
politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in

Computer Science and Engineering

A Variational Approach to Transfer
Value Functions in Reinforcement

Learning

Supervisor:

prof . marcello restelli

Assistant Supervisor:

dott. andrea tirinzoni

Master Graduation Thesis by:

rafael a . rodriguez s .
Student Id n. 874390

Academic Year 2017-2018

To my Mother, to my Father and to my Brother.

A C K N O W L E D G M E N T S

First, I would like to sincerely thank my advisors Prof. Marcello
Restelli and Andrea Tirinzoni for all the support during this work:
your insightful comments and ideas were fundamental as they guided
me through this work. This work made my interest in doing research
even stronger. I am glad I took on this project with you.

I would like to thank, as well, the friends that gave me their uncon-
ditional support and words of encouragement that made my experi-
ence through this masters program better.

Finalmente, pero de ninguna manera menos importante, agradezco
a mi familia porque su apoyo y enseñanzas han sido, y siempre serán,
fundamentales para el desarrollo de mis proyectos.1

1 Finally, but never less important, I thank my family as their support and teachings
have been, and will always be, fundamental in the development of my projects.

iii

C O N T E N T S

Abstract viii
1 introduction 1

1.1 Contribution 2

1.2 Document Outline 2

2 background 4

2.1 Reinforcement Learning and Markov Decision Processes 4

2.1.1 Value-Based RL Fundamentals 6

2.2 Variational Inference 7

2.2.1 Bayesian Inference and Intractability 8

2.2.2 Evidence Lower Bound (ELBO) 8

2.3 Inductive PAC-Bayesian Learning Overview 9

3 transfer learning in reinforcement learning 11

3.1 Motivation 11

3.2 Transfer Algorithm Design 12

3.3 Related Fields 14

3.3.1 Multitask Learning 14

3.3.2 Learning to Learn 14

3.3.3 Lifelong Learning 15

3.4 Our Setting 16

4 related works 17

4.1 Hierarchical Bayesian Multitask RL 17

4.2 Hidden-Parameter MDPs 19

4.3 Randomized Value Functions 19

5 variational transfer learning 21

5.1 Variational Transfer Algorithm 21

5.1.1 Modeling the Likelihood 22

5.1.2 Variational Approximation 24

5.1.3 Algorithm 24

5.1.4 TD error optimization 26

5.2 Practical Implementations 27

5.2.1 Gaussian Variational Transfer 27

5.2.2 Mixture of Gaussians Variational Transfer 29

6 empirical evaluation 31

6.1 The Rooms Problem 31

6.1.1 Evaluation 32

6.1.2 Evaluation under a Distribution Change 33

6.1.3 Induced Exploration 34

6.1.4 Performance vs. Task Likelihood 35

6.1.5 Performance vs. Number of Sources 36

6.2 Classic Control 37

6.2.1 Cartpole 37

6.2.2 Mountain Car 39

iv

6.3 Maze Navigation 40

7 conclusions and future works 44

bibliography 46

a experiments details 49

a.1 The Rooms Problem 49

a.2 Classic Control 49

a.2.1 Cartpole 49

a.2.2 Mountain Car 50

a.2.3 Maze Navigation 50

v

L I S T O F F I G U R E S

Figure 4.1 Hierachical Bayesian Models— diagrams taken
from (Lazaric and Ghavamzadeh, 2010) 18

Figure 6.1 The Rooms Environment 31

Figure 6.2 Rooms Environment Expected Return estimated
with 20 independent runs. The 95% confidence
intervals are also shown. 33

Figure 6.3 Evaluation under a distribution change in Rooms
Environment: Expected Return—estimation with
20 independent runs with 95% confidence in-
tervals. 34

Figure 6.4 Exploration Comparison in a Two-Room vari-
ant of the Rooms Problem 35

Figure 6.5 Expected return as a function of task likeli-
hood 36

Figure 6.6 Expected Return vs. Number of source tasks
for Gaussian Variational Transfer (GVT) 36

Figure 6.7 Cartpole Diagram. mcart is the mass of the cart,
mpole is the mass of the pole and lpole is the
length of the pole. F is the force applied when
one of the action (left or right) is taken. 38

Figure 6.8 Cartpole’s Expected Return estimated with 20
independent runs. The 95% confidence inter-
vals are also shown. 38

Figure 6.9 Mountain Car Diagram. v is the velocity ap-
plied by the taken action. The magnitude of
this velocity defines the tasks and the direction
corresponds to the left and right actions. 39

Figure 6.10 Mountain Car’s Expected Return estimated with
20 independent runs. The 95% confidence in-
tervals are also shown. 40

Figure 6.11 Sample of the set of mazes 41

Figure 6.12 Maze’s Expected Return estimated with 20 in-
dependent runs. The 95% confidence intervals
are also shown. 43

vi

Figure A.1 Set of mazes used for experiments in Section
6.3 51

A C R O N Y M S

MDP Markov Decision Process

GVT Gaussian Variational Transfer

MGVT Mixture of Gaussians Variational Transfer

RL Reinforcement Learning

SGD Stochastic Gradient Descent

TD Time Difference

VT Variational Transfer

DDQN Double Deep Q-Network

MLP Multilayer Perceptron

ReLU Rectified Linear Unit

ELBO Evidence Lower Bound

PAC Probably Approximately Correct

KL Kullback-Leibler

MTL Multitask Learning

BNN Bayesian Neural Network

LSVI Least Squares Value Iteration

AI Artificial Intelligence

vii

A B S T R A C T

Reinforcement Learning (RL) has shown promise to be a good frame-
work for a sequential decision-making agent to learn by interaction;
however, it could require a lot of time and experience samples to learn
each individual task. Transfer in RL is of main importance to achieve
efficient intelligent decision-making agents as it strives to exploit, as
much as possible, previously learned tasks. We consider the transfer
of knowledge, encoded by the optimal value functions, in the scenario
in which a target task must be solved only knowing the optimal value
functions of a set of related source tasks. We propose a general algo-
rithm, called Variational Transfer, based on Variational Inference that
works with parameterized value functions. This choice makes the al-
gorithm applicable to the function regressors popular nowadays, such
as neural networks, and by just constraining the distributions families
to be parameterized, as well, it provides great flexibility to model the,
possibly complex, distributions of the optimal value functions. In a
more grounded perspective, we put forward two practical implemen-
tations: the first one based on the Multivariate Gaussian distribution
family and, the second, to allow for more powerful representations,
based on Mixtures of Gaussians. We evaluate both of these with nu-
merical simulations to tackle different environments with increasing
complexity, both to gain insight of the empirical behavior of our ap-
proaches and to measure their performance when compared to state-
of-the-art RL algorithms.

viii

S O M M A R I O

L’apprendimento per rinforzo, Reinforcement Learning (RL) in in-
glese, ha dimostrato di essere un buon metodo per permettere ad
un agente che prende decisioni sequenzialmente di imparare tramite
l’interazione con l’ambiente, anche se di solito necessita molto tempo
ed esperienza per apprendere ogni compito. L’uso di tecniche di
trasferimento in RL è di centrale importanza per realizzare sistemi
decisionali intelligenti che siano anche efficienti, dato che queste tec-
niche cercano di sfruttare, nella miglior maniera possibile, i compiti
già appresi. In questa tesi consideriamo il trasferimento di conoscenza,
rappresentata dalle funzioni di valore ottime, nello scenario in cui
l’agente deve apprendere un compito obbiettivo quando conosce le
funzioni di valore ottime di altri compiti simili. Proponiamo un al-
goritmo generale, chiamato Variational Transfer, basato su tecniche
d’inferenza con metodi variazionali che opera con funzioni di val-
ore parametrizzate. Questa scelta rende questo algoritmo applicabile
a modelli di regressione molto utilizzati attualmente, come le reti
neurali, richiedendo soltanto che le famiglie di distribuzione siano
anch’esse parametrizzate, offre una buona flessibilità per modellare
le, potenzialmente complesse, distribuzioni delle funzioni di valore
ottime. Inoltre, introduciamo due implementazioni pratiche: la prima
basata su distribuzioni gaussiane multivariate e, la seconda, permet-
tendo rappresentazioni più potenti, basata su misture di distribuzioni
gaussiane. Valutiamo gli entrambi algoritmi usando simulazioni nu-
meriche con ambienti di diverse difficoltà per capire empiricamente
il comportamento dei metodi e la loro performance in confronto con
algoritmi dello stato dell’arte in RL.

ix

1
I N T R O D U C T I O N

Reinforcement Learning (RL) is the framework that allows an artifi-
cially intelligent agent to learn how to act sequentially in stochastic
environments in an optimal manner, by maximizing the accumulated
reward that it receives from the environment over its interaction time
(Sutton and Barto, 1998). The RL research field has had great advance-
ments and breakthroughs in recent years thanks to the improvement
of the algorithms and the increasing computational power available.
Among these milestones, it is worth noting an agent that learned how
to play optimally the Atari game suite (Mnih et al., 2013) by exploiting
Deep Neural Networks to process complex visual inputs; the imple-
mentation of a system able to master the game of Go and win against
professional players (Silver et al., 2016); robots able to learn complex
controllers (Kober and Peters, 2009), robots able to act from raw vi-
sual inputs (Levine et al., 2016) and to learn in one shot by visually
imitating a human (Yu et al., 2018).

Undoubtedly, these results show that the RL framework could a-
chieve even greater results. Nevertheless, these methods still require
a great amount of experience to be collected by the agent in order
to learn complex controllers, when humans are able to learn new
tasks with much less experience. Classic RL algorithms assume basi-
cally no prior knowledge each time the agent starts learning a new
task, whereas humans are able to exploit previous experience without
much additional effort and, thus, learn more efficiently. Is it possible
to produce such behavior in artificial agents?

Transfer Learning in RL is an active research area that intends to
exploit similarities among tasks solved by an agent, to try to solve
new tasks in an efficient manner, much like humans do. This is a main
challenge in Artificial Intelligence (AI), given that for an intelligent
agent to be able to adapt to a continuously changing environment, it
must be able to learn as efficiently as possible; it is simply not feasible
for the agent to learn as if oblivious of its previous experience when
it needs to adapt quickly. In a more short-term perspective, in many
real systems such as robotics, experience samples are very costly and
the access to the great quantity that current models require are, in
many situations, unattainable, and even if we are far to achieve the
goal of a completely autonomous intelligent agent, this efficient use
of previous knowledge is of main importance to make RL scale to
larger and more complex problems. Therefore, many methods have
been proposed by now in which, by assuming specific similarities
among the tasks to learn, some kind of knowledge is transferred. In

1

1.1 contribution 2

this work, we will present the state of the art of approaches to tranfer,
but surveys such as the one done by Taylor and Stone, 2009 offer
broader views of the varied approaches taken to tackle Transfer in RL.

1.1 contribution

In the literature, some approaches to the Transfer problem have been
from a Bayesian perspective, given that it is interesting to try to in-
fer what would be the best solution to a new task given that the
agent has solved some other similar tasks before. However, Bayesian
techniques pose many challenges from the computational perspec-
tive and very restrictive assumptions are made in order to propose
algorithms that are computationally tractable. In our present work,
we propose a novel technique to transfer knowledge from previous
tasks, also by taking a Bayesian view of the problem, and we propose
to use Variational Inference techniques to avoid restrictive assump-
tions that would limit the effectiveness of transferring. We consider
for this work the knowledge to transfer among the tasks to be in their
optimal value functions given that an important set of state-of-the-art
algorithms in RL are value-based—i.e. algorithms that exploit the dy-
namic programming properties of this kind of decision-making prob-
lems. Moreover, even though complex, the optimal value functions
hold a lot of useful information for a decision-maker; successfully
transferring these is of great interest for an agent to know what to ex-
pect from tasks. Additionally, value-based RL is, by design, efficient
in terms of the samples required and, thus, it is important to research
how to make these methods more efficient with the introduction of
Transfer.

1.2 document outline

We start this document by introducing base definitions and results
relevant to the design of our proposed algorithm in Chapter 2, in-
cluding basic definitions, value-based RL results, Variational Inference
basics and a PAC-Bayesian theory overview. Further, in Chapter 3,
we extend the motivation of Transfer Learning in RL and provide an
overview of various ways transfer has been attempted. In Chapter
4, we present state-of-the-art techniques based on Bayesian inference
that are related to our work and other recent ideas that will moti-
vate further our algorithm. The core of our contribution is in this
general algorithm we call Variational Transfer, presented in Chapter
5, that intends to offer enough flexibility to be useful in the varied
landscape of current RL applications. Furthermore, we present two
practical implementations assuming that Multivariate Gaussians and
Mixtures of Gaussians, respectively, are sufficient to model the under-
lying distribution of optimal value functions for the tasks. We also

1.2 document outline 3

put forward a gradient-based optimization approach to search for op-
timal value functions based on a differentiable approximation of the
optimal Bellman Operator that may be of separate interest. In Chapter
6, we present the empirical evaluation of these two implementations
of Variational Transfer and use four environments of increasing degree
of complexity to provide insights of the empirical behavior of the al-
gorithm and the performances that can be obtained with respect to
classic RL approaches. Finally, in Chapter 7, we present the conclu-
sions of the research done and some future directions that could be
of interest.

2
B A C K G R O U N D

The present chapter is in order to introduce fundamental concepts
that will be used during the presentation of our work. Moreover, it
will help setting a base notation to be used consistently throughout
the rest of the document.

Given that our work is developed within the context of Value-based
RL, we start by introducing the concepts related to the main object of
study, the Markov Decision Process (MDP), and continue to important
definitions within the field of RL and the main results about Value
functions. Finally, we present the basic concepts in Variational Inference
methods for approximate Bayesian Inference and an important result
in PAC-Bayesian learning theory that will set a cornerstone for the
design of our approach.

2.1 reinforcement learning and markov decision pro-
cesses

RL considers the problem of an agent—a decision-maker—that inter-
acts with an environment by taking actions sequentially. When the
agent takes an action, it receives a reward and it understands, at least
partially, the effect of such action by perceiving the change in its ob-
servation of the environment’s state. In the learning context, the agent
does not know about its environment and it must learn by interaction
how to best maximize its return, that is, the sum of the rewards ob-
tained during the period of interaction. Throughout the development
of this document we will consider agents that interact with environ-
ments that are:

• Stationary, such that the dynamics and reward signals do not
change as time passes;

• Markovian, such that the changes in the environment depend
only on the current state of the environment and the action
taken. More precisely, the effects of an action on the environ-
ment are completely defined by its current state;

• Fully Observable, such that the agent can completely understand
the state in which the environment is.

