
Politecnico di Milano

School of Industrial and Information Engineering

Master of Science in Mathematical Engineering

Neural Network calibration of the

two-additive factor Gaussian model.
A Machine Learning approach to Swaption

pricing

Relatore: Prof. Marcello RESTELLI

Candidate:

Luca SABBIONI

Matr. 853764

Academic Year 2017-2018

Abstract

Pricing financial derivatives is one of the most important tasks for an investment

bank: it is often relying on the choice of a mathematical model that describes the

dynamics of interest rates. Several models depend on a set of parameters to be

calibrated in order to fit market data as close as possible. It is fundamental for a

calibration method to be accurate and fast, and for this purpose Machine Learning

techniques are gathering increasing attention in the last years.

The aim of this project, developed with the collaboration of Banca IMI, is to pro-

pose a black-box calibration of interest rate models in a multicurve framework for

swaption prices using Machine Learning techniques. In particular this thesis is

focused on an Artificial Neural Network trained to calibrate the parameters of the

two-additive factor Gaussian Model (G2++).

The implementation of the calibrator follows a wide analysis of the principal theo-

rems providing pricing formulas, the main characteristics of Neural Networks and

of the features provided in the dataset used. The calibration procedure is then

optimized thanks to several techniques and algorithms, as well as the execution on

GPU, providing a remarkable speedup.

The results of the batch and online calibrations are finally compared with the

model and procedure currently used.

Keywords: Artificial Neural Network, Machine Learning, Black-Box Calibration,

Pricing Model Calibration

i

Abstract

La procedura di pricing di derivati finanziari è una delle funzioni più importanti per una

banca d’investimento: spesso si basa sulla scelta di un modello matematico che descrive

la dinamica dei tassi d’interesse. Diversi modelli dipendono da un set di parametri che

devono essere calibrati per poter replicare al meglio i dati di mercato. Per un metodo di

calibrazione è fondamentale essere veloce e accurato, e a questo scopo negli ultimi anni

stanno guadagnano attenzione crescente le tecniche di Machine Learning.

L’obiettivo di questo progetto, sviluppato con la collaborazione di Banca IMI, consiste nel

proporre tramite tecnihce di Machine Learning una calibrazione black-box di un modello

di tassi d’interesse in un contesto muticurve per i prezzi di swaptions. In particolare,

questa tesi si focalizza su una Rete Neurale, istruita per calibrare i parametri del modello

Gaussiano bifattoriale (G2 + +).

Lo sviluppo del calibratore segue un’ampia analisi dei principali teoremi da cui si ricavano

le formule di pricing, delle caratteristiche salienti delle Reti Neurali e delle proprietà

del dataset utilizzato. L’implementazione del calibratore è successivamente ottimizzata

grazie a diverse tecniche e algoritmi, cos̀ı come all’esecuzione su GPU, risultante in un

notevole aumento della velocità computazionale.

I risultati delle calibrazioni batch e online sono infine comparati con il modello e le

tecniche attualmente utilizzate.

Parole Chiave: Artificial Neural Network, Machine Learning, Calibrazione Black-

Box, Calibrazione del Modello di Pricing

iii

Ringraziamenti

Finalmente é giunto il momento di compiere l’ultimo passo di questo incredibile e fati-

coso percorso, fatto non solo di studio e duro lavoro, ma anche pieno di gioia e momenti

indimenticabili. Per questo, vorrei ringraziare tutti coloro che ne hanno fatto parte e

che mi hanno permesso di raggiungere questo obiettivo e diventare quello che sono ora.

Il primo ringraziamento é per il Professor Restelli, per avermi guidato in questi mesi

con grande disponibilitá e energia nonostante i suoi mille progetti e impegni, e per aver

sempre stimolato il mio interesse e la mia curiositÃ in un campo per me nuovo. Queste

due righe certamente non bastano per ringraziarlo in modo adeguato.

Vorrei anche ringraziare tutti coloro che nel team di Financial Engineering e nell’XVA

desk di BANCA IMI mi hanno seguito e consigliato, in particolare Roberto Da Luiso e

Giorgio Facchinetti, i quali hanno sempre risolto tutti i miei dubbi, anche i piú banali.

Inoltre, un ringraziamento speciale va fatto a Edoardo Vittori e Andrea Donati, che

mi hanno accompagnato e aiutato in tutto questo percorso con una pazienza incredibile.

Un grazie di cuore alla mia famiglia per essere sempre stata il mio punto di rifer-

imento. Mi avete sempre sostenuto in ogni situazione, spronandomi a imparare e a

diventare la persona che sono oggi.

Grazie ai miei amici di sempre, che mi hanno sempre supportato e sopportato: non

posso elencarvi tutti (cito solo Filo, senza il quale questa tesi sarebbe piena di errori), ma

sappiate che, anche se le nostre strade dovessero dividersi, vi porteró sempre tutti con me.

Grazie a Simon, per aver portato gioia in tutte queste settimane in biblioteca.

Vorrei anche ringraziare i miei compagni del Poli, a partire da Gra, Braga, Rot,

Febo, Peri e tutti gli amici che ho conosciuto fin dal primo giorno e che hanno reso tutte

le lezioni, i progetti, i viaggi in treno e le giornate di studio piú divertenti e mai banali.

v

Grazie a Lone per esserci sempre, per non rifiutare mai di darmi consigli e opinioni.

Sappi che vali piú di quello che credi.

Un immenso ringraziamento a Pibe: non credo sia possibile trovare un compagno

migliore; con la tua simpatia e intelligenza sei sempre riuscito a spronarmi ad andare

avanti col sorriso. Non hai la minima idea di quanto sia felice della possibilitá di contin-

uare a lavorare insieme.

Infine grazie a tutte le persone che non ho citato, ma che mi hanno permesso, anche

con poco, di raggiungere questo traguardo.

Contents

Abstract i

Ringraziamenti v

List of Tables xii

List of Figures xiii

List of Algorithms xiv

Acronyms xv

1 Introduction 1

1.1 Research target . 2

1.2 Previous works and current objectives . 2

1.3 Outline of Contents and Contributions . 3

2 Swaption pricing 5

2.1 An overview . 5

2.2 The model . 6

2.2.1 Vasicek model . 6

2.2.2 The G2++ Model . 7

2.3 Bond pricing . 9

2.4 Change of probability and T-Forward measure 13

2.4.1 Generalities . 13

2.4.2 Application on G2++ model . 15

2.5 Swap Pricing . 17

2.5.1 Swap . 18

2.6 Swaption Pricing . 20

2.6.1 Gauss-Hermite quadrature . 23

2.6.2 Root finding . 24

viii

3 Calibration and Neural Network 28

3.1 Calibration and supervised learning . 28

3.1.1 Offline and online calibration . 31

3.2 Artificial Neural Network . 32

3.2.1 Model definition . 32

3.3 Calibration algorithm . 37

3.3.1 Cross-Entropy Optimization . 38

3.3.2 BFGS algorithm . 41

3.4 Potentiality and limits: supervised learning 43

3.5 Dying ReLu . 47

4 Data Analysis 49

4.1 Dataset exploration . 49

4.1.1 An overview . 49

4.1.2 Feature exploration . 51

4.1.3 Multicurrency Dataset . 57

4.2 Dimensionality reduction: PCA . 60

4.2.1 Single currency: EURO . 60

5 Practical Methodologies 65

5.1 Parallel computation: GPU and CUDA 65

5.2 Gradient computation . 69

5.2.1 Finite Differences . 69

5.2.2 SFDM . 71

5.2.3 Backpropagation . 74

5.2.4 Comparison . 77

6 Experimental Results 79

6.1 Offline calibration . 79

6.2 Online calibration . 87

6.3 Multicurrency offline . 89

7 Conclusions 92

7.1 Summary of results . 92

7.2 Future research . 93

Appendices 95

A Derivatives in Swaption Pricing Model 96

A.1 Bond prices and shift ratio . 97

A.1.1 B and ω . 97

A.1.2 V and its exponential . 98

A.2 Conditional variables . 99

A.3 Integration nodes . 101

A.4 coefficients cj and root search . 101

A.5 h and hj . 103

A.6 λj . 104

A.7 κj . 105

A.8 Final formulas . 106

B Backpropagation Derivatives 107

C Multicurrency results 112

C.1 First scenario: predicted curves . 113

C.2 First scenario: feedback curves . 118

C.3 Second scenario: predicted curves . 121

C.4 Third scenario: predicted curves . 122

C.5 Comparison of the scenarios . 123

Bibliography 125

List of Figures

2.1 Representation of an example of Interest Rate Swap with fixed and float-

ing payments on the same dates . 6

2.2 Converging iterations of Halley’s method 26

2.3 Comparison between Bisection and Halley 27

3.1 Composition scheme of a neuron. 33

3.2 Scheme of a fully connected neural network 34

3.3 Few examples of activation functions that can be applied to the neurons

in the output layer. 36

3.4 Few examples of activation functions that can be applied to the neurons

in the hidden layers. 37

3.5 Cross-entropy iterations . 40

3.6 Feedback comparison between Vasicek and G2++ models 44

3.7 Feedback comparison of the ANN with with increasing complexity 45

3.8 Relative error comparison of the ANN with with increasing complexity . . 46

3.9 Set of weights and relative gradient with ReLu hidden activation function. 48

3.10 Set of weights and relative gradient with Sigmoid hidden activation function. 48

4.1 Plot of the discount and forward rate curves 52

4.2 Comparison OIS/EUR6M curves . 53

4.3 Some examples of correlation matrices. 55

4.4 Correlation matrices of the flattened swaptions features. 56

4.5 Correlation matrices of the flattened swaptions features for CHF dataset . 58

4.6 Correlation of the 3X6 swaptions of four different currencies 59

4.7 Composition matrix of the first component excluding vegas 63

4.8 Composition matrix of the first component including vegas. 64

5.1 Example of code structuring in GPU. 66

5.2 Dataset decomposition in kernels, blocks and grid 67

5.3 Comparison of different Ridge parameters λ 72

xi

5.4 Comparison of the on-the-run performance of some of the different gradi-

ent algorithms . 78

6.1 Offline calibration: feedback . 80

6.2 Offline calibration: comparison with single-day calibration 81

6.3 Offline calibration: maximum difference in prices 81

6.4 Offline calibration: predicted parameters 84

6.5 Offline calibration: representation of the couples of parameters through

time . 85

6.6 Offline calibration: representation of the predicted Mean Reversion Speeds

through time . 85

6.7 Offline calibration: representation of the couples (b, η) through time . . . 86

6.8 Offline calibration: representation of the predicted volatilities through time 86

6.9 Online calibration: feedback curves comparison 88

6.10 CHF feedback function: comparison of the different calibrations. 91

C.1 Multi currency, test 1: Mean reversion Speed 1 113

C.2 Multi currency, test 1: Mean reversion Speed 2 114

C.3 Multi currency, test 1: Volatility 1 (σ) . 115

C.4 Multi currency, test 1: Volatility 2 . 116

C.5 Multi currency, test 1: Correlation . 117

C.6 Multi currency, test 1: EUR feedback function 118

C.7 Multi currency, test 1: CHF feedback function 118

C.8 Multi currency, test 1: CAD feedback function 119

C.9 Multi currency, test 1: USD feedback function 119

C.10 Multi currency, test 1: comparison of the feedback functions 120

C.11 Multi currency, test 2: Relevant curves of parameters

(a, b, ρ) . 121

C.12 Multi currency, test 3: Relevant curves of parameters

(a, σ, ρ) . 122

C.13 Multi currency, comparison of the feedback functions for EUR dataset . . 123

C.14 Multi currency, comparison of the feedback functions for CHF dataset . . 123

C.15 Multi currency, comparison of the feedback functions for CAD dataset . . 124

C.16 Multi currency, comparison of the feedback functions for USD dataset . . 124

List of Tables

4.1 Descriptions of the features present in the dataset. 50

4.2 Samples interval ranges divided by currency 57

4.3 Variance captured by the first ten principal components excluding vegas. . 62

4.4 Variance captured by the first ten principal component including vegas . . 62

5.1 Comparison of the final performance of different gradient algorithms . . . 78

List of Algorithms

1 Irrational Halley’s algorithm . 25

2 Cross-Entropy optimization algorithm (CE) 39

3 Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) 42

4 Principal Component Analysis (PCA) . 61

5 Finite Differences gradient estimation (FDM) 70

6 Stochastic Finite Differences Method (SFDM) 73

7 BackPropagation (BACK) . 76

Acronyms

ANN Artificial Neural Network.

ATM At-the-Money.

BACK Backpropagation Algorithm.

BFGS Broyden-Fletcher-Goldfarb-Shanno.

CE CrossEntropy.

CUDA Compute Unified Device Architecture.

EUR Euro.

FFNN Feed-Forward Neural Network.

FWD Forward Curve.

G2++ Two-additive Factor Gaussian Model.

GPU Graphics Processing Unit.

IRS Interest-rate swap.

ML Machine Learning.

MLP Multilayer Perceptron.

MP Multiprocessor.

MRS Mean Reversion Speed.

NPV Net Present Value.

xv

OIS Overnight Indexed Swap.

PC Principal Component.

PCA Principal Component Analysis.

ReLu Rectified Linear Unit.

RNN Recurrent Neural Network.

SFDM Stochastic Finite Difference Method.

SL Supervised Learning.

SP Stream Processor.

TANH hyperbolic tangent.

VOL Volatility.

xvi

Chapter 1

Introduction

In the last 30 years, derivatives have become increasingly important in Fi-

nance. Futures and options are actively traded on many exchanges through-

out the world. [. . .]

They play a key role in transferring a wide range of risks in the economy.

[“Options, Futures and other Derivatives”, J.C.Hull]

Every day a huge amount of derivatives is traded on the markets. It is consequently

vital the ability of pricing financial instruments with a high degree of accuracy in a short

time, especially regarding the most liquid options such as swaptions.

Speed is the curse of traders, because only through fast computations the derivatives

market can be profitable.

Pricing usually relies on the choice of a mathematical model representing the dynamics

of interest rates. The most common models are “parametric”, since they depend on a

set of parameters.

The problem arising with such models is that these parameters are, in general, not

known; the only way to choose them properly consists in the direct evaluation of their

influence on real market prices. This procedure is called calibration and it is the main

goal of this project.

Given the high volumes of datasets regarding both present and historical records, and

the quantitative nature of the subject, this field is becoming one of the best suited

for the research and development of Computer Science applications: in the last years,

investment banks are giving more and more attention to out-of-the-box projects involving

Data Science, Artificial Intelligence and Machine Learning (ML).

1.1 Research target

The present work is the result of an intense cooperation of Politecnico di Milano with

BANCA IMI. The main goal of the project is to develop a calibrator of a model using

European swaptions. The data available on a daily basis, which can be used as input

to the calibrator, are the market quotes of a set of swaptions, i.e., prices and volatilities

of the swaptions, with the addition of information about the discounting and forward

curves. Hence, starting from the current market data, the calibrator must provide the

tuned set of parameters that can best describe market data.

The model currently used for swaption pricing is the Vasicek model, in which interest

rates are described as stochastic processes defined by the pair (k, σ), where k is the mean

reversion speed and σ is the volatility (as explained in Chapter 2).

The calibration used nowadays is a compromise between accuracy and computational

speed: since the calibration on the overall set of swaptions is heavy in terms of compu-

tational times, it is performed on a subset of the most liquid options.

For this reason, there is a strong interest in the development of a new calibrator capable

of using all contracts available in a short time and with suitable accuracy. The idea is

to consider an Artificial Neural Network (ANN), which should be flexible enough to be

applied to different interest rate models, preferably more complex than Vasicek’s, such

as the Two-additive Factor Gaussian Model (G2++).

1.2 Previous works and current objectives

The present work is based upon the results of the cooperation between Politecnico di

Milano and BANCA IMI which started in 2016, and this is currently the third master

thesis based on this project. The achievements of such a collaboration were manifold

and handled slightly different topics:

• In the first step, the primarily focus went on the evaluation of the analytical model

used and on a deep analysis of the multicurve context. Moreover, a Neural Network

was built in a Supervised Learning (SL) manner: in fact, it was trained to fit the

daily couple (k, σ) provided with the dataset in order to analyze the approximation

properties of the network, without actually using any pricing formula [Cella, 2016].

• The second step is the real starting point for this thesis: the black-box calibration

through an ANN was introduced and developed. The calibrator is used not to fit

the given parameters, but to predict their values from market data generating a

set of prices as close as possible to the real ones. The training procedure was still

made on the same subset of swaptions of the original calibrator in order to be able

2

to compare the results and for reasons of computational times [Donati, 2018].

The above-mentioned work highlighted that there is a wide range of possible pairs (k, σ)

whose error on the generated prices is almost identical to the minimal one. The problem

lies in the chosen model, which is not complex enough and therefore has low expressivity.

This suggested the introduction of the G2++ model as one of the main objectives of

this work. This new model is based on 5 parameters instead of 2, therefore introducing

an additional difficulty due to the fact that there is no more an analytic formula to price

swaptions. For this reason, its implementation requires the use of numerical approxi-

mations, which in turn generate a small bias in the calibration procedure (there is not

only the error generated by a non-optimal choice of the parameters, but also a small

approximation error in the prices).

Another main goal is to keep computational times low enough to allow the calibra-

tion on the entire set of swaptions. Eventually, there is also the possibility to extend the

project in a multicurrency scenario, considering European swaptions written on different

currencies.

1.3 Outline of Contents and Contributions

This section outlines the structure of this document, explaining the original contribu-

tions that were made in this thesis.

In Chapter 2 the financial aspects regarding the project are introduced. In a first in-

stance, it provides an explanation of the interest rate models involved: the Extended

Vasicek model, used in previous works, and the G2++, introduced in this thesis project:

this model increases the complexity of the problem from a bi-dimensional to a penta-

dimensional framework. The latter model is then used to price some basic contracts (as

Bond or Swaps), necessary for the computations of swaption prices, whose formulas are

derived at the end of the Chapter.

Chapter 3, after the definition of the error measure adopted to evaluate the calibra-

tions, provides an overview of the principal Machine Learning techniques used, starting

with the Neural Network. It is followed by an overview of the optimization algorithms

used, namely the CrossEntropy and the BFGS, adopted also in the previous steps of this

project with some differences. Finally, the potentialities and limitations of the current

calibrator are presented.

Chapter 4 contains some analysis made on the dataset used as input for the calibra-

tor. It starts with the exploration of the features provided in the dataset, which is then

manipulated through a procedure of dimensionality reduction (PCA), presented with

3

some further observations. This procedure was introduced in [Cella, 2016]; however, its

application and related analysis are different.

In order to reduce computational times, some particular algorithms and technologies in

the calibration had to be considered: they are presented in Chapter 5. As shown in the

first section, the greatest speedup is gained thanks to the implementation of the pricing

procedure on the GPU using CUDA architecture, in a similar manner of the previous

works.

The last part shows different algorithms developed for the computation of the gradient

of the error measure with respect to the parameters of the neural network: the need of

these contributions emerged only in this last step of the project because of the increased

model complexity and brought another remarkable gain in terms of computational times.

Chapter 6 is dedicated to the results of the experiments (batch and online calibrations

on the EURO dataset) and their comparison with the bank’s calibrator. Moreover, some

multicurrency tests are also performed and presented.

Finally, Chapter 7 provides some comments and conclusions about the overall project

and some perspectives for future works.

4

Chapter 2

Swaption pricing

2.1 An overview

As introduced in the previous Chapter, the main task of this thesis is the calibration of

an interest rate model through the pricing of European Swaptions; but before considering

all the technicalities and equations needed to find the pricing formula, there is the need

to understand the basics of these derivatives.

An Interest-rate swap (IRS) is a contract between two parties agreeing to exchange

payments between two differently indexed legs, starting from a future time instant. The

payment made by one party (the swap payer) is based on a fixed interest rate, known as

the swap rate, and in return it receives (from the receiver) a payment stream based on a

floating rate. The floating rate is defined by the so-called Forward Curve (FWD), which

usually corresponds to the LIBOR or EURIBOR curves. The streams of payments are

called floating and fixed legs.

Swaptions are options on interest rate swaps, and are the most popular types of

interest rate options. These derivatives, also called swap options, are options on an

IRS. There are two main types of swaptions, a payer version and a receiver version. A

European payer swaption is an option that gives the holder the right to enter a payer

IRS at a specified strike price on a specified date (called expiry). At the expiry, if the

swap rate of the underlying IRS is higher than the strike rate, the contract owner can

exercise the option. On the contrary, in a Europen receiver swaption, the underlying

IRS is a receiver one.

The length of the underlying IRS is called tenor. A representation of the cash flows

involved in a swaption is depicted in Figure 2.1.

Figure 2.1: Representation of an example of Interest Rate Swap with fixed and floating

payments on the same dates

As it will be shown later, swaps and swaptions pricing can be performed once the

mathematical model describing the evolution of interest rates is defined; hence, the next

sections deal with the definition of the short-rate model used, and it is then applied step

by step in order to find the pricing formulas.

2.2 The model

2.2.1 Vasicek model

The first model considered for this project is a slight generalization of one the first models

devised to simulate the behavior of the short rate: The Multicurve-Shifted Vasicek

Model. In this model the short rate r(t) follows the dynamics described by the following

definition:

Definition 2.2.1. Let Q be the Risk Neutral probability. A stochastic process defined

on a probability space (Ω,F ,Q) is said to be a Vasicek process assuming values in R if

its dynamics follows the SDE:

dr(t) = k(θ − r(t))dt+ σdW (t) + ϕ(t)

Where k, σ, θ > 0; ϕ : R→ R and W is a R Brownian motion under Q .

