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Abstract

An interpolation-free conservative solution transfer methodology for body-fitted
dynamic adaptive meshes is considered for the coupled numerical simulation
of unsteady compressible flows and rigid body dynamics. The aim is to enable
conservative mesh adaptation in three-dimensional transonic aeroelastic simula-
tions with large relative free body motions, where element connectivity change
becomes necessary to preserve the mesh quality, and an explicit solution inter-
polation from the old to the new mesh is known to reduce the solution accuracy.
To this end, a continuous time interpretation of each local remeshing operation
is employed to preserve solution conservation among different adapted meshes,
avoiding any explicit interpolation step. A first application to a three-dimensional
aeroelastic problem is presented with the analysis of the nonclassical aileron buzz.
The methodology is validated by reproducing the self-sustained aileron oscilla-
tions in the flight speed and frequency range found in the experiments reported
in literature. The large oscillations of the finite-span aileron require frequent
remeshing, which is managed by the conservative methodology while also adapt-
ing the mesh to the shock waves pattern. A simple numerical methodology for
shape interpolation is also introduced for the dynamic geometrical modeling of
continuous wing-aileron configurations in two dimensions, and used for compar-
isons with discontinuous configurations for a preliminary assessment of the ge-
ometry effects on the aeroelastic phenomenon. Some complementary problems
in mesh mechanics and structural mechanics are also individually addressed, with
the development of a constant-connectivity mesh adaptation model and low-di-
mensional structural models for wing morphing.

Keywords. Conservative mesh adaptation, unsteady compressible flows, rigid
fluid-structure interaction, nonclassical aileron buzz.
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Summary

This work presents a conservative methodology for unstructured mesh adaptation
in the aeroelastic simulation of unsteady compressible flows over rigidly mov-
ing bodies and morphing boundaries. The objective is to enable a first applica-
tion of conservative mesh adaptation to three-dimensional aeroelastic problems
where topology-changing mesh adaptation is necessary, as in the case of fluid
flow simulations using body-fitted meshes over bodies with large relative motion,
and solution conservation is desirable, as in the case when shock wave motion
influences aeroelastic stability. The conservative solution transfer methodology
over adapted meshes relies on a continuous time interpretation of local remesh-
ing operations. The volume swept by moving cell interfaces is computed for each
transformation of mesh cells, so that conservation can be enforced in the solution
transfer procedure without any explicit interpolation step.

The Flowmesh solver for unsteady compressible fluid flows over dynamic
adaptive meshes, which originally implements the conservative mesh adapta-
tion methodology applied in this work through the link with the MMG remesh-
ing library, has been employed and extended to fluid-structure interaction prob-
lems. Algorithmic efforts have been devoted to the optimization of this fluid flow
solver in order to enable its application to complex three-dimensional aeroelastic
problems, and to the coupling with numerical procedures for structural interface
displacement. The conservative methodology employed in the fluid flow solver
also allowed a straightforward coupling with constant-connectivity mesh adapta-
tion procedures for unsteady compressible flows, which have been investigated
in their mesh mechanics aspects with the development of an original numerical
model for mesh motion in the FMG library at the INRIA research institute in Bor-
deaux.

The subject of morphing, i.e. bodies capable of continuously changing their
shape in order to adapt to given dynamic requirements, has also been addressed.
From the computational fluid dynamics perspective, the interaction between
mesh adaptation and changing boundary geometry has been targeted through
the development of a shape interpolation procedure for the dynamic geometrical
modeling of morphing boundaries. The procedure relies on standard geometric
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models to build a dynamic parameterization capable of interacting flawlessly with
mesh adaptation, allowing to position boundary mesh points on a moving curve
with given geometrical accuracy while preserving solution conservation. From
the structural mechanics perspective, a low-order finite element model for three-
dimensional camber-morphing wings has been developed. This model is an ex-
tension of generalized beam models to camber-morphing wings — now restricted
to constant cross-section wings — allowing to retain into the model only a de-
sired number of degrees-of-freedom related to the in-plane deformation of the
wing cross-section, together with the classical beam deformation modes. Spectral
convergence of the reduced-order model to the full-order one has been proved
in two dimensions, while the model has shown a convergent behavior also in
three dimensions. The preliminary coupling of this structural model with a fluid
flow solver through a conservative meshless fluid-structure interface scheme has
also been addressed, highlighting the lack of consistency of the meshless interface
scheme over non-matching discretizations.

Finally, a first three-dimensional aeroelastic application is presented with the
numerical simulation of the nonclassical aileron buzz, where both conservative
mesh adaptation and rigid fluid-structure interaction are applied. The analy-
sis is validated by reproducing the self-sustained aileron oscillations in the flight
speed range reported in the literature, and by comparing the computed oscilla-
tion frequency with measurements and simulations available from the literature.
The shape interpolation procedure is used for two-dimensional comparisons of
configurations with and without structural continuity between wing and aileron.
These simulations, in addition to being a first application of conservative mesh
adaptation to a three-dimensional aeroelastic problem with free body motion, al-
low to investigate the changes in the buzz phenomenology due to the three-di-
mensional geometry, and to highlight the effects of the shape of the wing-aileron
connection on shock wave motion.



Introduction

1.1 Background and motivation

CFD on unstructured adaptive meshes. Computational Fluid Dynamics (CFD)
is nowadays a mature technology with wide application both in research and in-
dustry, as testified by the large number of existing research and commercial sim-
ulation software packages. The current capabilities and limitations of this tech-
nology have been addressed, for example, in the recent NASA CFD Vision 2030
Study [150], where critical topics requiring research efforts in the next decade are
also identified. Among them, mesh generation and adaptation have been high-
lighted as current bottlenecks in the CFD workflow, with several issues to be ad-
dressed to increase the robustness and automation in these steps. When dealing
with complex geometries, unstructured meshes have shown greater versatility in
producing body-fitted meshes, i.e. meshes conforming with solid body shapes.
Unstructured mesh adaptation, i.e. adapting the mesh to the flow solution by
changing elements shape and/or connectivity, holds the potential to control the
discretization error by using the flow solution to drive mesh refinement and coars-
ening, while maintaining a desired level of refinement on complex boundaries.
The current status of unstructured mesh adaptation can be found in recent re-
views [129, 9], where strengths and limitations are presented together with a de-
tailed historical perspective on the scientific contributions in this field, while an
overview of current software packages implementing state-of-the-art techniques
can be found in [9, 92]. The versatility of unstructured CFD methods is at the
root of their increasing usage also in the field of aeroelasticity [21], where they are
particularly suited for transonic flows on geometrically complex shapes, which are
typically outside the domain of application of classical linear aeroelastic methods.

Conservative mesh adaptation and aeroelasticity. In the field of unstructured
mesh adaptation, a critical issue in dynamic mesh adaptation, i.e. mesh adapta-
tion performed at multiple time steps during an unsteady simulation, is the topic
of solution transfer from the old to the adapted mesh. As shown in [5], generic in-
terpolation algorithms can bring errors in the conservation of the solution (which
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means errors in the conservation of mass, momentum, and energy for a finite-vol-
ume solver), which are accumulated in time during an unsteady flow simulation.
It is worth mentioning that solution interpolation is an issue also shared by CFD
methods other than unstructured adaptation of body-fitted meshes, namely over-
set grid methods and immersed boundary methods. Currently, conservative solu-
tion transfer algorithms have been developed for unstructured mesh adaptation.
The most recent and active contributions to the topic can be found in [94, 7]. The
latest works (appeared in 2017) on conservative mesh adaptation in the numerical
solution of unsteady inviscid compressible flows show the successful application
of conservative solution transfer procedures to three-dimensional problems with
time-dependent boundary motion, both using mesh intersections [16] and swept
volume [140] approaches. The first aim of the research work discussed in this the-
sis is to present a three-dimensional application of conservative mesh adaptation
to an aeroelastic problem, where the boundary motion is also unknown.

The remainder of this chapter presents the context and background for the
computational fluid dynamics and mesh mechanics tools that will be used in the
fluid flow solver and the applications shown in this thesis. The aim is to introduce
most of the mathematical and numerical concepts concerning the peculiarities
of computational fluid dynamics on moving domains over unstructured adaptive
meshes: Arbitrary Lagrangian—Eulerian (ALE) formulations for compressible fluid
flows (section 1.2), the Geometric Conservation Law (section 1.3), the state of the
art of unstructured mesh adaptation (section 1.4), and conservation solution in-
terpolation among adapted meshes (section 1.5). Finally, an introduction on the
constant-connectivity and topology-changing mesh adaptation frameworks used
in this work is given in sections 1.6 and 1.7, respectively, while the thesis outline is
given in section 1.8.

1.2 Arbitrary Lagrangian-Eulerian formulation of
compressible fluid flow

We are considering a subset of fluid flow problems of aeronautical interest,
namely compressible (mostly transonic) flows around moving airfoils, wings, and
helicopter blades. To this end, we look for a numerical solution of a conservative
(finite volume) formulation of the Euler equations for compressible fluid flows [11,
109] on dynamically adaptive unstructured meshes. The need for moving meshes
stems from the need of maintaining a body-fitted mesh throughout the time sim-
ulation with moving boundaries, and the Arbitrary Lagrangian-Eulerian frame-
work provides a well-assessed method to handle both the boundary and the mesh
movement [46].
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We start from the conservative form of the Euler equations on a fixed, Eulerian
domain Q
ou N
—dQ + n-Fludl'=0 1.1
Q 0t 00
where u is the array of the conservative solution, composed by the mass density

p, the momentum density pU and the total energy density pe’, and F(u) is its flux

[Y pU
u=|pU|{, F(u)= | pUU+ P(p,e)l (1.2)
pe’ pe'U+P(p,e)U

Pressure P(p, e) is computed through a suitable equation of state.

Equations 1.1 are valid on each element Qy in a triangulation of the domain
Q. We are considering an arbitrary moving domain Q(t), not necessarily a mate-
rial domain (from which the name Arbitrary Lagrangian—Eulerian). This means
both allowing the domain to move following the motion of the boundary 0Q(t) (as
in the case of aeroelastic simulations), but also allowing the movement of mesh
elements Q(¢) while keeping the boundaries fixed, as it can be the case in mesh
adaptation (see section 1.5 and chapter 2).

Let X € Q be a parameterization of the fixed domain, and x € Q(¢) be a param-
eterizarion of the moving domain. The coordinates of the moving domain can be
expressed as a function of the fixed domain coordinates X and time ¢

x=¢pX 1) (1.3)

so that a generic tensor field f(x, f) over the moving domain Q(¢) can be expressed
as
fPpX 0, =X 1) (1.4)

With an abuse of notation, the functional dependence is used to denote the do-
main over which the field fis defined. From the last relation, the chain rule can be
applied in order to define derivatives of f, for example
of 0
= —| 4+ —(P
x Ot|x Ot

of(x, 1)
ot

Vif (1.5)

X
The velocity of the moving domain, which is the mesh velocity relative to the fixed
domain, is thus defined as

op
ot

Since we are interested in conservative formulations, it is interesting to consider

(1>

v (1.6)

X

the Reynolds’ transport theorem for a generic tensor field f

f
i[ fdQ:f Xaa+d  avedr (1.7)
dr Jaw Q) 0t (1)
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By applying the Reynolds’ transport theorem to the conservative equations in Eu-
lerian form (eq. 1.1), we obtain the ALE form of the conservative equations

d .
—f udQ+y{ n-F-va)dl'=0 (1.8)
Q) Q1)

dt

The domain motion taken into account by velocity v in eq. 1.8 can be originated
by the motion of a solid boundary, which is usually propagated into the domain
by means of an elastic analogy [95]. If a constant-connectivity mesh adaptation
methodology is considered (see section 1.6), this also can be straightforwardly
seen as a domain motion amenable to be taken into account through velocity vin
the ALE equations 1.8. Topology-changing mesh adaptation can also be taken into
consideration in the ALE equations once it is provided with a continuous time in-
terpretation. This is done in the conservative solution transfer methodology used
in this work, which will be introduced in section 1.5 and explained in further depth
in section 2.

1.3 Geometric Conservation Law

Altought still a debated topic, the so-called Geometric Conservation Law (GCL)
is a generally accepted [55] consistency requirement between the mesh elements
volume change in time and the mesh velocities

if dg:f fi-vdr (1.9)
dt Jaw 2Q(1)

This relation was first introduced in [161] and further discussed in [156] as an addi-
tional conservation law to be satisfied by numerical simulations of unsteady flows
on moving domains. The importance and necessity of fulfilling a discrete Geo-
metric Conservation Law (DGCL), specific for each discretization scheme, in nu-
merical simulations on moving domains is subject to a vivid debate, which is well
summarized in the detailed review given in [55].

Time accuracy and numerical stability are the main issues related with the
analysis of the GCL. Several works aimed at providing proofs of sufficiency and
necessity of a DGCL for time-accuracy and numerical stability for selected ALE
schemes. In [78] itis proved that the DGCL is a sufficient condition for a numerical
scheme which is p-th order time-accurate on a fixed grid to be at least first-order
accurate on moving grids, while in a following paper [71] some time-accurate nu-
merical schemes not compliant with a DGCL are designed, proving that the DGCL
is not a necessary condition for reaching the design order of accuracy in time,
when the latter is higher than one. Design of integration schemes that are both
high-order time-accurate and DGCL-compliant is presented in [117]. In [57] it is
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proved for sample ALE schemes that fulfilling a DGCL is a necessary and sufficient
condition for a numerical scheme which is nonlinearly stable on fixed grids to re-
tain nonlinear stability on movin grids, while in [28] opposite results are shown
for parabolic problems.

