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Summary

Motor Neuron Disease (MND) is a rapidly progressive neurodegenera-
tive disorder characterized by degeneration of upper and/or lower mo-
tor neurons associated to iron overload in the brain. This fatal pathol-
ogy is evenly distributed over the world with high mortality rates.
We implemented a fully automatic pipeline able to analyze Magnetic
Resonance images to quantify susceptibility in the motor cortex. Pro-
cessing included FreeSurfer automatic segmentation of the brain and
quantitative susceptibility mapping with Streaking artifact reduction
algorithm. Both susceptibility skewness in gray matter and mean sus-
ceptibility measurements in adjacent white matter showed sensibility
to anomalies in MND. Furthermore, mean susceptibility in subcortical
white matter correlated with disease duration and clinical functional
score.
The here presented pipeline might be easily adapted to automatically
quantify susceptibility in several brain regions, in MND or any other
neurodegenerative disease.
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Glossary of Terms

AC : Awaji shima criteria
ALS : Amyotrophic lateral sclerosis
ALSFRS-R: Amyotrophic lateral sclerosis functional rating scale re-
vised
BW : Bandwidth
CVD: cerebrovascular disease
DICOM : Digital Imaging and Communication in Medicine
FID: Free Induction decay
FLAIR: Fluid attenuated inversion recovery
GE : General Electric
GRE : Gradient Echo
HC : Healthy Controls
LMN : Lower motor neurons
LSQR: Sparse linear equation and least squares
MND: Motor Neuron Disease
MRI : Magnetic Resonance Imaging
PACS : Picture archiving and communication system
PLS : Primary lateral Sclerosis
PDF : Projection onto Dipole Fields
PMA: Progressive Muscular Atrophy
QSM : Quantitative Susceptibility Mapping
RF : Radio frequency
ROI : Region of interest
SE : Spin Echo
SHARP: Sophisticated Harmonic Artifact Reduction for Phase
SPGR: Spoiled gradient echo
SPSS : Statistical package for social science
STAR: Streaking artifact reduction
SWAN : Susceptibility Weighted Angiography
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SWI : Susceptibility Weighted Imaging
SWIM : Susceptibility Weighted Imaging and Mapping
TE : Echo Time
TH : Slice thickness
TR: Repetition Time
UMN : Upper motor neurons
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Chapter 1

Introduction

1.1 Motor Neuron Disease (MND)

Motor Neuron Disease (MND) is a rapidly progressive neurodegenera-
tive disorder of the human motor system, it is defined as a neurological
deterioration that increases over time [24]. This disorder is expressed in
many forms, these are known as, progressive muscular atrophy (PMA),
where motor neurons loss is restricted to only lower motor neurons
(LMN)[25], Primary lateral Sclerosis (PLS), where motor neurons loss
is instead, restricted to upper motor neurons (UMN) [25] and, Amy-
otrophic lateral sclerosis (ALS), which is the most common form and
comprises both of PMA and PLS [25] disorders. Each form of MND was
described independently, for example, ALS was originally described by
Charcot in the 19th century [22]. PMA was described by François Aran
in the middle of 19th century [27], and PLS was initially described by
Wilhelm Heinrich Erb in 1875 [7]. Unfortunately this pathology has a
median survival of three years and only 10 % of the patients survives
over eight years [24]

1.1.1 MND in society

MND is a disease evenly distributed over the world [17], the mortality
rate has ranged from 0.61/100.000 in Iceland to 2.4/100.000 in Sweden
[10]. In the particular case of Italy, studies on different provinces have
been conducted to understand the impact of the disease in the society.
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One study in the province of Bologna, Italy, revealed that the mortal-
ity rate was 1.4/100.000 from 1986 to 1988 [10]. Other study in the
province of Turin, Italy, for MND was found an annual incidence rate
of 0.69 cases per 100.000 people and a prevalence of 2.62/100.000 from
1971 to 1980 [17]. In both studies, the results were standardized on
the Italian population.

1.1.2 MND pathophysiology

The pathogenesis of a disease is the mechanism that causes the mal-
functional state. In ALS, one of the main mechanisms operating in the
pathogenesis is the iron overload, that leads to a metal-mediated ox-
idative stress, which causes cell damage [20] [28]. This overload means
that the iron concentration is higher than the physiological quantity
that can be stored and transported in the brain [28].

1.2 Clinical diagnosis

The diagnosis of MND is a long process and there is no single definitive
test [24], this process involves careful clinical and neurological exam-
ination [24] during a long period of time to confirm the progress of
the disease. El Escorial diagnostic criteria, which according to both
peripheral and central neuron damage, defines four levels of diagnosis
certainty [25]. According to the El escorial Criteria [2], the diagnosis
of ALS requires the presence of:

• Evidence of LMN degeneration, by clinical, electrophysiological
or neuropathologic examination.

• Evidence of UMN degeneration by clinical examination.

• Progressive propagation of symptoms or sings, to other regions of
the body.

Together with the absence of:

• Electrophysiological or pathological evidence of other disease pro-
cesses.

• Neuroimaging evidence of other disease processes.
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However, El Escorial criteria has been updated with the pass of the
years [25], this with the aim of increase the sensitivity of the method.
For example, in 2008 a new diagnostic criteria Awaji− shima criteria
(AC) was published, where changes were made to the El Escorial

criteria [12], the result was an increase in Electromyography sensitivity
of AC.

On the other hand, a method to assess the severity of MND, is the
Amyotrophic lateral sclerosis functional rating scale revised (ALSFRS-
R) test, is a distributed score for the functional status of ALS patients,
based on 12 items, each of them has a score from 0 to 4 [14], the final
result is a number between 0 (maximum disability) and 48 (normal)
points.

Magnetic resonance imaging (MRI) is routinely performed during
the evaluation of patients to discard other possible diagnosis. In some
clinical sequences (T2-weighted and fluid attenuated inversion recovery
(FLAIR)) signal alterations are observed in the motor regions of brain.
Main alterations comprise hyperintense signals in the white matter and
hypointense signals in the grey matter [15].

1.3 MRI Technique

1.3.1 MRI physics

Magnetic resonance imaging is one of the most known imaging tech-
niques around the world. MRI relies on the property of nuclear spin,
defined as the intrinsic angular momentum L of electrons, protons
and neutrons [11], for MRI particularly in protons. Its necessary to re-
member that a moving charge is understood as a current, also that an
electric current generates a magnetic field [6], measured in Tesla units.
Therefore, protons have their own magnetic field, also called magnetic
moment µ [6]. The relation between these two quantities is given by
Gyromagnetic ratio [11] and expressed in equation 1.1.

µ = γL (1.1)

Without the presence of an external magnetic field, the protons are
randomly orientated [6]. But in the moment that these are affected with
an external magnetic field ~B, the protons tend to orientate parallel
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or anti-parallel to it [6] [3]. As the lowest energy state is parallel state,
always parallel aligned protons are slightly more than antiparallel[6] to
~B.

The overall result of a ~B applied on a group of protons, is a particular
movement named precession [6] [3], this movement of the proton mag-
netic moment vector µ has an angular frequency described in equation
1.2.

ω0 = γB0 (1.2)

The equation 1.2 is the Larmor equation [3], it relates the gyromagnetic
ratio with the applied magnetic field, giving as a result the Larmor
frequency ω. All these protons precessing parallel (or antiparallel) to
B start to cancell out each other, only those extra protons that are
parallel cause the magnetization effect seen macroscopically in the z-
axis, along ~B [6]. This is called longitudinal magnetization Mz with
a value M [6]. As the magnetization direction is the same of ~B no
measurement can be performed [6] [3].

