
i
i

“output” — 2018/9/17 — 17:48 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

COMPUTER SCIENCE AND ENGINEERING

MASTER’S THESIS

BEER: AN UNIFIED PROGRAMMING APPROACH FOR

DISTRIBUTED EMBEDDED PLATFORMS

Author:

dott. Domenico Iezzi

Student ID (Matricola):

850623

Supervisor (Relatore):

Prof. William Fornaciari

Co-Supervisor (Correlatore):

Ph.D. Giuseppe Massari

A.Y. 2017/2018

i
i

“output” — 2018/9/17 — 17:48 — page 2 — #2 i
i

i
i

i
i

i
i

“output” — 2018/9/17 — 17:48 — page I — #3 i
i

i
i

i
i

Contents

List of Figures III

List of Tables IV

Acknowledgment V

Abstract (Italian version) IX

Abstract IX

1 Introduction 1
1.1 Trend . 1

1.2 Emerging Technologies . 2

1.3 Emerging Needs . 5

1.4 Thesis Contribution . 6

2 State Of The Art 9
2.1 Distributed Computing paradigms 9

2.2 Mobile distributed computing 12

2.3 Edge/Fog Computing . 15

3 MANGO Project Background 19
3.1 The MANGO Approach . 19

3.2 The BarbequeRTRM . 21

3.3 MANGO Programming Model 24

I

i
i

“output” — 2018/9/17 — 17:48 — page II — #4 i
i

i
i

i
i

Contents

4 The BeeR Framework 31
4.1 Requirements . 31
4.2 Design . 33
4.3 Implementation . 37

5 Benchmark Porting 45
5.1 Rodinia benchmarks: the PathFinder sample 45
5.2 PathFinder: Porting to MANGO 48
5.3 PathFinder: Parallel Greedy Version 53

6 Experimental Evaluation 55
6.1 Devices and methodology . 55
6.2 Execution Time . 57
6.3 Overhead . 60
6.4 Accuracy . 65

7 Conclusions and Future Work 67
7.1 Conclusions . 67
7.2 Future Works . 68

Bibliography 71

II

i
i

“output” — 2018/9/17 — 17:48 — page III — #5 i
i

i
i

i
i

List of Figures

1.1 Edge computing paradigm . 5

2.1 Credit based system, in which each client reports results and
claims a credit, while server checks for their validity and assigns
credits . 12

2.2 Structure of Nebula Cloud services 17

3.1 BarbequeRTRM integrated into the MANGO framework 21
3.2 Distributed control scheme . 22
3.3 Abstract Execution Model (AEM) 24
3.4 An example of a Task Graph for a complex application. A buffer

can be both output for some kernels and input for others 25
3.5 Programming Model Synchronization Layer as a bridge between

MANGO programming model and Barbeque 28

4.1 Clients use the extended libmango, while the server is a stan-
dalone tool . 33

4.2 UML Sequence diagram showing a typical flow in the execution
of an application with kernels remotely spawned. 34

4.3 The buffer class . 35
4.4 Structure of a request message 36
4.5 Descriptors used for buffer and server’s response 37

5.1 Serial execution of the PathFinder algorithm 47
5.2 Parallel execution of the PathFinder algorithm, dividing matrix

by columns . 48

III

i
i

“output” — 2018/9/17 — 17:48 — page IV — #6 i
i

i
i

i
i

List of Figures

6.1 Comparison between execution time organized by execution plan.
Each graph reports results for each input data size, identified with
red colour for the small, green for the medium and blue for the
big, grouped by configuration on the x axis 58

6.2 Average execution time when using Freescale 59
6.3 Average execution time when using ODROID XU-3 61
6.4 Average execution time when using both devices 62
6.5 Kernel execution time is the time from the start of the first job to

the end of the last job . 63
6.6 Kernel execution overhead for different input data size 64
6.7 Minimum accuracy value with different Jobs 66

IV

i
i

“output” — 2018/9/17 — 17:48 — page V — #7 i
i

i
i

i
i

List of Tables

6.1 Evaluation plan for a given matrix size 56

V

i
i

“output” — 2018/9/17 — 17:48 — page VI — #8 i
i

i
i

i
i

i
i

“output” — 2018/9/17 — 17:48 — page VII — #9 i
i

i
i

i
i

Acknowledgments

I would like to thanks my supervisor prof. William Fornaciari and co-supervisor
Giuseppe Massari for their time spent guiding me from the first steps of the
project to writing this thesis. I would also like to thank Michele Zanella and
Federico Reghenzani for their valuable advice and help during the development
of this thesis, and also all the HeapLab people for the great time and knowledge
they shared with me.

A special thank goes to my parents Guido and Grazia, without whom I could
not start this journey, and which supported me during all this time.

And last but not least, a special thank to my love Silvia which has endured
me during these years of study, providing a great encouragement and helping me
overcome moments of discomfort.

VII

i
i

“output” — 2018/9/17 — 17:48 — page VIII — #10 i
i

i
i

i
i

i
i

“output” — 2018/9/17 — 17:48 — page IX — #11 i
i

i
i

i
i

Sommario

Con l’introduzione di processori multicore, i sistemi hanno cominciato a
sfruttare questo parallelismo per raggiungere livelli di prestazione sem-
pre più elevati. Inoltre la creazione di dispositivi sempre più potenti

ma allo stesso tempo più piccoli ha portato alla proliferazione di dispositivi em-
bedded in molti contesti. Nuovi paradigmi di computazione hanno permesso di
sfruttare le risorse inutilizzate di questi dispositivi interconnessi in una rete per
poter eseguire piccole parti di computazioni lunghe e complesse, in modo da
dividere il carico di lavoro su più dispositivi invece che una singola macchina.
Questo approccio ha portato con se nuove sfide nel campo della gestione delle
risorse e soprattutto il bisogno di un modello di programmazione adatto per il
calcolo distribuito.

Questa tesi propone un framework per la computazione distribuita su sistemi
embedded chiamato BeeR, che va ad integrarsi con il progetto MANGO, il quale
fornisce un framework per applicazioni in ambito High Performance Compu-
ting. Sfruttando il modello di programmazione di MANGO, BeeR permette ad
una applicazione client in esecuzione su un nodo General Purpose di un sistema
basato su microprocessore di affidare parte dei task che compongono un appli-
cazione e dei buffer di dati a dispositivi remoti, ed effettuare operazioni quali
leggere e scrivere buffer, rimanere in ascolto di particolari eventi e di avviare
la computazione. Inoltre, è stato possibile valutare sperimentalmente il proget-
to implementando un test da una suite di benchmark paralleli, e facendo prove
sperimentali con differenti configurazioni di dispositivi e livelli di parallelismo.

IX

i
i

“output” — 2018/9/17 — 17:48 — page X — #12 i
i

i
i

i
i

i
i

“output” — 2018/9/17 — 17:48 — page XI — #13 i
i

i
i

i
i

Abstract

With the introduction of multicore CPUs, systems began to exploit the
parallelism to achieve never seen before performance and concur-
rency. Moreover, the miniaturization of increasingly powerful and

less energy systems led to the proliferation of embedded devices in many con-
texts. New computing paradigms began exploring the possibility of exploiting
idle resources of mobile devices and smart objects connected through a network,
by offloading to them parts of a complex computation. This approach introduced
new challenges in terms of resource management of heterogeneous systems, and
the need of a common programming model suitable for distributed computing.

This thesis presents a framework for distributed computation on embedded
systems called BeeR, which integrates into the MANGO project providing a
framework for High Performance Computing applications. By leveraging the
MANGO programming model, BeeR allows a client application running on a
General Purpose CPU-based node to offload part of its tasks and data buffers to
a remote device, where an instance of the daemon is running, perform operation
like reading and writing buffers, waiting for specific events and running the com-
putation. Moreover, experimental evaluation was carried out by implementing a
test application from a suite of parallel benchmarks, and running it considering
different configurations of devices and levels of parallelism.

XI

i
i

“output” — 2018/9/17 — 17:48 — page XII — #14 i
i

i
i

i
i

i
i

“output” — 2018/9/17 — 17:48 — page 1 — #15 i
i

i
i

i
i

CHAPTER1
Introduction

1.1 Trend

When the modern computer era began around 1985, computers were bulky and
expensive. These computers operated independently from one another, with-
out networks to connect them. With the development of increasingly powerful
and smaller microprocessors, we assisted also to a miniaturization of computing
machines, leading to the possibility of integrating complex digital systems into
battery-powered devices, with performance that in some cases can be compa-
rable to full-fledged computing systems. The most impressive outcome of this
trend is the so-called mobile device, defined as highly portable battery powered
system, including a screen, some sensors, wireless adapters and a software stack.
Mobile devices are becoming more and more popular, reaching levels of perva-
siveness never seen, to the point of influencing the lifestyle of an individual.
Moreover, this evolution of computing systems has led to the definition of new
computing paradigms, capable of exploiting the huge number of heterogeneous
devices connected to the internet. In the following chapters, this new technolo-
gies are described, with an overview of the challenges they introduced and how
this thesis contributes to the overall field.

1

i
i

“output” — 2018/9/17 — 17:48 — page 2 — #16 i
i

i
i

i
i

Chapter 1. Introduction

1.2 Emerging Technologies

Thanks to their decreasing size, price and energy, electronic components are be-
ing increasingly integrated into everyday objects. Through sensors, these objects
are able to perceive their context, and network capabilities allow them to interact
with each other and access the Internet. The fact that devices may be equipped
with network equipment allows to "observe" the surrounding world with a good
level of detail but with a negligible cost. The increasing pervasiveness of mobile
devices has led to the definition of new computing paradigms leveraging this
opportunity

The concept of a networked smart object appeared for the first time in 1982,
where a coke machine at Carnegie Mellon University was modified to be able
to report the inventory and information about the state of products. The term
"Internet of Things" (IoT) was coined for the first time by Peter. T. Lewis in
1985, in a speech given at a U.S. Federal Communications Commission (FCC),
indicating the need to extend the connectivity beyond standard devices such as
personal computers or mainframe, to "dumb" or non-internet-enabled physical
devices and everyday objects. In the following years it was popularized by many,
such as the Kevin Ashton in a presentation made at Procter & Gamble (P&G) in
1999 [1], as reported in a 2002 article by C.R. Schoenberger [2].

In practice, the Internet of Things must not be considered as a single technol-
ogy, but the result of several technologies enabling different capabilities, such
as:

• Communication: devices are able to connect to the Internet, or talk to each
other in a network. Technologies such as WiFi, Bluetooth, GSM, UMTS
are particularly useful in this field.

• Addressability: objects can be located though discovery, look-up services,
thus remotely configured.

• Identification: objects are uniquely identifiable, technologies like RFID or
NFC allow even passive object with no power source to be identified.

• Sensing: object can extract information from their surroundings through
sensors, but also record information or simply react to specific events.

• Actuation: devices use actuators to manipulate the environment. Devices
can be used to control real world elements through the Internet.

• Information processing: even without exceptional computation power and

2

i
i

“output” — 2018/9/17 — 17:48 — page 3 — #17 i
i

i
i

i
i

1.2. Emerging Technologies

storage, devices can compute information coming for example from sen-
sors, or they may store information about state so that they can restore it.

• Localization: with technologies such as GPS or the mobile phone network
it is possible to get a precise location of the device.

• User Interfaces: user can interact with smart objects through an appropriate
interface. Also innovative technologies such as image or voice recognition
could be used.

These capabilities opens up fascinating prospects and interesting application
possibilities; but they are also come with substantial requirements relating to the
underlying technology. Indeed the infrastructure for an Internet of Things must
not only be efficient, scalable, reliable, secure and trustworthy, but it must also
be widely applicable and must take economic considerations into account.

Today, the increasing pervasiveness of IoT and mobile devices has led to an
huge increase in the data produced. In 2017, there were 8.4 billions of con-
nected IoT devices according to [3], and this number is going to grow again,
with a forecast of 20.4 billions devices connected by 2020. Moreover, the spread
of service based software has led to the definition of cloud-assisted internet of
things (CoT), a paradigm that defines self-configuring smart devices connecting
to cloud based services through the Internet. The amount of data collected by
these device cannot be processed by devices themselves, because of their limited
physical resources, and the offloading to the cloud becomes necessary. How-
ever, this influx of data is pushing network bandwidth requirements to the limit,
thanks also to the high transfer rates made possible by improving technologies
such as WiFi. Since moving this data from devices to data centers is becom-
ing more and more costly, the industry began exploring different alternatives to
cloud computing. Most of them are based on the idea of shifting towards a dis-
tributed approach where devices on the edge of the network, such as smartphones
or smart gateways will offer cloud services for a subset of the devices.

The paradigm of Fog Computing [4] proposes a highly virtualized platform
that provides computing, storage and networking services between devices and
the cloud computing data centers, located mainly at the edge of the network log-
ically close to devices. The name "fog" comes from the fact that fog can be seen
as a cloud closer to the ground. There are a number of characteristics that a fog
platform should take into account. First, the geographical distribution plays a
key role in the deployment of fog solutions, since application and services will
benefit from highly distributed content; for example, it could be possible to pro-
vide high quality streaming to moving vehicles through access points and proxies

3

i
i

“output” — 2018/9/17 — 17:48 — page 4 — #18 i
i

i
i

i
i

Chapter 1. Introduction

positioned along its route. Moreover, since these platform should communicate
with mobile devices, it should support mobility techniques enabling the decou-
pling of host identity from location identity. To this aim, several solution were
proposed. One of this is the Follow Me Edge [5] advanced from the Follow Me
Cloud [6], which proposes an architecture integrating different modules whose
goal is to manage nodes mobility and thus also the service migration. Originally
designed for user’s mobility only in cellular networks, it exploits the Locator/ID
Separation Protocol (LISP) virtualized according to the Network Functions Vir-
tualization (NFV) principle. Furthermore, services that need seamless support
require also the cooperation between resource providers, hence the need for in-
teroperability and federation between fog instances.

In a similar way, the Edge Computing paradigm tries to move part of the com-
putation on the edge of the network, shifting the focus on the devices rather than
infrastructure. To be more precise, the Edge Computing [7] paradigm refers to
the enabling technologies allowing the computation to be performed at the edge
of the network. This means that the computing should happen in proximity of
data sources, using devices and gateways that are logically close to the edge of
the network. As we can see in Figure 1.1, devices shift from data producers, to
data producers and consumers: they not only request service and content from
the cloud, but also perform computing tasks for the cloud. Edge provides fea-
ture such as computing offload, data caching and processing, feature typically
performed by cloud systems in a centralized architecture, but also distribute re-
quests and delivery service from cloud to user in a transparent way. This changes
in the paradigm introduces also additional requirements in the reliability, security
and privacy fields, as well as resources management [8].