Even if definitive statements of sufficiency or necessity of a DGCL for the time
accuracy or numerical stability of general ALE schemes are missing, there are ev-
idences that not fulfilling a discrete version of the Geometric Conservation Law
(DGCL) determines the onset of spurious oscillations in the numerical solution
[57, 115], thus the GCL is indeed required for numerical consistency. In fact, even
if it can be derived from geometric considerations (in a procedure similar to the
proof of Reynolds’ transport theorem), the GCL is ofter reported as a condition on
the reproduction of a uniform flow field by the numerical scheme. Of course, the
purpose is not the simulation of a uniform flow field per se; instead, the constant
solution is the easiest consistency test that can be performed in numerical anal-
ysis, and the uniform flow field test is similar to the patch test in finite element
methods [127]. It is easy to show that given an uniform flow field u(x, ) = w(t) on
an infinite domain, according to the conservative Euler equations of gas dynamics
it should satisfy the relation

o (1.10)
dt '
on any bounded fixed domain Q, thus the field w is also constant in time. Plug-

ging this solution into the ALE formulation of the governing equation on a moving
domain Q(#), we get

i (12]|w) +y§ n-vdlw=0 (1.1
dt 0Q(t)
SO
|Q(t)|d—w+(@+5£ A vdF)w—O 1.12)
dt \ dt  Jaaw '

From the last relation, we see the uniform flow field cannot remain constant in
time if the GCL is not satisfied, and this gives rise to a zeroth-order, consistency
error in the satisfaction of eq. 1.10.

Beside the theoretical discussion and the tangible implications on the solution
consistency, from the practical point of view the GCL provides an additional con-
straint on the flow equations that is reflected on the algorithm chosen for the com-
putation of mesh velocities needed in ALE formulations (see eq. 1.12). Thus, sev-
eral works have focused on designing algorithms for the evaluation of mesh veloc-
ity (typically their component normal to element faces in finite volume schemes,
or their gradient and divergence in finite element schemes) while automatically
fulfilling a DGCL condition [117, 55, 94].
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1.4 State of the art of unstructured mesh adaptation

Unstructured mesh adaptation is becoming an integral part of the Computational
Fluid Dynamics (CFD) simulation workflow [129], together with the initial mesh
generation, the numerical solution of the flow equations — possibly optimized
for a High Performance Computing (HPC) environment — and a postprocessing
phase. In an unsteady flow simulation over moving boundaries, mesh adaptation
can accomplish a twofold objective:

1. Locally refining/coarsening the mesh according to the flow solution, in order
to improve the solution accuracy without the computational overhead that
would be caused by a uniform mesh refinement strategy.

2. Modeling moving boundaries during unsteady simulations, as in the case of
fluid-structure interaction and aeroelastic simulations, while maintaining a
body-fitted mesh.

Mesh refinement/coarsening needs the development of an indicator function
to guide the mesh adaptation phase. This indicator function depends on the flow
solution, and its definition determines the type of mesh adaptation that is being
performed:

e Feature-based and Hessian-based mesh adaptation, where the indicator
function is designed to target specific flow pattterns through a convenient
combination of the solution and its derivatives (typically the gradient and
Hessian) or to control the interpolation error by means of the reconstructed
Hessian of the solution [9]. Some issues with this type of indicators are well-
known (gradients can possibly follow shocks in the wrong location if a too
coarse initial grid is used [129, 166], and the reconstructed Hessian can be
non-convergent [129, 98]), but they have been successfully used for engi-
neering adaptation purposes.

* Goal-oriented mesh adaptation, where the indicator function is designed to
minimize the error on a specified functional of the flow solution (such as
lift or drag). This indicator is typically an adjoint-weighted error estimator
which requires an adjoint flow solution to be computed [61, 9].

It is worth mentioning that the aim of modelling moving boundaries can be
currently tackled with other methods alternative to the body-fitted meshes. For
example:

 In overset grid methods [29, 81], the computational domain is split in over-
lapping blocks, each of them meshed independently in order to ease the
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problem of generating a body-fitted mesh around complex geometries.
Continuity among the different blocks is then restored by means of interpo-
lation conditions that the solution is required to satisfy on the overlapping
zones of the domain. As explained in the next sections, with these methods
it could be difficult to ensure conservation [165].

* In immersed boundary methods [123] a body-fitted mesh is never produced,
and the fluid flow equations are solved on a geometrically simpler, wider
computational domain that includes the boundary in its interior. Bound-
ary conditions are reproduced by means of a specifically designed artificial
forcing term which is introduced into the flow equations [123], or by means
of cut-cell methods [151]. Difficulties with this class of methods usually
arise when trying to improve grid resolution near solid walls. The combi-
nation of immersed boundary methods with unstructured mesh adaptation
for boundary layers has been proposed in several works [151, 1].

Although a thorough analysis of these methods is beyond the scope of this work,
we note that they are not free from conservation issues as well. Details about con-
servation problems arising from solution interpolation in overset grid methods
are presented in [165], while a discussion on the lack of conservation near sharp
immersed boundaries can be found in [147].

The specific mechanisms of unstructured mesh adaptation vary depending on
whether mesh connectivity has to be preserved, or not. Common strategies for
constant-connectivity mesh adaptation (also called moving mesh methods) con-
sider recasting the problem in terms of partial differential equations (driven by
the indicator function as a forcing, or variable stiffness term), so they are global
methods. Topology-changing mesh adaptation, instead, relies on a set of mesh
modifications (like node insertion, removal, edge swap and element split) that
can be performed locally whenever a certain threshold in the indicator function
is reached.

1.5 Conservative interpolation

Solution reconstruction on adaptive meshes. Every time that some type of
mesh adaptation is performed (being node relocation, edge swapping, node inser-
tion or removal), the discrete solution values known on the previous mesh (com-
monly referred to as the background mesh [65, 7] need to be transferred to current
mesh entities.

The solution reconstruction process can be conceptually split in two steps [7]:
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1. Localization of current nodes into elements of the previous mesh (or vice
versa, depending on the algorithm), in order to select a stencil of nodes to
be used for the solution mapping from the background to the current mesh.

2. Solution transfer on the current mesh, given the solution on the background
mesh.

Localization relies on search algorithms, so its computational cost depends
on the underlying data structures used in the program at hand. A common algo-
rithm consists in building a search path by going from neighbour to neighbour
until the node is located into an element [65, 114, 6]. Typical difficulties with
this algorithm can arise with non-convex domains, holes inside the domain and
non-matching! surface discretizations (see [65, 114, 6] for a thorough discussion
of localization algorithms). Since searching is particularly efficient on grid data
structures and quadtrees/octrees, the above algorithm is frequently coupled with
grid/octree searching to restrict the space region where the search path is built
[114, 6]. Localization algorithms are typically unnecessary in conservative solu-
tion transfer methods which track local modification in time (as the one consid-
ered in this work), thus implicitly localizing new mesh nodes into the old mesh.

The solution transfer step allows to use the discrete solution available on the
background mesh to reconstruct the current solution. For example, a classical
linear interpolation of nodal values would need the localization of each current
node x;°" into an element Qzld of the previous mesh, so that the current values
can be computed from the evaluation of linear shape functions at the coordinates
of the new node (so-called area coordinates)

d
ul ) = 3 0 e Mue'Y (1.13)
J=i
Again, conservative solution transfer methods which track local mesh modifica-
tion in time are able to skip any explicit solution transfer step.
A number of properties contribute to the quality of a solution transfer algo-
rithm:

e Efficiency, in terms of memory usage, computational cost (number of oper-
ations, global or local nature of the algorithm) and parallel scalability [114].

* Accuracy, especially when adaptation and solution transfer has to be per-
formed several times during the time simulation [6].

n this case, by non-matching surface discretizations we denote two different discretizations
of the same geometric boundary, producing gaps and overlaps between the background and the
current mesh.
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* Capability of handling of non-matching discrete boundaries, since a non-
matching geometry typically requires some ad-hoc modifications of the so-
lution reconstruction algorithm [7].

Local solution conservation In numerical simulations based on a conservative
formulation of the governing equations, standard solution interpolation proce-
dures do not allow an automatic preservation of the conservation property. In
unsteady compressible flow simulations, where adaptation is performed recur-
rently at many time steps, the interpolation error accumulates throughout time
integration, and can indeed become the main source of numerical errors in the
solution [5]. Outside the domain of mesh adaptation, the adverse effects of stan-
dard solution interpolation techniques has been recognized also in overset grids
methods [165]. For this reason, several works have focused on the study of conser-
vative interpolation procedures which guarantee, at least, the conservation of the
volume integral of the solution (i.e. the L' norm, commonly referred as the mass
of the solution) from the background to the current mesh

/ u’do = u™vdQ (1.14)
Qold Qnew

where the superscripts old and new mean that we are dealing with the numerical
approximations of the integral on the old and new mesh, respectively.

Itis worth noticing that the last equation should hold both globally and locally,
and locality is often exploited to build the conservative interpolation algorithm
[59, 7, 94, 140].

Some families of approaches are reported here, without the ambition of be-
ing complete. The main conceptual difference among them relies in attempting a
direct numerical evaluation of eq. 1.14, or reconvering conservation by consider-
ing each element in the current mesh as an evolution of a parent element in the
background mesh.

1. Galerkin projection — Several works [69, 59] enforce conservation by per-
forming a Galerkin projection of the solution from the finite dimensional
space %° on the old mesh to the finite dimensional space 2/"¢" on the
new mesh as

(vnew, unew>

Q= <Unew, u01d>L2(Q),  plew ¢ g new (1.15)
The left hand side of eq. 1.15 can be computed element-wise on the new
mesh Q"W while the right hand side needs the computation of the inter-
section of each elements Q" of the new mesh with the set of elements of

the old mesh {Q;?ld cQold. Q‘]’.ld N Q‘,gew # ¢} partially covering it, since the
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right hand side of eq. 1.15 involves products of functions defined on the two
different meshes. The same need for computing intersections arises in any
direct numerical evaluation of eq. 1.14.

Alternatively, the right hand side of eq. 1.15 can be numerically evaluated by
building a supermesh [60, 3], made of a constrained Delauney triangulation
of the union of nodes and edges of both the background and current meshes
[60]. In [59] the supermesh approach is applied locally rather than globally
for the assembly of the right hand side.

The projection method produces a sparse linear system to be solved, but is
still a global method.

. Local mesh intersections — These methods enforce the conservation prop-

erty locally on the intersection of each element of the new mesh Q}*" with
the elements the old mesh Q°4, possibly with the introduction of a super-
mesh [118]. Then, the solution is trasferred by means of a solution recon-
struction procedure [7, 118].

. Swept volumes integration — This family of approaches stems from the geo-

metric consideration that an arbitrary variation of an infinitesimal element
volume can be written as a function of the volumes swept by a variation 6x
in the position of its boundaries dI"

0dQy =h-6xdl’ (1.16)

so the variation of a function u integrated over an element Q. can be splitin
a term related to the intrinsic variation of u, and a term related to volumes
swept by the boundaries of Qy

o udQ:f 5udQ+f n-oxudl’ 1.17)
Qi (1) Qi (1) 0Q (1)

The last term in the right hand side represents the variation in the integral
of the function field u due to volume variations only. This approach was
introduced in [50] and has been used to enforce conservation in Arbitrary
Lagrangian-Eulerian methods where solution and grid are firstly updated
with a Lagrangian phase, then the nodes position is enhanced with a rezon-
ing phase, and lastly the Lagrangian solution is interpolated on the rezoned
grid with in a remapping phase [50, 116]. This method is naturally suited
for constant-connectivity meshes, as it is always possible to apply this pro-
cedure at each mesh element Q. and to compute the volume swept by its
faces. This approach has been extended to changing-connectivity meshes
in [100], under the restriction of a single reconnection per edge, by means of
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a three-steps procedure. Firstly, the deleted edge is shrunk into its barycen-
ter; secondly, the new edge connectivity is established; lastly, the new edge
is expanded until its final nodes configuration. This fictional splitting of the
edge reconnection allows for the computation of swept volumes even with
connectivity change.

More recently, an analogous time evolution interpretation of topology
change for unstructured mesh adaptation has been introduced in [75, 94,
140] in order to preserve conservation and automatically fulfill a DGCL con-
dition in unsteady ALE schemes where adaptation is performed between
time step t" and "V, This is the computational approach used in this
work, and it will be further discussed in the following chapters. Instead
of explicitly interpolating the solution from the background to the current
mesh, the swept-volumes approach is used to numerically evaluate the
mesh interface velocities v which are necessary for the solution of the gov-
erning equations in ALE form (eq. 1.12). In fact, the change in volume of
each cell reads

(n+1)

t
A|Qk|:|Qk|(n+1)—|Qk|(n)=f f fA-vdrde (1.18)
tm 0Q (1)
and it can be further split into the contribution given by each cell interface
I'yi(2) as
Ni
AlQxl =) AlQg;] (1.19)
i=1
where
t(n+1)
AlQg;] :f f n-vdl'de (1.20)
¢ Lki(2)

Since the volumes swept by each cell interface can be computed also with
changing connectivities thanks to the three-steps procedure previously out-
lined, coupling of the DGCL condition (eq. 1.20) with the ALE formulation
of the governing equations (eq. 1.12) provides a closed system to be solved
for the flow solution u and the cell interface velocities v.

