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Interest rate derivative pricing and calibration in multicurve extension models

by Stefano GEROSA

The recent financial crisis has driven practitioners to elaborate multicurve models
for term structure. Here we study two multicurve extensions on interest rate model:
a parsimonious multicurve three parameters extension of the well-known Hull &
White model and a multicurve seven parameters extension of a three Gaussian fac-
tors exponentially quadratic short rate model. These models allow obtaining closed
exact formulas for main vanilla derivatives on interest rate, in particular here we
concentrate on linear swap and non-linear swaption interest rate derivatives. Cali-
bration for both models involves initial discount and pseudo-discount curves con-
struction, about that Mr. Crab Bootstrap methodology is described. Calibration is-
sues are discussed in details, moreover Matlab codes are provided and performance
issues are addressed.
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Introduction

In European markets underlying rates of interest rate derivatives are typically Eu-
ribor or Libor, these rates are determined by a group of banks and thus they reflect
counterparty and liquidity risk in the interbank market.

The recent crisis has pointed out this particular sort of risks and has shown that the
standard (pre-crisis) non-arbitrage relation between Euribor/Libor rates of differ-
ent maturities does not hold anymore while significant spreads between rates with
different tenor have been observed, in particular between 'risky’ rates and risk-free
ones such as Overnight Indexed Swap rates.

This scenario has led to the extension of the pre-crisis single curve framework to a
multicurve setting where future cash flows are no more generated via discounting
curves, but thought curves associated to underlying rates (as many curves for each
tenor structure considered) while the discounting curves sees its role reduced pre-
cisely to discount future cash flows.

In this thesis two multicurve extensions of existing single curve interest rate models
are considered, for both of them we give closed exact pricing formulas of two of the
main derivatives on interest rates: swap and swaption.

The former is a contract that actually allows swapping at certain predefined dates a
floating rate with a fixed one while the latter gives the opportunity at a predefined
maturity date to enter into a swap contract.

Besides, we propose a calibration algorithm, a fundamental practice that allows
these theoretical model frameworks to be adapted to the market conditions in or-
der to be then properly used by practitioners.

The most important contributions in this thesis are:

e corrections of the theoretical pricing methodology for swap and swaption con-
tracts under the Exponentially Quadratic short rate model described in K. Glau
et al. (2016);

e extension of the pricing formulas to contracts whose fixed and floating legs’
frequencies are no longer equal;

e addition of a fundamental hypothesis to obtain swaption closed formulas;
e proposal of a cascade calibration methodology to calibrate this model;

e implementation of a Matlab library to price swaptions with closed formula and
Monte Carlo algorithm and to calibrate the model.

More in details the thesis is structured as follows. In Chapter 1, it is presented the
bootstrap extension to a multicurve framework, a necessary first step to the calibra-
tion cascade. The entire methodology is borrowed from previous work in the field
by Baviera and Cassaro (2015) and it is implemented on Matlab and the results are
shown in the last section of the chapter, the dataset used is available and can be ac-
cessed on www.mate.polimi.it/qfinlab/baviera/data/Market Data_Crab.xls.

In Chapter 2 it is addressed the multicurve extension of the Hull and White model,
a parsimonious three parameters model, we present swap and swaptions pricing
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formula following the derivation explained in in the work of Baviera (2017), the for-
mulas are then implemented in Matlab for later use during calibration algorithm.
The thesis Chapter 3 represents the core of the work: starting from the multicurve
Exponentially Quadratic Model suggested by K. Glau et al. (2016) swap and swap-
tion closed exact formulas are corrected and then generalized relaxing hypothesis
that gives the formulas a better look despite their applicability in practice. A Monte
Carlo relative formula for swaptions is derived in order to validate the new closed
exact formula obtained, the whole is implemented and tested in Matlab. The model
in question is a seven parameters three Gaussian factors short rate model belonging
to the Exponentially Quadratic class.

In Chapter 4 the calibration cascade issue is addressed and its methodology explained,
given a set of data on swaptions volatilities, results of calibration on both models are
shown and discussed. Besides it will be only presented an alternative methodology
calibration for the Exponentially Quadratic multicurve model.

Finally, Chapter 5 discusses upon issues met during code writing on Matlab about
code time performance, improvements are given and described, some of them in-
volving the Parallel Computing Toolbox of Matlab.

In Appendix A we report some math deductions while the most relevant Matlab
scripts and functions are reported in Appendix B.



Chapter 1

Dual Curve Construction

In this first chapter, the goal is to describe the algorithm, known as Curve Construc-
tion, used in order to obtain discount factors starting from the most liquid quoted
instruments in the interbank market, such as:

e cash deposits (from here on depos);
e Forward Rate Agreement (FRA);
¢ Interest Rate Swap (swap).

Before the 2007 crisis, the algorithm used was a forward-looking iterative one, in the
sense that in order to obtain the next curve’s knot only information from previous
knots was used, besides just one curve was constructed and it was used for both
discounting and computing forward rates. Instead, it is now commonly accepted
by practitioners to consider a dual curve framework, involving a discounting curve,
used as the name suggests to discount future cash flows and a pseudo-discounting
curve used to compute forward rates. It is important to underline that a different
pseudo-discounting curve is needed for each tenor considered due to credit risk re-
lated to borrowing/lending at various time horizons.

The Bootstrap algorithm is not unique, the one here described is a backward-forward-
looking iterative algorithm, hence the name Crab’s Bootstrap, in fact like the crab on
the sand moves forward, backward and then forward again we need to do some
backward step when constructing the pseudo-discounting curve due to the fact that
we must consider only instruments with the same tenor.

In the context of this thesis, we consider only a six-month tenor Euribor rate, that’s
the reason why our bootstrap construction does not involve Short-Term Interest Rate
Futures that does not exist with six months Euribor as underlying.

1.1 Discounting curve

First of all we indicate with B(to, t;) the discounting curve with start date t; (settle-
ment date) and end date t;, the curve knots are the first three weeks, every month till
one year, every quarter form first to second year, every year form two up to thirty
years. As it is standard in the market (see e.g. Henrard (2010)) we choose the EO-
NIA curve as the discounting curve, the bootstrap technique is standard and takes
into consideration Overnight Indexed Swap (from here on OIS) rates (indicated with
Rois(to, t;)) with increasing maturities (¢; — to).

The procedure is simple and can be summarized in two steps, in the first one we
consider OIS with maturities shorter than one year:

1

B(to, ti) =
(0 z) 1_|_5(t0,ti)ROIS(t0fti)
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where J(to, t;) represents the year fraction corrisponding to the lag (to, t;) evaluated
with ACT /360 convention.

The second step formula, for maturities greater than one year, is obtained imposing
Net Present Value (hereinafter NPV) of the future swap cash flows to zero and then
inverting the formula, getting:

B(to, ;) — 1 — Rois(to, t:) Y~ 6:B(to, tr)
o 1+ 6iRors(to, ti)

where §; = §(fo, t;).

1.2 Pseudo-discounting curve

This part of the algorithm is the one that truly defines and gives the name to the
procedure, we consider the six months Euribor curve as pseudo-discounting curve,
indicated with B(ty,t;), and we compute the curve on the following curve knots:
each month up to six months, each semester up to two years, annually up to thirty
years.

The forward-backward iterative methodology can be split into five steps:

1. Compute the six months pseudo-discount using six months depos rates (L(t, t4)):

) 1
B(to, te) = 1+ 6(to, te)L(to, te)

where the year fraction convention is ACT/360.

2. Consider the 6x12 FRA (F(to; ts, t12)) and compute the forward pseudo dis-

count: 1
B(to; te, t12) = -
(f0; £, £12) 1+ 0(te, t12) F(to; te, tr2) .

where for FRA the year fraction convention is always ACT/360.
Then inverting the definition of forward pseudo discount, moving forward
and computing the one year pseudo discount:

B(to, t12) = B(to, te)B(to; te, t12) (1.2)

3. Now it comes the backward step, in fact we have to conveniently use equation
(1.1) to obtain B(to; t;, tire) withi = 1,2,,..,5 from 1x7, 2x8,.., 5x11 FRA rates.
Then we must obtain B(to, ti1¢) with i = 1,2,,..,5 via linear interpolation on
zero rates using six months and one year pseudo discount factors and finally

use: _
T (to; ti, tite)

withi=1,2,,.,5.
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to, Im 2m 3m 4m bm 6m 7m B8m 9m 10m 11m 1y
’ : pseudo discount obtained from market data

’: pseudo discount obtained via interpolation
rrrrr : forward step

: backward step

FIGURE 1.1: Forward and backward steps in Mr Crab’s Boot-
strap

4. Compute the first two values of F(to; to, ts) and F(to; te, t12) forward rates in-
terpolating the pseudo-discounts on curve knots, while F(to; t12, t1g) is found
imposing NPV of the 18 months swap to zero:

I(1) — 6(to, te) B(to, te) F(to; to, te) — 0 (te, t12) B(te, t12) F(fo; te, t12)

F(tg; t12,t18) =
(o7 ta2, hrs) 0(t12,t18) B(t12, t13)

where the year fraction convention is ACT /360 and
I(1) = S(to, t18)(6(to, te) B(to, ts) + O(te, t18)B(ts, t1s))

with 30/360 annual convention and S(fo, t;3) represents the quoted 18m swap
rate.
Furhtermore we have:

1(2) — 1(1)
S(t1s, t24) B(t1s, toa)

F(to; t1g, tos) =

where 1(2) = S(to, t2) Y2_, 6xB(to, tr) with S(to, t2) the two years swap rate.

5. finally we must take into consideration quoted swap rates starting from the
third year, we want to use coherently formula (1.2) where B(to, ti_1) has al-
ready been obtained in previous steps while the forward pseudo discount fac-
tors have to be computed in this way:

_ 1
B(to; ti1, i) = i>2
' 1 keI}i) 1+ 5kF(t0/ tk*ll tk)

where k € Y(i) indicates six months forward rates in the i-th year, these two
values have to be found via interpolation, in this case, the interpolation rule
we choose to select is a log-linear one on pseudo discounts.

This final step is the only one involving a numerical solver method due to the
fact that we do not have the final pseudo discount value in order to perform
the interpolation, so we need to find it imposing the corresponding swap NPV
to zero.
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Before showing the numerical results we must point out that whatever interpola-
tion rule is chosen (linear on zero rates or log-linear on pseudo discounts) the year

fraction has to be taken with ACT /365 convention.

1.3 Numerical Results

In this section, our aim is to show numerical results of the methodology described
in the previous sections using EURO interbank market data on 13 September 2012.
In the following tables are shown the actual data we used in the implementation of

the dual curve Bootstrap algorithm described.

OIS rate (%)

Swap rate vs 6m (%)

1w
2w
3w
Im
2m
3m
4m
5m
6m
7m

0,105
0,106
0,105
0,102
0,096
0,089
0,082
0,076
0,074
0,073
0,073
0,074
0,076
0,078
0,079
0,088
0,103
0,122
0,146
0,277
0,463
0,676
0,883
1,074
1,242
1,390
1,520
1,638
1,741
1,963
2,089
2,141
2,177

0,465

0,473

0,513
0,632

0,813
1,021
1,225
1,410
1,573
1,714
1,838
2,050
2,253
2,356
2,390
2,412

TABLE 1.1: OIS rates and swap rates vs EURIBOR 6m end of the day

In this table only real rates are inserted, in order to find annually rates

mid quotes on 13/9/12.

we choose to use a cubic spline interpolation rule.
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TABLE 1.2: Depo’s and FRAs’ rates end of the day mid quotes on

In Figure 1.2 below we plot the zero rates curves corresponding to discounting
and pseudo-discounting curves when consider EONIA as discounting curve and
EURIBOR 6m as underlying for the pseudo-discounting one. As we expected due
to credit and counterparty risk the pseudo discounting curve’s zero rates are higher

rate (%)
6m Depo 0,493
1x7 FRA 0,459
2x8 FRA 0,444
3x9 FRA 0,431
4x10 FRA 0,425
5x11 FRA 0,425
6x12 FRA 0,424

13/9/12.

than the respective discounting rates.

25

05

FIGURE 1.2: Zero rates discount and pseudo-discount curves on 13

EURO zero rates

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Years (from Sept 2012)

September 2012



Chapter 2

A Multicurve Gaussian HJM
Model

In this chapter, we aim to introduce and discuss a Multicurve Gaussian HJM Model
(hereinafter MHJM model), a three-parameters multicurve extension of the well-
known Hull and White model (1990).

The multicurve perspective of this model is justified by the 2007 crisis, that has
shown large spreads in interbank markets like EUR or USD, moreover, the param-
eters’ parsimony is a crucial feature considering that in today markets volumes on
exotic derivatives and liquidity have decreased even on plain vanilla instruments.
In the following section we will introduce and discuss the financial quantities on
which the model is based, the model itself and the pricing of some of the main
vanilla Interest Rate (from here on IR) options; all the results are borrowed from
previous literature work by Baviera (2017), hence we remind to this specific article
for main results’ proofs.

2.1 Basic Financial Quantities

Since our main goal is to price swaptions in this section we recall some key rela-
tions between main quantities on which our model and swaptions’ pricing are con-
structed.
Let’s start introducing (), .#,IP) a complete filtered probability space under which
our framework will work, in particular given a value date ty .# represents a collec-
tion of filtration .%; with t > t; and IP is the objective probabilistic measure.
As introduced in the previous chapter let B(t, T) and B(t, T) be the discounting and
pseudo-discounting curve with ty < t < T while D(t, T) will represent the stochas-
tic discount factor. From here on with [E; we will indicate the expected value given
Z; under the martingale measure Q. In line with the first chapter let L(T, T + A) be
the Libor rate between lag A (in our contest we will consider EURIBOR 6 months,
ie. A = 6m).
Finally we can define the discounting curves forward spread as

B(t; T, T+A)

Bt T, T+A) = BT, T1A) (2.1)

The only property curves’ spread has to satisfied is the T-forward martingality prop-

erty:
B(t, T)B(t;T, T+ A) =E;D(t, T)B(T, T + A)] (2.2)
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2.2 The model

MH]JM model is constructed upon forward discount and spread curves dynamics
taking into consideration that the first one must be a martingale under t,-forward
measure while the second under t;-forward measure:

dB(t;ty, t;) = —B(t;to, t;)[o(t, t;) — o (t, ta)] - [AW: + po(t, ta)dt], t € [to, ta]
dp(titi tiv1) = (i ti, tiva) [y(t tiva) —n(t ;)] - [AW: + py(t, ti)dt], t € [to, 1]
(2.3)

where o (t,T) and #(t, T) are d-dimensional vectors of deterministic functions of
time such that o (t,t) = #(t,t) = 0, W; is a d-dimensional Brownian motion under
Q with covariance matrix p.
Once observe that iAW} = dW, + po(t,t;)dt is a Brownian motion under #;-forward
measure the martingale properties are trivial. The dynamics of the forward pseudo-
discounting curve can be derived applying Ito’s Lemma to the equation in (2.1) and
using dynamics in (2.3) (here the dynamic is expressed under the t;-forward mea-
sure):

dB(t:ti, ti1) = —B(t: ti, i) [03(t) + mi(1)] - [AW] — pi(t)dt], t € [to, ti]

where o;(t) = o (t,ti11) — o(t,t;) and ;(t) = 5(t, tiy1) — 5(t, t;). Furthermore it can
be observed that the pseudo discounts volatilities are the sum between discounts
and spread volatilities.

In the following we will consider a one dimensional version of this framework
model with Hull-White-like volatilities:

o(t,T) = (1 =7)o(t,T)

n(t,T) =yv(t,T) (2.4)
o(t, T) = =" (a > 0) + (T — )l (a = 0)

where a,0 € R" and y € [0, 1] are the three model parameters while I(x) represents
an indicator function that returns one if x is true otherwise zero.

In view of the following lemma it occours to introduce some shorthands to lighten
the notations otherwise too heavy:

Un,i = O(tu, t)
)\tx,l = ( 7)0 i (25)
Vpi = /\oc,z - (U(ta/ 1+1) (tt’é/ ti))

Using (2.4) and the other relations in (2.5) one can write v, ; = v, ;+1(7; — 7) where
vi = % € (0,1), then it is easy to observe that while v,; and A,; are strictly
positive and t; time increasing and so actually volatilities, vy,; could potentially be
negative depending on 7, we call them extended volatilities.
We are now ready to state the following lemma that is simply an application of Ito’s
formula to dynamics (2.3) using definitions in (2.4) and (2.5):

Lemmal Let ¢ = f;}“ e~ (=)W g Gaussian random variable with zero mean and vari-
ance V2 = #H(u > 0) + (ty — to)I(a = 0) then, according to MHJM model (2.3)
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and curves” initial condition in to, discount and spread curve in t, could be expressed as:

2 V2
B(ta, ;) = B(to; ta, t;)e it~ 2~

2 2

Bt tistiv1)B(ta ti) = B(to, ti, tiv1)B(to; ta, ti)e Veis™ "2~

2.3 Interest Rate Swap pricing

First of all we give the definition of a receiver IR swap: given two collections of dates
{t/}ica41,.0 and {t;i}x—g+1, @, @ swap starting in t, is a financial contract where a
stream of interest payments on the notional is received at a fixed rate R at the dates
t; in exchange for paying, at the dates t;, an analogous stream corresponding to the
Libor rate. A payer swap is a perfectly symmetric contract where the fixed rate is
paid but in this chapter, we concentrate only on the receiver one.

Let us introduce additional shorthands notation:

By,i(t) = B(£ ta i)
By i(t) = B(t; ta, 1)
Bi(t) = B(5:E, tii)
(5 O(ti, tiy1)

(t:’ 1+1)
i =0i1R+1(i = w)

where the year fractions convention with respect to fix leg is 30/360 annual Euro-
pean while with respect to floating leg is ACT/360.