Some key enabling technologies and research topics that will define the future
of edge cloud systems has been proposed: to build a small-scale cloud platform
at the edge and enable future IoT applications, Network Function Virtualization
(NFV) and Software Defined Networking are the two key solutions. NFV is a
network architecture concept that utilizes virtualization technologies to manage
core networking functions via software rather than hardware; it is possible to cre-
ate full-scale networking communication services by combining building blocks
of Virtualized Network Functions (VNF). The approach of Software Defined
Networking is to decouple network control and forwarding functions, enabling
network control to become directly programmable and the underlying infrastruc-
ture to be abstracted from applications and network service. The separation of
control from the data forwarding and the usage of centralized network control
and configuration could greatly increase the flexibility of VNF and reduce the

4

i
i

“output” — 2018/9/17 — 17:48 — page 5 — #19 i
i

i
i

i
i

1.3. Emerging Needs

Cloud

Data producer

Data

Applications

Requests /
Results Data

Edge

Data producer /
consumer

Fog

Service delivery
Computing offloading
IoT Management
Storage
Privacy /Security
....

Figure 1.1: Edge computing paradigm

costs. Another important effort is to bring the cloud orchestration to the edge
cloud. Orchestration is defined as a set of procedures and operations that the
cloud providers and application owners undertake to manually or automatically
select, deploy, monitor, and control the configuration of hardware and software
resources for application delivery [9]. Existing cloud solution are not applica-
ble to edge cloud technologies, since usually they are application-specific and
highly customized for a specific type of application, therefore there is a demand
for automated tools and abstraction to reproduce orchestration schemes on the
edge.

1.3 Emerging Needs

The introduction of parallel and distributed computing paradigms allowed to
tackle the increasing computing demand and exploit the pervasiveness of em-
bedded systems. Devices themselves began to leverage multi/many core archi-

5

i
i

“output” — 2018/9/17 — 17:48 — page 6 — #20 i
i

i
i

i
i

Chapter 1. Introduction

tectures, enabling the concurrent execution of different tasks at the same time.
Platform complexity is growing, to the point where processing elements are
grouped into clusters, memories are organized into several layers, and compo-
nent communication made possible through Network-on-Chip (NoC) and buses.
This introduces a number of resource management and application scheduling
challenges.

With resource allocation or scheduling we refer to the problem of making an
efficient assignment of resources to applications. It usually follows a scheduling
model, based on a system model which is an abstract representation of the un-
derlying resource. Especially in a High Performance Computing context, where
applications have tight constraints, the allocation of resources became a cru-
cial part of a computing framework. Moreover, having the hardware distributed
across the network introduces additional complexity, because of the dynamicity
of a smart object environment and the volatility of those devices.

Finally, to provide an easy to use interface, but at the same time allow system
engineers to exploit all the available components, a solid programming model
suitable for distributed computation should be adopted.

1.4 Thesis Contribution

The work described in this thesis has the goal of exploring the feasibility and
performance of computation offloading in a context of distributed embedded
systems, like the aforementioned Edge/Fog platform based scenarios. In par-
ticular, the key concept is to seamlessly exploit the availability of computing
devices, located at different levels and exhibiting heterogeneous capabilities, to
distribute the workload according to the application requirements. All this, with-
out explicitly managing the task offloading at application code level, but by using
an already proposed programming approach for multi-tasking HPC applications
(MANGO), integrated with a run-time resource management solution (the Bar-
bequeRTRM). In this thesis, this approach has been properly extended to this
work on distributed embedded systems, and experimentally evaluated on real
devices.

The thesis is structured as follows. In Chapter 2 the state-of-the-art related to
distributed computing and novel edge/fog technologies are highlighted. Chapter
3 introduces the MANGO project and its software stack, with the programming
model and the underlying run-time resource manager, the BarbequeRTRM. The
proposed solution, extending the MANGO software infrastructure, is carefully
explained in Chapter 4, with an in depth description of its design and imple-
mentation, while Chapter 5 and Chapter 6 describe the benchmark application

6

i
i

“output” — 2018/9/17 — 17:48 — page 7 — #21 i
i

i
i

i
i

1.4. Thesis Contribution

implemented and the experimental tests conducted. Finally, in Chapter 7 future
improvements and extension of the solution are summarized, with a focus on
crucial missing features such as authentication and communication encryption,
as well as a tighter integration with the BarbequeRTRM.

7

i
i

“output” — 2018/9/17 — 17:48 — page 8 — #22 i
i

i
i

i
i

i
i

“output” — 2018/9/17 — 17:48 — page 9 — #23 i
i

i
i

i
i

CHAPTER2
State Of The Art

This chapter introduces the state of the art in the field of distributed computation,
considering many types of systems and architectures. Section 2.1 introduces
the most important paradigms in the distributed computing field. In Section 2.2
an overview of the different solutions from the industry for the mobile area is
presented, with a description of the most popular implementations. Finally in
Section 2.3 a brief look at the new edge/fog alternatives proposed in recent years.

2.1 Distributed Computing paradigms

Distributed Computing is a paradigm according to which a single application can
be developed to execute on multiple system nodes, connected though a shared
network. For many years, Distributed Computing has been the exclusive ap-
proach to address the scalability requirements of scientific computing. This con-
cept has been recently evolved into several paradigms. Here below, we can list a
set of worth to consider ones:

• Peer-to-Peer Computing

• Cluster Computing

• Utility Computing

9

i
i

“output” — 2018/9/17 — 17:48 — page 10 — #24 i
i

i
i

i
i

Chapter 2. State Of The Art

– Cloud Computing

– Grid Computing

• Jungle Computing

2.1.1 Peer-to-Peer Computing

The Peer-to-Peer (P2P) networking was introduced to address the scalability
problem inherent in the distribution of resources among a high number of pro-
cesses. In particular, there is no client-server structure in a P2P network, because
each peer is both a client and a server, providing resource to all other nodes and
asking other nodes for resources. There is no central structure keeping a repre-
sentation of the entire system: this means that peers do not have a global view
of the entire system, but only of a subset of it needed to acquire a specific set of
resources.

2.1.2 Cluster Computing

Cluster computing consists of a set of independent and stand-alone computers,
interconnected through a network, working together as a single integrated com-
puting resource. They are connected through fast local area network, and all the
nodes are usually supervised within a single administrative domain. When build-
ing a cluster computing network, different approaches may be adopted: high-
availability clusters (also called failover clusters) try to improve the availability
by having redundant nodes, which are used when some components fail, thus
eliminating single points of failure. Such types of cluster are able to detect soft-
ware and hardware fails, immediately restarting the service on another system
without requiring administrative intervention.

In load-balancing clusters configurations, cluster nodes share and computa-
tional work loads to achieve better overall performance, like a web server clus-
ter which may distribute queries to every node in order to optimize response
times. Software-based load balancing cluster consists of a software installed
on servers, accepting requests and dispatching them to different nodes. Node
is chosen based on a specific algorithm, like a simple round-robin, or a com-
plex one considering server affinity. On the other hand, it is possible to find
hardware-based load balancing clusters , where the balancing logic is handled
by a specialized router or switch.

Clusters are also used in the high-performance computing world, where the
large-scale cluster can be seen as a compute farm: instead of running task locally,
it is possible to submit it to the cluster, which is able to manage tasks through

10

i
i

“output” — 2018/9/17 — 17:48 — page 11 — #25 i
i

i
i

i
i

2.1. Distributed Computing paradigms

a work queue, and execute them as soon as resources are available. Users who
need to run many similar jobs with different parameters or data sets find clusters
the ideal solution, to speed up the computation in case of big tasks that would
require a great amount of time running in a local workstation, like for example
complex scientific calculations.

2.1.3 Utility Computing

Utility Computing takes is name from an analogy derived from the real world,
where service providers maintain supply utility services like electrical power,
water and gas are delivered to consumers. This paradigm is based on a ser-
vice provisioning model, because users pay providers for using computational
power only when needed. Eventually, utility computing evolved into two main
paradigms which became popular in the IT field: cloud computing and grid com-
puting.

Grid Computing aim is to enable coordinated and distributed resource shar-
ing and problem solving in dynamic virtual organizations. Like electrical power
grid, a computing grid offers an infrastructure that couples computers, middle-
ware software, connected across LAN, WAN or the Internet forming networks
at regional, national or global scale. One of the most important solution in this
field is the Berkeley Open Infrastructure for Network Computing (BOINC) [10]
which is an open-source middleware system for grid computing, on a volunteer
basis. It aims to exploit the processing power of personal computers around the
world, by allowing users to select the project to contribute to. In particular, users
can install the provided application, register for a project, and receive tasks from
the project’s scheduling server. The executable and input data are downloaded,
the client software runs the program producing output files, which are then up-
loaded back to the project’s server. The server keeps track of how much work
each computer has done, with a credit-based system: each task is sent to two or
more clients; when client uploads results, it claims a certain amount of credit to
the server. The server then check if the results agree and assign to both clients a
number of credit equal to the lowest reported claim. This approach, described in
figure 2.1, has also the advantage to protect against false result reports.

Cloud Computing consists of shared pools of configurable computer system
resources and higher-level services that can be provisioned in an on-demand way,
with little or no up-front IT infrastructure investment costs. Cloud applications
and services offer high scalability which can be achieved by cloning tasks onto
multiple virtual machines orchestrated at run-time to meet changing work de-
mand, with the help of load balancers distributing the work over the set of virtual

11

i
i

“output” — 2018/9/17 — 17:48 — page 12 — #26 i
i

i
i

i
i

Chapter 2. State Of The Art

Figure 2.1: Credit based system, in which each client reports results and claims a credit,
while server checks for their validity and assigns credits

machines. This process is transparent to the cloud user, who sees only a sin-
gle access-point, and provides benefits for the cloud providers, which can scale
the service based on its demand. Services offered in cloud computing follow
different models:

• Software as a Service where users access an application and database, usu-
ally through a thin client like a web interface or a program interface.

• Platform as a Service where users gain access to a computing platform
where they can deploy their product.

• Infrastructure as a Service where users are able to deploy and run ar-
bitrary software, which can include operating systems and applications.
Users have full control over operating systems, storage, and deployed ap-
plications thanks to virtualization software, which allows the separation
between the service and the underlying infrastructure.

2.2 Mobile distributed computing

The increasing computing resources of mobile devices is allowing them to per-
form performance-hungry computation and running many multi-tasking applica-
tions without problems. These capabilities aren’t usually exploited by the device
software, leading to a waste of computing power. Moreover, the planned obso-
lescence policy imposed by the market gives an average life for a mobile device
of 20 months, leading to huge numbers of devices being replaced even if they
are perfectly working. This pervasiveness of mobile devices has led to the def-
inition of new solutions leveraging mobile devices as a distributed computation
network. Thanks to wireless communication improvements, researchers defined

12

i
i

“output” — 2018/9/17 — 17:48 — page 13 — #27 i
i

i
i

i
i

2.2. Mobile distributed computing

new computing paradigms for distributed systems of mobile devices, which can
be divided in the following categories:

• Transparent Computing

• Flexible Computing

• Voluntary Computing

• Enterprise Computing

• High-Performance Computing

2.2.1 Transparent Computing

The idea of Transparent Computing is that all data and software, including the
operating system and user information, should be stored on servers, while data is
computed on terminals. A small number of centralized servers act as warehouses
storing software resources, and bare clients interacts with users, where they can
chose heterogeneous OSes and applications in an on-demand fashion [11]. The
advantage of this approach is that users should only worry if they can get the
service or not, without worrying of the underlying details.

It can be regarded as a distributed paradigm since it is possible to have the
same service available for different terminals. However this is not properly what
we are looking for since the computation is not distributed but locally performed
on the current device, once the service or the application is loaded.

2.2.2 Elastic Personal Computing

Starting from the concept of Flexible Computing [12], this paradigm relies on
the fact that processing data in-pace and exchanging them directly between de-
vice can overcome bandwidth limitations, with respect to offloading the entire
computation to a remote server. Many solutions exist, such as the Light Weight
Map Reduce framework [13] that allows the submitting of jobs to any device
or group of devices, collecting results and reacting to events such as network,
battery or location changes. This leverages the Elastic Computing concept by
providing a mobile version of the Hadoop MapReduce framework. Other solu-
tions like GEMCloud [14] aim at exploiting mobile devices for computationally
intensive and parallel tasks while keeping an high degree of energy efficiency. It
is built with a client-server architecture, where the server is in charge of discov-
ering device through the network, registering them in a database, and choosing
the device where to offload the computation. On the other hand the client appli-
cation can decide to become visible based on the device status, represented by

13

i
i

“output” — 2018/9/17 — 17:48 — page 14 — #28 i
i

i
i

i
i

Chapter 2. State Of The Art

resources usage, battery level, and running applications. This does not represent
a complete solution, since it lacks scheduling and task placement policy, needed
in order to maximize performance and minimizing energy consumption.

2.2.3 Volunteer Computing

The volunteer computing is paradigm that relies on users making their devices
available for hosting external computationally intensive tasks. Many popular
projects such as SETI@home [15] or Folding@home [16] are exploiting this
paradigm for scientific research purposes.

An important project is the previously mentioned BOINC framework, which
provides also binaries for Android, so that it is possible to exploit mobile devices
but with a slightly different approach: client application starts computing only
when devices is plugged into a power source. Moreover, thanks to Android
application sandboxing, tasks are not able to access other apps data.

Other alternatives include an attempt to implement volunteer computing on
mobile systems [17], where a device with internet capabilities can elect itself as
a local task distribution point, inviting other users to join the computation via
existing Device to Device (D2D) communication methods.

Furthermore, the Reliable and Efficient Participatory Computing (REPC)
[18] is a generic randomized task assignment framework for the participatory
computing paradigm: a centralized server in fact, hosts the execution of a Task
Manager, in charge of assigning tasks to subscribed devices. The overall goal is
to guarantee the completion of a given minimal number of tasks, minimizing the
number of tasks assigned per device. The central server is involved also in the
estimation of the run-time statistics regarding the tasks execution.

2.2.4 Enterprise Computing

The idea of mobile devices for distributing computation has found its way also
in the enterprise world. Arslan et al. [19] proposed a distributed computing in-
frastructure using smartphones in enterprise context. The main idea is to help
company’s server by using mobile devices for the computation while recharging,
to enable energy and cost saving for enterprise. This solution is quite complex,
taking into account device computation capabilities and status, and it shows two
main drawbacks: first of all, the client-server architecture represents a limitation
in terms of scalability and flexibility. Second, there is no local resource man-
ager on client devices, exposing local resources to the server and executing local
optimization considering the workload, because all the evaluation is performed
server-side.