Finally, it is worth noting that a similar time evolution interpretation of lo-
cal mesh adaptation has been proposed in [101], where it is exploited for
the construction of space-time elements compatible with mesh adaptation
in order to preserve conservation of linear and angular momentum in La-
grangian dynamics formulations of continuum mechanics.

Aside from a comparison of the accuracy of each scheme, the point of view of
the implementation in a computer code also deserves some attention. A straigth-
forward advantage of swept-volumes approaches over the mesh-intersection ones
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Figure 1.1 — Structured grid gen- Figure 1.2 — Laplacian-based r-adaptation on a
eration around solid bodies (from steady compressible flow solution. Left: Initial grid
[157]). and density solution. Right: Adapted mesh.

Figure 1.3 — Laplacian-based grid generation and mesh adaptation.

is that the first ones do not need search algorithms to localize new mesh nodes
into the background mesh. However, this comes at the cost of tracking each local
mesh modification for the computation of the swept volumes. This requires the
implementation of data structures well-suited for mesh adaptation [63], and the
development of a tight coupling of the flow solver with the remesher software.

1.6 Constant-connectivity mesh adaptation

Mesh adaptation with constant elements connectivity, based only on nodes re-
location (from which the name r-adaptivity, or moving mesh methods) offers the
interesting possibility of preserving the one-to-one node mapping from the old
to the new mesh. This is particularly useful in Arbitrary Lagrangian-FEulerian for-
mulations of the flow equations, since by providing a GCL-compliant numerical
evaluation of mesh velocities v it is possible to avoid any solution interpolation
step, as the solution on the new mesh will be updated through the flow equations
in ALE form (eq. 1.12). Following the review given by Budd et al. in [31], moving
mesh methods can be classified as velocity-based or location-based, depending
on whether a solution for the velocity or the position of the mesh nodes is sought.
The former has evolved from Lagrangian formulations of fluid dynamics, where
the position of mesh nodes is obtained through time integration of particle veloc-
ity. The latter can be further subdivided in two main families of approaches.

* Historically, the origins of Laplacian-based mesh generation methods can
be linked to the analogy with potential flow theory. Through the solution
of a Laplace equation V2¢ = 0, smooth flow potential isolines ¢ = const are
produced around curved bodies, like the curvilinear coordinate system one
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would like to achieve in body-fitted structured grid generation (as in fig-
ure 1.1). If we define the coordinates x = (x3, ..., X4) on the physical domain
Q4 € R? and the curvilinear coordinates & =(&,...,&,) on a reference do-
main QzR?, a body-fitted equidistribution of the reference coordinates &
could than be obtained by solving the Laplace equation?

V2E=0 (1.21)

in the physical domain Qy (this implies an independent Laplace equation
V,ng ; = 0in each space direction i = 1,...,d). This is a classical approach in
structured body-fitted grid generation [157], which can be then generalized
to a Poisson equation

V2E =px) (1.22)

in order to drive mesh points in specific zones through the source term p(x),
or through a variable diffusion equation introduced by Winslow [169]

Vx- (DX)VxE) =0 (1.23)

where the diffusion coefficient D(x) allows to gather mesh points in speci-
fied zones, while providing an automatic stiffening effect in elements with
shrinking dimension. Equations 1.21, 1.22, and 1.23 are usually transformed
from the physical domain Qy to the reference one Qg in order to directly
solve them for the mesh point coordinates x(&¢). After the transformation,
the resulting PDEs are nonlinear, but the reference domain Qg is gener-
ally chosen as a combination of rectangular subdomains [157], making it
amenable to standard finite difference methods [169]. Passage from mesh
generation to mesh adaptation is possible by replacing the source or diffu-
sion terms with a monitor function w dependent from the fluid flow solution
and its derivatives. Extension to unstructured meshes and finite element so-
lutions has been straightforward, once this approach has been generalized
to include elliptic PDEs obtained from the minimization of an adaptation
functional (as in [87, 91, 51], among others). Dynamic mesh adaptation
can be performed either by solving a steady elliptic problem for the mesh
adaptation at each time step (as in [154, 38]) or by adding the time dimen-
sion to the adaptation functional (for example in [111, 90]). Alternatively,
this approach can be used to formulate elliptic problems directly in the ref-
erence domain, as proposed in [37] and further extended in [153] to con-
sider its application to hyperbolic conservation laws, in [38] to compress-
ible multicomponent flows on triangular meshes, in [13, 14] to the shallow

2The notation Vy, V,Z( is used here to explicitly remark that derivation is performed in the phys-
ical domain Q.
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water equations. To the best of the author knowledge, not many applica-
tions to three-dimensional meshes are available to date, being [110] one of
them. More recently, a geometric approach [32] to the solution of the mesh
PDE has been introduced in [88], and in [89] it has shown that the geometric
approach can be successfully used to preserve mesh nonsingularity during
adaptation.

¢ Elasticity-based methods consider mesh deformation as the elastic defor-
mation of the computational domain Qy, considered as a fictitious elastic
solid, so they typically employ a Lagrangian formulation of the linear elas-
ticity equations in the reference domain Q¢. This approach is particularly
used with moving boundaries and interfaces [95, 96, 152, 97]. In order to
avoid mesh tangling for large mesh movements, various solutions have been
proposed in order to introduce variable stiffness dependent from the mesh
element size, such as multiplying the stiffness terms by the Jacobian of the
coordinate transformation [95] or using an elastic modulus dependent on
the undeformed element size [94]. In [128], the variable stiffness approach
is used to drive mesh adaptation by modifying the Lamé coefficients of lin-
ear elasticity through the gradient of a monitor function based on the flow
solution, inspired by the Laplacian-based works.

Arbitrary Lagrangian-Eulerian formulations of the fluid flow equations auto-
matically provide a conservative solution remapping with constant-connectivity
meshes.

1.7 Topology-changing mesh adaptation

In unstructured mesh adaptation with connectivity change and node insertion or
removal, local remeshing has proven to be the most efficient strategy over a global
remeshing approach [129]. Classical local mesh adaptation operations include
nodes relocation, edge split, edge collapse, edge swap, and barycentric element
split. These operations are applied iteratively to improve the mesh according to a
provided indicator function. Usually, the indicator function is an error indicator
that is used to mark elements for refinement or coarsening, according to given
thresholds[167]. Alternatively, the error indicator can be used to specify a target
mesh size.

The idea of specifying a target edge size map has been generalized in aniso-
tropic mesh adaptation, where there is also the need for specifyng desired direc-
tions for element size growth. In the so-called metric-based framework for un-
structured mesh adaptation [129, 66, 8, 124], this is accomplished by interpreting
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the error indicator as a curved Riemaniann surface. Distance and orientation in-
formation become thus encoded into the definition of the metric tensor that is
associated to the surface, giving more weight to highly curved regions of space
[105]. The idea of looking for a transformation x(¢) : s — Q between a reference
domain Q¢ and the computational domain Qy is recurrent and has been exploited
in various ways in mesh generation [157, 65], error equidistribution in constant-
connectivity mesh adaptation [51] and of course in ALE methods [46]. In metric-
based mesh adaptation, the scalar product used for distance and volume com-
putations is modified according to a specified metric map given by a tensor field
(%), so that generating a uniform mesh made of unit-length edges in the met-
ric ./ (a so-called unit-mesh) automatically produces gathering and orientation
of new elements according to the specific patterns, given by eigenvectors of the
metric field .#. The scalar product between two vectors a(x) and b(x) then reads

(a,b) 4 =aXx) A (x)-bx) (1.24)

and consequently the norm becomes

llall gy =va #Xx) -a (1.25)

Given this notion of edge length, the prescription of the metric field can be linked
to a posteriori error estimation, where some bounds for the approximation error
[lu —upll is sought. This is provided by Céa’s lemma [138], which states that the
approximation error is bounded by the interpolation error ||u — T, u|| (where I1j,
is a Lagrange interpolant)

llu—upll = cllu—pull (1.26)

Even if this result is strictly valid only for elliptic problems, it has proven to be
experimentally valid even for hyperbolic problems [8, 66]. Thanks to a Taylor’s
expansion of the interpolation error, the following estimate holds [66]

[lu—Tpulleox < cgmaxmaxe- |/, (X)]-e (1.27)
xeK ec€Eg

Where #,(x) is the Hessian of the solution, and c; is a constant related to the
space dimension. Following [66], the following estimate holds

[lu—Ipulloox < cqmaxe- A (x)-e (1.28)
ecEx
where the desired metric tensor map .# (x) is defined as a corrected eigendecom-

position of the Hessian tensor of the solution
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A; =min (max(cdle/m, hzl ), hzl ) (1.30)
max min

with 1;, R being the eigenvalues and eigenvectors of the Hessian tensor, hmin, Pmax

being the minimum and maximum desired edge length, and € being the maximum

tolerated interpolation error.

This error estimation has been deemed geometric by its authors, in the sense
that it can be interpreted as the difference between the cartesian surface defined
by the solution u(x) and the piecewise linear approximation of the same surface
[T, u. In this sense, this error estimator should be independent from the specific
PDE problem at hand.

This framework automatically includes isotropic mesh adaptation, which is

recovered by assigning an isotropic metric tensor

}Iiso(x) 0 0
MAX)=] 0 X 0 (1.31)
0 0 }liso(x)
- ) 1 1 1
Aiso(X) = min | max hizso ® B ,htzn - (1.32)

In isotropic mesh adaptation, the isotropic size map hjg, (%) is often built relatively
to the previous mesh size, using the error indicator to provide thresholds for re-
finement or coarsening. For smooth problems, interpolation estimates based on
linear functions propose the Hessian of the solution as a natural candidate for er-
ror estimation [167, 114], and the Hessian indicator has been extended to avoid
singularities when dealing with non-smooth features such as shocks [167, 94]. Af-
ter an error estimator is computed, this is used to mark the elements to be tar-
geted for refinement/coarsening according to given thresholds, possibly perform-
ing multiple hierarchical evaluations [2].

1.8 Thesis contributions and manuscript organization

The first aim of the research work discussed in this thesis is to extend an in-
house conservative solution transfer technique, developed at the Department of
Aerospace Science and Technology of Politecnico di Milano, to a three-dimen-
sional aeroelastic application. Original contributions presented in this work con-
cern:

C1: The aeroelastic numerical simulation of three-dimensional nonclassical ai-
leron buzz with conservative topology-changing mesh adaptation.
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C2: The development of a simple shape interpolation procedure for the sim-
ulation of two-dimensional compressible flows over morphing boundaries
with conservative topology-changing mesh adaptation.

C3: The development of a numerical model for dynamic constant-connectivity
mesh adaptation.

C4: The development of a low-dimensional structural model for three-dimen-
sional constant-section camber-morphing wings.

Results have been reported in the following international conferences:
* Proceedings:

- L. Cirrottola, M. Morandini, G. Quaranta, A generalized beam formu-
lation for the dynamic analysis of camber-morphing helicopter blades.
2015 International Forum on Aeroelasticity and Structural Dynamics
(IFASD), St. Petersburg, Russia, June 28-July 2, 2015.

- L. Cirrottola, G. Quaranta, B. Re, C. Dobrzynski, A. Guardone, Numeri-
cal simulation of nonclassical aileron buzz over 3D unstructured adap-
tive meshes, ECCOMAS ECCM-ECFD 2018, Glasgow, June 11-15, 2017.

— L. Cirrottola, M. Morandini, G. Quaranta, Generalized beam mod-
els analysis for aeroelastic morphing applications, ECCOMAS
ECCM-ECFD 2018, Glasgow, June 11-15, 2017.

¢ Conferences:

- L. Cirrottola, B. Re, G. Quaranta, Simulation of compressible flows over
opening wing-flap configurations, International Conference on Adap-
tive Modeling and Simulation (ADMOS), Verbania, June 25-28, 2017.

This manuscript is structured as follows.

e Part I presents the conservative methodology for unsteady compressible
flows over adaptive meshes with topology change (chapter 2) and adaptive
meshes with constant connectivity (chapter 3, C3).

e Part II presents the extension to rigid fluid—structure interaction and mor-
phing boundaries (chapter 4, C2) and the development of low-dimensional
structural models for morphing aeroelastic applications (chapter 5, C4).

 Part III finally shows the three-dimensional aeroelastic application of con-
servative mesh adaptation with moving bodies and morphing boundaries
to the analysis of nonclassical aileron buzz (chapter 6, C1,C2).