The price of a receiver swap in t € (to, t,) starting in f, with strike rate R is the dif-
ference between the NPV of the fixed leg and the NPV of the floating leg.

Since the price derivation is dealt with in details in the work by Baviera (2017), here
we only report the final formula

P(t; t,, {ti}, {ti},R)) = ch 0iByiv1(t) — B(t, ty) + B(t, tw) — af B(t,t)[Bi(t) — 1]

(2.6)

24 European Swaption pricing

We start recalling that an european swaption is an option to enter at a time f, into a
swap starting in t,, we consider here the receiver swap described in previous section
and we will assume that £}, = t,.

By definition the payoff of such contract must be max (P (t,; ty, {t;}, {t},R),0) and
then its price has to be with respect to t,-forward measure:

P (to; tu, {ti}, {ti}, R) = Egy[D(to, tu)max (P (tu; tu, {t;}, {t:}, R),0)]
= B(to, ta)Ef [max(P™" (ta; to, {t;}, {t:},R),0)] (2.7)
= B(to, ta)Ef [PO™" (t,)]

where in the last equality PO™""(t,) stands for receiver swaption payoff evaluated
at option’s expiry.
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Furtheremore using (2.6) in the payoff expression one gets:

w w—1 w—1
PO (1) :max< Y cBus(t) - Y Buslt)— Y @(ta)Ba/,i(ta),o) 2.8)
i=a+1 i=a+1 =

Lemma 1 from section The model will help us rewrite the payoff (2.8) as a function
of Gaussian random variable ¢, even if this function in not always monotonic for
every possible choice of the three model parameters it always has one unique zero,
a property that turns out to be fondamental in order to find an easy closed formula
for swaptions. Here we only report the statement:

Lemma 2 Receiver swaption payoff (2.8) under MHJM model (2.3)-(2.4)-(2.5) can be writ-
ten as a function f (&) with an unique zero in {* for every parameters’ choice, moreover the
function is positive V¢ < ¢*.

< 2 w1 2V
f(&) =Y ciBui(to)e M€ "7+ Y By (tg)e Mot T
i=a+1 i=a+1

2 . v2
i

w—1
- Z :Bi(tO)BM,i(to)e_Va/iér— L
i=n

Applying Lemma 2 to (2.8) and substituting the resulting expression in (2.7) allow to
obtain the closed swaption pricing formula:

w * w—1 *
Prsw”(to; ta, {t;}, {ti}/ R) = Z C,‘Ba,i(to)qD(%/ + V/\,X,,') Z B“/J'(t())q) (%’/ + V/\zx/,i>
i=a+1 i=a+1
w—1 g*
_ Z ,Bi(tO)BD(’,i(tO)q)<V + VVM,i)
=
(2.9)

where with ® we indicate the standard normal cumulative distribution function.
We stress again that the reader interested in the exhaustive pricing methodology can
find it in Baviera (2017).
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Chapter 3

An Exponentially Quadratic Model

In the previous chapter we have considered a multicurve model extension of an
Heath-Jarrow-Morton (HJM) setup, now we want to introduce, discuss and develop
a multicurve extension of another typical pre-crisis single-curve model class. In par-
ticular we want to extend to a multicurve setting the less well-known exponentially
quadratic short rate model, we stress again the importance to extend every model
to a multicurve setting, for this particular model the transition between the two set-
tings is made adding a short rate spread to the short rate itself for every possible
tenor structure considered.

More in details we will consider a dual curve model, a discounting and a pseudo-
discounting one (the first to discount future cash flow, the latter to generate future
cash flow), thus considering a single tenor structure (in particular it will be a six-
month tenor structure). We should then introduce a factor model for the short rate
and its spread, usually in the IR literature the most common factor class is the ex-
ponentially affine one, for which in order to guarantee rates” and spreads’ positivity
one has to consider square root models that eventually lead to involved distribu-
tion such as noncentral chi-squared distribution. Here instead we will consider an
Exponentially Quadratic model (EQM) whose factor class has a more convenient
Gaussian distribution.

3.1 Martingale Measure

Before starting we must say that we want to keep where possible the same notation
already introduced in previous chapters in order to naturally link the two different
model, nevertheless where necessary some already discussed financial quantities
will be recalled therefore avoiding a boring backward research.

As usual we indicate with B(t, T) the discount factors and with B(t, T) the pseudo
discount factors while f(t,T) = — %l n B(t, T) represents the instantaneous forward

ot
rate, r; = limr_; f(t, T) the short rate and BtOIS = ot the OIS bank account, that
represents the numeraire for the standard martingale measure Q under which our
model is build.
We have already introduce the stochastic discount factor but here we want to ex-
T
press its dependence with the short rate D(¢,T) = e~ Ji it then substituting we

get B(t,T) = E; [e* I ’“d"]. In the following we label with s; the short rate spread
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related to the six months tenor, we can then replicate these financial quantities con-
sidering the short rate plus spread:

f(t, T) = —%In B(t,T)
i = limy_; f(¢, T)
(t, T) — e ftT Fudu
B(t,T) = E;[e~ ftTT‘udu]

Where fu = 1"1, + Su.
Our goal is now to define a model for Libor rate: before the crisis it was consider

equal to the discrete compounding forward rate (F(t,T,T + A) = %(% —1))
while now it is commonly accepted to consider the Libor-OIS spread and so to de-

fine the forward Libor rate starting from the pseudo discounting curve:

. B 1 B(t,T)
LET,T+A) = 5(T,T+A)<B(t,T+A) _1) 61

3.2 The exponentially quadratic short rate model

We need a dynamical model for both the short rate and its spread under Q martin-
gale measure, as already said the two basic factor model classes are the exponentially
affine and the exponentially quadratic, both of them allow for flexibility and analyt-
ical tractability and this, in turn, allows for closed formulas for linear and optional
IR derivatives.

We have chosen the latter class in order to deal with more comfortable distribution
of the factors with the agreement to introduce a quadratic term in both short rate and
spread. For the model factors, we have selected a mean reversion Gaussian distribu-
tion lead by an Ornstein-Uhlenbeck (OU) dynamic with zero-mean reversion level
and a positive mean reversion parameter. We want to stress that the linear term of
our model can potentially lead to negative values of rates and spreads, although
only with small probability due to the mean reversion parameter’s positiveness.
We chose the minimal number of Gaussian factors that guaranteed anyway the pos-
sibility to introduce correlation between rate and spread:

d¥; = —b;¥idt + odWi, ¥} = 9; i =1,2,3 (3.2)

with b;,0; > 0, ¢; = const and Wti three independent Q-Brownian motions that
ensure factors’ independence. The model we choose for short rate and its spread
takes into consideration an independent idiosyncratic risk factor for both short rate
and spread:

{ft =¥+ (¥9)? (33)

s =¥+ (¥9)?

where k € [—1, 1] is the correlation coefficient.

3.3 Bond prices (discount and pseudo-discount)

The main goal of this section is to find a theoretical explicit formula for B(t, T) and
B(t,T) given the EQM model defined by (3.2)-(3.3).
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Let us start rewriting in a vectorial form (3.2):
d¥; = FY¥.dt + DdAW;

where ¥; = (¥} Y? ¥?)', F = —diag(by, by, b3), D = diag(cq,02,03) and ’ denotes
the transposition operator.
Besides let the instantenous forward rates be:

. i} _ _ (3.4)
f(t,T)=a(t,T)+b'(t, T)¥: + ¥ic(t, T)¥:

{ F(t,T) =a(t, T) +b'(t, T)¥; + Fie(t, T) ¥,
wherea(t,T), b(t,T), c(t, T) and their respective bar versions are respectively scalar,
vector and symmetric-matrix-valued functions , differentiable with respect to ¢. Re-
calling definitions of short rates and substituting (3.4) we get:

re=a(t) + b/ () ¥ + ¥ie(t) ¥, (3.5)
- + .

b'(H)¥: + ¥ie(t)¥

where a(t) = a(t,t), b(t) =b(t,t), c(t) = c(t,t) and the same relations still hold for
quantities” bar version. Comparing (3.3) and (3.5) we obtain the following condition
a(t) =a(t) =
b(t) =(10 ) b(t) = (1+x00) (3.6)
c(t) = diag(0,1,0), &(t) = diag(0,1,1)

Now if we invert relations holding for the instantaneous forward rate and bond
prices and we substitute (3.6) we have:

{B(t, T) = e AWT)-B(ET)¥ ¥ C(HT)Y, )

B(t, T) = e~ AT -BET Y -¥CHT)Y,

where A(t,T) ft a(t,u)du, B(t, T) ft b(t,u)du, C(t,T) ft c(t, u)du.

Our ob]ectlve is therefore to obtam the expressions of the time dependent functions
A(t,T), B(t,T), C(t,T) and their respective bar versions, we have included them
into the following proposition, in whose proof it is shown the procedure needed in
order to obtain them.

Proposition 1 Assume the EQM model introduced in the previous section (see (3.2) and
(3.3)), then bond prices are given by

B(t,T) = e~ AWT) BT -CtT)(¥7)? 68

B(t, T) = efﬁ(t,T)f(K+1)B(t,T)‘I’}7C(t,T)(‘Ff)27C_(t,T)(‘Y?)2 (3.9)
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where
(t, ) G ftb T tu T du +U§ ft u T)du M ftT BZ(M, T)du
B(t,T) = % o
Clt,T) = 2 W2 = \/4b2 + 802 '
s 2h2+(2b2+h2)(€h2(T,f)_1)/ = 5 5
C(t,T) = 2(e7T0-1) W =\ /4b2 + 802
() = e ey T VA%

Proof 1 We want to find Ordinary Differential Equations (ODE) for the time-dependent
coefficients applying the well-known HJM drift condition. In the following (in particular
in Appendix A) we show how to obtain ODEs for not bar quantities, obviously, for the bar
quantities the procedure is exactly analogous.

Applying Ito’s lemma to f(t, T) in (3.4) one gets:

df(t,T) = [a;(t, T) + bi(t, T)¥; + Yici(t, T)¥; + 2¥;Fc(t, T)¥; + tr(Dc(t, T)D)]dt
+ [b/(t, T)D + 2¥;c(t, T)D]dW;
(3.11)

Let us call the drift u(t, T) while o (t, T) the volatility, then we can applay the well-known
HJM dirft condition u(t,T) = o' (t,T) ft o (t, u)du that leads to:

T T
u(t, T) = 4¥c(t, T)D? / c(t, u)du¥; + 2¥.c(t, T)D? / b(t, u)du
r _ (3.12)
21’ (¢, u)D? /t c(t, u)du¥; + b’ (t, u)D? /t b(tu)du
Now we have to equate the quadratic, linear and constant term of (3.11) and (3.12), then
observe that the equations must be valid for every ¥y, integrating with respect to T variable
and so get the following ODEs:

(Ci(t, T) +2FC(t, T) — 2C(¢, T)D2C( ,T) +¢ci(t) =0,C(T, T) =0
Ci(t,T) +2FC(t, T) — 2C(¢t, T)D*C(t, T) + &(t) = 0,C(T,T) =0

B:(t,T) + FB(t,T) —2CD?B(t,T) + b(t) = 0,B(T,T) =0

Bi(t, T) + FB(t, T) —2CD?*B(t,T) + b(t) = 0,B(T, T) = 0

Ai(t,T) + tr(DC(t, T)D) — 3B/(t, T)D*B(t,T) +a(t) = 0,A(T,T) =0
A(t,T) +tr(DC(t, T)D) — 1B'(t, T)D*B(t, T) + a(t) = 0, A(T,T) =0

\

The final condition are found imposing that B(T,T) = B(T,T) = 1.
Now observe that the first ODE has only one non trivial solution, the second two with one
coinciding with the first ODE solution:

{Ct(t, T) —2b:C(t,T) — 203C*(t,T) +1 =0, C(T,T) =0 (3.13)

Ci(t,T) —2b5C(t, T) — 203C*(t,T) +1 =0, C(T,T) =0
These are both Bernoulli ODEs after a change of variable with final condition whose solution

is indicated in (3.10).
Between the six ODEs representing by the third and fourth vectorized ODEs only two are
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non zero, they are:

{Bt(t, T) - blB<t1 T) + (314)

Bi(t,T) — 1 B(t, T) +

whose solution can simply be obtained.
To close the proof we sould rewrite the last two scalar ODEs of the system and observe that
the expression for A(t, T) and A(t, T) in (3.10) are exactly solutions of these ODEs.

2 C12R(ET) — _
{At(t,T)+02C(t,T) 207 B%(t, T) =0, A(T,T) =0 (3.15)

A(t,T)+02C(t, T)+ 03C(t, T) — 302B%(t,T) =0, A(T,T) =0

We remind to Appendix A for all the details. Finally, (3.8) and (3.9) are easily obtained from
(3.7) and the discussion above about the non-trivial solution of ODEs.

Remark 1

e For the time functions coefficient B we have chosen an italic format only to avoiding
confusion with discount factor B(t, T).

e In the case of h* and h® the apexes represents indices and not powers, they are put at
apex because later on we will introduce hy and again we want to distinguish them.

e In the process of implementing the code, when possible, we always try to find an ana-
lytic formula for the integral left unsolved like the ones on the previous statement, here
some of their closed formula:

21 212 +(2by+12) (T—t
n |:2b2(gh2(Tt)1)+}12(eh2<Tt)+1) ( 2 )( )

(2by 1+ 12) (26, —1%)

2In 2 +(2b3+-h3) (Tt
|:2b3 (eh3(T’t)fl) +h3 (eh3(T*t)+l) ( ° )( )

T —_
Jo Clu, T)du =2 (255 +17) (205 1)

T 120 _ 26y (T—)—e~ 21T 4 4o~ 01(T-1) _3
|Ji B*(u, T)du = T

[ C(u, T)du =2

3.4 Forward measure

In light of the following sections where the goal will be to price some IR derivatives,
it is now necessary to introduce the martingale forward measure. Let us indicate
with QT the T-forward measure with B (t, T) as numeraire, then the Radon-Nikodym
process will be defined as

dQ'|  B(4T)

L, == | —=_2\r"J
' dQ | B(0,T)BY

from which using Proposition 1 and applying Ito formula (remembering that £; is a
Q-martingale by definition) is easy to obtain its dynamics:

AL = Li(—nB(t, T) —20,C(t, T)¥? 0)-dW2

where W2 = (W2 W2? W>?)’ while from now on W/"T with i = 1,2,3 represent
QT independent Brownian motions.
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In this section we want to find expected values and variances of the three factor
processes under the QT forward measure, in order to achieve this objective we need
first their dynamics under the appropriate probabilistic measure and then we must
apply Girsanov’s theorem (thQ = (—oB(t, T) —20,C(t, T)¥? 0)'dt+dW])to
the Q dynamics expressed in (3.2):

d¥! = —[by'¥! + 02B(t, T)]dt + o1 dW}T
d¥? = —[by + 202C(t, T)|¥2dt + crdW}" (3.16)
d¥3 = —b3¥3dt + o3dW>T

As it can be easly observed the third factor is independent from the change of mea-
sure while, for what concerned the first gaussian factor, now the mean-reversion
level is no more equal to zero.

In order to compute the two moments of the distributions it is helpfull to introduce
the following result which gives us the analytic solution of a SDE of the OU type.

Lemma 3 Given an appropriate probabilistic measure and a process with dynamic dX; =
(a(t)X¢ + b(t))dt + cdW; and deterministic initial condition Xy, the analytic solution of
the SDE is

X; = ¢(t) <Xt0 n /t: 5)(<Z))du n t: cPETu)dW”)

t
where ¢(t) = gl 20
After being defined a/" = ET[¥!] and B/ = Var! (¥}) where with IE” we represents
the expected value under T-forward measure, we only have to apply Lemma 3 to
our three factors and then simply evalutate the expected value and variance of the
stochastic processes to find the following results under the T-forward measure:

2 2
a},T — e hi(t=to) [1}’}0 _ ‘Ll(ebl(t—to) _ 1) + ﬂe—blT(ebl(Zt—to) _ eblto)]

b? 207
1T o} 2by (t—to)
L —to
t = 2b1(1 e . )
2T _ w2 ,—by(t—tg)—205Cins(t;to, T
‘Xt _\Ftoe 2( 0) 2 mt( 0 ) (317)
%T = 0—223*252040)*4‘722Cim(t;fo,T) tt 2b2 (1—t0) +403 Cint (wito, T)
0

“%/T — IIJ'::) e*bg,(t*to)
0

3T _ 03 —2bs(t—t
; — ﬁ(l —e 3( 0))

where Cynt(£:t0, T) =

C(u, T)du.

3.5 Interest rate swap pricing

Definitions and notations are very similar to the ones reported in Chapter 3- Section
2.3, in this chapter we change slightly the notation and we consider a payer swap.
Let {T,{ }k=1,.n be a collection of dates corresponding to the floating leg (receiving
dates) and {T} };_1, n corresponding to fixed leg (payment dates), Ty swap’s start-
ing date, R strike rate and (5{ =0 (T]{_l, ka ) the year fraction between two receiving
dates with Act/360 convention while with (5,f = (5(T,ffl, T,f ) the year fraction be-
tween two payment dates with 30/360 European convention.

As usual the arbitrage-free price at time t < Tj of such a contract is found imposing
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to zero the NPV in t (in order to easier the notation we impose to one the notional):
psw (. f F _ f fy F F
PPt To, { T, } ATk },R) = NPV/(t,To, {T;; }) — NPV (t, To, {T} }, R)

n T N
= Y B(,T))S[E, [L(TL,, T)] - ) B(t, T{)§R
k=1

I
.
™= 1
N

B(t Tf)IEka[ ! ] [i B(t, /) +R i B(t, TF)oF
I — |~ ’ s L )Ok
S B TC VR v B =

»
I
—_

(3.18)

where in the last equality it was used (3.1).