The model used for the scenario described above is that of a dis-
counted Markov Decision Process (MDP) as defined next.

Definition 2.1. An MDP M is defined as the tuple 〈S ,A,P ,R, p0, γ〉
such that:

4

2.1 reinforcement learning and markov decision processes 5

• S is the (continuous) state space of the environment;

• A is a (finite) set of actions that the agent can take;

• P : S ×A→ ∆(S) is the Markovian transition model such that
P(·|s, a) is the probability of the next state whenever action a is
taken in state s;

• R : S × A → R is the reward function. We will consider here-
after that this function is uniformly bounded by a constant
Rmax ∈R+;

• p0 is a probability distribution over the initial state;

• γ ∈ (0,1) is the discount factor that weighs the importance of
the long term reward.

Now, we consider as a possible solution to such type of MDP a
stationary deterministic control policy π : S → A, a mapping from
states to actions that will define the behavior of the agent. Moreover,
we consider next the action-value function of a policy as:

Definition 2.2. Given a stationary deterministic policy π, we consider
the action-value function Qπ : S × A → R to be the expected return
when the agent takes action a in state s and follows the policy π from
then on.

Qπ(s, a) :=R(s, a) + E
P

[
∞

∑
t=1

γtR(s′, π(s′))

]
. (2.1)

Additionally, the value function Vπ : S →R is defined

Vπ(s) :=R(s, π(s)) + E
P

[
∞

∑
t=1

γtR(s′, π(s′))

]
. (2.2)

Hereafter, we will refer to this action-value function as Q-function
and define the optimal Q-function to be one such that

Q∗(s, a) = max
π

Qπ(s, a). (2.3)

Further, the next theorem specify how to compute the Q-functions
of a policy π and from there we are able to define important operators
for the following of the results.

Theorem 2.1 (Puterman, 1994). Given an MDP M as in Definition
2.1 and a deterministic policy π, we can compute its corresponding
action-value function Qπ by solving the Bellman Equation

Qπ(s, a) =R(s, a) + γ E
s′∼P(·|s,a)

[
Qπ(s′, π(s′))

]
(2.4)

2.1 reinforcement learning and markov decision processes 6

We can, then, define the Bellman Operator T π such that,

T πQ(s, a) :=R(s, a) + γ E
s′∼P(·|s,a)

[
Q(s′, π(s′))

]
. (2.5)

The following theorem allows to define analogously the Optimal
Bellman Operator T ∗.

Theorem 2.2 (Puterman, 1994). Given an MDPM as in Definition 2.1,
we can compute an optimal deterministic policy π∗ by solving the
Optimal Bellman Equation:

V∗(s) = max
a′∈A

Q∗(s, a′) (2.6)

from which the optimal deterministic policy π∗, therefore, is:

π∗(s) ∈ argmax
a′∈A

Q∗(s, a′) (2.7)

Then, by combining Theorem 2.1 and 2.2 we can solve for the Opti-
mal Q-function by:

Q∗(s, a) =R(s, a) + γ E
s′∼P

[
max
a′∈A

Q∗(s′, a′)
]

(2.8)

and, thus, define the Optimal Bellman Operator T ∗

T ∗Q(s, a) :=R(s, a) + γ E
s′∼P

[
max
a′∈A

Q(s′, a′)
]

(2.9)

2.1.1 Value-Based RL Fundamentals

Next, we introduce the main theorem in Value-Based RL techniques
and, consequently, define the measures that are basic for the value-
based RL algorithms.

Theorem 2.3 (Puterman, 1994). Given an MDP M defined as in Defi-
nition 2.1, consider the Bellman Operator T π as defined in Equation
2.5 and the Optimal Bellman Operator T ∗ as defined in Equation 2.9.
We have that:

1. Given functions Q1 and Q2 we have that the Bellman Operator
and the Optimal Bellman Operator are a contraction in the L∞-
norm such that:

‖T πQ1 − T πQ2‖∞ ≤ γ‖Q1 −Q2‖∞ (2.10)

‖T ∗Q1 − T ∗Q2‖∞ ≤ γ‖Q1 −Q2‖∞ (2.11)

2.2 variational inference 7

2. Qπ and Q∗ are, respectively, the unique fixed-point of the Bell-
man Operator T π and the Optimal Bellman Operator T ∗.

Straightforwardly, we say a Q-function to be optimal exactly when
the Bellman Error (or Bellman Residual) BQ(s, a) := T ∗Q(s, a)− Q(s, a)
is zero for every state-action pair. Additionally, from this point on we
will only consider Q functions that belong to an uniformly bounded
parameterized family Q:

Q :=
{

Qw : S ×A→R | w ∈Rd

∧ |Qw(s, a)| ≤ Rmax

1− γ
∀(s, a) ∈ S ×A

}
(2.12)

Hence, we can write the Bellman Error as Bw(s, a) := T ∗Qw(s, a)−
Qw(s, a). Assuming that there exists a probability measure ν over the
state-action space S ×A we can write its Lν,p-norm

‖Bw‖p
ν,p = ∑

a∈A

∫
S
|Bw(s, a)|pν(ds, a), (2.13)

with p ∈N+, to be used as a measure of the optimality of a given
Q function in a given MDPM.

However, in the RL scenario, usually, we will not know about such
distribution ν over the state-action space nor the specifics dynamics of
the environment; thus, an empirical estimation will be necessary. We
consider, then, to have a set of experience samples D = 〈si, ai, ri, s′i〉

N
i=0

and we define the following empirical estimator of the Bellman Error:

‖B̃w‖p
D,p :=

1
N

N

∑
i=1
|bi(w)|p (2.14)

bi(w) := ri + γmax
a′∈A

Qw(s′i , a′)−Qw(si, ai) (2.15)

Nonetheless, the estimator in Equation (2.14) is biased and it is
known as the average Time Difference (TD) error—given that the
Equation (2.15) is known in the literature as the TD error.

2.2 variational inference

Since our proposed algorithms are based on Variational Inference
methods, in this section we will present a summary of the principal
concepts for Variational Inference.

2.2 variational inference 8

2.2.1 Bayesian Inference and Intractability

The main motivation for Variational Inference is the need to tractably
compute posterior distributions as prescribed by the Bayes theorem,

P(Y|X) =
P(X|Y)P(Y)

P(X)
=

P(X|Y)P(Y)∫
Y P(X|y)P(y)dy

(2.16)

where X and Y are random variables and P corresponds to the
density function of the indicated random variable.

The main problem is that we are constrained to compute the inte-
gral in the denominator of Equation 2.16, known as the evidence P(X),
when we do not deal with conjugate probability distributions—that
is, distributions for the likelihood P(X|Y) and the prior distribution
P(Y) such that the posterior distribution has the same functional form
of that of the prior. In the presence of conjugacy of the distributions
involved, there are analytical solutions that lessen the computational
burden of the inference. However, for many useful distributions the
direct computation of the inference is intractable and many real situa-
tions required distributions that are not conjugate. For instance, many
current Neural Network models, such as those used in Computer Vi-
sion applications, consider instances with a very large number of pa-
rameters (in the order of millions) to be learned—due to the large
dimension of the inputs and the many complicated layers being used
to tackle such complex tasks. In our Bayesian inference case, Y would
correspond to the model’s parameters and X would correspond to
the data and, hence, we would be constrained to integrate over very
large space to compute the evidence P(X).

Variational Inference methods are techniques based in the Calculus
of Variations to perform approximate Bayesian Inference—hence, the
name—that aims to transform such inference problem in an optimiza-
tion problem.

2.2.2 Evidence Lower Bound (ELBO)

To solve the approximate inference problem, variational methods aim
to search for the distribution within a, possibly parameterized, fam-
ily of distributions that best approximates the posterior. In order to
do this, we first define the Kullback-Leibler Divergence, a measure of
the difference between probability distributions based on Information
Theory.

Definition 2.3 (Kullback-Leibler Divergence). Given probability dis-
tributions p and q of a random variable X, the Kullback-Leibler Diver-
gence is:

KL(q‖p) = E
X∼q

[
log
(

q(x)
p(x)

)]
(2.17)

2.3 inductive pac-bayesian learning overview 9

Next, consider the posterior distribution of our inference problem to
be p and a parameterized family of distributions qξ , with ξ ∈ Ξ, where
ξ are known as variational parameters. Therefore, using the Kullback-
Leibler (KL) divergence, the solution of the following optimization
problem is the Variational Inference approximation.

min
ξ∈Ξ

KL(qξ‖p). (2.18)

However, we cannot optimize this directly. To solve this problem,
the Evidence Lower Bound (ELBO) is used, which comes from the
concavity of the logarithm and Jensen’s inequality, that is a lower
bound to the evidence P(X) (Blei, Kucukelbir, and McAuliffe, 2017).
This is a tight lower-bound to the divergence objective in 2.18 above.
First, consider that we have an inference problem such as the one in
Equation 2.16 with random variables X and Y, such that p(Y|X) is
the posterior distribution, P(X|Y) is the likelihood and P(Y) is the prior
distribution; thus, the ELBO is defined as follows,

ELBO(qξ(Y), p(Y|X)) = E
y∼qξ

[log (p(x|y))]−KL(qξ(Y)‖p(Y)) (2.19)

which can be proved to be equal to the negative KL in the optimiza-
tion problem in 2.18 (Blei, Kucukelbir, and McAuliffe, 2017)—up to a
constant. Therefore, reducing our inference problem to the following
optimization problem,

max
ξ∈Ξ

ELBO(qξ(Y), p(Y|X)). (2.20)

In this way, the problem of performing Bayesian Inference is re-
duced from an potentially intractable integration to an optimization
problem in the parameter space of approximation distributions.

2.3 inductive pac-bayesian learning overview

In this section we introduce an important result within the Probably
Approximately Correct (PAC)-Bayesian framework, that will later on
serve as a motivation to the design of our approach.

First, we go through some notation that will serve to the intro-
duction of the main result. Let’s consider a set of labeled samples
S = 〈xi, yi〉Ni=1 ∈ (X ×Y)N . It is assumed that such samples are gener-
ated i.i.d. (independently and identically distributed) by a probability
distribution D over X × Y . Additionally, we also suppose a set H of
hypotheses (predictors) h : X → Y and we define some loss function
` :H×X ×Y →R. Furthermore, we define the empirical risk of the
sampled set S and the generalization error of a predictor h in Equa-
tion 2.21 and 2.22, respectively.

2.3 inductive pac-bayesian learning overview 10

L̃`
S(h) =

1
N

N

∑
i=1

`(h, xi, yi) (2.21)

L`
D(h) = E

(x,y)∼D
[`(h, x, y)] (2.22)

In PAC-Bayesian, we are interested in studying bounds when there
is a posterior probability measure q over the set of hypotheses H and
we would like to infer information from the empirical loss with such
distribution q, Eh∼q

[
L̃`

S

]
, to estimate the expected generalization error

Eh∼q
[
L`

D

]
. Finally, we present the following theorem by Catoni, 2007

that holds for every posterior distribution q, that is normally obtained
by a learning algorithm after receiving a sampled set S and a prior
distribution p over the set of hypotheses M, that is known before
sampling S.

Theorem 2.4 (Catoni, 2007). Given a distribution D over the X × Y ,
a set of hypotheses H, a loss function ` : H×X × Y → [0,1], a prior
distribution p overH, a real number δ∈ [0,1) and a real number β > 0
with probability at least 1− δ over the choice (X,Y) ∼ DN , we have
the following holds for every posterior distribution q over H

E
h∼q

[
L`
D(h)

]
≤ 1

1− e−β

[
1− e−βEh∼q

[
L̃`(X,Y)(h)

]
− 1

N (KL(q‖p)+ln(1
δ))
]

Although the bound in Theorem 2.4 is valid for loss functions with
range in [0,1], through a straightforward scaling/translation it could
be also applied to bounded loss functions. Furthermore, it also pro-
vide an interesting insight that the optimization of such bound could
be done by managing a trade-off between the deviation of the poste-
rior distribution q from the prior p in terms of the KL divergence and
the expectation of the empirical loss given the posterior.

Moreover, it is also known from Catoni, 2007 that the Gibbs posterior
q∗ that optimizes such bound is given by

q∗(h) =
e−ΛL̃`(X,Y)(h)p(h)∫
e−ΛL̃`

(X,Y)(h
′)p(dh′)

(2.23)

where Λ ∝ N. It is interesting to notice that this posterior acts as
a softmax giving more probability mass to hypotheses that have low
empirical loss proportionally to the importance of such hypothesis
in the given prior distribution. However, it is worth noting that, even
though it is call PAC-Bayesian, this Gibbs posterior does not correspond
to a Bayesian posterior as it is not the solution of a probabilistic infer-
ence, in general. Instead, the Gibbs posterior is just the best probabil-
ity distribution to measure the goodness of the hypotheses, based on
the empirical error measures, to optimize the expected generalization
error.

3
T R A N S F E R L E A R N I N G I N R E I N F O R C E M E N T
L E A R N I N G

This chapter intends to provide an overview of the Transfer Learning
setting within RL with the main objective to place our work within
the state of the art. First, we provide the main motivation in Transfer
Learning research. Then, we provide the considerations needed to de-
sign Transfer algorithms. Finally, we present the derived fields as a
way to place better our contribution.

3.1 motivation

While RL offers a great framework for an agent to learn by interact-
ing in a trial-error basis, it still requires a great amount of experience
samples to learn optimally how to solve single tasks. Recent accom-
plishments within the field—e.g. agents learning to play the Atari
game suite (Mnih et al., 2013), robots learning by imitation (Yu et al.,
2018) and learning sensorimotor policies (Levine et al., 2016)—show
the potential of RL and push forward the interest to have more scal-
able techniques in terms of quantity of samples and time required.