14

i
i

“output” — 2018/9/17 — 17:48 — page 15 — #29 i
i

i
i

i
i

2.3. Edge/Fog Computing

2.2.5 High-Performance Computing

Even in the High Performance Computing (HPC) area some solutions were pro-
posed, which can be considered closer to the solution proposed in this work.
One of them is the DroidCluster study [20] considering mobile devices as nodes
of a parallel cluster, but without modifying or replacing the Android systems.
This solution leverages the Message Passing Interface (MPI) as the standard for
message exchange in parallel computations in distributed systems, and his tar-
get workload is made of parallel HPC benchmark applications, so that resource
management is not needed.

2.2.6 Considerations

Most of the solutions presented so far, relies on the client-server architecture,
with a single server managing multiple devices, thus introducing a problem of
flexibility and scalability. A different approach to explore would be to keep
a client-server infrastructure, but with different server and different clients: a
client may be registered on more than one server, meaning that it will compute
tasks of different complex applications, and each server acts on his own, based
on different requirements without the need of a central authority.

2.3 Edge/Fog Computing

As discussed in Chapter 1, Edge and Fog Computing aim at moving the compu-
tation from the data centers to the edge of the network, closer to the local devices.
Even if the they are relatively recent paradigms, there are an important number
of solutions proposed. One of them is based on the concept of cloudlets pro-
posed by Satyanarayanan et al. [21]. A cloudlet is a new architectural element
arising from the convergence between mobile computing/IoT and cloud comput-
ing. It represents the middle tier in a 3-tier hierarchy made of devices, cloudlets
and cloud: in practice it can be viewed as a small data center, whose goal is to
bring the cloud closer to the device. In particular, it has the advantage of keeping
cached state from the cloud, but also to buffer data going from the device to the
cloud, so that the transfer will happen reliably and securely. This also means that
the cloudlet is a self-managing entity, cause it does not have any kind of hard
state.

Moreover, it has a sufficient compute power to offload resource-intensive
tasks from one or more mobile devices, excellent connectivity to the cloud (usu-
ally wired Internet connection), plugged to power source to avoid relying on
battery. Cloudlets instances are logically close to associated mobile devices to

15

i
i

“output” — 2018/9/17 — 17:48 — page 16 — #30 i
i

i
i

i
i

Chapter 2. State Of The Art

ensure low latency and high bandwidth between the two. This often implies that
devices and cloudlets are also physically close. Finally, it is build using the same
technologies we may find in the cloud, mainly virtual machines (VMs).

FemtoCloud [22], a project from the Georgia Institute of Technology, is an
evolution of the cloudlet concept: instead of relying on a extra piece of infras-
tructure, a group of mobile devices can be grouped to function as a cluster, in
a scenario such as a theatre. The key point is to use idle resources of these de-
vice to run tasks managed by a controller, which allows better scalability and
avoid relying on additional infrastructures. This implementation expects client
service running on the devices, which estimates the computational capability
of the mobile device, and using this along with user defined settings, to report
resource available for sharing. For example, user may be able to define the max-
imum percentage of device capabilities the service may be able to use, or specify
that the computation may happen only when the battery is charging. Moreover,
the client application contains a module in charge of gathering data about user
preferences and behaviour used for determining his presence time, while joining
FemtoCloud. In this case, the scheduling algorithm is critical for the correct per-
formance of the system. It differs from standard algorithms because of the great
volatility of the devices, as in the case where a device departs prior to complet-
ing the task assigned, which needs to be rescheduled and started from scratch
on another device. This approach has some disadvantages, mostly caused by the
high volatility and mobility of devices, to allow them to fulfill the offloading with
other devices in the environment.

Another worth to mention solution is Nebula [23]. This framework offers a
location/context-aware distributed edge cloud infrastructure. The Nebula cloud,
following a similar pattern seen with the BOINC framework, is made of vol-
unteer nodes, donating their computation and storage resources, and a set of
services hosted on dedicated, stable nodes. These services are:

• Nebula Central is the front-end, providing a web interface allowing volun-
teers to join and tools to manage and monitor the execution of applications.

• DataStore is a per-application storage service supporting location-aware
data processing. Each DataStore instance is linked to a volunteer node
storing the actual data, while the DataStore Master maintain metadata and
makes data placement decisions.

• ComputePool provides per application computation resources through a set
of volunteer nodes. Nodes in a ComputePool are scheduled by a Com-
putePool Master that coordinates the execution. Moreover, ComputeNodes

16

i
i

“output” — 2018/9/17 — 17:48 — page 17 — #31 i
i

i
i

i
i

2.3. Edge/Fog Computing

Figure 2.2: Structure of Nebula Cloud services

have access to Data Nodes for retrieving data needed, and they are assigned
tasks based on application requirements and data location.

• Nebula Monitor is the service in charge of monitoring volunteer nodes and
network characteristics. The parameters monitored are mainly computa-
tions speeds, memory and storage capacity, network bandwidth and health
information about nodes.

A typical nebula application is made of a number of jobs. A job contains
code to carry out a specific computation, it has a specific input dataset made
of multiple data objects, and produces an output. Jobs may have dependencies
between each other, meaning that a job’s output may be needed for another job
as input data. Moreover each job consists of multiple tasks, which may run in
parallel and work on a partition of the input data.

17

i
i

“output” — 2018/9/17 — 17:48 — page 18 — #32 i
i

i
i

i
i

i
i

“output” — 2018/9/17 — 17:48 — page 19 — #33 i
i

i
i

i
i

CHAPTER3
MANGO Project Background

In this chapter we will introduce the MANGO project, which provides a frame-
work for High Performance Computing applications on heterogeneous architec-
tures and represents the starting point of the work proposed in this thesis. In
Section 3.1 an in-depth overview of the MANGO framework is presented, in-
cluding its main components and functionality. In addition, Section 3.2 describes
the run-time resource manager used by the framework, called BarbequeRTRM.
Finally Section 3.3 explains the programming model adopted by the framework
along with an example from an use-case.

3.1 The MANGO Approach

The main challenge that has to be faced in HPC is the performance/power ef-
ficiency. The gap between the application’s requirements and the underlying
architecture needs to be taken into account in order to achieve the maximum ex-
ploitation of computing technologies and power efficiency. The MANGO project
goal is to investigate architectural implications of the emerging requirements in
HPC applications, aiming at the definition of new generation high-performance,
power-efficient, deeply heterogeneous architecture with isolation and QoS com-
pliance in mind. Since QoS and time predictability are often ignored in HPC,

19

i
i

“output” — 2018/9/17 — 17:48 — page 20 — #34 i
i

i
i

i
i

Chapter 3. MANGO Project Background

the traditional optimization space is extended from power/performance to power,
performance and predictability.

One of the challenges that MANGO tries to solve is the optimization of re-
source allocation, which is not trivial since applications may be composed of
multiple tasks, a task may be executed on different computing units of an hetero-
geneous architecture. Moreover, the framework needs to comply with applica-
tions’ requirements while also addressing system-wide requirements. To provide
applications with a resource-agnostic view of the available resources, MANGO
provides a hierarchical resource management strategy, made of a global resource
manager (GRM) in charge of workload balancing and thermal control of the sys-
tem, and a local resource manager (LRM), in charge of the allocation of node
resources, allowing multiple applications to share resources located on a single
node.

This has led the project to develop a software stack including a novel pro-
gramming model, for heterogeneous multi-processor systems, integrated with a
run-time resource management solution [24]. The outcome has inspired this the-
sis work, with the idea of continue the development of this programming model,
in order to experiment its adoption in distributed systems, including also em-
bedded and mobile devices, like the ones emerging in this Fog/Edge computing
era.

3.1.1 Local Resource Manager

The Local Resource Manager is in charge of a single node: a node is a sub-
part of the system containing a multiprocessor CPU-based system, the General
Purpose node, to which are connected boards containing a set of heterogeneous
processing units and memory nodes interconnected. From the point of view of
the resource management, applications are made up of different tasks compiled
for one or more architectures, and buffer allocation requests, with the possibility
of inter-task data transfer. Starting from this assumption, the resource assign-
ment process is made up of three sub-tasks: a) map for each task the processing
units to assign, b) allocate buffers onto the memory nodes, taking into account
access latency, memory bandwidth used and contention on memory controllers,
c) reserve a minimum amount of bandwidth to support efficient data transfer.
These decisions are enforced by user-defined policies, and leverage the isola-
tion and reservation mechanisms of the underlying hardware platform support,
increasing predictability of the execution.

Another important aspect of an HPC infrastructure is the power management:
indeed the resource manager can a) switch off processing units, b) change op-

20

i
i

“output” — 2018/9/17 — 17:48 — page 21 — #35 i
i

i
i

i
i

3.2. The BarbequeRTRM

 Application Runtime
Library (RTLib)

FIFOs/ShMem

RPC Channel Adaptive Execution Model API

Synchronization Protocol

Recipes
(requirements
and profiling)

Linux kernelcpufreq

BarbequeRTRM
Daemon

Platform ProxyPower Manager

Application
Proxy

AgentProxy
Scheduler
Manager

Synchronization
Manager

Application
Manager

Resource
 Manager

Scheduler Policy
Synchronization

Policy

Applications

C

cgroups

MANGO API

drivers

Platform LibraryResource Management APIPower Management API

C++ OpenCL Python

Programming Model Synchronization Layer

Figure 3.1: BarbequeRTRM integrated into the MANGO framework

erating point of the processing unit (e.g. DVFS 1), c) select the processing unit
with the lowest power consumption profile for the same architecture.

3.1.2 Global Resource Manager

The entry-point for all the MANGO applications is the Global Resource Man-
ager, which decides at run-time the node where to execute new applications, and
interacts with each Local Resource Manager instances. The main components
of a GRM are: a) workload scheduler, in charge of receiving workloads and as-
signing them to nodes, b) power/thermal agent which applies defined policies in
order to improve efficiency of the system, c) a thermal simulator used to predict
the thermal behaviour of the system.

3.2 The BarbequeRTRM

The MANGO framework leverages Barbeque Run-Time Resource Manager, a
project developed at Politecnico di Milano by the BarbequeRTRM OpenSource
Project (BOSP). It is a portable and extensible framework for adaptive run-time

1Dynamic Voltage and Frequency Scaling

21

i
i

“output” — 2018/9/17 — 17:48 — page 22 — #36 i
i

i
i

i
i

Chapter 3. MANGO Project Background

Figure 3.2: Distributed control scheme

resource management of many-core architectures, offering optimal resource par-
titioning and adaptive run-time scheduling of the different re-configurable archi-
tectures. It has been designed to be highly modular, providing support for easy
integration and extension, and support for both homogeneous and heterogeneous
architecture is achieved thanks to the Platform Proxy module which handles the
low-level communication.

To effectively use computational resources, the application must be able to
run according to different configurations, which means running with different re-
source usage levels. At design time, a suitable Design Space Exploration (DSE)
activity identifies all the possible configurations by profiling the specific appli-
cation. Each configuration is defined by a set of parameters, some of which
impacts only on the applications behaviour, while others have a direct impact on
the amount of required computational resources. This distinction allows to de-
fine two different granularity levels: Operating Point (OP) is a set of application
specific parameters, corresponding to an expected QoS for the end user. While
Application Working Mode (AWM) is a collection of resource requirements cor-
responding to an expected QoS for the application. So while OPs are tied to
application specific properties, AWMs described system-wide properties which
affect system resources and other entities competing in their usage.

22

i
i

“output” — 2018/9/17 — 17:48 — page 23 — #37 i
i

i
i

i
i

3.2. The BarbequeRTRM

For an optimal usage of these parameters, BarbequeRTRM offers a distributed
and hierarchical control scheme, where each controller is in charge of a specific
subsystem, allowing to spread the complexity and to scale better with system
complexity and number of subsystem.

As shown in Figure 3.2, the hierarchical approach allows a fine-grained con-
trol at different abstraction levels. There are three main classes of subsystems,
each one related to a different control level: the application control level, which
is defined for every run-time tunable application, it’s in charge of evaluating run-
time behaviour of an application and tune its configuration based on the analysis.
At this level, the Application Specific Run-Time Manager (AS-RTM) reads the
amount of resources assigned to the applications (AWM) and its run-time QoE
2, using these data as a feed-forward signal by defining a suitable policy to select
an OP.

At the same level lies the OS/FW control level which is a platform-specific
modules where DVFS and thermal control take place. At the system-wide control
level we have the System-Wide Run-Time Resource Manager targeting a set of
optimization goals, which will be pursued thanks to a proper assignment of the
available resources.

3.2.1 Adaptive Execution Model API

The Application Run-Time Library (RTlib) provides a rich set of features and
APIs to interact with the framework and to support run-time management ac-
tivities. This library provides the Adaptive Execution Model, a callback-based
API similar to the Android programming model: developer has to implement a
C++ class derived from the base class defined in the RTLib. At run-time, the in-
stance of this class will spawn a control thread which will then call the methods
as shown in Picture 3.3. These method have the following semantics:

• onSetup: initialization code

• onConfigure: reacts on resource allocation changes, so that the application
can re-configure itself

• onRun: part of the application performing computation

• onMonitor: called after onRun to check current performance and notify
the resource manager

• onRelease: de-allocation and release
2Quality Of Experience

23

i
i

“output” — 2018/9/17 — 17:48 — page 24 — #38 i
i

i
i

i
i

Chapter 3. MANGO Project Background

Figure 3.3: Abstract Execution Model (AEM)

Workflow starts with the onSetup initialization, and then waiting for resources
to be ready to be assigned. After the assignment, the onConfigure is called so that
applications may adapt to the availability of resources, and once configured the
control thread starts a loop where onRun and onMonitor are called. onConfigure
will be called again only if there’s some change in the allocation of resources,
event that is notified to the control thread by the daemon. Finally, after the ap-
plication terminates its execution, the onRelease is called before exiting.

3.3 MANGO Programming Model

3.3.1 Application structure

As explained in section 3.1, an instance of the MANGO platform typically is
made of a general-purpose node, based on specific processors, connected through
a PCI Express link to a cluster of FPGA boards, containing a set of heterogeneous
units. MANGO will run multi-tasking applications, which may spawn different

24

i
i

“output” — 2018/9/17 — 17:48 — page 25 — #39 i
i

i
i

i
i

3.3. MANGO Programming Model

Figure 3.4: An example of a Task Graph for a complex application. A buffer can be both
output for some kernels and input for others

threads and run on heterogeneous processing units, characterized by different
architecture and specifics. These tasks may exchange data thanks to a shared
memory context, where data buffers may be read or written by different units.