1.3.2 Radio frequency pulses

With the aim of measuring a signal, it is required to disturb the align-
ment of the protons with respect to ~B in a particular way. This is
done with perpendicular Radio frequency (RF) pulses that have a mag-
nitude B [3] and the same frequency of precessional movement of the
group of protons [6]. These pulses cause a gain in energy of the protons
and in addition, generate a movement in phase of the protons (same
direction at the same time) [6]. The interaction of the magnetization
vector and the RF pulse applied is given by the equation 1.3, known
as Bloch equation[3].

d ~M

dt
= γ ~M × ~B1 (1.3)

The change in the orientation defines an angle, known as flip angle [3]
and is described by equation 1.4.

θ = γB1τ (1.4)

If θ = 90◦ is called 90◦ Pulse. The term τ represents the duration of the
RF pulse [3]. The result of these pulses are two effects [6], one is the
reduction of the longitudinal magnetization, ~Mz, because when protons
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are excited with th RF pulse, there is a gain of energy, therefore, leave
the parallel orientation to ~B going to an anti-parallel orientation, thus,
the number of parallel and anti-parallel protons tends to be the same,
causing the cancellation of their effect [6]. The second effect is that,
these pulses, make the protons to move in phase, generating a new
magnetization, called transverse magnetization ~Mxy [6] [3]

1.3.3 MRI measurements

Just when the RF pulse stops, the protons start to return to a lower
energy state and to loss phase between them [6]. These processes are
known as relaxation. These are defined in two ways, when the trans-
verse magnetization is disappearing and when the longitudinal magne-
tization is returning to its original value. Both are processes that occur
simultaneously and independently [6].

• Spin-lattice interaction: process related to the longitudinal
magnetization [6][3], in this process the group of protons return
to the original energy state at different times, the rate of change of
Mz is proportional to the difference M0−Mz [3], so plotting over
time the value of longitudinal magnetization, it seen an exponen-
tial curve with a time constant T1, which describes how fast is
this relaxation process [6]. Therefore, there is a restoration of the
longitudinal magnetization [21]. The cause of this process is the
exchange of energy between protons to return to their lower en-
ergy state [6]. As each tissue has different T1 times, this property
is used to differentiate them [6].

• Spin-Spin interaction: process related to the transverse mag-
netization, it describes the process where the protons stop being
in phase in the x-y plane [6]. The transverse magnetization de-
creases in an exponential way and the time constant T2 describes
how fast reaches the 37% of its initial value [6]. This loss of phase
is due to variations in the local precessional frequencies [3]. Is
worth to say that for human tissues T2 values are always smaller
or equal than T1 [6], also that T2 time constant is significantly
shorter in solid materials than in liquids.[3]

• Spin-Spin interaction and field inhomogeneities : Perform-
ing the T2 measurements was observed that there is another source
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of dephasing, the external field ~B inhomogeneities [3], the result
of this effect is a shorter relaxation time, T2* < T2. This time
constant takes into account the two causes of transverse magne-
tization decrease.

1
T2
∗ = 1

T2
+ 1
T2

′
(1.5)

In equation 1.5, T2 is the time constant saw above and the term
T2’ represents the inhomogeneities of the external field, it is ma-
chine and sample dependent, but more important, it is recoverable
[3], therefore, the dephase given from the inhomogeneities can be
retrieved. This time constant is related to the estimation of iron
concentration on the brain, and is presented in further sections.

The simplest MRI experiment consists in the measurement of a signal
from a sample that has just received a RF pulse [3], this signal has its
maximum just after the RF pulse ends, then rapidly decays and has
an oscillation frequency ω, this signal is called Free Induction decay
(FID)[6]. Actually the T2* term mentioned above is the measure that
determines the rate of decay in FID [6].

1.3.4 MR imaging methods

So far, the analysis is related only in time variation of signals. However,
as MR is an image technique, it is required to measure how these signals
change in space. As the same nuclei precess at different frequencies,
according to the changes in the magnetic field in space, the local spatial
distribution can be determined using the frequency information of the
MR signal [3], This is done using a well-defined spatial variation [3] on
the homogeneous field ~B. This spatial variation is achieved provid-
ing three independent magnetic field gradients, named, Slice Selection
Gradient, Phase Encoding Gradient and Frequency Encoding Gradient
[6]. The key fact is that the measured signal, affected by a linear gra-
dient, is the Fourier transform of the spin density along the axis of the
gradient [3], therefore, to generate an image, two gradients are used,
then, the measurements are stored, and finally, transformed to image
space using inverse Fourier transform [3]. The spatial frequency space
is also known as k − space [6].

• Phase encoding gradient: named as Gp, consists in the use of
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a gradient magnetic field that makes that some protons precess
faster than other ones, depending on its position inside the gradi-
ent field. When the gradient is turned off, all the protons precess
at the same frequency, but not in phase, which allows to differ-
entiate the protons by its location. [6]. The spatial frequency
related to the y-direction is given by equation 1.6

ky = γGyτy (1.6)

• Frequency encoding gradient: named as Gf, is perpendicular
to Gp gradient field, causing that the protons precess in a different
frequency according to its position [6], the measurement of the
MR signal is done during the time this gradient is on. The spatial
frequency related to the x-direction is given by equation 1.7

kx = γGxt
′ (1.7)

Using these two gradients is possible to fill the k − space, using a RF
pulse and a combination of gradients in kx and ky directions. There are
several methods of filling the k−space, one of these, as is seen in figure
1.1, consist in the use of the gradients to sample all the values along a
given slice of the sample. Initially is switched on the Gf, gradient in x

direction, at the same time that the measurements are done. After a
sample time TS, is turned off and the phase encoding gradient is turned
on, to move in vertical direction, then is turned off and again, is used
Gf, but with negative polarity, to measure the following row. These
steps are followed until the k − space is filled [3].

Figure 1.1: Encoding sequence example
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• Slice Selection As the MRI is a technique that works on vol-
umes, is necessary to generate images for different parts of the
sample, each part is called slice. To measure these slices, is im-
plemented a Slice selection gradient, which consists in the gen-
eration of a magnetic field along a chosen axis [6], let us call it
slice axis. This axis is perpendicular to the plane of the desired
slice, therefore, the result is a linear varying magnetic field along
the slice axis [3]. The equation 1.8 expresses the change of the
frequency along the slice axis, in this case z-axis,

f(z) = γB0 + γGzz (1.8)

Where γB0 is the Larmor frequency at z = 0 [3]. Equation 1.8
represents the different Larmor frequencies that protons inside
this field experiment. As the RF pulse does not have a unique
frequency (band-limited), it excites just a slice with a certain
thickness [6]. The bandwidth BW of the RF pulse is related to
the slice thickness TH = ∆z, with the equation 1.9

BW = γGzTH (1.9)

1.3.5 MRI sequences

Mainly there are two image techniques that allow to measure MR im-
ages,

• Spin-Echo (SE): It is an image technique based on the appli-
cation of two different RF pulses. It has two main parameters
Echo Time (TE), which is the time between the excitation pulse
and the signal peak, and Repetition Time (TR), which is the time
between two 90◦ excitatory pulses [6]. This sequence is divided
in three steps, first is applied a 90◦ pulse, which creates a trans-
verse magnetization Mxy and null longitudinal magnetization Mz

at t = 0 [6]. After the RF pulse the different protons start to
dephase, following 1.10

φ(~r, t) = −γ∆B(~r)t for 0 < t < τ (1.10)

The second step is at time t = TE
2 , where a RF pulse of 180◦

is applied, so now, the phase in equation 1.10 changes its sign.
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Therefore, the new phase is given by 1.11

φ(~r, τ+) = γ∆B(~r)τ (1.11)

In the third step, the spins keep losing phase coherence according
to equation 1.10, as the rate in which the spins accumulate phase
has not changed, is possible to compute the value of the phase
after the 180◦ pulse [3].

φ(~r, t) = −γ∆B(~r)(t− 2τ) for t > τ (1.12)

Where in equation 1.12 2τ ≡ TE, therefore, for t = TE the
phase,is zero, φ = 0. This null phase is known as realignment or
also, as spin-echo [3], here Mxy has a maximum value.