Finally, conclusions drawn from all parts are given jointly in chapter 7.
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Finite-volume ALE formulation of
compressible fluid flows with
conservative mesh adaptation

This chapter describes the F1owmesh solver for unsteady inviscid compressible
flows developed in [75, 94, 140], which has been optimized, extended and em-
ployed throughout this work. Conservative mesh adaptation is performed through
the link with the MMG remeshing library [45, 42]. Section 2.1 recalls the govern-
ing equations, section 2.2 introduces the edge-based finite-volume discretization,
while sections 2.3 and 2.4 present the time integration algorithm. Mesh deforma-
tion is introduced in section 2.5, while the peculiar continuous time interpreta-
tion of local remeshing operations allowing for the conservative solution transfer
between topology-changing adapted meshes is presented in section 2.6. Mesh
adaptation strategies are recalled in section 2.7. Finally, novel contributions to
the software implementation are briefly presented with a basic overview of data
structure issues (section 2.8) and the optimization of search operations through
hash functions (section 2.9).

2.1 Arbitrary Lagrangian-Eulerian formulation

As introduced in chapter 1, we consider the conservative Arbitrary La-
grangian—Eulerian formulation of inviscid compressible flows on a moving do-
main Q(t) [46]

—f udQ+f n-F)-va)dl'=0 2.1
dz Jaw 0Q(t)

where u is the array of the conservative solution, composed by the mass density
p, the momentum density pU and the total energy density pe’, and F(u) is its flux

% pU
u= | pU]|, Fu)= | pU®U+ P(p,e)l (2.2)
pe’ pe'U+P(p,e)U

Pressure P(p,e) is computed through a suitable equation of state. The moving
domain velocity is represented by the vector field v.

Equations 2.1 are valid on each moving element Q(t) in a triangulation of the
domain Q(t). Considering domain motion means both allowing the boundary to
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move, i.e. 0Q(f) as in the case of aeroelastic simulations, but also allowing the
movement of mesh elements Q(#) with fixed domain boundaries, as it is often
the case in mesh adaptation.

This equations are required to fulfill the Geometric Conservation Law

4 f 0 = f f-vdr 2.3)
dt Jaw 2Q(1)

which is considered as an additional constraint necessary for the consistency of
the numerical results.

2.2 Node-pair finite-volume discretization

We consider a node-centered finite-volume discretization of the equations in the
domain Q(#). This is done by considering a simplicial mesh of the domain Q(#),
and defining the dual tessellation 97(#) made by control cells €;(¢) surrounding
each mesh node i (see for example figure 2.1). This leads to the definition of the
control cell volumes V;(¢) and the averaged solution u;(#) as

Vi(t)éf dQ, ui(t)éf u(x, 1) dQ (2.4)
%i(t) (gi(t)

Interfaces between control cells i and k, necessary for flux computations, are de-
fined as
0k (1) £ 06 (1) N6, (1) 2.5)

while control cells interfaces lying on the domain boundary are denoted as
A€ (1) £ 06 (1) N OQ(D) (2.6)

Following [145], this allows us to define the integrated normal vectors 7 (1), ; (t)
and the integrated normal velocities v (f), V?(t) as

nik(t)éf n; drl, Vik(t)éf n;-vdl
06 (1) 06k (1)

2.7
Ei(t)éf n; dr, V?(t)éf n;-vdrl’
0€2(1) 0€2(1)

This node-pair formulation [145] can encompass both finite-volume and finite el-
ement discretizations. In general, a node-pair is a couple of mesh nodes inter-
acting in the numerical scheme. For finite-volume discretization on simplicial
meshes, node-pairs simply correspond to mesh edges, while on other meshes it is
possible to have node-pairs not overlapping with mesh edges'

1n two dimensions, an example is provided by a linear finite element discretization of a quad-
rangular element, making two opposite nodes interact in the numerical scheme (thus forming a
node-pair) while not being connecting by a mesh edge [64].
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It can be shown that, for a finite-volume to
be closed and for the scheme to be conservative,
the following relations hold [146]

ik () = —N; (1)

Vik = Vi (2.8) ocie) 2
Y N +&i(1=0 &
ke Az
where Figure 2.1 — Example of two-di-
Hi s = 1k:06; N 0C; # @) 2.9) ?ensmnal node-pair discretiza-
ion.

denotes the set of nodes adjacent to node i and

distinct from it, so that looping on the this set means looping on the set of node-
pairs connected to node i. For convenience, the integrated normal vectors norms
Nik,¢; and unit vectors 1) ., 2 ; are straightforwardly defined as

N ik
Nik =Nk, ﬂik=%
ff (2.10)
% 1
¢i=11&;ll, $i=—
i

Introducing a numerical approximation for fluxes (whose definition will be
detailed in the following) as

(Pik(uiyukrvikrnik)zfcg - (F(u) —vu)dl’
ik

(2.11)
;v &) =fa<gaﬁ-([F(u)—vu)dF

allows us to write the node-pair finite-volume approximation of the governing
equations in ALE form for each control cell €; as

d
4 Viuy == 3 Gie s, up, vip, ik (1) — ¢, V9, &i(0)
t kEH, 4 (2.12)

VE;(t) e Ty(t)

It is worth noticing that quantities V; (1), n;x (1), &; () are directly computable
from the mesh at time instant ¢ (typically an adapted mesh), so they will be as-
sumed to be known at each time step and they will be used for the enforcement of
the Geometric Conservation Law (GCL).

2.2.1 Sweptvolumes and Interface Velocity Consistency

As anticipated in chapter 1, the node-pair discretization of the GCL (eq. 2.3) will
be used to compute the integrated interface normal velocities needed for the com-
putation of the ALE numerical fluxes.
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Figure 2.2 — Volume swept (grey) by the contribution brought by the tetrahedral element
Q to the interface I';; (blue) during mesh modification with constant connectivity oc-
curring in the interval [, t*+1)],

Defining the volume change AV;(t; 1) of cell i as a function of time, with re-
spect to the past volume at time 7, in terms of volumes swept by its interfaces as

AVi(ED) = Vi) - Vi) = Y. AV + AV (57) (2.13)
ke Xz

allows to split the cell volume in a reference part, plus the volume change

Vit = ), AVi(51)+ V(1) (2.14)
ke 4
A three-dimensional example representation of the volume swept by a moving
interface is given in figure 2.2, where the contribution brought by the portion of
the interface I'; j(¢) in the element Q,,(#) is considered. The above splitting of the
cell volume is readily used to express the cell volume time derivative as

4y Y 4 AVt + 2 avas (2.15)
—Vi(n) = — AV (1) + —=AV (5T .
de " & de ”C dr !

It follows from calculus? that

d .
—AVik(t):f n; -vdl'
dr 06ir (1)

(2.17)

d P f
—AV(1) = n;-vdrl’
GO ] P

2The volume AV swept by an arbitrary moving surface I' can be computed through integration
of the volume element swept by the area element dI' in the infinitesimal time d¢, which reads [137]

dV =mf-vdl'ds (2.16)

where 1 is the normal unit vector of the surface and v is the surface velocity.
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When the node-pair discretization is introduced for the above relations, the fol-
lowing Interface Velocity Consistency (IVC) relations [126] are derived

d
aAVik(t) =V (1)

d
AV 0=

(2.18)

The above relations, when replaced into equation 2.15, provide the following Dis-
crete Geometric Conservation Law (DGCL) for each control cell
d

—Vi= Y vie@®+VD, Y6 eTuD (2.19)
dt ke‘Zi#

which is the node-pair discretization of the GCL (equation 2.3).

Finally, combining equation 2.12 with the IVC relations 2.18 (which provide a
sufficient condition for the fulfillment of the DCGL 2.19), the semi-discrete system
of equation is obtained

d
i Vithu) == Y, i uevipni(0) - ¢, v9,&(1)

ke Az
d AV; =
a ik(t) ="Vik (2.20)
d
aAvl."’(t) =9

VE6;(t) € f]-h(t), ke <Z,/i,¢

Quantities AV;(f) and AVi"(t) are known from the mesh, together with quantities
Vi(1), ik (1), & (1), so the above system is complete in the unknowns u;, v, v‘l?.

2.2.2 Metrics computation

After a dual cell is defined for each mesh node from contribution brought by each
element connected to the given node, computation of integrated normal vectors
follows from geometric considerations. Details about the two-dimensional com-
putations can be found in the PhD thesis of D. Isola [93], while extension to the
three-dimensional case can be found in the PhD thesis of B. Re [141].

2.2.3 Domain numerical fluxes

In this work, a numerical approximation for solution flux across domain interfaces

i, ug, Vi, nik) =[ f- (F(u) —vu)dl’ (2.21)
0€ir(1)
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is defined using a Total Variation Diminishing (TVD) approach [162]. Thus, a
second-order centered approximation ®!/ and a first-order Roe approximate Rie-
mann solver ®! [109, 108, 160])

F(u;) +F(ug) u; +uy
o' (u;,up, nik, vik) 2N ————— —Vig —
2 2 2.22)
I A F(u;) +F(ug) u+ue 1
0] (uiyuk’nik»vik):nik‘f_vik‘T—EPM (up —w;)

are blended with a flux-limiter approach so that the first order, monotonicity pre-
serving scheme is employed near solution discontinuities, while the second order
scheme is used in smooth flow regions.

The Roe matrix A is built using the Jacobian of the flux function projected
along the normal direction 1);; evaluated at the intermediate Roe state ii(u;, uy).
Intermediate state (0, m, h!) for a polytropic ideal gas reads

m;./pr +myg,/p;
VPit Pk

N
NG

and p = \/p;pr as the Roe matrix is independent from its value for an ideal poly-
tropic gas (an extension to van der Waals gas can be found in [76]).

=
(2.23)

Matrix |A| is built taking the eigenvalue decomposition of matrix A and replac-
ing signed eigenvalues by their absolute values

A =RAL (2.24)

|A| =R|A|L (2.25)

where [A(@, v, N;x(1))] is the diagonal matrix built with the absolute values of the
integrated eigenvalues A = A(@1, v;,7;x(¢)) in three dimensions

[ Uik(l‘)'%—vik+c(ﬁ)mk(t) ‘
nik(t)'%_vik
A, Vi, ik (1) = ﬂik(t)'%—vik (2.26)
nik(t)'%_"ik
| 7ik(0) -3 = Vik— c@nx(1) |

When the eigenvalues are close to zero, the numerical dissipation provided by the
upwind term in the Roe flux can be too small, and the Roe linearization may fail to
satisfy the entropy condition, necessary for the convergence to a unique physically
relevant weak solution [109]. For this reason, an entropy fix is employed to provide
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a suitable modification of the eigenvalues to avoid the problem [131]. In this work,
the entropy fix proposed in [145] is employed

1Al if[A,]>6

Ap=% A2+82 (2.27)
i if |1, <6
26 +€

where € = 107'2 is a small parameter to avoid division by zero, and § is a function

of the Mach number M evaluated at the intermediate state as
1 (mi(®)-m v

c(a) o Nik (1)

M@, vig,nir(1) =
1 (2.28)
§= - (M@ Vi) +1)

Fluxlimiter. A fluxlimiterI is used to blend first order and second order scheme
in the definition of the numerical flux

Ot =9l +T (1~ 0h) =0l + SRIAIC-F)Lwe-up  (2.29)
The diagonal flux limiter I' is defined according to the definition given by van
Leer [162]. Limiters typically use the ratio of consecutive gradients over an un-
structured mesh in the attempt to measure the smoothness of flow. In the node-
pair framework, this is achieved through the extended node-pair structure [77].
Taking into consideration the node-pair i — k, their extension i* —i — k— k™ is build

by finding the edges i* — i and k — k* which are best aligned in the direction i — k.
This allows the definition of the p-component of the characteristic jump as

Nik- X —X;) - e
——L,(up—uy) if1,>0
- ) Mik X —Xg) Pk k P

p= ik Xk —X;) - 1
MLp(ui—xM ifdp =0
Nik* (Xi —X;+)

(2.30)

where L,, is the p—th row of the left eigenvector matrix.

2.2.4 Boundary numerical fluxes

Boundary conditions are imposed in weak form, so boundary numerical fluxes are
defined as the evaluation of the numerical flux ([)‘l.3 in a specified boundary state
ud(u;,&9,v9).

Slip (wall) boundary conditions are imposed through the definition of a
boundary state characterized by the relative wall-normal flow velocity (m; -
&lpi—v-&i,s0

0

W=y, - (mi-ii—%)fi (2.31)
1o |m; & - 2l
2 lMi 1°6i &
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and its numerical flux reads

0
oY =Ti(uy) | & (2.32)
0

Vi

Non-reflecting boundary conditions are based on a characteristic directions
analysis to impose inflow or outflow conditions on each characteristic field [77].
This leads to the following definition of the boundary state

W9, &) = wi + Ry, &) SN (;,v2, €Ly, &) (Uoo — uy) (2.33)

where .# A selects only the parts of matrix A with strictly negative eigenvalues,
and u, is the prescribed asymptotic flow state.

