, if ψSO θ ∈ Φ then ψ, θ,�χ(ψSO θ),�(ψSO θ) ∈ Cl(ϕ). Moreover, ψSO θ ∈ Φ
i� at least one of the following constraints on Φ holds:

1. θ ∈ Φ,

2. ψ ∈ Φ and �χ(ψ SO θ) ∈ Φ, or

3. ψ ∈ Φ and �(ψ SO θ) ∈ Φ.

If only (3) holds in a state Φ ∈ Atoms(ϕ) andψSOθ ∈ Φ, then for any a, b ∈P(AP)
and Θ ∈ Atoms(ϕ), with b = Φ ∩ AP , we have (Θ, a,Φ) ∈ δpush ∪ δshift only if
a� b and � ∈ O.

Linear Until. The constraints for the linear until operator are those required by
usual ltl model checking. In more details, let Φ ∈ Atoms(ϕ), with ψ U θ ∈ Φ. Then
ψ, θ,#(ψ U θ) ∈ Cl(ϕ), and either θ ∈ Φ, or ψ ∈ θ and #(ψ U θ) ∈ Φ. Also, no �nal
state can contain formula ψ U θ.

Linear Since. Similarly, let Φ ∈ Atoms(ϕ), with ψS θ ∈ Φ. Then ψ, θ,�(ψS θ) ∈
Cl(ϕ), and either θ ∈ Φ, or ψ ∈ θ and �(ψ S θ) ∈ Φ.

Yield-Precedence Hierarchical Until. Let Φ ∈ Atoms(ϕ): if ψ U↑ θ ∈ Φ we
introduce the auxiliary operators U↑s and U↑end. We add ψU↑s θ,#(ψU↑s θ), ψU

↑
end θ ∈

Cl(ϕ), and #(ψ U↑s θ) ∈ Φ. The way the automaton deals with this operator is
similar to that of the #χ operator, by exploiting the stack of the automaton in order
to propagate auxiliary operators. The related constraints are enforced by the δpop
transition relation: given any Φ,Θ,Ψ ∈ Atoms(ϕ), we have (Φ,Θ,Ψ) ∈ δpop i�
ψ U↑s θ 6∈ Φ and ψ U↑end θ 6∈ Φ, and if ψ U↑s θ ∈ Θ, then either

• θ ∈ Ψ and ψ U↑end θ ∈ Ψ, or

• ψ ∈ Ψ and ψ U↑s θ ∈ Ψ.

Moreover, for any Φ,Θ ∈ Atoms(ϕ) and a ∈ P(AP), if (Φ, a,Θ) ∈ δshift then
ψ U↑s θ, ψ U

↑
end θ 6∈ Φ; and if (Φ, a,Θ) ∈ δpush then ψ U↑end θ 6∈ Θ.

To better illustrate how this de�nition works, we will refer to the example run
of Figure 4.18. Suppose Φ ∈ Atoms(ϕ) is the state of the automaton before reading
symbol a ∈ P(AP), and ψ U↑ θ ∈ Φ. As we did for #χ, ψ U↑s θ is �rst stored
onto the stack (step 1-2 of Figure 4.18). Then, the automaton proceeds normally, until
another symbol b such that al b is reached. At this point, state Θ is popped from the
stack, and the requirements of the ψ U↑ θ operator are enforced: if θ holds in the next
state, which contains formulae that are true when b is reached, then the hierarchical
until is satis�ed, and ψ U↑end θ is included into the next state in order to mark this
condition (cf. step 5-6). Otherwise, ψ must hold, and ψU↑s θ is again included into the
next state (step 3-4). Then, b is immediately read by a push transition, that stores the
new state on top of the stack, and prevents the propagation of the ψ U↑end θ symbol,
if present. Once another symbol that yields precedence to a is reached, the process
is repeated, unless θ held in b. When the outermost chain having a as the left part
of the context is reached, the pop transition described above is followed by either
another pop transition of a symbol c such that a m c, or a shift transition if a .

= c.