• Gradient Echo (GRE): It is an imaging sequence where only
using a RF pulse and a magnetic gradient, is achieved a spin
realignment. After the RF pulse excites the sample, a negative
spatial gradient is applied, Gz = −G for G > 0 [3], during a time
interval (t1,t2). This phase shift process given by a gradient is
given in equation 1.13

φG(z, t) = −γz
∫ t

0
G(t′)dt′ (1.13)

According to equation 1.13 the phase in this interval is φG =
+γGz(t2 − t1) [3]. Then, for the time interval (t3,t4) is applied a
positive gradient. Therefore, having a phase

φG = +γGz(t2 − t1)− γGz(t− t3) for t3 < t < t4. (1.14)

It is clear in 1.14 that there is a time t, when the phase returns to
zero, this is at t = t3+t2−t1 ≡ TE [3], therefore at t = TE occurs
a realignment, known as Gradient Echo [3]. The GRE sequences
usually are shorter than the SE[6].

1.3.6 MRI and magnetic susceptibility

The magnetic susceptibility is a property of the matter that can be
measured with MRI images and it is related to metal concentrations.
This property is represented with χ. In uniform materials, the magne-
tization vector ~M is proportional to magnetic field ~H [3], recall that
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~B = µ ~H, where µ is the permeability, in other words, it describes how
the material becomes magnetized [6], as described in equation 1.15.

~M = χ ~H (1.15)

The susceptibility can be positive (χ >0) called paramagnetic, negative
(χ < 0) called diamagnetic, or (χ = 0) for non magnetic materials [3].
The major part of the biological tissues cause weak diamagnetism, on
the other hand, minerals like iron, cobalt or nickel show high values of
susceptibility [6].

The most common imagine technique, to visualize susceptibility effects,
is the spoiled gradient echo SPGR [18], whose magnitude images re-
flect the exponential T2∗ decay and the phase images show the local
frequency offset [18]. As was mentioned in subsection 1.3.3, the time
constant T2* depends on T2 and T ′2, this last term has a relation with
susceptibility [21], this contrast is seen because the refocusing only af-
fects the T2 term. Instead the T ′2 effects remain affecting the signal and
contrast [21].

Nowadays, magnetic susceptibility is commonly used in clinical prac-
tice by means of a technique called Susceptibility Weighted Imaging
(SWI) which mainly relies on susceptibility differences to enhance con-
trast [18]. This technique combines the T2*-weighted magnitude with
a filtered phase image acquired with the gradient echo sequence [18].
The purpose for which this technique was implemented is the visual-
ization of visualization of small vessels [18], furthermore, SWI proved
to be sensitive to accumulations of molecules containing minerals, like
copper or iron [18]. The SWI is retrieved by the multiplication of GRE
magnitude and phase, nevertheless, the phase has to be unwrapped and
filtered [18]. The result is an image with enhanced contrast between
adjacent tissues with different values of magnetic susceptibility, useful
to visualize blood vessels, calcifications and iron accumulation.

1.4 Quantitative Susceptibility Mapping (QSM)

As mentioned in subsection 1.3.6, the aim of using MR images is to
measure or estimate iron concentration within a tissue. Unfortunately
SPGR requires more steps to produce a quantitative measurement, this
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is addressed with a processing technique called Quantitative Suscepti-
bility Mapping (QSM) [18]. It is a noninvasive imaging technique to
measure the spatial distribution of susceptibility using GREs images
[5].

This processing method relies on phase images, so it has to be men-
tioned that there are several phase sources like iron, calcium, lipid and
myelin content [8], but also, the phase changes depending on geometry
and orientation [8] of the analyzed volume, with respect to ~B0. The
goal of the technique is to only take into account source information
of phase, thus, obtaining a source image [8]. The QSM is becoming
a quantitative approach to characterize magnetic properties of brain
tissues [5].

1.4.1 Mathematics

Assume the susceptibility induced magnetization χ as a magnetic dipole
[5], therefore, the known field perturbation ∆Bz(~r) is given by the con-
volution, in the image space, of the susceptibility distribution and the
magnetic dipole kernel [5].

∆Bz(~r) is the variation of the field in the z-component, which is related
to the magnetization source Mz(~r) [8] [9].

∆Bz(~r) = µ0

4π

∫
V ′
d3r′

{
3Mz(~r′)(z − z′)2∣∣∣~r − ~r′∣∣∣5 − Mz(~r′)∣∣∣~r − ~r′∣∣∣3

}
(1.16)

Equation 1.16 is written as a convolution of the magnetization source
Mz(~r′) with the point-dipole response G(~r) [8].

∆Bz(~r) = µ0Mz(~r) ∗G(~r) (1.17)

Where in equation 1.17 G(~r) is the spatial unit dipole [8] [9] which is
defined in equation 1.18:

G(~r) = 1
4π

3 cos2 θ − 1
r3 (1.18)
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The angle θ is measured between ~r and ~z. The Fourier transform of
the dipole Kernel in equation 1.18, is given by equation 1.19 [8]:

G(~k) =
{

1
3 −

k2
z

k2 , for k 6= 0
0, for k = 0

(1.19)

The dipole kernel is reported in figure 1.2

Figure 1.2: Plot of the Dipole kernel, implementing equation 1.19 on Matlab

Recall that if χ� 1, µ0Mz(~r) ≈ B0 χ(~r). Finally using the convolution
theorem, ∆Bz(~r) can be found as [5]

∆Bz(~k) = B0
(
χ(~k) ·G(~k)

)
(1.20)

Where χ(~k) is the Fourier transform of χ(~r). This last term represents
the susceptibility source distribution. After this mathematical review,
is worth to mention that the goal of QSM is to find this susceptibility
distribution, by solving the equation 1.20 as an inverse problem, where
∆Bz, B0 and the dipole kernel G(~k) are known. The aim is to provide
a pixel by pixel estimate of the susceptibility distribution, nevertheless,
this is an ill-posed problem due to the zero values of the dipole kernel
in k − space, thus inverse kernel is undefined at the canonical surfaces
[5]. There are several algorithms proposed to solve this issue.
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1.4.2 Artifacts

An artifact is defined as a spurious feature in a given image, occurs
due to an imperfect data collection process or errors in data processing
where approximations are made [3]. Two main artifacts are reviewed
here

1. Streaking artifacts: Recall the dipole kernel in Fourier space
1.19, when is inverted (G−1), to solve equation 1.20, it gives an
ill-posed problem due to the null values of G along the magic
angles [8]. The regions of ill-posed k-space are represented in the
following image

Figure 1.3: Ill-posed regions of k-space, retrieved from [30]

These artifacts may cause blurring of the edges and can be mis-
interpreted with anatomical tissues [8]. In the following image is
seen an streaking artifact

In the following subsections are reviewed some algorithms that
reduce these artifacts.

2. Blooming artifacts Lets imagine a vessel orthogonal to the main
field, assume inside the vein a phase of −π/2, in the edge a phase
of 3π/2. Because of the partial volume effects, the phases inside
and outside the vessel are integrated across the voxel, leading to
an increased T ∗2 measurement. This causes in the images that
smaller vessels seem to be thicker in the magnitude image, in the
phase the given value is false [8].
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Figure 1.4: Streaking artifacts in QSM image from our database (coronal view)

1.4.3 QSM Main steps

The QSM computation is performed in several steps in order to deal
the issues of an ill- posed problem:

1. Phase Reconstruction: In an MRI sequence that relies on
phase images, a proper phase reconstruction is required. This
implies to take into account the different sensitivities from the
coils, chemical shift and phase induced by flowing spins [8]. Usu-
ally areused different channels to measure the phase, therefore,
the different sensitivities from each channel have to be taken into
account. Not taking into account these parameters may lead to in-
correct data acquisition and thus, artifacts [9]. Mainly there are
four types of multi-channel phase data combination algorithms
[8].