6

In this case W (t) is a Wiener process modelling the random market risk factor, and

the parameters k, σ and θ characterize the dynamics of the model as follows:

• “long-term mean” θ: the value to which the rate r will converge in the long term;

• “Mean Reversion Speed (MRS)” k: the speed rate at which r will converge to the

long-term mean θ after a perturbation;

• “Volatility (VOL)” σ: the factor that controls the variance of the Brownian motion

entering in the system.

• “shift” ϕ(t): it is a deterministic shift, depending on the curve taken into account.

For every currency, when discounting, the curve considered is the Overnight In-

dexed Swap (OIS)1; in this case the shift will be referred as ϕd(t). On the contrary,

when forwarding, the one used is the forward curve with specific tenor (carrying

its related risk); it will be referred as ϕF (t).

The first goal of the project was the calibration of k and σ (once fixed θ) in order to

minimize the error on predicted swaption prices. The pricing procedure using this model

is very easy and fast to compute since closed-form formulas are available, as explained

in [Brigo and El-Bachir, 2007] and [Brigo and Mercurio, 1998]. The main property used

to find the closed-form solution is derived in [Christensen, 2007].

The main problem is that this interest rate model is “too poor” as not very sensitive

to its parameters, in the sense that there is a wide range in the parameter space where

the error remains almost the same. This suggested to use a more complex model, capable

of providing more accurate swaption prices, thus reducing the feedback error.

2.2.2 The G2++ Model

In order to have a better approximation of interest rates and of swaption prices there

is the need to add complexity with respect to Vasicek model. This goal is achieved by

adding another source of randomness, while keeping the multicurve context. Hence, the

model used is called Two-Additive-Factor Gaussian Model, or G2++.

In this model the short rate r(t) follows the dynamics described in the following

Definition:

Definition 2.2.2. Let Q be the Risk Neutral probability. A stochastic process defined

on a probability space (Ω,F ,Q) is said to be a G2++ process assuming values in R if:

r(t) = x(t) + y(t) + ϕ(t),

1The Overnight Indexed Swap (OIS) curve is currently the most common choice for the risk-

free discount rate.

7

where ϕ(t) : R→ R such that ϕ(0) = r0;

the processes {x(t) : t ≥ 0} and {y(t) : t ≥ 0} satisfy

dx(t) = −ax(t)dt+ σdW1(t) x(0) = 0

dy(t) = −by(t)dt+ ηdW2(t) y(0) = 0
(2.1)

and (W1,W2) is a two-dimensional Q-Brownian motion with instantaneous correlation

ρ:

dW1(t)dW2(t) = ρdt. (2.2)

ϕ(t) is the same deterministic shift as the previous case, still diversified in discount

and forward shift.

The parameters to be calibrated are a, b, σ, η, ρ.

This model presents two sources of randomness: one is usually meant to lead the

dynamics on the short term, the other is more important on the long term (for this

reason the “long-term mean” θ is no longer used).

The dynamics of the processes x and y can be also expressed in terms of two independent

Brownian motions W̃1 and W̃2:

dx(t) = −ax(t)dt+ σdW̃1(t)

dy(t) = −by(t)dt+ ηρdW̃1(t) + η
√

1− ρ2dW̃2,
(2.3)

where the independent Brownian motions are related to the previous ones through

Cholesky decomposition

dW1(t) = dW̃1(t)

dW2(t) = ρdW̃1(t) +
√

1− ρ2dW̃2(t).
(2.4)

Using Ito’s formula it is easy to obtain x(t) and y(t):

Proposition 2.2.1.

x(t) = x(s)e−a(t−s) + σ

∫ t

s
e−a(t−u)dW1(u) ∀s < t

y(t) = y(s)e−b(t−s) + η

∫ t

s
e−b(t−u)dW2(u) ∀s < t

(2.5)

in particular, for s = 0:

x(t) = σ

∫ t

0
e−a(t−u)dW1(u)

y(t) = η

∫ t

0
e−b(t−u)dW2(u).

(2.6)

8

From this Proposition, immediately follows the next one:

Proposition 2.2.2. r(t), conditional on Fs is a normal random variable, with mean

and variance given by

E[r(t)|Fs] = x(s)e−a(t−s) + y(s)e−b(t−s) + ϕ(t)

V ar[r(t)|Fs] =
σ2

2a

[
1− e−2a(t−s)]+

η2

2b

[
1− e−2b(t−s)]+ 2ρ

ση

a+ b

[
1− e−(a+b)(t−s)].

(2.7)

2.3 Bond pricing

The most basic contract that must be priced is without any doubt the Zero Coupon Bond.

The pricing formulas that we are going to see will always start from the computation

of bond prices. Arbitrage Free arguments let us compute easily bond prices as the

expectation of a functional of the stochastic process r under the Risk-Neutral measure.

Hence, let us introduce the general Risk-Neutral Valuation Formula for every contingent

claim:

Theorem 2.3.1 (Risk-Neutral Valuation Formula). Let χ be a contingent T-claim of

the form χ = X(T). In an arbitrage-free market the price X(t) is given by

X(t) = E
[
D(t, T)X(T)|Ft

]
= E

[
exp(−

∫ T

t
r(s)ds)X(T)|Ft

]
(2.8)

where the expectation is made with respect to the Risk-Neutral probability.

Considering that a zero-coupon bond is a contingent claim where X(T) = 1, the

following proposition holds.

Proposition 2.3.2.

P (t, T) : = E[exp{−
∫ T

t
r(s)ds}|Ft]

= e−
∫ T
t ϕ(s)ds E[exp{−

∫ T

t
(x(u) + y(u))du}|Ft]

= Φ(t, T) E[exp{−I(t, T)}|Ft]

where

I(t, T) :=

∫ T

t
(x(u) + y(u))du

and

Φ(t, T) := e−
∫ T
t ϕ(s)ds

.

9

The following Lemma allows us to obtain an analytic formula for bond prices.

Lemma 2.3.3. The random variable I(t, T), conditional to the sigma-field Ft, is nor-

mally distributed ∀t, T > 0.

Specifically:

I(t, T) ∼ N(M(t, T), V (t, T))

where

M(t, T) =
1− e−a(T−t)

a
x(t) +

1− e−b(T−t)

b
y(t) = B(a, t, T)x(t) +B(b, t, T)y(t)

V (t, T) =
σ2

a2
[T − t+

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a
]

+
η2

b2
[T − t+

2

b
e−b(T−t) − 1

2b
e−2b(T−t) − 3

2b
]

+ 2ρ
ση

ab
[T − t+

e−a(T−t) − 1

a
+
e−b(T−t) − 1

b
− e−(a+b)(T−t) − 1

a+ b
]

B(z, t, T) :=
1− e−z(T−t)

z

Proof. ([Brigo and Mercurio, 2001], Lemma 4.2.1).

Using stochastic integration by part∫ T

t
x(u)du = Tx(T)− tx(t)−

∫ T

t
udx(u)

= Tx(t) + T

∫ T

t
dx(u)− tx(t)−

∫ T

t
udx(u)

=

∫ T

t
(T − u)dx(u) + (T − t)x(t)

If we focus on the last integral, we can use the definition of x and Proposition 2.2.1 to

obtain∫ T

t
(T − u)dx(u) =− a

∫ T

t
(T − u)x(u)du+ σ

∫ T

t
(T − u)dW1(u)

=− a
∫ T

t
(T − u)

[
x(t)e−a(u−t) + σ

∫ u

t
e−a(u−s)dW1(s)

]
du

+ σ

∫ T

t
(T − u)dW1(u)

We can compute separately the integrals:

−ax(t)

∫ T

t
(T − u)e−a(u−t)du = −x(t)(T − t)− e−a(T−t)−1

a
x(t)

10

and, using integration by parts,

−aσ
∫ T

t
(T − u)

∫ u

t
e−a(u−s)dW1(s)du

= −aσ
∫ T

t

(∫ u

t
easdW1(s)

)
∂u
(∫ u

t
(T − v)e−avdv

)
= −aσ

[(∫ T

t
eaudW1(u)

)(∫ T

t
(T − v)e−avdv

)
−
∫ T

t

(∫ u

t
(T − v)e−avdv

)
eaudW1(u)

]
= −aσ

[∫ T

t

(∫ T

u
(T − v)e−avdv

)
eaudW1(u)

]
= −aσ

[∫ T

t

(
(T − u)e−au

a
+
e−aT − e−au

a2

)
eaudW1(u)

]
= −σ

∫ T

t

[
(T − u) +

e−a(T−u) − 1

a

]
dW1(u)

Adding all the previous terms:∫ T

t
x(u)du =(T − t)x(t) + σ

∫ T

t
(T − u)dW1(u)− x(t)(T − t)− e−a(T−t) − 1

a
x(t)

− σ
∫ T

t
(T − u)dW1(u)− σ

∫ T

t

e−a(T−u) − 1

a
dW1(u)

=
1− e−a(T−t)

a
x(t) +

σ

a

∫ T

t

[
1− e−a(T−u)

]
dW1(u)

The same argument can be done for y, so that∫ T

t
x(u)du =

1− e−a(T−t)

a
x(t) +

σ

a

∫ T

t

[
1− e−a(T−u)

]
dW1(u)∫ T

t
y(u)du =

1− e−b(T−t)

b
y(t) +

η

b

∫ T

t

[
1− e−b(T−u)

]
dW2(u)

So it is clear that I(t, T) is normally distributed, and M(t, T) is directly verified, too.

For what concerns the conditional variance V (t, T), we have

V ar

{
I(t, T)|Ft

}
=V ar

{
σ

a

∫ T

t

[
1− e−a(T−u)

]
dW1(u) +

η

b

∫ T

t

[
1− e−b(T−u)

]
dW2(u) | Ft

}
=
σ2

a2

∫ T

t

[
1− e−a(T−u)

]2
du+

η2

b2

∫ T

t

[
1− e−b(T−u)

]
du

+ 2ρ
ση

ab

∫ T

t

[
1− e−a(T−u)

][
1− e−b(T−u)

]
du

11

Simple integration proves the hypothesis.

Thanks to this lemma we are now able to prove the following theorem:

Theorem 2.3.4.

P (t, T) = Φ(t, T) · exp{−M(t, T) +
1

2
V (t, T)}

= Φ(t, T)A(t, T) · exp{−B(a, t, T)x(t)−B(b, t, T)y(t)}
(2.9)

Where A(t, T) = exp(V (t, T)/2).

Proof. Starting from Proposition 2.3.2, it is enough to recall that the moment-generating

function of a normal random variable X ∼ N(µ, σ2) is

E[exp(uX)] = exp(µu+ σ2u2/2).

By using Lemma 2.3.3, the theorem is easily proven.

Remark. Since the deterministic shift ϕ varies through discounting and forwarding, we

need to distinguish also between Φd(t, T) for discounting and ΦF (t, T) for forwarding.

Obviously, the same notation will be used on P (t, T). This shift is not directly available,

but must be derived from market curves. For example, if the goal is to derive Φd(t, T),

we will consider the OIS discount curve POIS(t0, T) starting from the settlement date

t0. The other curve to be considered is the risk-free one coming from the model, i.e.,

without the shift.

P (t, T) = A(t, T) · exp{−B(a, t, T)x(t)−B(b, t, T)y(t)}. (2.10)

Now, the shift Φd(t, T) can be found easily.

Φd(t, T) =
POIS(t, T)

P (t, T)

=
POIS(t0, T)

POIS(t0, t)

P (t0, t)

P (t0, T)

(2.11)

Analogously, The forward curve PFWD(t0, T) allows the computation of ΦF (t, T).

12

2.4 Change of probability and T-Forward mea-

sure

2.4.1 Generalities

In order to find the pricing formula for swaptions, we need to change the probability

measure in the so-called T-forward measure. Hence, we will give a brief (and not com-

plete nor technical) introduction of the mathematical instruments and theorems used.

The notations and propositions for this section are referenced to “Aribtrage Theory in

continuous time” [Björk, 2009].

The fundamentals of the theory of changes of probability measures for stochastic pro-

cesses are Girsanov’s theorem and the change of numeraire.

Theorem 2.4.1 (Girsanov’s theorem). Let W P be a P-standard d-dimensional Brownian

motion on the filtered probability space (Ω,F ,P, {Ft}t);
Let φt be a d-dimensional column process (called Girsanov kernel), adapted with respect

to Ft.

Fixed T, define a new process L on [0, T] such that:

dLt = φ′tLtdW
P
t L0 = 1 (2.12)

i.e.,

Lt = exp

(∫ t

0
φsdW

P
s −

1

2

∫ t

0
‖φs‖2ds

)
. (2.13)

Under the hypothesis that Lt is a martingale w.r.t. Ft and that EP[LT] = 1, it can be

possible to define a new probability measure Q on FT where LT is the Radon-Nikodym

derivative (or likelihood process):

LT =
dQT

dP|FT

.

In this way, the stochastic process WQ
t defined with dynamics

dWQ
t = dW P

t − φtdt

is a Brownian motion on the new probability space (Ω,F ,Q, {Ft}t).

Corollary. Under the same hypotheses of Girsanov’s theorem, let Xt be a Ito process

defined on (Ω,F ,P, {Ft}t) such that

dXt = Ftdt+GtdW
P
t .

Hence, Xt is a Ito process also in (Ω,F ,Q, {Ft}t) with dynamics

dXt = (Ft +Gtφt)dt+GtdW
Q
t .

13

The main application of these properties is the change of numeraire:

Definition 2.4.1. A numeraire is any positive non-dividend-paying asset.

In the general pricing formula in Theorem 2.3.1 we are considering as numeraire

the “money market account” B(t), which is a price process of a risk-free asset, with

dynamics

dB(t) = r(t)B(t)dt, B(0) = 1. (2.14)

As stressed in [Björk, 2009], the problem with the general pricing formula in Theorem

2.3.1 from a computational point of view is that “in order to compute the expected value

we have to get hold of the joint distribution (under Q) of the two stochastic variables∫ T
0 r(s)ds and X(T), and finally we have to integrate with respect to that distribution.

Thus we have to compute a double integral, and in most cases this turns out to be rather

hard work”.

The goal of the change of numeraire is to consider a new asset as numeraire, so to

obtain a more suitable pricing formula.

Proposition 2.4.2 ([Björk, 2009], proposition 26.4). Assume that Q0 is a martingale

measure for the numeraire S0 (on FT), and assume that S1 is a positive asset price

process such that S1(t)/S0(t) is a martingale in Q0. Define Q1 on FT by the likelihood

process

L1
0(t) =

S0(0)

S1(0)

S1(t)

S0(t)
.

Then Q1 is a martingale measure for S1.

This result is very convenient, because it is possible to consider as new numeraire

the bond price p(t, T). In fact, our models were specified under the Risk-Neutral mar-

tingale measure Q with the money account B as the numeraire. Zero-Coupon Bonds are

positive asset price processes such that p(t, T)/B(t) is a martingale. Hence the theorem

holds, and it is possible to adopt a new martingale measure for p(t, T), which is called

T-forward measure QT .

The most convenient property of this new measure is expressed in the following Propo-

sition:

Proposition 2.4.3 (Pricing formula under T-forward measure). For any T-claim χ:

X(t) = p(t, T)ET
[
X(T)|Ft

]
,

where ET denotes the expected value under QT .

14

This is exactly what we were looking for, a pricing formula that simplifies the general

one. The goal now is to express the dynamics under the new probability measure; again

there is a helpful property.

Proposition 2.4.4 ([Björk, 2009], Proposition 26.7). If Q denotes the Risk-Neutral

martingale measure, then the likelihood process

LT (t) =
dQT

dQ
, on Ft, 0 ≤ t ≤ T

is given by

LT (t) =
p(t, T)

B(t)p(0, T)
. (2.15)

In particular, if the Q-dynamics of the T-bond are Wiener driven, i.e. of the form

dp(t, T) = r(t)p(t, T)dt+ p(t, T)v(t, T)dW (t), (2.16)

where W is a Q-Wiener process, then LT dynamics are given by

dLT (t) = LT (t)v(t, T)dW (t). (2.17)

i.e., the Girsanov kernel for the transition from Q to QT is given by the T-bond volatility

v(t, T).

2.4.2 Application on G2++ model

Now it is time to apply the last propositions in order to find the dynamics of r(t) under

the new forward measure; in order to do that we need to derive an explicit formula for

the kernel function v(t, T). So, if we manage to write the dynamics p(t, T) as in Equation

2.16, then Proposition 2.4.4 gives us what is needed.

Proposition 2.4.5. In G2++ model, the price of a zero-coupon bond with maturity T

satisfies the stochastic differential equation

dP (t, T) = r(t)P (t, T)dt− σB(a, t, T)P (t, T)dW1(t)− ηB(b, t, T)P (t, T)dW2(t). (2.18)

Proof. Let us start with some simple computations of the derivatives of B(z, t, T) and

V (t, T):

B(z, t, T) : =
1− e−z(T−t)

z

dB(z, t, T) = −e−z(T−t)dt =
[
zB(z, t, T)− 1

]
dt

15

dV (t, T) =

{
σ2

a2

[
− 1 + 2e−a(T−t) − e−2a(T−t)]

+
η2

b2
[
− 1 + 2e−b(T−t) − e−2b(T−t)]

+ 2ρ
ση

ab

[
− 1 + e−a(T−t) + e−b(T−t) − e−(a+b)(T−t)]}dt

=
[
− σ2B2(a, t, T)− η2B2(b, t, T)− 2ρσηB(a, t, T)B(b, t, T)

]
dt

Now, consider

R(t, T) = −B(a, t, T)x(t)−B(b, t, T)y(t) + V (t, T)/2.

We want to compute its dynamics. For simplicity we will use a shorter notation B(a) :=

B(a, t, T)

dR(t, T) =− dB(a)x(t)−B(a)dx(t)− dB(b)y(t)−B(b)dy(t) + dV (t, T)/2

=− aB(a)x(t)dt+ x(t)dt+ aB(a)x(t)− σB(a)dW1(t)

− bB(b)y(t)dt+ y(t)dt+ bB(b)y(t)− ηB(b)dW2(t) + dV (t, T)/2

=(r(t)− ϕ(t))dt+ dV (t, T)/2− σB(a)dW1(t)− ηB(b)dW2(t)

Now, since P (t, T) = Φ(t, T)exp(R(t, T)), using Ito’s Lemma:

dP (t, T) =ϕ(t)P (t, T) + P (t, T)dR(t, T)

+
1

2
P (t, T)

[
σ2B2(a) + η2B2(b) + 2ρσηB(a)B(b)

]
dt.

Replacing the dynamics of R and V we obtain the result.

Rewriting this last result in terms of independent Brownian motions, Equation 2.4

leads to:

dP (t, T) =r(t)P (t, T)dt− P (t, T)
[
σB(a) ηB(b)

] [dW1(t)

dW2(t)

]

=r(t)P (t, T)dt− P (t, T)
[
σB(a) ηB(b)

] [1 0

ρ
√

1− ρ2

][
dW̃1(t)

dW̃2(t)

]
.

(2.19)

As a consequence, it is possible to apply Girsanov’s Theorem using as kernel:

v(t, T) =
[
σB(a, t, T) + ηB(b, t, T)ρ η

√
1− ρ2B(b, t, T)

]
. (2.20)

This let us define a new couple of independent Brownian motions under the T-forward

measure
dW̃ T

1 =dW̃1 +
[σ
a

(1− e−a(T−t)) + ρ
η

b
(1− e−b(T−t))

]
dt

dW̃ T
2 =dW̃2 +

√
1− ρ2

η

b
(1− e−b(T−t))dt.

(2.21)

16

Now Equation 2.4 can be used back to consider again a two-dimensional T-Brownian

motion with the same correlation matrix as the initial one.

Finally, combining this with Equation 2.1 we obtain the new dynamics of the processes

x and y under the new T-forward measure

dx(t) = [−ax(t)− σ2

a
(1− e−a(T−t))− ρση

b
(1− e−b(T−t))] + σdW T

1 (t)

dy(t) = [−by(t)− η2

b
(1− e−b(T−t))− ρση

a
(1− e−a(T−t))] + σdW T

2 (t),

(2.22)

where W T
1 (t) e W T

2 (t) are such that dW T
1 (t)dW T

2 (t) = ρdt.

As a consequence, using simple integration, the following holds:

Proposition 2.4.6. r(t), conditional on F0, is a normal random variable, with mean

and variance given by

ν(0, t) = ET
[
r(t)|F0

]
= −MT

x (0, t)−MT
y (0, t) + ϕ(t)

ξ2(0, t) = VarT
[
r(t)|F0

]
= σ2

x + σ2
y + 2ρxyσxσy

(2.23)

where

MT
x (0, t) = (

σ2

a2
+ ρ

ση

ab
)[1− e−at]− σ2

2a2
[e−a(T−t) − e−a(T+t)]− ρ ση

b(a+ b)
[e−b(T−t) − e−bT−at]

MT
y (0, t) = (

η2

b2
+ ρ

ση

ab
)[1− e−bt]− η2

2b2
[e−b(T−t) − e−b(T+t)]− ρ ση

a(a+ b)
[e−a(T−t) − e−aT−bt]

σx = σ

√
1− e−2at

2a

σy = η

√
1− e−2bt

2b

ρxy = ρ
ση

(a+ b)σxσy
[1− e−(a+b)t].