In the expression (3.18) the key component to be calculated is the expected value
which can be rewritten using (3.9) from Proposition 1 and the independence of the
gaussian factors in the following way:

2
1)B,¥?! C G (3
o ol I S R S EY [e () E% e (e (3.19)
t t t

where in order to easier the notation we imposed:

Ay = A(T,{ 1,Tf)

k ( k 17 )
Cr = C(T[ ,,T))
G = C! ,{ y Tf )

Given the fact that our final goal is to price a swaption, we want to write the ex-
pectation conditional on the filtration in # as random variable extrapolated from a
stochastic process at time ¢, here’s why we now introduce two lemmas that will help
us achieve our goal.

Lemma 4 If K € R and a stochastic process has an Hull-White dynamic of the type dX; =
(a(t) —bX;)dt +odW; then Ey[e ¥X] = 2T =BT X ith o (t, T) and B(t, T) solutions
of the following ODEs

{ Bi(t, T) — bB(t, T) = 0 { w(t,T) = a(t)p(t, T) — G p2(1, T)
B(T,T) =K «(T,T) =0

Lemma 5 Let X; be a stochastic process with dynamic dX; = b(t) X;dt + cdW;.
Then YC € R such that E4[eCX7] < oo we have E[eXt] = e*(T)=BETIXE with a(t, T)
and B(t, T) solutions of the following ODEs

Bi(t, T) +2b(t)B(t, T) —20°B*(t,T) =0 [ as(t, T) = o?B(t, T)
{ B(T,T) = —-C { «(T,T) =0

We highlight that, when applying Lemma 4 to ¥ T and Lemma 5 to Y2 T and Y3 o

we must consider, conditional to the actual recelvmg date, the proper QTk forward
measure in order to be sure to use the right process dynamic; in the following we
report the forward dynamics of the three gaussian processes under the Q' measure
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(c.f. system (3.16)):

d¥! = —[by¥! + 02B(t, T))]dt + ord W,
d¥2 = —[by 4 202C(¢, T )] ¥2dt + ord W2
d¥3 = —b3¥3dt + o3dW
We list the results (for details calculations see Appendix A):
First factor

o (k+1)BY!
E" [e 1] = T (T Y]

oMt T ) = <K+1>Bke (T (3.20)
1 f o2 (T I f )2 > (T, JAPS| f
T (t,Tk — % ft u T )) du—i—O'1 ft B(u, Tk )p (u,Tk_l)du

Second factor

( 2
F o Ce(¥?
IEZ“k [e k( Tl{—l) ] _ erz(f,T,{_l)—pz(f,Tf )(¥2)2
Crexp{—2by(Ty_1—t)—40; k ! C (u Tf)du}
2T ) = Ceesp (B (T 2J: (3.21)
202C; [, ¥V exp{—2by(T ,{ 1—w)—402 [ k LC(u Tf)du}dw 1

/ 4 f
I2(t, T, )= —03 [, T 0*(u, T, 1)du

Third factor
By (Tifl)z] T (T (82
AT ) = ;f,ff ;z(bk”fj)_”l,with e = el (322)
1“(1,‘Tk1 f“ 03 (u, T, |)du

Remark 2

e Obviously apexes for p* and T are indices and not powers.
o Lemma 3 hypothesis is naturally satisfied.

o The followings are the analytic solution of the integrals that appear in the formulas
(the ones that can be analytically solved of course):

[T (1, T/ )2 = (OBE (1 _ 21,1
1
ﬁqu B(u, T,{)pl(u, TI{— )du = (K;;)Bk (e_bl( T/ -1 ,) _ e—bl(T;{'f‘T;{,l—%) + ze—bl(T;{,l—t)

oy (00 1) 2 (PO )
2In 7 +(2by+h2) (T—t)
2y (eh <Tk71’t)—1) +h2 (eh2(T*f>+1)

(2bz+h2f)(2b2—h2)
bse 203(7] 1{ 1 -5 agck( 2637, k-1 t)) £
In —2b3(Tk71—t)

f
[ e, Tdu =2

b3

T
[ 5 0% (u, T,{fl)du =

2
203

_2)
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It is of foundamental importance to observe that, while p!(, T,{_l) and p%(t, T,{_l)

are continous and at least one time f-differentiable functions Vk = 1, .., n, p3(t, T,{_l)
could potentially lead to a singularity of the second type given the fact that the de-
nominator could became null for a certain value of time t and a possible choice of

the model’s parameters. If this singularity falls within the interval (¢, T,{_1 ), the cor-
responding Cauchy problem formed by the ODE and the final condition in T{fl is
extensible backward from TI{—l to the singularity plus an € that goes to 0.

It is clear that a solution at a time u such that t < u < Ti_y, i.e. prior the second
order discountinuity (T;_1) could theoretically be found, but it would be required to
have a initial /final condition prior the singularity, a condition that we clearly can’t
found in any way;, that is the reason why we must restric our model’s parameter in
a way that ensures that for every k the eventual singularities fall out of the interval

(¢, T,{_l). Due to the complexity of the function Cy involved this condition will be
given in a implicit way:

HO : (b3, 03 st (4030 < 0) V (Tey <tV Ty > T/ L)) Vhk=1,.,n
In(402hy)

with kal = Tl{—l — 2bs

Finally substituting (3.19)-(3.20)-(3.21)-(3.22) into (3.18) we are only left some calcu-
lation to do and we get the following result.

Proposition 2 Under the model (3.2)-(3.3) and hypothesis HO the price of a payer swap is:
PP (4 Ty, {T/ Y {TE}, R) = Y Dyge M P¥i=CHl (xiP-Gf 2
k=1

N
_ i e*A{ik*sz‘Y}*C{k(‘P%)z +R Z (Slfe_AtF,k_BtF,k‘Y}—CtF,k(‘P%)z
k=1 k=1
(3.23)
where for i € {f, F} we have:
Al = At TY), B, = B(t, ?,g), Cl, =C(t,Ti)

5 ~2 =3,
Bl =Bl +p'(t, T, ), C = ka +02(LTL), Gl =01, TL)) (3.24)
D, = PALFT T )T (T )

AT (T )

Proof 2 First of all, we have to substitute (3.19)-(3.20)-(3.21)-(3.22) into (3.18) in order to
obtain:

PP( T AT] AT} R) =
n f 1 f 201 mf 3¢ 7f 1 f 1_ 204 7f 2\2_ 30 f 3)2
Z B(t, Tk )er (t/kal)‘i‘r (t,Tk71)+r (t/kal)_P (tlTk71)‘Ft P (tlkal)(‘Ft) —-p (tlkal)(‘Ft)
k=1

N
—| Y B(t, T)) + R Y. B(t, TF)éf
k=1 k=1
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Then using (3.8) from Proposition 1 we get

PP (8 To, {T{}, {T{ },R) =

Z o~ AWTDATH L 4T (4T ) 4T3 (T ) = (BT )+ (8T )Y —(C(LT])+02 (5T, ) (Y22 =0 (1T, ) (¥7)?

n

N
Y e AGT)-BOT)T-COT)R? 4 R Y~ o ACT)-BUTHYI-CO.T (4 5F
k=1 k=1

that ends the proof.

3.6 European swaption pricing

In this section, we price a European IR swaption on a payer swap whose starting
date Ty coincide with swaption’s expiry T;,. The definition of such a contract was
already given in the previous chapter.

The arbitrage-free price is then given by:

PP (8 Ty, { T LATE Y, R) = B(t, T BT (PP (T To, { T}, {TF }, R)) ']

= B(t,Tw) [ (3(5,0,2) = h(x )" fioy, s, vy, ) (v,9,2)dxdydz
(3.25)
where g and h are found thanks to Proposition 2
§(5,y,2) = iy D, e~ s Pos =Gt =G (3.26)
h(x,y) = Y0, e*Aj;m,k*Bj;m,kx*CTm,ky +R 215]:1 5156—14%,,,/;—B%,,,kx—cﬁ,,,kyz )

The density function of the random vector (‘Ple, ‘I’%m, ‘P:}m) can be written as the
product of f; = f N (T i) due to the independency of the gaussian factors.

Ay
For certain values of the model’s parameters, g- for fixed (x,y) € R?- has partic-

ular forms that allow to trasform after some math the triple integral into a double
integral, these particular forms are the Exponential Parabola and the Gaussian bell.
The reason behind is that these particular functional forms ensure the monotony of
g(x,y,z) with respect to z in the regions z < 0 and z > 0 and so the uniqueness of
solutions (if they exist) to the equation g(x,y,z) = h(x,y) in the regions z < 0 and
z > 0.

These forms depend on the sign of C S ; coefficients and the following lemma whose
derivation is a mere calcolation left to the readers will help us distinguish between
three scenarios in which our parameters can fall.

Lemma 6 P
2b3(T!_. —Ty)
~3rf e k—1

We now introduce the set M = {(x,y) € R?>: ¢(x,y,0) < h(x,y)}.
f
Thanks to Lemma 6 we know that if i, ¢ (O 33(27;”) Vk = 1,..,n we fall into

the Exponential Parabola case. In this case if (x,y) € M then swaption’s payoff
(8(xy,2) = h(x,y)" = g(xy,2) = h(x,y) if and only if z & (z1(x,y),22(x,y))
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where z1(x,y) = —z2(x,y) are solution to the equation g(x,y,z) = h(x,y). While
if (x,y) € M then (¢(x,y,z) —h(x,y))" = g(x,y,2) — h(x,y) Vz € R. These results
are due to the fact that if Lemma 6 does not hold Vk = 1,..,n then g(x,y,0) is the
absolute minimum of g(x, y, z) with respect to z variable.

2b5(1f_,

Instead if i € (0 33472%) Vk = 1,..,n we fall into the Gaussian bell case, where

g(x,y,0) is the functional abolute maximum with respect to z. Here if (x,y) ¢ M
then swaption’s payoff reads (g¢(x,y,z) — h(x,y))" = g(x,y,z) — h(x,y) if and only
ifz € (z1(x,y),2z2(x,y)) while if (x,y) € M then (g(x,y,z) —h(x,y))" =0Vz € R.
It is important to point out that it may exists sets of parameters such that we do
not fall in neither cases, in that eventuality we cannot reduce the integral dimension
from three to two.

Before giving the proposition about the swaption price we need to state another
lemma that will be used in the proposition.

Lemma 7
o2bs(TL =T) 265 (T]

k—1 —to)
402 402 )

7

1+2630CY >0 g (

Proposition 3 Under the model (3.2)-(3.3) and hypothesis HO the price of a payer swaption
can be computed in three different way depending on the scenario the model parameters are
fallen into:

Case (1): Exponential Parabola+Additional Hp Lemma 7

PP (1T, {T]}, {TF}, R) = B(t Tn) (P + Py)
_ zf / (D e s G (@(dl (x,)) + @ (~d(x,)))
. Bé,,, ot (@(d(x,y)) + cp(—dﬂx,y)))} F(x) foy)dxdy

N F
—R Z (5£eiATm,k /
k=1

i e P =Chuil (@ (8 (x,y)) + ®(—d*(x,1)) ) i(x)foly)dxdy

A B x-C¥ 2 Bl oyl
- Ze Tm,k/ [DTm KYKe B k¥ = Crui” — o7 B k¥ =C, 1Y ] f1(x) fo(y)dxdy

~RYofe s [ e S () oty
(3.27)

Case (2): Gaussian Bell

Ppswn(t; Ty, {T]{}, {Tlf}’ R) = B(t, Tm)(Pl + PZ)
Pp=0

- kz et [ [Dr e Pt~ (@(dE () — @ (x,0))
— ¢ Pt G (D(d (1) - <1><d3<x,y>>)} i) foly)dxdy

N F F F 2
—RYofe Mo [ e Bt S (a2, ) = 08 (1)) i3 )y
(3.28)
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Other acceptable set of model parameters

PP (8 Ty, {T{ }, {T{ }, R) = B(t, Ton) /IR (8(x,y,2) = h(x,y))" f1(x) fa(y) f3(2)dxdydz

(3.29)
where ® is the cumulative distribution function of a standard normal random variable,
fi Vi = 1,2,3 are Gaussian density function with mean ocZTT'” and variance ﬁl T (see (3.17)),
z1(x,y), z2(x,y) are solutions to the equation g(x,y,z) = h(x,y), time dependent coeffi-
cients are defined in (3.24) from Proposition 2, g(x,y,z), h(x,y) are defined in (3.26) and
finally Vk = 1, .., n we have:

(9, = 3 (1—
k= ﬁ3  Tint \/1 +253 T

_ et EBIad)

N
d\(x,y) = I8 T o () (@4 0,857)
‘ ’ - 3,T)
15 m
dz(x y) _ 1+2ﬁ3":;m A/;i kZ\Z/(x y) (a‘;’_'rzm_ekﬁ%;m) (330)
o N 3,Tm
21 (xy)—ag " \/ﬁr'”
ds(x’y) =22 T

‘33 , Tm
Tm
3,Ti

4 (x,y) = 200"

\/537%

Proof 3

The scenario where Jamishidian approach cannot be applied it was already proven in the
section (c.f. equation (3.25)), so we are left to prove the other two cases.

Let’s start observing that M and its complementary form a partition of R?, so using Fubini-
Tonelli theorem and the measured property of the Lebesgue’s integral we can write starting
from (3.25):

P 6T, (1), AT, R) = B T / (300y,2) = h(x,9))* fo(2)dzfi(x) o y)dxdy

o (8G2) — ke y) A )del(X)fz(y)dxdy>

= B(t, T,y)(Py + P»)
(3.31)

where we have called the triple integral with integration domain M x IR Py while the one
with domain M€ x R Ps.

In light of the discussion made about the extistence of z-solutions to the equation g=h we can
write for Case (1):

p= [ ([ g - A

oo
—+o00

[ sy - h(x,y>>f3<z>dz)f1<x>fz<y>dxdy

22(xy)

= Je Jr(8(x,y,2) = h(x,9)) fa(2)dzf1 (x) fa(y)dxdy

(3.32)
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After substituting (3.26) into (3.32) and exploiting the additivity property of Lebesgue’s
integral one gets:

& f Bf e n(xy)  af
= Z efATm/k/ [DTm,keBTm,k Crp i (/ *Cka f3 z)dz +/ 7CTm s f3( )d )
M — (xy)

_R25F ka/ e_Bgm,kx_Cin,kyz(/ ! dz+/ ) 1(x) f2(y)dxdy
M —

Ze ka/ |:DT ke_’g{"m,kx_é/%irkyz/ e—é%{:,kz f3(Z)dz
" R

- e [ etz i faly)dndy

B ] z(xy) e
. CTm,kV2< [ e [ f;;(z)dz)}fl(x)fz(y)dxdy
IS Z2 x]/

—RZ(SP ka/ ) ¢ Br et Cinz,kyz/ f3(z)dz f1(x) f2(y)dxdy
M R

(3.33)
In (3.33) two classes of uni-dimensional integral on variable z appear, we aim to rewrite both
of them as cdf of a standard normal variable.

For the first class we have to made two change of variable in order to reach our goal: before

3,Tim 3,Tin
C=1/1+ 2,33TT’”C f Z and then u = Clon,” OB") e required additional hypothesis

‘33 Tm

needed in Case (1) actually derived from the ﬁrstnchange of variable.
_3Tm
For the second class of integrals only one change of variable is needed, that is { = oy

3T

Through this methodology we can get: M

(25 o )z = () (x.9)

Sy e G fi 2z = m(—d(x,y))
Jxe™ S fa()dz = (3.34)
L fr(2)dz = (@ (x,y))
Jortoy r(2)dz = @(—d*(x, )
Jr f3(z)dz =1

Summing up, backward substituting (3.34)-(3.33)-(3.32)-(3.31) we get (3.27).
To conclude the proof we have to do the same for Case (2) where:

{ = [ Jr0f3(z dzﬁ(x)fz(y)dxdy
= Jue 25D (80 y,2) = h(x,)) f5(2)dzfi (x) fo (y)dedy

(3.35)
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As it can be seen due to the discussion above over domain M in Case (2) we immediately
obtain Py = 0, so we are only left to exploit expression of P, that becomes:

n
f Bl -G z2(x,y) & 2
et [ [ore o [ L

1(xy)
_nof f 2(xy)
_ o B CTm,kyz/( ) f3(Z)dZ} f1(x) f2(y)dxdy (3.36)
zZ1(x,
o FaAr —BE x—CF 2(y)
SRY afe Mo [ e P [P f(a)de fi() fo(y)rdy
=1 M¢E z1(xy)

And applying the same change of variable as before:

2 (%, _o3f 2
{leéyy)) i f3(2)dz = y((d (x,y) — D(d} (x,))) (3.37)

JEOD f(2)dz = B(d(x,y) — D (x,v))

We finally end the proof substituting (3.37)-(3.36)-(3.35) into (3.31) getting (3.28).

Remark 3

In the process of implementing this pricing model, every integral (double or triple) was
normalized by the trasformation

1,7, 1,7, 2,T, 2T 3,T, 3,T,
x—le m+ ;BTmm _(XT m_|_ mY Z—DCT m_|_ TmmZI

where X, Y, Z are iid N'(0,1).

o A numerical solver is needed to find the solution z1(x,y) and z(x,y) of the equation
g(x,y,2) = h(x,y) for fixed values of x and y.

o The integrals in Proposition 3, Case (1) and Case (2) have a non-trivial integration
domain M, MC. Fortunately Vy € R g(x,y,0) and h(x,y) have a unique intersec-

tion, so, in order to compute an appropiate grid, we can use a numerical solver to find
the solution x st g(x,y,0) = h(%,y).

o We need to specify that when in the contract the swaption maturity date coincides with
the swap start date it is matematically impossible for the parameters to fall into Case
(2). In fact the first condition hy has to satisfy when k = 1is hy € (O, 2 ) but
considering the functional form of hy in (3.22) and the fact that C; is always posztwe
(c.f. equation (3.10)) it follows that hy ¢ (O, 4}79 for every Ty, Th.