1.1. High-pass filtering method: To each image coming from each
channel a high-pass filter applied, then the images are com-
bined. Although the use of High-pass filter in the images
is a robust and fast method, it has a drawback, and is the
cancellation of the low frequency content in large structures
[8].

1.2. Phase difference method: To the phase images from each
channel, a cancellation of the coil-sensitivity phase is per-
formed. Then, these images are combined [8]. This method
has the benefit that is done without doing phase unwrapping,
but the drawback is a loss of signal to noise ratio (SNR) in
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the combined phase images [8].

1.3. Global phase offset correction: a global constant phase off-
set is determined from each channel, using one channel as
reference [8], then from each channel is removed this offset.
Finally, the images are combined. Its seen that this method
offers images with no cusp artifacts [8].

1.4. Coil-sensitivity correction: The coil-sensitivity induced phase
is calculated for each channel, using phase from various echoes,
and finally, removed from each channel before the combina-
tion. The drawback of this method is that requires the un-
wrapping of the phase from each channel at each echo, which
is time-consuming [8].

2. Phase unwrapping: The recovered phase image may have wraps,
so the aim of this step is to remove these wraps and recover
the true phase. Nevertheless, this is another ill-posed problem
because there are many true phase values that may lead to a
wrapped value [23]. There are different approaches to solve this
problem,

2.1. Spatial unwrapping methods: these methods rely in the fact
that phase has smooth changes between adjacent voxels, un-
less a wrap has occurred [23]. These can be divided into:

2.1.1. Path-following methods: the assumption is, if there is a
change greater of π in the phase of two adjacent voxels,
a wrap has occurred. If there are no errors, this method
is capable the exact value of the phase [23].

2.1.2. Laplacian phase unwrapping: it has the goal to identify
the unwrapped phase values, whose local derivatives are
highly similar to the derivatives of the wrapped phase
[23], therefore, this method is capable of removing the
discontinuities. Nevertheless, it changes the phase values
in a slow spatially way [23].

2.2. Temporal unwrapping methods: uses the information avail-
able in several acquisitions, between echoes, to remove wraps
that are time dependent [23]. It has the advantage that it
is unaffected by the complexity of the wrapped image, but a
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drawback, is that it is easily affected from noise compared to
spatial methods [23].

To select the correct phase unwrapping algorithm is necessary to
take into account that there is a trade-off between robustness and
time-efficiency [8].

3. Brain mask: The idea is to use the magnitude image of the GRE
sequence, with the objective of defining the volume of interest [8]
(e.g. Cerebrum). A mask is used to do not take into account noisy
regions with unreliable phase [8] that might generate artifacts in
the computed susceptibility. The result is a binary image, where
1 values represent regions of interest and 0 values the unreliable
regions.

4. Removing background fields: the phase in the image domain
for a GRE sequence with a TE is given by equation 1.21 [8]

φ(~r) = φ0(~r) + γ∆Bz(~r)TE (1.21)

In equation 1.21 the term ∆Bz(~r) represents the field variation
and is expressed as the sum of the background field ∆Bb(~r) and
the local field Bl(~r) [8]:

∆Bz(~r) = ∆Bl(~r) +∆Bb(~r) (1.22)

In equation 1.22 the Background field ∆Bb is induced by the
global geometry, interfaces and field inhomogeneities. In the other
hand, the local field is generated by the susceptibility distribution.
There are several algorithms to remove this background field

4.1. High-pass filtering method: this method consists in the ap-
plication of a small 2D high-pass filter over the volume of in-
terest. Then, a 1D high-pass filter in the missing dimension is
applied, forming an effective 3D high-pass filter. Larger sized
filter are avoided because it may affect ∆Bl(~r), especially in
large structures [8]

4.2. Geometry dependent artifact correction: in this algorithm
the geometry of the air-tissue interfaces is retrieved from the
magnitude image. Then, the background induced field from
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these interfaces is estimated using the fast forward calcula-
tion of equation 1.23 [8].

∆Bsinus(~r) = B0FT
{∑

[χi(~r) · gi(~r)]
}
·G(~k) (1.23)

Where gi(~r) represents the geometry of the ith sinus, with
a constant susceptibility χi, G(~k) is the dipole equation in
Fourier domain used in equation 1.19 and ”·” represents the
point-wise multiplication [8]. This method has good perfor-
mance depending on how good are extracted the geometries
[8].

4.3. Dipole fitting, or better known as Projection onto Dipole
Fields (PDF), it is a method where the background field in-
side a region of interest (ROI) is imposed using the dipoles
outside the ROI [8] using the equation 1.24.

∆χb(~r) = argmin∆χb(~r) ‖W [(~r)−B0∆χb(~r) ∗G(~r)]‖2
2

(1.24)
Where∆χb(~r) is the distribution of susceptibility of the point-
dipole sources outside the brain, ∆B(~r) is the measured field
inside the brain, and finally, W is a weighting function de-
rived from the magnitude images [8].

4.4. Sophisticated Harmonic Artifact Reduction for Phase (SHARP):
Recall that the computation of χ(~r) depends on the extrac-
tion of ∆Bl(~r) from 1.22, also recalling ∆Bb(~r) is generated
by sources outside the volume of interest, therefore, it satis-
fies the Laplace’s equation 1.25 throughout the volume [9].

O2Bext = 0 (1.25)

On the other hand, as the contributions of ∆Bl(~r) are inside
the volume of interest, it can be found by solving the equation
1.26

O2∆Bz(~r) = O2Bl(~r) (1.26)
Thus, is required to solve equation 1.26 for Bint, this is
achieved using the equation 1.27 [9].

Bl = (σ − ρ) ∗−1 ∆B (1.27)

In equation 1.27 σ is the unit impulse at the center of the
radial function, ρ is a non-negative, radially symmetric, nor-
malized function [9].
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5. Solving the ill-posed inverse problem: The susceptibility
map is obtained by inverting equation 1.20. An approximation of
Ĝ−1(~k) with defined values is required [8], this process is called
regularization. Usually this approximation implies a trade-off be-
tween the level of streaking artifacts and the underestimation of
the susceptibility values [8]. In the next subsection are explained
some of the more used algorithms which solve this ill-posed inverse
problem.

1.4.4 Robust QSM tools

Nowadays algorithms are developed in software toolboxes whose inputs
are the magnitude and phase images and the brain mask. Three main
algorithms are reviewed:

• SWIM: Susceptibility Weighted Imaging and Mapping is an it-
erative sequence of steps in which at the ith step, the actual sus-
ceptibility map and the geometry of the veins is used to update
the the k-space. Particulary the cone singularities are updated [8]
to reduce artifacts. In a more detailed explanation this algorithm
is described in seven steps [26]:

1. The first step consists in the estimation of an initial suscep-
tibility map χi=0(r), using a regularized form of the dipole
kernel given in equation 1.19, therefore, values for indetermi-
nate points in the kernel are defined [26].

2. The geometry of the regions of interest is retrieved by mul-
tiplying χi=0(r) with a binary mask, where only the vessels
are set to one, and other values, to zero. This is done know-
ing that usually the streaking artifacts are found outside the
vessels [26]. The output is named χvm,i(r).

3. The Fourier transform of χvm,i(r) is computed, giving χvm,i(k)
[26].

4. χvm,i(k) is multiplied by a binary mask that contains only
unity values in the directions where G(k)−1 is ill-conditioned,
therefore, the result is the extraction of the information con-
tained in χvm,i(k) but only in these directions. This output
is called χvm,cone,i(k) [26].
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5. Now the Fourier transform of χi(r) (i.e. χi(k)) is summed
with χvm,cone,i(k), therefore, part of χi(k) has been replaced.
The new image is named χmerged,i(k) [26].