A MANGO application is usually made up of different kernels built for dif-
ferent architectures exchanging data though some buffer that will be allocated on
a physical memory shared between all the nodes. To keep a representation of the
structure of the application that the resource manager can understand in order
to find the optimal resource allocation, applications build a Task Graph, a graph
representing inter-dependencies and the hierarchy of the various elements of the
applications, like shown in picture 3.4.

3.3.2 API

Since application may be developed by domain experts with limited knowledge
in computing, the programming model adopted by MANGO needs to be simple
to understand even to non-specialist, and hide all the complexities under an easy
to use interface. The programming model run-time support, MANGO application
library, is made of two layers one at the host-side and the other at the device-side.
MANGO API will be presented by showing the GIF_FIFO sample application
as a practical overview of the usage of the API.

25

i
i

“output” — 2018/9/17 — 17:48 — page 26 — #40 i
i

i
i

i
i

Chapter 3. MANGO Project Background

The host-side low-level runtime (HLR) contains a set of functions used to
access the functionality of the accelerators from the main application code run-
ning on a CPU-based general purpose node (GN). The initialization routine is
provided by the BBQContext which instantiates the Application Controller and
initializes the communication with the HN library. For each application task, it
is possible to initialize a KernelFunction object that allows to load an executable
for a target architecture. In this case application is made of only one task, as
shown in the following listing.

Listing 3.1: "Initialization of the BBQContext and KernelFunction"

1 context = new mango::BBQContext("gif_animation","gif_animation");

2 auto kf_scale = new mango::KernelFunction();

3 kf_scale->load(kernel_binary_path_cpu,

4 mango::UnitType::GN, mango::FileType::BINARY) ;

5 kf_scale->load(kernel_binary_path_peak ,

6 mango::UnitType::PEAK, mango::FileType::BINARY) ;

To be able to create a Task Graph, buffers and kernel should be registered
through the context. To register the kernel, required parameters are an unique
id, the kernel object initialized before, and the list of input and output buffers
reference by their ids. As for buffers, they need to be registered providing an
id, list of kernel object reading and writing to it referenced by id and the type of
buffer. With these object, it is possible to create a Task Graph and pass it to the
the resource allocation command. When the function returns, the Task Graph is
filled with information about the allocation, and the execution can start.

Listing 3.2: "Resource allocation"

1 auto kscale = context->register_kernel(KSCALE, kf_scale, {B1}, {B2

});

2 auto b1 = context->register_buffer(B1,

3 SX*SY*3* s i z e o f(Byte), {}, {KSCALE}, mango::BufferType::FIFO);

4 auto b2 = context->register_buffer(B2,

5 SX*2*SY*2*3* s i z e o f(Byte), {KSCALE}, {}, mango::BufferType::FIFO

);

6 tg = new mango::TaskGraph({ kscale }, { b1, b2 });

7 context->resource_allocation(*tg);

Before proceeding, the list of arguments needs to be defined, which allow
us to define extra parameters for simple scalar values or events, followed by
the initialization of buffer data. The function start_kernel is used to trigger the
execution of the task, and it return a kernel completion event that can be used to
wait for the end of the execution.

Listing 3.3: "Kernel execution and synchronization"

26

i
i

“output” — 2018/9/17 — 17:48 — page 27 — #41 i
i

i
i

i
i

3.3. MANGO Programming Model

1 auto argB1 = new mango::BufferArg(b1);

2 auto argB2 = new mango::BufferArg(b2);

3 auto argSX = new mango::ScalarArg< i n t >(SX);

4 auto argSY = new mango::ScalarArg< i n t >(SY);

5 auto argE1 = new mango::EventArg(b1->get_event());

6 auto argE2 = new mango::EventArg(b2->get_event());

7 argsKSCALE = new mango::KernelArguments(

8 { argB2, argB1, argSX, argSY, argE1, argE2 },

9 kscale

10);

11 b1->write(in, 4*SX*SY*3* s i z e o f(Byte));
12 b2->read(out, 4*SX*2*SY*2*3* s i z e o f(Byte));
13 auto e3=mango_rt->start_kernel(kscale, *argsKSCALE);

14 e3->wait();

On the device-side, the device-side low-level run-time (DLR) provides syn-
chronization mechanisms at the accelerator level, and allows to map physical
addresses of buffers allocated in the shared memory to virtual addresses. In par-
ticular, the mango_wait functions allows the kernel to wait for the input buffer to
be ready for reading and the output buffer to be ready for writing. After the com-
putation takes place, it is possible to notify the host that buffers are ready and
accessible for reading and writing, through the mango_write_synchronization
function

Listing 3.4: "Device-side execution"

1 void kernel_function(uint8_t *out, uint8_t *in, i n t X, i n t Y,

mango_event_t e1, mango_event_t e2){

2 f o r(i n t i=0; i<4; i++) {

3 mango_wait(&e1, READ);

4 mango_wait(&e2, WRITE);

5 printf("KERNEL: mango_wait\n");

6 scale_frame(out, in, X, Y);

7 mango_write_synchronization(&e1, WRITE);

8 mango_write_synchronization(&e2, READ);

9 printf("KERNEL: mango_write_synchronization\n");

10 }

11 }

12 void scale_frame(uint8_t *out, uint8_t *in, i n t X, i n t Y){

13 i n t X2=X*2;

14 i n t Y2=Y*2;

15 f o r(i n t x=0; x<X2; x++)

16 f o r(i n t y=0; y<Y2; y++)

17 f o r(i n t c=0; c<3; c++){

18 out[y*X2*3+x*3+c]=in[y/2*X*3+x/2*3+c];

19 }

20 }

27

i
i

“output” — 2018/9/17 — 17:48 — page 28 — #42 i
i

i
i

i
i

Chapter 3. MANGO Project Background

Figure 3.5: Programming Model Synchronization Layer as a bridge between MANGO
programming model and Barbeque

3.3.3 Integration with BarbequeRTRM

To integrate the BarbequeRTRM daemon into the MANGO programming model,
the Programming Model Synchronization Layer was built. This layer provides
an abstraction of the resource assignment process, allows the synchronization
between the task execution and the local resource management functions and
profile the task execution. As shown in figure 3.5, the PMSL interface called
in a sample MANGO application resides in the Application Controller, which
initializes an execution context of the AEM. This controller is initialized by the
BBQContext class, and the previously described API leverages directly this layer
to provide a bridge between the two frameworks.

To share the Task Graph between MANGO and BarbequeRTRM instances,
the Task Graph Library comes in help, providing functions for the management
of those objects. The execution synchronizer will wait on the onSetup until all
these object are instantiated and the task graph is provided from the MANGO
application through the resource allocation call, so that the PMSL can forward
it to the daemon. Here BarbequeRTRM executes the allocation policy and then
return the Task Graph object to the PMSL, filled with all information needed
for allocation. The resource allocation call in the sample application returns,
the execution synchronizer enters the onConfigure phase waiting for a kernel to
execute. Now the application can initialize buffers and load the kernel, since it
has all the mapping information of the resource manager, and it is able to start the
kernel with the start_kernel function. The onConfigure starts a thread for each
kernel executed to monitor its execution time and throughput before entering the

28

i
i

“output” — 2018/9/17 — 17:48 — page 29 — #43 i
i

i
i

i
i

3.3. MANGO Programming Model

onRun phase. The onMonitor will collect data retrieved from the control thread
spawned in the onConfigure and send it to the resource manager, so that it can
profile the application execution. Finally the onRelease function is in charge of
releasing all the assigned resources, when all kernels terminate.

29

i
i

“output” — 2018/9/17 — 17:48 — page 30 — #44 i
i

i
i

i
i

i
i

“output” — 2018/9/17 — 17:48 — page 31 — #45 i
i

i
i

i
i

CHAPTER4
The BeeR Framework

This chapter introduces the design and implementation of the BeeR framework,
aiming at seamlessly managing the execution of multi-tasking (multi-kernel) ap-
plications, in a distributed fashion. This has the goal of extending the capabilities
of the software support, previously developed for the heterogeneous computing
platforms explored in the MANGO project. In Section 4.1, the first phase of the
process is described, which corresponds to the definition of the requirements that
the framework must satisfy and its general structure. In Section 4.2 we describe
the server-side part of the framework, as well as the client-side, consisting of the
extension of the libmango library. Section 4.3 provides details on the current im-
plementation, with some code samples of the key components, and an overview
of the tools and libraries used.

4.1 Requirements

The purpose of BeeR is to extend the capabilities of the MANGO framework
to allow distributed embedded devices, connected together through the network,
to participate in the execution of an application. With this approach, an appli-
cation can choose to execute its tasks leveraging CPU-based general purpose
nodes scattered across the network, or reserve only a subset of the tasks for re-
mote computation and launching the remaining ones on heterogeneous nodes

31

i
i

“output” — 2018/9/17 — 17:48 — page 32 — #46 i
i

i
i

i
i

Chapter 4. The BeeR Framework

connected through the PCI express link. This means that client applications are
able to communicate with remote entities, where an instance of the BeeR dae-
mon is in execution. This has to be done transparently by the MANGO library,
without modifying its existing interface.

It is clear that in order to achieve this goal, a client-server architecture should
be adopted. Client needs a way to discern if any of the tasks is running on a
local node, or is going to be run in a remote one. In this way during the resource
allocation stage it is possible to differentiate between local and remote resources,
and act consequently. Furthermore, client should be able to replicate most of the
data structure on the remote device, by sending and receiving data wrapped into
messages, which of course require the definition of a protocol. On the other hand,
server must be able to replicate the work-flow of a typical mango application,
such as allocate buffers and kernels, execute the kernel, wait for events, read and
write buffers. Client application should take into account the architecture of the
server and correctly provide a pre-compiled binary executable. Since we could
have multiple MANGO application running at the same time on different hosts,
and different devices, BeeR follows a Many-To-Many structure, meaning that
each instance of the server could receive tasks from multiple client applications.

Given the Programming Model described in Section 3.3, messages exchanged
between client and servers must follow this interface. In particular, we need a
mechanism for the following set of operations:

• Registering buffer and kernels using the id, size and other parameters pro-
vided to the MANGO library (libmango) by the application code

• Initialize a kernel object by providing the executable binaries compiled for
the target architectures

• Read and write buffers remotely allocated

• Start the remote execution of the kernels

• Managing the occurrence of remote events (e.g., kernel termination)

• Retrieve statistics about the kernel execution

One of the techniques that can be used to transfer back and forth data struc-
tures is object serialization, which consists in the conversion of an object instance
into a sequence of bytes. This can the be saved into a file or transfer through
the network. In this way if both client and server have the same class defined,
instances of that class can be wrapped into a simple message and transferred
through a TCP connection.

32

i
i

“output” — 2018/9/17 — 17:48 — page 33 — #47 i
i

i
i

i
i

4.2. Design

Client device

BeeR client

libmango

BarbequeRTRM

Linux kernel

Server device

BeeR server

Linux kernel

Figure 4.1: Clients use the extended libmango, while the server is a standalone tool

4.2 Design

The BeeR client is a typical MANGO application, leveraging the set of libraries
provided by the framework, as shown in Figure 4.1. To provide the capability
of offloading tasks and buffers to a remote BeeR server instance, the underlying
libmango was extended.

The BeeR server is the component of the framework in charge of manag-
ing the execution of a kernel on a device, as remotely required from a "host"
machine. The server is executed as a daemon and it does not need to link the
MANGO library. This approach saves us from having to build the MANGO
framework for each device architecture, a task which is time-consuming and may
not be easy to port to different architectures, because of the long list of depen-
dencies. Moreover, having a simple codebase written with portability in mind,
allows us to easily build this implementation for different architecture without
much effort.

4.2.1 Server: Requests management

As soon as the server receives a new connection, it instantiates a new Task ob-
ject. This object will manage the incoming requests in a separate thread, so
that the main server loop can immediately start listening for a new connection
to handle. This concurrent approach allows the server to handle different tasks
from different clients simultaneously using a Thread Pool. By default the pool
configuration will spawn a maximum number of threads equal to the machine
concurrency level (number of cores of the processor), otherwise it’s possible to

33

i
i

“output” — 2018/9/17 — 17:48 — page 34 — #48 i
i

i
i

i
i

Chapter 4. The BeeR Framework

:Client1 :Server

connect()

:Thread1 :Task1

. . .

Task::run()

register_kernel()
Task::init_kernel_func()

:Client2

. . .

detach()
Task::detach()

.
connect()

register_kernel()

. . .
detach()

. . .

Task::run()

:Thread2 :Task2

Task::init_kernel_func()

Task::init_kernel_func()

Figure 4.2: UML Sequence diagram showing a typical flow in the execution of an ap-
plication with kernels remotely spawned.

specify a value for that number. A sample case is shown in figure 4.2: server
receives a connect request from client1 and spawns a new thread thread1 which
initializes a new Task task1 by calling the function run(). From now on, thread1
will handle the TCP connection from client1 and the server can return to lis-
tening for new connections. client1 sends a register_kernel() command, and the
corresponding thread will call the function init_kernel_func() to parse kernel data
from the payload. During this time, a new client client2 connects to the server,
spawning a new thread thread2 which initializes a new Task task2. These two
tasks will run concurrently without any possibility of conflict: any data associ-
ated with a thread will have its own unique identifiers, so that each kernel can
execute independently. After a detach call from client1, thread1 will terminate
and client2 will continue with the same work-flow.

4.2.2 Server: Remote kernel execution management

To manage kernel execution, the Subprocess class was introduced taking care of
the binary executable sent from the client. This class has two methods: run will
execute the kernel with a given list of arguments sent from the client. Binary will
be run as a separate process using the fork()+exec() syscalls sequence, where
the fork call creates a new process by cloning the current one, and the exec
replaces the content of the address space by executing the binary file provided as

34

i
i

“output” — 2018/9/17 — 17:48 — page 35 — #49 i
i

i
i

i
i

4.2. Design

Figure 4.3: The buffer class

an argument.
This class will store the PID (process identification number) of the child pro-

cess, allowing the server to wait for its completion. This is done by the second
function wait which returns as soon as the child process exits. This works by
calling the waitpid function defined by the C library, which waits for the child
process identified by the supplied PID to terminate.

Each thread spawned by a new connection will contain only one Subprocess
object: in this way different kernels are handled by different connections, so that
they can be executed simultaneously by the server.