To obtain scalable algorithms, different solutions have been pro-
posed such as Hierarchical Reinforcement Learning to solve tasks
by breaking them in subtasks to which a solution exists or can be
learned, and Imitation Learning as a way to guide the search for the
optimal policy using expert demonstrations. There exist, also, state-
action generalizations that allow RL to be more efficient in dealing
with large, potentially continuous, state-action spaces. State-of-the-
art algorithms tackle the problem by generalizing the sampled expe-
rience to areas of the state-action space not seen before, but that are
close enough, in some sense, to hold certain similarity. Thus, function
approximators are used to represent the main functions to be learned
by the agent—e.g. Q-functions, policies. Taking a step further, a sim-
ilar motivation exists in the core of Transfer Learning. In classic RL,
when the agent is presented with a new task it is normally assumed
that it would have to learn from scratch, that is, not knowing any-
thing about the dynamics of the environment nor what it is suppose
to be doing. However, a new task could still hold similarities with pre-
viously learned ones; the new task may only have (relatively) small
changes in the environment dynamics, the reward signal and/or the
state-action space. Transfer Learning looks for efficient exploitation of
such similarities among tasks.

11

3.2 transfer algorithm design 12

Furthermore, artificially intelligent agents that are able to interact
with an environment and learn from it cannot just assume along their
lifetimes that they would need to learn every new thing as if they
have not tried anything before. Besides the fact that it is not scalable,
biological learning systems from which AI takes inspiration are far
from learning that way. Humans, as intelligent beings, learn struc-
tures that efficiently and effectively introduce inductive bias for any
future task to be learned and it is reasonable to bring such ability
to AI systems. For instance, to deploy intelligent agents in real phys-
ical environments to execute tasks, as it would be done with robotic
rovers to explore Mars, it is not feasible to predict all possible events
beforehand. However, if we could allow an agent to build upon the
knowledge it has to adapt quickly enough to more complex, unseen
environments, we could maximize the probability of the rover to suc-
ceed in its exploration objectives.

Nonetheless, this field poses many complex challenges and it is still
very young and from which different approaches have been taken to
answer different questions. For instance, what knowledge should we
try to transfer? Should we create different structures that naturally
enable transfer? How can the agent manage its past knowledge? How
can the agent learn different tasks simultaneously?

Transfer Learning, then, encompasses a set of techniques that try
to exploit learned information at many different levels and in a wide
range of situations: experience samples (Tirinzoni et al., 2018; Lazaric,
Restelli, and Bonarini, 2008), action abstractions/options and transfer-
ring policies (Fernández and Veloso, 2006, Konidaris and Barto, 2007),
value functions (Lazaric and Ghavamzadeh, 2010), features (Barreto
et al., 2017), etc. Moreover, it has given way to interesting subfields
that attempt to answer many of the open questions in RL and AI.

3.2 transfer algorithm design

In the more general setting, we consider a Transfer Learning problem
to be the situation in which we would like to use a set of solved
tasks—the source tasks—to solve efficiently a new, unseen task—the
target task—while minimizing negative transfer, that is, inductive bias
that hinders the learning process altogether. Here, a task is a learn-
ing problem and, in our RL setting, we consider it to be an MDP.
Some variations of this setting give way to new subfields that find
use in different scenarios. However, this formulation is very general
and when considering to transfer learned knowledge some choices
must be made in order to fit the particular situation we are trying to
solve. The thorough survey by Taylor and Stone, 2009 offers insights
to organize the techniques in Transfer Learning in RL based on these
required assumptions. Here, we present a small overview of their
main ideas.

3.2 transfer algorithm design 13

First, consider the scenario in which we wish to transfer the learned
policy that allows a differential robot to reach a specified position, to
train a legged-robot to complete the same task. We encounter that a
main difference is in the action space of the robots and this fact is
important for the transfer of knowledge to succeed. Another possible
situation would be a legged-robot that has learned to reach a given
position and, in the target task, the same robot must reach another
goal position given a change in the reward. In the first one, we have to
consider that even though the high-level goal is the same the different
state-action space of the second robot makes the problem non trivial;
while in the second situation, the change in reward makes a previous
optimal policy suboptimal for the target. Therefore, we must consider
the tasks differences among the source tasks and the target to solve. This
is of main importance to the design of a transfer algorithm and it is
an intrinsic characteristic of the problem that is being solved.

Second, the transfer algorithm must consider how the source tasks
selection is done. It could be that a human designer chooses the set of
sources in an optimal way to maximize the information transferred to
solve that target. However, a more general situation is when the agent
is allowed to select the best sources from which to transfer. This is a
complex situation and the agent could incur in negative transfer, as
bad choices could lead to performances worse than learning from
scratch or even lead to the inability to learn to solve the target task.

Third, depending on the relationship between sources and target,
there may be a need for Tasks Mappings to effectively transfer. In RL

there may be a change between the action and state spaces among the
tasks, such as in the example above, that require to specify a mapping
that allow to translate the source solution to the target’s different state-
action space. These mappings can be manually designed or learned.
This inter-task transfer aims to distill high-level decision-making.

Finally, what knowledge to transfer is a choice that changes among
many of the methods. Transfer can occur from very low levels, e.g.
transferring experience samples (Tirinzoni et al., 2018; Lazaric, Restelli,
and Bonarini, 2008), to higher levels solutions such as value func-
tion (Lazaric and Ghavamzadeh, 2010), policies and even the transfer
heuristics in the form of actions abstractions (Fernández and Veloso,
2006, Konidaris and Barto, 2007) to solve particular situations. Decid-
ing what to transfer is intrinsically related to how the source tasks
and target tasks hold their similarities.

Lastly, it is worth noting that these design choices for Transfer algo-
rithms are of main importance when analyzing new techniques and
their applicability. Moreover, when proposing novel solutions, clearly
defining these assumptions allows to understand better how to use
them and the tasks to which the solution is useful. By the end of this
chapter, then, we will specify the choices that guided the design of
our approach.

3.3 related fields 14

3.3 related fields

Although the method that we present in this thesis is concerned with
the simpler Transfer Learning scenario described before, it is worth
noting the related, and even more complex, fields that hold in their
core the interest to enable learning agents to exploit past knowledge
efficiently and effectively. Hence, we present next: Multitask Learning
(MTL), the Lifelong Learning and the Learning-to-Learn paradigms in
a very succinct description. In this way, we aim to make clearer the
particular situation our contributions focus on.

3.3.1 Multitask Learning

MTL is a particular setting of Transfer Learning in which an agent will
be exposed to a set of tasks and it must learn them all. In this case,
the assumption of having a set of already solved sources is relaxed
and instead the agent must learn to solve a set of tasks.

It is common to assume that the tasks are drawn from a distribu-
tion, potentially unknown. This distribution implicitly encodes sim-
ilarities among them. The agent must learn, then, how to solve effi-
ciently the tasks that it will experience by using the commonalities
and differences among those. Further, in this scenario, task selection
is alleviated and the agent must automatically learn how to general-
ize among the tasks at hand.

Moreover, the learning procedure is normally expected to allow the
agent to experiment in a given task for a period of time. During the
learning process of an individual task, the agent should exploit the
knowledge gotten so far from all the tasks in the set. In this way, if
done efficiently and robustly to negative transfer, learning the whole
set simultaneously would allow to generalize across the task more
effectively and to learn them all together should be more efficient
than learning them separately from scratch.

MTL, then, tackles the problem of transfer by efficiently managing
correctly the past knowledge to use it, even when the solutions are
still suboptimal, based on the common structure among the tasks.
However, there are no restriction on what knowledge to transfer and,
hence, algorithms in MTL exploit many objects such as value func-
tions, policies and MDPs. Some examples will be seen in Chapter 4.

3.3.2 Learning to Learn

The main intuition behind the Learning-to-Learn paradigm is, again,
to learn a family of tasks by assuming the existence of a probabil-
ity distribution that characterizes it. However, the approach taken to
solve this problem is different than the one of MTL. While MTL can
assume the existence of the aforementioned distribution, the method

3.3 related fields 15

might only focus on learning a finite set of tasks simultaneously. In-
stead Learning-to-Learn concentrates its efforts in avoiding the hand-
design of an algorithm that effectively transfer the knowledge of tasks
experienced before, the Learning-to-Learn approach aims to learn an
algorithm to ensure fast learning of any task in the family.

When learning a single task, the agent is not able to learn how to
generalize given that it learns behavior that optimally solve the one
task and, intuitively, when we would try to directly use the found
solution in a new sampled task, it would probably fail. This resembles
an over-fitting effect, in general machine learning terms. Learning-to-
learn, though, aims at generalizing, much as in supervised learning.
Analogously, by supposing a distribution over tasks from which it is
possible to require samples and an RL algorithm that “labels” the data
points—the tasks and/or experience samples—with their solutions.

This last intuition coming from supervised learning is currently
used in state-of-the-art approaches that, then, exploit extensively the
knowledge of the distribution over tasks. They use sampled tasks
to learn through some RL training algorithm an expressive repre-
sentation of a general solution to the family of tasks by defining a
higher-level objective to maximize the performance across the family
and, thus, explicitly encourage generalization. When the agent is pre-
sented with a new task, the learned model is used to adapt quickly
to any new task drawn from the distribution. In the literature state-
of-the-art algorithms of this paradigm are, mainly, known as Meta-
Learning such as in the works of Duan et al., 2016 and Finn, Abbeel,
and Levine, 2017.

Learning-to-learn is an on-going research field and, mostly, assumes
the possibility to sample many tasks in order to accurately learn a
general solution. Although the core objective is the same as Trans-
fer Learning, this field departs from the general transfer setting as
described before. However, it still pushes towards answering how
to transfer related knowledge and how to efficiently manage knowledge
about the family of tasks.

3.3.3 Lifelong Learning

Lifelong Learning is a more complex paradigm in which an agent
is supposed to learn many different tasks during their lifetime. In
this situation, the MTL paradigm must be extended to consider more
pressing issues needed to support a long-term commitment to contin-
ual learning. The main motivation for Lifelong Learning is to allow
artificially intelligent agents to be put in an environment and contin-
ually build a knowledge base that is useful for all future tasks while
experiencing different tasks/goals in a sequential manner.

Given that for practical implementations it is simply not possible to
retain all the information collected, new structures must be devised

3.4 our setting 16

in order to continually improve the generalization along the agent’s
lifetime. Therefore, this field aims to have Lifelong Learning agents
that can distill learned information from particular tasks that allows
to construct a shared knowledge base that effectively introduces the
inductive bias for future learning and, even, improve performance in
related past tasks.

This is a very complex setting that supersedes the Transfer Learn-
ing field and it aims to answer, in a more general way, how to reuse
past knowledge effectively by investigating efficient structures to distill
information useful for many different tasks that may hold their simi-
larities at many different levels. The assumptions on what the agent
might experience are relaxed given that during a lifetime many dif-
ferent family of tasks may be encountered. Further motivations and
considerations for the Lifelong Learning paradigm can be found in
works such as the one by Silver, Yang, and Li, 2013.

3.4 our setting

In this work, we focus our efforts in scenarios in which the past
knowledge is limited but still we want to maximize the transferred
information in order to reduce the sample complexity while being ro-
bust to negative learning. For which we set our research scope to the
general Transfer Learning setting in RL. Although the related fields
presented before are ambitious in what they aim to achieve, our main
motivation and contribution is on achieving as much transfer as possi-
ble from a limited set of prior information; a situation that may hinder
the application of more complex models such as Meta-learning and
Lifelong Learning.

We consider, then, a set of source tasks that were solved optimally
before and a target task. We assume the existence of a distribution
D over tasks—more precisely, MDPs Mτ—though unknown to the
agent. These Mτ ∼ D maintain the same state-action space—hence,
there is not need for inter-task mappings—letting the dynamics and
reward signals from the environment to change such that a sampled
MDP could be written asMτ = 〈S ,A,Pτ ,Rτ , p0, γ〉.

Further, we consider the case in which we solve the source tasks us-
ing value-based RL methods and we are interested in transferring in-
formation about the optimal value functions. However, further access
to experience the source tasks is not possible and only the knowl-
edge of these optimal Q-function is available to use. These should
provide a naturally sample-efficient approach to RL and they hold the
required information to derive optimal decision-making behavior. In
order to do this, we will consider the probability distribution over op-
timal Q-functions induced by the distribution D over tasks to model
the transferable information. We defer further discussion to Chapter
5.

4
R E L AT E D W O R K S

In this chapter, we present succinct descriptions of works done in
the MTL field—as relevant ideas exploiting Bayesian techniques are
presented in such works—and a final pair of techniques that will
motivate further the design of our proposed algorithm.

4.1 hierarchical bayesian multitask rl

In order to solve the problem of MTL in RL from the Bayesian per-
spective, two main solutions take a Hierarchical Bayesian approach
(Lazaric and Ghavamzadeh, 2010; Wilson et al., 2007). The authors,
then, propose inference and sampling procedures to learn the priors
that govern the relationship among the tasks. Additionally, they build
a higher level within the hierarchy to account for the existence of dif-
ferent classes of tasks and leverage the Dirichlet Process formalities
to learn through experience these different classes.

The method proposed by Lazaric and Ghavamzadeh, 2010 is the
most related to the algorithm we present in this work. They focus on
transferring value functions that are linearly parameterized using a set
of basis functions and whose parameters are governed by a Multivari-
ate Normal Distribution. They build their method on the Value Func-
tion decomponsition proposed by Engel, Mannor, and Meir, 2005 in
their work on Gaussian Processes for RL: D(s) := V(s) +∆V(s) where
V(s) is a mean value function and ∆V(s) is a zero-mean residual.
When combined with the Bellman Equation in Equation (2.7) and a
fixed policy π they obtain that R(s) = V(s)− γV(s′) + ε(s, s′) where
ε(s, s′) := ∆V(s)− γ∆V(s′) and s′ ∼ Pπ(·|s), the transition kernel of
the Markov Chain induced by following policy π. Then, they use
such equations to learn from the experience samples obtained from
the agent interaction with the environment.