6. The inverse Fourier transform for χmerged,i(k) is computed.
It gives an improved susceptibility map χi+1(r) [26]

7. The susceptibility map used in step one is replaced with the
one obtained in step 6.

The vessels mask used in step 2, is generated using a threshold
method, this is, all the voxels, in the used image in step 1 χi=0(r),
with a susceptibility value higher than a value, are set to one and
the others, to zero [26].

• ILSQR: in few words, it is a method that uses a sparse linear
equation and least squares (LSQR) algorithm, to obtain an ini-
tial estimate of susceptibility. It also uses a fast QSM method
to stimate susceptibility boundaries. The innovative step is the
interative process to compute the streaking artifacts from ill-
conditioned k-space regions [29]. Finally, the computed streaking
artifacts are subtracted from the original image [30].

1. Initial estimate of susceptibility, the LSQR method solves
the equation 1.28 [30].

G ·FT (W1ψ) = GFT
[
WI · FT−1 {G · FT (χLSQR)}

]
(1.28)

Where the term W1 is a weighting function to reduce artifacts
due to inaccurate phase unwrapping [30] and G is the Fourier
transform (FT ) of the dipole, used in 1.19. The output of
this step is named χLSQR, from this image, in the final step,
are subtracted the artifacts.

2. Next, the binary mask for k − space is computed, where the
ill-conditioned regions have unity value and the other regions
have zero value. It is named MIC [30].

3. To estimate the susceptibility boundaries, first, the suscep-
tibility contrast is computed, these boundaries are used in
the next step to compute the weighting masks WGi. In [30]
this method is called fast QSM method. The first step is to
estimate a susceptibility contrast based on the sign of G and
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the normalized phase [30] following equation 1.29.

χF1(k) = sign(G) · FT (ψ) (1.29)

From this rough estimation a discontinuity at G = 0 is ob-
tained. To correct this discontinuity, the discontinuous data
in k-space is averaged along the surface, then this k-space
data is transformed into an image using the inverse Fourier
transform (FT−1). This step is reported in the equation 1.30
[30].

χF2 = FT−1 {χF1(k) ·WFS + F [χF1(k)] · (1−WFS)}
(1.30)

The term F , represents the average operation applied to re-
move the discontinuity. In the other hand, WFS is an em-
pirically function found that has the objective of limiting
the averaging over the ill-conditioned regions [30]. To define
WFS, is necessary to determine first, the constant term in
equation 1.31.

W0 = |G|
0.001 − a
b− a

(1.31)

Where a is the first percentile value of |G|0.001 and b, the
30th [30], then, the function WFS is defined according to the
conditions [30] in equation 1.32:

WFS = 0, W0 < 0
WFS = W0, 0 < W0 < 1

WFS = 1, 1 < W0

(1.32)

The result of equation 1.30 still has streaking artifacts in the
regions outside the brain that can be removed by multiplying
with a mask. This masked image is transformed into Fourier
space, with the aim of spreading the masking effects into
different frequency components [30], also a second averaging
of the k-space is applied. Finally the image is transformed
back to image space and multiplied again with the mask.
This is seen in equation 1.33.

XF3 =
FT−1 {FT (M · χF2) ·WFS + F [FT (M · χF2)] (1−WFS)}·M

(1.33)
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Where M represents the binary image for the tissue of inter-
est.

The output image named χFS is obtained from equation 1.34

χFS = a · χF3 + b (1.34)

Where the values of a and b are the used above.

4. From the image χFS are computed the weighting functions
W∇i following equation 1.35 [30].

W∇i = 1, ∇i(χFS) < ∇i,min

W∇i = |∇i,max−∇i(χF S)|
|∇i,max−∇i,min| ,∇i,min < ∇i(χFS) < ∇i,max

W∇i = 0, ∇i,max < ∇i(χFS))
(1.35)

Then, it is possible to find the susceptibility artifacts (SA)
by solving the equation 1.36.

minχSA(k)
∑
i

∥∥∥W∇i · ∇i

{
χ0 − FT−1 [χSA(k) ·MIC ]

}∥∥∥
2

(1.36)
Equation 1.36. leads to the generation of the image with the
susceptibility artifacts named χSA. Where χ0 is an initial
susceptibility estimated from 1.29. i represent the axes x, y
and z, ∇i are gradient operators, Gi,max and Gi,min are the
thresholds for gradient weight calculation.

5. Subtraction of streaking artifacts.

χiLSQR = χLSQR − FT−1 [χSA(k) ·MIC ] (1.37)

• Streaking artifact reduction (STAR) QSM-STAR algorithm
reduces streaking artifacts using a two level regularization method,
reconstructing large and small susceptibility values. It is worth
to say that the process is all automatic. First the algorithm com-
putes the susceptibility from isolated strong sources [29]. The
field of these sources is estimated with the forward equation, and
then, subtracted from the total phase [29]. The result of the sub-
traction is used to find the susceptibility from the weaker sources.
The result is superimposed onto the strong susceptibility obtained
before, improving the QSM quality [29].
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The normalized phase ψ = φ/γµ0H0TE with φ as the phase mea-
sured at a given TE, has a relationship with the magnetic sus-
ceptibility following equation 1.38

ψ = FT−1 {G · FT (χ)} (1.38)

G is the Fourier transform of the magnetic dipole kernel, but in
equation 1.39 is defined as the discrete version [29].

G = FT

∆rx ·∆ry ·∆rz
[
3 · (Ĥ · r)2 − (r2

x + r2
y + r2

z)
]

4π(r2
x + r2

y + r2
z)

5
2


(1.39)

In equation 1.39, r represents the position vector, ri the spatial
coordinates and ∆ri, represent the size of the voxel, Ĥ is the used
magnetic field vector [29].

The goal of STAR-QSM, is to solve the equation 1.40

χ = min
{∥∥∥FT−1(G dotFT (χ))− ψ

∥∥∥
2

+ λ ‖W · ∇ · χ‖1

}
(1.40)

The L1 norm, in 1.41, calculates the overall variation of the
weighted gradient. The term λ is a regularization parameter that
its value depends on the spatial smoothness and consistency of
the data [29]. This norm is given by equation 1.41.

‖W · ∇ · χ‖1 =
√

(W∇x · ∇x · χ)2 + (W∇y·χ · ∇y)2 + (W∇z · ∇z · χ)2

(1.41)
This method is described in the following steps:

1. First, equation 1.40 is solved with a large value of λ, this
leads to an estimation of only strong susceptibility sources.

2. Then, the dipole field corresponding to the strong suscepti-
bility sources is determined by the forward equation 1.38

3. Next, the computed dipole field is subtracted from the total
phase.

4. Now is possible to determine the susceptibility map from the
residual phase that corresponds to weaker sources, using a
smaller λ parameter

5. Finally, the susceptibility maps obtained in step one and step
four are superimposed having as a result the final QSM image
with large dynamic range.
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Finally it is seen that all the algorithms reconstruct the susceptibility
maps by different methods. The three algorithms have in common
that these by different methods reconstruct the Fourier transform of
the susceptibility map, to then retrieve the susceptibility map. Each
algorithm consider different methods to overcome the undefined values
of the dipole kernel. Particularly, QSM-STAR has a different approach
in the reconstruction of susceptibility map. As suggested in [29], the
STAR algorithm has a significantly better performance in reducing
streaking artifacts, compared to ILSQR.

1.5 Quantitative Susceptibility Mapping in MND
state of art

Two main studies served as guidelines to develop this work. Ji Young
Lee studied the differences in motor cortex susceptibility between three
groups of participants (Amyotrophic lateral sclerosis (ALS), cerebrovas-
cular disease (CVD), and healthy controls), looking for significant dif-
ferences among them [16]. This study found that the QSM is a po-
tentially useful technique to be implemented as imaging biomarker for
ALS, due to significantly high QSM values in the motor cortex, this
aimed us in the develop of the project. Nevertheless, this study has
the limitation that the regions of interest were drawn manually, thus
time-consuming and operator dependent [16].