4.2.3 Server: Remote buffer management

As we seen in Chapter 3, the MANGO programming model expects data ex-
change between different kernels running on different nodes through buffers al-
located on a shared memory. Following this structure, kernels launched by the
BeeR daemon will be able to access buffers thanks to the POSIX shared mem-
ory API. The Buffer class manages manages a shared memory reference for a
specific buffer identified by an id and with a specific size measured in bytes. To
avoid conflicts with other tasks running on the same server instance that may
allocate buffers with the same id, the shared memory object is initialized with a
unique name. Member functions write() and read() are used to respectively write
data from the buffer into the shared memory and read data from the shared mem-
ory into the buffer. To keep data buffers, BeeR uses the string C++ class, since
it is basically a wrapper around an array of char, suitable for storing a sequence

35

i
i

“output” — 2018/9/17 — 17:48 — page 36 — #50 i
i

i
i

i
i

Chapter 4. The BeeR Framework

Figure 4.4: Structure of a request message

of bytes, but also because it can be easily serialized and transferred.

4.2.4 Message types

Client and server are connected via TCP, while the exchange of messages is
managed through a simple protocol: client sends an message to the server and
receives a response containing the result of the operation, and optional messages
regarding the execution of the command. The message structure is shown in
Figure 4.4: first 8 bits contain the "opcode" identifying the type of request, fol-
lowed by the "payload", containing the data characterizing the request. In this
first version of the framework, the set of possible opcodes is the following:

• COMMAND_KERNEL_FUNCTION: initialize kernel object on the server,
payload stores a serialized descriptor class containing binary executable
and parameters such as file type and unit type.

• COMMAND_BUFFER: initialize a buffer, payload stores a serialized de-
scriptor class containing id, size, list of kernels writing and reading to it
referenced by their ids.

• COMMAND_START_KERNEL: triggers the execution of the kernel.

• COMMAND_KERNEL_WAIT: wait for kernel completion. This is a syn-
chronous request, which returns as soon as the kernel terminates.

• COMMAND_BUFFER_READ: return buffer referenced by an id, payload
stores buffer information.

• COMMAND_BUFFER_WRITE: write buffer referenced by an id, payload
stores information and data that needs to be written.

• COMMAND_DETACH: closes the connection.

• COMMAND_SCALAR_INT: register an integer as scalar argument.

• COMMAND_SCALAR_FLOAT: register a float as scalar argument.

• COMMAND_SCALAR_CHAR: registers a character as scalar argument.

36

i
i

“output” — 2018/9/17 — 17:48 — page 37 — #51 i
i

i
i

i
i

4.3. Implementation

Figure 4.5: Descriptors used for buffer and server’s response

The payload, as described in the previous list, can be a serialized object, a
sequence of bytes representing some values, or it can be empty for tasks that does
not need data, such as the kernel execution trigger. By serializing information,
we are able to build a simple protocol, by moving most of the information into
serialized descriptors, and leveraging external libraries for the implementation.

4.2.5 Remote client integration

To represent a remote instance of the BeeR daemon, libmango was extended
with a new Device class. This class will provide functions for sending requests
and receive data, and it is initialized by providing the host and port of the remote
endpoint.

As anticipated in Section 4.1, to be able to send and receive serialized ob-
jects, client and server must share the same descriptors. Figure 4.5 shows an
example: the BufferProto descriptor storing the id, size and the kernel ID for
which it acts like an input or output buffer. Response is a simple descriptor con-
taining the return code of a remote command and a possible result stored in the
data string. For trivial operations, data will contain a simple message, while it
may store buffers for read/write operations. Other requests such as send_scalar
or write_buffer don’t have descriptors, because data is serialized and sent right
away, without the need of additional information.

4.3 Implementation

Most of the described functionality is achieved with the help of the BOOST li-
braries [25], a set of portable peer-reviewed C++ source libraries providing sup-
port for a wide of tasks and structures. It is composed of different libraries,
which can be compiled individually if developers need only a subset of the
functions provided. BOOST libraries provide (1) an easy to use API for object
serialization/de-serialization, (2) APIs for implementing TCP servers and clients,
both in a synchronous and asynchronous way, (3) facilities to wrap TCP connec-

37

i
i

“output” — 2018/9/17 — 17:48 — page 38 — #52 i
i

i
i

i
i

Chapter 4. The BeeR Framework

tions into input/output streams, so that writing data to or from a server becomes
as easy as writing to the standard output or reading from the standard input. The
BOOST version used is the same as the one compiled in BarbequeRTRM, to
avoid compatibility problems between clients and servers, but also to ease the
integration of the daemon into the MANGO framework, when this will occur.

BeeR server implementation is quite small, averaging 1k SLOC. It consists
of a main loop which receives a new connection and starts a new thread handling
it, as shown in the following listing:

Listing 4.1: "Daemon main loop and thread dispatching"

1 void Server::start()

2 {

3 ThreadPool pool;

4 m_server.listen();

5 std::cout << "server listening on port " << m_port << std::endl

;

6 whi le (t rue) {

7 std::shared_ptr<tcp::iostream> stream = std::make_shared<

tcp::iostream>();

8 Task t(stream, m_mutex);

9
10 m_server.accept(*(stream->rdbuf()));

11 // std::bind will copy Task variable

12 std::function<void()> f = std::bind(&Task::run, t);

13 pool.push_task(f);

14 }

15 }

First, thread pool is initialized and m_server object starts listening for new
connections. In each iteration of the following loop, a new Task object is created,
passing to its constructor a pointer to a new iostream object and a pointer to
the mutex variable: the stream object will handle the connection after starting
the Task, while the mutex will be used mainly for thread synchronization when
logging to the standard output. In line 10 the iostream underlying buffer is passed
to the accept method of the m_server variable, which is an istance of the BOOTS
tcp::acceptor: by doing so, we instruct the acceptor to use iostream’s buffer as
the socket for the connection. Finally, using std::bind template it is possible to
create a call wrapper for function Task::run, by binding together the method with
the instance of the Task object, and add it to the thread pool queue.

Once the thread starts, it executes the wrapped function which starts reading
the TCP stream for messages. The following listing shows how messages are
read: in lines 3-5 we check if there’s any trailing newline character in the stream
and discard it. This is needed since sometimes after de-serializing an object, a

38

i
i

“output” — 2018/9/17 — 17:48 — page 39 — #53 i
i

i
i

i
i

4.3. Implementation

new-line character could be left behind by the parser causing an error with the
next message. The real parsing starts by reading 1 byte from the stream, storing
its value in a RemoteCommand variable.

Listing 4.2: "OpCode parsing"

1 void Task::run() {

2 std::atomic<bool > quit(f a l s e);
3 whi le(!quit) {

4 i f (stream->peek() == ’\n’) {

5 stream->ignore(1);

6 }

7 t r y {

8 char type_frame;

9 stream->read(&type_frame, 1);

10 RemoteCommand cmd = (RemoteCommand) type_frame;

11 sw i t ch (cmd) {

12 //

13 // ...

14 //

15 }

16 }

17 }

18 }

The value of the cmd is checked in a switch statement, where based on its
value the correct method of the class is executed. Typically, the applications will
follow the following workflow:

1. register a kernel

2. register some buffers or scalar values

3. send arguments for the kernels

4. write input buffers

5. start the kernel(s)

6. wait for kernel completion

7. read output buffers.

Concerning point (1), the function init_kernel_func will basically parse a seri-
alized string from the TCP stream. This string stores the buffer containing the
binary file to be executed which will be saved on server tmp directory with a
unique name. A new Subprocess object is initialized with the path to the tempo-
rary file: this object will be used to run the executable and wait for its completion
in the last phases.

39

i
i

“output” — 2018/9/17 — 17:48 — page 40 — #54 i
i

i
i

i
i

Chapter 4. The BeeR Framework

Listing 4.3: "Function for parsing kernel executable"

1 void Task::init_kernel_func() {

2 std::string temp;

3 {

4 boost::archive::text_iarchive ia(*stream);

5 ia >> temp;

6 }

7 {

8 std::stringstream ss;

9 ss << "received kernel, size=" << temp.size();

10 log(ss.str());

11 }

12 std::ofstream ofs(binary_name, std::ios::binary|std::ios::out);

13 ofs.write(temp.c_str(), temp.size());

14 ofs.close();

15 chmod(binary_name.c_str(), S_IRWXU);

16 proc = std::make_shared<Subprocess>(binary_name.c_str());

17 {

18 std::stringstream ss;

19 ss << "initialized subprocess for " << binary_name;

20 log(ss.str());

21 }

22 Response r(ExitCode::SUCCESS, MSG_OK);

23 {

24 boost::archive::text_oarchive oa(*stream);

25 oa << r;

26 }

27 }

For point (2), registering a scalar is straightforward: function will parse it
from the stream, and add it directly to the Args object. This object will keep
track of all the arguments registered by the client, and generate a proper string
when executing the binary. Function for registering buffers will at first create a
new Buffer object, add it to the map containing all buffers referenced by their id,
and add them to the Args instance. When generating the string for the executable,
Args objects will write the shared memory name for buffers rather than their id,
so that kernels have a direct reference to them.

Reading and writing a buffer is done by calling the appropriate method of
the Buffer class. read and write copy the content of the shared memory into the
string buffer, and write will copy the string buffer into the shared memory using
the memcpy function.

Listing 4.4: "Read and write functions of the Buffer class"

1 void Buffer::write(c o n s t std::string & data) {

2 assert(data.size() != 0 && "empty buffer");

3 i f (shm_fd == -1) {

40

i
i

“output” — 2018/9/17 — 17:48 — page 41 — #55 i
i

i
i

i
i

4.3. Implementation

4 throw std::runtime_error("invalid shm fd");

5 }

6 i f (shm_ptr == MAP_FAILED) {

7 throw std::runtime_error("mmap failed");

8 }

9 ftruncate(shm_fd, size);

10 std::memcpy(shm_ptr, data.c_str(), size);

11 }

12
13 void Buffer::read(std::string & b) {

14 i f (shm_fd == -1) {

15 throw std::runtime_error("invalid shm fd");

16 }

17 i f (shm_ptr == MAP_FAILED) {

18 throw std::runtime_error("mmap failed");

19 }

20 b.insert(0, shm_ptr, size);

21 }

After setting up all the arguments and initializing input buffers, server will
receive the start_kernel command which will generate the final argument string
and run the executable, followed by the wait_kernel already discussed in Section
4.2.

4.3.1 Libmango remote extension

To keep things as close as the original API, a new Device object needs to be
instantiated by the application and the registered within the BBQContext, like
buffers and kernels objects. Then, in order to "mark" a kernel or a buffer as being
remote, register_kernel and register_buffer calls will optionally receive an extra
argument corresponding to the Device object initialized before. If this argument
is not provided, it defaults to nullptr and the specific buffer/kernel is considered
to be local. On the other hand if we specify a Device, the object is considered
to be remote, and a reference to the provided Device is saved into the instance.
In the KernelFunction::load() function, the code checks for a reference to the
remote device and if it finds it, it will send the executable using the appropriate
function.

Listing 4.5: "Remote kernel management in load function"

1 mango_exit_code_t KernelFunction::load(c o n s t std::string &

kernel_file,

2 UnitType unit,

3 mango_file_type_t type,

4 c o n s t std::shared_ptr<Device> &dev) noexcept {

5 ...

41

i
i

“output” — 2018/9/17 — 17:48 — page 42 — #56 i
i

i
i

i
i

Chapter 4. The BeeR Framework

6 i f (dev != nullptr) {

7 res = dev->send_kernel_function(kernel_file);

8 mango_log->Info("syncing binary with remote server");

9 }

10 ...

This information is also used during the resource allocation phase:

Listing 4.6: "Remote buffer management in resource allocation"

1 mango_exit_code_t BBQContext::resource_allocation(TaskGraph &tg)

noexcept {

2
3 f o r (auto & b : buffers) {

4 i f (b.second->isRemote()) {

5 b.second->sync_with_remote();

6 mango_log->Info("buffer %d synchronized with server", b

.first);

7 }

8 }

9
10 ...

The resource_allocation function will iterate over the buffers to check their
status. If a buffer is remote then sync_with_server() function will be called,
which manages to send the request to the server. Notice that the code seen up to
now basically is similar to the original, with the only addition of an if statement to
execute remote instruction. The start_kernel function has a different behaviour:

Listing 4.7: "Remote kernel offload"

1 std::shared_ptr<Event> BBQContext::start_kernel(std::shared_ptr<

Kernel> kernel,

2 KernelArguments &args, std::shared_ptr<Event> _e)

noexcept {

3
4 i f (kernel->isRemote()) {

5 args.sync_with_server(kernel->get_remote_server());

6 kernel->get_remote_server()->start_remote_kernel();

7 re turn kernel->get_termination_event();

8 } e l s e {

9 t h i s ->bbque_app_ctrl.NotifyTaskStart(kernel->get_id());
10 auto e = Context::start_kernel(kernel, args);

11 e->set_callback(

12 &bbque::ApplicationController::NotifyTaskStop,

13 t h i s ->bbque_app_ctrl,
14 kernel->get_id());

15
16 bbque_tg->Print();

17 print_debug(__FUNCTION__,__LINE__);

42

i
i

“output” — 2018/9/17 — 17:48 — page 43 — #57 i
i

i
i

i
i

4.3. Implementation

18 re turn e;

19 }

20 }

In this case we need to execute a different set of instructions for each case. If
the kernel is remote, function will send arguments, start the remote kernel, and
return the remote kernel completion event. While if it’s local, we need to execute
the normal set of instructions, so that non-remote application can keep working.

43

i
i

“output” — 2018/9/17 — 17:48 — page 44 — #58 i
i

i
i

i
i

i
i

“output” — 2018/9/17 — 17:48 — page 45 — #59 i
i

i
i

i
i

CHAPTER5
Benchmark Porting

Once implemented the framework, the next step was to evaluate its performance
and the overall behaviour of distributed tasks. To carry out this evaluation, an
OpenCL benchmark from the Rodinia Benchmark Suite was taken as a reference,
called PathFinder. Section 5.1 describes this benchmark in details, explaining
the algorithm and how it is structured in its original implementaton. Then Sec-
tion 5.2 describes how it was implemented from scratch with libmango, and in
Section 5.3 we introduce the parallel version, required in order to make the most
out of the BeeR framework.