2.3 BDF time integration

The semi-discrete flow equations 2.20 are discretized in time through Backward
Differentiation Formula [139]. Thus, the approximation of the time derivative of
a function y or order p + 1 reads

dy 1 £

~— Y a,y" 1 (2.34)
dt Atq:z_l q

Since the DGCLrelation (equation 2.18) involves swept volumes between different
time instants, it is convenient to recast this formula by defining

q
Ay'=y" -yl ag= Y ag (2.35)
d=-1

leading us to the equivalent formula

dy 1 p-l

~— Y a Ay (2.36)
dr A=

Using relations 2.34, 2.36 for the approximation of the semi-discrete equa-
tions 2.20 leads to the fully discrete system

n+1

p
Y agvi T =AY Bk, g, Vi ik (0) + 2 (;, v9,&;(1)
q=-1 keX; +
& n-q n+l1
q_ZI“qAVik =Atvig

p -

> agav?" = and"!
q=-1

(2.37)
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where [¢(-)] n+1 denotes the implicit evaluation of numerical fluxes at time tn+),
The above nonlinear system can in principle be solved by a Newton-Raphson pro-
cedure, but the poor diagonal dominance poses problems to the convergence of
the procedure. In order to improve the diagonal dominance of the equations, an
iterative solution procedure is devised by resorting to a dual time stepping pro-
cedure [164] combined with an inexact Newton-Raphson method (the defect-cor-
rection method [99]).

The same system of equations 2.37 is applied to the case of dynamically adap-
tive meshes, i.e. meshes with variable topology. The passage from constant and
variable topology leads to a broader definition of the node-pairs set £ », which is
allowed to vary in time by means of a dynamic data structure, as it will be shown
in section 2.6.

2.4 Dual time stepping

System of equations 2.37 can be recast in matrix notation as

a_
R* (U™ = A—;V"“U”“ +S+RU™H =0 (2.38)
where U = (uy,...u NU)T is the average cell solution vector, V= (V1,... VNV)T is the

control volumes vector, R is the vector containing all numerical flux contributions
at time t*V and S = ﬁz’;zo agV"~ 90" is treated as a source term. Nonlin-
earity of the above system can in principle be tackled through a Newton-Raph-
son procedure, but the poor diagonal dominance of the system makes the conver-
gence difficult [34].

Dual time stepping aims at solving the nonlinear system by introducing a time
derivative in the fictitious time 7

dU}’l+1

+R*U™hH =0 (2.39)
dr

which is readily approximated through a backward difference formula and com-
bined with a Newton approximation of the implicit term, so that a sequence of
approximants U for U1, starting from UY =U", is obtained

—+

( 1 OR*
At ouT

)(U’”+1 —U™M+R*WU™H =0 (2.40)

After expanding the expression of R, the iteration formula is obtained

a—
— —— |l _ygmy = _lyntlgm _s_RU™) =0 (2.41)
AT At ouT At
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The exact numerical flux Jacobian R/8U7 is replaced with an approximate first-
order one (making the method a quasi-Newton scheme [134]), in order to in-
crease the diagonal dominance. Details of the computation can be found in [34,
93]. Finally, the linear system is solved by means of a symmetric Gauss-Seidel
method [34].

Local time stepping. In order to satisfy the Courant-Friedrichs-Lewy (CFL) sta-
bility condition for linear hyperbolic equations, stating that the Courant number
Co should not be greater than 1, alocal time stepping technique is used to define a
local pseudo-time step At; such that the CFL condition is locally satisfied at each

time step
V;Co
AT; = - (2.42)
2 ke #; ; Amax (Wi, Ug, ik, Vik) + Amax (Wi, &4, V7)

where Ay is the eigenvalue of the Roe matrix with largest absolute value. To in-
crease the convergence speed, the Courant number is increased when the residual
norm is decreasing through the update formula

[IRAO™ |2

Co™ =min (max (y
[IR(U™)|| 2

: 1) Co™™, cOmaX) (2.43)
where y is a user defined increase ratio, and Copax is an upper bound on the
Courant number.

2.5 Mesh deformation

Before performing mesh adaptation at time "1, the position of moving bound-
aries need to be updated according to a prescribed time law or to the structural
dynamics of the body they are attached to (the cases related to this work will be
showed in chapter 4). In order to preserve a body-fitted mesh at each time instant,
mesh nodes at time ¢!

boundary position.

need to be relocated so that they comply with this new

A standard approach proposed in [17] to preserve a body-fitted mesh with
boundary motion is to employ a structural analogy and to consider the fluid flow
domain as a fictitious elastic solid, discretized on the same mesh, whose unknown
displacement is treated in a Lagrangian way. A schematic representation of the
typical time advancement of the fluid flow solver with moving boundaries and
dynamic mesh adaptation is shown in algorithm 1, where mesh modifications oc-
curring at each time step are shown in italic (fluid-structure interaction is not con-
sidered yet).
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Algorithm 1 Schematic time loop for unsteady boundaries and mesh adaptation.

1: Read u?; /* Initial condition */
2: Read T; /* Set maximum time */
3: Read Npay; /* Set nb. of time steps */
4 SetAt=%; /* Set time step */
5: forn=0,..., N-1do /* Time loop */
6:  Update boundary position at t"*+1;
7: Deform mesh;
8: Predict solution on unadapted mesh;
9: form=1,..., Myaqap; do /* (Multiple) Mesh adaptation */

10: Conservative mesh adaptation,

11: end for

12: Fluid flow solution on adapted mesh;

13: end for

At each time step, a brand new elastic problem is considered, and the mesh
Q" =Q(t™) at time ™ is considered as the reference ("undeformed") configu-
ration. Defining the unknown displacements

o £ x(r "Dy —x(:™) (2.44)
the variational formulation reads
fQ L EW): o@™da=0 vve[H'Q")? (2.45)
with the Dirichlet boundary conditions

80D =x(e ") —x(e™) onT

6(I’l+1) =0 on aQ(n)\r(D”l) (2.46)

With the infinitesimal deformation hypothesis, the small strain tensor € reads

(Vv+(vwn7) (2.47)

DN | =

ev) =
while the Cauchy stress tensor o for a linear elastic material reads
o (V) =2uev) + Atr(e(v))I (2.48)

where y, A are the Lamé coefficients, typically expressed as functions of the elastic
modulus and the Poisson coefficient.
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Variable stiffness. Since adapted meshes are typically non-uniform, with highly
refined zones near solid bodies and specific flow patterns (like shock waves), var-
ious strategies have been studied to increase the stiffness of smaller elements so
to avoid mesh tangling (the occurrence of invalid elements with null or negative
volume). In this work, a variable stiffness approach is used, where a local elastic
modulus Ej inversely proportional to the minimum edge length on each element
Qy is assigned as

1
Ep=— ;
min; jez; |1X; — Xl

(2.49)

where % is the set of nodes belonging to the element k, and f is a tuning coeffi-
cient (in this work, a value between 2.0 and 3.0 is used).

Intersections of moving and fixed boundaries in three dimensions. In three-
dimensions, we can be faced with the intersection of a moving boundary (like a
rigidly-moving aircraft wing) with a fixed one (like a wall at the wing root). A strat-
egy to deal with this case is to consider a hierarchical application of the elastic
analogy, according to the following steps.

1. Compute moving boundary displacement at time "1,

2. Identify one-dimensional intersections of moving bodies with fixed bound-
aries, then apply the two-dimensional elastic analogy on the fixed bound-
ary, given the displacement of the one-dimensional intersection.

3. Apply the elastic analogy in the three-dimensional domain, given the com-
puted displacement on the two-dimensional boundary.

This methodology is currently implemented for planar fixed boundaries.

Time step split for large movements. When large boundary movements are re-
quired, it could happen that it is not possible to perform mesh deformation with-
out producing invalid elements. In this case, it is useful to split the time step in
several sub-steps and to solve several elastic problems successively, in order to
ease the required boundary displacement. In order to illustrate the procedure be-
tween time " and time t"*Y, we introduce a time cursors T keeping track of
the successfully elapsed time (starting from t), and a time cursor ¢ representing
the current tentative time (ending at 71y A maximum of i,y total sub-steps
is allowed, while a maximum of jax consecutive time reductions is allowed. A
pseudocode is shown in algorithm 2.

Parameters a”, a'*) determine the geometric progression of the time step de-
crease or increase, respectively. In this work, the values ™ = 0.5 and a'* = 1.1
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Algorithm 2 Time step split for large movements.

1 T=¢t"

2: t=¢")
3:At=t-1
4 j=0
5: fori=0,...,imax— 1 do
6: Update movement;
7 Deform mesh;
8: if Invalid elements then
9: Reset movement;
10: if j = jnax then
11: Return failure;
12: else
13: j+=1
14: t =min(t + a7 A1, D)
15: AT=t-T7
16: end if
17: else
18: T=1
19: if 7 = "V then
20: Return success;
21: else
22: t =min(t + ™ At, D)
23: AT=t-7
24: end if
25: j=0;
26: end if
27: end for
28: if i = i then

29: Return failure;
30: end if

/* Set old time cursor */

/* Set new time cursor */
/* Set time step */

/* Initialize split counter */

/* Decrease new time */
/* Set decreased time step */

/* Update old time */

/* Increase new time */
/* Set increased time step */
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have been used. Functions Update movement and Reset movement compute the
new boundary displacement or reset it to the previously valid values, respectively.
Deform mesh solves the elastic problem. In case of failure of the algorithm (for
exceeding the maximum value of sub-steps or successive time step reductions),
the remeshing library is called to improve the quality of the starting mesh at time
™ then the procedure is re-applied.

2.6 Conservative ALE scheme with variable topology

Continuous time interpretation of local remeshing operations. Dynamic
mesh adaptation changes the topology of a mesh by introducing or removing
nodes and edges, thus inserting or removing control cells and interfaces in the
finite-volume discretization. As outlined in chapter 1, solution conservation is
not automatically guaranteed unless specific numerical schemes are employed.
In constant-topology meshes, the ALE formulation allows to enforce conservation
through the computation geometrically-consistent interface velocities by means
of the DGCL.

The methodology developed in [75, 94, 140] appears as an extension of the ALE
approach to variable topology meshes. The very same Interface Velocity Consis-
tency method used to compute interface velocities, while fulfilling the DGCL, can
be applied to build a conservative solution transfer method which avoids solution
interpolation from the old to the new mesh. In order to do that, it is necessary
to introduce a continuous interpretation of each local mesh modification, so that
the motion of each interface can be tracked in time as new control cells grow from
null volumes, and removed control cells shrink to null volumes from time " to
time t"**1). In this way, swept volumes can be computed and used for the com-
putation of mesh interface velocities for every local mesh modification operation.
Discrete solutions in null control cells persist as degrees of freedom as long as they
are needed by a p-step time integration scheme, so that their value can contribute
to the computation of numerical fluxes.

Three-steps continuous time procedure. For a correct computation of swept
volumes with connectivity change, the continuous time interpretation of local
mesh modifications needs to be applied to the set of elements sharing the edge
interested by a modification (collapse, split...). A general procedure relies in split-
ting the local mesh modification occurring between time ¢ and time "V in
three steps.

1. The elements sharing the edge collapse from their previous (unadapted)
configuration to an arbitrary point; collapse swept volumes are computed.



2.6 Conservative ALE scheme with variable topology 51

A g Sl g

at=0. b 7=0.25. c7=0.5. d 7=0.75. ert=1.

Figure 2.3 — Three-steps procedure for a two-dimensional edge swap.

a tm, b Connectivity change. c (D,

Figure 2.4 — Three-steps procedure for a three-dimensional edge split.

2. The connectivity is changed at fixed time (no swept volumes).

3. The elements are re-expanded to their current (adapted) configuration; ex-
pansion swept volumes are computed.

The choice of the collapse point is arbitrary, and computation of swept volumes
both in the collapse and expansion phase effectively filters out all contributions
unrelated to the mesh modification operation.

An example for a two-dimensional edge-swap operation is given in figure 2.3.
For illustration purposes, a fictitious time 7 going from 0 to 1 in the time range
[£0D, t"+D] is considered. Figure 2.4 shows an example of a three-dimensional
edge split operation (only one element sharing the split edge is shown).

Handling of variable topology. The dynamic nature of the adaptive mesh is
handled by allowing for a time-varying definition of the set of adjacent nodes
inffl) collecting all cell interfaces present in the mesh at time "V, Since also
null cell volumes contribute to the numerical scheme through the volumes swept
by their interfaces during their collapse (in case of node deletion) or expansion (in
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case of node insertion), the additional set of node-pairs needs to be considered
HPT s ke ke ST st v £0) (2.50)

collecting moving interfaces between cells in the mesh at time "1 and cells de-
stroyed or created in the time range [t"*"P), t""*1), Handling of this time-vary-
ing mesh connectivity needs the usage of specific dynamic data structures; an
overview of the data structures employed in this work will be given in section 2.8.

Local remeshing operations The conservative procedure described above can
in principle be applied to an arbitrary mesh modification procedure. In
Flowmesh, mesh modification is performed through the link, introduced by B.
Re in her PhD work [141], with the Mmg remeshing library developed by C. Do-
brzynski and coworkers [45, 42]. The Mmg library [43] is a complete tool for
simplicial remeshing, supporting both two-dimensional, three-dimensional and
surface remeshing. Consistently with the metric-based mesh adaptation frame-
work presented in chapter 1, mesh modification is driven by a user-defined scalar
(isotropic) or tensor (anisotropic) metric field. Local mesh modification opera-
tions are performed if they lead to an increase in the mesh quality measure.