Furthermore, they propose two algorithms: a single class MTL algo-
rithm and a multiple class MTL algorithm. In Figure 4.1a, we see their
hierarchical model for the single class case in which they consider the
parameters of the class to be (µ, Σ, σ2) for Gaussian distributions that
govern the parameters w of the value function and the disturbance
ε of the reward equation above. Using this hierarchy they propose
the hyper-prior distributions over the parameters of those the Gaus-
sians to be their classical conjugates—i.e. normal-inverse-Wishart and
inverse-Gamma—to procure a tractable inference process using an
Expectation-Maximization procedure.

17

4.1 hierarchical bayesian multitask rl 18

(a) Single Class Hierarchical Bayesian
MTL

(b) Multiple Class Hierarchical
Bayesian MTL

Figure 4.1: Hierachical Bayesian Models— diagrams taken from (Lazaric
and Ghavamzadeh, 2010)

The extension to multiple classes is shown in Figure 4.1b, where
they add an extra level in the hierarchy to account for classes c of
tasks, that, in turn, determine the parameters of the normal distribu-
tions that model the class of tasks—analogously to the single class
case. To automatically discover classes of tasks from data they use a
Dirichlet Process with concentration parameters τ and base distribu-
tion G0. Finally, to solve the inference process problem they propose
a Gibbs sampling procedure.

These methods, even though powerful, they constrain the param-
eters to be normally distributed to allow for tractable analytical so-
lutions for the Bayesian inference. This, in the transfer setting, may
be too limiting when trying to tackle complex distributions over the
parameters of the tasks’ value functions. Their multiple class model,
however, is interesting as they could capture complicated scenarios in
which the agent must solve quite different tasks during its lifetime.

We will see, nonetheless, that our method relaxes the assumptions
of the distribution of the value function parameters, and the existence
of different classes of tasks may be captured depending of the choice
of the distribution families to involve in the algorithm.

Wilson et al., 2007, also, propose a Hierarchical Bayesian Model to
tackle MTL by using a model-based approach to RL. They only con-
sider the case of multiple classes of tasks to be presented to the agent.
Through a construction similar to that described above, they use a
Dirichlet Process to discover classes of tasks directly from data. They
group, then, classes of MDPs, as opposed to Value Functions as be-
fore, whose parameters are then determined by a prior distribution
that depends on the given class. Additionally, they propose a Gibbs
sampling procedure for their hierarchical model. They finally solve an
MDP by sampling the distribution over tasks given the model parame-
ters and the observations, and use the optimal policy of the sampled

4.2 hidden-parameter mdps 19

MDP to collect new observations and update the belief of the task—
and its class—being solved.

This last work, even though, it does not transfer value functions to
solve the MTL problem, it still tries to discover structure by perform-
ing Bayesian inferences from the observations as we will do when
presenting the motivation to our approach.

4.2 hidden-parameter mdps

The work of Doshi-Velez and Konidaris, 2016 and its subsequent ex-
tension by Killian et al., 2017 propose the Hidden-Parameter MDP in
which they extend the classical definition of an MDP by adding a set
W of parameters and a probability distribution PW , over the set W, to
the tuple defining the MDP. In this way, a Hidden-Parameter MDP de-
fines a family of tasks by supposing that a task is completely defined
by the latent parameter w ∈W, that parameterizes the transition prob-
abilities of the MDP.

The work in Killian et al., 2017 uses this definition to design a
model-based RL algorithm that efficiently allows to quickly adapt
to a family of tasks defined by a Hidden-Parameter MDP. They use
a Bayesian Neural Network (BNN) to learn an approximation to the
transition dynamics T̂(s, a, w) of the environment as a function of the
state, the action and the latent parameter w of the task. Moreover,
they assume a Gaussian distribution over the hidden parameters and
a Gaussian perturbation in the transitions, i.e.

s′ ≈ T̂(BNN)(s, a, w) + ε,

w ∼N (µw, Σw),

ε ∼N (0, σ2
n).

The use of BNN let the algorithm to represent complex dynamics
and to perform efficient Bayesian Inference over the BNN parameters,
in order to adapt quickly to a specific instance of the family of tasks.
However, training a powerful model such as a BNN to represent in-
tricate dynamics could require a great amount of samples and, in
many situations, become impractical. Nonetheless, whenever the data
is available and the correct model for the BNN is chosen, the Hidden-
Parameter is a strong framework for generalizing among the tasks of
the family.

4.3 randomized value functions

Thompson sampling, or posterior sampling, proposed in Thompson,
1933 is one of the heuristics in state-of-the-art solutions in managing
the exploration-exploitation dilemma. This, roughly, consists on main-
taining a probability distribution to measure the uncertainty about

4.3 randomized value functions 20

the quality of an action and manage the trade-off between explo-
ration and exploitation by stochastically choosing actions proportion-
ally to their expected return and their uncertainty. With each new
sample, the procedure updates the belief—represented by the poste-
rior distribution—of the quality of the actions taken. In RL, works
such as Osband, Russo, and Van Roy, 2013, try to efficiently explore
by leveraging the Thompson sampling by estimating a posterior dis-
tribution over MDPs.

More recently, however, Osband, Van Roy, and Wen, 2014 propose
to use Thompson sampling to randomize the value function. They ex-
tend Least Squares Value Iteration (LSVI) by using a Bayesian Linear
Regressor. In this way, to take an action the parameters of the value
function are sampled from the current estimation of the posterior dis-
tribution and, using this, a greedy action is taken. They prove that
heuristics for exploration such as ε-greedy and Boltzmann softmax
policies result in exponential regret, while they prove, for discrete
MDPs though, that their Randomized LSVI attains regret O

(√
H3SAT

)
where H is the length of the episodes, S and A are the cardinalities
of the state and action spaces, respectively; and T is the time elapsed
during the learning algorithm.

Additionally, Azizzadenesheli, Brunskill, and Anandkumar, 2018

leverage on such work and extend Double Deep Q-Network (DDQN)
(Van Hasselt, Guez, and Silver, 2016) by implementing the last layer
of the network as a Bayesian Linear Regressor, much in the spirit of
Randomized LSVI above, using the Deep Neural Network, before the
last layer, to produce the features that will be linearly combined to
produce the Q-values. They, then, keep a posterior distribution over
the parameters of the last layer—that is updated when a predefined
number of time-steps has passed. The agent, then, acts by behaving
greedily from the Q-values obtained when the parameters are sam-
pled from the estimation of the posterior distribution.

Both of these implementations of RL algorithms derived from the
randomization of value functions suggest efficient exploration in the
RL scenario and they show promising results thus far. However, these
assume Gaussian distributions over the parameters of the regressors
that make their inferences tractable; an assumption that, we argue, is
too limiting in the transfer setting. In Chapter 5, when we present our
approach, it will be clearer how value function randomization is in
the core of our algorithms.

5
VA R I AT I O N A L T R A N S F E R L E A R N I N G

Across this chapter we present our proposed approach to Transfer
Learning in RL. We start by presenting a model-agnostic version of
the algorithm—i.e. without specifying specific forms for the objects
involved, only requiring that they are parameterized and differentiable.
We continue to provide the motivation for such design and, finally, we
present our two main practical implementations based on Gaussian
Distributions and Mixture of Gaussians.

5.1 variational transfer algorithm

In the Transfer Learning setting, recall Section 3.4, we suppose to have
a distribution D over possible tasks—i.e. MDPs—such that the learner
will solve tasks Mτ ∼ D. Additionally, we consider the situation in
which the agent has already solved a set of such tasks optimally, the
set of source tasks, by finding the parameters w of their optimal Q-
function.

In our current setting, where we suppose to have such a distri-
bution D over tasks, though unknown, it induces a distribution over
optimal Q-functions, more precisely—in our setting—over the param-
eter space p(w), given that for each task its optimal Q-function is
unique—as seen in Section 2.1.1—and structured variations in the dy-
namics and reward of the MDPs must change the Q-function also in a
structured manner. Leveraging the optimal Q-functions’ parameters
distribution p(w), though it causes a loss of information w.r.t. learn-
ing about the MDPs directly, as done in previous works such as the
ones presented in Section 4.1, it still provides enough information
about the solutions of the tasks. Our aim is to efficiently exploit the
knowledge from the sources’ optimal Q-functions to induce behavior
that is good and explorative in the target task to adapt the parameters
to the optimal solution with a lower amount of experience samples.

From a Bayesian perspective, what we would like to infer is which
Q-functions are more likely given that the agent knows p(w) and
it is given a target task to solve—drawn from the task distribution
D mentioned above. Further, we suppose the agent to have a set of
i.i.d. experience samples D = 〈si, ai, ri, s′i〉

N
i=1 from the target task. What

we would like to infer is, then, the posterior probability distribution
over the optimal Q-function parameters P(w|D) ∝ P(D|w)P(w) using
Bayes Theorem.

Nonetheless, this Bayesian Inference poses many challenges. Al-
though Bayesian techniques are very appealing, the methods derived

21

5.1 variational transfer algorithm 22

tend to be computationally expensive and they quickly become in-
feasible. For instance, state-of-the-art techniques are taking advan-
tage of the representational power of deep Neural Network architec-
tures to learn highly complex tasks in RL, such as the recent advance-
ments mentioned in Section 3.1. However, the deeper these models
get, the bigger the number of parameters they require and the more
involved the functional relationship among parameters—in general—
get. Therefore, current Bayesian techniques that constrain the prior
and posterior distribution to get tractable densities such as Normal
Distributions are of little use as they can only solve a very limited set
of small problems. Moreover, the greater the number of parameters,
when using prior/posterior density models that do not allow to have
close formulas to compute the posterior density, the more expensive
is to numerically compute the results to the point of becoming im-
practical.

In order to design a useful Bayesian method to transfer informa-
tion of the optimal Q-functions, first, we discuss how to model the
likelihood P(D|w) and, second, how to tractably estimate the poste-
rior and prior distributions from the source tasks and the experience
samples from the target task without over-constraining the form of
the densities concerned.

5.1.1 Modeling the Likelihood

The likelihood P(D|w) of the dataset D of i.i.d. experience samples
given parameters w should measure how likely is for such dataset to
be generated by a task in which the parameters w correspond to the
ones of its optimal Q-function.

As we know that the Bellman Residual Bw(s, a) must be zero almost
everywhere whenever the parameters w represent the optimal Q-

function of the task, if we consider the empirical estimation
∥∥∥B̃w

∥∥∥p

D,p
of the error, it is reasonable to require the likelihood of such a dataset

D to be smaller whenever
∥∥∥B̃w

∥∥∥p

D,p
is further from zero. However, as

we would use a finite set of experience samples our empirical estima-
tion of the Bellman Residual, apart from biased, would have some un-
certainty given the limited number of samples. The likelihood, then,
must also depend on the number N of samples as this should pro-
vide more certainty in our criterion to reject certain parameters w as

non-optimal based on this TD error
∥∥∥B̃w

∥∥∥p

D,p
. That is, as N grows to in-

finity we should converge to an indicator function that tells whether
the parameter w are optimal or not.

A natural choice for such probabilistic density would be to con-
sider it proportional to a negative exponential of the form P(D|w) ∝

e−N‖Bw‖p
D,p , in this way as N grows, the probability mass will concen-

5.1 variational transfer algorithm 23

trate (exponentially more) in the weights that corresponds to lower
TD errors and it will converge with all the probability mass over the
optimal parameters in the limit of infinite samples.

To more formally motivate a negative exponential form for the like-
lihood, we suppose, additionally, the existence of a probability mea-
sure ν over the state-action space S × A that weighs the relative im-
portance of the state-action tuples in the task. Then, we consider the
Lν,p-norm of the Bellman Error ‖Bw‖p

ν,p that would be zero when w
represents the optimal Q-function for the target task.

Now, we consider the probability P(w ∈Q∗ε |D) that a Q-function is
in the set Q∗ε =

{
w ∈ Q | ‖Bw‖p

ν,p ≤ ε
}

with ε > 0, that is, the prob-
ability of a q function is ε-optimal given the dataset D. By applying
Hoeffding’s inequality we get

P(w ∈ Q∗ε | D) = P(‖Bw‖p
ν,p ≤ ε | D)

= P
(∣∣∣‖Bw‖p

ν,p − ‖B̃w‖p
D,p

∣∣∣ ≤ ∣∣∣ε− ‖B̃w‖p
D,p

∣∣∣)
≤ eO

[
−N

∣∣∣‖B̃w‖p
D,p−ε

∣∣∣],
from which we obtain our proposed form when we let ε tend to

zero.
However, a stronger argument comes from the PAC-Bayesian The-

ory. As explained in Section 2.3, we can infer information of the gener-
alization error L`

D(h) of an hypothesis h from the empirical risk L̃`
(X,Y)

when we consider that our algorithm outputs a posterior probability
distribution q, over the hypotheses set, when given as input a dataset
and a prior distribution over the hypotheses.

In our particular case, we consider our generalization error to be the
Bellman Error ‖Bw‖p

ν,p and its empirical estimation to be the average

TD error
∥∥∥B̃w

∥∥∥p

D
, the biased estimator defined at the end of Section

2.1.1. Moreover, we consider our set of hypotheses to be the set of
parameterized Q-functions Q. Drawing from the results presented in
Section 2.3 we have that our Optimal Gibbs Posterior is given by

q∗(w) =
e−Λ‖B̃w‖p

D,p p(w)∫
e−Λ‖B̃w′‖

p
D,p p(dw′)

, (5.1)

from which we can immediately notice the same exponential form
for the likelihood intuited at the beginning of this section. However,
drawing from PAC-Bayesian results, we are guaranteed that we are
choosing a form that would optimize also the generalization error of
our learning algorithm.

Finally, as suggested by the Theorem 2.4, we choose Λ to increase
with the sample size Λ = λ−1N, where the role of λ would be clearer
later.

5.1 variational transfer algorithm 24

5.1.2 Variational Approximation

We recognize that the transfer settings are varied and, hence, the dis-
tributions that would govern the probability over the parameters of
the optimal Q-functions that we aim to model can be of many com-
plex forms. In order to avoid strong assumptions about the prior and
posterior distributions that would limit the potential of our method,
we propose to use Variational Inference methods to approximately
compute our posterior distribution.