Also was found that M. Costagli developed a study looking for a corre-
lation between QSM values with an Upper motor neuron impairment
score, more exactly to demonstrate that signal variation in T ∗2 images,
of ALS patients, corresponds to an increase of iron concentration [19].
This study was relevant because of the established workflow, the QSM
images were obtained using a Laplacian-based phase unwrapping and
applying a SHARP background phase removal [19], finally, suscepti-
bility χ was found using ILSQR method. Nevertheless, this study has
the same problem that the ROIs were drawn manually. M. Costagli
presented as a result, that QSM might prove useful in estimating iron
concentration as a possible radiological sign of UMN burden in ALS
patients [19].
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1.6 Project Aim

Due to the high incidence and mortality of MND described in [17] and
[10] and the sensibility of MRI to iron overload, we decided to imple-
ment a fully automatic pipeline able to quantify susceptibility in the
motor cortex in three pathological groups, ALS, PLM and PMA, and
one group of Healthy controls. Then, test for differences in suscep-
tibility measurements among the groups and establish a relationship
between susceptibility measurements and the clinical scores.
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Chapter 2

Methods

2.1 Subject groups

The group of participants was comprised 51 MND and 25 Healthy Con-
trols (HC). The MND group is subdivided into 36 ALS patients, 6 PLS
patients and 9 PMA patients. The clinical diagnosis was performed by
the Department of Neurology in the Istituto Auxologico Italiano San
Luca hospital. Whole group age data are summarized in table 2.1.

Group Mean
Age

Age Standard
deviation

Age
Range Male Female

Healthy
Subjects 57.92 7.78 44-73 9 17

MND 61.21 9.63 41-78 23 28
ALS 60.86 9.02 42-74 17 19

PMA 61.88 13.34 41-76 5 4
PLS 62.33 8.35 55-78 1 5

Table 2.1: Group anagraphic data

2.2 Image acquisition

Whole-brain images were acquired in a 3T General Electric (GE) SIGNA
scanner. T1-weighted images had the following parameters: Repeti-
tion time=8.7ms, Echo time=3.2ms, Pixel spacing=0.5mm, Slice thick-



ness=1mm, spacing between slices=1mm, flip angle=12◦, Rows=512,
Columns=512. Susceptibility Weighted Angiography (SWAN), provid-
ing phase and magnitude images, had the following parameters: Repeti-
tion time=39ms, 7 equally spaced echoes centered at 24ms, Pixel spac-
ing=0.468mm, Slice thickness=1.4mm, spacing between slices=0.7mm,
flip angle=20◦, Rows=512, Columns=512. By default phase images
were high-pass filtered by the machine for clinical purposes. These im-
ages were assessed by a radiologist and a resident of radiology from the
neuroradiology Deparment of Ospedale Policlinico di Milano.

2.3 Image processing Pipeline

In figure 2.1 is showed the implemented fully-automatic Pipeline de-
scribed in this thesis work, each step is described in the following sec-
tions.

Figure 2.1: Fully automatic pipeline
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2.3.1 Preprocessing

T1 Sagittal image and Axial SPGR image in magnitude and phase
were used in the image process pipeline. Initially, images stored in
Digital Imaging and Communication in Medicine (DICOM) [13] for-
mat were retrieved from the Picture Archiving and Communication
System PACS of the hospital. PACS is a technology tool which pro-
vides communication and storage of images, from different users. This
allows easy exchange of medical images between different machines.
Then, images were converted into NifTI format, using ”dcm2nii” func-
tions in MATLAB (R). This step was needed to decrease image size
and to allow reading from processing tools. The images that were re-
quired are shown in figure 2.2.

The brain masks were obtained using ”FSL” software, as recommended
in [30] and [9].

Figure 2.2: (A) Sag T1 image and ax (B) Magnitude (C) Phase (D) and Mask images

2.3.2 QSM test and reconstruction

The main three tools described in subsection 1.4.4 where applied to the
data with the aim of choosing the one with better performance. The
optimal parameters needed in each software were defined in collabora-
tion with the relative developing group (i.e. Wayne State University for
SMART tool and University of California Berkeley for STI Suite tool).
An illustrative quantitative susceptibility map is shown in figure 2.3,
while the different outputs of the described algorithms are presented
in the results section.
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Figure 2.3: QSM image

2.3.3 Segmentation and volumetric information

The anatomical T1 images were segmented using FreeSurfer automatic
segmentation. This is a robust process, where the different brain struc-
tures were accurately identified. This software requires as input the
anatomical image and gives as output a labeled brain image, where a
number is assigned for each brain structure in each hemisphere. An
example of labeled brain is reported in figure 2.4.

Figure 2.4: Labeled Brain

FreeSurfer also allows to perform different geometric measurements in
the different segmented structures, so the cortical thickness and the
area of the cortical structures were measured as an additional step.
The mean thickness and area in left and right hemispheres were used
to calculate the mean thickness in both hemispheres using formula 2.1.

Thicknessboth = Thicknessleft ∗ Arealeft + Thicknessright ∗ Arearight
Arealeft + Arearight

(2.1)
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2.3.4 Coregistration

Small movements may occur between the acquisition of the anatomical
T1 images and the magnitude/phase images. Thus, a coregistrarion
was required, specially because the regions of interest are very small
(i.e. 2-4mm of width). The Matlab Toolbox SPM12 provides the algo-
rithms to perform this task and overcome the small mismatch between
images. SPM allows to choose a reference image, a source image, which
is the one that is fitted into the reference image and other images, which
are images that are fitted as the source image.
The anatomical T1 image was chosen as reference image, the magni-
tude image was chosen as source image and finally, the QSM image
was chosen as other image. As QSM and magnitude are in the same
space, all changes done in magnitude were applied also to the QSM
map. Finally, the output was a QSM map that matched spatially with
the anatomical image T1, which also implied that matches with the
labeled brain image. The resulting registered QSM image with labeled
brain is reported in figure 2.5.

Figure 2.5: Labeled QSM Brain

2.3.5 ROI extraction

Motor cortex comprises the brain areas involved in the process of vol-
untary motion. It is distributed over a large region located in the
precentral gyrus. Motor cortex is usually represented as is seen in fig-
ure 2.6, where each region represents a specific area of motor control.

In our labeled brain, motor cortex is subdivided in two regions (i.e.
Precentral and Paracentral), as illustrated in figure 2.7 (A1 and A2).
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Figure 2.6: Cortical motor homunculus, image from [1]

After the regions of interest extraction, we decided to joint these sec-
tions, as figure 2.7 illustrates in (B1 and B2) and (C1 and C2). Finally
in figure 2.7 (D1 and D2) an example of extracted ROIs from suscep-
tibility map, is illustrated

Figure 2.7: ROI extracted, (A) Segmented anatomical brain image (B) Extracted re-
gions from anatomical image (C) Joint of both regions (D) Same regions in susceptibility
map

2.3.6 Susceptibility and morphovolumetric metrics

The measurements performed in the region of interest were
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• In the susceptibility map:

1. Mean.

2. Skewness.

• In the anatomical image:

1. Thickness.

2. Area.

2.4 Statistical tests

Statistical package for social science (SPSS) was used to analyze data
as recommended in [16] and in [15]. Student t-test was used to com-
pare age, cortical thickness, mean susceptibility values in cortex and
in subcortical white matter, susceptibility skewness in cortex and sub-
cortical white matter between MND and HC. ANOVA was performed
to compare the above mentioned metrics among the clinical subgroups
and HC. When ANOVA reached significance, post-hoc tests were per-
formed. Then, Pearson correlation analyses between measured vari-
ables and age were performed in MND and HC separately. In MND,
further Pearson correlation analyses were performed between the mea-
sured neuroimaging variables and disease duration and ALSFRS-R.
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Chapter 3

Results

First, an illustrative quantitative susceptibility map of each algorithm
is shown, then another illustrative example of the background field re-
moval algorithm is shown. Next results of group age differences are
reported and the results of statistical tests in Neuroimaging measure-
ments are presented. Finally, results of correlation test between neu-
roimaging measurements an clinical results are reported.