60

step input state stack
1 a l b m {b, r} m {b, s} m# q0 = {a, r U↑ s,#(r U↑

s s)} ⊥
2 b m {b, r} m {b, s} m# q1 = {b, r U↑

s s} [a, q0]⊥
3 {b, r} m {b, s} m# {b, r} [b, q1][a, q0]⊥
4 {b, r} m {b, s} m# q2 = {b, r, r U↑

s s} [a, q0]⊥
5 {b, s} m# {b, s} [{b, r}, q2][a, q0]⊥
6 {b, s} m# q3 = {b, s, r U↑

end s} [a, q0]⊥
7 # {#} [{b, s}, q3][a, q0]⊥
8 # {#} [a, q0]⊥
9 # {#} ⊥

Figure 4.18: A computation of the automaton for formula r U↑ s accepting string
“ab{b, r}{b, s}”. Again, we represent singleton subsets ofAP with the only element
they contain.

Position c must not be considered part of the hierarchical path: in order to enforce
this requirement, we impose that no pop or shift transition can occur if either ψ U↑s θ
or ψ U↑end θ hold in the current state, thus blocking the computation.

Again, the fact that an accepting run must end with an empty stack ensures that
all requirements are satis�ed, except those related to the last symbol popped from
stack. For this reason, states containing ψU↑s θ or ψU↑end θ are excluded from the �nal
set F .

Yield-Precedence Hierarchical Since. If ψ S↓ θ ∈ Φ, with Φ ∈ Atoms(ϕ), then
ψ S↓s θ, ψ S

↓
end θ,#χ(ψ S↓end θ) ∈ Cl(ϕ). Also, #χ(ψ S↓end θ) ∈ Φ must hold, and

the following constraints on the transition relation must be enforced: let (Φ,Θ,Ψ) ∈
δpop , with Φ,Θ,Ψ ∈ Atoms(ϕ);

1. if ψ S↓end θ ∈ Ψ, then ψ S↓s θ ∈ Θ;

2. if ψ S↓s θ ∈ Ψ and θ 6∈ Ψ, then ψ ∈ Ψ and ψ S↓s θ ∈ Θ.

For any Φ,Θ ∈ Atoms(ϕ) and a ∈P(AP), if (Φ, a,Θ) ∈ δshift or (Φ, a,Θ) ∈ δpush
then ψ S↓s θ 6∈ Θ.

The rationale behind this de�nition is similar to that of the �χ operator. Suppose
ψ S↓ θ holds in a state Φ ∈ Atoms(ϕ), associated to the terminal symbol a ∈P(ϕ).
Then the auxiliary operator ψS↓end θ is enforced through a #χ operator into the state
that holds right after the stack symbol related to the outermost chain starting with
a is popped. Constraint (1) then makes sure the other auxiliary operator ψ S↓s θ is
stored into the stack symbol mentioned above. Every time the stack symbol related
to a position that is part of the yield-precedence hierarchical path is popped from
stack, constraint (2) ensures that either θ holds in the next position in the path, which
ends there, or ψ holds in there, along with ψ S↓s θ, which ensures the prosecution of
the path. The last constraint on push and shift transitions prevents the �rst position
right after a from being considered part of the path.

Note that the acceptance conditions of #χ(ψ S↓end θ) already ensure the satisfac-
tion of formula ψ S↓ θ before the end of the string.

Take-Precedence Hierarchical Until. Let Φ ∈ Atoms(ϕ), with ψU↓ θ ∈ Φ: then
ψ U↓s θ, ψ U

↓
end θ,�ψ,�θ ∈ Cl(ϕ). For any Φ,Θ ∈ Atoms(ϕ) and a ∈ P(AP), if

(Φ, a,Θ) ∈ δshift or (Φ, a,Θ) ∈ δpush then

61

step input state stack
1 {c, r} l {c, s} l c m a m# q0 = {c, r,#χ(r U↓ s)} ⊥
2 {c, s} l c m a m# q1 = {c, s,#χs(r U↓

s s),�r} [{c, r}, q0]⊥
3 c m a m# q2 = {c,�s} [{c, s}, q1][{c, r}, q0]⊥
4 a m# {a, r U↓ s} [c, q2][{c, s}, q1][{c, r}, q0]⊥
5 a m# {a, r U↓ s, r U↓

s s} [{c, s}, q1][{c, r}, q0]⊥

6 a m#


a, r U↓ s, r U↓

s s,

#χs(r U↓ s),

#χend(r U↓ s)

 [{c, r}, q0]⊥

7 a m# q3 = {a, r U↓ s, r U↓
end s} ⊥

8 # {#} [a, q3]⊥
9 # {#} ⊥

Figure 4.19: A run of the automaton for formula #χ(r U↓ s) accepting string
“{c, r}{c, s}ca”.