Beside the metric field, the user can provide a minimum and maximum edge
size. Element size variation is mitigated by imposition of a graded edge size vari-
ation. Given two consecutive edges ej, e;, their length variation should satisfy the
relation

1 le; |

< — < Rgrad (2.51)
hgrada  lezl s

where hg,q is a gradation control parameter. Mesh modification on a curved sur-
face is performed after the surface geometry as been partitioned and its geometry
represented by means of cubic Bézier curves. The accuracy of the geometrical ap-
proximation can be regulated by setting the maximum Hausdorff distance [42],
providing a measure of the distance between the ideal geometry and the approxi-
mated one.

A sequence of local mesh modification operation is performed by the remesh-
ing library each time it is called, i.e. at each time step. Being the main purpose
of the remeshing library that of returning a valid mesh at the end of each call, no
history of local remeshing operations (needed for swept volumes computation)
is automatically provided through API functions. Typically, entities in the out-
put mesh will not preserve any explicit mapping with entities in the input mesh,
even for persisting entities not removed in the remeshing process, since they will
be typically referenced by different indices in the data structures. A minimally
invasive tracking of local mesh modification operation has been implemented
in [141] by means of callback functions, allowing to update the mesh connectivity
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in Flowmesh by inserting/deleting mesh entities while preserving references to
persistent mesh entities, so that swept volumes can be computed and contribute
to the correct finite-volume cell solution.

A brief summary of the local mesh modifications implemented in Mmg [42] and
supported in Flowmesh is reported in the following.

Node deletion. This operation is implemented as an edge collapse. One end of
the edge is collapsed onto the other one, and their connectivities are merged. As a
result, all the elements once sharing the collapsed edge are also deleted.

Node insertion. A node can be inserted by means of three different operations:
Edge split, element split, Delauney node insertion. Edge split inserts a new node
in the barycenter of an edge; in this case, the original edge (and the node-pair
between its ends) is deleted and two new edges (and node-pairs) are created be-
tween the new node and the old ones. Element split inserts a new element in the
barycenter of an element; old edges (and node-pairs) of the tetrahedra are un-
touched by the operation, but new edges (and node-pairs) are created between
the new node and the old tetrahedra vertices. The last operation uses Delauney
triangulation to completely reconstruct the connectivity of a new point p, whose
position has been identified according to metric field and quality measure crite-
ria. Firstly, a cavity surrounding point p is defined by deleting the elements whose
circumsphere contains the new point p. Then, new tetrahedra are created by con-
necting the new node to the boundary of the cavity.

Edge swap. A three-dimensional extension of the classical two-dimensional
edge-swap operation can be performed by interpreting it as a sequence of edge
split and edge collapse operations. Firstly, the edge to be swapped is split. Then,
its two halves are collapsed, leaving the swapped configuration as a result.

Node relocation. A number of regularization techniques, such as barycentric
regularization [65], aim at improving mesh spacing by moving nodes while keep-
ing their connectivity unchanged. In this respect, these techniques are analogous
to mesh deformation techniques, and the simple ALE formulation is sufficient to
recover solution conservation.

Special care in node-pair reactivation Since a sequence of local mesh modifi-
cation operations is performed at each time step, it is possible for the remeshing
library to re-create an edge that was previously deleted during the same time step.
This is the case, for example, of an edge split operation inserting a new node k be-
tween nodes i, j followed by the collapse of either of edges i — k or j -k, recreating
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a connection between nodes i and j. In this case, it is necessary to recognize that
the new edge i — j contributes to the same node-pair i — j already existing in the
discretization, so that its existence is preserved. This operation needs to search a
node-pair by its nodes, and it can needs some programming care in order to be
performed without significant performance penalties 2.9.

2.7 Mesh adaptation strategy

As introduced in chapter 1, a metric-based approach is used in this work for con-
verting an error indicator field into an edge size map to be used for remeshing pur-
poses. Construction of an isotropic size map is described in section 2.7.1, while an
anisotropic size map is introduced in section 2.7.2.

2.7.1 Isotropic mesh adaptation

Following a feature-based approach, the error indicator employed in this work is
built using first and second derivatives of a scalar component of the conservative
solution or a related quantity (like Mach number, or entropy, or vorticity magni-
tude) in order to target the most relevant flow features, without any attempt of a
mathematical error estimation. In this work, an error estimator e; based on the
gradient of a quantity p; in the control cell Q; is defined as

ei(pi) = VN|Vpl| (2.52)

where multiplication by a power of the cell volume (with d = 2,3 as the space di-
mensions) contributes to smoothen sharp variations and gives the same physical
dimensions to both p; and e;. A Hessian-based indicator is defined through the
projection of the Hessian matrix H(p;) along the tangent T and normal & direc-
tions to the fluid flow, as

ei(pi) = V2\ B, 2 + EE p,  Eth,p) =2 H(p) (2.53)

Extending the error indicator proposed in [167, 113], a more complex error indi-
cator is defined as [93]

V2413 TH(p)#| VY& Vp;)

1/d 4 t adn A
Vl. |T-Vp;|+elmean(p)| Vl ITTH(pi)T|+€|mean(p)|

ei(pi) = 259
where the term e|mean(p)| at denominator is used to avoid singularities.

In order to define a desired edge size map, the mean u and the standard de-
viation o of one of the above error indicators over the domain are defined. Then,



2.7 Mesh adaptation strategy 55

two refinement and coarsening thresholds are defined as

Tr=U+kro Tc = ket
k, (2.55)
TR, = H+2kro TC1:?,U

where kg, k¢ are user-defined parameters. For each node in the mesh, once the
current mean edge length is defined as

1
hi=— Y lIxi—xll (2.56)
Ni ke X 4

with N; the number of edges connected to the node, a target mesh spacing (or
metric map) fl,- is defined as a discrete function of the error indicator as

0.25h; e;=7p,
0.5h; TR >e€;27TR
hi(e)) =1 h; TR>e;>1C (2.57)
2h; Tcze >1Tg,
4h; e;<T¢

and finally the target spacing is required to fulfill some desired minimum A, and
maximum hpax edge size

Following [2], a multi-passage strategy is implemented in order to allow the above
metric map to capture simultaneous flow features of different strength. For in-
stance, considering a shock wave and an expansion fan simultaneously present in
the flow field, the statistics of the error indicator would be most likely dominated
by the effects of the shock wave on the solution derivatives, thus preventing nodes
in the expansion fan to be given a decreasing desired size. A sequential reappli-
cation of the above procedure, with the exclusion of nodes already marked for
refinement from the computation of the error indicator statistics, allows to assign
a decreasing metric map also on nodes interested by less strong flow features.

Whenever it is necessary, the pointwise metric map (equation 2.57) is interpo-
lated among neighbor nodes.

2.7.2 Anisotropic mesh adaptation

The isotropic metric map defined in section 2.7.1 is generalized to the anisotropic
case by means of the error estimation analysis presented in [8, 66] and introduced
in chapter 1.
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As introduced in chapter 1, the desired metric tensor map . (x) is defined as
a corrected eigendecomposition of the Hessian tensor of the solution

Al 0 0
M=RAR'Y, A=|0 1, 0 (2.59)
0 0 A3
. A1 1
/li:min(max(cdl il . ) - ) (2.60)
€ hmax hmin

with A;, R being the eigenvalues and eigenvectors of the Hessian tensor, hmin, max
being the minimum and maximum desired edge length, c; a constant dependent
on the space dimensions (9/32 in three dimensions) and € being the maximum
tolerated interpolation error.

2.8 Array-based data structures

The selection of a suitable data structure is essential for the feasibility and effi-
ciency of mesh generation [63, 68, 65]. In the last F 1owme sh version [140] imple-
menting the link to the MMG library, an array-based data structure is employed. It
is made of one pre-allocated array of structures (AoS) for each typology of mesh
entity (elements, edges, nodes), where the structure in each array entry is allo-
cated only if it corresponds to an existing mesh entity. A sufficiently large pre-
allocation of the AoS allows for inserting additional mesh entities during adap-
tation without a significant memory penalty (since entity structure is allocated
only when the entity is actually created in the mesh, and freed when it is deleted),
while the array allows to preserve direct memory access. Each mesh entity struc-
ture stores both the downward connectivities (e.g. element-to-edges, element-to-
nodes, edge-to-nodes ...) and the upward connectivities (e.g. node-to-elements...)
to allow for graph search. The object-oriented implementation allows to insert,
delete, move, copy mesh entities, while an additional packing operation is pro-
vided to restore contiguity of active array entries by moving entities from the bot-
tom to the first entry of the array.

Part of this work has focused on completing the support to the above data
structure in the solver code, thus removing conversions with legacy fixed-size ar-
ray data structures. A major performance improvement has been obtained by
adding an additional hash-based data structure for node-pairs, as it is shown in
section 2.9.
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2.9 Node-pair search by hashing

Other then inserting, moving, and deleting, searching mesh entities is an addi-
tional operation needed in many tasks [63, 68, 65]. This operation can become
particularly challenging when we look for an entity given its downward connec-
tivity, e.g. when looking for an element or an edge (or node-pair) given the nodes
attached to it. Processing every entity and checking if its nodes correspond to
those required would not be the most efficient solution. In this case, hashing is a
possibility for storing node-pairs and index them based on their vertices [68].

Hashing is a form of database binning which, when applied to mesh edges,
associates a single integer number (a key) to a pair of node indices. If the key is
used as array index for the corresponding edge, this allows to query an edge given
a pair of nodes with ©(1) cost. Collisions are usually possible, i.e. different pairs
of node indices returning the same key, which needs to be associated to several
edges. The efficiency of hashing is retained as long as the number of collisions is
low.

This strategy has been implemented for node-pair search, which is needed
when an edge is destroyed and re-created during the same time step (as described
in section 2.6). The employed hash table consists in a fixed-size array of struc-
tures (sufficiently large to contain the maximum number of keys envisioned for
the problem) accessed by an integer key computed from a combination of the
node indices. Before mesh adaptation, all the node-pairs are hashed (a linear cost
operation) and their array index is stored in the hash table at the corresponding
key. In case of collision, a single-link list is stored at the corresponding key. During
mesh adaptation, the existence of a removed node-pair for a newly created edge
can thus be checked with @(1) cost (instead of scanning, each time, the whole
node-pair array looking for the good pair of nodes, whose cost grows as the prod-
uct of the number of node-pairs and the number of created edges). Performance
improvements are shown in table 2.1. The employed test case is the three-dimen-
sional steady flow around the Onera M6 wing [144]. All tests are run on 12 CPUs,
mesh adaptation is serial. Cases A, B, C refer to the three different initial meshes
which have been employed for scaling purposes; cases B and C perform adap-
tation on the output mesh from cases A and B respectively. Mesh adaptation is
isotropic, driven by the Hessian of the Mach number, with 3 levels of multi-pas-
sage technique performed with thresholds k, = 2.0, k. = 0.18, hgrag = 1.38 in the
domain and hgrad = 0.0005 on the wing surface. Tests 1, 2, 3 refer to (1) the first
software implementation, without hash tables and using MMG version 5.1.1, (2) the
same software implementation, updated to the develop branch of MMG version
5.1.3 (which employs a fast octree search algorithm), (3) the final software imple-
mentation using both the develop branch of MMG version 5.1.3 and nodepair hash
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Case Mesh nodes Mesh elements Wall time | Adapt. time
Al 93432 — 165198 543590 — 942234 12h 59m 22s | 5h 31m 46s
A2 93432 — 165213 543590 — 942551 9h 50m 24s | 3h58m 33s
A3 93432 — 165213 543590 — 942551 5h 11m 43s 15m 23s
B1 165198 — 290573 | 942234 — 1684211 | 32h 46m 02s | 17h 39m 30s
B2 165198 — 268703 | 942234 — 1545451 | 16h 12m 16s | 9h 7m 53s
B3 165198 — 268703 | 942234 — 1545451 7h 46m 7s 40m 9s
C1l | 290573 — 504768 | 1684211 — 2954999 | 86h 07m 33s | 53h 20m 18s
C2 | 290573 — 444381 | 1684211 — 2586237 | 38h 13m 18s | 22h 11m 9s
C3 | 290573 — 444381 | 1684211 — 2586237 | 17h 44m 16s 1h 18m 9s

Table 2.1 — Scaling tests on the Onera M6 wing, for different software implementations.

tables. Both total wall times and mesh adaptation times (in the F1owmesh cou-
pling, thus including swept volumes computation) are presented in table 2.1. Per-
formance improvement in adaptation times grows nonlinearly with mesh nodes,
with 1.4x, 1.9%, 2.4x improvement factors due only to the update in the MMG ver-
sion. Further improvements of 15.9x%, 13.7x, 17.1x are achieved with the usage of
nodepair hash tables, leading to total improvements in adaptation times of 22.1x,
26.5x, and 41 x. With respect to total wall time, the time percentage spent in mesh
adaptation improved from to 42.5%, 53.9%, 61.9% to 4.8%, 8.6%, 7.3% in the three
test cases.



Numerical models for dynamic mesh
adaptation with constant connectivity

To conclude this part on the mathematical and numerical aspects of conservative
mesh adaptation for unsteady compressible flows, this chapter presents a com-
plementary, self-contained work on the specific mesh mechanics algorithms for
constant-connectivity mesh adaptation.

In this chapter, a Laplacian-based variational model for constant-connectiv-
ity mesh adaptation in the reference domain (inspired by [37, 38]) is extended to
moving boundaries, and it is combined with an elasticity-based model inspired
by [128] to provide a mixed model capable of overcoming some limitations of both
its components.