3.1 Susceptibility Maps

The output image from each software is shown in the figure 3.1, for the
same subject were applied the reviewed algorithms (SWIM, ILSQR and
STAR)

3.2 Background field removal

The result of the use of a Background removal algorithm in suscepti-
bility computation are presented in figure 4.2. This Background field
removal was applied to images obtained with QSM STAR algorithm.



Figure 3.1: Susceptibility maps computed with (A) SMART SWIM (B) STIsuit ILSQR
(C) STIsuit STAR

3.3 Age differences among groups

Age did not statistically differ between MND and HC (p = 0.078),
among subclinical groups and between each subclinical group and HC
(Sig = 0.354).

3.4 Neuroimaging measurements in MND

Mean thickness in MND was significantly lower than HC (p = 0.0001).
ANOVA test revealed differences among subclinical groups and HC
(Sig = 0.001) and Post-Hoc tests indicated differences between ALS
and HC (p = 0.001) and between PLS and HC (p = 0.0001).

Mean susceptibility in cortical region was not statistically different be-
tween MND and HC (p = 0.139), and among subclinical groups and
HC (Sig = 0.088).
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Figure 3.2: Susceptibility maps with and without Background removal

Mean susceptibility in subcortical white matter was significantly higher
in MND compared to HC (p = 0.005). ANOVA test suggested a bor-
derline significance comparing subclinical groups and HC (Sig = 0.059)
and Post-Hoc tests gives p = 0.052 between ALS and HC, p = 0.0079
between PLS and HC and p = 0.004 between PMA and HC.

Skewness of the susceptibility distribution in cortical region was sig-
nificantly higher in MND compared to HC (p = 0.002). ANOVA test
revealed differences among subclinical groups and HC (Sig = 0.0001),
and Post-Hoc tests indicated differences between ALS and HC (p =
0.007), ALS and PMA (p = 0.014), and PLS and HC (p = 0.0001).

Skewness of the susceptibility distribution in subcortical white matter
was not statistically different between MND and HC (p = 0.05), and
among subclinical groups and HC (0.416).
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3.5 Neuroimaging measurements and clinical vari-
ables correlation

In HC, age showed a statistically significance correlation with mean
susceptibility in cortical region (Sig = 0, 042, r = 0.35), skewness in
cortical region (Sig = 0.17, r = 0.42) and skewness in subcortical white
matter (Sig = 0.19, r = 0.42). In HC, cortical thickness did not show
any significant correlation with the measured variables.

In MND, age showed a statistically significant correlation with corti-
cal thickness (Sig < 0.000, r = −0.55), mean susceptibility in cortical
region (Sig < 0, 000, r = 0.49), and skewness in subcortical white
matter (Sig = 0.011, r = 0.32). In MND, cortical thickness showed a
statistically significant correlation with mean susceptibility in subcor-
tical white matter (Sig = 0, 000, r = −0.53), skewness susceptibility
in cortical region (Sig < 0.000,r = −0.24) and in skewness subcortical
white matter (Sig < 0, 0002, r = −0.51). In MND, disease duration
showed a significant correlation with mean susceptibility in subcortical
white matter (Sig = 0.033,r = 0.26). ALSFRS showed a statistically
significant correlation with cortical thickness (Sig = 0.007, r = 0.40)
and mean subcortical white matter (Sig = 0.026, r = −0.42).
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Chapter 4

Discussion

MND is a group of progressive neurological disorders that destroy mo-
tor neurons, where different pathological phenotypes with different
symptoms are included. Indeed, MND presents motor impairment in
different body regions (i.e. upper limb and/or lower limb) mapped in
the brain motor cortex. We were interested in studying the iron accu-
mulation in the motor cortex and the anomalies in subcortical white
matter adjacent to the motor cortex. For this purpose we used QSM,
the tool able to quantify iron accumulation and changes in myelin, by
measuring the local susceptibility.

Thus, we decided to implement a fully automatic method that could
deal the different phenotypes uniformly. This method had to include
the motor cortex in its mesial, dorsal and ventral regions, potentially
affected by the pathology. This was according to the intensity variation
in susceptibility sensitive MR images reported by physicians in these
regions.

A visual comparison between the algorithms SWIM, ILSQR and STAR
allows to see how different algorithms with the same inputs, generate
different susceptibility maps. Clear differences arose between SWIM
and both ILSQR/STAR algorithm. Instead, ILSQR and STAR images
seemed to be quite similar. Therefore we decided to subtract both
images, to reveal differences among them, this is reported in figure 4.1.
The resulting images revealed the features present only ILSQR output
map. A set of streaking artifacts that is seen in figure 4.1 confirms that
STAR algorithm has a better performance than ILSQR algorithm.
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Figure 4.1: Susceptibility maps ILSQR and STAR subtraction

Furthermore we decided subtract the generated images from the same
patient and from same algorithm, one of these with background removal
(e.g. SHARP) algorithm and the other without it, this is reported in
figure 4.2. This procedure revealed the impact of this algorithm, it
clearly removed noise from borders.

Figure 4.2: Background field removal on STAR susceptibility map

A statistical comparison between MND and HC revealed that cortical
thickness, white matter susceptibility (mean and skewness) and corti-
cal skewness susceptibility are significantly different. Cortical thickness
analysis confirms the expected reduction in cortical thickness widely de-
scribed in literature. The evidences of this thesis work confirm previous
studies on the topic and provides a more detailed characterization.

Indeed, the susceptibility skewness seems to be much more sensible to
cortical anomalies than mean susceptibility over the cortical region.
We believe that correlation between age and mean susceptibility and
the absence of correlation of age with the skewness could provide an
explanation (i.e. Skewness does not depend on age). The skewness of
the cortical susceptibility could be a more reliable measurement than
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mean susceptibility in wide age range studies.

The results in the white matter assessment are interesting and less ex-
pected than the ones in gray matter. From a neuroradiologic point of
view, physicians often observe hyperintensity in these cortical regions
and less frequently in subcortical white matter. No previous quantita-
tive studies analyzed subcortical white matter susceptibility adjacent
to motor cortex. The subcortical white matter presents a significant
difference between MND and HC, in both mean and skewness, suggest-
ing that susceptibility variations in the white matter are also occurring.

The direction of the change is coherent with the expected changes.
The increment of susceptibility in cortical regions could be related to
the iron accumulation and the less negative susceptibility values in the
subcortical white matter could be related to loss of myelin characterized
by diamagnetic properties.

As described in literature, the more probable phenotype in MND is
ALS [4]. We did confirmed the much higher percentage of ALS over
PLS and PMA in our MND population.

As ALS and PLS refer in literature [24] to a deterioration of upper
motor neurons, which dendrites lies in motor cortex, we expected that
there should have been significant differences between ALS patients and
HC as well as between PLS and HC. Instead, between ALS and PLS
we did not expect any significant difference as both pathologies present
upper motor neuron impairment. These hypotheses were confirmed as
both ALS and PLS present significant differences with HC in cortical
susceptibility skewness and cortical thickness. Instead, among ALS
and PLS there is no statistical difference.

Instead, PMA vs HC revealed an interesting and unexpected result,
the mean white matter in subcortical region reveals a relevant differ-
ence between these groups, this results suggested that the use of white
matter to differentiate these groups could be more meaningful.About
correlation in HC, cortical thickness did not correlate with cortical
susceptibility (mean and skewness) and subcortical white matter sus-
ceptibility (mean and skewness). This might suggest that in normal
conditions these two variables are not dependent.