(2.24)

2.5 Swap Pricing

Let’s see now the pricing formula for an European swaption when discount and forward

rates are described by G2++ model, with a different shift Φ. First of all, we need to

understand how to price a Swap.

17

2.5.1 Swap

We want to price in t a payer IRS contract, whose cash flows start in Tα. The notional is

considered equal to 1. At every instant Ti in Υ = {Tα+1, . . . , Tβ} the fixed leg pays out

the amount Kτi, where K is the fixed rate and τi is the year fraction between Ti−1 and

Ti (convention 30/360). From the other hand, at every instant Si in Υ = {Sα+1, . . . , Sβ},
the floating leg pays the amount τiL(Si−1, Si), where L is the simply-compounded spot

interest rate, which is the interest rate resetting at the previous instant Si−1 for the

maturity given by the current payment instant Si (convention Act/360).

The price of this contract is really simple: it is equal to the difference of the value in

t of the discounted cash flows of the floating leg (called Net Present Value (NPV)) and

the NPV of the fixed leg.

In particular, the simply-compounded spot interest rate with tenor F is computed

as follows

L(Si−1, Si) =
1

τi

1− PF (Si−1, Si)

PF (Si−1, Si)

τiL(Si−1, Si) =E
[
D(t, T)

1− PF (Si−1, Si)

PF (Si−1, Si)
|FT

]
=E
[
Φd(t, Si)exp{−

∫ Si

t
r(s)ds}

(1

PF (Si−1, Si)
− 1
)
|FT

]
=E
[Φd(t, Si)

ΦF (Si−1, Si)
exp{−

∫ Si−1

t
r(s)ds}

E[exp{−
∫ Si
Si−1

r(s)ds}|FSi−1

]
E[exp{−

∫ Si
Si−1

r(s)ds}|FSi−1

] |Ft

]
− Pd(t, Si)

=E
[Φd(t, Si)

ΦF (Si−1, Si)
exp{−

∫ Si−1

t
r(s)ds}|Ft

]
− Pd(t, Si)

=E
[Φd(t, Si−1)Φd(Si−1, Si)

ΦF (Si−1, Si)
exp{−

∫ Si−1

t
r(s)ds}|Ft

]
− Pd(t, Si)

=

[
Φd(Si−1, Si)

ΦF (Si−1, Si)
Pd(t, Si−1)− Pd(t, Si)

]
(2.25)

In this way, we are able to compute the NPV of the swap in t just as the difference

between the legs’ discounted cash flows.

18

SWAP (t,Υ,Υ,K) =

β∑
i=α+1

[
Φd(Si−1, Si)

ΦF (Si−1, Si)
Pd(t, Si−1)− Pd(t, Si)

]
−K

β∑
i=α+1

τiPd(t, Ti)

=

β∑
i=α+1

Φd(Si−1, Si)

ΦF (Si−1, Si)
Φd(t, Si−1)A(t, Si−1)exp

{
−M(t, Si−1)

}

−
β∑

i=α+1

Φd(t, Si)A(t, Si)exp

{
−M(t, Si)

}

−K
β∑

i=α+1

τiΦd(t, Ti)A(t, Ti)exp

{
−M(t, Ti)

}
.

(2.26)

ATM swaps

A particular mention must be given to At-the-Money (ATM) swaps: they are swaps

whose fixed rate is such that the total NPV is equal to zero. In order to compute the

par swap rate in t we just need to put SWAP (rt, t,Υ,Υ, K̃) = 0, so that

K̃ =

∑β
i=α+1

[
Φd(Si−1,Si)
ΦF (Si−1,Si)

Pd(t, Si−1)− Pd(t, Si)
]

∑β
i=α+1 τiPd(t, Ti)

. (2.27)

Useful notation

In the next section, we will see how the Swaps’ pricing Formula (2.26) will be used with

x(t) and y(t) as variables. For this reason, we will adopt a shorter notation, so as to

express the pricing formula as a unique sum of exponential terms. .

Let’s begin defining:

d1
i =

Φd(Si−1, Si)

ΦF (Si−1, Si)
Φd(t, Si−1)A(t, Si−1) i = α+ 1, ..., β

d2
i = −Φd(t, Si)A(t, Si) i = α+ 1, ..., β

d3
i = −KτiΦd(t, Ti)A(t, Ti). i = α+ 1, ..., β

(2.28)

Now we operate an union among all the dates (Γ = Υ∪Υ) and define a unique sequence

of coefficients cj (that sums up all the dni) and times tj ∈ Γ in order to obtain:

SWAP (t,Γ,K) =
∑
j∈Γ

cjexp

{
−M(t, tj)

}

=
∑
j

cjexp

{
−B(a, t, tj)x(t)−B(b, t, tj)y(t)

}
.

(2.29)

19

2.6 Swaption Pricing

All the building blocks needed to compute the price of a European swaption have been

introduced. Swaptions are options written on a swap starting at the expiry Tα with

swap rate equal to the strike K; hence the following pricing formula holds:

SO(t, Tα,Γ,K) = E
[
D(t, Tα)(SWAP (Tα,Γ,K))+|Ft

]
(2.30)

where

SWAP (Tα,Γ,K) =
∑
j∈Γ

cjexp

{
−M(Tα, tj)

}

=
∑
j∈Γ

cjexp

{
−B(a, Tα, tj)x(Tα)−B(b, Tα, tj)y(Tα)

}
.

The focus in this project will go only on ATM swaptions, in which the strike rate K is

equal to the par swap rate K̃.

We will use a slight modification of Theorem 4.2.3 of Brigo-Mercurio to find the final

pricing formula that we are going to use.

Theorem 2.6.1.

SO(t, Tα,Γ,K) =Pd(t, Tα)

∫ +∞

−∞

e−
1
2

(x−µx
σx

)2

σx
√

2π

[∑
j∈Γ

λj(x)eκj(x)Φ[−hj(x)]

]
dx (2.31)

Where

hj(x) = h+B(b, T, tj)σy

√
1− ρ2

xy

h =
y(x)− µy
σy
√

1− ρ2
xy

− ρxy(x− µx)

σx
√

1− ρ2
xy

λj(x) = cje
−B(a,T,Tj)x

κj(x) = −B(b, T, tj)

[
µy −

1

2
(1− ρ2

xy)σ
2
yB(b, T, tj) + ρxyσy

x− µx
σx

]
µx = −MTα

x (0, Tα)

µy = −MTα
y (0, Tα)

and y(x) is the only solution of∑
j∈Γ

cje
−B(a,Tα,tj)x−B(b,Tα,tj)y(x) = 0.

20

Proof. By the general pricing Formula (2.4.3) we know that

SO(t, Tα,Γ,K) =Pd(t, Tα) ETα
[
(SWAP (Tα,Γ,K))+|Ft

]
=Pd(t, Tα)

∫
R2

[∑
j

cje
−B(a,Tα,tj)x−B(b,Tα,tj)y

]+

f(x, y)dxdy.

where f is the density of the random vector (x(Tα), y(Tα)), i.e.,

f(x, y) :=

exp

{
− 1

2(1−ρ2xy)

[
(x−µxσx

)2 − 2ρxy
(x−µx)(y−µy)

σxσy
+ (

y−µy
σy

)2

]}
2πσxσy

√
1− ρ2

xy

.

Now we observe that SWAP (Tα,Γ,K) is monotonically increasing in y;2

indeed:

SWAP (Tα) =

β∑
i=α+1

[
Φd(Si−1, Si)

ΦF (Si−1, Si)
Pd(Tα, Si−1)− Pd(Tα, Si)

]
−K

β∑
i=α+1

τiPd(Tα, Ti)

if we compute the partial derivative with respect to y:

∂

∂y
SWAP (Tα) =

β∑
i=α+1

[
− Φd(Si−1, Si)

ΦF (Si−1, Si)
B(b, Tα, Si−1)Pd(Tα, Si−1) +B(b, Tα, Si)Pd(Tα, Si)

]

+K

β∑
i=α+1

τiB(b, Tα, Ti)Pd(Tα, Ti).

Since the second term is already positive, we focus on the first sum, recalling that

Sα = Tα:

β∑
i=α+1

[
− Φd(Si−1, Si)

ΦF (Si−1, Si)
B(b, t, Si−1)Pd(t, Si−1) +B(b, t, Si)Pd(t, Si)

]
= −Φd(Tα, Sα+1)

ΦF (Tα, Sα+1)
B(b, Tα, Tα)Pd(Tα, Tα) +B(b, Tα, Sβ)Pd(Tα, Sβ)

+

β−1∑
i=α+1

B(Tα, Si)Pd(Tα, Si)

[
1− Φd(Si, Si+1)

ΦF (Si, Si+1)

]
.

If we consider that B(b, t, t) = 0 and that ΦF (a, b) > Φd(a, b), we have proven that

∂ySWAP (Tα) > 0, so the NPV is monotonically increasing in y.

2from now on, we will use as notation just SWAP (Tα), but we have to keep in mind that

also Γ,K, xTα , yTα are to be considered.

21

This fact allows us to freeze x in the integrand and to consider∫ +∞

−∞

∫ +∞

−∞

[∑
j

λje
−B(b,Tα,tj)y

]+

f(x, y)dydx

=

∫ +∞

−∞

∫ +∞

y(x)

[∑
j

λje
−B(b,Tα,tj)y

]
γeE+F (y−µy)−G(y−µy)2dydx,

where

γ :=
1

2πσxσy
√

1− ρ2
xy

E := − 1

2(1− ρ2
xy)

(
x− µx
σx

)2

F :=
ρxy

1− ρ2
xy

x− µx
σxσy

G :=
1

2(1− ρ2
xy)σ

2
y

.

Using the general formula∫ b

a
e−Ax

2+Bxdx =

√
π√
A
e
B2

4A

[
Φ(b
√

2A− B√
2A

)− Φ(a
√

2A− B√
2A

)

]
,

with A > 0, a, b, B real constants, we obtain

(omitting the integral in x and indicating B(t, Tα, tj) as Bj)∫ +∞

y(x)

[∑
j

λje
−B(b,Tα,tj)y

]
γeE+F (y−µy)−G(y−µy)2dy

= γeE
∑
j

[
λje
−Bjµy

∫ +∞

y
exp
{

(F −Bj))(y − µy)−G(y − µy)2
}
dy

]

= γeE
√
π√
G

∑
j

{
λje
−Bjµy+

(F−Bj)
2

4G

[
Φ[+∞]− Φ[(y − µy)

√
2G− F −Bj√

2G
]

]}

= γ

√
π√
G

∑
j

[
λjexp

{
E +

F 2

4G
−Bj(µy +

F

2G
− Bj

4G
)

}
Φ
[F −Bj√

2G
− (y − µy)

√
2G
]
.

]

22

Finally, noting that:

γ

√
π√
G

=
1

σx
√

2π

E +
F 2

4G
= −1

2

(x− µx
σx

)2
F√
2G

=
ρxy√

1− ρ2
xy

x− µx
σx

√
2G =

1

σy
√

1− ρ2
xy

,

it is possible to rearrange the terms to obtain Formula 2.31.

The final pricing formula is quite complicated: in fact it consists of a numerical in-

tegration against a Gaussian distribution x ∼ N(µx, σ
2
x). Moreover, the function to be

integrated Ψ(x) =

[∑
j λj(x)eκj(x)Φ[−hj(x)]

]
is a sum of terms depending on a param-

eter y(x), which must be obtained through a root-finding algorithm. In the following

subsections, there is a short introduction of the methods used to integrate numerically

and to find the roots, but first of all there is the need to underline that this will be

the main reason for which the overall computational time is quite big. During the main

calibration of the neural network, this will change step-by-step the weights in order to

find the optimal parameters to price all the swaptions considered. This means that the

pricing procedure will be performed a lot of times (238 swaptions per day). For every

swaption there will be a numerical integration, and every node x considered will require

an iterative method to find the root y(x). It is easy to understand that the main task is

to find suitable methods to compute everything with a sufficient level of approximation

and reasonable computation time.

2.6.1 Gauss-Hermite quadrature

In order to compute the integral in an efficient way, the numerical method chosen is

Gauss-Hermite integration. First of all, this quadrature method is used primarily to

approximate integrals of the following kind:∫ ∞
−∞

e−x
2
f(x)dx ≈

n∑
k=1

ωkf(xk), (2.32)

where ωk and xk are called Hermite weights and nodes. However, this method can be

really helpful for our case: indeed, given y ∼ N(µ, σ2), the expected value of ψ(y) is

equal to

E[ψ(y)] =

∫ ∞
−∞

1

σ
√

2π
exp

{
−(y − µ)2

2σ2

}
ψ(y)dy. (2.33)

23

Using a simple change of variables

x =
y − µ√

2σ

we can find the integral in the desired form

E[ψ(y)] =

∫ ∞
−∞

1√
π
exp(−x2)ψ(

√
2σx+ µ)dx

≈ 1√
π

n∑
k=1

ωkψ(
√

2σxk + µ)

Hence, considering also that swaptions are priced at the Reference Date (t = 0), the

final formula adopted is the following:

SO(0, Tα,Γ,K) =
Pd(0, Tα)√

π

n∑
k=1

ωk

[∑
j∈Γ

λj(xk)e
κj(xk)Φ[−hj(xk)]

]
(2.34)

In the code, the number of nodes chosen is 20, more than sufficient to compute swaption

prices with an acceptable level of approximation.

2.6.2 Root finding

Another, important bottleneck of the pricing process is the search of the root y = y of

the implicit function

F (a, b, σ, η, ρ, xk, y) =
∑
j

λje
−B(b,Tα,tj)y.

This means that we are looking for y(x) such that

F (x, y(x)) = 0.

The algorithm considered in this case is the irrational Halley’s method, which guarantees

cubic convergence for C2 functions [Shloof and Salmi Noorani, 2012].

24

Algorithm 1 Irrational Halley’s algorithm
Input:

• Definition of F (x, ·), F ′(x, ·), F ′′(x, ·),

• initial guess y0,

• Max number of iterations M ,

• Stopping Criterium.

Output: Approximation of the root y such that F (x, y) = 0

repeat

Evaluate f = F (x, yk), f1 = F ′(x, yk), f2 = F ′′(x, yk) if f2 = 0 then
yk+1 = yk − f/f1

else
∆ = f 2

1 − 2ff2

end

if ∆ ≤ 0 then
yk+1 = yk − f1/f2

else

yk+1 = yk − 2f/(f1 + sign(f1)
√

∆)

end

until stopping criterium is satisfied or k == M ;

As it is possible to see in Figure 2.2, in many cases an approximation of the root is

found with a small number of iterations, usually below 10.

25

0.1 0.2 0.3 0.4 0.5
y

−20

−15

−10

−5

0

F(
x k
, y

)

Root finding: Halley (8 iterations)

Figure 2.2: Converging iterations of Halley’s method

However, in some particular cases (especially if one of the MRSs is lower than its

relative VOL) it might happen that the function F shows a narrow curve, almost similar

to a step. This slows down the algorithm, which can try hundreds of iterations before

finding the root. As a consequence, in this cases, the simple bisection method becomes

a more efficient way to find the root, as shown in Figure 2.3.

26

−10 −8 −6 −4 −2 0

−2.0

−1.5

−1.0

−0.5

0.0

F(
x k
,

)

1e42 Root finding: Halle (103 iterations)

−2 0 2 4 6 8 10 12

−4

−3

−2

−1

0

1

F(
x k
,

)

Root finding: Bisection (32 iterations)

Figure 2.3: Comparison of the methods: in this case Halley is less efficient than Bisection.

27

Chapter 3

Calibration and Neural Network

The presented project is the result of the combination of two different subjects: Finance

and Machine Learning. The financial framework of the project has been defined in the

previous Chapter; here the Machine Learning framework is presented, starting with the

introduction of the main task of this work, which is calibration.

Calibration is the process that looks for optimal model parameters given market data

(e.g., swaption prices and volatilities), by minimizing the error obtained through a spe-

cific feedback function. ML methods are perfect for this purpose. In a first instance,

a description of the feedback function used will be given, as well as its importance in

the supervised learning procedure. Afterwards, the neural network structure and related

algorithms are presented, along with an analysis of the calibrator limits.

3.1 Calibration and supervised learning

The main task in the implementation of a calibrator is to achieve a suitable trade-off

between accuracy and computational speed. The calibration process must be done before

any pricing procedure in order to fit the mathematical model to the real market. In our

case, for a specific day d, the inputs of the calibrator are the market quotes of a set of

swaptions, i.e. prices, volatilities and vegas of the swaptions, with the addition of the

information about the discounting and forwarding curves. This set of market quotes

will be referred as Qd, whereas the output is the set of parameters Θ = {a, b, σ, η, ρ} of

the G2++ model. This calibration procedure produces a representation of the dynamics

of interest rates in the future, that could be used to price several instrument, not only

swaptions.

As a metric of the goodness of the model, the measure considered is the error given

by the difference between swaption prices (given as input) and the ones predicted from

the model through Θ. In particular, in a single-currency framework, for each day the

calibrator must price 238 swaptions, which is every combination of 17 expiries and 14

tenors. Their importance is not the same, so the feedback function must consider some

sort of weight assigned to each of them.

For each market price yi, let ŷi(Θ, Qd) be the price given by the G2++ model1: the

error is computed as

εi(Θ, Qd) =
(
ŷi(Θ, Qd)− yi

)2
. (3.1)

Then, the feedback function on the whole set of swaptions available for a specific day d

is given by

E(Θ, Qd) =

√∑
i

1

ν2
i

εi(Θ, Qd), (3.2)

where the νi are the Vegas of the swaptions, provided as inputs to the problem. This

“vega weighting” has a normalization purpose: the most difficult swaptions to price are

the ones with largest time span; in the same time, they are the least liquid and they

have largest vegas. With the Vega normalization, less importance is given to the error

related to these derivatives, giving more focus on the most liquid ones2.

Let us call Θ̃ the result of a complete calibration, i.e., the one capable of finding the set

of parameters that minimizes the feedback function.

Unfortunately, a 5-dimensional optimization process becomes really slow in terms of

computational time. This leads to the necessity to define a more efficient calibrator,

which may possibly remember similar solutions found in the past. Indeed, in finance,

the ability of pricing financial instruments in a short time has become of vital importance,

and this is the main reason that led to the exploration of ML methods.

In particular, this is the typical scenario where SL methods come to help. Supervised

Learning is a branch of Machine Learning in which the task is to estimate the unknown

model that maps known inputs to known outputs. Actually, our problem is not one

of the standard SL ones; indeed, the output of the calibrator is to find the not-known

parameters of the G2++ model. The only known data are the prices, which is why the

feedback function is so important for our case.

The typical procedure is the following:

1The notation here is slightly different from the one used in Chapter 2, but is still consistent:

ŷi(Θ, Qd) = SO(0, (Tα)i,Γi,Ki)

where the variables on which the i− th price depends are summarized in Θ and Qd.
2 Vega is defined as the derivative of the price of the contract with respect to its volatility.

29

1. At the beginning, a large part of the past dataset makes part of the training phase,

where the calibrator tunes its parameters. For this purpose, there is the need to

define a measure of the error implied by the parameters used, which is the feedback

function.

2. Successively, the fitted model is run to predict the responses for the observations

in a second part of the dataset called validation phase; This validation procedure

provides an unbiased evaluation of a model fit on the training dataset while tuning

the model’s hyper-parameters, which for example determine the complexity of the

model used.

In the project this phase will not be adopted, because it would require the calibra-

tor to perform multiple optimization procedures with high computational times.

3. Once the model is fixed, it is run with unseen input in the test phase, used to

provide an unbiased evaluation of a final model fit on the training dataset.

It is clear that now, if the model has shown an adequate accuracy, it can predict new

targets as soon as new data is available, without the need to restart the global calibration.

The output should be approximately near the optimal one, so that just a local calibration

may eventually be needed.

In brief, instead of tuning on a single day the G2++ model parameters, the calibrator

will try to use past data to find a realistic pattern to fit all of them simultaneously.

Once this pattern is found, it will be used to predict the parameters in future times. Of

course, this overall calibration will be a lot more time consuming than the single-day-

calibration, but it would not be performed every day but just once in a while. Moreover,

the “fitting” procedure would be done in advance with respect to the prediction, which

is almost immediate.

In the particular framework considered in this study, it is necessary to build a unique

global feedback function that must take into account all the D days considered:

• the parameters of the G2++ model are a set Θ = {Θd}Dd=1,

where Θd =
{
ad, bd, σd, ηd, ρd

}
for d = 1, 2, . . . , D;

• the global feedback function F is the algebraic mean of the single-day- feedback

E, depending on the set of daily market quotes Q = {Qd}Dd=1:

F (Θ, Q) =
1

D

D∑
d=1

E(Θd, Qd). (3.3)

30

3.1.1 Offline and online calibration

One of the major dichotomies in ML algorithms is the distinction between online and

offline methods. The classification is usually defined on the availability of data, but

actually it is based on how the algorithm considers them.

• Batch or offline learning techniques process the entire training set in one go. This

can be heavy in terms of computational times if applied to large datasets.

• Sequential or online methods make use of available data one at a time, or in

small batches, and the model parameters are updated after each new observation

is presented. They are usually used for large datasets, or in real-time scenarios

where there is a stream of incoming data.

In this project, the first type of algorithm used is a batch one: the data is split into

training and test sets, maintaining the chronological order by reference date. Most of

the time is spent during the training phase, but once performed, the testing phase is

almost immediate. This kind of approach presents one major issue: historical data may

present trends based on the evolution of the underlying and, if there are changes in

market behavior, the model may not capture their effect in the test data.