The work shown in this chapter has been performed at the INRIA research cen-
ter in Bordeaux, under the supervision of Cécile Dobrzynski and Mario Ricchiuto,
with the FMG library for r-adaptation.

3.1 Introduction

Following the overview given in chapter 1.6, we consider PDE models for r-adap-
tation which can be obtained from the minimization of an adaptation functional.
While most of these models are formulated for the parametric coordinates & (x) in
the physical domain Qy, we follow the approach shown in [37] to directly formu-
late the problem for the mesh coordinates x(§) in the reference domain Q¢, so that
the resulting problem becomes similar to Lagrangian methods in computational
mechanics.

In both the Laplacian-based and elasticity-based models which will be shown
in the following, mesh adaptation is driven by a monitor function w built from a
scalar fluid flow solution p(x) as

w(X) = \/1 +allVepMIIy, + BIHe (D ®IIF, +TlIplI7, 3.1

where V¢ and Hg denote the gradient and Hessian computed on the reference
domain Qg, while their norm is defined as

il ) (3.2)

=min|l, ————
17y mm( ymax([[ 1)
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so that some saturation is added near the norm maximum according to the value
of y. The above definition allows the user to govern the intensity of mesh adapta-
tion through the parameter pairs (a,yq), (8,Yp), (T,Y71)-

3.2 Weak formulations

3.2.1 Laplacian model

Following [37], we formulate a Laplacian model for mesh adaptation in the refer-
ence domain Q¢
Vi (w®)Vex)=0  inQg (3.3)

whose boundary is split as 0Q¢ = F? U F? so that Dirichlet conditions are imposed

on 1"? and slip conditions are imposed on Fg
x=¢ on F?
S (3.4)
n-x—-&=0 onl"‘f

With the imposition of an additional Neumann condition ,fi- V¢x = 0 on Fg, a
variational formulation for the above problem can be readily obtained as

f W Vev-VexdQe =0, Yve H'(Qp) (3.5)
Qg

For each space direction, the above equations are uncoupled and nonlinear
through the monitor function w(x), which satisfy the double role of driving mesh
adaptation towards the flow patterns captured by the monitor function, and of
increasing element stiffness. This can be better appreciated by defining the dis-
placements

0=x-¢& (3.6)

and inserting them in the Laplace equation 3.3, to get
Vg . (a)V{a) = —Vga) in Q{ (3.7)

Thus, mesh nodes displacements are driven by the gradients of the monitor func-
tion, which also provides a variable stiffness term.

3.2.2 Elastic model

We consider the domain as an elastic solid whose displacements § are governed
by the equilibrium equations [135]

Ve-0(6)+£f=0 in Qg (3.8)
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where o is the Cauchy stress tensor, and f is a volume force, whose definition is
inspired by the Laplacian model

f=V:ox 3.9)
The domain boundary is split as 0Q¢ = F? U Fg so that Dirichlet conditions are
imposed on T ? and slip conditions are imposed on T’ ;f
6=0 on 1"?
S (3.10)
n-6=0 onTy

A small displacement hypothesis is introduced so that the small deformation ten-
sor is defined as

1
€®)=7 (Ved+(Ved)T) (3.11)
leading to a variational formulation
f €WV):0(6)dQg = f v- Vo (x) dQg, Vve [H& (Qg)]d 3.12)
Qg Qg

A linear constitutive equation is used
o (6) =2ue(6) + Atr (e(6) 1 (3.13)

With respect to the Laplacian model, the elastic one is linear, allowing for a sin-
gle evaluation of the system matrix, and equations are coupled in different space
directions. The choice of constant Lamé coefficients u, A doesn’t allow to exploit
the automatic stiffening effects which is present in the Laplacian model, so care is
needed to avoid mesh tangling for high values of forcing.

3.3 [P, finite element discretization

Introducing a linear finite element basis, gradients become constant functions
that can be analytically evaluated through geometric considerations. On a generic
element k, the gradient of a nodal basis function ¢; at node i can be expressed as
a function of the outward unit vector f; orthogonal to the face opposed to node i

and its height h; as
1
Vehi = ———n; (3.14)
h;
Height h; is readily obtained from the relation between the element volume [Q|

and the face area |F;|

Q= —L (3.15)
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so that the gradient can be written as

|Fi|h;
Vepi =——— 3.16
1 g 40
Defining the integrated normal vector!
n; = —(d - 1)!|F;|i; (3.18)
the gradient is finally expressed as
n;
Vepi = —— 3.19
{‘»bl Al ( )

The last expression will be used to compute gradients appearing in the variational
formulation presented in the previous sections.

3.3.1 Laplacian model

Once a [P, basis function is chosen, each space coordinate x*,k = 1,...,d is ex-
panded as x4 = Z;li X x}“ so that the Galerkin projection reads

p
Y. | 000Vegi Vep;dQexf=0, Vi=1,.,n, (3.20)
j=170¢

The monitor function on each element will be considered constant and equal
to the mean of the nodal value on the element, so that by inserting the gradient
expression 3.19 leads to the definition of the stiffness matrix entries

n;-n

Kij(x):fg W@V Ve dQe = Y @px) (3.21)
3

J
kE%iﬂ@j (d')2|Qk|

3.3.2 Elastic model

Introducing a linear nodal finite element basis, we would like to write the stiffness
matrix entries for nodes h, k, coupling space directions i, [, as a generalization of
the Laplacian case (eq. 3.21)

TAil
n, A"'ng

K”:f Vi) AV dQy = i — (3.22)
hk Qi( f(ph) fd)k 13 SE%%%]C (d!)2|Qs|

IWhile in d = 2 dimensions the factorial term gives no real contribution to the above definition,

in d = 3 dimensions the term (d — 1)! = 2 it allows to directly compute the integrated normal vector
n; as the oriented area of the parallelogram formed by two arbitrary edge vectors eg1,eg2 on the face
F; (provided that its nodes 0,1,2 have counter-clockwise orientation) as

n; =ep2 % €p] (3.17)
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Denoting displacements as u = § to avoid confusion, thanks to the symmetry
of the stress tensor, the double product in the variational formulation is compactly

re-expressed as
f e(v):a(u)dQ;=f Vev:io(u)dQg 3.23)
Q¢ Q¢

Using Einstein’s notation
Vevio(u) =v; o) (3.24)

we aim at rewriting the double product as a function of basis function gradients
(,bf“m, as in the Laplacian case, by looking for a relation of the kind

vl Al @k uf (3.25)

so that the stiffness matrix entry for nodes #h, k, coupling space directions i, [, will
read

Kl = f Pl AL Bk, dOs (3.26)

The above relation can be obtained by introducing the constitutive relation
for the Cauchy stress tensor, and the definition of the small strain tensor, into the
double product

v;,j0ij = Vi j(u€ij+ Aemmbij) =
—ligh (# (l(pku;c + l¢;.cu'.c) + Aemm) -
:Ulh('b, ( ,u(,bku + = ,ugbkuk+/1([>mu 5,]): (827
= Ugl¢f;. (Emﬂa,—m + SHOim 1+ w,-jalm) ok uk

For each couple of indices 7,/ a matrice with indices j, m can be written

; 1 1
A}lm:_N5il6jm+_H6im5jl+/16ij51m (3.28)
2 M g S
4D di‘a,gonal En;rry li Entry il

Since A’! is symmetric, in three dimensions the six independent matrices read

[u+A 0 0] [0 A 0]
A= | 0o iy of A®= |ip 0 0
0 o 1y 0 0 o
ik 0 0] (0 0 0]
22 23
A%= |0 upu+A O A®= |0 0 A (3.29)
[0 0 ;u 0 zp 0]
(e 0 0 ] (0 0 u]
A¥= o Ip o | A= (0o 0 o
0 0 p+Af A 0 o]
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3.4 Jacobi iterative solution

The algebraic systems derived in the previous section are solved by means of a Ja-
cobi iterative method [139]. The procedure is detailed here for both the Laplacian
and the elastic model.

3.4.1 Laplacian model

Compactly denoting the array of unknown node positions x = [xf] and the system
matrix K, the nonlinear algebraic system for the Laplacian model reads

Kx)x=0 (3.30)
Introducing again the displacement 6 =x — ¢, the system is rewritten as
Kx)6 = -Kx)¢& (3.31)

Jacobi iterations allow to uncouple each nodal positionx;,i = 1,..., N, by splitting
the matrix into the diagonal and extra-diagonal parts

kii®6;=— Z kl‘j5j — k,‘jf]’ (3.32)
Jj#i je%i
JESB;
and then evaluating the left-hand-side at the current iteration k + 1, and the right-
hand-side at the previous iteration k to get an iteration equation

kl[];]6£k+1] - _ Z ky]clagk] _ Z ky]C] 5] (3.33)
J#i je%Bi
je%B;

Adding the term k;l;]agk] to both sides allows to finally write a simpler equation

[k] slk+1] _ .[k] glk] _ [k] k]
ki;8; =k 6]. Z@ kl.].x]. (3.34)
JESB;

Thus, after the initialization é 5.0] =0, Jacobi iterations for k = 1,...,K are per-

formed as
k1) _ slkl L (k] IK]
0 =0 2 kijx;
ii JEB (3.35)
xE.’”” =x£.k] +0 (fi +6£.k+” —xgk])

where 0 € [0, 1] is arelaxation parameter, allowing to reduce the imposed displace-
ment with respect to the previous iteration, in case it produces invalid elements.



3.4 Jacobi iterative solution 65

3.4.2 Elastic model

Similarly to the Laplacian case, the algebraic system for the elasticity equations
reads
Kd =b(x) (3.36)

where b is the discretization of the forcing term, dependent on position through
the monitor function w(x). As before, the system matrix is split into a diagonal and
extra-diagonal part
kii6;=b— Z ki (3.37)

J#i

je%Bi
then left and right hand sides are evaluated at different steps in order to obtain the
Jacobi iteration for each node i

1
5 = — b=} kil
i J#i (3.38)
jeBi

<l 1) = x4 g (g + 8101 —xlH)

where the same elements validity check is performed for the computation of the
relaxation parameter 0.

In order to improve the convergence of the iterative method, we introduce a
parameter o = 0 to modify the split equation 3.37 as follows

(kii+0')6i=b+0'6i— Z kij6j (3.39)
J#i
jeBi

In this way, by evaluating the left-hand-side at iteration k + 1 and the right-hand-
side at iteration k, we obtain the iteration equation

5£.k+1] — m b[k] + (T(SE.M _ Z kij5[jk] (3.40)
ii J#i
JjEBi

which is in fact an under-relaxed version of the Jacobi method 2.

2By defining an equivalent parameter w as

kg
w=——-" (3.41)
kii +0
equation 3.40 can be recast in the conventional form of a Jacobi Over (Under) Relaxation (JOR)
method [139]

w
! kii Zi J i
J#i
jeBi
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3.5 Mixed model

In order to overcome some limitations of the Laplacian and the linear elastic mod-
els, namely the nonlinearity of the first (with the compulsory re-computation of
the system matrix at each Jacobi iteration) and the inability of the latter to with-
stand strong solution gradients (due to its constant stiffness coefficients), a pro-
cedure for blending the two of them have been introduced. For each iteration k
of the Laplacian model, we run m = 1,..., M iterations of the elastic model. Fi-

nally, the displacements 6£.kL+ 1 given by the Laplacian model and the displace-
ments & Ekg 1 given by the elastic model are mixed and the new positions xgk“] are
computed according to the relations

8 = (1-b(p) 8" + bp)& (3.43)

= = xlb 4 g+ 811 V) |
The scalar blending function b: R — [0, 1] is defined as

h(p) — hi
b(p) = —£2~min (3.44)

B hmax - hmin

where hmin, Bmax are the minimum and maximum prescribed edge sizes, and h(p)
is an Hessian-based edge size map inspired by anisotropic mesh adaptation [66]
and defined as

1
h(p) = (3.45)

\/min(maX (%Amax (Hf (p)) ’ hr_nzalX) ’ hl;zin)

where Anhax represent the maximum absolute value of the eigenvalues of the solu-
tion Hessian. Equation 3.45 can be rewritten as

. 1/2 1
h(p) = max (mln (? m, hmax) , hmin) (3.46)

and it allows to distribute the Laplacian and the elastic models so that the Lapla-
cian one is used near the strongest solution variations, while the elastic one is

employed in the smoothest flow regions 3.

3 Given the expression of the edge size map (equation 3.45), the blending function (equa-
tion 3.44) depends from the scalar flow solution p and from parameter € as follows

1 €= cd/lmux(p)hgnax
61/2—01/2/11/2 (p)h .
. - d max min 2 2
blpie) = A1 (0) hmax—Tmin) caAmax(P) iy, <€ <cadmax(P)hinax (3.47)
0 GSCdllmax(p)hfnln
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3.6 Dynamic mesh adaptation

Following [154, 38], dynamic mesh adaptation during the time evolution of a fluid
flow simulation is performed by repeating the steady adaptation procedure de-
scribed in the previous section at each time step, without the explicit formulation
of a differential equation in time for mesh motion, thus greatly simplifying cou-
pling with existing flow solvers.