1. ψ U↓s θ 6∈ Θ, and

2. if ψ U↓ θ ∈ Φ then ψ U↓end θ ∈ Φ.

Moreover, for any Φ,Θ,Ψ ∈ Atoms(ϕ), if (Φ,Θ,Ψ) ∈ δpop then

3. if ψ U↓end θ ∈ Ψ then ψ U↓s θ ∈ Φ;

4. if ψ U↓s θ ∈ Ψ then either �θ ∈ Θ, or �ψ ∈ Θ and ψ U↓s θ ∈ Φ.

Of course, if ψ U↓ θ ∈ Φ then Φ 6∈ I .
Figure 4.19 shows an example accepting run for a formula containing this operator.

Let Φ ∈ Atoms(ϕ) be the state of the automaton just before processing a ∈P(AP).
The consistency of ψU↓θ ∈ Φ is checked during the pop transitions that remove from
the automaton’s stack the symbols related to all chains ending with a. First, constraint
(2) introduces the auxiliary operator ψU↓end θ into the state of the automaton after the
last pop transition (cf. step 6-7 of Figure 4.19). Then, this last transition introduces
ψ U↓s θ into the previous state (constraint (3)): this way the position in which the
outermost chain begins is not a�ected, as it is not part of the take-precedence path
(it does not take precedence from a). Thanks to constraint (4), all subsequent pop
transitions must either enforce θ in the position b in which the chain starts, by having
�θ into the popped stack symbol, and letting the path end (cf. step 3-4), or they
enforce ψ in b, and let the path continue by leaving ψ U↓s θ in the previous state (cf.
step 2-3). In order to disallow paths that do not end with a position in which θ holds,
ψU↓s θ cannot be the �nal state of any push or shift transition, and in particular of the
one the consumes the terminal symbol right before a, which is not part of the path.

Take-Precedence Hierarchical Since. Let Φ ∈ Atoms(ϕ) be a state in which
ψ S↑ θ holds. Then we add ψ S↑s θ, ψ S

↑
end θ ∈ Cl(ϕ), and we impose the following

constraints on the transition function. For any Φ,Θ ∈ Atoms(ϕ), and a ∈ P(AP),
if (Φ, a,Θ) ∈ δpush or (Φ, a,Θ) ∈ δshift then

1. if ψ S↑ θ ∈ Θ, then ψ S↑s θ ∈ Θ;

2. ψ S↑s θ, ψ S
↑
end θ 6∈ Φ.

62

For any Φ,Θ,Ψ ∈ Atoms(ϕ), if (Φ,Θ,Ψ) ∈ δpop we have

3. if ψ S↑ θ ∈ Ψ then ψ S↑ θ ∈ Φ;

4. if ψ S↑s θ ∈ Φ and �θ ∈ Θ, then ψ S↑end θ ∈ Ψ;

5. if ψ S↑s θ ∈ Φ and �θ 6∈ Θ then �ψ ∈ Θ and ψ S↑s θ ∈ Ψ.

Finally, if ψ S↑ θ ∈ Φ, then Φ 6∈ I .
The constraints for this operator work in a way similar to those of theU↓ operator,

except for the fact that here the auxiliary operator S↑end is used to mark the chain
in which the take-precedence hierarchical path ends with θ, thus preventing it from
being the outermost chain with constraint (2). Moreover, constraint (3) forces formula
ψ S↑ θ ∈ Ψ to hold since the �rst pop transition, so that (1) always puts ψ S↑s θ into
the state of the automaton just before such transition.