For this reason, a second type of algorithm will be considered, using an online approach

only in the test phase. In a first instance, a global calibration will be performed over

the training set exactly as in the previous case, then every time just one new sample of

the test set will be considered: after a quick evaluation of the model, it is added to the

training set to perform a local calibration with the increased dataset. If the predicted

parameters are close enough to the optimal ones, this latter procedure should be quite

fast.

For sure this last method is slower than the previous one, but offers some advantages

since the model would be able to capture market variations. Moreover, online evaluation

is closer to the real application of the method, where new data arrive on a daily basis

and the model, after the prediction, can be re-trained to fit the new data available.

Clearly, since the training set is sequentially increased, the local calibration will get

slower and slower, and may become unpractical for real applications. This problem can

be addressed in two possible ways. The first one is to simply forget the oldest data used,

so to fix the training size.

The second one still fixes the train size, but the data considered are randomly sam-

pled with replacement. This procedure, known as bootstrap, allows to keep track of all

historical scenarios, in case they reappear in the future.

31

3.2 Artificial Neural Network

One of the most popular models used in SL is the Artificial Neural Network (ANN).

The simplest definition of a neural network is provided by the inventor of one of the first

neurocomputers, Dr. Robert Hecht-Nielsen. He defines a neural network as:

“... a computing system made up of a number of simple, highly inter-

connected processing elements, which process information by their dynamic

state response to external inputs.”.

They constitute a class of flexible nonlinear models designed to mimic biological

neural systems, elaborating signals through several layers, each with a large number of

neural units (neurons) that can process the information in a parallel manner. So an ANN

has a multi-layer structure such that every layer is built upon many simple nonlinear

functions, playing the role of neurons in a biological system. By allowing the complexity

of the structure to increase indefinitely, multi-layered ANNs are able to approximate

any continuous function with any desired degree of accuracy. Thanks to their represen-

tation power, they are said to be universal approximators, and became very popular in

the fields relating to Machine Learning ([Bishop, 2009], [Hotelling, 1933], [Witten et al.,

2011], [Haykin, 2009]).

The number of applications of neural networks grew larger and larger in the last decade

along with the evolution of GPUs and distributed computed systems, capable of sup-

porting the computational power required to perform tasks in a short time.

3.2.1 Model definition

A feed-forward neural network is a generalization in multiple layers of one of the simplest

models user for regression, the perceptron. For this reason, it is called also Multilayer

Perceptron (MLP).

Building blocks: Neurons

Every layer is made of several neurons, the building blocks of the overall structure. Each

neuron receives as input a linear combination of the data elaborated in the previous layer,

and then transforms it to generate a neural signal to be forwarded to the neurons in the

next layer.

32

Figure 3.1: Composition scheme of a neuron.

For example, consider the jth neuron in one of the layers; suppose that it is connected

to N neurons of the previous layer with values called {xi}Ni=1. Then, the jth neuron will

have as input (also known as net value):

netj =
N∑
i=1

wijxi + w0j . (3.4)

In this formula, the coefficient wij corresponds to the weight of the connection be-

tween the input i and the neuron j. The last weight w0j is called bias, and it behaves

like a connection with a fictitious input always equal to 1. The value that this neuron

returns as output, also called activation value, is simply

outj = Ψ(netj), (3.5)

where Ψ(·) is called activation function.

Final architecture: the network

A neural network is built by hooking together many simple neurons in several layers, so

that the output of a neuron can be the input of another. For example, in Figure 3.2 a

simple representation of a neural network is given:

33

Figure 3.2: Scheme of a fully connected neural network

In this figure, it is possible to see the different roles of the layers. The leftmost

one is called the input layer, and it is the one that directly considers the input data

(eventually elaborated through a preprocessing procedure). The rightmost is the output

layer ; which is the final step where the results can be observed. The middle layers of

the network are called hidden layers, because their values are not directly accessible. In

general, their number may vary, but in most cases only one or two hidden layers are

used. It is also possible to have no hidden layers, and in this case the NN degenerates

into a simple perceptron).

Neural networks usually exhibit a high degree of connectivity, whose extension is deter-

mined by the presence of weights in the network. In this example, there is a connection

between any couple of neurons in consecutive layers, hence this neural network is said to

be fully connected. Moreover, the sample information here is passed only forward from

the input layer to the output one. This is defined as a Feed-Forward Neural Network

(FFNN). Another commonly used neural architecture is the Elman Recurrent Neural

Network (RNN). This class of networks allows neurons to depend not only on input

variables, but also on their own lagged values through connections that form a directed

cycle.

In any case, this project is focused specifically on FFNN.

The architecture considered in the project is made of four layers (two of them are hidden).

With the exception of the biases, every couple of consecutive layers is fully connected.

34

For each day considered, the goal is to price 238 swaptions; the input features that can

be used to fit the interest short rate curve are their prices and their volatilities3. This

means that for each day there is a set of 576 features available, but not all of them are

significant, since most of them are higly correlated. This suggests considering a prelim-

inary process of dimensionality reduction, called Principal Component Analysis (PCA),

which will be presented in the next chapter. The result of this process is a matrix of a

selected number of features for each day considered, which is the real input dataset of

the neural network.

The output layer is the one from which the feedback function is computed. In particular,

from this layer we obtain the vectors of the G2++ model parameters, so there is a fixed

dimension, equal to 5 neurons. 4 In the calibration phase, they will be used to compute

the feedback with respect to the real prices.

The final output of the neural network are the parameters of the financial model used

to price swaptions, and will be called targets. This definition is used to not misunderstand

the network parameters: the weights. In fact, the calibrator will sequentially change the

weights of the ANN in order to transform the fixed input data into the targets that best

fit market prices.

Choosing Activation Functions

The choice of the activation function is important when building a neural network,

because a different choice results in a different model, leading to different results. As

cited in [LeCun et al., 1998]:

“These choices can be critical, yet there is no foolproof recipe for deciding

them because they are largely problem and data dependent.”

As it will be explained in the next chapter, the presence of a simple derivative is often

a key parameter, since that significantly simplifies the calibration phase. Some of the

most common activation functions, and the ones that will be used in this project are

briefly presented.

The choice of the function in the output layer depends mostly on the task that the

network has to perform and on the target space. Usually, for classification and regression,

3see chapter 5 to see the list of available features in the dataset
4Remark: the network is used to predict the G2++ parameters for all the dataset made of D

days; hence, each output neuron, as well as all the other neurons in the network, will not have

as output a single real number but a vector of D real numbers. For example, the first neuron

in the final layer will have as output a = {ad}Dd=1, and all the ad are computed using the same

weights of the network applied on different input data.

35

(a) Linear (b) TanH (c) Sigmoid

Figure 3.3: Few examples of activation functions that can be applied to the neurons in the

output layer.

the most used output functions are a logistic sigmoid or hyperbolic tangent (TANH) for

the former and a linear function for the latter. In this case, the activation function used

is an affine transformation of the tanh:

• for the neurons related to the two MRSs, the result of the tanh is shifted to cover

values in [−1, 3]: even if in theory they should be always positive, from a practical

point of view it is convenient to let them assume also negative values. Too low

values, as well as too high ones, might lead to numerical issues;

• the activation functions of the VOLs neurons must be positive. Also in this case

values over 2 may lead to numerical problems, so the volatility space is set to [0, 2];

• the correlation must be in a range [−1, 1], hence the related neuron adopts a simple

tanh function without transformations.

For what concerns the hidden layers, the choice is wider, and each function has

different properties that can be better for different classes of tasks. For example, if the

neuron is just required to have on/off response, a heaviside function is common practice.

On the other hand, the neurons may assume any value between zero and one or just

positive values, and this leads to consider again a sigmoid function or the positive part

function (also called Rectified Linear Unit (ReLu)). In other cases, it may be convenient

to adopt smooth versions of the previous ones, like Elu (Exponential Linear Unit).

In this project, the first function considered for the hidden layers of our model was ReLu,

but this led to a problem known as “dying ReLu”: when updating the weights incoming

in a ReLu neuron it may happen that it outputs zero. But from that point on, the

neuron will never activate again (an example of this particular scenario can be seen in

36

(a) ReLU (b) Elu

Figure 3.4: Few examples of activation functions that can be applied to the neurons in the

hidden layers.

Section 3.5).

For this reason, the activation function chosen was the sigmoid.

3.3 Calibration algorithm

The main structure of the calibrator has been introduced, but its functioning still needs

to be explained.

Thanks to the ANN, the set of estimates Θω is provided as a function g of the set of

market quotes Q and of the set of weights ω, as in (3.6).

Θω = g(Q,ω). (3.6)

Remark. The set of weights ω does not depend on the time interval of the input given;

indeed the restricted version of equation 3.6 holds:

Θω
d = g(Qd,ω). (3.7)

The goal of the calibrator is to find the best subset ω with fixed cardinality W

(defined with the number of neurons chosen) with respect to the feedback function

resulting when Θd is applied. In other terms, the optimization problem to be solved is

to find Θ:

Θ = g(Q,ω), (3.8)

37

where5

ω = arg min
ω∈RW

F (g(Q,ω), Q). (3.9)

This W dimensional minimization problem is solved by using the combination of two

different algorithms:

• The first algorithm is a slight modification of the CrossEntropy methodology. It

performs a stochastic exploration of the parameter space to find a neighborhood

of the global optimum.

• Once a neighborhood of the solution is found, it is possible to perform a local

minimization procedure; namely, the BFGS algorithm, a gradient-based iterative

process belonging to the class of quasi-Newton methods.

3.3.1 Cross-Entropy Optimization

The CrossEntropy (CE) method is an optimization algorithm, based on Monte Carlo

simulations. It is usually used for finding the global minimum of noisy functions. The al-

gorithm considered in this project is a slightly customized version of the original method,

available in [Rubinstein, 2004] and [Alon et al., 2005].

The custom part of the algorithm consists in considering not only the data sampled in

the current iteration to update the normal distribution parameters, but also in using the

best B points found during the full run of the method.

The idea is that for each iteration the area where the algorithm chooses to generate new

samples becomes narrower, focusing on the best results obtained so far. The stopping

condition considered, other than the maximum number of iterations, is a threshold on

the variance of the best samples: if the best scenarios discovered are sufficiently “close”

to each other, it means that the algorithm has found a candidate space where look for

the global optimum. An example of how the algorithm focuses iteratively its search on

the best samples is shown in Figure 3.5.

5later, the objective function F (g(Q,ω), Q) is shortly denoted as F (ω)

38

Algorithm 2 Cross-Entropy optimization algorithm (CE)

Input:

• Definition of the objective function F(·),

• Normal mean µ and variance Σ for the first iteration,

• Number of samples N to be generated,

• Number of best samples B to be kept for the next iteration,

• Stopping condition: maximum number of iterations M and variance thresh-

old ε.

Output: Estimation of ω minimizing the objective function

1: Simulation step: sample N data vectors ω(1), . . . ,ω(N) ∼ N (µ,Σ),

2: Sorting step: Compute the feedbacks F (ω(i)) for all i and order them from

the smallest to the biggest. Select only the first B best samples (of the overall

simulation, considering also previous steps),

3: Update step: compute the new distribution parameters µ and Σ as sample

mean and variance of the best point kept in order to produce better samples

in the next iteration,

4: Iterate 1, 2 and 3 until stopping condition is met, i.e., the maximum number

of iterations M is met or ||Σ||∞ ≤ ε.

39

(a) Iteration 1 (b) Iteration 3

(c) Iteration 9 (d) Iteration 10

Figure 3.5: Four iterations of the cross-entropy method. The red area shows the distribution

of two weights of the N = 1000 data sampled from the normal distribution, while the blue

area shows their distribution in the best 8 data points ever found. It is possible to see that

the search region becomes smaller with the iterations.

40

3.3.2 BFGS algorithm

Thanks to the CE algorithm, the calibrator is able to find a suitable starting point

where to look for the global minimum; Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-

gorithm performs a local minimization to find a stationary point of the objective function

[J.M. Rondinelli and Marks, 2007]; hence, the necessary condition for the optimality, as

well as one of the stopping criteria, is that the gradient is equal to zero.

The algorithm starts with at an initial estimate for the optimal value ω0 and proceeds

iteratively to get a better estimate at each stage. Since it is a gradient-based algorithm,

for each iteration it is necessary to compute the gradient of the feedback function with

respect to the current set of optimal weights, so that it is possible to determine the best

search direction accordingly; the gradient will be denoted as ∇WF or ∇F (ω). Several

methods for computing the gradient have been considered, each with its own strengths

and weaknesses. They are presented along with their results in the next chapter.

This quasi-Newton method also considers the inverse of the Hessian Matrix of the feed-

back, called H; indeed, at the iteration k, the search direction pk is given by the solution

of the analogue of the Newton equation:

pk = −H−1
k ∇F (ωk). (3.10)

From a practical point of view, the direct computation of H−1
k is not a good choice; the

best practice consists in its iterative approximation: H0 is initialized with the identity

matrix (in this case, the first step is equivalent to a gradient-descent) and in further

steps Hk is updated through Sherman-Morrison formula (as shown in Algorithm 3) in

such a way that the secant equation and curvature condition are satisfied:

ωk+1 − ωk = Hk+1

[
∇F (ωk+1)−∇F (ωk)

]
(secant equation)[

∇F (ωk+1)−∇F (ωk)
]T [
ωk+1 − ωk

]
> 0. (curvature condition)

Once the search direction is found, a line search algorithm is used; its purpose consists

in finding the best step αk minimizing the feedback error along this direction; i.e.:

αk = arg min
α>0

F (ωk + αpk) (3.11)

Finally, the algorithm ends when the gradient of the feedback function is sufficiently

small or when consecutive iterations do not change the solution guessed, as summarized

in Algorithm 3.

41

Algorithm 3 Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS)

Input:

• Definition of objective function F (·), and its gradient ∇F (·)

• Initial guess ω0

• Gradient threshold ε and step threshold R.

Output: Estimation of ω minimizing the objective function.

k = 0

H0 = I

s0 =∞

while ‖∇F (ωk)‖ ≥ ε and ‖sk‖ ≥ R do

Search direction and step size

pk = −Hk∇f(ωk)

αk = arg min
α>0

F (ωk + αpk)

Update optimal guess

sk = αkpk

ωk+1 = ωk + sk

yk = ∇F (ωk+1)−∇F (ωk)

Update Hessian approximation

Hk+1 =

(
I− sky

T
k

yTk sk

)
Hk

(
I− yks

T
k

yTk sk

)
+
sks

T
k

yTk sk

k = k + 1

end

ω = ωk

42

3.4 Potentiality and limits: supervised learning

The complexity of the network is equal to the total number of weights, which grows

exponentially if the number of neurons in the hidden layers increases. Obviously, as the

complexity increases, the calibration error will get lower. This is due to the fact that the

parameter space Θ, which can be represented via Equation 3.6, by some set of weights

ω increases with W . There is a minimum limit of the calibration error, and it is the one

due to the choice of the financial model. The questions arising from these considerations

are:

1. How good is the pricing model considered, especially if compared to the simpler

Vasicek? What is the minimal error that can be achieved using this model?

2. Is it possible to fit the optimal parameters for all the time interval considered?

What is the complexity that the neural network must have in order to reach this

limit?

Let us call

Θ∗d := arg min
Θd

E(Θd, Qd)

this is the set of optimal G2++ parameters for the day d.

The maximum potentiality of the pricing model can be achieved if it is able to find the

optimum set for all the days taken into account. Recalling that

F (Θ, Q) =
1

D

D∑
d=1

E(Θd, Qd),

it is possible to define F (Θ∗, Q) as the “ G2++ error”, where Θ∗ = {Θ∗d}Dd=1. This is

the task of the optimal calibrator that, unfortunately, is not available.

However, it is possible to get a close approximation of this result by training a neural

network focused only on one date at a time. Since this single-day calibration is done

only once, in order to avoid complexity issues the number of neurons per hidden layer

has been fixed to 30 (more than enough for this purpose).

The feedback obtained is then compared to the one resulting from the optimal calibrator

for the Vasicek’s model. The result is shown in Figure 3.6:

43

0 100 200 300 400 500 600
Day

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

fe
ed

ba
ck

Model error
G2++
Vasicek

Figure 3.6: Feedback comparison between Vasicek and G2++ models. The improvement of

the new model is about 65%.

Now the focus goes on the complexity of the network: of course, as the size of the

set weights W increases, the calibrator gets closer to the optimal one: by calling Θ̂W

the set of targets predicted by the calibrator (fixed W), the following holds:

lim
W→∞

Θ̂W = Θ∗.

Since the computational time of the calibration is directly proportional to the number

of weights used in the network, there is a trade-off between the network expressivity and

the computational burden. Namely, the purpose is to choose a small number of neurons

(and consequently of weights), but big enough to approximate the optimal calibrator in

an adequate manner.

Moreover, it is preferable not to have high complexity, because it may lead to overfit-

ting, which is the capability to reach an excellent fit over the training data, but a terrible

performance when new samples are introduced.

For this reason, the next step for the ANN is trying to fit the curves of the parameters

resulting from the previous single-day calibration, in order to see if it has the capabil-

ity to replicate those suboptimal results for different complexities. This is the typical

framework of SL.

The procedure is the following:

• in the first phase the feedback function involving model pricing is not considered;

instead the error will be computed simply as the Euclidean distance between the

44

target and the prediction. The optimization algorithm used to perform the fit is

known as Adam.

• Once the fit is done, the original feedback function will be applied to the predicted

parameters. The curve of the feedback functions of the single-day calibration and

the one resulting from this fitting procedure are compared, also in terms of relative

error.

• The same procedure is made by increasing the complexity of the network: for

simplicity, the number of neurons of the two hidden layers was kept equal.

The results are clearly depicted in Figures 3.7 and 3.8:

Figure 3.7: Comparison of the feedback error between the single-day-calibration and the

fit of the ANN with increasing complexity. Still there is the comparison with the optimal

feedback of Vasicek’s model.

45

Figure 3.8: Comparison of the relative error between the single-day-calibration and the fit of

the ANN with increasing complexity.

As predicted by the theory, it is clear that as complexity increases, the network

becomes more capable of fitting the targets and replicating the feedback curve. There

is also a set of dates in which the model seems to be very sensitive: even with complex

networks, capable of replicating the parameters with a low error, the feedback can be

negatively affected in a remarkable way.

In general, from approximately 30 neurons the curve is sufficiently replicated, with few

spikes. In order to reduce the risk of overfitting, the complexity will be set to 40 neurons

per hidden layer.

46

3.5 Dying ReLu

Now it is clear that the calibration of the ANN follows the computation of the gradient

in the BFGS algorithm. In this section it is briefly shown what is the main issue in the

choice of the ReLu hidden activation function, namely the “Dying ReLu”.

A simple calibration has been performed on a reduced dataset, with only 4 components

selected by the PCA and a network based on 6 neurons per hidden layer. In the first

case, the hidden activation function considered is the “ReLu”, in the latter the Sigmoid

function is taken into account.

Once the procedure is done, a graph representing the network is drawn, as depicted in

figure 3.9 and 3.10. on the bottom the input layer is represented; going upwards, it

is followed by the hidden layers and finally by the output layer. The positive weights

connecting the neurons are shown in blue, while the red lines correspond to negative

weights. The width of the lines is corresponding to the absolute value of the weights

represented.

The bias neurons are filled in red, while the neurons in the hidden layer are blue if their

activation value is different from zero.

The same graph is then used to show the values of the gradient of the feedback function

with respect to the weights.

The result of the choice of the ReLu activation function is clearly depicted in figure 3.9:

the majority of the hidden neurons have negative net values, resulting in null activation

values. As a consequence, also the derivative of the feedback with respect to the weights

related to this neurons is zero. This has three main effects:

• BFGS algorithm will not update the weights leading to all the “dead” neurons;

hence the majority of the network is not considered.

• One of the stopping criteria of BFGS consists in the norm of the gradient to

be under a certain threshold: since many of the derivatives are zero, it becomes

easier for the algorithm to stop after just a few iterations, even if the current set

of weights is far from the optimal one.

• Great importance is given to the weights connecting the output neurons to the

last bias: this means that the network is almost neglecting the input features.

The behavior changes completely if a different activation function is chosen: for example,

as shown in figure 3.10, the sigmoid activation function leads the calibrator to consider

and update always all the weights.

47

Figure 3.9: Set of weights and relative gradient with ReLu hidden activation function.

Figure 3.10: Set of weights and relative gradient with Sigmoid hidden activation function.

48

Chapter 4

Data Analysis

In the previous chapter, the general idea of the calibrator and of the related algorithm

was introduced; this chapter provides an overview of the procedure followed to implement

the solution of the calibration problem, as well as some essential technologies. The first

section contains a closer look at the dataset provided. The composition of several of

the available features is analyzed, as well as their usage. The massive dimension of the

input data must be reduced in order to be effectively used as input of the ANN: this

manipulation is performed through the PCA algorithm, described in the second section.

4.1 Dataset exploration

4.1.1 An overview

The main analysis of how a solution to the calibration problem can be built must start

from the exploration of the available dataset. The preliminary focus lays on the dataset

relating to the Euro (EUR) currency; in a second time, other currencies will be intro-

duced. The time span covered by the EUR dataset goes from 2013-06-28 to 2017-02-21,

for a total of 901 reference dates (904 considering also the days with anomalous or

missing data). The relevant fields of each daily sample are described in Table 4.1.