5.1 Rodinia benchmarks: the PathFinder sample

The University of Virginia Rodinia Benchmark Suite is a collection of parallel
programs which targets heterogeneous computing platforms with both multicore
CPUs and GPUs. It contains various implementations of each program using
CUDA, OpenCL and OpenMP. One of the programs contained in this suite is
PathFinder, an alogrithm that finds a path on a two-dimensional matrix from
the bottom to the top with the smallest accumulated weights, where each step of
the path moves straight ahead or diagonally. It iterates sequentially row by row,
picking for each node a neighboring node on the previous row which has the
smallest accumulated weight, and adding its own weight to the sum. The result

45

i
i

“output” — 2018/9/17 — 17:48 — page 46 — #60 i
i

i
i

i
i

Chapter 5. Benchmark Porting

of the algorithm is a vector, containing a number of elements equal to matrix row
length, containing the accumulated weight of the shortest path starting from the
bottom of the matrix at that index. The matrix is generated randomly but starting
from a fixed seed, so that values are always the same, to help the debugging
process. As an example, starting from the following matrix

5 4 5 7 0 3

0 8 2 2 6 3

8 9 7 5 9 0

 (5.1)

the resulting array is equal to[
12 13 9 7 11 3

]
(5.2)

since starting from first element of the bottom row, the shortest path to the top is
8 -> 0 -> 4 with the sum equal to 12, then for the second element we have 9 -> 0
-> 4 with the sum equal to 13 and so on.

One of the first thing to notice is that we have the resulting weight, but we
have no information about the path taken, which must be described manually.
This missing information leads to the fact that it’s not possible to run the code
in parallel. To be precise, it’s not possible to launch parallel executions of the
algorithm dividing the matrix into sub-matrices by rows, and then merge result,
since we have no information about the path taken, thus the program doesn’t
know how to merge those results.

Indeed, the algorithm does not implement parallel execution by rows, follow-
ing instead a serial execution depicted in figure 5.1: each execution will compute
the weight sum for each row of a submatrix and store the result in a temporary ar-
ray. At the end of the execution, this array is passed as input to the next execution,
which continues the sum of weights for the next submatrix. Kernel executions
continue until all the matrix is computed, so that the array will contain the final
result.

On the other hand, the Rodinia implementation offers a parallel execution by
columns: indeed it is possible to divide matrix by columns, and run the kernel in
parallel for each group. This in not trivial, since to compute result for the values
on the edges of a group of columns, data from other groups is needed. To better
understand the problem, lets take the previous example, divide the matrix in two

46

i
i

“output” — 2018/9/17 — 17:48 — page 47 — #61 i
i

i
i

i
i

5.1. Rodinia benchmarks: the PathFinder sample

Figure 5.1: Serial execution of the PathFinder algorithm

groups of columns and execute the algorithm for each group
5 4 5

0 8 2

8 9 7

7 0 3

2 6 3

5 9 0

 (5.3)

the two results computed for each group are[
12 13 13

] [
7 11 3

]
(5.4)

We can clearly see that the result for the third element of the first group is
13, while it should be 9 as shown in previous example, since in this case the last
column of the first group can’t reach values of the first column of the second
group.

This problem can be solved by building overlapping groups, that is including
extra columns to the left and the right of each group. Not all the data included is
needed to perform the algorithm: the number of columns included is equal to the
number of rows minus one, and for each row we can include one less element as
we reach the bottom row, forming a sort of "ladder" as shown in example 5.5 In

47

i
i

“output” — 2018/9/17 — 17:48 — page 48 — #62 i
i

i
i

i
i

Chapter 5. Benchmark Porting

Figure 5.2: Parallel execution of the PathFinder algorithm, dividing matrix by columns

our example, since we have 3 rows we will introduce 2 columns for each group
5 4 5 7 0

0 8 2 2 −
8 9 7 − −

4 5 7 0 3

− 2 2 6 3

− − 5 9 0

 (5.5)

now we can compute correctly the result, which is again[
12 13 9

] [
7 11 3

]
(5.6)

This is the approach defined in the Rodinia implementation when the number
of columns provided is high, leveraging OpenCL to achieve parallel execution,
as shown in figure 5.2. As we can see, each group of columns requires extra
computation, since if we have n rows we need to include n − 1 extra columns,
and this leads to an increasing computation time.

5.2 PathFinder: Porting to MANGO

PathFinder port as a benchmark for BeeR has a similar structure as the original
implementation: there’s a main executable whose goal is to generate matrix and
execute kernels on the remote host, dividing the execution into many tasks, each
one taking care of a piece of matrix. In particular, the executable will receive
information about remote host, and other parameters such as the number of rows
and columns of the generated matrix, and the number of rows to compute each
iteration, which is called pyramid_height because of the shape of the matrix with
extra columns resembling a reversed pyramid. The execution is organized like
this: the total number of jobs to be executed it’s equal to the number of rows
divided by the pyramid_height which represents how many rows we have to

48

i
i

“output” — 2018/9/17 — 17:48 — page 49 — #63 i
i

i
i

i
i

5.2. PathFinder: Porting to MANGO

compute each iteration.

WorkJobs =
height

pyramid_height
(5.7)

The code tries to split the jobs equally between devices, so that each device
has the same amount of jobs to compute.

JobsPerDev =
WorkJobs

Devices
(5.8)

Moreover, these jobs are equally split among the threads available. In this
implementation, threads are like work queues, handling one job and waiting for
its completion before starting the next one. Of course the number of threads
should always be less or equal of the number of WorkJobs, otherwise there would
be some extra unused threads. The following listing shows the code used to
dispatch jobs.

Listing 5.1: "Job dispatching code"

1 f o r(i n t i = 0; i < n_kernels; i++) {

2 i n t tid = i%n_threads;

3 std::function<void()> f = std::bind(

4 &KernelRunner::run,

5 kr,

6 dlist[i],

7 mtx,

8 vstart,

9 vend,

10 i,

11 pyramid_height,

12 pyramid_height,

13 cols);

14 std::cout << "launching kernel " << i << " on thread " << tid

<< std::endl;

15 i f (tlist[tid].joinable())

16 tlist[tid].join();

17 tlist[tid] = std::thread(f);

18 }

Here n_kernels represents WorkJobs, while n_threads is given as a command
line parameter to the benchmark. In line 2 a thread is selected in a round robin
fashion, and then from line 3 it starts creating a call wrapper that thread will be
able to execute. In line 15-16, code checks if the thread was already running,
and if it was it waits for its completion. Finally in line 17 we start a new thread
which will execute the kernel.

The KernelRunner class is in charge of executing the kernel leveraging lib-

49

i
i

“output” — 2018/9/17 — 17:48 — page 50 — #64 i
i

i
i

i
i

Chapter 5. Benchmark Porting

mango and the underlying PMSL. Constructor takes the BBQContext instance, a
pointer to the source matrix, and number of rows and columns as parameters, and
it takes care of the initialization phase by registering kernel, registering buffers,
creating a new task graph and perform the resource allocation.

Listing 5.2: "Initialization code for buffer and kernels"

1 KernelRunner::KernelRunner(

2 c o n s t std::shared_ptr<mango::BBQContext> & ctx,

3 i n t * src,

4 i n t rows,

5 i n t cols)

6 : context(ctx.get())

7 , matrix(src)

8 {

9 kf = new mango::KernelFunction();

10 kf->load(kernel_path, mango::UnitType::GN, mango::FileType::

BINARY);

11 auto kernel = context->register_kernel(KERNEL, kf, { B1 }, { B2

});

12 auto b1 = context->register_buffer(B1, s i z e o f(i n t)*rows*cols, {

KERNEL}, {}, mango::BufferType::BUFFER);

13 auto b2 = context->register_buffer(B2, s i z e o f(i n t)*cols, {}, {

KERNEL}, mango::BufferType::BUFFER);

14
15 tg = new mango::TaskGraph({ kernel }, { b1, b2 });

16 context->resource_allocation(*tg);

17 }

This object will be initialized at the beginning of the main function, along
with matrix and other data. Then during the dispatch code the run method is
called with different sets of parameters.

Listing 5.3: "Sub-matrix initialization"

1 void KernelRunner::run(

2 std::shared_ptr<mango::Device> dev,

3 std::shared_ptr<std::mutex> mtx,

4 std::shared_ptr<std::vector<double>> vstart,

5 std::shared_ptr<std::vector<double>> vend,

6 i n t current_step,

7 i n t pyramid_height,

8 i n t rows_to_compute,

9 i n t cols_to_compute) {

10 i n t array_size = pyramid_height*cols_to_compute;

11 i n t submatrix_size = array_size* s i z e o f(i n t);
12
13 i n t * submatrix = new i n t[array_size];
14 std::memcpy(submatrix, matrix + (current_step*pyramid_height)*

cols_to_compute, submatrix_size);

50

i
i

“output” — 2018/9/17 — 17:48 — page 51 — #65 i
i

i
i

i
i

5.2. PathFinder: Porting to MANGO

15 std::cout << "init submatrix of dimensions " << pyramid_height

<< "x" << cols_to_compute << std::endl;

16 std::cout << "starting from row " << (current_step*
pyramid_height) << std::endl;

Besides the usual parameters like the Device object, the mutex for thread
synchronization, there are two vectors of double values vstart and vend, which
are used to store respectively the timestamp corresponding to the beginning of the
kernel execution on the remote server, and the timestamp of the end. This values
are used to calculate on the client-side kernel execution time and the overhead of
the computation. Since source matrices can have very high dimensions, passing
to the kernel the entire source matrix can be expensive in terms of bandwidth and
time. To overcome this limit, the code sends to the remote matrix only the part of
the matrix that it needs to perform the algorithm. current_step is the index of the
current WorkJob, and it is used to compute the starting index of this submatrix:

StartRow = current_step ∗ pyramid_height

StartIndex = StartRow ∗ cols_to_compute

Submatrix is then copied in a temporary buffer in line 14. In the last part
of the function, after setting up arguments, kernel is started and the wait is per-
formed on the remote kernel completion event.

Listing 5.4: "Kernel execution and synchronization"

1 auto a1 = new mango::BufferArg(b1);

2 auto a2 = new mango::BufferArg(b2);

3 auto a3 = new mango::ScalarArg< i n t >(rows_to_compute);
4 auto a4 = new mango::ScalarArg< i n t >(cols_to_compute);
5 auto a5 = new mango::EventArg(b2->get_event());

6
7 auto args = new mango::KernelArguments({ a1, a2, a3, a4, a5 },

kernel);

8
9 b1->write(submatrix, submatrix_size, dev);

10
11 auto ev = context->start_kernel(kernel, *args, nullptr, dev);

12 ev->wait();

13
14 d e l e t e[] submatrix;

15 }

The kernel implementation follows the same approach of the original, with
some differences and simplifications. First of all, to be able to use buffers kernel
needs to open shared memory objects referenced by the names passed as param-

51

i
i

“output” — 2018/9/17 — 17:48 — page 52 — #66 i
i

i
i

i
i

Chapter 5. Benchmark Porting

eters. Once initialized, kernel can access this read/write memory using pointer
returned by the mmap function.

Listing 5.5: "Shared memory initialization in kernel"

1 ...

2 i n t result_fd = open_shm(argv[2]);

3 i f (result_fd == -1) {

4 printf("failed to open shm %s\n", argv[3]);

5 re turn 1;

6 }

7 i n t* result = (i n t*)get_mmap(result_fd, s i z e o f(i n t)*cols);
8 i f (result == MAP_FAILED) {

9 printf("mmap failed for %s\n", argv[3]);

10 re turn 1;

11 }

12 ...

Before executing the algorithm, a temp buffer is initialized with the content
of the first row. This buffer will store the temporary result for each iteration of
the algorithm.

Listing 5.6: "Pathfinder algorithm"

1 f o r (i n t j = 0; j < rows-1; j++) {

2 f o r (i n t i = 0; i < cols; i++) {

3 W = i - 1;

4 E = i + 1;

5 U = i;

6 i f (W < 0)

7 W = 0;

8 i f (E >= cols)

9 E--;

10 left = temp[W];

11 right = temp[E];

12 up = temp[U];

13 i n t shortest = MIN(left, up);

14 shortest = MIN(shortest, right);

15 i n t wall_index = ((j+1)*cols) + i;

16 result[i] = shortest + wall[wall_index];

17 }

18 memcpy(temp, result, s i z e o f(i n t)*cols);
19 }

The algorithm will parse every row of the matrix starting from the second
one, and for each value it will compute the shortest path when going straight
ahead (the up value), diagonally to the left (the left value) or diagonally to the
right (the right) value). Those values contains the accumulated weight for the
previous rows, and the current value is added to the smallest one. Notice that if

52

i
i

“output” — 2018/9/17 — 17:48 — page 53 — #67 i
i

i
i

i
i

5.3. PathFinder: Parallel Greedy Version

we are dealing with the first columns, left and up values will be equal. Same goes
for the last column, where up and right will reference the same value. At the end
of each iteration, the result array contains the updated weights that needs to be
copied into the temp buffer, so that next iteration can correctly continue. When
the algorithm ends, no action needs to be performed since the shared memory
object pointed by the result pointer will contain the final result for the submatrix,
and the client will be able to read it.

5.3 PathFinder: Parallel Greedy Version

To better leverage the distributed nature of the BeeR daemon, a parallel version
of PathFinder is needed. As discussed before, it is possible to divide the execu-
tion into groups of columns, execute the algorithm independently for each group
and finally merge result, introducing more complexity. To keep things simple,
and because the main goal of a benchmark is to simply stress the server in order
to evaluate its performance, a simpler approach was adopted: divide the matrix
by rows and apply the algorithm in parallel. Once all partial result are computed,
they should be merged into the final result which of course can’t be the optimal
one, but it will represent a good approximation of it.

Searching for a way to merge result, a few options were evaluated: (1) add
up each element of the partial results one by one, since those arrays have the
same length, (2) re-apply the algorithm on the partial results, like they were
rows of a matrix being computed. There’s not much difference between the two
methods, since both solutions won’t produce exact results, but an estimate of the
weight. Even is the first option is very simple to implement, the second option
was finally implemented into the benchmark, since it is possible to reuse kernel
code to merge results into the final array without much implementation effort.

Moreover, this estimate approach allows us to carry out another evaluation,
namely the accuracy of the algorithm: after running the algorithm for each sub-
matrix and merging temporary result into the final one, we will compare one
by one the results of the estimate array against the results of the exact array
computed directly with the original implementation.

The parallel implementation needed a small number of changes to the original
code. The original serial implementation worked with a single result buffer and
updated it on each WorkJob. Now we need to store a buffer for each WorkJob,
thus having a list of buffer. This array is stored in the KernelRunner object, and
initialized with a new method init_result.