3.7 Monte Carlo formula
In this section, we present the Monte Carlo formula for a payer swaption in the

context of EQM model framework we have discussed in this chapter.
In particular, we aim to estimate the expected value in the first equality of (3.25)
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where thanks to Proposition 1 we have

L f Bf 1 ~2f 2 \2_ ~3f 3 32
PP®(T; To, {T{}ATE}, R) = Y D, e s Bt ~Crna (15"~ Croa ()
k=1

N
f f 1 f 2 \2 F F 1 F 2 \2
— E e_ATmrk_BTmrk‘FTm _CTm,k(lPTm) + R E 5]€eiATm,k7BTm/k‘YTm 7CTm,k(IFTm)
k=1 k=1
(3.38)

The key point of the Monte Carlo algorithm is to simulate, under the Q»-forward
measure, the random value of ¥! » i = 1,2, 3 stochastic processes starting from their
initial condition in fo 1.

We recall here their dynamics under the QT»-forward measure:

d\P} - [bqu} + alzB(t/ Tm)]dt + Ulthl’T”’
d¥? = —[by + 203C(t, Tyn)|¥2dt + od W
d¥? = —b3¥3dt 4 o3d W

Given the fact that under this forward measure %! are time-inhomogeneous OU pro-
cesses we can use Lemma 3 in order to find their analytic solution at time T},

2 2 T
\Ij%;n — e*b] (Tm*fo) [1})’}0 _ %(Eb] (Tm*to) _ 1) _|_ 2‘771%6411% (eb] (ZTm*tQ) _ ehltO) + o] ftom eb] (tffg)thLTm]

\Y%m — e_bz(Tm_tO)_Zggcint(Tm;tO/Tm) [\Y%O -+ g} Lzm ebZ(t_tO)+2022Ci;zt(t;t0/Tm)thZ'T’”]

¥, = e B[4 405 [T bW ]

(3.39)
Now using a well-known property of the stochastic integral we can rewrite
T by (¢t LT, . [eo1Tm—to) 1
fi’(] e 1( O)dwt — Tzl
Jir ete -0 2R (T g W2 T = | [ [T 2alt—to) 3 (0Tt 7y (3.40)
’ 0
To ba(t—t 3,Tm 223(Tm—tg) _1
ft(] e 3 ( O)dwt — ng,

where Z; are iid standard normal random variable.

Now we have all the basic bricks to build our Monte Carlo swaption’s pricing for-
mula, infact we only have to backward substitute (3.40)-(3.38) into the first equality
in (3.25) in order to obtain it.

Finally we have to mention that in the following section it will be implemented a
Monte Carlo method with variance reduction through antithetic variable: VZ; we
have considered an antithetic version Z; = —Z;.

3.8 Numerical Results

In this chapter final section, we aim to verify numerically the closed swaption’s for-
mula stated in Proposition 3. In order to do this, we chose a 5x5 payer swaption
contract with valuation date 13 September 2012, five years expiry and tenor whose
underlying is a payer swap on Euribor six months with strike rate 2.7485%. We
price this contract once using Proposition 3 closed formula for an arbitrary parame-
ter’s choice and then with the same set of parameters we price it multiple times with
Monte Carlo method with antithetic variables and an increasing simulation number.
We choose a high number of simulations (10%) in order to get close results. We have
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computed a confidence interval of 95% level in order to give an idea of the increasing

accuracy of Monte Carlo method, besides we have evaluated the absolute error and
d |CFprice—MCprice|

the relative error respectively as |CFprice — MCprice| an Chprice

Parameters’ choice: b; = 10%, 0; = 1% Vi =1,2,3, k = 0.5
Factors’ initial condition: ¢ = (2.5% 0% 0%)’
In Figure 3.1 and Figure 3.2, we can observe that the confidence interval’s width de-

Closed formula vs Monte Carlo
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FIGURE 3.1: In the semilog plot with respect to X-axis blue squares

represents closed formula prices, red circles Monte Carlo prices (in-

creasingly closer to closed formula prices as the number of simu-

lations grows) while violet and yellow stars respectively represent

95% confidence interval upper and lower limits (confidence interval’s

width decreases as the number of simulations grows). The number of
simulations is 10%,10°, .., 10°.

Closed formula vs Monte Carlo
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FIGURE 3.2: This chart is a zoom on the higher numbers of simula-
tions of the Figure 3.1 chart, in particular on 10°,10°,107, 108 number
of simulations.
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creases as the simulation number grows meaning the increasing accuracy of Monte
Carlo algorithm, closed formula price always falls into Monte Carlo confidence in-
terval and the distance between the two prices drops as simulations grow. These
signs validate and verify our closed formula, moreover, Figure 3.3 and Figure 3.4
show that prices” distance with one hundred million simulations is between 0.1 and
0.01 Basis Point (BP, where 1 BP= 0.01%) while the power scale factor of the absolute
error is between 0.25 and 0.5.

Absolute Error (MC vs CF)

107

10-4 L

Absolute Error

100 |

108 ‘ : a
10? 10? 104 108 108 107 108
Number of Simulations

FIGURE 3.3: Logarithmic scale graphs of absolute error versus simu-
lation steps. Number of simulations: 102,103, .., 108.

Relative Error (MC vs CF)
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104 L L L L L
102 10° 10% 108 108 107 108
Number of Simulations

FIGURE 3.4: Logarithmic scale graphs of relative error versus simula-
tion steps. Number of simulations: 102,103, ..,108.
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Chapter 4

Calibration

In this chapter, we describe the models’ calibration method in order to find the mod-
els’ parameters that better reflect market condition, in particular, we calibrate both
models on market conditions of 13 September 2012. For both models, we choose the
same calibration cascade methodology, nevertheless in the final section of this chap-
ter it will be presented, even if only introduced, a possible alternative algorithm to
calibrate the EQM model.

4.1 Methodology

Cascade calibration algorithm consists of two steps:

o firstly we calibrate IR curves via dual-curve Crab’s Bootstrap technique whose
methodology was already explained in Chapter 1;

e then calibrate models’ set of parameters on European At The Money (ATM)
swaptions vs Euribor six months on the 10y-diagonal, i.e. considering the nine
ATM swaption 1y9y, 2y8y, 3y7y,.., 7y3y, 8y2y, 9yly, where the first number
represents swaption’s expiry while the second swap’s tenor.

Market’s provider such as Bloomberg does not provide directly swaptions” prices
but their volatilities, so we must choose a benchmark model to obtain market swap-
tions’ prices from market volatilities. Swaptions’ volatilities could be lognormal and
expressed in percentage or normal and expressed in BP, for lognormal volatilities the
benchmark model is the Black Model while for the latter is the Black Normal Model.
In the dataset we consider we have lognormal volatilities. The swaption Black for-
mula we consider for the payer and the receiver swaptions are respectively:

{P;jjf”(to) (to, ta) BPVy o (t0) [Sa o (to) @ (d1) — RD(do)]

=B
Prit" (to) = B(to, ta) BP Vi (f0) [R®P(—d2) — Sew(to) D(—d1)]

4.1)

where t, represents option’s expiry, R is the strike rate, S, ., is the forward swap rate,
0, are market’s volatilities, BPV, , (to) = Y_i2, 0(ti, tiv1)B(to; ta, tit1) is the forward

Basis Point Value and:
In Su,ulrz(f[]) + Vz%,w(tzw*fo)

dl - Ua,w\/ta*to (4:.2)
d2 = dl _O'ac,w\/ttx - tO
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Since we are dealing with ATM contract (4.1) and (4.2) simplifies to

{P:fz?(to) = PJi"(t0) = B (1) = Blto b BPVaw(t)RROW@) ~1] o

d _ OqwVita—t :
- 2

We minimize the squadre distance between swaption model and market prices in

order to find the optimal choice of model set of parameters:

9

P = argmingep ) (P (torp) — P (fo))? (44)
i=1

where P represents the set of admissible parameters for the selected model (for ex-
ample HO for EQM model) while p represents the vector of selected model parame-
ters (i.e p = (a 0 y)’ for MHJM model and p = (b; by b3 07 02 03 k)’ for EQM model).
Depending on the model we are calibrating for P, " (to; p) it shall be used formula

(2.9) or depending on the parameters cases (3.27), (3.28) or (3.29) from Proposition 3.

4.2 Numerical Results

In this section we show the results of the calibration cascade on MHJM and EQM
model described in Chapter 2 and Chapter 3.

For what concerns the first step in the cascade algorithm we refer to Section 1.3 of
Chapter 1 for results (see Table 1.1, Table 1.2 and Figure 1.2).

Regarding instead the second step in Table 4.1 we present market volatilities of the
10y-diagonal swaptions considered while as Gaussian factors’ initial condition we
puty = (2.50/0 0% 00/0)/.

If a needed volatility datum was missing, we linearly interpolated between closer
data in order to find it.

expiry | tenor | volatility (%) | strike rate (%)
ly 9y 40,4 2.0000
2y 8y 37.6 2.1989
3y 7y 35.1 2.4050
4y 6y 32.8 2.5952
S5y S5y 30.8 2.7485
oy 4y 29.3 2.8471
7y 3y 27.7 2.9583
8y 2y 26.8 3.0251
9y ly 26.3 3.1086

TABLE 4.1: 10y-diagonal quoted swaption market lognormal volatil-
ities and strike rates on 13 September 2012, end of the day quote.

Due to the high number of parameters to calibrate for EQM model we decide
to parallelized the code in order to improve the computational time and its perfor-
mance, in fact as it can be seen in Figure 4.1 and Figure 4.2 the minimization algorithm
required many iterations before finding the optimal parameters’ set for EQM model
while the MHJM model required very fewer iterations in order to find the functional
minimum. Practical details about calibration will be addressed in the final chapter.

Both calibrations are stable for large classes of admissible starting points.
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FIGURE 4.1: The chart show minimization steps implemented by the
Matlab minimization function fminsearch for MHJM model
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FIGURE 4.2: The chart show minimization steps implemented by the
Matlab minimization function fminsearch for EQM model

In the following we list the optimal parameters we have found for MHJM (to the
left) and EQM (to the right) models:

o a=7,9876% e by =10,01%
o by = 5,4069%
o b3 =9,6461%

o 0 =1,1664% o o1 = 2,9890%
o 0 =1,2062%

o3 = 0,0002%

[ ] ’)/ = O, 0416 /O o K = 0, 00120/0
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To end this section we show in Figure 4.3 and Figure 4.4 the 10y-diagonal swap-
tions’ market and model prices with optimal calibrated parameters’ set p°?!, as it can
be seen the fitting between the curves results good in both cases.

Multi-curve Hull-White model calibration vs Market Black formula

——MHw

— i mkt
3.5

25

Price(%)

0.5

Expiry (Year)

FIGURE 4.3: Market prices are represented as squares while the cor-
risponding MHJM model prices on the 10y diagonal are represented
as diamonds

Exponentially Quadratic model calibration vs Market Black formula
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—— VKT
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FIGURE 4.4: Market prices are represented as squares while the cor-
risponding EQM model prices on the 10y diagonal are represented as
diamonds

4.3 Alternative EQM model parameters calibration

For the EQM model this kind of calibration we adopted could be problematic be-
cause model parameters are calibrated only through swaptions but they influence
even bond prices B(t, T) and swap prices (c.f. equations (3.8) and (3.23)), moreover
we did not use the initial term structure B(ty, ) and B(to, t) given by Bootstrap. Con-
sequently, our calibrated could not reflect the initial term structure obtained via the
most liquid instruments of the market.

Hence we propose in this section an alternative way to calibrate this model, this
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methodology follows a suggestion by K. Glau et al. (2016).

Since OIS swaps and FRAs are several orders of magnitude more liquid than swap-
tions in markets we could build the second step in the cascade calibration upon
them. OIS swap prices in our model depend exclusively on b;, 0; with i = 1,2 and
via Bootstrap technique we have B(ty, t), so using (3.8) we should be able to calibrate
four of the seven model parameters. For the remaining parameters b3, 03 and k we
could calibrate them starting from FRA rates observable in the market, but we must
tirstly price FRA in our model framework. We start recalling the contract definition:
the Forward Rate Agreement is a contract that allows the holder to lock at a generic
date t < T the interest rate between T and T + A at a fixed value RFR4 called FRA
rate. Considering a unitary notional the FRA price under the Q™ forward measure
is:

PFRA(H; T, T + A, REFRAY = §(T, T+ A)B(t, T + A)EI ™2 [L(T, T 4 A) — RFR4]

_ T+A 1 _ FRA
=B(t, T+ A)E; " [B(T,TJFA) (1+6(T, T+ A)R™)
=B(t, T+ N[t — (1+6(T, T+ A)RFRY)]

(4.5)

where in the second equality we have used (3.1) and in the third one we have defined

1
U :IETJrA -
Cat ]

The fair FRA rate is found imposing the corresponding FRA price to zero getting
from (4.5)
U — 1
RFRA = AT - 4.

5T, T+ 4) (46)

We are only left to find a closed formula for 7, so in analogy with what it was al-

ready done in Chapter 3, Section 5 we write using (3.9), Gaussian factor independence
and Lemma 4 and 5

2 2

D7 = eALTHOET+A [e(K+1)B(T,T+A)‘P1T]IET+A [EC(T T+0)(¥3) JET+A[e C(1,T+0)(¥3) ]

— pA(TTHA)+T g g (ET) 4T 4 (ET) 4T 4 (ET) =P (ET) ¥} —pFg 4 (ET) (¥7)* —pppa (£ T) (¥7)?

(4.7)
where

Prralt, T) = z(" +1)B(T, T + A)e (T
Thra(tT) =5 (PFRA(“ T))*du+ o} ft (u, T+ A)p* (u, T)du

2 (t T) _ C(T T+A)exp{—2by(T—t)—40? f, (1, T+A)du}
PErall 2) = 2172C(t T+A ff exp{ 2b(T—w)—403 fu C(u,T+A)du}dw—1
hea(tT) = ~03 ] ph (0. T)du

4y hFRA G203 (T-t C(T.T+

p%RA(tI T) = 40—2h§“RA ~2b5(T—F) _ Wlth hFRA m
F%RA(t’ T) = ft pFRA u, T du

Summing up the last three parameters of EQM model could be calibrated using (4.6)
and (4.7).
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Chapter 5

Matlab Code’s Critical Issues

In this final chapter, we present the main criticality we met during code writing;:
computational time and code performance, in fact, while Crab’s Bootstrap and MHJM
model codes did not involve such problem we certainly cannot tell the same for EQM
code. Hence we improve code performance using several techniques (e.g. vectoriz-
ing everything where feasible, minimizing the number of cycles and parallelizing
the most time expensive cycles).

In the following, we present the three best improvements we apply to the code in
order to save computational execution time.

5.1 Swaption pricing through Jamshidian approach

Most of the times p falls into Case (1) or (2), so it is of fundamental importance that
the relative code performs well, unfortunately the Jamshidian approach is also very
heavy from a computational point of view since its execution involves the compu-
tation of several bidimensional integrals over a non-rectangular domain and the us-
age of numerical solver in order to find z;(x,y) and grids of this non-rectangular
domains. In this section we take as an example Case (1) but everything will be said
still hold for Case (2) and the improvements here described has been applied even in
Case (2).

Observing formula (3.27) in Proposition 3 and considering a Euribor 6m swaption
contract over a Y years tenor swap one can deduce that 6Y integrals need to be cal-
culated in order to obtain the price.

The more advanced and updated function in Matlab for double integration is inte-
gral2 that better performs in our framework with the tiled method, that requires the
integration domain limits to be finite. Firstly we need to change our infinite inte-
gration domain limits, luckily these Lebesgue’s integrals are expected values so in
the integrand function always appear a Gaussian density function that quickly goes
to zero departing from the distributional mean. We shall consider basically zero the
integrand function when |x| > 6 or |y| > 6 with x,iy ~ N (0,1) and P(|x| > 6) = 0.
We remind that every integral variable is normalized (c.f. Remark 3).

The main problem of the Matlab integration function is the impossibility to pres-
elect the integration grid outside the function itself, taken as an example integral2,
for non-rectangular shape integration domain it wants finite quantities as the grid
limits of the independent variable and vectorized function handle as limits for the
dependent variable. As a direct consequence of that for every 6Y double integrals,
we should call every time a numerical solver for computing the bidimensional grid
and for every integrand function call recompute z;(x, y) although grids and z solu-
tions are always the same!

We solve this issue by slightly modifying formula (3.27): using integrals additivity
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property we bring the summation under the integral sign gathering everything un-
der a unique double integral. In this way we are able to express the price as a sum
of only two integrals, one with M and the latter with M® domain, reducing consid-
erably the number of calls for grid construction and z solution computation.
Practically speaking with this improvement on our machine, considering a nine
years tenor, the computational time pass about from 90 seconds to only 3, a 3000%
time improvement. Obviously, the computational time depend on swap tenor and
approximately goes from some tenth of second with short swap tenor to 3 — 3.5 sec-
onds when we have a ten-year swap tenor.

In the following we attach the Matlab code concerning Case (1) swaption pricing
where this issue is addressed while Case (2) pricing will be attached in Appendix B
with the remaining parts of the code not already insert in the following section of
this chapter.