Table 4.1: Descriptions of the features present in the dataset.

Feature Description

Reference date Tref The date on which the sample is taken

Swaption expiries The list of expiries Texp of the swaptions traded. For the

EUR dataset there are 17 different daily expiries, ranging

from 1 month since the reference date to 30 years.

Swaption tenors The list of tenor intervals τ of the swaptions traded. For

the EUR dataset there are 14 different tenors for every

sample, ranging from 1 to 30 years.

Swaption prices Matrix containing the swaption prices for each combina-

tion of expiry Texp and tenor τ . In EUR dataset there

are 17x14 prices per day.

Swaption volatilities Matrix containing the swaption volatilities for each com-

bination of expiry Texp and tenor τ . The volatility is

a sensitivity index of the uncertainty about the returns

provided by the underlying asset [Hull]. In EUR dataset

there are 17x14 prices per day.

Swaption vegas Matrix containing the swaption vegas for each combina-

tion of expiry Texp and tenor τ . Vega is defined as “the

rate of change of the value of the portfolio with respect

to the volatility of the underlying asset” [Hull]. In EUR

dataset there are 17x14 prices per day.

Forward dates The set of dates for which the values of the forward curve

are bootstrapped. For every daily sample there are about

60 dates, covering a time span of 60 years after the ref-

erence date.

Forward values The set of values of the bootstrapped forward curve (cor-

responding to the forward dates).

Discount dates The set of dates for which the values of the discount

curve are bootstrapped. For every daily sample there

are about 60 dates, covering a time span of 60 years after

the reference date

Discount values The set of values of the bootstrapped discount curve (cor-

responding to the discount dates).

Calibration error The feedback error made by the bank daily calibrator

adopting Vasicek model.

50

4.1.2 Feature exploration

Multi-curve bootstrap

The credit and liquidity crisis, started in the second half of 2007, triggered, among

many other consequences, a general reflection about some of the standard methods and

assumptions used to price and hedge interest rate derivatives. In particular, it has

been shown that using a single risk-free curve to forecast and discount cash flows is no

longer valid. Standard market practice has evolved into a multicurve approach, taking

properly into account different curves to forecast and discount cash flows ([Bianchetti,

2008], [Sender, 2017]).

In this multicurve framework, the dataset provides for each currency the values of two

distinct curves, one used to discount cash flows (the OIS curve), and one for forwarding,

with a specified tenor (in the EUR dataset the EURIBOR 6M curve). The curves are

bootstrapped on a daily basis, i.e., they are built every day from the market prices

of liquid, simple instruments. Figure 4.1 shows the behavior of the daily curves with

respect to the distance in time (in days) from the reference date.

The discount curve is the one closest to the risk-free curve thanks to its overnight

tenor; on the other hand, the forward curve takes into account the credit risk related

to the underlying tenor: for this reason, it is possible to see in Figure 4.2 that the

discounting curve dominates the forwarding curve.

These features are not directly used as input of the calibrator, but their manipulation is

fundamental for the computation of the feedback: the values of the discount and forward

curves relating to the swaptions’ cash flow dates are obtained through interpolation on

the set of dates given; although, this interpolation is not performed directly on the values

on the curves, but on their zero rate: given the reference date t0, and the value B(t0, ti)

relative to the date ti, the zero rate Z(t0, ti) is defined as:

Z(t0, ti) := − ln(B(t0, ti))

δ(t0, ti)
, (4.1)

where δ(t0, ti) is the year fraction between t0 and ti.
1

1Using ACT/365 daycount convention

51

0 5000 10000 15000 20000
Delta days

0.2

0.4

0.6

0.8

1.0
Di
sc
ou

nt
Discount curves

(a) Discount (OIS) curves

0 5000 10000 15000 20000
Delta days

0.2

0.4

0.6

0.8

1.0

Fo
rw

ar
d

Forward curves

(b) Forward (EUR6M) curves

Figure 4.1: Discount OIS curves and forward EUR6M curves plot for the EUR dataset. The

time interval is expressed in difference of days from the relative reference date.

52

(a) Comparison of the discount and forward rate curve on a specified reference date. It is

clearly depicted that the discount curve dominates the forward one. The time interval is

expressed in difference of days from the relative reference date.

(b) Plot of the difference of the discount and forward curve for the overall EUR dataset. The

time interval is expressed in difference of days from the relative reference date.

Figure 4.2: Comparison OIS/EUR6M curves

53

Swaption Matrices

The real input of the calibrator is given by the matrices related to the set of swaptions.

In a daily sample in the EUR dataset, there are quotations of prices, volatility and vega

for every couple expiry-tenor. This means that there are three different 17x14 daily

matrices, for a total amount of 714 features per day.

It is easy to see that the dimension of the input features is very high if compared to

the number of samples (900). This is the first reason that led to the introduction of a

dimensionality reduction.

The other main reason is that sometimes the features are highly correlated, hence some

data may not add useful information for the model while it increases the complexity of

the calibrator; indeed, it is possible to verify that the price with a specified tenor and

expiry, corresponding to a specific value in the matrix, is highly correlated to the prices

of the closest cells. This is due to the fact that close swaptions have similar tenors and

expiries, and the related cash flows exchanged between the counterparties are located in

similar time intervals. While moving far from the considered swaption the correlation

decreases, assuming also strong negative correlations. This behavior is clearly depicted

in Figure 4.3a, where the correlation matrix is the one related to the price of the swaption

with 3 years as expiry, and with a tenor of 3 years.

As far as the volatilities are concerned, it is possible to detect two groups of swaptions:

the first collects the swaptions with lowest expiries and tenors (top-left corner in Figure

4.3b); the other swaptions are in the latter group. The swaptions in the same group

are highly correlated with each other; on the other hand, the two groups have a poor,

negative correlation.

Finally, the correlation matrix of the vegas presented in Figure 4.3c shows that all

swaptions have generally high correlations. As a consequence, the exclusion of these

features from the set of input parameters for the neural network does not affect in a

remarkable way the calibration procedure.

The correlation matrices of prices, volatilities, and vegas for every possible combination

expiry/tenor (flattened as a single vector) are presented in Figure 4.4.

54

(a) price correlations for the 3Y-3Y swaption

(cell 7x2)

(b) volatility correlations for the 20Y-20Y swaption

(cell 14x11)

(c) vega correlations for the 3Y-3Y swaption

(cell 7x2)

Figure 4.3: Some examples of correlation matrices.

55

(a) prices

(b) volatilities

(c) vegas

Figure 4.4: Correlation matrices of the flattened swaptions features.

56

4.1.3 Multicurrency Dataset

The list of features presented for the EUR dataset is the same for every other currency;

although there are some differences to be remarked.

The first difference consists in the time span covered by the reference dates for each

currency. Table 4.2 shows also that in the same interval there may also be a different

number of samples for different currencies.

For this reason, the starting date for the calibration among a multicurrency framework

was set to the first reference date in which all the currencies were available. From that

date on, all the next business dates within the calibration range were considered, without

paying attention to select only the samples relating to common dates. This is due to the

fact that, on some specific days, the samples for a currency might be missing because of

a local holiday, but the calibration and pricing procedure for all other currencies must

still be active.

Currency first date last date samples

EUR 2013-06-28 2017-02-21 900

USD 2013-06-28 2017-05-24 929

CHF 2014-07-28 2017-05-24 665

CAD 2014-07-28 2017-05-24 729

Table 4.2: Samples interval ranges divided by currency

The second difference is perhaps the most important one: the set of swaption priced

and traded on a daily base can vary. For example, in the CHF framework the swaptions

available have only 10 different expiries and tenors (100 total swaptions against 238

for the EUR dataset). The solution adopted consists in considering only the common

combinations swaption, which are the most liquid, discarding the other ones; in this way

the most liquid contracts are given the same importance for every set.

The analysis regarding the correlation for the features for the CHF and USD currencies

is similar to the one made for the EUR dataset; although, the correlation matrices for

prices and volatilities in the CHF dataset show a different behavior: all features are

highly correlated, without the distinction between short-term and long-term swaptions.

57

(a) prices (b) volatilities

Figure 4.5: Correlation matrices of the flattened swaptions features for CHF dataset

Some brief observations can be done also with respect to the cross-currency correla-

tions. Since the sizes of the various datasets are different, only the dates having all the

possible features available have been selected. It is unfeasible to show the correlation

matrix of the overall dataset, hence some particular features have been selected as ex-

ample. In particular, the swaption with couple expiry/tenor of 3 and 6 years has been

chosen for every currency.

In Figure 4.6 it is possible to see the correlation of the prices and of the volatilities of

this swaption with the correspondent feature in every dataset.

Focusing on the diagonal matrices on the figure related to prices (Figure 4.6a), it is pos-

sible to verify what was already underlined: within the features of the same currency,

there is a high correlation rate with the swaptions with similar tenors and expiries which

decreases as we move towards the most different ones (the 3x6 swaption is placed in the

middle of the matrices). This does not hold for the CHF dataset where, as mentioned,

the 3Y x 6Y swaption’s price depends almost linearly on all other prices of the same

dataset.

The patterns in the cross correlations USD/CAD and CAD/USD are close to the ones

within the same currency (namely, the CAD/CAD and USD/USD). This can be an indi-

cation of strong correlations between the two markets. A similar, but weakened behavior

can be seen when comparing these currencies with the EUR prices. It is noticeable that

the correlation of the 3x6 EUR swaption price with all the ones in the CHF market is

almost null, where it becomes strongly negative when taking the CAD and USD swap-

tions into account.

Easier is the analysis for the volatilities, where Figure 4.6b shows not only that the divi-

sion into two groups (short-term and long-term swaptions) still holds, but also that it is

58

extended to a multicurrency framework. Again, the CHF market behaves in a different

manner.

(a) prices

(b) volatilities

Figure 4.6: Correlation matrices of the 3Yx6Y swaptions of four different currencies.

Every row corresponds to the correlations of a specific swaption with respect to the others.

Every column specifies the currency of the dataset with which the swaptions are being

compared.

59

4.2 Dimensionality reduction: PCA

4.2.1 Single currency: EURO

Section 4.1.2 underlined an important issue: the dimension of the input features (238

swaptions per sample, for a total amount of 714 or 576 features if Vegas are considered or

excluded) is too high if compared to the number of samples (about 900); moreover, many

of the features are highly correlated. This is the typical case in which “the data points

all lie close to a manifold of much lower dimensionality than that of the original data

space” [Bishop]; leading to the need to perform a dimensionality reduction technique,

namely the PCA.

This unsupervised learning technique looks for the orthonormal basis which build the

projection of the data onto a lower dimensional linear space in such a way that the loss of

information is minimized, i.e., maximizing the variance of the projected data [Hotelling,

Bishop].

The components of this basis are known as Principal Component (PC). The first principal

component is the dimension that maximizes the variance of the projected data. In an

iterative approach, given the set of the first k−1 Principal Components, the k-th PC can

be seen as the dimension, orthogonal to the subspace spanned by the former components,

which accounts for the maximum projected variance. The total number of components

is the minimum that captures a proportion of the variance over a fixed threshold.

Before performing the PCA, the dataset is subject to a normalization preprocess: this

is due to the fact that the features considered have different ranges, and they must be

scaled in order not to bias the PCA. When all the features have the same range the

Analysis can be performed (as explained in Algorithm 4).

This process has been applied in two different cases. In the first scenario the considered

dataset consists only of prices and volatilities; in the second one, the matrices of the

vegas were added.

In both cases the PCA with a 99% threshold selected 10 components; their ratio of total

variance captured is shown in Tables 4.3 and 4.4. It is possible to see that, if the vegas

are added to the input dataset, only the first component has a gain in terms of variance,

but generally the inclusion of vegas does not add a significant amount of information.

60

Algorithm 4 Principal Component Analysis (PCA)

Input:

• Normalized dataset of D-dimensional samples {xi}Ni=1;

In matrix form it is denoted as X ∈ RNxD,

• Variance threshold ε.

Output: M -dimensional dataset {x̂i}Ni=1, M < D;

In matrix form it is denoted as X̂ ∈ RNxM

1: Compute the sample mean x and Covariance matrix S:

x =
1

N

N∑
n=1

xi

S =
1

N − 1

N∑
n=1

(xn − x)(xn − x)T

2: Calculate eigenvalues and eigenvectors of S, ordering the eigenvalues in

decreasing order; i.e. {(ei, λi)}Di=1, s.t. λ1 ≥ λ2 ≥ · · · ≥ λD;2

3: Define the dimension M as the minimal dimension of the principal subspace

maintaining a proportion of explained variance greater or equal than ε, i.e.

such that: ∑M
k=1 λk∑D
i=1 λi

> ε

4: Define the projection matrix on the subspace, whose orthogonal basis is defined

by the first M eigenvectors:

EM = (e1, . . . , eM)

5: Project the original dataset into the principal subspace:

X̂ = XEM

61

Component rank variance ratio cumulative variance ratio

1 0.71697 0.71697

2 0.11391 0.83088

3 0.06639 0.89727

4 0.04302 0.94029

5 0.01806 0.95835

6 0.01435 0.97270

7 0.00593 0.97863

8 0.00474 0.98337

9 0.00425 0.98762

10 0.00314 0.99076

Table 4.3: Variance captured by the first ten principal components excluding vegas.

Component rank variance ratio cumulative variance ratio

1 0.77779 0.77779

2 0.08636 0.86415

3 0.04752 0.91167

4 0.03458 0.94625

5 0.01798 0.96423

6 0.01415 0.97838

7 0.00440 0.98278

8 0.00390 0.98668

9 0.00312 0.98980

10 0.00252 0.99232

Table 4.4: Variance captured by the first ten principal component including vegas

It is possible also to visualize the contributions of the original dimensions to the first

PC to better understand what are the most important features selected in both cases.

The visualization of the contributions to the first principal component is provided in

Figures 4.7 and 4.8. The most important aspect to notice is that the contributions of

prices and volatilities are almost the same.

As far as the prices are concerned, there is a negative contribution of a large part

2 e1 with eigenvalue λ1 is the first PC; ek related to λk is the k-th one: it captures a proportion

of variance equal to λk∑D
i=1 λi

62

of the top-left prices (swaptions with the lowest expiries and tenors), and a positive

contribution for the other ones. With the exception of a few cells (mostly located on the

boundary delimiting the two sub-groups), the absolute value of the contributions has a

small range. This effect can be seen as if the PCA were capable of capturing a large part

of the information by exploiting the difference of the prices of the long-term swaptions

and the shortest ones.

Taking a closer look at the volatility matrix, it is clear that the swaptions at the top-left

corner make a small contribution to the first component: the knowledge of these values

is not so useful when compared with the other ones. The dichotomy in the importance

of the volatilities depicted here is the same underlined in Figure 4.3b.

Observing the vega matrix, almost every swaption has a similar, negative contribution

(with the exception of the swaptions with largest expiries).

(a) prices (b) volatilities

Figure 4.7: Composition matrix of the first component excluding vegas

63

(a) prices (b) volatilities

(c) vegas

Figure 4.8: Composition matrix of the first component including vegas.

64

Chapter 5

Practical Methodologies

One of the most important problems faced in this project is the overall time required to

perform the whole calibration procedure.

In order to reduce the computational time, the feedback function is then implemented

on a GPU using Compute Unified Device Architecture (CUDA), as described in the

first section. Finally, some different methods for computing the gradient in the BFGS

algorithm have been considered: the algorithms and their results are presented in the

last section.

5.1 Parallel computation: GPU and CUDA

In the previous chapters, the major issue of the overall project was introduced: a large

part of the overall computational time is involved in the pricing procedure; indeed,

the feedback function is evaluated thousands of times, and every time it needs the

computation of 238 swaptions per daily sample.

This is the main reason why there is a need for parallel computing, which is a type of

computation in which the various instructions can be split into different sub-tasks that

can be executed simultaneously on different devices. In this case, parallel processing

consists of performing the same set of tasks (namely, the pricing procedure) applied to

different values of the input variables.

In this project a great effort was made to implement the pricing procedure involving

parallel computing on Graphics Processing Unit (GPU), a specialized computer processor

built to execute massively parallelized tasks. In particular, the CUDA architecture

developed by NVIDIA was used to move the tasks from CPU to the GPU, giving an

incredible performance boost.

Figure 5.1: Example of code structuring in GPU.

In CUDA, the kernel is the set of operations the must to be parallelized. In particular,

kernels must be organized in a precise composition:

• a thread is the finest set of instructions relative to the execution of each kernel;

each thread is indexed in such a way that they are able to access to the dedicated

sections of memory, without the risk of reading the same part of data or overwriting

the results.

• a block consists in a group of threads that are executed together and can access

portion of shared memory. The dimension of threads in one block depends on the

hardware limits of the GPU.

• Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional

grid of blocks (as shown in Figure 5.1). The number of blocks in a grid is usually

dictated by the size of the data being processed or the number of processors in

the system.

This composition is made according to the GPU’s physical architecture: The GPU

66

Figure 5.2: Dataset decomposition in kernels, blocks and grid

chip is organized as a collection of several Multiprocessor (MP), where each one is re-

sponsible for handling one or more blocks in a grid. Each MP is further divided into

a number of Stream Processor (SP)s, with each SP handling one or more threads in a

block. All threads in a block reside on the same MP core and must share the limited

memory resources of that core; for this reason, the design of the structure of the code, in

particular the size of the blocks, is very important because it highly affects the schedul-

ing of the kernel executions and the efficiency of the computation [Sanders and Kandrot,

2010].

Focusing on the project of this thesis, the code and dataset related to pricing must be

structured in kernels, blocks, and grids. Prices have to be evaluated for a sequence of

reference dates, and for each date there is a matrix of fixed dimensions of swaptions,

where the computation of each price depends only on the daily input (G2++ parame-

ters, discount and forward curve).

Hence, the choice is very straightforward: each kernel consists in the pricing of a single

swaption, i.e. putting the value in one cell of a matrix. This directly defines the dimen-

sion of a block: each reference date is related to one block. The threads maintain the

same relation of the prices: the number of tenors and expiries fix the dimensions of the

size of the block, and the daily input information can be passed directly to the blocks

without being structured in some complicated manner. A representation of the division

of the dataset into grid, blocks, and threads is illustrated in Figure 5.2

67

After the implementation on CUDA, the computation of the feedback achieves an

incredible speedup: the pricing procedure on a single date takes 15 seconds on the CPU,

while on the GPU less than 0.1 seconds are needed. Hence there is a speedup of 150

times per date. Moreover, the GPU is able to perform a massive parallelization on the

several MPs (performing the feedback computation of several days at the same time):

considering a training set of 450 daily samples, the feedback computation on the GPU

takes 2.3 seconds, while almost 2 hours are needed with the CPU. The speedup in this

case is of over 2900 times.

68

5.2 Gradient computation

The last major topic regarding the implementation of the calibrator is implicit in one

of the formulas in the BFGS method, whose algorithm is described in Section 3.3.2. In

particular, let’s take a closer look at Equation 3.10:

pk = −H−1
k ∇F (ωk).

In the overall optimization procedure, the main focus goes to the computation of the

gradient of the feedback function with respect to the set of variables ω, defined as ∇WF .

Actually, there is not a unique method to achieve it; different algorithms were considered

during the project and will be presented in this section, along with their results.

5.2.1 Finite Differences

The first and simplest method to compute the gradient with respect to the vector of

weights ω is simply performed through finite differences: this means that there is an

estimation of the impact on the feedback function for every weight wi in the network.

In order to use a shorter notation and to underline the network structure of the model,

a different notation for the generation of the target set Θ is used:

Θ = Nω(X) := g(ω, Q)

where X is the result of the preprocessing procedure applied to the set of input feature

Q, namely the standardization and PCA methods.

69

Algorithm 5 Finite Differences gradient estimation (FDM)

Input:

• Definition of feedback function F (·, ·),

• Definition of the network model Nω, defined by set of weights ω,

• Input set of features X, such that Θ = Nω(X),

• Increment h.

Output: Estimation of the gradient ∇WF w.r.t. the given set of weights ω

Evaluate

Θ = Nω(X)

f = F (Θ, Q)

for i = 1, . . . ,W do

ε = h ei

ω̂i = ω + ε

Evaluate the new target

Θ̂i = Nω̂i(X)

∂F (Θ, Q)

∂ωi
=
F (Θ̂, Qi)− f

h

end

∇ωF =

{
∂F (Θ, Q)

∂wi

}W
i=1

As Section 5.2.4 will show later, this method allows a big gain per iteration in terms

of decreasing of the feedback; although, looking at the algorithm, its major issue emerges

immediately: the feedback function is evaluated W + 1 times. This means that, as the

complexity of the network increases, the computational time needed to perform this

algorithm gets bigger and bigger. For example, considering an ANN with 20 neurons

per hidden layer, the number of weights may be around 750 units (depending on the

number of features selected in input). If the evaluation of the feedback takes around 4

seconds to be performed, the gradient for a single iteration is completely evaluated in 50

70

minutes. Consequently, since there are thousands of feedback computations, it is clear

that BFGS optimization is unfeasible with this method, especially with networks with

higher complexity (the number of weights increases exponentially with the number of

neurons).