For this we consider that we have a parameterized family of dis-
tributions, such that its variational parameters are ξ ∈ Ξ and, as pre-
sented in Section 2.2, we intend to find the best variational approx-
imation to the actual posterior distribution by solving the optimiza-
tion problem in Equation (5.2) by maximizing the ELBO, where we
consider the likelihood to take the exponential form discussed before.
From hereon, we will consider only the squared L2-norm of the aver-
age TD error.

max
ξ∈Ξ

E
w∼qξ

[
−N

λ
‖B̃w‖2

D

]
− KL

(
qξ(w)‖p(w)

)
≡

min
ξ∈Ξ
L(ξ) = E

w∼qξ

[
‖B̃w‖2

D

]
+

λ

N
KL
(
qξ(w)‖p(w)

)
. (5.2)

Equation (5.2) shows that our approach is based on managing a
trade-off between our prior knowledge coming from the previously
learned tasks and the reduction of the expected TD error—under the
estimated posterior—given the experience drawn from the task being
learned. Therefore, the hyperparameter λ is introduced as a way to tune
such trade-off. Recall, also, that this follows both the intuitive idea
that the importance of the prior knowledge is greater whenever the
agent knows little about the current task, and the more formal idea
coming from the bound on the generalization error from PAC-Bayesian
theory, as it can be clearly seen in the objective L(ξ) in Equation (5.2).

5.1.3 Algorithm

In this section we present the algorithm designed from the problem
in Equation (5.2). We start by explaining the procedure in a general
way, such that we are able to highlight important characteristics of
the learning algorithm while avoiding to constrain the approach with
many assumptions. In this way, we maintain the design approach
agnostic to the choice of models for the prior and posterior distribu-
tions and we leave the discussion of two practical implementations
with specific models for the last two sections of this chapter.

To solve the variational optimization, we assume that the function
approximators for the Q-functions are differentiable with respect to the

5.1 variational transfer algorithm 25

Algorithm 1 Variational Transfer
Require: Target task Mτ, source Q-function weights Ws, batch size

M
1: Estimate prior p(www) fromWs

2: Initialize variational parameters: ξξξ← argminξξξ KL(qξξξ ||p)
3: Initialize replay buffer: D = ∅
4: repeat
5: Sample initial state: s0 ∼ p0

6: while sh is not terminal do
7: Sample weights: www ∼ qξξξ(www)

8: Take action ah = argmaxa Qwww(sh, a)
9: Observe transition sh+1 ∼ Pτ(·|sh, ah) and collect reward

rh+1 =Rτ(sh, ah)

10: Add sample to the replay buffer:
D← D ∪ 〈sh, ah, rh+1, sh+1〉

11: Sample mini-batch D′ = 〈si, ai, ri, s′i〉Mi=1 from D
12: Estimate the gradient ∇ξξξL(ξξξ) using D′

13: Update ξξξ in the direction of −∇ξξξL(ξξξ) using any stochastic
optimizer (e.g., ADAM)

14: end while
15: until forever

parameters w and the family of distributions to approximate the pos-
terior are also differentiable in its variational parameters ξ. Further, we
assume that the choices of function approximators and distribution
families allow to tractably compute the gradients of the KL divergence
and the expectations involved.

In Algorithm 1, we present the Variational Transfer algorithm. As
a preamble to the main procedure we consider the estimation of the
prior p(w) from the set of source weightsWs and the estimation of the
best approximation of such prior by minimizing the KL divergence. In
this way, the specific forms of the prior and posterior are left to specific
implementations of the algorithm. Moreover, we introduce a replay
buffer to hold the samples obtained during the learning process and
to allow to discard samples when they are old enough.

Next, the agent starts to act within the target task by leveraging its
information from the distribution over optimal Q-functions. This is
done using a Thompson Sampling approach, that is, we sample from
the current estimation of the posterior distribution the parameters
(line 7) that determine the Q-function that the agent will use to act
greedily (line 8). In this way, we use our certainty estimation of the
good Q-functions to guide the exploration of the target task. This is a
core step of the algorithm; the agent is expected to sample sufficiently
good Q-functions and, therefore, it should act, on average, better than
when oblivious of the family of tasks that is facing. When too uncer-
tain, namely at the beginning of the learning process, the intrinsic

5.1 variational transfer algorithm 26

randomness will motivate the agent to take, most likely, actions that
were good in the previous tasks—which will account for higher re-
turns while learning—and take enough, perhaps, not so good actions
to explore the target. However, as the learning process continues, the
probability mass is expected to move towards the optimal Q-function
for the target task and, hence, the amount of exploration will reduce
naturally when the certainty of the agent improves.

After the agent takes its decision, it performs the action and it adds
the new experience sample to the replay buffer and, finally, estimates
the gradient of the optimization objective L(ξ) using a randomly sam-
pled mini-batch of experience to update the variational parameters ξ

using some stochastic optimizer (lines 9-13).

5.1.4 TD error optimization

Finally, another important point to notice is that by using Stochastic
Gradient Descent (SGD) in this algorithm, we will be constrained

to differentiate through the square TD error
∥∥∥B̃w

∥∥∥2

D
. However, recall

that this is defined based on the optimal Bellman Operator T and,
hence, it will require to differentiate through the max operator. This
is clearly a problem that has been faced many times in the RL litera-
ture and many proposed solutions exist, being the most popular to
use semi-gradient techniques. In these, the part of the TD error cor-
responding to the application of the empirical Bellman Operator, i.e.
ri + maxa′∈AQw(s′i , a′), are considered independent from w; thus, not
differentiated. This, however, is known to lead to instabilities in the
search which might hinder the potential advantages of our approach
given that we intend to exploit already, probably, good Q-functions
and such an instability may lead the algorithm to lose this knowledge.

To solve this issue, we propose to use a relaxation of the Optimal
Bellman Operator that we introduce next, which is, among other char-
acteristics, differentiable.

As seen in Section 2.1.1, to find optimal deterministic policies in
Value-based RL, we depend on the use of the Optimal Bellman Opera-
tor T ∗ which has the property of having a unique fixed-point because
of the non-expansion of the max operator.

Here, we introduce the softened max operator—defined by Asadi
and Littman, 2017—coined Mellowmax.

Definition 5.1. Mellowmax
Consider a constant κ ∈ R+. Given a function f : X→ R where X

is a finite set. The Mellomax operator is defined as,

mm
x∈X

f (x) :=
1
κ

log

(
1
|X| ∑

x∈X
eκ f (x)

)
, (5.3)

5.2 practical implementations 27

which is differentiable and the authors in Asadi and Littman, 2017

proved that is a non expansion and that when κ→∞ then mm→max.
Moreover, they also proved that by substituting the max operator in
the Optimal Bellman Operator T ∗ with the Mellowmax we obtain a
new softened Optimal Bellman Operator T̃ ∗ that also has a unique
fixed-point which we will call the Mellow Bellman Operator.

We will consider, hereafter, that when we mention the average TD

error and Bellman Error, they will be the ones using the Mellow Bell-
man Operator. Nevertheless, Algorithm 1 remains the same indepen-
dently on how we decide to optimize the expected square TD error of
our objective.

Although, using the full gradients of the square TD error based on
the Mellow Bellman Operator is ideal, we know that fitted RL algo-
rithms with full gradients, even though stable, are to be slower than
the ones based on semi-gradients used extensively in the literature.
The authors in (Baird, 1995) propose to balance these two directions,
i.e. the full gradient and the semi-gradient, by introducing a hyper-
parameter to handle the trade-off between stability and convergence
speed by controlling a convex combination of such directions and,
thus, it is used to find the direction of fastest guaranteed convergence.
We name this parameter ψ ∈ [0,1] from which we write the gradient
of the squared TD error as

∇w

∥∥∥B̃w

∥∥∥2

D
=

2
N

N

∑
i=1

b̃i(w)

(
γψ∇w mm

a′∈A
Qw(si, a′)−∇wQw(si, ai)

)
,

(5.4)

where b̃i(w) is defined as the TD in Section 2.1.1 using the mel-
lowmax operator instead: b̃i(w) = ri +γmma′∈AQw(si, a′)−Qw(si, ai).
Notice that we recover the full gradient and the semi-gradient in the
extremes of the range of ψ (ψ = 1 and ψ = 0, respectively).

5.2 practical implementations

In the following sections we propose two implementation of this al-
gorithm by using Gaussian and Mixture of Gaussians as distribution
families.

5.2.1 Gaussian Variational Transfer

The first practical implementation that we propose is based on Gaus-
sians distributions as these are pervasive throughout the literature
and, also, these provide closed-form solutions to many of the quan-
tities involved and allow for an efficient implementation of the algo-
rithm. We coin such implementation as Gaussian Variational Transfer

5.2 practical implementations 28

(GVT) when we set the variational family and the prior distribution to
be Multivariate Gaussians.

Therefore, we have that the variational parameters are Ξ=
{
(µ, Σ) | µ∈

Rd ∧ Σ∈Rd×d ∧ Σ� 0
}

. As for the prior distribution p(w) =N (µp, Σp)

whose parameters we estimate from the set of source weights Ws

by maximum likelihood estimation with Equation (5.5) and Equation
(5.6). The dimension d is that of the parameters of the function ap-
proximator used.

µp =
1
|Ws| ∑

w∈Ws

w (5.5)

Σp =
1
|Ws| ∑

w∈Ws

(w− µp)(w− µp)
T (5.6)

In this setting, we have that the KL divergence can be computed in
closed-form by the well-known formula

KL
(
qξ‖p

)
=

1
2

(
log

∣∣Σp
∣∣

|Σ| + Tr(Σ−1
p Σ) + (µ− µp)

TΣ−1
p (µ− µp)− d

)
(5.7)

and from which we derive the gradients—notice that we consider
the Cholesky factors of the covariance matrices Σ = LLT instead, as
to avoid learning non-positive definite matrices.

∇µKL(qξ‖p) = Σ−1
p (µ− µp) (5.8)

∇LKL(qξ‖p) = Σ−1
p L− L−T (5.9)

To compute the gradient of the expected square TD error, we use
the reparameterization trick (Kingma and Welling, 2013) to obtain the
derivative w.r.t. the variational parameters by differentiating within
the expectation w.r.t. the function approximator parameters as shown
in the following equations.

∇µ E
w∼N (µ,LLT)

[∥∥∥B̃w

∥∥∥2

D

]
= E

v∼N (0,I)

[
∇w

∥∥∥B̃w

∥∥∥2

D

]
, (5.10)

∇L E
w∼N (µ,LLT)

[∥∥∥B̃w

∥∥∥2

D

]
= E

v∼N (0,I)

[
∇w

∥∥∥B̃w

∥∥∥2

D
· vT
]

, (5.11)

where w = Lv + µ and the expectations are to be estimated by an
empirical average with the v’s sampled from an standard Gaussian
distribution.

5.2 practical implementations 29

5.2.2 Mixture of Gaussians Variational Transfer

Although the Gaussian assumption of GVT is appealing for its sim-
plicity, we argue that it is much limited when it ought to model a
complex distribution as the one followed by the Optimal Q-functions
of the tasks. Here, we propose to use a family of Mixtures of equally-
weighted isotropic Gaussians for the prior distribution
p(w) = 1

|Ws| ∑
|Ws|
j=1 N (w|wj, σ2

p I) with each component centered in a
source weight wj and a fixed variance σ2

p . Notice that this prior form
resembles the non-parametric kernel density estimator based on Gaus-
sian kernels.

As for the variational family we propose a Mixture of equally weigh-
ted Gaussians with C components qξ(w) = 1

C ∑C
i=1N (w|µi, Σi) where

the variational parameters would be Ξ = {(µ1, ..., µC, Σ1, ..., ΣC) | µi ∈
Rd ∧ Σi ∈ Rd×d ∧ Σi � 0 ∀i = 1, ..., C } where we let the normal
components to have full covariances, in general, to be able to repre-
sent complex densities even when a small number of components C
is used. When using these families of distributions, we refer to the
algorithm as Mixture of Gaussians Variational Transfer (MGVT).

However, this choice poses in itself some additional implementa-
tion issues. With these complex families, we do not have closed-form
formulas to compute the KL divergence between Mixtures of Gaus-
sians. In order to solve this problem, we propose to use the follow-
ing upper-bound on the KL divergence that computes, using varia-
tional methods, a tight upper-bound based on the pairwise KL diver-
gences of the components as proposed by Hershey and Olsen, 2007.
We present here their result,

Theorem 5.1 (Variational Upper-Bound for the KL divergence be-
tween Mixture of Gaussians from Hershey and Olsen, 2007). Let p =

∑i c(p)
i f (p)

i and q = ∑j c(q)j f (q)j be two Mixtures of Gaussians where

f (p)
i = N (µ

(p)
i , Σ(p)

i) is the i-th component and c(p)
i its corresponding

weight—analogously, for the distribution q. Consider the variational
parameters ϕi,j and ϑj,i such that c(p)

i = ∑j ϑj,i and c(q)j = ∑i ϕi,j, then:

KL (p‖q) ≤ KL (ϑ‖ϕ) + ∑
i,j

ϑj,iKL
(

f (p)
i ‖ f (q)j

)
(5.12)

where ϑ and ϕ corresponds to the vectors of parameters ϑj,i and
ϕi,j and KL(ϑ‖ϕ) = ∑i,j ϑj,i log ϑj,i

ϕi,j .

In this way, we replace the original KL with this upper-bound and
compute its gradient, leveraging the linearity of the gradient, using

5.2 practical implementations 30

the formula for the Gaussian case as in Equation (5.10) and Equation
(5.11). Our upper-bound on the KL is, then,

KL
(
qξ‖p

)
≤ KL (ϑ‖ϕ)+

C

∑
i=1

|Ws|
∑
j=1

ϑj,iKL
(
N (w|µi, Σi)‖N

(
w|wj, σ2

p I
))

.

(5.13)

The authors in Hershey and Olsen, 2007, also propose a fixed-point
optimization method to find the best variational parameters ϑ and ϕ

by iteratively computing their values using the following equations—
notice that, here, we also substitute the parameters by those of our
distribution families—

ϕi,j =
c(q)j ϑj,i

∑i′ ϑj,i′
=

1
|Ws|

ϑj,i

∑i′ ϑj,i′
, (5.14)

ϑj,i =
c(p)

i ϕi,je
−KL(f (p)

i ‖ f (p)
j)

∑j′ ϕi,j′e
−KL(f (p)

i ‖ f (p)
j′)

=
1
C

ϕi,je−KL(N (w|µi ,Σi)‖N (w|wj ,σ2
p I))

∑j′ ϕi,j′e
−KL(N (w|µi ,Σi)‖N (w|wj ,σ2

p I))
, (5.15)

from where we can observe that the new variational parameters
of this upper-bound modify the actual weights of our mixtures by
weighting their importance based on their pairwise KL divergences
using a Boltzmann-like softmin.