Unsteady flows over fixed boundary domains. In this case, the reference mesh
¢ is constant in time, while the computational mesh x(t"*1) is the r-adaptation
of the (fixed) reference mesh. Thus, the displacement at each time step n+1 is
initialized with the value achieved at the last Jacobi iteration K achieved in the
previous time step n

6&0](n+1) _ 6£K](n) (3.48)

so that successive Jacobi iterations during time evolution are effectively accumu-
lated on the nodes position

xM =B g k=1,..,K, n=012,... (3.49)

At each time step, the flow solution is predicted on the previous computational
mesh, then the computational mesh is adapted, and finally the flow solution is
recomputed on the adapted mesh.

Unsteady flow over moving boundary domains. In this case, the reference
mesh &(t7**1) evolves in time (due to the need to comply with moving bound-
aries), and the computational mesh x(t*D) is the r-adaptation of the reference
mesh at the current time. Differently from the fixed boundary case, the evolu-
tion of the reference mesh prevents the direct accumulation of Jacobi iteration in
the mesh nodes position. Thus, at each time step the reference mesh is deformed
to comply with boundary motion, then the flow solution is predicted on the de-
formed reference mesh, and finally the computational mesh is adapted and the
flow solution is recomputed on the adapted mesh.

3.7 Model assessment on an analytical function in 2D

The mesh adaptation models are tested in this section on an analytical solution
function
2
p=e®",  w=1\/x2+y2-R (3.50)

with R = 0.5, in a square domain [-2,2] x [-2,2], on a uniform mesh with 7636 tri-
angular elements. This function is chosen in order to test capability of the models
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to adapt on a circle represented by a smooth solution field, before their applica-
tion to solutions with sharp features, like shock waves. Figure 3.1 shows the effects
of the Laplacian and the elastic models. Both models are run with the adaptation
parameter values a« =0, f =0, T = 100, y; = 1 for the definition of the monitor
function w (eq 3.1), but different values of 6 (400 for the Laplacian, 40 for the elas-
ticity) are taken in order to avoid avoid mesh tangling for the elastic model. Re-
sults are presented for 20 Jacobi iterations (a typical value in unsteady flow simu-
lations), and in the limit of many Jacobi iterations (3000 for the Laplacian model,
180 for the elastic model). Some considerations can be made.

e Given the same solution feature (in this case, a circle), the elastic model
needs a much smoother monitor function with respect to the Laplacian
model to produce valid meshes. This property becomes essential for ap-
plication on shock waves, and it prevents in practice the application of a
purely linear elastic model to transonic and supersonic flow solutions.

¢ The Laplacian model has a strong local effect, i.e. it is extremely capable to
refine on sharp solution fronts while preserving good quality in small ele-
ments, but deformation does not propagate quickly in the domain, produc-
ing a strong element stretching immediately after and before the solution
front.

¢ In the limit of many Jacobi iterations, the Laplacian model is still able to
preserve good quality in the refined zones (for as mush as 3000 iterations, in
this test case), while the elastic model fails in this respect (in this case, lim-
iting the allowed iterations to 180), but it is able to produce much smoother
meshes far from the solution fronts (zoom in figure 3.2).

The main motivation for the mixed model developed in section 3.5 is to pre-
serve the good element quality in the refined zones produced by the Laplacian
model, while maintaining a smooth mesh outside solution fronts, as in the elastic
case. Figure 3.3 shows the results for the mixed model applied to the same analyt-
ical solution function, for 8 = 400, with Laplacian parameter values & =0, =0,
7 =100, y; = 1, and elasticity parameter values « = 0, = 10, yp = 0.1, T =100,
v: = 1 varying the value of the parameter €, which governs the blending of Lapla-
cian and elastic model, for 20 Jacobi iterations and in the limit of many iterations.
For each Jacobi iterations, 200 iterations of the elastic model are performed. The
smoothening effect given by elasticity is visible in the smooth regions away from
the solution front, especially inside the circle. As the value of € is increased, the im-
portance of the elastic part increases and the robustness of the model is reduced,
as can be seen from the instability of the refined circular zone and the decreasing
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Figure 3.1 — Adaptation on analytical solution functions in two dimensions, Laplacian and

elastic models.
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Figure 3.2 - Zoom on Laplacian (left) and elastic (right) model adaptation for many Jacobi

iterations.

maximum number of Jacobi iteration that is possible to perform before incurring
in mesh tangling. Figure 3.4 shows a comparison between Laplacian and mixed
model, for € = 1073 and 20 Jacobi iterations. Refinement on the circular front ap-
pears to be preserved, while the element stretching immediately outside of it is

significantly reduced.

3.8 Model assessment on an analytical function in 3D

Assessment of the capabilities of the model in three-dimensions, with curved
boundaries, is performed by using the analytical solution function

p = e 1000y-x*=2% (3.51)
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Figure 3.3 — Adaptation with the mixed model, for varying values of e.
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Figure 3.4 — Zoom on Laplacian (left) and mixed (right) model adaptation for 20 Jacobi
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in a unit sphere on a uniform mesh with 352436 tetrahedral elements. Both the
Laplacian and the mixed model are run with @ = 1000,y =1, =0, 7 = 0 for
20 Jacobi iterations, while the mixed model employs 30 elastic iterations for each
Jacobi iteration, with ¢ = 1073 and a = 0, B =0,7 =10, y; =0.1 for the elastic part.
Results are shown in figure 3.5. The mixed model is able to reduce the element
stretching caused by the Laplacian model, and the consideration presented for
the two-dimensional testes still hold, with the remark that in three dimensions
additional care is needed in the choice of adaptation parameters in order to avoid
the possible occurrence of mesh tangling.
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Figure 3.5 — Adaptation to an analytical function in three dimensions. Analytical function
(top), Laplacian model (bottom, left), and mixed model (bottom, right).
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3.9 Adaptive simulation of unsteady flows over fixed
boundaries

This section is devoted to the application of dynamic mesh adaptation with con-
stant connectivity to unsteady compressible flow simulations. The fluid flow so-
lution is obtained through the F 1 owme sh solver described in chapter 2.

3.9.1 Two-dimensional forward facing step

A uniform Mach 3 flow of ideal gas hits a step (0.2 length unit high, located at 0.6
length units from the inlet) enclosed into a 2D wind tunnel (1 length unit wide
and 3 length unit long), and a complex system of interacting nonlinear waves is
developed over time. This problem has been extensively used as a benchmark to
test numerical methods for compressible flows [52, 163, 176]. Slip boundary con-
ditions are imposed on the top and bottom walls, while inlet and outlet conditions
are imposed based on the characteristic directions. Although no analytical solu-
tions are available for this problem, this case has proven to be a valuable tool for
testing numerical schemes due to the difficulty in accurately reproducing several
flow features as time evolves:

1. The position of reflected shocks on walls, and particularly the Mach stem
on the top wall — Too large numerical dissipation causes a lag in the shock
position as time evolves. Particularly, the contact discontinuity originating
from the Mach stem on the top wall has to form approximately at time ¢ =
1.5 in order for the shock pattern to be correct at later time instants.

2. The regular shock reflection on the bottom wall — The singularity at the
step corner causes a spurious entropy layer [176], which interacts with the
incoming shock, thus producing a fictious Mach reflection with a normal
shock on the bottom wall too. Woodward and Colella [176] imposed an ad-
ditional, artificial boundary condition on the cells surrounding the corner
in order to impose constant entropy and total enthalpy throughout the time
evolution, thus avoiding most of the spurious entropy production and ob-
taining a regular shock reflection with oblique shocks on the bottom walls.
Woodward and Colella [176] and other following works (ex. [41]) which
didn’t impose any special treatment at the corner showed that the spurious
Mach reflection converges to a regular shock reflection as the grid is refined.

The same test case has also been employed in [38]. Out initial mesh is a De-
launey triangulation made of 16710 elements, 8556 nodes, with an edge length on
boundary equal to 2 x 1072,
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Results on constant-connectivity meshes are compared with anisotropic mesh
adaptation with topology changes. The same density contour levels (30 equis-
paced lines, from the minimum to the maximum value) as in [176] are showed
(figures 3.7,3.9,3.11,3.13,3.15,3.17,3.19) together with the corresponding meshes
(figures 3.6,3.8,3.10,3.12,3.14,3.16,3.18).

t =0.5 The main feature to be captured is the bow shock approaching the top
wall. Both anisotropic and moving mesh adaptation have difficulties in catching
the tail of the shock, the former being worse due to the local mesh derefinement.
Anisotropic mesh adaptation manages to adapt on part of the expansion fan stem-
ming from the step corner, while gradient-based moving mesh adaptation mostly
adapts on the moving shock.

t =1 The shock has impacted on the top wall, and the reflected shock is inter-
acting with the corner expansion fan. Although the moving mesh doesn’t adapt
on the expansion fan, the shock appears to be correctly curved by the interaction.

t=1.5 Thereflected shock nowimpacts the bottom wall. This reflection is areg-
ular one, with oblique shocks, while the reflection on the top wall is a Mach reflec-
tion, with a normal shock connecting the incoming and outcoming shocks plus
a contact discontinuity originating from the intersection. The stem and contact
discontinuity begin to be visible at this time, and the anisotropic mesh adaptation
gives the best results on the resolution of the forming contact discontinuity.

t =2 The wave pattern is moving downstream, curving under the effects of the
interaction with the corner expansion fan. Results on the three simulations are
mostly comparable.

t=1{2.5,3,4} Asbefore, but now the effects of the interaction of the regular shock
reflection with the spurious entropy layer on the top wall begin to be visible. The
anisotropic mesh adaptation gives the best results in preserving the regular shock
reflection.

The Laplacian model is run using mass density as the scalar solution to drive
the adaptation, with parameter values a = 40, vy, = 0.1, = 10, Yp=051=0
with 10 Jacobi iterations. The mixed model, instead, is run using the Mach num-
ber as the scalar solution to drive the adaptation, with parameter values a = 40,
Yo = 0.05, =10, yg = 0.5, 7 = 0 for the Laplacian part, and parameter values
a =10, Y4 =0.5, =10, y5 = 0.05, T = 0 for the elastic part, with € = 5 x 107%. The
difference is due to the fact that the mixed model reduces the element stretch-
ing produced by the Laplacian iterations, so it is possible to use more aggressive
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Anisotropic | Laplacian model | Mixed model
N° elements at t =4 10801 16710 16710
N°nodesatt=4 5511 8556 8556
Computational time 49m 18s 1h 16m 54 s 57m 31s

Table 3.1 - Mesh statistics and computational times for the forward facing step cases.

parameters for the Laplacian part, thus recovering some adaptation effect on the
expansion fan starting from the corner, and on the contact surface starting from
the triple point.

Table 3.1 compares mesh nodes and computational time for anisotropic adap-
tation with topology change, Laplacian model and mixed model. All simulations
are run on 4 CPUs, mesh adaptation is serial. Anisotropic adaptation provides the
most competitive computational times, but this can be due to the significant re-
duction in the number of nodes. It is interesting to note that the mixed model,
notwithstanding the increase in computational operations, manages to be faster
than the Laplacian model. This is due to the reduced element stretching in the
direction orthogonal to solution fronts, which ease the convergence of the flow
solver thus reducing the number of iterations in the dual time step integration.

3.9.2 Three-dimensional forward facing step

A preliminary application to a three-dimensional unsteady simulation is done
through a three-dimensional extrusion of the forward facing step geometry. The
unsteady flow retains its two-dimensional nature, but specific issues related to
three-dimensionality appears in mesh adaptation, as the mesh needs to move on
edges and corners of the domain, with corresponding algorithmic requirements.
Results for the Laplacian and mixed models are shown in figures 3.20, 3.21, 3.22.

In three dimensions, the element stretching produced by the Laplacian model
is even more pronounced.

3.10 Adaptive simulation of unsteady flows over moving
boundaries in 2D

In this section, the dynamic mesh adaptation strategy over moving boundaries
presented in section 3.6 is applied to an aeronautical flow. The analysis is re-
stricted to the Laplacian model, as with moving boundaries the effect of alge-
braic system iterations does not accumulate across time steps, so the difference
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Figure 3.6 — Forward facing step meshes at £ = 0.5.
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Figure 3.10 — Forward facing step meshes at ¢ = 1.5.
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Figure 3.12 — Forward facing step meshes at ¢ = 2.0.
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Figure 3.13 — Forward facing step results at ¢ = 2.0.
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b Meshes with anisotropic adaptation, Laplacian model and mixed model.
Figure 3.14 — Forward facing step meshes at ¢ = 2.5.
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Figure 3.15 — Forward facing step results at ¢ = 2.5.
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b Meshes with anisotropic adaptation, Laplacian model and mixed model.
Figure 3.16 — Forward facing step meshes at ¢ = 3.0.



88 Numerical models for dynamic mesh adaptation with constant connectivity

1.00E o
.90
.80 )
.J0FE 4
.B0EF i
S0FE {
4O E :
L30F 1 =
.e0E
J10E
il = o
O o
. . o )
DENSITY dt=2.72e~03 courni=0.800: PPMLR Y/19/Be- 4 I80pplrm
30 contours: 2.673e-01 to 6&.383e+00 n o= 1170 L = 3.00018e+00
a Density contours from [176].
o2