In the other hand, interesting correlations between the cortical thick-
ness and cortical susceptibility skewness, and with subcortical white
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matter susceptibility mean and skewness were observed in MND.

For the clinical correlations in the MND group, the functional score
ALSFRS-R has an interesting correlation with cortical thickness and
with mean subcortical white matter susceptibility. This suggests that
both cortical thickness and mean subcortical white matter may reflect
the functional conditions in MND patients.

Disease duration revealed an unexpected but interesting result, a cor-
relation with mean susceptibility in subcortical white matter. This
reaffirmed our believes that measurements in subcortical white matter
might be meaningful in MND studies.

About the age there are two important facts that have to be high-
lighted. First, for the consistency of the study was important to have a
set of participants such that the age of each group should not show any
significance difference, with the aim to discard that age is a variable
affecting our measurements. This was reached taking into account ei-
ther the whole MND group and the single clinical subgroup compared
to HC.

On the other hand, in the HC group, the fact that there is a correlation
between age and mean cortical susceptibility is relevant, because it
confirms studies where an increase of susceptibility with the pass of
the years independently to any pathology was shown. In addition, our
study suggests that the cortical and subcortical susceptibility skewness
correlates with age in the healthy control group.

The automatic pipeline allows to quantify magnetic susceptibility in all
the cortical regions defined in the Desikan-Killiany Atlas and the other
subcortical regions of Freesurfer. Thus, a whole-brain study could be
easily performed as extension of this thesis. Therefore, this pipeline
could be applied to several neurodegenerative disorders, where iron
accumulation is expected and a quantification is desired.

Our pipeline was applied on a clinical dataset which included a whole-
brain scan with a standard resolution in the z-axis (T1 1mm and SPGR
1.4mm with a spacing between slices of 0.7mm). This resolution is
still very low when working on cortical regions which have a width
between 2mm and 4mm. Thus, our pipeline had to deal with partial
volume effects, which might alter the measurement of susceptibility
within a voxel. A specific acquisition protocol focused on the cortex
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could provide additional evidences. As a susceptibility quantification
has been achieved, it would be interesting to build a ”supermetric”
equation based on age, cortical thickness and susceptibility skewness
variables that according to its result, might suggest the presence of
anomalies.

On the other hand, in order to have more meaningful results is required
to enlarge the study, including pathological control group, to determine
the specificity of the evidences.

A relevant part of this work is that, the regions of interest were de-
fined automatically, overcoming the dependence of the selected region
to ability of the operator and achieving a property of reproducibility
not available in handmade regions of interest. The fact of being fully
automatic leads to a property of reproducibility that has not been seen
in other quantitative susceptibility studies in MNDs.

It is worth to mention that MND diagnostic procedures requires an
MRI scan to exclude other pathologies. Thus, the implemented pipeline
might not require any additional exam. Furthermore, QSM only re-
quires a multiecho gradient-echo sequence, commonly included in clin-
ical protocols.
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Chapter 5

Conclusions

For the first time, a fully automatic neuroimaging pipeline has been
developed and applied to study the susceptibility properties of the mo-
tor cortex and relative subcortical white matter in MND. Skewness of
susceptibility distribution in the motor cortex could be a more sen-
sitive measurements than the mean value to assess iron overload in
MND. Furthermore, our study suggest that the assessment of subcorti-
cal white matter susceptibility might enrich the characterization of the
pathologic tissue in MND. And its role in defining an MRI biomarker
for MND should be further investigated

The here presented pipeline might be easily adapted to automatically
quantify susceptibility in every brain region, in MND or any other
neurodegenerative disease.
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Chapter 6

Appendix

Age distribution
Comparison P value Anova
MND vs HC 0.078
ANOVA 0.354

Table 6.1: Summary results of age distribution

Cortical susceptibility mean
Comparison P value Anova
MND vs HC 0.139
ANOVA 0.088

Table 6.2: Summary results cortical susceptibility mean
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Cortical susceptibility skewness
Comparison P value Anova Post-Hoc
MND vs HC 0.002
ANOVA 0.0001
ALS vs HC 0.007
ALS vs PLS 0.014
ALS vs
PMA

0.086

PLS vs PMA 0.001
PLS vs HC 0.0001
PMA vs HC 0.768

Table 6.3: Summary results cortical susceptibility skewness

White matter susceptibility mean
Comparison P value Anova Post-Hoc
MND vs HC 0.005
ANOVA 0.059
ALS vs HC 0.052
ALS vs PLS 0.755
ALS vs
PMA

0.271

PLS vs PMA 0.590
PLS vs HC 0.079
PMA vs HC 0.004

Table 6.4: Summary results White matter susceptibility mean

White matter susceptiblity skewness
Comparison P value Anova
MND vs HC 0.04
ANOVA 0.416

Table 6.5: Summary results White matter susceptibility skewness
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Mean Thickness of precentral and paracentral regions
Comparison P value Anova Post-Hoc
MND vs HC 0.0001
ANOVA 0.001
ALS vs HC 0.001
ALS vs PLS 0.145
ALS vs
PMA

0.504

PLS vs PMA 0.068
PLS vs HC 0.0001
PMA vs HC 0.120

Table 6.6: Summary results Precentral and Paracentral regions thickness mean

ALSFRS-R Correlations
Comparison Cortical

Thick-
ness

Mean cor-
tical sus-
ceptibility

Mean sub-
cortical
suscepti-
bility

Skewness
cortical
suscepti-
bility

Skewness
subcorti-
cal sus-
ceptibility

ALSRS-R 0.4 0.14 -0.31 -0,14 -0.09
Sig 0.007 0.21 0.031 0.199 0.294

Table 6.7: Results of ALSFRS-R correlations

Disease duration Correlations
Comparison Cortical

Thick-
ness

Mean cor-
tical sus-
ceptibility

Mean sub-
cortical
suscepti-
bility

Skewness
cortical
suscepti-
bility

Skewness
subcorti-
cal sus-
ceptibility

Disease
Duration

-0.15 -0.17 0.26 -0,09 0.07

Sig 0.141 0.110 0.033 0.258 0.317

Table 6.8: Results of disease duration correlations
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Age Correlations in MND group
Comparison Cortical

Thick-
ness

Mean cor-
tical sus-
ceptibility

Mean sub-
cortical
suscepti-
bility

Skewness
cortical
suscepti-
bility

Skewness
subcorti-
cal sus-
ceptibility

Age -0.53 0.49 0.11 0.06 0.32
Sig >0.000 >0.000 0.215 0.339 0.011

Table 6.9: Results of age correlations in MND group

Age Correlations in HC group
Comparison Cortical

Thick-
ness

Mean cor-
tical sus-
ceptibility

Mean sub-
cortical
suscepti-
bility

Skewness
cortical
suscepti-
bility

Skewness
subcorti-
cal sus-
ceptibility

Age -0.22 0.35 0.12 0.42 0.42
Sig 0.149 0.042 0.276 0.017 0.019

Table 6.10: Results of age correlations in HC group

Cortical thickness correlations MND group
Comparison Mean corti-

cal suscepti-
bility

Mean sub-
cortical
susceptibil-
ity

Skewness
cortical sus-
ceptibility

Skewness
subcortical
susceptibil-
ity

Cortical
Thickness

-0.22 -0.53 -0.24 -0.51

Sig 0.064 >0.000 0.043 >0.000

Table 6.11: Results of cortical thickness correlations MND group

Cortical thickness correlations in HC group
Comparison Mean corti-

cal suscepti-
bility

Mean sub-
cortical
susceptibil-
ity

Skewness
cortical sus-
ceptibility

Skewness
subcortical
susceptibil-
ity

Cortical
Thickness

-0.08 -0.15 0.01 -0.11

Sig 0.352 0.237 0.478 0.305

Table 6.12: Results of cortical thickness correlations in HC group
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