Complexity

The construction procedure described above yields the following result:

Theorem 31. For any OPTL formula ϕ, it is possible to build an OPA of size 2O(|ϕ|)

that accepts models satisfying ϕ.

4.6.2 Model-Checking for In�nite Words
Model-checking of OPTL can be performed on ω-words by constructing a generalized
nondeterministic Operator Precedence Automaton (cf. ωOPBA, [LMPP15]) Aω =
〈P(AP),MP(AP),Atoms(ϕ), I,F, δ〉, where all components are the same as those
of the �nite-word counterpart A, except for F, which is a set of sets of Büchi-�nal
states. An ω-word is accepted by the automaton if and only if at least one state from
each one of the sets in F appears in�nitely often in a run. The way the automaton
enforces the requisites entailed by temporal operators is the same as described for the
�nite-word case: the only di�erences are in fact the acceptance conditions, and we
will only illustrate the modi�cations needed in order to adapt a �nite-word automaton
to use Büchi acceptance conditions.

The main problem that arises when doing so, is the fact that ωOPBA acceptance
conditions only depend on the automaton’s in�nitely recurring states, and say noth-
ing about the stack, which may never be empty. This forces us to introduce new
auxiliary operators that keep track of the requirements of temporal operators such
as the matching-next and yield-precedence hierarchical until, because the previously
introduced auxiliary operators may remain buried into the stack, never being popped
and having a chance to enforce the requirements they hold.

Matching-Next (#χ) Operator

In order to de�ne a Büchi-acceptance condition for this operator, we need to intro-
duce the auxiliary operators #χp and #χωend. For any formula #χψ ∈ Cl(ϕ), we
add #χpψ,#χωendψ ∈ Cl(ϕ). The #χp operator will be inserted into the next au-
tomaton’s state whenever #χψ holds, and it will continue being propagated into sub-
sequent states until the outermost occurrence of #χψ is satis�ed, which implies all
pending occurrences of #χψ have also been satis�ed. To mark this event, #χωendψ
is also inserted into the current state. This is accomplished by adding the following

63

a b
a l .

=
b m m

#l a l a l a
.
= b m b m. . .

#χb #χb #χpb #χpb #χpb

0 1 2 3 4 5

Figure 4.20: An example of OP ω-word with never-ending chains.

constraints on the transition relation: for any Φ,Θ,Ψ ∈ Atoms(ϕ) and a ∈P(AP),
(Φ, a,Θ) ∈ δpush and (Φ, a,Θ) ∈ δshift i�

1. if #χψ ∈ Φ, then #(#χpψ ∈ Θ);

2. if #χpψ ∈ Φ, then #χpψ ∈ Θ;
(Φ,Θ,Ψ) ∈ δpop i�

3. #χωendψ ∈ Ψ i� #χendψ ∈ Ψ and #χpψ 6∈ Θ;

4. if #χpψ ∈ Φ, then #χpψ ∈ Ψ, unless #χωendψ ∈ Ψ.
Also, if (Φ, a,Θ) ∈ δpush then #χωendψ 6∈ Φ (so we are sure #χωendψ only appears
in maximal chains).

In this way, the presence of #χpψ in a state reveals the fact that a stack symbol
contains #χsψ, and the requirement of at least a #χψ formula is pending. When all
such requirements are satis�ed, formula #χωendψ appears.

It may happen that multiple instances of the same #χψ formula are pending at the
same time. This is what happens in the example of Figure 4.20, where formula #χb is
required to hold in positions 1 and 2, the instance in position 1 being the outermost. In
this case, when an inner instance of #χψ is encountered, then #χpψ will be already
present in the automaton’s state thanks to constraint (1), and it will be pushed on
stack with #χsψ. Therefore, these inner instances of #χ can be recognized because
the stack symbol that carries their auxiliary operator #χsψ also carries #χpψ. So,
we insert the #χωendψ operator only when #χpψ is not present in the popped stack
symbol, so the automaton does not stop propagating #χpψ if the outermost instance
of #χψ has not been satis�ed yet. Indeed, in the above example the instance of #χb
of position 2 is satis�ed in position 5, but since the one of position 1 is not, #χpb does
not stop being propagated, and unless the chain starting in 1 is closed with a b, this
word is rejected by the automaton, because #χpb occurs in in�nitely many states,
and #χωendb does not.