5.2.2 SFDM

One of the possibilities for estimating the gradient involving fewer feedback computations

can be found in robotics and automation: in these fields, people have traditionally used

deterministic model-based methods for obtaining the gradient of a system. However, in

real systems the number of variables is huge, and we cannot expect to be able to model

every detail of the robot and the environment. As a result, researchers have considered a

variety of estimation methods over the last years: one of the oldest approaches involves a

regression applied to the result of stochastic simulations of the systems; for this reason,

this method is called Stochastic Finite Difference Method (SFDM) ([Peters and Schaal,

2006], [C. Fu, 2005]).

The procedure is quite simple: the set of reference weights is varied by small increments,

generated by some random vector; from these variations the feedback function is com-

puted, as well as their difference with the reference value (the feedback of the original

weights). Finally the gradient is estimated by a Ridge regression.

There is plenty of random vectors that can be considered, each with a different result.

In this project, every value in the set consists of a fixed perturbation multiplied by the

result of a discrete uniform random variable in {-1,0,1}.

In the following page the general algorithm is presented: the result is an approximation

of the gradient, with an accuracy increasing with the number of simulations P . It is

easy to see that the feedback function is evaluated P + 1 times, so there is once again

the trade-off between accuracy and computational speed.

The other important variable to keep into account is the Ridge parameter λ. Indeed, in

the algorithm there is a matrix inversion, and λ ensures that the matrix is invertible.

Moreover, it controls the size of the output, avoiding the gradient explosion, and reduc-

ing its variance. Different Ridge parameters have been tested on a reduced dataset: the

results are shown in Figure 5.3.

71

0 20 40 60 80 100 120 140
iterations

0.390

0.395

0.400

0.405

0.410

0.415

0.420

fe
ed

ba
ck

Stochastic FDM: Ridge comparison

1e-6
1e-8
1e-10
1e-12
1e-14

Figure 5.3: Comparison of different Ridge parameters λ. The training set contains 10 daily

samples and the network is made of 25 neurons per hidden layer. The number of perturbations

os SFDM is fixed to 24.

The easiest consideration that can be done is that large λ can negatively affect the

optimization process. Indeed, the calibrators with λ = 10−6 and λ = 10−8 have a worse

performance than the cases when the parameters are lower.

However, if λ assumes too small values, it may not be able to avoid the gradient explosion:

for example, with λ = 10−14 it is possible to see a slight worsening with respect to

λ = 10−10, if λ is set to even smaller values, the calibration diverges.

Consequently, the Ridge parameter chosen to perform this algorithm is set as the best

performing, i.e. λ = 10−12.

72

Algorithm 6 Stochastic Finite Differences Method (SFDM)

Input:

• Definition of feedback function F (·, ·),

• Definition of the network model Nω, defined by set of weights ω,

• Input set of features X, such that Θ = Nω(X),

• Increment h.

• Number of perturbations P.

• Ridge parameter λ

Output: Estimation of the gradient ∇WF w.r.t. the given set of weights ω

Evaluate

Θ = NW (X)

f = F (Θ, Q)

for i = 1, . . . , P do

for j = 1, . . . ,W do
Generate weight variation

xj ∼ U{−1,0,1}

∆wj = h xj

∆ωi = {∆wj}j

Evaluate the new target

Θ̂i = Nω+∆ωi

∆Fi = F (Θ̂i, Q)− f

end

end

Perform Ridge Regression

∆Ω =
[
∆ω1, . . . ,∆ωP

]T ∈ RPxW

∆F =
[
∆F1, . . . ,∆FP

]T ∈ RP

∇ωF =
(
∆ΩT∆Ω + λIW)−1∆ΩT∆F

73

5.2.3 Backpropagation

The last method considered is perhaps the most famous and used to train standard neural

networks in supervised learning problems, where the ANN must fit known targets. In

each iteration, an error signal is produced by comparing the output of the network with

the desired response (the real target) by using a simple error measure (usually the mean

square error). The resulting error signal is then propagated through the network, but

the propagation is performed layer by layer in the backward direction [Haykin]. This is

why this method is called Backpropagation Algorithm (BACK)

In the case of black box calibrations, as the one used in this project, things get more

difficult, but this approach can still be considered for the computation of the gradient.

Recalling that feedback F (Θ, Q) is the mean value of the several daily errors E(Θd, Qd)

as defined in Equation 3.3, it is possible to consider separately the derivatives with

respect to the weights in the various days:

∂F (Θ, Q)

∂wij
=

1

D

D∑
d=1

∂E(Θd, Qd)

∂wij
. (5.1)

Moreover, considering that Θd = {ad, bd, σd, ηd, ρd}, it is possible to compute the gradient

of E with respect to the weights by considering one target at a time1:

∂E(Θd)

∂wij
=

∑
θ ∈ Θd

∂E

∂θ

∂θ

∂wij
(5.2)

The first term in the sum refers to the derivative of the feedback error as function of one

of the targets: recalling Equations 3.1 and 3.2 of the previous chapter the daily error is

defined as:

E(Θd, Qd) =

√∑
i

1

ν2
i

(ŷi(Θd, Qd)− yi)2. (5.3)

From this formula, it is easily possible to consider the first term in the sum in Equation

5.1 as:

∂E(Θd, Qd)

∂θ
=

∑
i

1
ν2i

(
ŷi − yi

)2
∂θŷi(Θ, Qd)

E(Θd, Qd)
. (5.4)

Here the only component still not known is ∂θŷi(Θ, Qd): it regards exclusively the pricing

model considered and not the ANN.

There are two possible approaches to compute this element:

• In the former the derivative is estimated empirically with finite differences for a

suitable increment of the targets. The increment chosen is about 10−8, since it

1the dependency of the feedback on Qd has been omitted for simplicity

74

seems sufficiently low for an adequate approximation of the derivative, and suffi-

ciently stable (lower values seem to generate some other approximation errors due

to the limited floating precision of the GPU).

This means that the pricing procedure is considered 6 times: the first calling is

necessary for the computation of the predicted targets; the others for the evalua-

tion of ∂θŷi, one for every parameter of the model.

This approach is referred as “Approximated BACKPRO”.

• Otherwise, the derivatives can be computed analitically: these derivations required

some efforts to be done and are presented in Appendix A. The numerical com-

putation of these derivatives is performed on the GPU along with the pricing

procedure. This means that every kernel has more tasks to perform, but they are

called only once.

This method will be referred as “Analytic BACKPRO” or “BACK AN”.

The second term in the sum in Equation 5.2 does not depend on the financial model, but

only on the structure of the ANN. To compute it, it is necessary to analyze separately

its layers, using the “Backpropagation property” typical of the neural networks: for this

reason, the derivatives are computed starting from the weights at the end of the network

going backwards to the very first weights, with the formulas shown in Appendix B.

75

Algorithm 7 BackPropagation (BACK)

Input:

• Feedback function F (·, ·),

• Network model Nω, defined by set of weights ω,

• Input set of features X, such that Θ = Nω(X),

• Increment h.

Output: Estimation of the gradient ∇WF w.r.t. the given set of weights ω

for i = 1, . . . ,W do

for d = 1, . . . , D do
Evaluate and Initialize

Ed = E(Θd, Qd);
∂Ed
∂ωi

= 0

Compute the derivative of price w.r.t. G2++ parameters for every date:

• (Analytic) using formulas in Appendix A

• (Approx) with finite differences: ∂ξŷi =
ŷi(Θd+heξ,Qd)−ŷi(Θd,Qd)

h
∀ξ ∈ Θd

∇ΘdEd =

{∑
i

1
ν2i

(
ŷi − yi

)2
∂ξŷi

E(Θd, Qd)

}
ξ∈Θd

Compute using formulas in Appendix B:

∂ωiΘd =

{
∂ξ

∂ωi

}
ξ∈Θd

∂Ed
∂ωi

= ∇ΘdEd · ∂ωiΘd

end

end

∇ωF =

{
1

D

D∑
d=1

∂Ed
∂wi

}W
i=1

76

5.2.4 Comparison

Several approaches for computing the gradient have been considered and they are now

compared. The first ANN considered is rather simple (15 neurons per hidden layer), but

the results show what the behavior of the different algorithms in more complex scenarios

would be. The same argument applies to the size chosen for the dataset: to perform

calibrations in a short time, the training dataset considered contains only 10 daily sam-

ples, the same as the test size.

The setting of the weights from which the calibrations start is the same, and it is the one

resulting after the global CE optimization, which led to a set of weights whose related

mean feedback is equal to 0.4223. Then, the BFGS algorithm is used with the different

methods for a maximum of 250 iterations.

The SFDM algorithm has been used many times, with an increasing number of per-

turbations. For example, the notation “SFDM8” denotes the calibration in which the

gradient computation is performed through the SFDM algorithm with 8 perturbations.

Table 5.1 shows the time needed to perform the 250 iterations for every method, followed

by the final training feedback and on the testing datasets.

Moreover, in Figure 5.4 it is possible to see how the mean feedback on the training set

decreases from iteration to iteration.

From the analysis of the results, some observations can be made:

• Backpropagation algorithms perform clearly better than other methods from both

the points of view of optimization and of time. They take a really small number of

iterations to converge and each iteration is fast to compute. Even if the final results

are the same, the analytic backpropagation is slightly faster than the approximate

version.

• SFDM is by far the method getting the worst results: even with a high number of

perturbations, 250 iterations are not enough to reach convergence. As expected,

while the number of perturbations increases, the optimization performs better,

but, on the other hand, the computational time per iteration gets higher and

higher.

• Finally, FDM needs a small number of iterations to reach convergence (still worse

than backpropagation). However, the time needed with this method is huge if

compared to the other ones.

When the number of neurons of the ANN and the dataset considered are bigger, all

the feedback computations take more time to be evaluated. Hence, all the differences in

terms of performance get bigger and bigger. For example, if the dataset has hundreds of

daily samples and there are at least 30 neurons per hidden layer, there is no chance to

77

adopt FDM (it would need weeks to converge). Consequently, the method adopted for

this project for the calibration of the complete dataset is the analytic backpropagation.

Method T ime(s) Train fb Test fb

Analytic BACKPRO 655 0.2971 0.2994

Approx BACKPRO 760 0.2971 0.2993

SFDM8 730 0.3478 0.3499

SFDM16 1010 0.3218 0.3289

SFDM24 1254 0.3174 0.3236

SFDM32 1740 0.3152 0.3219

SFDM64 2810 0.3133 0.3193

FDM 16447 0.3016 0.3067

Table 5.1: Comparison of the final performance after 250 BFGS iterations for every gradient

algorithm.

Figure 5.4: Comparison of the performance of different gradient algorithms: the gradual

optimization of the parameters in the network is shown for the first 250 iterations for every

method. The network considered has 15 neurons for every layer and the dataset contains

only 20 samples, 10 used for training, the other for testing.

78

Chapter 6

Experimental Results

This chapter is dedicated to presenting the results obtained; three different types of

experiments are analyzed:

• Offline calibration on the EUR dataset;

• Online calibration on the EUR dataset;

• Offline calibration on a multicurrency dataset.

In particular, every test is compared to the feedback error obtained through the cali-

bration made by BANCA IMI using Vasicek’s model. Moreover, in the single-currency

offline calibration, the results are compared also with the calibrator built using Vasicek’s

model [Donati, 2018].

6.1 Offline calibration

The first kind of experiment is the offline or batch calibration. As explained in Section

3.1.1, the dataset is split into two subsets; the first (which accounts for 66% of the total

size) is the training set, which is the framework actually used by the calibrator to tune

the weights (through CE and BFGS). Once this process is ended, it is evaluated on the

test set, which contains all the remaining samples.

The whole process took globally 8 hours and 43 minutes (using a Nvidia Tesla K40c

GPU with 2880 Cuda cores); the first four and a half hours were spent during the CE,

while, in the remaining time, BFGS optimization was in process.

The final feedback curve is shown in Figure 6.1: globally, the result is much better than

the one obtained through the bank’s calibrator (which uses Vasicek’s model).

Moreover, also in the test phase there is a good performance; indeed, when new samples

are observed, the error is expected to worsen. This could mean that the test samples do

not show completely unseen scenarios, so the behavior of the parameters can be foreseen

by looking at the past.

To get an idea of how the calibrator performed with respect to its optimal possibilities,

Figure 6.2 also compares the feedback obtained with the one resulting from the single-

day calibration (introduced in Section 3.4).

This calibration was performed on a reduced set of daily samples, which, more or less,

coincides with the training set of the global calibration.

It is clearly depicted that in more than half of the samples, the predicted parameters

are very close to the optimal ones. The feedbacks in 2015, however, show a worse per-

formance: this is the sensitive region already underlined in Section 3.4, where small

differences in parameters can generate great differences in feedback.

Figure 6.1: Offline calibration: feedback.

The red line denotes the end of the training phase.

By looking at Figure 6.3, it is possible to see what is the mean contribution to the

80

feedback of each tenor/expiry couple. The dark, central region is the subset of most

liquid swaptions, which are the most important to price correctly. The biggest errors

are made for the less liquid options.

Figure 6.2: Offline calibration: comparison with single-day calibration.

Figure 6.3: Offline calibration: maximum difference in prices

81

Taking a closer look at the values of the parameters resented in Figure 6.4, some

observations can be made:

• The MRSs of the two processes defining G2++ model have a different magnitude:

a has a range between (0.185, 1.79) while b assumes values in 0.013 and 0.065.

• On the other hand, the VOLs are in a similar range of values, even if σ is always

slightly higher than η.

• At last, there is always a strong negative correlation between the Brownian Mo-

tions.

As a consequence, it is possible to formulate an interpretation of the behavior described

by the interest model chosen: the mean reverting process described by the couple (a, σ)

has the same amplitude of randomness of the other one, defined by (b, η); however, their

trajectories deviate from the mean value in opposite directions. Finally, the processes

have a different reaction to these deviations: the first one has a stronger force driving it

back to its mean, while the other one is milder. It is like one process drives the short-

term dynamics, in contrast with the long-term process.

Another interesting observation can be made by looking at the trajectories described by

the parameters: the volatilities have a similar shape in the second half of the dataset,

while b and η show the same pattern through all the samples.

Hence, we can ask ourselves if there is some kind of correlation between the parameters;

for this reason, Figure 6.5 illustrates a representation through time of all the possible

couples of parameters. Among them some specific couples are more clearly shown and

commented in the next images.

In particular, it is often possible to detect two group of samples containing different

range of Reference Dates. In other cases, as in Figure 6.7 it is possible to detect some

correlations in the behaviour of the parameters, as the pattern is close to a straight line.

82

(a) Mean reversion speed of the first stochastic process (parameter a)

(b) Mean reversion speed of the second stochastic process (parameter b)

83

(c) Volatility of the first stochastic process (parameter σ)

(d) Volatility of the second stochastic process (parameter η)

(e) Correlation of the Brownian Motions (parameter ρ)

Figure 6.4: Offline calibration: predicted parameters

84

Figure 6.5: Offline calibration: representation of the couples of parameters through time

Figure 6.6: Offline calibration: representation of the predicted Mean Reversion Speeds

through time.

It is possible to detect two distant groups of points; the one at the right-hand side contains

the first predictions; then, as depicted also in Figure 6.4a, the first mean reversion speed

decreases to lower values.

85

Figure 6.7: Offline calibration: representation of the couples (b, σ) through time.

It is easy to see that the pattern created is close to a line.

Figure 6.8: Offline calibration: representation of the predicted volatilities through time.

There are two groups of daily samples, whose patterns create approximately two lines.

86

6.2 Online calibration

In a second instance the ANN was built in order to perform an online calibration.

As mentioned in Section 3.1.1, the dataset is split into three parts:

• The first is the usual training set, where the batch calibration is performed as in

the previous experiments. Here, the optimization procedure starts from the global

exploration of the space of the parameters (CE algorithm) then refined through

the BFGS algorithm. This part is set to contain the first 60% of the daily samples.

• Secondly, the online phase can start: iteratively, a new sample is considered and

tested using the tuned ANN; after that, it is added to the starting dataset, and a

local calibration is performed through BFGS, adjusting the previous set of weights.

This procedure is the most similar to the one that is daily performed by traders, so

it is important to perform it quickly. This part involves 20% of the daily samples.

• The last 20% of the dataset is considered for the testing: the weights of the offline

step and the final set of online weights are considered, as well as the respective set

of output parameters and the feedback produced.

It is expected from the online calibrator to perform better than the offline, and the gap

should get bigger as the number of new samples considered increases, since the online

learner can map unseen situations.

The main drawback of this methodology lies in the computational times during the on-

line phase: the daily calibration simply adjusts the weights with a few iterations, but

this procedure is still too much time-consuming to be effectively useful for an investment

bank.

Hence, for each BFGS calibration a limit on the maximum number of iterations has been

put, as a trade-off between accuracy and speed. Of course this is one of the main topics

to face in future researches.

As far as the predicted parameters are concerned, the results are similar to the ones

shown in the offline case. The resulting feedback is more interesting, as shown in Figure

6.9: once the end of the offline training is reached, the set of neural weights is used to

evaluate also the feedback on the rest of the dataset, considered as a test set. These

evaluations are depicted with the green-colored curve.

First, it is possible to notice that this feedback curve relating to the offline calibration

is slightly worse than the one expressed in the previous Section: this is mainly due to

the fact that the maximum number of iterations in the offline procedure was lowered for

these tests, and the algorithm stopped before reaching its maximum potential.

87

After this, the online calibration is performed, following the above-mentioned procedure.

In this way, remarking that the last 20% of the dataset is dedicated to evaluation pur-

poses, it is possible to build the online feedback curve, colored in blue.

In the comparison of the curves, emerges a slight improvement obtained by the online

calibrator. As expected, the gap increases as long as new dates are introduced, even if

it is reduced in the last section of the test phase.

From this consideration it becomes clear that, in order to have useful results, a great

effort must be put into the reduction of the computational times: currently, convergence

was reach only a few times, and more time was needed to complete the process (a com-

plete experiment was impossible to perform in this project for practical purposes); even

with this limitations, the local calibrations ended in 1 hour and 10 minutes on average: it

is not possible to adopt the current solution for real applications without deep changes.

Figure 6.9: Online calibration: feedback curves comparison.

The orange curve denotes Vasicek’s single-day calibration.

The green curve refers to the offline calibration, with training ending at the red vertical line.

Online calibration is then performed until the blue vertical line, where the testing phase

starts. The feedback of this process is shown in the blue curve.

88

6.3 Multicurrency offline

The last tests were made taking into account the multicurrency dataset.

In particular, four currencies were selected: EURO, USD, CHF and CAD. The procedure

of selection of the Reference Dates and of the daily swaptions is explained in Section

4.1.3.

Since the range of values assumed by prices is different for each currency, the number

of neurons per hidden layer has been increased to 40 per hidden layer: a more complex

network might be able to express better the variability of the data.

The choice of performing a simultaneous calibration for all the datasets might deeply

affect the performance: indeed, it allows the exploration of a wider range of the input

manifold. The sets of prices are mapped into g2++ parameters by the ANN; the domain

of this map is enlarged in a multicurrency framework.

As a consequence, once the training phase ends, during the test there should be a re-

duction in the risk of facing unexpected, non-mapped scenarios.

On the other hand, there is a drawback: there are small daily variations in the local

datasets that might be missed. This can be seen as a “resolution limit”: in order to

express the global variability of the data, there is a loss of focus on a local basis, so the

training feedbacks might encounter a small worsening.

The major criticality of the multi-currency calibration emerges immediately in the com-

parison of different simulations: the output parameters are in completely different ranges.

This means that there are different local minima, and the calibrator gets stuck in one of

them, depending on the points randomly selected during the CE.

There are three main scenarios from the calibrator, but the pattern shown in the offline

single-currency calibration occurs in none of them.

• In the first scenario the values of the biggest Mean Reversion Speed are usually

in the range [1.5, 2.6] with some exceptions in CHF dataset, while the second

MRS is often negative, with values between -0.15 and 0.025. The curves of the

volatilities and correlation are similar to the ones resulting from the single-currency

calibration.

• The second scenario is completely different from all other results, since both the

MRSs can take negative values. One is centered in zero, with values in the range

[-0.18, 0.18], with the exception of the first days in CHF dataset; the second one is

almost always negative, with a minimum value around -0.15. Also the correlation

is remarkable and very different from the other cases, since it ranges from -0.4 to

0.6. Finally, volatilities are similar to the first scenario.

89

• In the last scenario, one of the Mean Reversion Speeds has large values, between

2.95 and 2.99, while its related volatility is almost always below 10−4. The pattern

of MRS and volatility of the second G2++ process is similar to the one shown

in the first scenario, differently from the correlation, which is always positive and

over 0.7.

The feedback curves are different in the various scenarios; however, it is possible to

see (in Section C.5) that the first scenario has the best overall performance; for this

reason, all the curves of the predicted parameters and of the feedbacks are shown in

Appendix C only for this case, while only the most relevant aspects of the other are

shown.

This calibration is not comparable to the one made by the bank using the Vasicek’s

model or the one made considering only EUR, because they are made using a different

set of swaptions. The only possible comparison can be made on CHF dataset, which is

made of the 100 common swaptions: Figure C.7 shows that the calibration (on a single

daily samples at a time) the bank made using Vasicek’s model has a better performance

than the one resulting from the first scenario.

For this reason, it was decided to perform an offline calibration only over the CHF

dataset, in order to be able to generate a reference feedback for G2++ model and

compare it with the Vasicek’s.

The result is shown in Figure 6.10: there are just a few days in which the G2++

calibration performs better than the Vasicek’s; in the other cases, the best situation

is the replication of the results of the simplest model, and the introduction of a more

complex one does not bring any advantage (this holds only for the CHF dataset).