Listing 5.7: "Initialization of the results array"

1 void KernelRunner::init_result(i n t steps, i n t cols) {

53

i
i

“output” — 2018/9/17 — 17:48 — page 54 — #68 i
i

i
i

i
i

Chapter 5. Benchmark Porting

2 result = new i n t*[steps];
3 f o r (i n t n = 0; n < steps; n++) {

4 result[n] = new i n t[cols];
5 }

6 }

At the end of the computation, results from this array should be merged using
the chosen approach: this is done with a new function called merge_results,
which applies PathFinder on the intermediate results, and writes the final results
in the supplied final_res buffer.

Listing 5.8: "Code for merging different results into a single array"

1 s t a t i c vo id merge_results(i n t ** res, i n t * final_res, i n t n_res,

i n t res_size) {

2 i n t temp[res_size];

3 i n t W, E, U, shortest;

4 f o r (i n t n = 0; n < res_size; n++) {

5 temp[n] = res[0][n];

6 }

7 f o r (i n t i = 1; i < n_res; i++) {

8 f o r (i n t j = 0; j < res_size; j++) {

9 W = j-1;

10 U = j;

11 E = j+1;

12 i f (W < 0) W = 0;

13 i f (E >= res_size) E = res_size-1;

14 shortest = std::min(temp[W], temp[U]);

15 shortest = std::min(shortest, temp[E]);

16 final_res[j] = shortest + res[i][j];

17 }

18 f o r (i n t j = 0; j < res_size; j++) {

19 temp[j] = final_res[j];

20 }

21 }

22 }

54

i
i

“output” — 2018/9/17 — 17:48 — page 55 — #69 i
i

i
i

i
i

CHAPTER6
Experimental Evaluation

Having both the BeeR framework and the benchmark ready, we tested the exe-
cution of the application on a network of embedded development platforms. The
PathFinder algorithm turned out to be a good test bench, because it can stress
the server with the computation but also evaluate the parallelism by launching
different jobs on different devices. Section 6.1 will contain a brief description of
the devices used for the test, and how the test was organized. Then Sections 6.2,
6.3 and 6.4 provide a report of the three main classes of tests performed, which
are respectively execution time, overhead and accuracy.

6.1 Devices and methodology

Two devices were used to carry out the evaluation: and Odroid XU-3 and a
Freescale i.MX 6 SABRE. The Odroid XU-3 is a board containing a Hetero-
geneous Multi Processing solution, leveraging ARM big.LITTLE technology:
this technology allows the coupling of a slower and more battery-saving proces-
sor cores (LITTLE) with more powerful ones (big). In particular the ODROID
XU-3 ships with a Samsung Exynos5422 Cortex-A15 quad-core big CPU and
a Cortex-A7 quad core as the LITTLE one, equipped with 2 GB of LPDDR3
RAM. This architecture allows the board to use the less power-hungry CPU

55

i
i

“output” — 2018/9/17 — 17:48 — page 56 — #70 i
i

i
i

i
i

Chapter 6. Experimental Evaluation

Size
2 Thread 4 Thread 8 Thread

2 Jobs 4 Jobs 8 Jobs 4 Jobs 8 Jobs 8 Jobs

Table 6.1: Evaluation plan for a given matrix size

when facing a low system load, and transitioning to the big one, when the load
becomes higher. The Freescale Smart Application Blueprint for Rapid Engineer-
ing (SABRE) board allows developers to test the capabilities of different i.M6
processors based on the ARM Cortex A9 architecture. The test was organized
in three different configurations: first evaluate only the ODROID board, sec-
ond evaluate only the Freescale board, and third evaluate both device together,
making sure to split equally the work between the two devices.

The evaluation is composed by different tests considering different combina-
tions of the following parameters: (a) Size of the source matrix which inevitably
affects the computation time of the algorithm, (b) number of Jobs to launch,
which also tells how many sub-matrices should be obtained from the source and
(c) number of Threads acting as work queues, which can be used to control
the level of parallelism of the execution. As stated in chapter 5, the number of
threads should be less or equal to the number of jobs, and to be sure that each
threads gets the same amount of work, jobs should be equally split among them.
Starting from these requirements we defined the following plan for the evalua-
tion, shown in Table 6.1.

This plan expects a total of six different tests, for each size chosen: first tests
will use two threads, meaning that at most two jobs are executing at the same
time, regardless of the configuration considered. Inside this class, we will carry
out the evaluation using two, four, or eight jobs, in order to consider different
levels of parallelism limited by using only two queues. Second class of tests will
consider four threads coupled with four and eight jobs, and last we consider the
maximum level of parallelism achieved by using eight threads and eight jobs.
This plan evaluated for different sizes and different device configuration allows
us to experiment a wide number of scenarios.

Moreover, the goal of these tests is to extract three classes of results, namely
(a) execution-time to be intended as the overall time of the pathfinder execu-
tion, (b) overhead considered the time spent executing kernels compared to the
overall time, (c) accuracy of the estimated results with respect to the correct
results.

56

i
i

“output” — 2018/9/17 — 17:48 — page 57 — #71 i
i

i
i

i
i

6.2. Execution Time

6.2 Execution Time

Evaluating the execution time is a rather simple task, since there are many tools
available in GNU/Linux systems for this specific task. Since PathFinder exe-
cutable allows to control many aspects of the benchmark through command line
parameters, the evaluation can be carried out using a shell script, where it is pos-
sible to specify a command for each execution case. To measure time, command
can be passed as parameter to the time program, not to be confused with the bash
built-in command. This tool can execute a command and measure its resources,
as well as some statistics regarding the execution. In particular, it can measure
the total number of seconds the program spent in kernel mode and user mode,
number of IO operations, number of socket messages sent and received, and the
overall clock time elapsed from the start to the end of the execution. Shell script
launches PathFinder for each execution case, measuring the execution and writ-
ing to the standard output the time statistics. This data is then collected in log
files in a separate folder, where each file contains different runs for the same
case.

The test was applied considering three matrix sizes: (1) 2000x2000, (2)
4000x4000 and (3) 8000x8000. For each size, we applied the evaluation plan
described in Table 6.1, consisting of six runs with different values of threads and
jobs. A first comparison can be made by considering different device configu-
rations and sizes of the source matrix using the same plan, as shown in figure
6.1.

If we analyze the cases by plan, we can clearly see that the worst perfor-
mance is given by selecting 2 threads and 8 jobs, as expected since the number
of threads limits the number of concurrent tasks running at the same time. On the
other hand, the plan using 4 threads and 4 jobs gives the best performance, since
we are splitting the matrix into 4 pieces, and this will help both the computation
time and the transfer of buffers from the host to the remote device. Moreover,
the number of threads can handle simultaneously all the available jobs. Contrary
to the expectation, the 8 threads and 8 jobs case gives slightly lower performance
compared to the 4-4 case, mostly with the Freescale-only configuration: this hap-
pens because the server was configured to spawn a maximum number of threads
equal to the number of available CPUs which is 4. So by receiving 8 requests, 4
are handled and 4 are queued. On the other hand the Odroid-only configuration
gives slightly better performance on the 8-8 case with respect to the 4-4, since
the board can handle all 8 requests simultaneously. The other two cases, namely
2-4 and 4-8 give very similar result but without any particular gain. It is also
possible to notice that while overall Freescale gives better results and ODROID

57

i
i

“output” — 2018/9/17 — 17:48 — page 58 — #72 i
i

i
i

i
i

Chapter 6. Experimental Evaluation

Freescale Odroid Both
Configurations

0

5

10

15

20

25

M
ea

n
ex

ec
ut

io
n

tim
e

2000x2000
4000x4000
8000x8000

(a) 2 threads and 2 jobs

Freescale Odroid Both
Configurations

0

5

10

15

20

25

M
ea

n
ex

ec
ut

io
n

tim
e

2000x2000
4000x4000
8000x8000

(b) 2 threads and 4 jobs

Freescale Odroid Both
Configurations

0

5

10

15

20

25

M
ea

n
ex

ec
ut

io
n

tim
e

2000x2000
4000x4000
8000x8000

(c) 2 threads and 8 jobs

Freescale Odroid Both
Configurations

0

5

10

15

20

25

M
ea

n
ex

ec
ut

io
n

tim
e

2000x2000
4000x4000
8000x8000

(d) 4 threads and 4 jobs

Freescale Odroid Both
Configurations

0

5

10

15

20

25

M
ea

n
ex

ec
ut

io
n

tim
e

2000x2000
4000x4000
8000x8000

(e) 4 threads and 8 jobs

Freescale Odroid Both
Configurations

0

5

10

15

20

25

M
ea

n
ex

ec
ut

io
n

tim
e

2000x2000
4000x4000
8000x8000

(f) 8 threads and 8 jobs

Figure 6.1: Comparison between execution time organized by execution plan. Each
graph reports results for each input data size, identified with red colour for the small,
green for the medium and blue for the big, grouped by configuration on the x axis

58

i
i

“output” — 2018/9/17 — 17:48 — page 59 — #73 i
i

i
i

i
i

6.2. Execution Time

2000x2000 4000x4000 8000x8000
Matrix size

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

ex
ec

ut
io

n
tim

e
2 kernels 2 worker threads
4 kernels 2 worker threads
8 kernels 2 worker threads
4 kernels 4 worker threads
8 kernels 4 worker threads
8 kernels 8 worker threads

Figure 6.2: Average execution time when using Freescale

gives the worst, the split configuration provides an average performance between
the two.

If we consider the overall results for the Freescale-only configuration, shown
in the 6.2 graph with a normalized execution time, we can see that the variance
of the results for each size is almost the same. Looking at the single plan in
detail, an interesting thing to notice is the behaviour of the 2-2 plan: for small
matrices it is slightly worse than the 4-4, it becomes on par with plan 4-4 for
medium-sized matrices, but it slows down with big-sized matrices, becoming
the third fastest plan. This happens because the cost of the data transfer becomes
higher as the matrix size increasing, as it takes a considerable amount of time to
write/read remote buffers (this result will be discussed in Section 6.3).

In the Odroid-only configuration, while having almost the same results for

59

i
i

“output” — 2018/9/17 — 17:48 — page 60 — #74 i
i

i
i

i
i

Chapter 6. Experimental Evaluation

small matrices, there’s a huge increase in the time as the input data size becomes
high, reaching its maximum value with the 8000x8000 matrix and the 2-8 plan.
These high values can be explained considering that the ODROID board is not
always exploiting the big processor, thus keeping the load on the LITTLE one.
Whilst it is possible to force the execution on the high performance cores, tests
were executed keeping the default behaviour. Another interesting thing is the
fact that the 8-8 case, compared to the Freescale configuration, becomes the best
performer. In this case, we have the execution of eight concurrent tasks, and the
scheduler on the ODROID board can decide to migrate some of these to the high
performance processors, leveraging the big.LITTLE architecture. The overall
execution time for this plan remains slow compared to other configurations, since
it is limited by the tasks running on the slower processor, but it gets a little
speedup thanks to the tasks running on the faster one. Furthermore, the 2-2 plan
follows the same behaviour found in the previous configuration, with the only
difference that it becomes the second slowest plan with the 8000x8000 source
matrix, where the data set for the single kernel execution becomes sizable, and
the computation of the two Jobs is handled exclusively by the power saving CPU.
Furthermore, values in each configuration are closer to each other with respect
to other cases, showing that ODROID gives slightly more uniform results.

Finally the split configuration shown in Figure 6.4 shows an average be-
haviour between the Freescale and the Odroid one. The trend is the same as
the previous ones, with the 2-8 and the 2-4 being the low performers, 4-4 and
8-8 competing for the best execution time and the 2-2 starting good and then
slowing down.

6.3 Overhead

One of the things we may notice from previous tests is that the execution time
depends on different factors, from the transfer of buffers to the execution of
different concurrent instances of the kernel. Each factor can be more or less
influential, based on the input data size, jobs and threads parameters of the cur-
rent instance. In general the execution time of the PathFinder benchmark can be
divided into three main categories:

• Kernel Execution Time which is the overall time spent by the server exe-
cuting all the kernel, from the start of the first task to the end of the last
one.

• Transfer Time is the time spent by reading buffers from the server and writ-
ing buffers to the server. It may be negligible for small matrices, but also

60

i
i

“output” — 2018/9/17 — 17:48 — page 61 — #75 i
i

i
i

i
i

6.3. Overhead

2000x2000 4000x4000 8000x8000
Matrix size

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

ex
ec

ut
io

n
tim

e
2 kernels 2 worker threads
4 kernels 2 worker threads
8 kernels 2 worker threads
4 kernels 4 worker threads
8 kernels 4 worker threads
8 kernels 8 worker threads

Figure 6.3: Average execution time when using ODROID XU-3

may take a considerable amount of time when working with big matrices.

• Secondary Execution Time consisting of all the other actions carried out
by the benchmark, such as matrix initialization, results merging and basic
server communication. It is usually negligible, but for huge input data it
may constitute a considerable portion of the overall time.

Kernel Execution Time should be considered as the time that elapses between
the start of the first kernel and the end of the last instance of the kernel, as shown
in Figure 6.5. To avoid including extra time due from connection delays, it
should be computed on the server-side. To enable BeeR to collect this addi-
tional data, some changes were required: first of all, the Task object must save
the time point in which kernel starts running and the time point in which it ter-

61

i
i

“output” — 2018/9/17 — 17:48 — page 62 — #76 i
i

i
i

i
i

Chapter 6. Experimental Evaluation

2000x2000 4000x4000 8000x8000
Matrix size

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

2 kernels 2 worker threads
4 kernels 2 worker threads
8 kernels 2 worker threads
4 kernels 4 worker threads
8 kernels 4 worker threads
8 kernels 8 worker threads

Figure 6.4: Average execution time when using both devices

minates, called respectively kstart and kend. The kstart time point is initialized
right before running the sub-process, while the kend point after the wait call of
the sub-process.

Listing 6.1: "Time points being saved before and after the execution"

1 ...

2 kstart = std::chrono::high_resolution_clock::now();

3 proc->run(arguments->generate());

4 ...

5 i n t status = proc->wait();

6 kend = std::chrono::high_resolution_clock::now();

7 ...