Therefore, we may de�ne the set F#χψ ∈ F so that for any Φ ∈ Atoms(ϕ),
Φ ∈ F#χψ i� either #χpψ 6∈ Φ or #χωendψ ∈ Φ. This makes sure that every #χ
operator is satis�ed in�nitely often, if it is required to hold in�nitely often.

As for the �χ operator, the rules given for the �nite case su�ce to ensure its
satisfaction in the in�nite case, because its requirements are in the past, and must be
already satis�ed when it is encountered.

Path Operators

Operator Precedence Summary Until. For any formula ψUO θ and setO ⊆ {l,
.
=,m}, we introduce the Büchi acceptance set FψUOθ ∈ F, such that Φ ∈ FψUOθ if
either

64

• ψ UO θ 6∈ Φ or

• θ ∈ Φ and #χp(ψ UO θ) 6∈ Φ.

Note that also the acceptance conditions for the #χ(ψ UO θ) operator are involved,
and they prevent words with never-ending chains that delay the satisfaction ofψUO θ
from being mistakenly accepted.

Other Summary/Linear Operators. As for the linear until, the acceptance con-
ditions are very similar to this last case, and they are exactly the same used in LTL
model checking. Also, the since counterparts of these operators do not require Büchi
acceptance conditions, because they regard the past.

Yield-Precedence Hierarchical Until. The acceptance conditions for this opera-
tor are very similar to those for the #χ operator, since they both rely on stack symbols
to propagate their requirements. We will therefore introduce the additional auxiliary
operators U↑p and U↑ωend, of which the �rst is kept into the automaton’s states until all
instances of U↑ with the same arguments are satis�ed, marking the fact that their re-
quirements are still pending, and the second marks the satisfaction of all such pending
requirements.

So, if ψ U↑ θ ∈ Cl(ϕ), then we add ψ U↑p θ, ψ U
↑
ωend θ,# # (ψ U↑p θ) ∈ Cl(ϕ),

and for any Φ ∈ Atoms(ϕ), if ψ U↑ θ ∈ Φ then # # (ψ U↑p θ) ∈ Φ. The following
constraints on the transition relation are also needed: for any Φ,Θ,Ψ ∈ Atoms(ϕ)
and a ∈P(AP),

• if (Φ, a,Θ) ∈ δshift and ψ U↑p θ ∈ Φ, then ψ U↑p θ ∈ Θ;

• if (Φ, a,Θ) ∈ δpush and ψ U↑p θ ∈ Φ, then ψ U↑p θ ∈ Θ, unless ψ U↑ωend θ ∈ Φ.

Moreover, (Φ,Θ,Ψ) ∈ δpop i�

• ψ U↑ωend θ ∈ Ψ i� ψ U↑end θ ∈ Ψ and ψ U↑p θ 6∈ Θ;

• if ψ U↑p θ ∈ Φ, then ψ U↑p θ ∈ Ψ.

Additionally, we need another constraint that prevents ψ U↑end θ from appearing in
states where it should not: if (Φ,Θ,Ψ) ∈ δpop and ψ U↑end θ ∈ Ψ, then ψ U↑s θ ∈ Θ
and θ ∈ Ψ.

Again, these rules exploit the fact that ψ U↑p θ is included into the stack symbols
related to inner instances ofψU↑θ, andψU↑ωendθ is only inserted when such auxiliary
operator is not present, thus marking the states in which all instances are satis�ed.

Finally, we can de�ne the setFψU↑θ ∈ F so that for any Φ ∈ FψU↑θ eitherψU↑p θ 6∈
Φ or ψ U↑ωend θ ∈ Φ.

OtherHierarchical Operators. Regarding the yield-precedence hierarchical since
(S↓), the acceptance conditions related to #χ(ψ S↓end θ) su�ce to ensure its satisfac-
tion. Moreover, no further acceptance conditions are needed for the take-precedence
hierarchical operators, since their requirements must be satis�ed in the past.