Given this, we add new steps to the general Algorithm 1 to ini-
tialize the variational parameters of the upper-bound in the pream-
ble and, just before estimating the gradient of our objective, we re-
optimize these parameters to tight the upper-bound.

The generality of the procedure for MGVT allows to have a very
powerful prior represented by the complete set Ws of source tasks
and use different quantity of components for the posterior. The resem-
blance of the prior distribution to a kernel density estimator allows to
model arbitrarily complex distributions over the optimal Q-functions
and it should permit to successfully exploit much of the information
required.

6
E M P I R I C A L E VA L U AT I O N

In this chapter, we present the evaluation of our algorithms—as de-
fined in Section 5.2.1 and Section 5.2.2.

We chose four different domains to evaluate the behavior and the
performance of both of them. The domains are presented, hereafter,
in increasing complexity as to leverage simpler scenarios to explain
clearly the studied properties of the algorithms. Across this chapter
when referencing the MGVT algorithm with c components for the pos-
terior distribution family, we will use c-MGVT.

For all the experiments, we provide a comparison between the per-
formance of an RL algorithm exploiting ε-greedy exploration and the
performance of our transfer methods.

6.1 the rooms problem

The first evaluation environment, shown in Figure 6.1, consists of an
agent navigating a continuous space of dimension 10× 10, starting
at the bottom left corner of the room with the objective to arrive in
the goal space—within a distance 1 from the top right corner. The
environment is divided in rooms that are separated by walls with a
door of width 1. The agent must navigate through the rooms to arrive
to the goal position. It has a finite set of possible actions: UP, RIGHT,
DOWN, LEFT. These make the agent move within the space by a dis-
tance of 1 corrupted by Gaussian White Noise N (0,0.2) to simulate
precision errors in the translation of the agent. Moreover, if the agent
hits any of the walls, i.e. the walls separating the rooms or the fron-
tiers of the environment, the position of the agent does not change.
The agent is rewarded with 1 when it reaches the goal area and with 0
in any other case. Finally, the discount factor is γ = 0.99. As function

Start

Goal

Figure 6.1: The Rooms Environment

31

6.1 the rooms problem 32

approximator for the Q-function, we use a linear regressor with 121
radial bases as features, each centered in a integer coordinate of the
environment. Each radial basis is an Isotropic Gaussian with a band-
width of 1/9 in order to allow a basis to reach the maximum when the
contiguous bases are negligible and, thus, to ensure non-redundant
covering of the state-action space.

As for the distribution over tasks, we sample tasks of this environ-
ment by choosing uniformly and independently the position of the
doors in the range [0.5,9.5].

The Rooms environment, while simple, is one that allows for a
particularly interesting study of transferring Q-functions. The pres-
ence of two different rooms, while keeping the goal fixed, provide
the presence of different degree of variations of the Q-values when
the position of the doors change: the top room has Q-values that
remain invariant across the different tasks, whereas the middle and
bottom rooms vary their values since different door positions change
the distance—thus, time steps required—the agent has to traverse to
arrive in the goal, with the middle room only depending on the posi-
tion of the second door and the bottom room on the position of both
doors. This, easily observable, structure in the Q-functions induced by
the distribution over the tasks is what our transfer algorithms intend
to exploit. Furthermore, as we design our algorithm to use the esti-
mated distribution over optimal Q-functions to induce exploration,
we also expect this environment to expose a well-structured explo-
ration, that is, we expect that the agent, mostly, should look for the
doors in order to go through towards the goal.

In this section we start by evaluating the performance of the differ-
ent implementations of the Variational Transfer algorithm when com-
pared to the no-transfer. Next, we investigate how it behaves when
there are variations in the task distribution used to draw target tasks
to solve. We empirically evaluate how the algorithms induce struc-
tured exploration that it is not possible with heuristics such as ε-
greedy. Finally, we present how the algorithms are affected by the
likelihood of the tasks and the different number of sources given.

6.1.1 Evaluation

To evaluate the GVT, the 1-MGVT and the 3-MGVT algorithms, first, we
generate a set of 50 source tasks by sampling the position of both
doors, as described before, and solve them by minimizing the TD er-
ror directly using SGD as described in Section 5.1.4. Next, we indepen-
dently run the algorithms 20 times such that for each run we sample
a subset of 10 source tasks—from the sources trained in advance. We
evaluate the performance of the learning by averaging the return of
the last 50 learning episodes as shown in Figure 6.2a and by evaluat-
ing the greedy policy induced by the expected Q-function as shown

6.1 the rooms problem 33

in Figure 6.2b—both plots show in shades a 95% confidence interval
of the estimation.

In Figure 6.2, we can easily notice the obvious advantage in us-
ing the transfer algorithms—in terms of performance—w.r.t. the no-
transfer (NT) performance: after 7K iteration, the NT is just starting
to learn how to reach the goal while, approximately after 5K itera-
tions, the MGVT performances are already optimal and the GVT algo-
rithm has probably solved optimally the majority of the tasks. This
behavior is as expected, since in the NT case the limited ε-greedy
exploration makes it hard to find the goal in this little number of iter-
ations. However, the transfer algorithms are able to effectively exploit
the source tasks information and achieve the speed-up observed. Fur-
thermore, MGVT is able to slightly surpass the performance of GVT,
offering faster convergence seen in the reduced variance and the bet-
ter mean return. Finally, a higher number of components in MGVT

does not show any clear advantage; these components are supposed
to converge to the optimal Q-function for the target task, for this envi-
ronment they quickly converge to the same region and no significant
difference is attained.

NT GVT 1-MGVT 3-MGVT

0 5000 10000

Iterations

0.0

0.2

0.4

0.6

0.8

E
xp

ec
te

d
R

et
u

rn

(a) Expected Return during Learning

0 5000 10000

Iterations

0.0

0.2

0.4

0.6

0.8

E
xp

ec
te

d
R

et
u

rn

(b) Expected Return w.r.t. greedy pol-
icy

Figure 6.2: Rooms Environment Expected Return estimated with 20 inde-
pendent runs. The 95% confidence intervals are also shown.

6.1.2 Evaluation under a Distribution Change

Further, we evaluate how different is the potential among the transfer
algorithms GVT and MGVT. In order to do this, we propose to slightly
complicate the setting by modifying the distribution from which the
source tasks are drawn: we sample tasks by keeping the bottom door
fixed in the middle and uniformly sample the position of the top door
as before. We sample, then, 50 source tasks from this modified distri-
bution, solve for their optimal Q-function as before and sample target
tasks from the original distribution—both doors’ positions sampled.

6.1 the rooms problem 34

In Figure 6.3, we show the results of the experiments. As before, we
show both the learning performance by averaging the last 50 episodes’
return in Figure 6.3a and the performance obtained by evaluating the
greedy policy derived from the mean Q-function in Figure 6.3b—the
curves are the average of 20 independent runs and the shades are the
corresponding 95% confidence intervals. These results clearly show
the advantage of MGVT over GVT. The high variance and low mean
reward of the latter show that as we deviate from the distribution
of the tasks, the GVT fails to adapt, given that the Gaussian model
over-constrains the admissible space of Q-functions to explore and,
thus, discard the actual Q-functions required for solving the target
tasks. On the other hand, MGVT is clearly more flexible, as it actually
manages to achieve optimal performance. MGVT prior model is able to
hold all the information of the source tasks and to exploit it without
being overly constrained to the different distribution governing the
source tasks of this experiment.

NT GVT 1-MGVT 3-MGVT

0 5000 10000

Iterations

0.0

0.2

0.4

0.6

0.8

E
xp

ec
te

d
R

et
u

rn

(a) Expected Return during Learning

0 5000 10000

Iterations

0.0

0.2

0.4

0.6

0.8

E
xp

ec
te

d
R

et
u

rn

(b) Expected Return w.r.t. greedy pol-
icy

Figure 6.3: Evaluation under a distribution change in Rooms Environment:
Expected Return—estimation with 20 independent runs with
95% confidence intervals.

6.1.3 Induced Exploration

In order to better understand how GVT and 1-MGVT induce explo-
ration, we consider the following experiment. In a two room variant
of the rooms environment, i.e. one wall in the middle of the room
with a door in mid-position, we run GVT and MGVT for 2000 itera-
tions and plot the states (positions) visited by the agent. The start
and goal positions are kept as before, bottom left and top right, re-
spectively, and 10 source tasks were used for the transfer algorithms.
In Figure 6.4, we show the resulting plots.

First, in Figure 6.4a, we show the difference in the exploration ob-
tained by the ε-greedy heuristic and the GVT algorithm. We clearly

6.1 the rooms problem 35

observe that in these few iterations the ε-greedy exploration is unable
to allow the agent to reach the goal, as many of the states visited are
scattered in the bottom room. GVT, instead, guides the exploration to
states towards the middle of the wall. After crossing to the top room,
the path to the goal is clearly defined as expected, since the values
after the wall are expected to be the same among all the tasks. In Fig-
ure 6.4b, we compare the ε-greedy exploration and the 1-MGVT, which
shows a similar behavior w.r.t. GVT, however, it is worth noting that
MGVT has a sparser exploration of the bottom room when compare
to GVT. It can be easily seen that MGVT is able to actually explore the
right part of the bottom room. Thus, holding a more powerful model
for the prior may allow MGVT to explore more effectively the environ-
ment, which in turn, would provide better adaptation to the target
tasks as seen in the experiment discussed before in Section 6.1.2.

(a) ε-greedy vs. GVT (b) ε-greedy vs. MGVT

Figure 6.4: Exploration Comparison in a Two-Room variant of the Rooms
Problem

6.1.4 Performance vs. Task Likelihood

GVT and MGVT were designed so that they hold different represen-
tational power, being the latter more powerful, to approximate a po-
tentially complex distribution over optimal Q-function. Hence, it is
of interest to understand in this simple scenario how does the likeli-
hood of the possible tasks influence the learning performance of the
algorithms.

In order to do this, we consider the simplest rooms problem: the
two room (one door) variant. We modify the distribution over tasks to
be, instead of a uniform distribution over the door position, a Normal
distribution with mean 5 and standard deviation of 1.8. In such a
way, we ensure that the extreme door positions are very unlikely. We
sample 20 tasks from this Normal distribution and plot, in Figure
6.5, the expected return during learning—computed as the average
return over the last 50 episodes—w.r.t. the likelihood of the task.

Figure 6.5 displays curves both for GVT and for 1-MGVT at 500 itera-
tions, 1000 iterations and 4000 iterations to show the evolution of the

6.1 the rooms problem 36

0.2 0.4 0.6 0.8 1.0

Normalized Task Likelihood

−0.25

0.00

0.25

0.50

0.75

E
xp

ec
te

d
R

et
u

rn

GVT(0.5k)

1-MGVT(0.5k)

GVT(1k)

1-MGVT(1k)

GVT(4k)

1-MGVT(4k)

Figure 6.5: Expected return as a function of task likelihood

performance over time as well. From such plot, we can easily observe
how GVT does not perform as well as MGVT when the tasks become
very unlikely. Given that GVT overfits to the task distribution, it hin-
ders the learning process for such unlikely tasks while MGVT is able
to hold the information and to use it efficiently to quickly learn those
same tasks. It is even possible to notice that at 4000 iterations 1-MGVT

is already optimal for all tasks, no matter the likelihood. This further
confirm the representational power of MGVT seen in the Generaliza-
tion experiment presented in Section 6.1.2 as it shows that MGVT, be-
sides holding a more informative prior, it also allows fast adaptation
to unlikely tasks.

6.1.5 Performance vs. Number of Sources

Finally, as a higher number of source tasks must produce a better
estimation of the distribution governing optimal Q-functions, we ex-
plore here the performance of GVT and MGVT with a varying number
of source tasks.

2 4 6 8 10
Source Tasks

0.3

0.4

0.5

0.6

0.7

E
xp

ec
te

d
R

et
u

rn

GVT

1-MGVT

2-MGVT

(a) After 1000 iterations

2 4 6 8 10
Source Tasks

0.4

0.5

0.6

0.7

0.8

E
xp

ec
te

d
R

et
u

rn

GVT

1-MGVT

2-MGVT

(b) After 1950 iterations

Figure 6.6: Expected Return vs. Number of source tasks for GVT

As in Section 6.1.4, we use the Two Rooms variant of the problem.
In Figure 6.6 we present the expected learning return—the average
return over the last 50 episodes—for GVT, 1-MGVT and 2-MGVT algo-

6.2 classic control 37

rithms. The curves presented show the average over 20 independent
runs and its 95% confidence interval.

In Figure 6.6a, we show the performance after 1000 iterations. We
can observe that GVT with a small number of source tasks has a very
low performance that, in the worst cases, is even half of that gotten
from 1-MGVT and 2-MGVT for the same number of sources. The per-
formance gap is more obvious in Figure 6.6b where the curves show
the performance after 1950 iterations. GVT estimates a normal distri-
bution over the parameters of the optimal Q-functions by Maximum
Likelihood estimation and, thus, at 2 source tasks the estimation of
the approximation to the distribution of optimal Q-function is very
poor which it is reflected in its low performance. MGVT instead uses
efficiently the little information by means of the non-parametric prior
model that it uses. When the number of sources increases we can
easily see that, for this scenario in which the distribution over opti-
mal Q-functions is simple enough, the curves in Figure 6.6 behave
similarly, as expected.

6.2 classic control

In this section, we focus on classic tasks within the RL research com-
munity: Cartpole and Mountain Car—representative diagrams shown
in Figure 6.2.1 and Figure 6.2.2, as defined by Sutton and Barto, 1998.
These two environments offer the possibility to explore the behav-
ior of the Variational Transfer (VT) algorithms within canonical tasks.
Moreover, we show how their performance compare to DDQN’s when
the latter is used as baseline for the NT setting. It is worth noting that
DDQN has shown excellent performance in these classic control tasks
and its use as a comparison baseline is intended to exhibit that our al-
gorithm shows improvement w.r.t. state-of-the-art RL algorithms and
that it is robust to negative transfer.