To allow client to fetch this data, two additional requests where added to
the server, namely get_time_start() and get_time_end(), which basically converts

62

i
i

“output” — 2018/9/17 — 17:48 — page 63 — #77 i
i

i
i

i
i

6.3. Overhead

Thread 1 Job 1

Thread 2 Job 2

Job 3

Job 4

Start Time End Time

Kernel Execution Time

Figure 6.5: Kernel execution time is the time from the start of the first job to the end of
the last job

start and end time points into timestamps, and transfers them back to the client.
It is important to notice that these times refers to the current kernel, not the first
one or the last one. Indeed the client must fetch the timestamp for the start of
each kernel, the timestamp for the end of each kernel and save them into two
separate lists. Finally, when computing the final kernel execution time, client
will pick the lowest value of the start list and the highest value of the end list.
The difference between those two values represents the Kernel Execution Time.

Listing 6.2: "Computing kernel execution time from the timestamps"

1 double min = (*vstart)[0];

2 double max = (*vend)[0];

3 f o r (double d : *vstart) {

4 i f (d < min) min = d;

5 }

6 f o r (double d : *vend) {

7 i f (d > max) max = d;

8 }

9 std::cout << "milliseconds overhead: " << max-min << std::endl;

To measure how much time the benchmark spends executing kernels, it is
now possible to compute the execution overhead, intended as the percentage
of time the benchmark spends in executing kernels with respect to the overall
execution time. A lower overhead does not mean that the benchmark was faster,
but simply means that the kernel execution time is negligible with respect to the
time spent doing other computation. Conversely a high value means that the
kernel execution time occupies a large part of the overall execution time. Results
are shown in Figure 6.6.

As expected, the plan 2-8 has the highest values in any case, since the bench-
mark spends most of the time executing kernels, and this execution is slowed
down by the two threads having to handle four jobs each like a FIFO queue.

63

i
i

“output” — 2018/9/17 — 17:48 — page 64 — #78 i
i

i
i

i
i

Chapter 6. Experimental Evaluation

2-2 2-4 2-8 4-4 4-8 8-8
Configurations

0.0

0.2

0.4

0.6

0.8

1.0

Ov
er

he
ad

Kernel execution overhead with matrix 2000x2000
freescale only
odroid only
both

2-2 2-4 2-8 4-4 4-8 8-8
Configurations

0.0

0.2

0.4

0.6

0.8

Ov
er

he
ad

Kernel execution overhead with matrix 4000x4000
freescale only
odroid only
both

2-2 2-4 2-8 4-4 4-8 8-8
Configurations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ov
er

he
ad

Kernel execution overhead with matrix 8000x8000
freescale only
odroid only
both

Figure 6.6: Kernel execution overhead for different input data size

64

i
i

“output” — 2018/9/17 — 17:48 — page 65 — #79 i
i

i
i

i
i

6.4. Accuracy

Lowest values are represented by the 2-2 case since it needs to execute only two
instances of the algorithm on two pieces of matrix, and these instances runs in
parallel thanks to the two threads. An interesting case to analyze is the 4-4 one:
using a small source matrix, as one would expect it gets almost the same values
as the 2-2, since in both cases we have 4 tasks launched almost at the same time
running in parallel. But as the size of the source matrix increases, we notice
higher values for the Odroid-only and split configurations, while the Freescale
one remains unchanged. The reason for this gain can be explained by the Odroid
executing the tasks on the low power processor, causing a slowdown on the ex-
ecution. Other plans 2-4, 4-8, 8-8 show almost the same values in every matrix
size, ranging from 50% to 60%.

6.4 Accuracy

As explained in Section 5.3 the greedy implementation of the PathFinder algo-
rithm provides an estimate results for the shortest path. In order for the bench-
mark to be relevant, it is necessary to demonstrate that these results represent a
good estimate of the correct results. The latest part of the evaluation strategy
included the assessment of the accuracy of the greedy algorithm, by comparing
the two classes of result, one from the greedy version and one from the original
version.

For each value of the result array, we compute the delta as the difference
between the estimate result and the correct one

∆ = |Estimate− Correct| (6.1)

and calculate the accuracy as in equation 6.2.

Accuracy = 1− ∆

Correct
(6.2)

With this kind of approach, we may evaluate how much the greedy algorithm
is reliable as the number of jobs increases, because by dividing the source matrix
in different pieces, we lose more information as this number of pieces grows.
Moreover, we may assess if the behaviour is the same for any matrix, or if the
results varies as a function of the size of the input. The PathFinder benchmark
generates a random matrix starting from a fixed seed value: the generated matrix
will always be the same one, and the accuracy test can be carried out without any
changes to the source code. Figure 6.7 shows the minimum value of accuracy
with different number of Jobs, for the smallest input matrix: as expected the
value slightly decreases as the number of jobs increases, because we are splitting

65

i
i

“output” — 2018/9/17 — 17:48 — page 66 — #80 i
i

i
i

i
i

Chapter 6. Experimental Evaluation

2 4 8
Jobs

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

2000x2000
4000x4000
8000x8000

Figure 6.7: Minimum accuracy value with different Jobs

the input into more pieces, and since the estimate is calculated when merging
results, the more result we have, the less accurate is the estimate. As we can see
in the graph, the lowest value represented by 8 jobs for the small input matrix, is
still a good result, since its value is 0.947. As the size of the matrix increases, we
notice the same trend described before, but also an increase on the single values:
with bigger input data sizes, regardless of the number of pieces produced by the
split, the kernel is going to work with bigger data sets and it is able to produce
more precise results.

66

i
i

“output” — 2018/9/17 — 17:48 — page 67 — #81 i
i

i
i

i
i

CHAPTER7
Conclusions and Future Work

In this chapter we discuss some final points about the solution proposed, as well
as some improvements and additional features the framework needs to imple-
ment. In particular in Section 7.1 some general considerations about the work
and the results obtained are presented, while Section 7.2 describes the features
that this project lacks and that will be the subject of future works.

7.1 Conclusions

In this thesis we explored a distributed computing approach for High Perfor-
mance Computing applications, integrated with the framework provided by the
MANGO project. This approach consists in different instances of the BeeR dae-
mon running on different devices across the network, which can be exploited
by client applications in order to offload part of its tasks. Considering alterna-
tive solutions analyzed in the state-of-the-art, BeeR differs in the fact that it does
not rely on a central authority managing resource allocation and job dispatch-
ing, instead each application running on a different General Purpose node can
dynamically use any available server instance it needs.

The implementation of a benchmark application helped us evaluate the frame-
work in terms of performance and reliability. The benchmark called PathFinder

67

i
i

“output” — 2018/9/17 — 17:48 — page 68 — #82 i
i

i
i

i
i

Chapter 7. Conclusions and Future Work

was ported from the Rodinia Benchmark Suite, which is a collection of heavy
parallel GPU benchmarks, making it a good candidate for our purpose. Thanks
also to the similarities between MANGO and OpenCL programming model, the
implementation proceeded without problems, and in the final implementation the
algorithm was slightly changed in order to have a fully parallel tool. Evaluation
of the execution time showed that the benchmark will benefit from a high parallel
configuration in almost all cases, while low parallelism brings higher values of
time. Furthermore this modification of the algorithm enabled us to evaluate also
the accuracy of the results with respect to the original PathFinder, which showed
to be quite high. Tests also demonstrated that with a good degree of parallelism
the kernel overhead is quite small. To calculate this overhead, additional APIs
were added to the BeeR server to be able to retrieve start and end time for each
kernel execution.

7.2 Future Works

One of the most important feature for a distributed computation framework is the
encryption of the communication between client and servers. Right now, client
application will connect to running instances of the BeeR daemon without any
kind of security and authentication, using a plain TCP connection. A crucial
feature to be implemented is the communication encryption; this could be made
possible by algorithms like the Diffie-Hellman key exchange method, where two
entities, unknown to each other before, can securely establish a shared secret
over a public, insecure channel. This secret can be used to encrypt subsequent
communications using a symmetric key cipher. A third entity may exchange two
different keys with the two district parties of the communication, masquerading
as one to the other, therefore it should be used in conjunction with a signature
algorithms such as RSA or DSA to verify the authenticity of the data source/des-
tination.

Furthermore, in the current prototype remote devices have to be manually
registered in the client application. In this case a service discovery protocol can
help to automatically find all the available devices and connect to them. This
introduces another advantage, because it is possible to remove the extra code
introduced to register device, and manage external devices internally. Doing so,
we could keep the original MANGO API interface without extra functions.

Another aspect to be improved is the resource management support of the
daemon: in particular the daemon should be able to report its resources to the
client application, which in turn can use this information during the resource
allocation phase. In the current state, remote elements of the task graph are basi-

68

i
i

“output” — 2018/9/17 — 17:48 — page 69 — #83 i
i

i
i

i
i

7.2. Future Works

cally "placeholders", and when their functions are called they will send a request
to the remote server, without taking into account device state and resources: in
future works this behaviour should be tightly integrated within the libmango and
the instance of BarbequeRTRM running on the GN node should be able to take
into account remote resources.

69

i
i

“output” — 2018/9/17 — 17:48 — page 70 — #84 i
i

i
i

i
i

i
i

“output” — 2018/9/17 — 17:48 — page 71 — #85 i
i

i
i

i
i

Bibliography

[1] That ’internet of things’ thing. https://www.rfidjournal.com/articles/

view?4986.

[2] The internet of things. https://www.forbes.com/global/2002/0318/092.

html.

[3] Gartner. https://www.gartner.com.

[4] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its
role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC ’12, pages 13–16, New York, NY, USA, 2012. ACM.

[5] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck. Mobile edge computing potential
in making cities smarter. IEEE Communications Magazine, 55(3):38–43, March 2017.

[6] T. Taleb and A. Ksentini. Follow me cloud: interworking federated clouds and distributed
mobile networks. IEEE Network, 27(5):12–19, September 2013.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges. IEEE
Internet of Things Journal, 3(5):637–646, Oct 2016.

[8] Giuseppe Massari Michele Zanella and William Fornaciari. Back to the future: Resource
management in post-cloud solutions (in publishing). In Proceedings of ACM INTESA Work-
shop (INTESA’18). ACM, 2018.

[9] R. Ranjan, B. Benatallah, S. Dustdar, and M. P. Papazoglou. Cloud resource orchestration
programming: Overview, issues, and directions. IEEE Internet Computing, 19(5):46–56,
Sept 2015.

[10] Boinc. https://boinc.berkeley.edu/.

[11] Yaoxue Zhang and Yuezhi Zhou. Transparent computing: A new paradigm for pervasive
computing. In Jianhua Ma, Hai Jin, Laurence T. Yang, and Jeffrey J.-P. Tsai, editors,
Ubiquitous Intelligence and Computing, pages 1–11, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

71

https://www.rfidjournal.com/articles/view?4986
https://www.rfidjournal.com/articles/view?4986
https://www.forbes.com/global/2002/0318/092.html
https://www.forbes.com/global/2002/0318/092.html
https://www.gartner.com
https://boinc.berkeley.edu/

i
i

“output” — 2018/9/17 — 17:48 — page 72 — #86 i
i

i
i

i
i

Bibliography

[12] D. F. Parkhill. The challenge of the computer utility. Addison-Wesley Pub. Co., 1966.

[13] D. Díaz-Sánchez, A. M. López, F. Almenares, R. Sánchez, and P. Arias. Flexible comput-
ing for personal electronic devices. In 2013 IEEE International Conference on Consumer
Electronics (ICCE), pages 212–213, Jan 2013.

[14] H. Ba, W. Heinzelman, C. Janssen, and J. Shi. Mobile computing - a green computing
resource. In 2013 IEEE Wireless Communications and Networking Conference (WCNC),
pages 4451–4456, April 2013.

[15] Seti@home. https://setiathome.berkeley.edu/.

[16] Folding@home. https://foldingathome.org/.

[17] C. Funai, C. Tapparello, H. Ba, B. Karaoglu, and W. Heinzelman. Extending volunteer
computing through mobile ad hoc networking. In 2014 IEEE Global Communications
Conference, pages 32–38, Dec 2014.

[18] Z. Dong, L. Kong, P. Cheng, L. He, Y. Gu, L. Fang, T. Zhu, and C. Liu. Repc: Reliable
and efficient participatory computing for mobile devices. In 2014 Eleventh Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON), pages
257–265, June 2014.

[19] Mustafa Y Arslan, Indrajeet Singh, Shailendra Singh, Harsha V Madhyastha, Karthikeyan
Sundaresan, and Srikanth V Krishnamurthy. Computing while charging: Building a dis-
tributed computing infrastructure using smartphones. In Proceedings of the 8th interna-
tional conference on Emerging networking experiments and technologies, pages 193–204.
ACM, 2012.

[20] F. Büsching, S. Schildt, and L. Wolf. Droidcluster: Towards smartphone cluster comput-
ing – the streets are paved with potential computer clusters. In 2012 32nd International
Conference on Distributed Computing Systems Workshops, pages 114–117, June 2012.

[21] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based cloudlets
in mobile computing. IEEE Pervasive Computing, 8(4):14–23, Oct 2009.

[22] K. Habak, M. Ammar, K. A. Harras, and E. Zegura. Femto clouds: Leveraging mobile
devices to provide cloud service at the edge. In 2015 IEEE 8th International Conference
on Cloud Computing, pages 9–16, June 2015.

[23] M. Ryden, K. Oh, A. Chandra, and J. Weissman. Nebula: Distributed edge cloud for data
intensive computing. In 2014 IEEE International Conference on Cloud Engineering, pages
57–66, March 2014.

[24] Giovanni Agosta, William Fornaciari, Giuseppe Massari, Anna Pupykina, Federico
Reghenzani, and Michele Zanella. Managing heterogeneous resources in hpc systems. In
Proceedings of the 9th Workshop and 7th Workshop on Parallel Programming and RunTime
Management Techniques for Manycore Architectures and Design Tools and Architectures
for Multicore Embedded Computing Platforms, pages 7–12. ACM, 2018.

[25] Boost libraries. https://www.boost.org/.

72

https://setiathome.berkeley.edu/
https://foldingathome.org/
https://www.boost.org/

	List of Figures
	List of Tables
	Acknowledgment
	Abstract (Italian version)
	Abstract
	Introduction
	Trend
	Emerging Technologies
	Emerging Needs
	Thesis Contribution

	State Of The Art
	Distributed Computing paradigms
	Mobile distributed computing
	Edge/Fog Computing

	MANGO Project Background
	The MANGO Approach
	The BarbequeRTRM
	MANGO Programming Model

	The BeeR Framework
	Requirements
	Design
	Implementation

	Benchmark Porting
	Rodinia benchmarks: the PathFinder sample
	PathFinder: Porting to MANGO
	PathFinder: Parallel Greedy Version

	Experimental Evaluation
	Devices and methodology
	Execution Time
	Overhead
	Accuracy

	Conclusions and Future Work
	Conclusions
	Future Works

	Bibliography