65

Complexity

The auxiliary operators added in the construction of the ωOPBA only cause a linear
increase in the size of the set Cl(ϕ), thus leaving the overall complexity unchanged:

Theorem 32. For any OPTL formula ϕ, it is possible to build an ωOPBA of size 2O(|ϕ|)

that accepts models satisfying ϕ.

66

Chapter 5

Conclusion

In this thesis, we have introduced OPTL, a novel temporal logic formalism, and proved
that it is strictly more expressive than the formalisms constituting the state of the art.
OPTL allows to express properties that could not be tackled by the main preexisting
temporal logics, namely LTL and the already more expressive NWTL. We started in-
vestigating its expressive power by comparing it to NWTL, and by �nding an initial
subset of operators that is expressively adequate. However, concerning expressive
power, a crucial issue remains open: the comparison with First Order Logic. A FO-
completeness result, which was previously achieved in the literature for both LTL and
NWTL, will certainly be essential for the success of OPTL in the �eld of model check-
ing, because it would be the assurance that OPTL is capable of expressing a signi�cant
portion of OPL-expressible properties.

After achieving such a result, the actual use of OPTL for model checking is the
next natural question to be tackled. In this thesis, we gave an automata theoretic pro-
cedure similar to the classic one for LTL [VW86]. It allows to build a nondeterministic
OPA of size exponential in the length of the speci�cation, accepting only models of
this speci�cation. The determinization of such an automaton would imply a further
exponential “jump” in complexity. Therefore, one of the next research steps would
be to study the actual implementation of OPTL model checking. In this respect, the
results obtained for OPL parallel parsing [BCRMP13], due to the peculiar properties
of OPLs, are promising for the possible exploitation of parallelism for OPTL model
checking.

Finally, we acknowledge that the complexity and the consequent steep learning
curve of OPTL and similar temporal formalisms (such as LTL, CTL, CTL* and NWTL),
could be an obstacle to their actual utilization in the industry. This problem could be
tackled by introducing a more higher-level and informal interface for OPTL, requiring
a signi�cantly less sharp mathematical skill than writing a well-formed OPTL formula
expressing an informal requirement.

67

Bibliography

[AAB+08] Rajeev Alur, Marcelo Arenas, Pablo Barcelo, Kousha Etessami, Neil Im-
merman, and Leonid Libkin. First-Order and Temporal Logics for Nested
Words. Logical Methods in Computer Science, Volume 4, Issue 4, Novem-
ber 2008.

[AEM04] Rajeev Alur, Kousha Etessami, and P. Madhusudan. A temporal logic of
nested calls and returns. In Kurt Jensen and Andreas Podelski, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages
467–481, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[AKMV05] Rajeev Alur, Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan.
Congruences for visibly pushdown languages. In Luís Caires,
Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti
Yung, editors, Automata, Languages and Programming, pages 1102–1114,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Pro-
ceedings of the Thirty-sixth Annual ACM Symposium on Theory of Com-
puting, STOC ’04, pages 202–211, New York, NY, USA, 2004. ACM.

[AM06] Rajeev Alur and P. Madhusudan. Adding nesting structure to words. In
Oscar H. Ibarra and Zhe Dang, editors, Developments in Language The-
ory, pages 1–13, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[AM09] Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J.
ACM, 56(3):16:1–16:43, May 2009.

[BCRM+14] Alessandro Barenghi, Stefano Crespi-Reghizzi, Dino Mandrioli, Feder-
ica Panella, and Matteo Pradella. The PAPAGENO Parallel-Parser Gen-
erator. In Albert Cohen, editor, Compiler Construction, pages 192–196,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[BCRM+15] Alessandro Barenghi, Stefano Crespi-Reghizzi, Dino Mandrioli, Federica
Panella, and Matteo Pradella. Parallel parsing made practical. Science of
Computer Programming, 112:195–226, 2015.