By comparing the curves of the single-currency and the multi-currency calibrations, it

is possible to make another consideration: as expected, during the training phase the

multi-currency calibration generally has a worse performance than the other one, which

on the contrary has a high feedback function in the first days of the test phase.

90

Figure 6.10: CHF feedback function: comparison of the different calibrations.

The green line denotes Vasicek’s single-day calibration.

The orange curve is referring to the offline calibration on the only CHF dataset (with training

ending at the red vertical line).

The blue curve is referring to the offline, multi-currency calibration (with training ending at

the blue vertical line).

91

Chapter 7

Conclusions

This final chapter provides a synthetic summary of the work done and of the results

achieved.

Then, some possible future directions for future research are suggested.

7.1 Summary of results

With regards to the analysis of the results obtained with the previous steps of this

project, the necessity of using a different financial model to price swaptions was evident.

This was needed, as underlined in Section 2.2.1, because the Vasicek’s model was not

able to represent the evolution of interest rates adequately.

For this reason a new, more expressive model is introduced in Chapter 2, the G2++.

Thus, all the financial formulas needed are obtained, starting from bond prices up to

swaptions. There is no possibility of reducing the final pricing formula to an analytic

one, and some approximations have to be considered.

The calibrator, introduced in Chapter 3, is built in such a way that the learning structure

and the financial one can be separated, so that the model change model has been easy

to implement.

The first great benefit achieved immediately is the 65% gain in the feedback function

with the new model, shown in Section 3.4.

The most complex topic of the calibrator is the computational time: from one hand,

once the network is tuned, the prediction of the parameters takes a few milliseconds

against the order of seconds seen with the bank’s calibrator; the main drawback is in the

optimization process that involves the pricing procedure thousands of times. Even with

Vasicek’s model, the selection of a reduced set of swaptions to calibrate was required,

despite the implementation of the feedback function on GPU using CUDA allowed an

incredible boost in the procedure.

As a consequence, the BFGS algorithm (presented in Section 3.3.2) has been optimized

with the introduction of several methods for the computation of the gradient of the

feedback: The best one is the backpropagation algorithm, explained in Section 5.2.3,

which allows the overall set of daily swaptions to be considered in calibration.

As a result (Section 6.1), offline calibration had a great performance in short times on

the overall EUR dataset. This is clearly a big improvement in the project, especially

compared to the calibrator using Vasicek’s model.

Some tests were also made on a multicurrency dataset, and the results, shown in Section

6.3, are not as good as the previous offline calibration on a single currency, but they are

still promising.

The online calibrator, the results of which are presented in Section 6.2, is the closest to

the one needed for the project, and it had still a good performance, but the daily local

optimization was still substantially slow.

Thus, with regard to the objectives of this thesis, it is possible to say that they are

achieved; at the same time, there is still a lot of work to do as well as challenges to face

in order to fulfill the purpose of the whole project.

7.2 Future research

Starting from the results achieved with the work presented in this thesis and looking at

the final purpose of the project, it is possible to suggest some potential future develop-

ments and improvements.

Online improvements. The final calibrator must be able to calibrate and price

the contracts in a short time on a daily basis; for this reason, great importance is given

to the online calibrator. As the results shown in Section 6.2, this calibrator is still not

reaching its full potentialities and should be improved as a short-term goal to achieve

better results in a shorter time.

Intraday exploitation. The dataset considered in this thesis provides information

on a daily basis. As a matter of facts, prices and discount curves change continuously;

as a consequence, fixing the interest rates model’s parameters in a whole day introduces

a small bias. The ideal calibrator should be able to adapt the predictions according to

the intraday information given; however, the current solution is not able to manage in

93

short times a dramatically increased size of the input dataset.

Multicurrency extension. Currently, the multicurrency calibration considered a

dataset composed of contracts in four currencies. One of the natural future develop-

ments consists in adding more currencies to the dataset, and eventually introduce the

online calibration, once fixed the topic related to multiple local minima.

Moreover, as a long-term goal can also be considered the introduction of exchange rates:

in a multicurrency framework, the G2++ dynamics introduced in Chapter 2 are consid-

ered as independent for every currency; actually, in an arbitrage-free setting, they are

bounded to satisfy the exchange rates, and they should be considered especially if the

parameters are used to price multicurrency derivatives. In this scenario, the calibration

must follow a constrained optimization procedure which adds a huge complexity to the

problem.

Contract Generalization. As already explained, the calibration produces a model

representation of the interest rate that could be used to price different instruments and

not only swaptions. Another natural generalization of this project consists into moving

to an extended space of contracts. In particular, the first derivatives that can be included

are swaptions which are not At The Money. This extension may increase the number of

features since it may require more information about the properties of the contracts.

Model Generalization. Investment banks deal every day with a huge amount of

interest rate derivatives, but they are usually priced with different rate models. As

explained previously, this calibrator can be adapted with a small effort to a different

model; however, an interesting improvement (and perhaps the most difficult to achieve)

is its generalization on the simultaneous calibration of different models.

94

Appendices

95

Appendix A

Derivatives in Swaption Pricing

Model

The purpose of this Section is to provide useful formulas to compute the derivatives of

swaption prices with respect to G2++ parameters. This task is important in order to

apply backpropagation in the neural network.

Here we recall the final formula used to price swaptions

SO(0, Tα,Γ,K) =
Pd(0, Tα)√

π

n∑
k=1

ωk

[∑
j∈Γ

λj(xk)e
κj(xk)Φ[−hj(xk)]

]
, (A.1)

where

xk =
√

2σxx̂k + µx (A.2)

hj(x) = h+B(b, T, tj)σy

√
1− ρ2

xy (A.3)

h =
y(x)− µy
σy
√

1− ρ2
xy

− ρxy(x− µx)

σx
√

1− ρ2
xy

(A.4)

λj(x) = cje
−B(a,T,Tj)x (A.5)

κj(x) = −B(b, T, tj)

[
µy −

1

2
(1− ρ2

xy)σ
2
yB(b, T, tj) + ρxyσy

x− µx
σx

]
(A.6)

µx = −MT
x (0, Tα) (A.7)

µy = −MT
y (0, Tα) (A.8)

Moreover,

• y(x) is the only solution of∑
j∈Γ

cje
−B(a,Tα,tj)x−B(b,Tα,tj)y(x) = 0 (A.9)

• cj is the union in a single set of days of the following coefficients:

d1
i =

Φd(Si−1, Si)

ΦF (Si−1, Si)
Φd(Tα, Si−1)A(Tα, Si−1) i = α+ 1, ..., β

d2
i = −Φd(Tα, Si)A(Tα, Si) i = α+ 1, ..., β

d3
i = −KτiΦd(Tα, Ti)A(Tα, Ti) i = α+ 1, ..., β

(A.10)

• x̂j and wj are respectively the j-th Hermite-Gauss node and weight (thus, not

depending on a variable).

• K is the ATM strike of the underlying swap, evaluated at the reference date.

We consider one element at a time, along with its derivatives.

A.1 Bond prices and shift ratio

Let’s consider the first element: bond prices. When t0 = 0, they do not depend on the

interest rates model selected, but only on the discount curve. However, Formula 2.28

includes the term Φd(t, T)A(t, T) that must be evaluated at the expiry t = Tα.

Hence, we start with the term:

Φd(t, T)A(t, T) = Φd(t, T)exp(V (T − t)/2)

=
POIS(0, T)

POIS(0, t)

P (0, t)

P (0, T)
exp(V (T − t)/2)

=
POIS(0, T)

POIS(0, t)
exp(

V (t)− V (T) + V (T − t)
2

)

A.1.1 B and ω

Let’s consider the usual B used in the pricing chapter

B(z,∆) =
1− e−z∆

z
(A.11)

To make thing easier later, we introduce another variable similar to the previous one,

called ω:

ω(p, q,∆) =
1− e−(p+q)∆

p+ q
(A.12)

Their derivatives are immediate to compute:

∂zB(z,∆) = −B(z,∆)(∆ +
1

z
) +

∆

z
:= B̂(z,∆)

∂pω(p, q,∆) = ∂qω(p, q,∆) = −ω(p, q,∆)(∆ +
1

p+ q
) +

∆

p+ q
:= ω̂(p, q,∆)

∂pω(p, p,∆) = 2 ω̂(p, p,∆)

97

A.1.2 V and its exponential

Let us remark that

V (∆) =
σ2

a2
[∆ +

2

a
e−a∆ − 1

2a
e−2a∆ − 3

2a
]

+
η2

b2
[∆ +

2

b
e−b∆ − 1

2b
e−2b∆ − 3

2b
]

+ 2ρ
ση

ab
[∆ +

e−a∆ − 1

a
+
e−b∆ − 1

b
− e−(a+b)∆ − 1

a+ b
]

=
σ2

a2
[ω(a, a,∆)− 2B(a,∆) + ∆]

+
η2

b2
[ω(b, b,∆)− 2B(b,∆) + ∆]

+ 2ρ
ση

ab
[ω(a, b,∆)−B(a,∆)−B(b,∆) + ∆]

=
σ2

a2
Ψ(a, a,∆) +

η2

b2
Ψ(b, b,∆) + 2ρ

ση

ab
Ψ(a, b,∆)

Where, in order to simplify future formulas, we have defined

Ψ(a, b,∆) := ω(b, b,∆)− 2B(b,∆) + ∆ (A.13)

With derivatives:

∂aΨ(a, b,∆) = ω̂(a, b,∆)− B̂(a,∆)

∂bΨ(a, b,∆) = ω̂(a, b,∆)− B̂(b,∆)

∂aΨ(a, a,∆) = 2 [ω̂(a, a,∆)− B̂(a,∆)]

This leads to the computation of the derivatives of V:1

∂aV (∆) = − 2σ2

a3
Ψ(a, a,∆) +

σ2

a2
∂aΨ(a, a,∆)

− 2ρ
ση

a2b
Ψ(a, b,∆) + 2ρ

ση

ab
∂aΨ(a, b,∆)

∂bV (∆) = − 2η2

b3
Ψ(b, b,∆) +

η2

b2
∂bΨ(b, b,∆)

− 2ρ
ση

ab2
Ψ(a, b,∆) + 2ρ

ση

ab
∂bΨ(a, b,∆)

∂σV (∆) =
2σ

a2
Ψ(a, a,∆) + 2ρ

η

ab
Ψ(a, b,∆)

∂σV (∆) =
2η

b2
Ψ(b, b,∆) + 2ρ

σ

ab
Ψ(a, b,∆)

∂ρV (∆) = 2
ση

ab
Ψ(a, b,∆)

1the dependency on a, b, σ, η, ρ is omitted.

98

From this last result it is possible to derive ΦdA for every G2++ parameter θ ∈
{a, b, σ, η, ρ}:

∂θΦd(t, T)A(t, T) = ∂θ
POIS(0, T)

POIS(0, t)
exp(

V (t)− V (T) + V (T − t)
2

)

=
POIS(0, T)

POIS(0, t)
exp(

V (t)− V (T) + V (T − t)
2

)
∂θV (t)− ∂θV (T) + ∂θV (T − t)

2

= Φd(t, T)A(t, T)Wθ(t, T)

where

Wθ(t, T) :=
∂θV (t)− ∂θV (T) + ∂θV (T − t)

2
(A.14)

An important remark should be made with respect to the shift ratio Φd(t, T)/ΦF (t, T):

since it holds that

Φd(t, T) =
POIS(t, T)

P (t, T)

=
POIS(t0, T)

POIS(t0, t)

P (t0, t)

P (t0, T)

and analogously, for ΦF (t, T), using the forward market curve PF (t0, T), the shift

ratio becomes
Φd(t, T)

ΦF (t, T)
=
POIS(t0, T)

POIS(t0, t)

PFWD(t0, t)

PFWD(t0, T)

Hence, this term depends only on market data, and does not rely on the financial model

chosen.

A.2 Conditional variables

It is time to consider the variables generated by the change of probability in the forward

measure T = Tα:

MT
x (0, t) = (

σ2

a2
+ ρ

ση

ab
)[1− e−at]− σ2

2a2
[e−a(T−t) − e−a(T+t)]− ρ ση

b(a+ b)
[e−b(T−t) − e−bT−at]

MT
y (0, t) = (

η2

b2
+ ρ

ση

ab
)[1− e−bt]− η2

2b2
[e−b(T−t) − e−b(T+t)]− ρ ση

a(a+ b)
[e−a(T−t) − e−aT−bt]

σx = σ

√
1− e−2at

2a
= σ

√
ω(a, a, t)

σy = η

√
1− e−2bt

2b
= η

√
ω(b, b, T)

ρxy = ρ
ση

(a+ b)σxσy
[1− e−(a+b)t] = ρ

ση

σxσy
ω(a, b, t)

99

In particular, we usually consider the mean terms at the expiry T itself:

MT
x (0, T) = (

σ2

a2
+ ρ

ση

ab
)[1− e−aT]− σ2

2a2
[1− e−2aT]− ρ ση

b(a+ b)
[1− e−(a+b)T]

= (
σ2

a
+ ρ

ση

b
)B(a, T)− σ2

a
ω(a, a, T)− ρση

b
ω(a, b, T)

MT
y (0, T) = (

η2

b2
+ ρ

ση

ab
)[1− e−bT]− η2

2b2
[1− e−2bT]− ρ ση

a(a+ b)
[1− e−(a+b)T]

= (
η2

b
+ ρ

ση

a
)B(b, T)− η2

b
ω(b, b, T)− ρση

a
ω(a, b, T)

Simple computations allow to find their derivatives;

∂aM
T
x (0, T) = (

σ2

a
+ ρ

ση

b
)B̂(a, T)− σ2

a2
B(a, T)− 2

σ2

a
ω̂(a, a, T) +

σ2

a2
ω(a, a, T)− ρση

b
ω̂(a, b, T)

∂bM
T
x (0, T) = −ρση

b2
B(a, T) + ρ

ση

b2
ω(a, b, T)− ρση

b
ω̂(a, b, T)

∂σM
T
x (0, T) = (2

σ

a
+ ρ

η

b
)B(a, T)− 2

σ

a
ω(a, a, T)− ρη

b
ω̂(a, b, T)

∂ηM
T
x (0, T) = ρ

σ

b
(B(a, T)− ω(a, b, T))

∂ρM
T
x (0, T) =

ση

b
(B(a, T)− ω(a, b, T))

The derivatives of MT
y (0, T) are computed in the same manner.

For what concerns the variance and correlation terms σx, σy and ρxy:
2

∂aσx = σ ∂a
(√

ω(a, a, T)
)

= σ
ω̂(a, a, T)√
ω(a, a, T)

=
σ2

σx
ω̂(a, a, T)

∂bσy = η ∂b
(√

ω(b, b, T)
)

= η
ω̂(b, b, T)√
ω(b, b, T)

=
η2

σy
ω̂(b, b, T)

∂σσx =
√
ω(a, a, T)

∂ησy =
√
ω(b, b, T)

2the missing derivatives are equal to 0.

100

∂aρxy = ρ
σ3η

σ3
xσy

ω(a, b, T) ω̂(a, a, T) + ρ
ση

σxσy
ω̂(a, b, T)

∂bρxy = ρ
ση3

σxσ3
y

ω(a, b, T) ω̂(b, b, T) + ρ
ση

σxσy
ω̂(a, b, T)

∂σρxy = ρxy(
1

σ
− ∂σσx

σ
)

∂ηρxy = ρxy(
1

η
− ∂ησy

η
)

∂ρρxy =
ρxy
ρ

A.3 Integration nodes

The Gauss-Hermite nodes x̂k are shifted into the actual integration nodes according to

xk =
√

2σxx̂k + µx

where µx = −MT
x (0, T). Simply, their derivatives become

∂axk =
√

2∂aσxx̂k + ∂amux

∂bxk = ∂bµx

∂σxk =
√

2∂σσxx̂k + ∂σµx

∂ηxk = ∂ηµx

∂ρxk = ∂ρµx

A.4 coefficients cj and root search

Thanks to the previous results, it is possible for us to compute the derivatives with

respect to the coefficients cj ; another important thing to keep in mind is that K is the

ATM strike of the underlying swap at the reference date: this means that all future cash

flows are not influenced by the financial model considered, but only on the market curves.

Hence, strikes do not change by choosing the Vasicek model instead of the G2++, or

even a completely different one. Obviously, the year fractions τi are independent from

the model parameters.

As a consequence, the following holds:

∂θd
1
i =

Φd(Si−1, Si)

ΦF (Si−1, Si)
∂θ
(
Φd(Tα, Si−1)A(Tα, Si−1)

)
i = α+ 1, ..., β

∂θd
2
i = −∂θ

(
Φd(Tα, Si)A(Tα, Si)

)
i = α+ 1, ..., β

∂θd
3
i = −Kτi∂θ

(
Φd(Tα, Ti)A(Tα, Ti)

)
i = α+ 1, ..., β

101

in other terms:

∂θcj = cjWθ(Tα, Tj)

For the next step it is necessary to consider the root y(x).

Recalling that Θ = {a, b, σ, η, ρ}, let us define:3

F (Θ, x, y) =
∑
j

cje
−B(a,tj−Tα)x−B(b,tj−Tα)y (A.15)

then, y is the only value for which F (Θ, x, y) = 0.

In order to compute the derivative of y with respect to θ ∈ Θ, we need to consider Dini

theorem in a multidimensional case.

Theorem A.4.1 (Dini theorem).

Let F (x, y) a function defined on an open set Ω ∈ Rm+n with values in Rm. By conven-

tion, x ∈ Rn and y ∈ Rm, i.e. x = (x1, . . . , xn), y = (y1, . . . , ym). Let (x0, y0
) ∈ Ω

such that F (x0, y0
) = 0.

If F : Ω→ Rm is C1 in Ω and

det
∂(F1, . . . , Fm)

∂(y1, . . . , ym)
(x0, y0

) 6= 0 (A.16)

Then there exist a neighborhood U of x0 in Rn and a neighborhood V of y
0

in Rm, with

U × V ∈ Ω, in which ∀x ∈ U ∃! y = f(x) ∈ V such that F (x, f(x)) = 0 and f(x0) = y
0
.

Moreover, f ∈ C1 in U and for any x ∈ U its Jacobian is

Jf (x) = −
(
∂(F1, . . . , Fm)

∂(y1, . . . , ym)
(x, f(x))

)−1∂(F1, . . . , Fm)

∂(x1, . . . , xn)
(x, f(x)) (A.17)

In our case, m = 1 and we can consider that x contains also Θ. The condition (A.16)

becomes ∂yF (x0, y0) 6= 0.

The implicit function f assumes real values and its gradient, according to (A.17), has

the expression

∇f(x) = − 1

∂yF (x, f(x))

(
∂x1F (x, f(x)), . . . , ∂xnF (x, f(x))

)
(A.18)

Hence

∂f

∂xj
(x) = −

∂F
∂xj

(x, f(x))

∂F
∂y (x, f(x))

(A.19)

3once again, it is clear that y is not just depending on x, but also on the whole set Θ; however,

since it is usually computed once the network (and so the parameters) is fixed, the only term

changing its value is x. For this reason, the dependency on Θ is usually omitted.

102

Now, considering (A.15), it is easy to see that F ∈ C∞ in its domain; moreover4

∂yF (Θ, x, y) = −
∑
j

cjBj(b)e
−Bj(a)x−Bj(b)y

and ∂yF (Θ, x, y) 6= 0. This means that the Theorem holds and that it is possible to

compute ∂θy(x).

For the sake of completeness the derivatives of F with respect to Θ are presented:

∂aF (Θ, x, y) =
∑
j

cje
−Bj(a)x−Bj(b)y

[
Wa(Tα, tj)− B̂j(a)x−Bj(a)∂ax

]

∂bF (Θ, x, y) =
∑
j

cje
−Bj(a)x−Bj(b)y

[
Wb(Tα, tj)−Bj(a)∂bx− B̂j(b)y

]

∂σF (Θ, x, y) =
∑
j

cje
−Bj(a)x−Bj(b)y

[
Wσ(Tα, tj)−Bj(a)∂σx

]

∂ηF (Θ, x, y) =
∑
j

cje
−Bj(a)x−Bj(b)y

[
Wη(Tα, tj)−Bj(a)∂ηx

]

∂ρF (Θ, x, y) =
∑
j

cje
−Bj(a)x−Bj(b)y

[
Wρ(Tα, tj)−Bj(a)∂ρx

]

A.5 h and hj

It is time to consider h and its derivatives:

from Formula (A.4)

h =
y(x)− µy
σy
√

1− ρ2
xy

− ρxy(x− µx)

σx
√

1− ρ2
xy

recall that σy depends only on b and η; moreover, when considering Hermite-Gauss

nodes, we had in (A.2):

xk =
√

2σxx̂k + µk

As a consequence, we can simplify the previous Formula as follows

h =
y(xk)− µy
σy
√

1− ρ2
xy

−
√

2x̂k
ρxy√

1− ρ2
xy

(A.20)

4in order to make things easier to read, the notation for B(z, tj − Tα) will be shortened to

Bj(z).