6.2.1 Cartpole

Cartpole is shown in Figure 6.8. Here, the objective is to maintain the
pole in vertical position as long as possible. There are two possible
actions that apply a force of a determined magnitude with direction
right or left. The dynamics of the system are defined by the cart mass
mcart, the pole length lpole and the pole mass mpole.

We generate different tasks by uniformly sampling the cart phys-
ical parameters: the cart mass in the range [0.5,1.5], the pole mass
in [0.1,0.3] and the pole length in [0.2,1.0]. As reward we use the
canonical one, with 1 for every action taken and a fixed time hori-
zon of 100 time-steps. We set the discount factor γ = 0.99 and we
use a Multilayer Perceptron (MLP) as function approximator for the

6.2 classic control 38

Q-function with a single hidden layer of 32 neurons with Rectified
Linear Unit (ReLU) activations.

mcart

mpole

lpole

F

Figure 6.7: Cartpole Diagram. mcart is the mass of the cart, mpole is the
mass of the pole and lpole is the length of the pole. F is the force
applied when one of the action (left or right) is taken.

We sample 100 source tasks and train to solve them optimally as de-
scribed in Section 5.1.4. For the VT algorithms we run 20 independent
runs by sampling a target task and selecting randomly 10 source tasks
from which to transfer. The estimated expected returns are shown in
Figure 6.8 as the average performance among the independent runs
with a 95% confidence interval—in Figure 6.8a, we show the learning
performance obtained as the average of the last 50 episodes’ return
and, in Figure 6.8b, the return of the greedy policy derived from the
mean Q-function at the moment of evaluation. It is quite noticeable
the almost zero-shot behavior of the transfer in this setting, all of
the VT algorithms are able to start with near optimal behavior and
converge quickly, even though the physical parameters vary within a
relatively large range.

NT GVT 1-MGVT 3-MGVT

0 2000 4000 6000 8000

Iterations

20

30

40

50

60

E
xp

ec
te

d
R

et
u

rn

(a) Expected Return during Learning

0 2000 4000 6000 8000

Iterations

20

40

60

E
xp

ec
te

d
R

et
u

rn

(b) Expected Return w.r.t. greedy pol-
icy

Figure 6.8: Cartpole’s Expected Return estimated with 20 independent runs.
The 95% confidence intervals are also shown.

6.2 classic control 39

v

Goal

Figure 6.9: Mountain Car Diagram. v is the velocity applied by the taken
action. The magnitude of this velocity defines the tasks and the
direction corresponds to the left and right actions.

Cartpole’s Q-values show an interesting structure for our algorithm.
These are intrinsically linked to being able to keep the pole stand-
ing as long as possible—bounded by the time horizon—, hence, the
optimal value functions vary little and starting from the expected
Q-function of the prior distribution already induces a policy that is
really close to being optimal. Thus, little experience is required to con-
verge. Both the learning return in Figure 6.8a and the evaluation of
the greedy policy induced by the posterior distribution in Figure 6.8b
show the aforementioned behavior. Perhaps, the latter shows more
clearly that: during the first 2000 iterations the changes of the ex-
pected Q-function of the posterior distribution are quite discernible.

6.2.2 Mountain Car

Mountain Car, being a more complex task than Cartpole, is worth
studying within our transfer setting. This task consists of a control-
lable car in a valley, as seen in Figure 6.2.2, that has only three pos-
sible actions: to apply a velocity with determined magnitude to the
right, to the left or not to apply it at all. The goal of the agent is
to build enough momentum to reach the top of the hill in the right
of Figure 6.2.2. To generate tasks, we uniformly sample the car base
speed—used in its actions—within the range [0.001,0.0015] which en-
sures that the car is not able to trivially drive up the mountain. In this
case the reward is −1 at every time step and 0 when it reaches the
mountain top. The discount factor is γ = 0.99 and the task finishes
when the car reaches the top. Finally, as in the case of Cartpole, the
Q-function is parameterized by an MLP with a single hidden layer of
64 neurons.

Before discussing the results, it is worth analyzing the structure
of Mountain Car’s Q-values. In this environment, the faster the car
reaches the mountain top the better and the car base speed, clearly,

6.3 maze navigation 40

affect how much time would it take; the lower the speed, the higher
the need for the car to build momentum by oscillating in the valley.
Therefore, as opposed to Cartpole, the variation in the Q-functions is
greater which, in turn, poses a more challenging situation for our VT

algorithms.

NT GVT 1-MGVT 3-MGVT

0 10000 20000 30000

Iterations

−80

−70

−60

E
xp

ec
te

d
R

et
u

rn

(a) Expected Return during Learning

0 10000 20000 30000

Iterations

−90

−80

−70

−60

E
xp

ec
te

d
R

et
u

rn
(b) Expected Return w.r.t. greedy pol-

icy

Figure 6.10: Mountain Car’s Expected Return estimated with 20 indepen-
dent runs. The 95% confidence intervals are also shown.

To obtain the plots in Figure 6.10, we generate 50 source tasks,
as described above. We execute 20 independent runs of the VT al-
gorithms by sampling a target task and selecting 10 random sources
from the previously constructed set. We show the expected return
during learning—the average of the previous 50 episodes’ return—in
Figure 6.10a and the greedy evaluation of the expected Q-function in
Figure 6.10b. The 95% confidence intervals are shown together with
the average performance obtained for the 20 independent runs. Both
plots show a very different behavior compared to Cartpole, as ex-
pected when considering the discussion on the Q-values in this en-
vironment. More clearly, this situation can be noticed in the behav-
ior of GVT. In both plots, it fails to provide a significant advantage
over DDQN. The Gaussian distribution hinders the learning of the tar-
get optimal Q-function as it over-constrains the algorithm to remain
close to a mean Q-function that most probably cannot solve the target
task optimally, given the variance of this environment’s Q-functions;
thus, GVT learns slowly. MGVT shows again its power, by converging
to the expected optimal performance faster than GVT and DDQN, even
if the jump-start shown is not great. Notice, that the variance seen is
explained by the natural variance in the Q-values.

6.3 maze navigation

In the current section, we present a simulation of a more challenging
scenario in order to evaluate how our VT algorithms cope with lit-

6.3 maze navigation 41

tle information about the distribution of Q-functions induced by the
distribution over tasks and when the transferable information is not
quite as easy to observe.

We, then, define the navigation of a robotic agent through a maze.
The robot starts its task in a random position within a maze of 10m2

with the possibility to rotate, left or right, with a speed of π
8 rad/s and

to move forward with a speed of 0.5m/s. The robot can sense its ab-
solute position and orientation. Additionally, it is equipped with dis-
tance sensor that allows for the detection of obstacles—and the goal—
in 9 equally-spaced directions within 2m of distance and a range 180
degrees. The agent receives a reward of 1 when it reaches the goal
and 0 otherwise. The discount factor is γ = 0.99. The Q-function is
hereafter considered to be parameterized by an MLP with two hidden
layers of 32 neurons each and using ReLU activations.

Furthermore, we design a set of 20 different mazes, divided in 4
groups characterized by having the goal in one of the corner positions
of the maze (identified by the green corner in the figures), in Figure
6.11 a sample of the set is shown. To further explore the performance
of the VT algorithms, we use the DDQN algorithm, as opposed to the
minimization of TD error used thus far, to solve optimally for the Q-
functions and use these as source set for transferring. In this way, we
intend to better understand the behavior of our proposed algorithm
w.r.t. the use of other RL algorithms to solve the sources.

(a) (b) (c) (d)

Figure 6.11: Sample of the set of mazes

Here, we present the results found by considering each of the mazes
shown in Figure 6.11 as a target task and transferring from a ran-
domly sampled subset of 5 sources, in which we ensure not to include
the target task. In Figure 6.12, we show the expected results during
the learning process and the greedy evaluation of the expected Q-
function. For each of those, we run 20 independent experiments and
we show the mean performance and its 95% confidence interval. It is
worth noting that we select these as they are representative of the set
of mazes designed—which is shown in Appendix A.2.3—and these
are the ones that pose more difficulties in this RL setting.

It is quite noticeable the utter failure of GVT to adapt in this context.
We can observe clearly, in comparison with the DDQN (no transfer)
baseline, that the Gaussian assumption in this environment is wrong.

6.3 maze navigation 42

The Gaussian distribution loses much of the information from the
sources and this, in turn, hinders the algorithm to effectively find the
optimal function parameters. In fact, it shows negative transfer behav-
ior as it can be noticed in Figure 6.12a: at the beginning of the training
process, the agent is able—most likely—to reach the goal whenever
it is close enough from its initial position but after the learning pro-
cedure continues, it also loses that behavior. 1-MGVT and 3-MGVT, in-
stead, are able to exploit transferable characteristics of the sources’
Q-values as shown in the performances in Figure 6.12. In fact, even
though the expected Q-function of the prior is not enough for a good
jump-start, it achieves a faster slope and, within this number of itera-
tions, some converge to optimality when the DDQN baseline is unable
to.

From these results, we can better appreciate the representational
power MGVT is able to exploit from its prior. This environment is, in
fact, challenging because the limited source of tasks makes it diffi-
cult to capture with much accuracy the distribution over Q-functions,
however, our algorithms can use the little information available to
guide the exploration in the parameter space to reach optimality. Fur-
thermore, it is worth noticing that the base RL algorithm used to train
the source tasks does not hinders the transfer process.

6.3 maze navigation 43

NT GVT 1-MGVT 3-MGVT

0 5000 10000 15000

Iterations

0.0

0.2

0.4

0.6

E
xp

ec
te

d
R

et
u

rn

(a) Maze A.1a. Expected Return dur-
ing Learning

0 5000 10000 15000

Iterations

0.0

0.2

0.4

0.6

E
xp

ec
te

d
R

et
u

rn

(b) Maze A.1a. Expected Return w.r.t.
greedy policy

0 5000 10000 15000

Iterations

0.0

0.2

0.4

E
xp

ec
te

d
R

et
u

rn

(c) Maze A.1g. Expected Return dur-
ing Learning

0 5000 10000 15000

Iterations

0.0

0.2

0.4

E
xp

ec
te

d
R

et
u

rn

(d) Maze A.1g. Expected Return w.r.t.
greedy policy

0 5000 10000 15000

Iterations

0.0

0.2

0.4

E
xp

ec
te

d
R

et
u

rn

(e) Maze A.1i. Expected Return dur-
ing Learning

0 5000 10000 15000

Iterations

0.0

0.2

0.4

0.6

E
xp

ec
te

d
R

et
u

rn

(f) Maze A.1i. Expected Return w.r.t.
greedy policy

0 5000 10000 15000

Iterations

0.0

0.1

0.2

0.3

E
xp

ec
te

d
R

et
u

rn

(g) Maze A.1n. Expected Return dur-
ing Learning

0 5000 10000 15000

Iterations

0.0

0.1

0.2

0.3

E
xp

ec
te

d
R

et
u

rn

(h) Maze A.1n. Expected Return w.r.t.
greedy policy

Figure 6.12: Maze’s Expected Return estimated with 20 independent runs.
The 95% confidence intervals are also shown.

7
C O N C L U S I O N S A N D F U T U R E W O R K S

In this thesis, we presented the Variational Transfer algorithm to tackle
the problem of transferring optimal value functions from a set of
source tasks in order to solve a novel, related target task. As a main
motivation of our design, we committed to provide as much general-
ity as possible to allow for practical implementations of the method
to be of use in the varied scenarios of current RL and, finally, we
presented two interesting practical implementations of our approach
based on Multivariate Gaussians and Mixture of Gaussians.

Furthermore, in our evaluation scenarios we showed that we could
apply our algorithm with different models of parameterized function
models widely used in current Machine Learning such as the lin-
ear models with radial basis features and fully-connected neural net-
works (MLPs), that are the base of the current approaches in modern
Deep Learning. We, empirically, showed that our algorithm brought
value when compared with the classic, non transfer, RL methods in
terms of faster adaptation to new tasks and better jump-starts in the
learning settings. Interestingly, we provided insight on how limiting
assuming Gaussian distributions for the Bayesian inferences in Trans-
fer, such as in GVT, could be; and that our method based on Mix-
tures of Gaussians, MGVT, could overcome this by providing a more
powerful representation and robustness to slight deviations from the
original assumptions of the transfer process.

Moreover, while Variational Transfer is mainly trying to transfer ef-
ficiently the previous knowledge, it also explores the target tasks by
guiding the exploration through the stochasticity introduced by the
prior knowledge and the inference done. The trade-off of exploiting
the sources’ information and exploring the target effectively could
lead to even better performances and robustness which future works
could explore. Further, we also introduced some hyper-parameters of
the algorithm to allow to control this trade-off between the impor-
tance of previous knowledge and newly-obtained experience. How-
ever, how to optimize these hyper-parameters in order to avoid early
convergence of the posterior probability mass to sub-optimal solu-
tions is an important future direction.

Another contribution that might be of interest from this work is the
introduction of the learning procedure based on the Mellow Bellman
Operator that we presented in Section 5.1.4. The direct minimization of
the squared TD error based on this softened operator to learn an opti-
mal Q-function is an interesting full residual RL algorithm. However,

44

conclusions and future works 45

we encountered that it required some tuning to make it stable and,
thus, further study would be necessary to understand its potential.

As the designed approach to transfer optimal Q-functions was gen-
eral enough, our method could be extended to work with Policy
Gradient methods, instead of value functions. Learning policies has
proven to be very useful as it searches directly for the maximum dis-
counted reward and, recently, these techniques has shown great suc-
cesses. Transferring behavior could offer similar benefits and, hence,
it is potentially a next step for the Variational Transfer method.

B I B L I O G R A P H Y

Asadi, Kavosh and Michael L Littman (2017). “An Alternative Soft-
max Operator for Reinforcement Learning.” In: International Confer-
ence on Machine Learning, pp. 243–252 (cit. on pp. 26, 27).