Py integrand function

function f=funl(x,y,Af,6AF,Bf,BF,Cf,CF,Bt,Ct2,Ct3,D, alpha, beta ,R, yFly ,gamma
,theta ,g,h)

3| PO=—.25;

opt=optimset( ' Display’, " off’, " Algorithm ", Levenberg—Marquardt”) ;

5| zl=fsolve (@(z)g(x,y,z)-h(x,y) ,POxones(size(x)),opt);

z2=—21;
d3=(zl-alpha(3))/sqrt(beta(3));
d4=(z2—alpha(3))/sqrt(beta(3));

freq=2;

f=0;

for i=1:length (Af)
dl=(sqrt(1+2«beta (3)*Ct3(i))+*zl—(alpha(3)—theta(i)*beta(3)))/sqrt(beta
(3));
d2=(sqrt(1+2xbeta (3)*Ct3(i))*z2—(alpha(3)—theta(i)*beta(3)))/sqrt(beta
(3));

f=f+(D(i)+gamma(i)*exp(—Af(i)—Bt(i)=*(alpha(1l)+sqrt(beta(l))x*x) —...
Ct2(i)*(alpha(2)+sqrt(beta(2))x*y)."2—x."2/2—y.A2/2) .x(normecdf(dl)+
normcdf(—d2)) ...
—exp(—Af(i)-Bf(i)=*(alpha(1)+sqrt(beta(1))*x)—Cf(i)=*(alpha(2)+sqrt(
beta (2))*y)."2 —...
xN2/2—y."2/2) .x(normcdf(d3)+normcdf(—d4))) /(2xpi);
if mod(i,freq)==0
j=i/freq;
f=f-—RxyFly(j)*exp(—AF(j)—BF(j)=*(alpha(1)+sqrt(beta(l))*x) —...
CF(j)=(alpha(2)+sqrt(beta(2))xy)."2—x.22/2—y."2/2) .x(normcdf(
d3)+normecdf(—d4)) ...
/(2% pi);
end
end

end

Appendices/funl.m
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Jamishidian Case (1) approach
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function price=Jamshidianl (Af,AF, Bf ,BF,Cf,CF,Bt,Ct2,Ct3,D, alpha, beta ,R,Tm,
Tf,TF,PD)

%/ g and h definition

yFly=yearfrac ([Tm;TF(1:end—-1)],TF,6);
freq=2;

g=@(x,y,2)0;
h=@(x,y)0;
for i=1:length (Tf)
g=@(x,y,z)g(x,y,z)+D(i)*exp(—Af(i)—Bt(i)=(alpha(1l)+sqrt(beta(1l))x*x)...
—Ct2(i)«(alpha(2)+sqrt(beta(2))*y)."2-Ct3(i)*z."2);
h=@(x,y)h(x,y)+exp(—Af(i)—Bf(i)=*(alpha(1l)+sqrt(beta(1l))=*x) —...
Cf(i)=(alpha(2)+sqrt(beta(2))*y)."2);
if mod(i,freq)==
j=i/freq;
h=@(x,y)h(x,y)+R«yFly(j)=*exp(—AF(j)—BF(j)*(alpha(1l)+sqrt(beta(1))=*
X) ...
—CF(j)*(alpha(2)+sqrt(beta(2))xy)."2);
end
end

% grid construction

opt=optimset(’Display’, "off’, Algorithm’, Levenberg—Marquardt”) ;
x0=0;

c=6;

yExI=—c;
yExS=c;

MxI=—c;
MxS=@(y)max(MxI, min(c, fsolve (@(x)g(x,y,zeros(size(y)))-h(x,y) ,x0Oxones(size
(y)),opt)));

cMxS=c;
cMxI=@(y ) min (cMxS, max(—c, fsolve (@(x)g(x,y, zeros (size(y)))—h(x,y) ,x0xones (
size(y)),opt)));

% integral computation

s| theta=alpha (3) /beta (3)*(1—1./sqrt(1+2xbeta (3)*Ct3));

gamma=exp (theta."2xbeta (3) /2—thetaxalpha(3))./sqrt(1+2xbeta (3)*Ct3);

f1=@(x,y)funl(x,y, Af,AF, Bf ,BF,Cf,CF, Bt,Ct2,Ct3,D, alpha , beta ,R, yFly ,gamma,
theta,g,h);

Pl=integral2 (@(y,x)fl(x,y) ,yExI,yExS,MxI,MxS, ‘'method ", "tiled ") ;

f2=@(x,y)fun2(x,y, Af,AF, Bf ,BF,Cf,CF, Bt,Ct2,D, alpha , beta ,R, yFly ,gamma) ;
P2=integral2 (@(y,x)f2(x,y) ,yExI,yEXS, cMxI,cMxS, 'method ", "tiled ") ;

%) price computation
price=PDx(P1+P2) ;

end

Appendices/Jamshidianl.m
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P, integrand function

function f=fun2(x,y, Af,AF,Bf,BF,Cf,CF,Bt,Ct2,D,alpha, beta ,R,yFly,h gamma)

freq=2;
f=0;
for i=1:length (Af)
f=f+(D(i)+gamma(i)*exp(—Af(i)—Bt(i)=*(alpha(1)+sqrt(beta(l))*x) —...
Ct2(i)*(alpha(2)+sqrt(beta(2))*y)."2—x."2/2—y."2/2) —...
exp(—Af(i)—Bf(i)=*(alpha(l)+sqrt(beta(l))*x)—Cf(i)=*(alpha(2)+sqrt(
beta (2))*y)."2 —...
XAN2/2—-y.N2/2))/(2xpi);
if mod(i,freq)==
j=i/freq;
f=f—RxyFly(j)=*exp(—AF(j)—BF(j)=*(alpha(l)+sqrt(beta(l))=*x) —...
CF(j)*(alpha(2)+sqrt(beta(2))*y)."2—x."2/2—-y."2/2)/(2*pi);
end
end

end

Appendices/fun2.m

5.2 Swaption pricing through triple integration

If the set of parameters don’t fall into one of the two Jamishidian cases we must solve
directly a triple integral (c.f. (3.29)).

The most recommended Matlab function is integral3 that exactly like integral2 gives
the opportunity to choose between two different integration methods: tiled or it-
erated depending on integration extrema. But unlike before it is not empirically
evident what method better performs, instead it seems to have a dependency upon
the set of parameters. Therefore to make sure to always use the fastest integration
method we rely on Matlab parallel computing toolbox, in particular on parfeval, fetch-
Next and cancel parallel functions. In fact thanks to parfeval we can execute in parallel
both integration methods while fetchNext functions collects the first output of the two
operations running in parallel and finally with cancel we eliminate the execution of
the slower operation still running. In this way for every parameters’ set for which
triple integration is needed we are sure to get the result from the fastest integration
method available in integral3. In the following, we attach the code we implemented.
Integrand function

function f=fun4(g,h,x,y,z)

f=zeros(size(x));
iZ=isfinite (g(x,y,z)) & isfinite (h(x,y));

f(iZ)=max(g(x(iZ) ,y(iZ) ,z(iZ))-h(x(iZ) ,y(iZ)) ,0) .x normpdf(x(iZ)) .+ normpdf(
y(iZ)) ...
~+normpdf(z(iZ));

end

Appendices/fun4.m
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Integration methods

1| function price=parallellnt(f,PD,1i)
3| 1f i==
c=6;
5 price=PDxintegral3 (f,—c,c,—c,c,—c,c);
else
7 price=PDxintegral3 (f,—Inf , Inf,—Inf, Inf,—Inf, Inf);
end
9
end
Appendices/parallellnt.m
Option pricing
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function price=tripleIntegration (Af,AF,Bf, BF,Cf,CF,Bt,Ct2,Ct3,D, alpha, beta
,R,Tm, Tf , TF,PD)

%) g and h definition
yFly=yearfrac ([Tm;TF(1:end—-1)],TF,6);
freq=2;
g=@(x,y,z)0;
h=@(x,y)0;
for i=1:length (Tf)
g=@(x,y,z)g(x,y,z)+D(i)*xexp(—Af(i)—Bt(i)=*(alpha(l)+sqrt(beta(1l))*x) ...
—Ct2(i)«(alpha(2)+sqrt(beta(2))*y).~2—Ct3(i)*(alpha(3)+sqrt(beta
(3))xz)."2);
h=@(x,y)h(x,y)+exp(—Af(i)-Bf(i)=*(alpha(1l)+sqrt(beta(l))=*x) —...
Cf(i)=*(alpha(2)+sqrt(beta(2))*y)."2);
if mod(i,freq)==0
j=i/freq;
h=@(x,y)h(x,y)+R«yFly(j)=*exp(—AF(j)—BF(j)=*(alpha(l)+sqrt(beta(1))=*
X) ...
—CF(j)=*(alpha(2)+sqrt(beta(2))xy)."2);
end
end

f=@(x,y,z)fund(g,h,x,y,z);

Yo

p=gcp () ;

nGrid=2;

for i=1:nGrid
v(i)=parfeval(p,@(i)parallelint(f,PD,i),1,i);

end

[~,price]=fetchNext(v);

cancel (v)

end

Appendices/tripleIntegration.m

5.3 Calibration

Finally, we have improved the time performance of the most time spending process
of all the code: calibration. In particular, we have parallelized the for cycle repre-
sented by the summation in (4.4) using Matlab parfor.

parfor allows to execute for in parallel, obviously, it requires the iterations to be inde-
pendent of each other since they will be executed in a nondeterministic order. Loop
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iterations are split between Matlab’s workers, every worker is identified by a CPU
physical core, so the more cores there are the faster the code is. We were working
on a modest machine whose number of physical cores was two so we manage to
approximately halve the computational time but our code if run on a machine with
a higher number of cores would be even much faster. The best results in term of time
would be reached on a PC with nine workers, in this case for a set of parameters the
time spent to compute a square distance would be equal to the time spent to price
the swaptions with the greater tenor.

The following is the code that computes the square distance between model and
market prices, functions that appear in it are reported in Appendix B.

Square distance function

function errQ=objfun(bl,b2,b3,sigmal,sigma2,sigma3, k,IC,swnData, discCurve,
MKTswnPrice)

~ |0/,
3| %S0

pFlag=1;

511=1;

while pFlag && i<=length (swnData.Tm)
pFlag=modelParamDomain (b1l ,b2,b3,sigmal ,sigma2,sigma3 ,k,swnData.Tm(i)

oo

swnData.nSwn(i).Tf);

i=i+1;
end
%o
5| if pFlag==
errQ=1e5;
5| else
dist=zeros(size (swnData.Tm)) ;
t=swnData. t;
Tm=swnData.Tm;
nSwn=swnData .nSwn;
R=swnData.R;
parfor i=1:length (swnData.Tm)
dist (i)=QEMswnPricer(bl,b2,b3,sigmal, sigma2,sigma3,k,t,...
Tm(i) nSwn(i).Tf,nSwn(i).TF,R(i),6discCurve,bIC,1)—MKTswnPrice(i
);
end
errQ=sum(dist.N2);
end
end

Appendices/objfun.m
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Conclusion

The main purpose of this thesis has been the analysis of interest rate models final-
ized to find closed exact pricing formula for swaps and swaptions and in order for
this model to be practically useful and not only a mere theoretical construction we
proposed and applied a cascade calibration on both models.

The cascade calibration required as a first step an initial curves construction, we have
then chosen the Mr. Crab’s Bootstrap as dual curves construction algorithm. The
second step required instead the calibration of the models parameters upon swap-
tion instruments, so using the Black model as benchmark market model, through
which obtain prices from market volatilities, and the two models” swaption pricing
formulas we obtained for both model the optimal and calibrated sets of parameters
by minimizing the prices” square distance.

For EQM model we have met time performance problem during the writing of the
code, problem that we have overcome by a vectorization of the code and with the
help of parallel computing tools.

Summing up, in the following bulleted list we would like to itemize the most impor-
tant contributions of this thesis by referring for each of them to the relevant results:

e the revision of the EQM model framework introduced in K. Glau et al. (2016)
by corrections of formulas, the addition of HO hypothesis and the relaxation
of simplified hypotheses has led to find a closed exact formula for swaption
contract (c.f. equations (3.27), (3.28) and (3.29) from Proposition 3 in Chapter 3
Section 3.6);

o the validation of EQM closed formula by comparison with a Monte Carlo ver-
sion of the formula (c.f. Figure 3.1, 3.2, 3.3 and 3.4 in Chapter 3 Section 3.8);

e proposal and practical application of a cascade calibration methodology to
both the EQM and MHJM models on market conditions of 13 September 2012
(c.f. Figure 1.2 in Chapter 1 Section 1.3 and Figure 4.3, 4.4 in Chapter 4 Section 4.2);

e implementation of a Matlab library, optimized with parallel computing tools,
to price swaptions for both EQM and MHJM models (closed formula and
Monte Carlo for EQM) and to calibrate both models (c.f. Chapter 4 and Ap-
pendix B).

Looking at calibration results the difference in term of computation time is evident
between the MHJM three parameters model and the seven parameters EQM model,
this is due to the higher dimensionality of the minimization problem and moreover
to a greater computational cost of the swaption exact closed formula for the Expo-
nentially Quadratic short rate model. Nevertheless, we must specify that this dif-
ference would be much thinner, the larger the number of PC cores would be, since
the calibration code is written in parallel allowing greater performance on advanced
PC.

Finally, we want to spend some last words speaking about the pros and cons of
the model choice, in particular between parsimonious parameters model against
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parameters-rich model. In fact, while obviously the latter is quite flexible and better
adaptable to market conditions it requires more instruments on which to be cali-
brated, but postcrisis today markets are very often less liquid, hence the necessity to
deal with parsimonious models that are easier to calibrate.
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Appendix A

ODE solutions

In this appendix we will show in greater details how to find solution functions in
(3.10), (3.20), (3.21) and (3.22) starting from their respective ODEs.

A.1 Section 3.3

Let us start finding the solution to the first ODE in (3.14). First of all, we have to
change variables and rename the solution functions via

B(t,T)=y(x), x=T—t (A1)

In this way we can rewrite (3.14) as

y'(x)+biy(x)—1=0, x €[0,T] (A.2)
y(0) =0 |

where in this appendix with ' we indicate the derivative operator with respect to x.
(A.2) is an nonhomogeneous first order ODE with constant particular solution and
general solution easily obtained with separation of variables method whose solution
is

1 — e bix

y(x) = o (A.3)

Switching back to the original set of variables from (A.3) one gets B(t,T) as it is
shown in (3.10).

For what concerns B(t, T) the general solution is exactly the same while the partic-
ular solution differs a little bit due to the different constant in the ODE, in fact using
(A1) one gets B(t,T) = (1+x)B(t,T).

Before solving (3.13) observe that the two ODEs are almost the same since only con-
stant coefficients vary, then we will only show how to find the solution to the first
one. Applying the same change of variable shown in (A.1) we obtain

{y’(x) =1—2by(x) — 202y*(x), x € [0, T]
y(0)=0

that is a nonhomogeneous Riccati differential equation. To solve it we need to intro-
duce another change of variable

u'(x)

" 2ut)
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obtaining a second order ODE on u/(x)

u" (x) +2byu’ (x) — 20%u(x) =0, x € [0, T]
u(0) =1
u'(0) =0

whose solution can be easily computed

() =3 g2 ) D (3 g

where h? is defined in (3.10). Rolling back throught changes of variables one gets

y(x) — (%7%) (7b2*§ +(%+:—%) (7b2+§)e}12x
20%[(%—%2—&-(%—&-%)@’12@ 2\ 2 (A.4)
) = i) () e (3e3) (o )
' 23] (3~ 3)+ (b+3) @20

After some algebric operations from C(t, T) in (A.4) it can be found C(¢, T) in (3.10).
Regarding A(t,T) and A(t, T) they can simply be found integrating (3.15) with re-
spect to the first input over the interval ¢, T].

A.2 Section 3.5

Applying Lemma 4 to the expected value in the first row of (3.20) one gets

{pm, 1) = biph(6 T 1) =0, p (T, TL ) = — (e + 1)By

THE T, y) = =o2B(t, THp! (4T ,) = F (o' (6, TL )% THTL,, T ) = o( |
A5

The solution in (3.20) of the second ODE in (A.5) is trivial so let us focus on the ODE

on pl. As before we must begin applying the usual change of variables

oMt T = y(x), x =T, —t (A6)
obtaining
y'(x)+by(x) =0, x €[0,T] A7)
y(0) = —(x +1)B

(A.7) is an honogeneous first order differential equation with constant coefficients
whose solution is :
y(x) = —(k+ 1)Bee 1T ™! (A.8)

resubstituting (A.6) from (A.8) we can obtain the solution to the first ODE in (A.5)
that is the second member of (3.20).
If we instead apply Lemma 5 to the expected value in (3.21) we would get

2(t, T, ) —2[ba +202C(t, T))]2(t, T ,) — 202(0%(t, T )2 =0, oX(T/ |, T ,) = —C
F%(t, kafl) = Uzzpz(tr Tl{—l)’ FZ(Tlffl’ Tlé:l) =0
(A.9)
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As before let us focus on the first ODE in (A.9), applying (A.6) it becomes

{y’(x) +2[by +202C(x)Jy(x) +203y*(x) =0, x € [0, T]
y(0) = —C;

a Bernoulli equation with non constant coefficients, it can be solved similarly to what
has been done in previous section with C(t,T). First of all we change variables

according to y(x) = 2;’;5{2)
2

obtaining

u (x) +2[by +203C(x)]u (x) =0, x € [0, T
u(0) =1
W(0) = —202C,

This second order differential equation can be reducted to a first order one via u’(x) =
v(x)

v'(x) +2[by + 202C(x)]v(x) =0, x € [0, T]

U(O) = —2022 Ck

Solving this ODE and rolling back the changes of variable we get

U(x) = _20'i2cke_2b2x—4022 fox C(s)ds
u(x) = 1- 203G [ e 243 COd (A.10)
Jx) = Qe e

N _ A2 (W
20_22Ck joxe 2byw—4oy I C(S)dstU*l

Finally applying back (A.6) change of variable form the last solution in (A.10) we
can get the solution in (3.21).