[BCRMP13] Alessandro Barenghi, Stefano Crespi-Reghizzi, Dino Mandrioli, and
Matteo Pradella. Parallel parsing of operator precedence grammars. In-
formation Processing Letters, 113(7):245–249, 2013.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of push-
down automata: Application to model-checking. In CONCUR ’97:

68

Concurrency Theory, pages 135–150, Berlin, Heidelberg, 1997. Springer
Berlin Heidelberg.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[BS92] O. Burkart and B. Ste�en. Model checking for context-free processes.
In CONCUR ’92, volume 630 of LNCS, pages 123–137. Springer Berlin
Heidelberg, 1992.

[Büc62] J. Richard Büchi. On a decision method in restricted second order arith-
metic. In International Congress in Logic, Methodology and Philosophy of
Science, pages 1–11. Stanford University Press, 1962.

[BVCR+13] Alessandro Barenghi, Ermes Viviani, Stefano Crespi-Reghizzi, Dino
Mandrioli, and Matteo Pradella. PAPAGENO: A parallel parser generator
for operator precedence grammars. In Software Language Engineering,
pages 264–274, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Bü60] J. Richard Büchi. Weak second-order arithmetic and �nite automata.
Mathematical Logic Quarterly, 6(1-6):66–92, 1960.

[CMP18] M. Chiari, D. Mandrioli, and M. Pradella. Temporal Logic and Model
Checking for Operator Precedence Languages. ArXiv e-prints, Septem-
ber 2018. arXiv:1809.03100.

[CP17] Stefano Crespi-Reghizzi and Matteo Pradella. Higher-order operator
precedence languages. In Erzsébet Csuhaj-Varjú, Pál Dömösi, and
György Vaszil, editors, Proceedings 15th International Conference on Au-
tomata and Formal Languages, AFL 2017, Debrecen, Hungary, September
4-6, 2017., volume 252 of EPTCS, pages 86–100, 2017.

[CRM12] Stefano Crespi-Reghizzi and Dino Mandrioli. Operator precedence and
the visibly pushdown property. Journal of Computer and System Sciences,
78(6):1837–1867, 2012. JCSS Multidisciplinary Emerging Networks and
Systems (MENS).

[CRMM78] Stefano Crespi-Reghizzi, Dino Mandrioli, and David F. Martin. Algebraic
properties of operator precedence languages. Information and Control,
37(2):115–133, 1978.

[CVWY92] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-
e�cient algorithms for the veri�cation of temporal properties. Formal
Methods in System Design, 1(2):275–288, Oct 1992.

[DB96] Koen De Bosschere. An Operator Precedence Parser for Standard Prolog
Text. Software: Practice and Experience, 26(7):763–779, 1996.

[DDMP17] Manfred Droste, Stefan Dück, Dino Mandrioli, and Matteo Pradella.
Weighted Operator Precedence Languages. In Kim G. Larsen, Hans L.
Bodlaender, and Jean-Francois Raskin, editors, 42nd International Sym-
posium on Mathematical Foundations of Computer Science (MFCS 2017),
volume 83 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 31:1–31:15, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

69

[Ear70] Jay Earley. An e�cient context-free parsing algorithm. Commun. ACM,
13(2):94–102, February 1970.

[Elg61] Calvin C. Elgot. Decision problems of �nite automata design and re-
lated arithmetics. Transactions of the American Mathematical Society,
98(1):21–51, 1961.

[FG04] Markus Frick and Martin Grohe. The complexity of �rst-order and
monadic second-order logic revisited. Annals of Pure and Applied Logic,
130(1):3–31, 2004. Papers presented at the 2002 IEEE Symposium on
Logic in Computer Science (LICS).

[Fis69] Michael J. Fischer. Some properties of precedence languages. In Proceed-
ings of the First Annual ACM Symposium on Theory of Computing, STOC
’69, pages 181–190, New York, NY, USA, 1969. ACM.

[Flo63] Robert W. Floyd. Syntactic analysis and operator precedence. J. ACM,
10(3):316–333, July 1963.

[Har78] Michael A. Harrison. Introduction to Formal Language Theory. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1978.

[Kam68] Hans Kamp. Tense logic and the theory of linear order. PhD thesis, Uni-
versity of California, Los Angeles, 1968.

[Knu65] Donald E. Knuth. On the translation of languages from left to right.
Information and Control, 8(6):607–639, 1965.