Azizzadenesheli, Kamyar, Emma Brunskill, and Animashree Anand-
kumar (2018). “Efficient Exploration through Bayesian Deep Q Net-
works.” In: arXiv preprint arXiv:1802.04412 (cit. on p. 20).

Baird, Leemon (1995). “Residual algorithms: Reinforcement learning
with function approximation.” In: Machine Learning Proceedings 1995.
Elsevier, pp. 30–37 (cit. on p. 27).

Barreto, André, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom
Schaul, Hado P van Hasselt, and David Silver (2017). “Successor
features for transfer in reinforcement learning.” In: Advances in neu-
ral information processing systems, pp. 4055–4065 (cit. on p. 12).

Blei, David M, Alp Kucukelbir, and Jon D McAuliffe (2017). “Varia-
tional inference: A review for statisticians.” In: Journal of the Ameri-
can Statistical Association 112.518, pp. 859–877 (cit. on p. 9).

Catoni, Olivier (2007). “PAC-Bayesian supervised classification: the
thermodynamics of statistical learning.” In: arXiv:0712.0248 (cit. on
p. 10).

Doshi-Velez, Finale and George Konidaris (2016). “Hidden parameter
Markov decision processes: A semiparametric regression approach
for discovering latent task parametrizations.” In: IJCAI: proceedings
of the conference. Vol. 2016. NIH Public Access, p. 1432 (cit. on p. 19).

Duan, Yan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever,
and Pieter Abbeel (2016). “RL$ˆ2$: Fast Reinforcement Learning
via Slow Reinforcement Learning.” In: CoRR abs/1611.02779. arXiv:
1611.02779 (cit. on p. 15).

Engel, Yaakov, Shie Mannor, and Ron Meir (2005). “Reinforcement
Learning with Gaussian Processes.” In: Proceedings of the 22Nd Inter-
national Conference on Machine Learning. ICML ’05. Bonn, Germany:
ACM, pp. 201–208. isbn: 1-59593-180-5 (cit. on p. 17).

Fernández, Fernando and Manuela Veloso (2006). “Probabilistic pol-
icy reuse in a reinforcement learning agent.” In: Proceedings of the
fifth international joint conference on Autonomous agents and multiagent
systems. ACM, pp. 720–727 (cit. on pp. 12, 13).

Finn, Chelsea, Pieter Abbeel, and Sergey Levine (2017). “Model Ag-
nostic Meta-Learning for Fast Adaptation of Deep Networks.” In:
CoRR abs/1703.03400. arXiv: 1703.03400 (cit. on p. 15).

Hershey, John R and Peder A Olsen (2007). “Approximating the Kull-
back Leibler divergence between Gaussian mixture models.” In:

46

http://arxiv.org/abs/1611.02779
http://arxiv.org/abs/1703.03400

Bibliography 47

Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE In-
ternational Conference on. Vol. 4. IEEE, pp. IV–317 (cit. on pp. 29, 30).

Killian, Taylor W, Samuel Daulton, George Konidaris, and Finale
Doshi-Velez (2017). “Robust and Efficient Transfer Learning with
Hidden Parameter Markov Decision Processes.” In: Advances in
Neural Information Processing Systems, pp. 6250–6261 (cit. on p. 19).

Kingma, D. P and M. Welling (2013). “Auto-Encoding Variational
Bayes.” In: ArXiv e-prints. arXiv: 1312.6114 [stat.ML] (cit. on p. 28).

Kober, Jens and Jan R Peters (2009). “Policy search for motor prim-
itives in robotics.” In: Advances in neural information processing sys-
tems, pp. 849–856 (cit. on p. 1).

Konidaris, George and Andrew Barto (2007). “Building Portable Op-
tions: Skill Transfer in Reinforcement Learning.” In: Proceedings of
the 20th International Joint Conference on Artifical Intelligence. IJCAI’07.
Hyderabad, India: Morgan Kaufmann Publishers Inc., pp. 895–900

(cit. on pp. 12, 13).
Lazaric, Alessandro and Mohammad Ghavamzadeh (2010). “Bayesian

multi-task reinforcement learning.” In: ICML-27th International Con-
ference on Machine Learning. Omnipress, pp. 599–606 (cit. on pp. 12,
13, 17, 18).

Lazaric, Alessandro, Marcello Restelli, and Andrea Bonarini (2008).
“Transfer of samples in batch reinforcement learning.” In: Proceed-
ings of the 25th international conference on Machine learning. ACM,
pp. 544–551 (cit. on pp. 12, 13).

Levine, Sergey, Chelsea Finn, Trevor Darrell, and Pieter Abbeel (2016).
“End-to-end training of deep visuomotor policies.” In: The Journal
of Machine Learning Research 17.1, pp. 1334–1373 (cit. on pp. 1, 11).

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin A. Riedmiller (2013).
“Playing Atari with Deep Reinforcement Learning.” In: CoRR. arXiv:
1312.5602 (cit. on pp. 1, 11).

Osband, I., D. Russo, and B. Van Roy (2013). “(More) Efficient Re-
inforcement Learning via Posterior Sampling.” In: ArXiv e-prints.
arXiv: 1306.0940 [stat.ML] (cit. on p. 20).

Osband, Ian, Benjamin Van Roy, and Zheng Wen (2014). “General-
ization and exploration via randomized value functions.” In: arXiv
preprint arXiv:1402.0635 (cit. on p. 20).

Puterman, Martin L. (1994). Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming. New York, NY, USA: John Wiley & Sons,
Inc. isbn: 0471619779 (cit. on pp. 5, 6).

Silver, Daniel, Qiang Yang, and Lianghao Li (2013). “Lifelong Ma-
chine Learning Systems: Beyond Learning Algorithms.” In: (cit. on
p. 16).

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent
Sifre, George Van Den Driessche, Julian Schrittwieser, et al. (2016).

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1306.0940

Bibliography 48

“Mastering the game of Go with deep neural networks and tree
search.” In: nature 529.7587, pp. 484–489 (cit. on p. 1).

Sutton, Richard S and Andrew G Barto (1998). Reinforcement learning:
An introduction. Vol. 1. 1. MIT press Cambridge (cit. on pp. 1, 37).

Taylor, Matthew E and Peter Stone (2009). “Transfer learning for rein-
forcement learning domains: A survey.” In: Journal of Machine Learn-
ing Research 10.Jul, pp. 1633–1685 (cit. on pp. 2, 12).

Thompson, William R (1933). “On The Likelihood That One Unknown
Probability Exceeds Another in The View Of The Evidence of Two
Samples.” In: Biometrika 25.3-4, pp. 285–294. eprint: /oup/backfile/
content_public/journal/biomet/25/3-4/10.1093/biomet/25.3-

4.285/2/25-3-4-285.pdf (cit. on p. 19).
Tirinzoni, Andrea, Andrea Sessa, Matteo Pirotta, and Marcello Restelli

(2018). “Importance Weighted Transfer of Samples in Reinforce-
ment Learning.” In: arXiv preprint arXiv:1805.10886 (cit. on pp. 12,
13).

Van Hasselt, Hado, Arthur Guez, and David Silver (2016). “Deep Re-
inforcement Learning with Double Q-Learning.” In: (cit. on p. 20).

Wilson, Aaron, Alan Fern, Soumya Ray, and Prasad Tadepalli (2007).
“Multi-task reinforcement learning: a hierarchical Bayesian approach.”
In: Proceedings of the 24th international conference on Machine learning.
ACM, pp. 1015–1022 (cit. on pp. 17, 18).

Yu, Tianhe, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang,
Pieter Abbeel, and Sergey Levine (2018). “One-Shot Imitation from
Observing Humans via Domain-Adaptive Meta-Learning.” In: CoRR
abs/1802.01557. arXiv: 1802.01557 (cit. on pp. 1, 11).

/oup/backfile/content_public/journal/biomet/25/3-4/10.1093/biomet/25.3-4.285/2/25-3-4-285.pdf
/oup/backfile/content_public/journal/biomet/25/3-4/10.1093/biomet/25.3-4.285/2/25-3-4-285.pdf
/oup/backfile/content_public/journal/biomet/25/3-4/10.1093/biomet/25.3-4.285/2/25-3-4-285.pdf
http://arxiv.org/abs/1802.01557

A
E X P E R I M E N T S D E TA I L S

In the present section we provide details on the parameters adopted
in all experiments.

a.1 the rooms problem

In order to train the source tasks, we directly minimize the TD error
based on the mellow Bellman operator by stochastic gradient descent.
We use a batch size of 50, a buffer size of 50000, ψ = 0.5 and a learn-
ing rate α = 0.001. Additionally, we use an ε-greedy policy for explo-
ration, with ε linearly decaying from 1 to 0.02 in a fraction of 0.7 the
maximum number of iterations.

For the transfer algorithm GVT, we set a batch size of 50 and a buffer
size of 10000. We use ψ = 0.5, λ = 10−4 and 10 weights to estimate the
expected TD error. For the learning rates, αµ = 0.001 for the mean of
the posterior and αL = 0.1 to learn its Cholesky factor L. Furthermore,
we restrict the minimum value reachable by the eigenvalues of these
factors to be σ2

min = 0.0001. In the case of MGVT we use, instead, λ =

10−6, αµ = 0.001 and αL = 0.1. Finally, we use a bandwidth σ2
p = 10−5

for the prior.

a.2 classic control

a.2.1 Cartpole

For this environment we generate tasks by uniformly sampling the
cart mass in the range [0.5,1.5], the pole mass in [0.1,0.3] and the pole
length in [0.2,1.0].

During the training of the source tasks, we use a batch size of 150
and a buffer size of 50000. Specifically, for DDQN we use a target update
frequency of 500,exploration fraction of 0.35 and a learning rate α =

0.001. We use a Multilayer Perceptron (MLP) with ReLU as activation
function and a single hidden layer of 32 neurons.

For the transfer experiments, we set the batch size to 500, the number
of weights sampled to approximate the expected TD error to 5, λ =

0.001 and ψ = 0.5 . We use αµ = 0.001 as the learning rate for the mean
of the Gaussian posterior. For its the Cholesky factor L we use αL =

0.0001 and set the limit that the minimum eigenvalue may reach to
σ2

min = 0.0001 . Additionally, for MGVT we set the variance of the prior
components σ2

p = 10−5 and leave the learning rates of the posterior
components’ means and Cholesky factor the same as GVT.

49

appendix 50

a.2.2 Mountain Car

We generate tasks sampling uniformly the base speed of the actions
in the range [0.001,0.0015].

For the sources, we train the tasks using DDQN with a target update
frequency of 500, a batch size of 32, a buffer size of 50000 and learning
rate α = 0.001. Moreover, we set the exploration fraction to 0.15. We use
an MLP with single hidden layer of 64 neurons with ReLU activation
function.

For the transfer experiments, we set the batch size to 500, and use
10 weights to approximate the expected TD error, λ = 10−5 and ψ =

0.5. For the learning rates, we use αµ = 0.001 for the means of the
Gaussians. In the case of the Cholesky factors L, we use αL = 0.0001
and allow the eigenvalues to reach a minimum value of σ2

min = 0.0001.
In the case of MGVT, additionally, we set the prior covariance to be
σ2

p = 10−5.

a.2.3 Maze Navigation

The mazes adopted in the experiments of Section 6.3 are shown in
Fig. A.1. Our 20 mazes have varying degree of difficulty and are de-
signed to hold few similarities that would be useful for transferring.
Moreover, we ensure 4 groups of mazes that are characterized by their
goal position.

For the experiments we use as an approximator an MLP with two
hidden layers of 32 neurons with ReLU activation functions. For train-
ing the sources we use a DDQN with a batch size of 70, a buffer size
of 10000 and a target update frequency of 100, setting the exploration
fraction to 0.1 and learning rate to α = 0.001.

In the transfer experiments we use ψ = 0.5, a batch size of 50, a
buffer size of 50000 and use 10 sampled weights from the posterior to
approximate the TD error. Moreover, we use λ = 10−6. For GVT, in
particular, we use αµ = 0.001, αL = 10−7, and set the minimum value
reachable by its eigenvalues to be σmin = 0.0001. In the case of MGVT,
we set αµ = 0.001 and αL = 10−6. Finally, we use σ2

p = 10−5 as the prior
bandwidth.

appendix 51

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure A.1: Set of mazes used for experiments in Section 6.3

	Dedication
	Acknowledgments
	Contents
	List of Figures
	Acronyms
	Abstract
	Abstract
	Sommario

	1 Introduction
	1.1 Contribution
	1.2 Document Outline

	2 Background
	2.1 Reinforcement Learning and Markov Decision Processes
	2.1.1 Value-Based RL Fundamentals

	2.2 Variational Inference
	2.2.1 Bayesian Inference and Intractability
	2.2.2 Evidence Lower Bound (ELBO)

	2.3 Inductive PAC-Bayesian Learning Overview

	3 Transfer Learning in Reinforcement Learning
	3.1 Motivation
	3.2 Transfer Algorithm Design
	3.3 Related Fields
	3.3.1 Multitask Learning
	3.3.2 Learning to Learn
	3.3.3 Lifelong Learning

	3.4 Our Setting

	4 Related Works
	4.1 Hierarchical Bayesian Multitask RL
	4.2 Hidden-Parameter MDPs
	4.3 Randomized Value Functions

	5 Variational Transfer Learning
	5.1 Variational Transfer Algorithm
	5.1.1 Modeling the Likelihood
	5.1.2 Variational Approximation
	5.1.3 Algorithm
	5.1.4 TD error optimization

	5.2 Practical Implementations
	5.2.1 Gaussian Variational Transfer
	5.2.2 Mixture of Gaussians Variational Transfer

	6 Empirical Evaluation
	6.1 The Rooms Problem
	6.1.1 Evaluation
	6.1.2 Evaluation under a Distribution Change
	6.1.3 Induced Exploration
	6.1.4 Performance vs. Task Likelihood
	6.1.5 Performance vs. Number of Sources

	6.2 Classic Control
	6.2.1 Cartpole
	6.2.2 Mountain Car

	6.3 Maze Navigation

	7 Conclusions and Future Works
	Bibliography
	A Experiments Details
	A.1 The Rooms Problem
	A.2 Classic Control
	A.2.1 Cartpole
	A.2.2 Mountain Car
	A.2.3 Maze Navigation