We are only left to prove solutions in (3.22), the corresponding ODE are obtained via
Lemma 5 and are the followings

{p?a, 1)) = 2630} (1, T ) = 203(0* (1, T]1))? = 0, pX(TL_,, T ;) = =Gy
r3( T ,) = 030t Ty, T(TL,, T ) = 0

(A.11)
The second one does not deserve comments, while for the ODE in p3 (t, T,{fl) follow-

ing the same method as for p?(t, T,{fl) one obtains

G 672b3(TI{717t)

= — (A.12)
(e ) -

The solution expressed in (3.22) is derived directly from (A.12) after some algebric
calculation and the definition of /.
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Matlab Code
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This appendix shows the most relevant parts of the Matlab code made for this thesis.

Parts of code already attached in Chapter 5 won’t be present in this appendix.

B.1 Crab’s Bootstrap

With the aim of facilitating the reading of the codes, we create for every section a

flowchart that intuitively explains the reading order of the script/functions.
In crabBootstrap script there is the main body of the boostrap technique.

CrabBootstrap

ExcelData EONIAbootstrap EuriborémBootstrap

ZRlinearlnterp EONIAinterp

FIGURE B.1: Each block represents a script or a function, if two blocks
are connected it means that in the script or function represented by
the block at the top it exists a call of the script/function represented

by the block below.

%) reading data
ExcelData;

%l curves construction
discCurve=EONIAbootstrap (dates ,R) ;
pseudoDcurve=EuriborémBootstrap (dates ,R, discCurve);

Yo results
hold all
plot(discCurve.knots (2:end) ,discCurve.rates (2:end), —x")

plot (pseudoDcurve. knots (2:end) ,pseudoDcurve. rates (2:end) , "—x")

grid on

dateFormat = 11;
datetick ('x’,dateFormat);
legend ( "EONIA” , "EU6m ")
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Appendices/crabBootstrap.m

This is the script used to read market data from Excel file.

%o file data
fileName="MarketData_Crab20120913. xIs ”;
formatData="dd/mm/yyyy’;

%/ today date
[~,settlement]=xlsread (fileName,1, 'H4");
dates.settlement=datenum (settlement ,formatData);

%S/ EONIA data

[~,oisDates]=xlsread (fileName ,1,'J12:J44");

oisDates=datenum(oisDates , formatData) ;

% spline interpolation to obtain yearly rates

dates.OIS=zeros (length (oisDates) +14,1);

j=29;

dates .OIS(1:j)=oisDates (1:j);

for i=1:2
newDate=addtodate (dates .OIS(j+i—1),1, "year’);
dates.OIS(j+i)=newDate.x*isbusday (newDate)+(1—isbusday (newDate)) .
busdate (newDate, "'modifiedfollow ") ;

end
for k=1:3
dates.OIS(j+i+1)=o0isDates(29+k) ;
j=j+i+1;
for i=1:4
newDate=addtodate (dates .OIS(j+i—1),1, year’);
dates.OIS(j+i)=newDate.xisbusday (newDate)+(1—isbusday (newDate)) .x
busdate (newDate, "modifiedfollow ") ;
end
7| end

dates.OIS(end)=o0isDates (end) ;

rates=xlsread (fileName,1, 'F12:F44");
R.OIS=interpl (oisDates ,rates ,dates.OIS, "spline ’);

31%)o Euribor6m data

% deposits

[~,deposDates]=xlsread (fileName ,3, 'K20") ;
dates .depos=datenum (deposDates , formatData) ;
R.depos=xlsread (fileName ,3, "F20");

% FRA

[~,FRAstartDates]=xlsread (fileName ,3, "J21:]J26 ") ;
[~,FRAdates]=xlsread (fileName ,3, 'K21:K26");
dates.startFRA=datenum (FRAstartDates , formatData) ;
dates .FRA=datenum (FRAdates , formatData) ;
R.FRA=xlsread (fileName ,b3, "F21:F26");

% swap

7| [~,swapDates]=xlsread (fileName ,3, "K34:K48") ;

swapDates=datenum (swapDates , formatData) ;

% spline interpolation to obtain yearly rates

dates.swap=zeros (length (swapDates) +15,1) ;

j=10;

dates.swap(1:j)=swapDates(1:j);

newDate=addtodate (dates .swap(j),1, year’);

dates .swap(j+1)=newDate.*isbusday (newDate)+(1—isbusday (newDate) ) .*busdate (
newDate, "modifiedfollow ") ;

dates.swap(j+2)=swapDates(j+1);
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j=j+2;
for i=1:2
newDate=addtodate (dates.swap(j+i—1),1, year’);
dates.swap(j+i)=newDate.x*isbusday (newDate)+(1—isbusday (newDate) ) .*
busdate (newDate, "modifiedfollow ") ;

end
for k=1:3
dates.swap(j+i+1)=swapDates(11+k);
j=j+i+1;
for i=1:4
newDate=addtodate (dates.swap(j+i—1),1, year’);
dates.swap(j+i)=newDate.x*isbusday (newDate)+(1—isbusday (newDate)) .*
busdate (newDate, 'modifiedfollow ") ;
end
end

dates .swap(end)=swapDates(end) ;

rates=xlsread (fileName ,3, 'F34:F48");
R.swap=interpl (swapDates, rates ,dates.swap, 'spline’);

clear settlement oisDates deposDates FRAstartDates FRAdates swapDates k j
i

Appendices/ExcelData.m

This is the script where discounting curve is built.

function discCurve=EONIAbootstrap (dates ,R)

% initialization

PD=zeros(size (dates.OIS));
maturities=yearfrac(dates.settlement ,h dates.OIS,3) ;
idx=find (maturities <=1,1,"last’);

%/ EONIA swap with expiry within 1y
yearF=yearfrac(dates.settlement ,dates.OIS(1:idx) ,2); % EONIA SWAP act /360
PD(1:idx)=1./(1+yearF.xR.OIS(1:idx));

%/ EONIA swap with expiry greater than ly

periodYF=[yearF(end); yearfrac(dates.OIS(idx:end—1),dates.OIS(idx+1:end) ,2)
I

for i=idx+1:length(dates.OIS)
PD(i)=(1-R.OIS(i)*sum(periodYF (1:i—idx).*PD(idx:i—1)))/(1+periodYF (i
+1—idx)*R.0OIS(1i));

end

%% EONIA curve
discCurve.knots=[dates.settlement; dates.OIS];
discCurve.discounts=[1;PD];
discCurve.rates=[0;—1log (PD)./ maturities ];

end

Appendices/EONIAbootstrap.m

In Euribor6mBootstrap there is the technique used to build the pseudo-discounting
curve.

function pseudoDcurve=Euribor6mBootstrap (dates ,R, discCurve)

%) 6m deposit

P=zeros(length(dates .FRA) +1,1);
P(end—1)=1/(1+yearfrac(dates.settlement,b dates.depos,2)*R.depos) ;

%/ forward pseudo discounts from FRA and ly pseudo discounts computation
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PF=1./(1+yearfrac(dates.startFRA ,dates.FRA,2) .*xR.FRA);
P(end)=P(end—1)*PF(end) ;

%/ pseudo discounts interpolation between 6m and 1y and pseudo discounts
backward calculation

Pint=ZRlinearInterp (dates.settlement ,[ dates.depos; dates .FRA(end)],P(end—1:
end) ,...
dates .FRA(1:end—1));

P(1:end—2)=Pint./PF(1l:end—1);

%/ Euriborém curve’s update
pseudoDcurve. knots=[dates .startFRA (1:end—1); dates.depos; dates .FRA(end) |;
pseudoDcurve. discounts=P;

% 18m and 2y pseudo discounts computation

% initialization

freq=2;

Nyears=floor (yearfrac(dates.settlement ,dates.swap(end) ,3));

[dCurve6m , dCurvely]=EONIAinterp (discCurve ,Nyears, freq) ;

yearFém=yearfrac ([ discCurve.knots (1) ;dCurve6bm.dates (1:end—1)],dCurvetm.
dates ,2) ;

yearFly=yearfrac ([ discCurve.knots (1) ;dCurvely. dates (1:end—1)],dCurvely.
dates ,6) ;

yearFl8=yearfrac ([ discCurve.knots (1) ;dCurve6bm. dates (1) ] ,...
[dCurveém . dates (1) ;dCurveébm. dates(3)],6);

% pseudo discounts interpolation and forward rates computation

Pint=ZRlinearInterp (dates.settlement , pseudoDcurve. knots , pseudoDcurve.
discounts , ...
dCurvebm. dates (1:2));

F=zeros(freqx2,1);

F(1:2)=[(1/Pint (1) —1)/yearFém (1) ;( Pint (1) /Pint(2) —1)/yearFém (2) ];

% evalutation of F(t0;t12,t18) and F(t0;t18,t24) strating from 18m and 2y
swaps

I18m=R.swap (1) *(yearF18 (1) *dCurvebtm. discounts (1)+yearF18 (2)«dCurvebtm.
discounts (3));

F(3)=(I18m—sum(yearFém (1:2) .xdCurveém. discounts (1:2) .«F(1:2))) /...
(yearFém (3) *dCurvebm. discounts (3) ) ;

I2y=R.swap(2) *sum(yearFly (1:2) .xdCurvely.discounts (1:2));

F(4)=(12y—I18m) /(yearFém (4) *dCurveém. discounts (4) ) ;

% forward pseudo discounts

PF=[1/(1+yearFém (3)*F(3));prod(1./(1+yearFém (3:4) .xF(3:4)))];

%/ Euriborém curve’s update

pseudoDcurve . knots =[ pseudoDcurve . knots ;dCurve6tm. dates (3:4) |;

pseudoDcurve. discounts =[pseudoDcurve. discounts ; pseudoDcurve. discounts (end)
*PF];

%/ pseudo discounts computation from 2y up to 30y

% initialization

BPV=sum(yearF1ly (1:2) .xdCurvely.discounts (1:2));

floatLeg=sum(yearFém (1:4) .*dCurvebm. discounts (1:4) .xF);

yDist=floor (yearfrac(dates.settlement,6 dates.swap(2:end) ,3)); % years
between market swap’s expiries

P=zeros(length (yDist) ,1);

P(1)=pseudoDcurve. discounts (end);

opt=optimset(’'Display’, off”");

% computation

for i=1:length(yDist)—1
BPV=BPV+sum (yearFly (yDist(i)+1:yDist(i+1)).*dCurvely. discounts (yDist(i
)+1:yDist(i+1)));
floatSum=@(p) 0;
% swap’s forward rates calculation given unknown i+l—th pseudo
discount
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for j=1:freqx(yDist(i+1)—yDist(i))
Pi{j}=@(p) ZRlinearInterp (dates.settlement ,dates.swap(i+1:i+2) ,[P(i

VPl dCurvebm. dates (freq*yDist(i)+j));

!  Fint(j)=@(p)—log (Pi (]} (p)/P(i))/yearFém (freqsyDist (i)+])

elseFint{j}=@<p)flog(1°i{j }(p)/Pilj —1}(p))/yearFém (freqxyDist (i)+])

end
floatSum=@(p) floatSum (p)+yearFom (freq+yDist (i)+j) *...
dCurvebm. discounts (freq*yDist(i)+j)*Fint{j}(p);
end
% numerical evalutation of the unknown pseudo discounts
NPV=@(p) floatLeg+floatSum (p)—R.swap (i+2)=*BPV;
p=fsolve (NPV,1,o0pt);
% forward pseudo discounts and then pseudo discounts computation
PF=1;
for j=1:freq=*(yDist(i+1)—yDist(i))
PF=PFx*1/(1+yearFém (freq+yDist(i)+j).*Fint{j}(p));
end
P(i+1)=P(i)=*PF;
% cycle variable update
floatLeg=floatLeg+floatSum (p);
end

%/ Euribor6ém curve’s update

pseudoDcurve . knots=[dates . settlement; pseudoDcurve. knots; dates.swap(3:end)
I;

pseudoDcurve. discounts =[1;pseudoDcurve. discounts ;P(2:end) ];

pseudoDcurve. rates=[0; —log (pseudoDcurve. discounts (2:end)) ./ ...
yearfrac(dates.settlement , pseudoDcurve. knots (2:end) ,3) |;

end

Appendices/EuriborébmBootstrap.m

The linear interpolation over zero rates is made in this function.

function P=ZRlinearInterp (t0,ti ,Pi,t)

%/ linear interpolation on zero rates
Zi=—log (Pi)./ yearfrac(t0,ti,3);
Z=interpl (ti ,Zi, t);
P=exp(—yearfrac(t0,t,3).xZ);

end

Appendices/ZRlinearInterp.m

EONIAinterp function generates two structs containing dates and discount factors
with six months and one year lag.

function [dCurveém,b dCurvely]=EONIAinterp (discCurve ,h Nyears, freq)

%) adding 6m dates and 6m discounts interpolation

dCurvebm . dates=zeros (freq+Nyears,1) ;

for i=1:freqxNyears
newDate=addtodate (discCurve . knots (1) ,12/ freqxi, ‘'month”) ;
dCurvebm . dates (i )=newDate.*isbusday (newDate)+(1—isbusday (newDate) ) .*
busdate (newDate, 'modifiedfollow ") ;

end

dCurvebm. discounts=ZRlinearInterp (discCurve. knots (1) ,discCurve. knots (2:end

) ..

discCurve. discounts (2:end) ,dCurvebm. dates) ;
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12|%) extrapolation of 1y dates and yearly discounts interpolation
dCurvely. dates=dCurvebm. dates (freq *(1:Nyears));
14| dCurvely . discounts=ZRlinearInterp (discCurve.knots (1) ,discCurve. knots (2:end
) ...
discCurve.discounts (2:end) ,dCurvely. dates) ;
16| end

Appendices/EONIAinterp.m

B.2 Calibration and swaption pricing via MHM model

[ T T ]
l crabBootstrap l calibrationData lmktFormuaATMswnPricer l MHWSswnPricer
|
bootstrapCurvelnterp

FIGURE B.2: MHJM model flowchart

In main script there is the main body of the calibration technique for MHJM
model.

clear all
close all
clc

N

crabBootstrap
s| calibrationData;

®

%/ Objective function definition
mktATMswnPrice=zeros (length (swnData . mktVol) ,1) ;
errQ=@(p) 0;
for i=1:length (mktATMswnPrice)
12 mktATMswnPrice (i )=mktFormulaATMswnPricer (swnData .t ,swnData.Tm(i),
swnData.nSwn(i).TF, ...
discCurve ,swnData. mktVol(i) ,swnData.R(i));
14 MHWswnPrice=@(p) MHWswnPricer (p(1) ,p(2) ,p(3) ,swnData.t,swnData.Tm(i)

e

1

swnData.nSwn(i).Tf,swnData.nSwn(i).TF,swnData.R(i),6discCurve,
pseudoDcurve) ;
16 errQ=@(p)errQ (p) +(MHWswnPrice (p )—mktATMswnPrice(i) ) ."2;
end
18| paramDomain=@(p) (p(1) >=0) & (p(2)>0) & (p(3)>=0 & p(3)<=1);

20|%) Optimization

opt=optimset(’Display’, "iter’, 'PlotFcns’,@optimplotfval) ;

»|p0=[.1,.01,0];

tic

24| optP=fminsearch (@(p)errQ(p) .* paramDomain (p)+1e5%(1 —paramDomain(p) ) ,p0, opt)

toc

MHWswnPriceOpt=zeros ( size (mktATMswnPrice) ) ;
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for i=1:length (mktATMswnPrice)
MHWswnPriceOpt (i )=MHWswnPricer (optP (1) ,optP(2) ,optP(3) ,swnData.t,
swnData.Tm(i) ,...
swnData.nSwn(i).Tf,swnData.nSwn(i).TF,swnData.R(i),6discCurve,
pseudoDcurve) ;
end

%o Resuts

hold all

plot (swnData.Tm,100x*MHWswnPriceOpt, '—d’, "Markersize’ ,7.5, "MarkerFaceColor’
,’b’,’Linewidth’ ,2)

plot (swnData.Tm,100*mktATMswnPrice, '—s’, "Markersize ' ,10, "MarkerFaceColor ",
‘r’,’Linewidth’ ,2)

grid on

dateFormat = 11;

datetick (’'x’,dateFormat);

legend ( MWW’ , "mkt ")

Appendices/mainM.m

This is the script used to read swaption market data from Excel file.