[LMP11] Violetta Lonati, Dino Mandrioli, and Matteo Pradella. Precedence au-
tomata and languages. In Alexander Kulikov and Nikolay Vereshcha-
gin, editors, Computer Science – Theory and Applications, pages 291–304,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[LMP13] Violetta Lonati, Dino Mandrioli, and Matteo Pradella. Logic character-
ization of invisibly structured languages: The case of Floyd languages.
In Peter van Emde Boas, Frans C. A. Groen, Giuseppe F. Italiano, Jerzy
Nawrocki, and Harald Sack, editors, SOFSEM 2013: Theory and Practice
of Computer Science, pages 307–318, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[LMPP15] Violetta Lonati, Dino Mandrioli, Federica Panella, and Matteo Pradella.
Operator precedence languages: Their automata-theoretic and logic
characterization. SIAM Journal on Computing, 44(4):1026–1088, 2015.

[LMS05] Christof Löding, P. Madhusudan, and Olivier Serre. Visibly pushdown
games. In Kamal Lodaya and Meena Mahajan, editors, FSTTCS 2004:
Foundations of Software Technology and Theoretical Computer Science,
pages 408–420, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[LTNP07] Salvatore La Torre, Margherita Napoli, and Mimmo Parente. The word
problem for visibly pushdown languages described by grammars. Formal
Methods in System Design, 31(3):265, Oct 2007.

70

[McN67] Robert McNaughton. Parenthesis grammars. J. ACM, 14(3):490–500, July
1967.

[Meh80] Kurt Mehlhorn. Pebbling mountain ranges and its application to dc�-
recognition. In Jaco de Bakker and Jan van Leeuwen, editors, Automata,
Languages and Programming, pages 422–435, Berlin, Heidelberg, 1980.
Springer Berlin Heidelberg.

[MP18] Dino Mandrioli and Matteo Pradella. Generalizing input-driven lan-
guages: Theoretical and practical bene�ts. Computer Science Review,
27:61–87, 2018.

[OS17] Alexander Okhotin and Kai Salomaa. The quotient operation on input-
driven pushdown automata. In Giovanni Pighizzini and Cezar Câm-
peanu, editors, Descriptional Complexity of Formal Systems, pages 299–
310, Cham, 2017. Springer International Publishing.

[OS18] Alexander Okhotin and Kai Salomaa. Further closure properties of
input-driven pushdown automata. In Stavros Konstantinidis and Gio-
vanni Pighizzini, editors, Descriptional Complexity of Formal Systems,
pages 224–236, Cham, 2018. Springer International Publishing.

[Pnu77] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (SFCS 1977), pages 46–57, Oct 1977.

[PPLM13] Federica Panella, Matteo Pradella, Violetta Lonati, and Dino Mandrioli.
Operator precedenceω-languages. In Marie-Pierre Béal and Olivier Car-
ton, editors, Developments in Language Theory, pages 396–408, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[SC85] A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. J. ACM, 32(3):733–749, July 1985.

[Tra61] Boris A. Trakhtenbrot. Finite automata and logic of monadic predicates.
Doklady Akademii Nauk SSSR, 140:326–329, 1961.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program veri�cation. In Proceedings of the First Symposium on
Logic in Computer Science, pages 322–331. IEEE Computer Society, 1986.

71

	Introduction
	Visibly Pushdown Languages
	Visibly Pushdown Automata
	Visibly Pushdown omega-Automata
	MSO-Logical Characterization of VPLs
	Nested Words Temporal Logic

	Operator Precedence Languages
	Operator Precedence Grammars
	Operator Precedence Automata
	Operator Precedence omega-Languages and Automata
	MSO-Logical Characterization of OPLs

	Operator Precedence Temporal Logic
	Syntax
	Shortcuts

	Semantics
	Algebraic Structure
	The Chain Relation
	Operators

	Examples
	Parenthesized Expressions
	Function Calls and Interrupts

	Equivalence between Operators
	An adequate set

	Relationship with Nested Words
	Containment
	Strict Containment

	Model-Checking
	Model-Checking for Finite Words
	Model-Checking for Infinite Words

	Conclusion