103

Its derivatives are:

∂ah =
∂ay(xk)− ∂aµy
σy
√

1− ρ2
xy

+
∂aρxy

(1− ρ2
xy)

3/2

(
ρxy

y(xk)− µy
σy

−
√

2x̂k
)

∂bh =
∂by(xk)− ∂bµy
σy
√

1− ρ2
xy

+
y(xk)− µy
σy
√

1− ρ2
xy

∂bσy
σy

+
∂bρxy

(1− ρ2
xy)

3/2

(
ρxy

y(xk)− µy
σy

−
√

2x̂k
)

∂σh =
∂σy(xk)− ∂σµy
σy
√

1− ρ2
xy

+
∂σρxy

(1− ρ2
xy)

3/2

(
ρxy

y(xk)− µy
σy

−
√

2x̂k
)

∂ηh =
∂ηy(xk)− ∂ηµy
σy
√

1− ρ2
xy

+
y(xk)− µy
σy
√

1− ρ2
xy

∂ησy
σy

+
∂ηρxy

(1− ρ2
xy)

3/2

(
ρxy

y(xk)− µy
σy

−
√

2x̂k
)

∂ρh =
∂ρy(xk)− ∂ρµy
σy
√

1− ρ2
xy

+
∂ρρxy

(1− ρ2
xy)

3/2

(
ρxy

y(xk)− µy
σy

−
√

2x̂k
)

From the other hand, considering formula (A.3), the derivatives of hj(xk) are:

∂ahj(xk) = ∂ah−Bj(b)σy
ρxy√

1− ρ2
xy

∂aρxy

∂bhj(xk) = ∂bh+
(
B̂j(b)σy +Bj(b)∂bσy

)√
1− ρ2

xy −Bj(b)σy
ρxy√

1− ρ2
xy

∂bρxy

∂σhj(xk) = ∂σh−Bj(b)σy
ρxy√

1− ρ2
xy

∂σρxy

∂ηhj(xk) = ∂ηh+Bj(b)∂ησy

√
1− ρ2

xy −Bj(b)σy
ρxy√

1− ρ2
xy

∂ηρxy

∂ρhj(xk) = ∂ρh−Bj(b)σy
ρxy√

1− ρ2
xy

∂ρρxy

A.6 λj

The computations of the derivatives of λj are simpler than the last one presented; indeed

its definition is

λj(x) = cje
−Bj(a)x

104

Hence, it is easy to obtain

∂aλj(x) = λj(x)

[
Wa(Tα, tj)− B̂j(a)x−Bj(a)∂ax

]
∂bλj = λj

[
Wb(Tα, tj)−Bj(a)∂bx

]
∂σλj(x) = λj(x)

[
Wσ(Tα, tj)−Bj(a)∂σx

]
∂ηλj(x) = λj(x)

[
Wη(Tα, tj)−Bj(a)∂ηx

]
∂ρλj(x) = λj(x)

[
Wρ(Tα, tj)−Bj(a)∂ρx

]

A.7 κj

The last element we have to consider is κj(xk). Again, considering Equation (A.2) it

can be simplified in:

κj(xk) = −Bj(b)
[
µy −

1

2
(1− ρ2

xy)σ
2
yBj(b) +

√
2x̂kσyρxy

]
(A.21)

As a consequence, the derivatives are as follows:

∂aκj =−Bj(b)
[
∂aµy + ρxyσ

2
yBj(b)∂aρxy +

√
2x̂kσy∂aρxy

]
∂bκj =− B̂j(b)

[
µy −

1

2
(1− ρ2

xy)σ
2
yBj(b) +

√
2x̂kσyρxy

]
−Bj(b)

[
∂bµy − (1− ρ2

xy)
(
B̂j(b)

σ2
y

2
+Bj(b)σy∂bσy

)
+ ρxyσ

2
yBj(b)∂bρxy +

√
2x̂kσy∂bρxy

]
∂σκj =−Bj(b)

[
∂σµy + ρxyσ

2
yBj(b)∂σρxy +

√
2x̂kσy∂σρxy

]
∂ηκj =−Bj(b)

[
∂ηµy − (1− ρ2

xy)Bj(b)σy∂ησy + ρxyσ
2
yBj(b)∂ηρxy +

√
2x̂kσy∂ηρxy

]
∂ρκj =−Bj(b)

[
∂ρµy + ρxyσ

2
yBj(b)∂ρρxy +

√
2x̂kσy∂ρρxy

]

105

A.8 Final formulas

Finally, all the single blocks have been considered; the only thing left is putting every-

thing together to find the final derivatives of the prices with respect to G2++ parameters.

Let’s recall once again the pricing formula in a shortened format:

SO(0, Tα,Γ,K) =
Pd(0, Tα)√

π

n∑
k=1

∑
j∈Γ

ωkΨjk (A.22)

where

Ψjk = λj(xk)e
κj(xk)Φ[−hj(xk)] (A.23)

Consequently, since Pd(0, Tα) does not depend on the model, we obtain directly:

∂θSO(0, Tα,Γ,K) =
Pd(0, Tα)√

π

∑
k

∑
j

ωk∂θΨjk (A.24)

where
∂θΨjk = ∂θλj(xk)e

κj(xk)Φ[−hj(xk)]

+λj(xk)e
κj(xk)∂θκj(xk)Φ[−hj(xk)]

−λj(xk)eκj(xk)f(hj(xk))∂θhj(xk)

(A.25)

and f(·) denotes the Gaussian distribution function.

106

Appendix B

Backpropagation Derivatives

The purpose of this Section is to provide useful formulas to obtain the derivatives of the

ANN’s weights with respect to the final output.

This task is performing by following backwards the structure of the neural network start-

ing on the final layers: for this reason, it is called backpropagation.

Without loss of generality, all the following derivatives have as reference the target

a. The weights are classified in the following way:

• the L input features are labelled with l = 1, . . . , L;

• the M neurons in the first hidden layer are labelled with m = 1 . . . ,M ; similarly,

the N neurons in the second layer are labelled with n = 1, . . . , N ; the activation

function Ψ is meant to be the same for every neuron in both hidden layers.

• the targets are simply labelled with the parameter they are representing as well

as the activation function used: the target a has as Ωa as activation function, σ

has Ωσ and so on.

• the weights have as notation wkij : the subscript i refers to the input neuron (0 is

meant for the bias), j to the output one; k is a superscript referring to the set of

weights it belongs to1:

– “in” refers to the weights between the feature layer and the first hidden layer.

This set of weights is defined in matrix form as Win−>1; its dimensions are

[L+ 1;M], where the last row is meant for the bias.

1For example, the weight w
(1)
03 is the weight connecting the bias of the first hidden layer to

the third neuron in the second hidden layer.

– (1) is used to indicate the weights between the hidden layers. This set of

weights is defined as W1−>2;

– (2) denotes the set of weights connecting the neurons of the second hidden

layer to the ones in the output layer. This set of weights is referred as

W2−>out.

• a similar notation is used to refer to the values assumed by the neurons: there

is the net value and the activation value, respectively called as netki and actki ; as

before, i is for the enumeration term of the neuron in the set and k is the label of

the layer: “in” for the features layer, (1) and (2) for the hidden layers and “out”

for the output layer2.

The derivative of a target with respect to a specified weight is obtained thanks to the

following formulas.

W2−>out

Let’s consider the set of weights between the second hidden layer and the output. Re-

calling that:

a = Ωa(net
out
a)

netouta =
∑
n

act(2)
n w(2)

na + w
(2)
0a

the derivative of a with respect to the weights incoming from k-th neuron (k = 1, . . . , N)

2remark: the net value is the linear combination of the values incoming, whose coefficients

are the weights; the activation value is the result of the application of the activation function on

the net value.

108

in the second hidden layer is computed as follows:

∂a

∂w
(2)
ka

=
∂a

∂netouta

∂netouta

∂w
(2)
ka

=
.
Ωa(net

out
a)

∂

∂w
(2)
ka

(∑
n

act(2)
n w(2)

na + w
(2)
0a

)
=

.
Ωa(net

out
a) act

(2)
k

∂a

∂w
(2)
0a

=
∂a

∂netouta

∂netouta

∂w
(2)
0a

=
.
Ωa(net

out
a)

∂

∂w
(2)
0a

(∑
n

act(2)
n w(2)

na + w
(2)
0a

)
=

.
Ωa(net

out
a)

Obviously, all the weights whose outcome is different from the neuron related to the

target a have null derivative.

W1−>2

Again, for the weights between the hidden layers, we consider that:

act
(2)
k = Ψ(net

(2)
k)

net
(2)
k =

∑
m

act(1)
m w

(1)
mk + w

(1)
0k

The derivative of a with respect to the weights between the j-th neuron of the first

109

hidden layer and the k-th in second one (j = 1, . . . ,M ; k = 1, . . . , N) is:

∂a

∂w
(1)
jk

=
∂a

∂netouta

∂netouta

∂act
(2)
k

∂act
(2)
k

∂net
(2)
k

∂net
(2)
k

∂w
(1)
jk

=
.
Ωa(net

out
a) w

(2)
ka

.
Ψ(net

(2)
k)

∂

∂w
(1)
jk

(∑
m

act(1)
m w

(1)
mk + w

(1)
0k

)
=

.
Ωa(net

out
a) w

(2)
ka

.
Ψ(net

(2)
k) act

(1)
j

∂a

∂w
(1)
oj

=
∂a

∂netouta

∂netouta

∂act
(2)
k

∂act
(2)
k

∂net
(2)
k

∂net
(2)
k

∂w
(1)
0j

=
.
Ωa(net

out
a) w

(2)
ka

.
Ψ(net

(2)
k)

∂

∂w
(1)
0k

(∑
m

act(1)
m w

(1)
mk + w

(1)
0k

)
=

.
Ωa(net

out
a) w

(2)
ka

.
Ψ(net

(2)
k)

Win−>1

Finally, in the first hidden layer:

act
(1)
j = Ψ(net

(1)
j)

net
(1)
j =

∑
l

xlw
in
lj + win0j

where xl is the l-th input feature.

The derivative of a with respect to the weights from the input layer (feature l) to

110

the j-th neuron of the first hidden one is:

∂a

∂winij
=

∂a

∂act
(1)
j

∂act
(1)
j

∂winij

=
(∑

n

∂a

∂act
(2)
n

∂act
(2)
n

∂act
(1)
j

) ∂act(1)
j

∂net
(1)
j

∂net
(1)
j

∂winij

=
.
Ωa(net

out
a)

∑
n

[
w(2)
na

.
Ψ(net(2)

n)
∂net

(2)
n

∂act
(1)
j

] .
Ψ(net

(1)
j)

∂net
(1)
j

∂winij

=
.
Ωa(net

out
a)

∑
n

[
w(2)
na

.
Ψ(net

(2)
k)w

(1)
jn

] .
Ψ(net

(1)
j)

∂

∂winij

(∑
l

xlw
in
lj + win0j

)
=

.
Ωa(net

out
a)

∑
n

[
w

(1)
jn w

(2)
na

.
Ψ(net

(1)
j)

.
Ψ(net(2)

n)
]
xi

∂a

∂win0j
=

∂a

∂act
(1)
j

∂act
(1)
j

∂win0j

=
(∑

n

∂a

∂act
(2)
n

∂act
(2)
n

∂act
(1)
j

) ∂act(1)
j

∂net
(1)
j

∂net
(1)
j

∂win0j

=
.
Ωa(net

out
a)

∑
n

[
w(2)
na

.
Ψ(net(2)

n)
∂net

(2)
n

∂act
(1)
j

] .
Ψ(net

(1)
j)

∂net
(1)
j

∂win0j

=
.
Ωa(net

out
a)

∑
n

[
w(2)
na

.
Ψ(net(2)

n)w
(1)
jn

] .
Ψ(net

(1)
j)

∂

∂win0j

(∑
l

xlw
in
lj + win0j

)
=

.
Ωa(net

out
a)

∑
n

[
w

(1)
jn w

(2)
na

.
Ψ(net

(1)
j)

.
Ψ(net(2)

n)
]

In particular let’s consider what are Ωθ, Ψ and their partial derivatives in the case

of this project:

• Ωθ is an affine transformation of the hyperbolic tangent; we can generalize in this

way

θ = Ωθ(net
out
θ) = A tanh(netoutθ) +B

.
Ωθ(net

out
θ) = A · (1− tanh(netoutθ)2)

• Ψ is the so-called logistic function:

Ψ(x) =
1

1 + e−x

.
Ψ(x) = Ψ(x)

(
1−Ψ(x)

)
111

Appendix C

Multicurrency results

This appendix has the purpose of showing the results of the offline calibration in a multi-

currency framework. In order not to be too long in the presentation, only the curves of

the predicted parameters in the first scenario are presented, as well as the complete pre-

sentation of the feedback curves. For the other scenarios, just the most relevant features

are shown.

In the final section the feedback of the different scenarios are compared, just to have an

idea of the range of errors that can result from the multi-currency calibration.

There is the need to remark that this calibration is done on the subset of couples tenor/-

expiry which are common in all the currencies, while the calibration made using Vasicek’s

model involved all the available swaptions. Hence, in the figures comparing the curves

of the predicted feedback and Vasicek’s calibration error, this last value is considered

just to give a reference point in the plot; it is not possible to compare the two models

by looking at the result of these tests, with the exception of the CHF case, where the

set of swaptions considered coincides with the traded one.

In section 6.3 the CHF case is considered and analyzed.

C.1 First scenario: predicted curves

Figure C.1: Multi currency, test 1: Mean reversion Speed 1 (a).

With some exception in CHF, the curves are usually between 1.5 and 2.6.

The patterns shown in the CAD and USD curves are similar (to some extent they are also

similar to the EUR one).

113

Figure C.2: Multi currency, test 1: Mean reversion Speed 2 (b)

In the majority of the cases, these Mean Reversion Speed assumes negative values, also for

the EURO currency.

114

Figure C.3: Multi currency, test 1: Volatility 1 (σ)

115

Figure C.4: Multi currency, test 1: Volatility 2 (η)

As far as the volatilities are concerned, the range of values assumed is similar to the one

shown in the single currency calibrations.

116

Figure C.5: Multi currency, test 1: Correlation (ρ)

As for the volatilities, the correlations are similar to the single currency case: the Brownian

Motions have always a high negative correlation.

117

C.2 First scenario: feedback curves

Figure C.6: Multi currency, test 1: EUR feedback function

In this dataset the calibration is very stable, since there are few peaks, and the test phase

has still a good performance.

Figure C.7: Multi currency, test 1: CHF feedback function

In this dataset the calibration has a worse performance with respect to the one made using

Vasicek’s model (single-day calibration).

118

Figure C.8: Multi currency, test 1: CAD feedback function

This seems to be the most unstable currency for what regards the feedback, since there are

several peaks in the feedback.

Figure C.9: Multi currency, test 1: USD feedback function

In this curve it is possible to see that the calibration is stable across the training dataset,

with worse performances in the test phase.

119

Figure C.10: Multi currency, test 1: comparison of the feedback functions.

It is clear that the feedback curve for all the currencies is usually in the same range of values.

It is also evident that the CAD curve shows the worst peaks.

120

C.3 Second scenario: predicted curves

Figure C.11: Multi currency, test 2: Relevant curves of parameters

(a, b, ρ)

121

C.4 Third scenario: predicted curves

Figure C.12: Multi currency, test 3: Relevant curves of parameters

(a, σ, ρ)

122

C.5 Comparison of the scenarios

Figure C.13: Multi currency, comparison of the feedback functions for EUR dataset.

It is easy to see that the first scenario has the best performance over the others, especially

in the test phase.

Figure C.14: Multi currency, comparison of the feedback functions for CHF dataset.

In this case it is difficult to say which is the best scenario; in the test phase, the third scenario

seems to have the lowest feedbacks.

123

Figure C.15: Multi currency, comparison of the feedback functions for CAD dataset.

In this case the curves are very similar, it is not possible to detect the best scenario.

Figure C.16: Multi currency, comparison of the feedback functions for USD dataset.

Here it is clear that first scenario is the most able to replicate market prices.

124

Bibliography

[Alon et al., 2005] Alon, G., Kroese, D. P., Raviv, T., and Rubinstein, R. Y. (2005). Ap-

plication of the cross-entropy method to the buffer allocation problem in a simulation-

based environment. Annals of Operations Research, 134(1):137–151.

[Bianchetti, 2008] Bianchetti, M. (2008). Two Curves, One Price :Pricing & Hedging In-

terest Rate Derivatives Decoupling Forwarding and Discounting Yield Curves. MPRA

Paper 22022, University Library of Munich, Germany.

[Bishop, 2009] Bishop, C. (2009). Pattern Recognition and Machine Learning. Springer.

[Björk, 2009] Björk, T. (2009). Arbitrage Theory in Continuous Time. Oxford Univer-

sity Press.

[Brigo and El-Bachir, 2007] Brigo, D. and El-Bachir, N. (2007). An exact formula for

default swaptions’ pricing in the ssrjd stochastic intensity model. ICMA Centre Dis-

cussion Papers in Finance icma-dp2007-14, Henley Business School, Reading Univer-

sity.

[Brigo and Mercurio, 1998] Brigo, D. and Mercurio, F. (1998). On deterministic shift

extensions of short-rate models. Internal Report, Banca IMI, Milan.

[Brigo and Mercurio, 2001] Brigo, D. and Mercurio, F. (2001). Interest Rate Models -

Theory and Practice. Springer-Verlag.

[C. Fu, 2005] C. Fu, M. (2005). Stochastic gradient estimation. Handbook on Simulation

Optimization, chapter 5, page 32.

[Cella, 2016] Cella, L. (2015-2016). A supervised learning approach to swaption calibra-

tion. Master’s thesis, Politecnico di Milano.

[Christensen, 2007] Christensen, J. H. E. (2007). Default and Recovery Risk Modeling

and Estimation. PhD thesis, Copenhagen Business School.

[Donati, 2018] Donati, A. (2017-2018). Black-box calibration of interest rate models for

the pricing of swaptions. Master’s thesis, Politecnico di Milano.

125

[Haykin, 2009] Haykin, S. S. (2009). Neural networks and learning machines. Pearson

Education, Upper Saddle River, NJ, third edition.

[Hernandez, 2016] Hernandez, A. (2016). Model calibration with neural networks.

SSRN.

[Hotelling, 1933] Hotelling, H. (1933). Analysis of a complex of statistical variables into

principal components. Journal of Educational Psychology.

[Hull, 2009] Hull, J. (2009). Options, Futures and Other Derivatives. Pearson.

[J.M. Rondinelli and Marks, 2007] J.M. Rondinelli, B. D. and Marks, L. (2007). En-

hancing structure relaxations for first-principles codes: an approximate hessian ap-

proach. Comput. Mater. Sci., 40:345–353.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (1998). Effi-

cient backprop. In Neural Networks: Tricks of the Trade, This Book is an Outgrowth

of a 1996 NIPS Workshop, pages 9–50, London, UK, UK. Springer-Verlag.

[McNelis, 2005] McNelis, P. D. (2005). Neural Networks in Finance. Academic Press

Advanced Finance. Academic Press, Boston.

[Peters and Schaal, 2006] Peters, J. and Schaal, S. (2006). Policy gradient methods for

robotics. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Beijing, China.

[Rubinstein, 2004] Rubinstein, Y. Reuven, K. P. D. (2004). The Cross-Entropy Method:

A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and

Machine Learning. Springer-Verlag.

[Sanders and Kandrot, 2010] Sanders, J. and Kandrot, E. (2010). CUDA by Exam-

ple: An Introduction to General-Purpose GPU Programming. Addison-Wesley Pro-

fessional, 1st edition.

[Sender, 2017] Sender, N. A. (2017). Multi-curve bootstrapping and implied discounting

curves in illiquid markets. Master’s thesis, University of Cape Town.

[Shloof and Salmi Noorani, 2012] Shloof, A. and Salmi Noorani, M. (2012). Halley

irrational-homotopy analysis method. International Journal of Applied Mathemat-

ical Research, 1.

[Witten et al., 2011] Witten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining:

Practical Machine Learning Tools and Techniques. Morgan Kaufmann Series in Data

Management Systems. Morgan Kaufmann, Amsterdam, 3 edition.

126

	Abstract
	Ringraziamenti
	List of Tables
	List of Figures
	List of Algorithms
	Acronyms
	Introduction
	Research target
	Previous works and current objectives
	Outline of Contents and Contributions

	Swaption pricing
	An overview
	The model
	Vasicek model
	The G2++ Model

	Bond pricing
	Change of probability and T-Forward measure
	Generalities
	Application on G2++ model

	Swap Pricing
	Swap

	Swaption Pricing
	Gauss-Hermite quadrature
	Root finding

	Calibration and Neural Network
	Calibration and supervised learning
	Offline and online calibration

	Artificial Neural Network
	Model definition

	Calibration algorithm
	Cross-Entropy Optimization
	BFGS algorithm

	Potentiality and limits: supervised learning
	Dying ReLu

	Data Analysis
	Dataset exploration
	An overview
	Feature exploration
	Multicurrency Dataset

	Dimensionality reduction: PCA
	Single currency: EURO

	Practical Methodologies
	Parallel computation: GPU and CUDA
	Gradient computation
	Finite Differences
	SFDM
	Backpropagation
	Comparison

	Experimental Results
	Offline calibration
	Online calibration
	Multicurrency offline

	Conclusions
	Summary of results
	Future research

	Appendices
	Derivatives in Swaption Pricing Model
	Bond prices and shift ratio
	B and
	V and its exponential

	Conditional variables
	Integration nodes
	coefficients cj and root search
	h and hj
	j
	j
	Final formulas

	Backpropagation Derivatives
	Multicurrency results
	First scenario: predicted curves
	First scenario: feedback curves
	Second scenario: predicted curves
	Third scenario: predicted curves
	Comparison of the scenarios

	Bibliography