%o file data
fileName="EURSwaptionVol_091312. xIsx ;
formatData="dd/mm/yyyy’;
%o valutation date
[~,valDate]=xlsread (fileName ,1, 'D1");
valDate=datenum (valDate , formatData) ;
% settlement day convention
j=0;
swnData . t=valDate;
while j~=2

swnData. t=swnData. t+1;

if isbusday(swnData.t)

j=i+1L;

end

end

%o initialization

N=9;

freq=2;

swnData . mktVol=zeros (N, 1) ;

swnData.R=zeros (N, 1) ;

swnData.Tm=zeros (N, 1) ;

for i=1:N
swnData.nSwn(1i).Tf=zeros(freqxi,1);
swnData.nSwn(i).TF=zeros(i,1);

end

%) creation of maturities & fix/floating payments date

every6Mdates=zeros (freq*N,1) ;

newDate=addtodate (swnData.t,1, "year’);

swnData .Tm(1)=newDate.* isbusday (newDate)+(1—isbusday (newDate) ) .* busdate (
newDate, "modifiedfollow ") ;

for i=1:freq*N
newDate=addtodate (swnData.Tm(1) ,12/ freq*i , "'month ") ;
every6Mdates (i)=newDate.xisbusday (newDate)+(1—isbusday (newDate) ) .x
busdate (newDate, "modifiedfollow ") ;

end

swnData . Tm(2:end)=every6Mdates (2:2:end—-1);
for i=1:N
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swnData .nSwn(end—i+1) . Tf=every6Mdates (end—2+i+1:end) ;
swnData.nSwn(end—i+1) . TF=swnData .nSwn(end—i+1) . Tf(2:2:end) ;
end
%) reading market data
swnData . mktVol (1)=xlIsread (fileName ,9, "F10")*le—2;
swnData .R(1)=xlsread (fileName ,9, 'F28") /100;

swnData . mktVol (2)=xlIsread (fileName ,8, 'F12")xle—2;
swnData.R(2)=xlsread (fileName ,8, "F30") /100;

swnData . mktVol (3)=xlIsread (fileName ,7, "F13")*le—2;
swnData.R(3)=xlsread (fileName ,7, 'F31") /100;

swnData . mktVol (4)=xlsread (fileName ,6, 'F14 ") xle—2;
swnData.R(4)=xlsread (fileName ,6, 'F32") /100;

swnData . mktVol (5)=xlsread (fileName ,5, "F15")*le—2;
swnData.R(5)=xlsread (fileName ,5, '"F33") /100;

closeMktVol=xlsread (fileName ,4, "F15:F16 ") xle—2;

closeStrike=xlsread (fileName ,4, "F33:F34") /100;

swnData . mktVol (6)=interp1 ([ swnData.Tm(5) ;swnData.Tm(7) ], closeMktVol,
swnData.Tm(6) ) ;

swnData.R(6)=interp1 ([ swnData.Tm(5) ;swnData.Tm(7) ], closeStrike ,swnData.Tm

(6));

swnData. mktVol (7)=xlsread (fileName ,3, 'F16")*xle—2;
swnData.R(7)=xlsread (fileName ,3, "F34 ") /100;

closeMktVol=xlIsread (fileName ,2, "F16:F17 ") xle—2;

closeStrike=xlsread (fileName ,2, "F35:F36 ") /100;

swnData . mktVol (8)=interpl ([ swnData.Tm(7) ; every6Mdates (end) ] ,closeMktVol,
swnData.Tm(8) ) ;

swnData.R(8)=interp1 ([swnData.Tm(7) ;every6Mdates (end) ], closeStrike ,swnData
Tm(8));

closeMktVol=xlIsread (fileName ,1, "F16:F17 ") xle—2;

closeStrike=xlsread (fileName ,1, "F34:F35") /100;

swnData. mktVol (9)=interp1l ([ swnData.Tm(7) ; every6Mdates (end) ], closeMktVol,
swnData.Tm(9) ) ;

swnData .R(9)=interpl ([ swnData.Tm(7) ;every6Mdates (end) ], closeStrike ,swnData
-Tm(9)) ;

%) cleaning workspace
clear valDate j N freq i every6Mdates newDate closeMktVol closeStrike ...
fileName formatData

Appendices/ calibrationData.m

mktFormulaATMswnPricer function computes ATM swaption Black formula and Black
normal formula (we just need the Black formula).

function price=mktFormulaATMswnPricer(t,Tm,TF, discCurve,hsigma, strike)

PD=ZRlinearInterp (t,discCurve.knots ,discCurve. discounts ,[Tm;TF]) ;
yearFly=yearfrac ([Tm;TF(1:end—-1)],TF,6) ;
frwPD=PD(2:end) /PD(1) ;
BPV=sum(yearFly.xfrwPD);
if nargin==5 % Black normal model
price=PD(1) «BPVxsigmax*sqrt(yearfrac(t,Tm,3) /(2%pi));
else % Black model
price=PD(1) «BPVxstrike x(2+normcdf(sigmaxsqrt(yearfrac(t,Tm,3))/2)—1);




19

[N}

29

w

Appendix B. Matlab Code 53

end

end

Appendices/mktFormulaATMswnPricer.m

In this function we price a swaption with the methodology explained in Chapter 2.

function price=MHWswnPricer(a,sigma,gamma,t,Tm, Tf,TF,R, discCurve,
pseudoDcurve)

3| [PD,P]=bootstrapCurvesInterp (discCurve , pseudoDcurve, t ,Tm, Tf ,TF) ;

frwPD .TmF=PD. TF/PD.Tm;

frwPD . Tmf=PD. Tf/PD.Tm;

frwPD. Tf=PD. Tf./[PD.Tm;PD. Tf(1:end—1)];
frwP=P.Tf./[P.Tm;P.Tf(1l:end—-1)];
spreadD=frwPD. Tf./ frwP;

yearFly=yearfrac ([Tm;TF(1:end—-1)],TF,6) ;
c=yearFly*R;
c(end)=c(end) +1;

wa=c . * frwPD .TmF;

5| wb=frwPD.Tmf(1:end—1);

we=spreadD . x[1;wb];

dt=yearfrac(t,Tm,3);
if a~=0
V=(1—exp(—2xaxdt))/(2xa);
v=@(t,T)sigma/a*(l—exp(—axyearfrac(t,T,3)));
else
V=dt;
v=@(t,T)sigmaxyearfrac(t,T,3);

5| end

7| lambda . TF=(1—gamma) v (Tm, TF) ;

lambda . Tf=(1—gamma) *v (Tm, Tf (1:end —1)) ;
nu=v (Tm, [Tm; Tf (1:end —1) ] ) —gammaxv (Tm, Tf) ;

freq=2;
f=@(x)0;

3| for i=1:length (Tf)

if i~=length (Tf)
f=@(x) f (x)+wb(i)*exp(—lambda.Tf(i)+x—(lambda.Tf(i))"2xV/2);
end
f=@(x) f (x)—wc(i)*exp(—nu(i)*x—(nu(i))"2«V/2);
if mod(i,freq)==
f=@(x)f(x)+wa(i/freq)+exp(—lambda.TF(i/freq)*x—(lambda.TF(i/freq))
N2V /2);
end
end
opt=optimset('Display’, "off’, ' Tolfun’,1e—12, TolX",1e-8);

3| xi=fsolve (f,0,0pt);

5| price=PD.Tmx* (sum(wa.*normcdf(xi/sqrt (V)+sqrt (V)*lambda.TF)) +...

sum(wb.xnormedf(xi/sqrt (V)+sqrt (V) *lambda. Tf) )—sum(wc.*normecdf(xi/sqrt
(V)+sqrt(V)*nu)));

7l end

Appendices/MHWswnPricer.m

bootstrapCurvesInterp function interpolates along the necessary set of dates the dis-
counting and pseudo-discounting curves obtained via Bootstrap.
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function [PD,P]=bootstrapCurvesInterp (discCurve ,pseudoDcurve,t,Tm, Tf,6 TF)

PD.TF=ZRlinearInterp (t, discCurve.knots ,discCurve. discounts ,TF) ;
PD.Tf=ZRlinearInterp (t,discCurve.knots ,discCurve. discounts , Tf);
PD.Tm=ZRlinearInterp (t,discCurve.knots ,discCurve.discounts ,Tm) ;

P.Tf=ZRlinearInterp (t, pseudoDcurve. knots , pseudoDcurve. discounts , Tf) ;
P.Tm=ZRlinearInterp (t, pseudoDcurve. knots , pseudoDcurve . discounts ,Tm) ;
end

-

a1

~

©

Appendices/bootstrapCurvesInterp.m

B.3 Calibration and swaption pricing via EQM model

crabBootstrap calibrationData

modelParamDomain QEMswnPricer

FIGURE B.3: EQM calibration flowchart

QEMswnPricer

l distrParam l l Jamishidian1 l l Jamishidian2 ] l tripleintegration

l funl ’l fun2 l fun3 ] l fund ]l para]leilnt’

FIGURE B.4: EQM pricer flowchart

l exponentialCoef

In mainM script there is the main body of the calibration technique for EQM
model.

clear all
close all
cle

crabBootstrap
calibrationData;

%/ Market prices
MKTswnPrice=zeros (size (swnData.Tm) ) ;
for i=1:length (swnData.mktVol)
MKTswnPrice (i )=mktFormulaATMswnPricer (swnData. t ,swnData.Tm(i) ,...
swnData.nSwn (i) .TF, discCurve ,swnData.mktVol(i) ,swnData.R(i));
end
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IC=[.025;0;0];
p0=[.1;.1;.1;.01,.01;.01;.5];

%% Optimization

opt=optimset(’Display’, "iter ', "PlotFcns’,@optimplotfval) ;

tic

optP=fminsearch (@(p)objfun(p(1) ,p(2) ,p(3) ,p(4) ,p(5) ,p(6) ,p(7) ,IC,swnData,
discCurve ,MKTswnPrice) ,p0, opt) ;

toc

%% Results

5| QEMswnPriceOpt=zeros (size (MKTswnPrice) ) ;

for i=1:length (MKTswnPrice)
QEMswnPriceOpt (i )=QEMswnPricer (optP (1) ,optP (2) ,optP(3) ,optP(4) ,...
optP (5) ,optP (6) ,optP(7) ,swnData.t,swnData.Tm(i) ,swnData.nSwn(i) .Tf

swnData.nSwn(i).TF,swnData.R(i),discCurve,bIC);

end

hold all

plot (swnData.Tm,100*QEMswnPriceOpt, '—d’, "Markersize ' ,7.5, "MarkerFaceColor’
,’b’, Linewidth’ ,2)

plot (swnData.Tm,100x*MKTswnPrice, '—s’, "Markersize ’ ,10, "MarkerFaceColor ", "r”’
,'Linewidth "’ ,2)

grid on

dateFormat = 11;

datetick ('x’,dateFormat);

legend ( '"QEM’ , 'MKT")

Appendices/main.m

We define the objective function to minimize in this Matlab function (observe that
if a given set of parameters does not satisty model constrains then the value of the
square distance is set to 100000).

function errQ=objfun(bl,b2,b3, sigmal, sigma2,sigma3, k,IC,swnData, discCurve,
MKTswnPrice)

0/0,
0/0

pFlag=1;
i=1;
while pFlag && i<=length (swnData.Tm)
pFlag=modelParamDomain (b1l ,b2,b3,sigmal ,sigma2,sigma3 ,k,swnData.Tm(i)
swnData.nSwn(i).Tf);
i=i+1;
end

Yo
if pFlag==
errQ=1e5;
else
dist=zeros(size (swnData.Tm)) ;
t=swnData. t;
Tm=swnData .Tm;
nSwn=swnData .nSwn;
R=swnData.R;
parfor i=1:length (swnData.Tm)
dist (i)=QEMswnPricer(b1l,b2,b3,sigmal ,sigma2,sigma3 k,t,...
Tm(i) nSwn(i).Tf,nSwn(i).TF,R(i),6discCurve,bIC,1)—MKTswnPrice(i
);
end
errQ=sum(dist.N2);
end
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end

Appendices/objfun.m

In this function we price a swaption with the methodology explained in Chapter 3.

N

=

16

20

22

44

function price=QEMswnPricer(bl,b2,b3,sigmal, sigma2,sigma3,k,t,Tm,...
Tf,TF,R, discCurve ,IC, calFlag)

if nargin<15
if modelParamDomain (b1l ,b2,b3,sigmal ,sigma2,sigma3 ,k,Tm, Tf)

[Af,AF, Bf ,BF,Cf,CF,Bt,Ct2,Ct3 ,D]=exponentialCoef (bl,b2,b3,sigmal,
sigma2, ...
sigma3 , k,Tm, Tf ,TF) ;

[alpha, beta]=distrParam (IC,bl,b2,b3,sigmal,sigma2,sigma3, t,Tm,Tm) ;
PD=ZRlinearInterp (t, discCurve.knots , discCurve . discounts ,Tm) ;
sFlag=scenarioDef (b3,sigma3,t,Tm, Tf) ;

if sFlag==
price=Jamshidian1 (Af,AF, Bf ,BF, Cf,CF, Bt,Ct2,Ct3,D, alpha , beta ,R,
Tm, Tf, TF,PD) ;
elseif sFlag==2
price=Jamshidian2 (Af,AF, Bf ,BF, Cf,CF, Bt,Ct2,Ct3,D, alpha , beta ,R,
Tm, Tf, TF,PD) ;
else
price=tripleIntegration (Af,AF, Bf ,BF,Cf,CF,Bt,Ct2,Ct3,D, alpha,
beta ,R,Tm, Tf,TF,PD) ;

end
else
price=—1;
end
else
[Af,AF, Bf ,BF,Cf,CF,Bt,Ct2,Ct3 ,D]=exponentialCoef (bl,b2,b3,sigmal,
sigma2 , ...

sigma3 ,k,Tm, Tf , TF) ;
[alpha, beta]=distrParam (IC,bl,b2,b3,sigmal ,sigma2,sigma3,t,Tm,Tm) ;
PD=ZRlinearInterp (t, discCurve.knots ,discCurve.discounts ,Tm) ;
sFlag=scenarioDef (b3,sigma3,t,Tm, Tf) ;

if sFlag==1
price=Jamshidianl (Af, AF, Bf ,BF, Cf,CF,Bt,Ct2,Ct3,D, alpha ,beta ,R,Tm,
Tf,TF,PD);
elseif sFlag==
price=Jamshidian2 (Af, AF, Bf ,BF,Cf,CF,Bt,Ct2,Ct3,D, alpha ,beta ,R,Tm,
Tf,TF,PD);
else
price=tripleIntegration (Af,AF, Bf ,BF,Cf,CF,Bt,Ct2,Ct3,D, alpha, beta,
R,Tm, Tf,TF,PD);
end
end

end

Appendices/QEMswnPricer.m

In this function we check if the set of model parameters satisfies HO hypothesis.
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function flag=modelParamDomain(bl,b2,b3,sigmal, sigma2,sigma3, k,Tm, Tf)

flag=(b1>0) && (b2>0) && (b3>0) && (sigmal>0) && (sigma2>0) && (sigma3>0)
&&...
(k>=0 && k<=1);

h2=sqrt (4*b2/2+8xsigma2.2); % (3.5)

dt=@(t,T)yearfrac(t,T,3);

C2=@(t,T)2x(exp(h2xdt(t,T))—1)./(2+h2+(2+xb2+h2) x(exp (h2xdt(t,T))—-1)); %
(3.5)

C2int=@(t, T, TM) 2% (2x1log ((2* b2 (exp (h2*xdt(T, ) ) —1)+h2*(exp (h2xdt (T, M) ) +1)
)/ ...
(2%b2*(exp (h2sdt(t, TM) ) —1)+h2*(exp (h2xdt(t , M) ) +1))) +(2xb2+h2)«dt(t ,T)
)/ ...
((2%xb2+h2) % (2xb2—h2) ) ;

fSing2=@(t,T, M) integral (@(u)exp(—2xb2xdt(u,T) —4*xsigma2/2xC2int(u,T,IM) ) ,t
,T)/365—...
1/(2xsigma2/2+C2(T, IM) ) ;

h3=sqrt (4*b3"2+8+sigma3.2); % (3.5)
C3=@(t,T)2x(exp (h3xdt(t,T))—1)./(2+h3+(2xb3+h3) *(exp (h3+dt(t,T))—1));

7| hk=@(t ,T)C3(t,T)./(4+sigma3r2+C3(t,T)—4+b3); % (4.25)

sing3=@(t,T)t—log(4+sigma3”2xhk(t,T))/(2%b3);

date=[Tm; Tf(1l:end—1)];
opt=optimset(’Display’, off”");
i=1;

3| while flag && i<=length (date)

sing2=fsolve (@(t)fSing2(t,date(i),Tf(i)),0,opt);
if (Tnmxsing2 && sing2<date(i)) || (hk(date(i),Tf(i))>0 && Tm<sing3 (
date (i) ,Tf(i)) ...
&& sing3(date(i),Tf(i))<date(i))
flag=0;
end
i=i+1;
end

end

Appendices/modelParamDomain.m

In exponentialCoef we compute coefficients in (3.24).

function [Af,AF,Bf,BF,Cf,CF,Bt,Ct2,Ct3 ,D]=exponentialCoef(bl,b2,b3,sigmal,
sigma2, ...
sigma3 ,k,Tm, Tf, TF)

Yo A

h2=sqrt (4*b2/2+8+sigma2.2); % (3.5)

dt=@(t,T)yearfrac(t,T,3);

C2int=@(t, T, M) 2% (2% log ((2*b2x(exp (h2xdt(T,TM) ) —1)+h2*(exp (h2*xdt (T, T™M) ) +1)
)./
(2%b2*(exp (h2sdt(t, TM) ) —1)+h2*(exp (h2xdt(t , M) ) +1))) +(2xb2+h2) +xdt(t ,T)
)/ ...
((2%b2+h2) *(2%xb2—h2)) ;

BquadInt=@(t,T) (2xblxdt(t,T)—exp(—2xblxdt(t,T))+4xexp(—blxdt(t,T))—-3)/(2x*
b1/73);

A=@(t,T)sigma2/2+C2int(t,T,T)—sigmal”2/2xBquadInt(t,T);

Af=A(Tm, Tf) ;
AF=A(Tm, TF) ;

%o B
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B=@(t,T)(1—exp(—blxdt(t,T)))/bl; % (3.6)

Bf=B(Tm, Tf) ;
BF=B(Tm, TF) ;

Yo C
C2=@(t,T)2x(exp(h2xdt(t,T))—1)./(2xh2+(2+xb2+h2) *(exp (h2*dt(t,T))—-1)); %
(3.5)

Cf=C2(Tm, Tf) ;
CF=C2(Tm, TF) ;

%o Bt
rhol=@(t,T,TM) —(k+1)*B(T,IM) .*xexp(—bl*dt(t,T)); % (4.19)

Bt=Bf+rhol (Tm,[Tm; Tf(1:end—1)], Tf);

%o Ct2
date=[Tm; Tf(1l:end—1)];
rho2=zeros(size (date));
for i=1:length(date)
I=integral (@(u)exp(—2%b2xdt(u, date (i))—4*sigma2/2«C2int(u,date(i), Tf(i
))) ,Tm,date(i)) ...
/365;
rho2(i)=C2(date(i),Tf(i))*exp(—2+b2xdt(Tm, date (i) )—4*sigma2/2xC2int(Tm
,date (i) ,Tf(i))) /...
(2xsigma2/2+C2(date (i), Tf(i))*I—-1);
end

Ct2=Cf+rho2;

%o Ct3

h3=sqrt (4*b3/2+8xsigma3”2); % (3.5)

C3=@(t,T)2x+(exp (h3xdt(t,T))—1)./(2xh3+(2%b3+h3) *(exp (h3*dt(t,T))—-1));

hk=@(t,T)C3(t,T)./(4*sigma372xC3(t,T)—4xb3); % (4.25)

rho3=@(t, T, TM) —4xb3xhk (T, TM) .* exp(—2%b3+dt(t ,T) )./ (4*sigma3”2xhk (T, T™M)
*

.exr.).(;Z*bB*dt(t,T))fl); % (4.25) —(5.24)

Ct3=rho3 (Tm,[Tm; Tf(1:end—1)],Tf);

54| %o D

O() At
C3int=@(t,T,TM) 2% (2+log ((2*b3 *(exp (h3+dt(T,TM) ) —1)+h3*(exp (h3*xdt (T, T™M) ) +1)
)/
(2%b3*(exp (h3xdt(t, M) ) —1)+h3*(exp (h3xdt(t, M) ) +1))) +(2xb3+h3)«dt(t,T)
) /...
((2%b3+h3) *(2xb3—h3) ) ;
At=@(t,T)sigma2/2+«C2int(t,T,T)+sigma3”2xC3int(t,T,T)—sigmal”2/2x(1+k)"2x
BquadInt (t,T); % (3.7) —(5.24)

% gammal
rhoQuadInt=@(t , T, TM) (k+1) A2x(B(T, M) ) .A2.%(1 —exp(—2xblxdt(t,T)))/(2xbl); %
general integral of (rhol(t,Tk—1))"2

Brholnt=@(t , T, ™) (k+1)*B(T, ™) .* (exp(—b1lxdt (T, TM) )—exp(—=bl*(dt(t,T)+dt(t,
™))) ...
+2xexp(—bl*dt(t,T))—2)/(2%xb1"2); % general integral of Bl(t,Tk)srhol(t
,Tk—1)

gammal=@(t ,T,IM)sigmal”2/2«xrhoQuadInt(t, T, TM)+sigmal”2xBrholnt(t,T,TM); %
(4.19)

% gamma?2
gamma2=zeros (size (Tf));
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for i=1:length (Tf)
gamma? (i)=—sigma2/2xintegral (@(t)rho2fun(b2,sigma2,t,date(i),Tf(i)) ,Tm
,date(i))/365;

end

% gamma3

rho3int=@(t ,T,IM) (log ((b3xexp (2+b3xdt(t,T))—sigma3/2+«C3(T,IM) . * (exp (2xb3*
dt(t,T))—1))/b3) ...
—2xb3xdt(t,T)) /(2+sigma312);

o| gamma3=@(t , T, TM)—sigma3”2«rho3int (t,T,TM) ;

D=exp (At ([Tm; Tf(1:end—1)], Tf)+gammal(Tm, [Tm; Tf (1:end—1)], Tf)+gamma2 +...
gamma3 (Tm, [Tm; Tf (1:end—-1)],Tf));

end

Appendices/exponentialCoef.m

Since in p? expression there is an integrand function whose primitive is analitically
impossible to find we need to compute the integral numerically, but even I'?, that
is the integral of p?, has to be computed numerically, so in order to use Matlab in-
tegral function inside itself we need another function to serve as a function handle
representing p2.

function f=rho2fun(b2,sigma2,t, Tk, Tkk)

h2=sqrt (4*xb2/2+8+sigma2”2); % (3.5)

dt=@(t,T)yearfrac(t,T,3);

C2=@(t,T)2x(exp(h2xdt(t,T))—1)./(2+h2+(2xb2+h2) *(exp (h2xdt(t,T))—-1)); %
(3.5)

C2int=@(t, T, TM) 2% (2xlog ((2*b2x(exp (h2+dt(T,TM) ) —1)+h2*(exp (h2*xdt (T, T™M) ) +1)
)/ ...
(2%b2*(exp (h2sdt(t, M) ) —1)+h2*(exp (h2xdt(t , M) ) +1))) +(2xb2+h2)«dt(t ,T)
)/ ...
((2%xb2+h2) *(2xb2—h2) ) ;

I=@(t)integral (@(u)exp(—2*b2xdt(u,Tk)—4xsigma2/2+C2int (u, Tk, Tkk)) ,t,Tk)
/365;

f=zeros(size(t));
for i=1:length(t)
f(i)=C2(Tk,Tkk)xexp(—2«b2xdt(t (i) ,Tk)—4xsigma2/2+C2int(t (i), Tk, Tkk))
/...
(2+sigma2/2xC2(Tk, Tkk) «I(t(i))—1);
end

end

Appendices/rho2fun.m

In this function we compute means and variances as in (3.17).

function [alpha, beta]=distrParam (IC,bl,b2,b3,sigmal, sigma2,sigma3,t,T,IM)

alpha=zeros(size (IC));
beta=zeros(size (alpha));
dt=@(t,T)yearfrac(t,T,3);

%/ factor 1

alpha (1)=exp(—blxdt(t,T))*(IC(1)—(sigmal/bl) 2x(exp(blxdt(t,T))—1)+(sigmal
/b)Y A2/ 2% ...
(exp (bl (dt(IM, T)+dt(t,T)))—exp(blxdt(IM, t))));

beta (1)=sigmal”2/(2+bl)*(1—exp(—2xblxdt(t,T)));
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%o factor 2

5| h2=sqrt(4+«b2/2+8%sigma2.2); % (3.5)

C2int=@(t , T, TM) 2% (2x1log ((2* b2 (exp (h2xdt(T, M) ) —1)+h2*(exp (h2xdt (T, IM) ) +1)
)./
(2%b2x*(exp (h2sdt(t, TM) ) —1)+h2*(exp (h2xdt(t , M) ) +1))) +(2xb2+h2) +xdt(t ,T)
)/ ...
((2%xb2+h2) *(2xb2—h2)) ;

7| I=integral (@(u)exp (2+b2xdt(t,u)+4+sigma2”2xC2int(t,u,IM)) ,t,T) /365;

alpha (2)=IC (2)*exp(—b2*dt(t,T)—2+sigma2/2«C2int(t,T,T™M)) ;
beta (2)=sigma2/2xexp(—2xb2+dt(t,T)—4+xsigma2/2+C2int (t , T, T™M) ) *I;

%% factor 3
alpha (3)=IC(3)*exp(—b3x*dt(t,T));
beta (3) =(sigma3)"2/(2+b3)*(1—exp(—2+b3+dt(t,T)));

end

Appendices/distrParam.m

This function returns one, two or zero if respectively the set parameters fall into Case
(1), Case (2) or the triple integral scenario.

&1

[N

'S

®

function flag=scenarioDef(b3,sigma3,t,Tm, Tf)

3| h3=sqrt (4*b3/2+8+sigma3”2); % (3.5)

dt=@(t,T)yearfrac(t,T,3);

C3=@(t,T)2x(exp (h3xdt(t,T))—1)./(2+h3+(2+«b3+h3) *(exp (h3xdt(t,T))—1));
hk=@(t,T)C3(t,T)./(4*sigma372x«C3(t,T)—4xb3); % (4.25)
hkDis=@(t,T)exp(2+b3+dt(t,T)) /(4xsigma3”2);

date=[Tm; Tf(1l:end—1)];

if hk(date,Tf)<0 | hk(date, Tf)>hkDis(t,date) % Exponential parabola+Add hp
met
flag=1;
elseif hk(date,Tf)>0 & hk(date, Tf)<hkDis(Tm, date) % Gaussian bell
flag=2;
else
flag=0;
end

end

Appendices/scenarioDef.m

Jamshidian approach in scenario Case (2) (Jamshidian1 function, triplelntegration and
the functions called inside them were already attached in Chapter 5).

function price=Jamshidian2 (Af,AF, Bf,BF,Cf,CF,Bt,Ct2,Ct3,D,alpha, beta ,R,Tm,
Tf,TF,PD)

%) g and h definition
yFly=yearfrac ([Tm;TF(1:end—-1)],TF,6);
freq=2;

g=@(x,y,2)0;
h=@(x,y)0;
for i=1:length(Tf)
g=@(x,y,z)g(x,y,z)+D(i)*exp(—Af(i)—Bt(i)=(alpha(1l)+sqrt(beta(1l))x*x)...
—Ct2(i)«(alpha(2)+sqrt(beta(2))*y)."2-Ct3(i)*z."2);
h=@(x,y)h(x,y)+exp(—Af(i)—Bf(i)=*(alpha(1l)+sqrt(beta(l))=*x) —...
Cf(i)=(alpha(2)+sqrt(beta(2))*y)."2);
if mod(i,freq)==0
j=i/freq;
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h=@(x,y)h(x,y)+R«yFly(j)*exp(—AF(j)—BF(j)*(alpha(1)+sqrt(beta(l))=*
X) ...

—CF(j)*(alpha(2)+sqrt(beta(2))*y)."2);

end
end

%/ grid construction

opt=optimset(’Display’, off’, " Algorithm ", Levenberg—Marquardt”) ;
x0=0;

c=6;

yExI=—c;
yExS=c;

cMxS=c;
cMxI=@(y)min (cMxS, max(—c, fsolve (@(x)g(x,y, zeros (size(y)))—h(x,y) ,x0xones (
size(y)),opt)));

%% integrals computation
theta=alpha(3)/beta(3)*(1—1./sqrt(1+2«beta (3)+Ct3));
gamma=exp (theta.N2xbeta (3)/2—thetaxalpha(3))./sqrt(1+2xbeta(3)*Ct3);

f2=@(x,y)fun3(x,y, Af,AF, Bf ,BF,Cf,CF, Bt,Ct2,Ct3,D, alpha , beta ,R, yFly ,gamma,
theta ,g,h);
P2=integral2 (@(y,x)f2(x,y) ,yExI,yExS,cMxI,cMxS, "method ", " tiled ") ;

Y% price computation
price=PDxP2;

end

Appendices/Jamshidian2.m

Here we define the function to be integrated for Case (2).

function f=fun3(x,y,Af, AF,Bf,BF,Cf,CF,Bt,Ct2,Ct3,D, alpha, beta ,R, yFly,gamma
,theta,g,h)

P0=—.25;

opt=optimset(’'Display’, "off’,”Algorithm ", ’Levenberg—Marquardt ") ;
zl=fsolve (@(z)g(x,y,z)-h(x,y) ,POxones(size(x)) ,opt);

z2=—21;

d3=(zl—alpha(3))/sqrt(beta(3));

d4=(z2—alpha(3))/sqrt(beta(3));

freq=2;

f=0;

for i=1:length (Af)
dl=(sqrt(1+2xbeta(3)*Ct3(i))*zl—(alpha(3)—theta(i)*beta(3)))/sqrt(beta
(3));
d2=(sqrt(1+2«beta (3)*Ct3(i))*z2—(alpha(3)—theta(i)*beta(3)))/sqrt(beta
(3));

f=f+(D(i)+gamma(i)*exp(—Af(i)—Bt(i)=*(alpha(1)+sqrt(beta(l))*x) —...
Ct2(i)*(alpha(2)+sqrt(beta(2))x*y)."2—x."2/2—y.~2/2) . (normcdf(d2)—
normcdf(dl)) ...
—exp(—Af(i)-Bf(i)=*(alpha(1l)+sqrt(beta(1))*x)—Cf(i)=*(alpha(2)+sqrt(
beta (2))+y).A2 —...
xA2/2—y."2/2) .%(normcdf(d4)—normedf(d3)))/(2xpi);
if mod(i,freq)==0
j=i/freq;
f=f—RxyFly(j)=*exp(—AF(j)—BF(j)=*(alpha(l)+sqrt(beta(l))x*x) —...
CF(j)=*(alpha(2)+sqrt(beta(2))xy)."2—x."2/2—y."2/2) .%(normcdf(
d4)—normcdf(d3)) ...
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24 /(2% pi )
end
26| end

28| end

Appendices/fun3.m

B.4 EQM swaption pricer via Monte Carlo

MCswnPricer

5 |
|
QOUprocessSim swPriceSim modelParamDomain

exponentialCoef

FIGURE B.5: EQM pricer flowchart

Here we price under the EQM model a swaption with Monte Carlo algorithm.

function [price ,CI]=MCswnPricer(bl,b2,b3,sigmal, sigma2,sigma3,k,t,Tm,...
Tf,TF,R, discCurve ,IC ,Nsim)

N

=

%) gaussian factors

if modelParamDomain (b1,b2,b3,sigmal ,sigma2,sigma3 ,k,Tm, Tf)

6 [psilTm, psi2Tm , psi3Tm]=OUprocessSim (IC,b1,b2,b3,sigmal ,sigma2 ,sigma3, t
,Tm,Tm, Nsim) ;

8 %o computation

PD=ZRlinearInterp (t, discCurve.knots ,discCurve.discounts ,Tm) ;

10 swPrice=swPriceSim (psilTm, psi2Tm , psi3Tm,bl,b2,b3,sigmal,sigma2 ,sigma3,
k,Tm, Tf ,TF,R) ;

swnPayoff=(max(swPrice (:,1) ,0)+max(swPrice(:,2) ,0))/2;

12 [price ,~,Cl]=normfit (PD«swnPayoff) ;
else

14 price=—1;
end

16
end

Appendices/MCswnPricer.m

In the following function we simulate the threee Gaussian factors.

function [psil,psi2, psi3]=0OUprocessSim(IC,b1,b2,b3,sigmal,sigma2,sigma3,t,
T,TM, Nsim)

% t=initial time, T=evaluation time, TM=forward measure time

psil=zeros (Nsim,2) ;

psi2=psil;

psi3=psil;

dt=@(t,T)yearfrac(t,T,3);
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%o psil
Z=randn (Nsim,1) ;
psil (:,1)=exp(=blxdt(t,T))*(IC(1)—(sigmal/bl)"2x(exp(blxdt(t,T))—-1)+...
(sigmal/b1)"2/2%(exp (bl (dt(TM, T)+dt(t,T)))—exp(blxdt(IM, t))) +...
sigmalssqrt ((exp(2xblxdt(t,T))—1)/(2xbl))*Z);

30 psil (:,2)=exp(=blxdt(t,T))*(IC(1)—(sigmal/bl) 2x(exp (blxdt(t,T))—-1)+...

(sigmal/b1)"2/2%(exp (bl (dt(TM,T)+dt(t,T)))—exp(blxdt(IM, t))) +...
sigmalssqrt ((exp(2xblxdt(t,T))—1)/(2xbl))*(-2Z));

7|90 psi2

h2=sqrt (4*b2/2+8+sigma2/2); % (3.5)

C2int=@(t, T, M) 2% (2xlog ((2* b2 (exp (h2+dt(T,TM) ) —1)+h2*(exp (h2*xdt (T, T™M) ) +1)
)./
(2%b2x*(exp (h2sdt(t, TM) ) —1)+h2*(exp (h2xdt(t , M) ) +1))) +(2xb2+h2) +«dt(t ,T)
) /...
((2%b2+h2) *(2%¥b2—-h2)) ;

I=integral (@(u)exp (2xb2xdt(t,u)+4+sigma2/2+«C2int(t,u,TM)) ,t,T) /365;

Z=randn (Nsim,1) ;

psi2 (:,1)=exp(—b2xdt(t,T)—2xsigma2/2xC2int(t,T,TM)) *(IC(2)+sigma2xsqrt (1)
Z);

psi2 (:,2)=exp(—b2xdt(t,T)—2+sigma2/2+C2int (t, T, TM) ) *(IC (2)+sigma2*sqrt(I)
*(=2));

%o pSl3

Z=randn (Nsim,1) ;

psi3 (:,1)=exp(=b3*dt(t,T)) *(IC(3)+sigma3d*sqrt ((exp(2xb3xdt(t,T))—1)/(2xb3)
)*Z) ;

psi3 (:,2)=exp(=b3xdt(t,T)) *(IC(3)+sigma3*sqrt ((exp(2+b3xdt(t,T))—1)/(2xb3)
)x(=2));

end

Appendices/OUprocessSim.m

Using Proposition 2 and the already simulated processes we evaluate swap price in
swPriceSim function

'S

®

20

function price=swPriceSim(psil, psi2, psi3,bl,b2,b3,sigmal,sigma2,sigma3, k,
Tm, Tf,, TF,R)

%o coefficients
[Af,AF, Bf ,BF,Cf,CF, Bt,Ct2,Ct3 ,D]=exponentialCoef (bl,b2,b3,sigmal ,sigma2

sigma3 ,k,Tm, Tf , TF) ;
%o formula
yFly=yearfrac ([Tm;TF(1:end—-1)],TF,6) ;
freq=2;
price=zeros(size (psil));
for i=1:length (Tf)
price=price +...
D(i)xexp(—Af(i)—Bt(i)*psil—Ct2(i)*psi2.A2—Ct3(i)=*psi3.N2) —...
exp(—Af(i)—Bf(i)*psil—Cf(i)*psi2."2);
if mod(i,freq)==
j=i/freq;
price=price—RxyFly(j)s*exp(—AF(j)—BF(j)*psil—CF(j)x*psi2."2);
end
end

end

Appendices/swPriceSim.m
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