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“…The only truly stochastic process is the human choice due to our free will, all the rest was 

deterministically engineered by God. Is just that we are not able to understand…” 
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CHAPTER 1. INTRODUCTION 
 

1.1 A definition of “downburst” 

 

The downburst is a meteorological phenomenon, first studied and defined by Fujita (Fujita 1985) as 

a “strong downdraft which induces an outburst of damaging winds on or near the ground”. 

According to (Fujita 1985), downbursts can be classified depending on the extension of their 

diameter as microburst and macroburst. While microbursts are characterized by diameters of 4km 

or less, macrobursts present much larger diameters. A further definition, proposed by Wilson and 

coworkers (Wilson, Roberts, et al. 1984), states that for microburst the maximum distance between 

winds blowing in opposite directions is less than or equal to 4km and the difference in velocity is 

greater than 10 m/s. 

The earliest available records of a downburst were obtained in the framework of the Doppler radar 

projects of NIMORD (Northern Illinois Meteorological Research on Downburst), JAWS (Joint Airport 

Wind Shear) and MIST (Microburst and Sever Thunderstorms) (Wilson and Wakimoto 2001). Those 

projects were accomplished by Fujita and his team and allowed to build the first mathematical 

models for the downburst wind fields. A more recent research in the topic of registration of real 

field downburst is due to Prof. Solari and his team, and has been developed in the framework of the 

European ports monitoring network WP (Wind and Ports) and WPS (Wind Ports and Sea), see e.g.: 

(Solari, et al. 2017). Solari and coworkers recorded and processed a large number of time histories 

of downburst wind fields, providing a strong experimental foundation for the modelling of this 

meteorological phenomenon, 

Several attempts have also been made to reproduce downbursts within the controlled area of the 

wind tunnels. Within this framework, it’s worth mentioning the contribution of the team of the 

University of Western Ontario (UWO) in Canada, leaded by Prof. El Damatty, see e.g. (University of 

Western Ontario UWO s.f.). Basically, they developed a unique three-dimensional wind test 

chamber which allows for the reproduction of the Impinging jet wind field. The wind tunnel 

simulations served as the basis to develop simulation models and design procedures for structures 

subjected to downburst wind fields, such as Power Line systems (Elawady 2016). 

The effect of downburst over medium-rise long structures such as overhead electrical transmission 

lines (OHL), indeed, has been a major concern in the recent times. Hawes and Dempsey (Hawes and 

Dempsey 1993) stated that 93% of the failures power lines in Australia were due to downburst. 

Kanak (Kanak 2007) reported the collapse of several towers of European power line systems due to 

a macroburst wind field. Failures of OHL towers due to strong downburst winds also occurred in 

north America. McCarthy and Melness (McCarthy and Melness 1996), for example, reported the 

collapse of 19 towers during the Manitoba Hydro incident of September 5 1996 and the more recent 

failure of two guyed towers in Ontario occurred in 2006 (HYDRO ONE NETWORKS INC 2006). 
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Several models are currently available in the literature to simulate the downburst wind velocity 

fields and their effects on structures. There are, among the others: numerical models based on the 

numerical integration of the Navier Stokes equations using Computational Fluid Dynamic (CFD) 

tools; scaled measurements made inside specialized wind tunnel applications; and empirical models 

based on the data gathered in the radar projects. Even though all of them will be mentioned herein, 

the development of this study is mainly referred to the empirical models. The latter, indeed, can be 

conveniently adopted to define the action of the downburst on civil structures, without requiring 

the application of cumbersome numerical solutions or expensive testing.  

1.2 The “discovery” of the downburst: some historical & meteorological remarks 

 

The term “downburst” made his appearance in the scientific literature in the 70’s, and since that 

time a constantly increasing number of studies has been devoted to its investigation. The relatively 

recent history of the “discovery” of the downbursts has been extensively discussed, among the 

others, by Wilson and Wakimoto (2001) and is briefly reviewed in this section. 

As it was already mentioned the downburst phenomenon was first identified and recorded by Fujita 

during the 1970’s and the 1980’s. The early studies on this type of wind structures were driven by 

several aircraft’s crashes occurred in those decades.  The research results of Fujita were published 

with the seal of the University of Chicago and sponsored by the National Center of Atmospheric 

Research (NCAR) (Wilson and Wakimoto 2001). 

The Eastern Airlines flight 66 of June 1975 is the first aircraft crash associated to a downburst. In the 

incident there were registered 112 casualties and 12 people were injured, while the airplane 

attempted to land in the New York’s international airport-JFK. Due to unusual wind velocity records 

at the moment of the landing Fujita was involved in the investigation ending up with the hypothesis 

of a diverging outflow produced by a convective downdraft of dry air of the parent thunderstorm.  

The hypothesis was based on the strange starburst patterns of the uprooted trees in the zone of the 

landing Figure 1-1.  

The hypotheses on the causes of the aircraft crash and on the existence of the downburst made by 

Fujita were reinforced by the wind field records of the near flights operative in the instant of the 

incident. Among the others, there were the flight TWA 843 coming from Milan and the Eastern 

Airlines Flight 902. The latter aborted its attempt to land due to the strong winds registered in the 

airport. Based on the records of these different flights Fujita was able to generate the space-time 

analysis of the airflow schematically depicted in Figure 1-2. 

The developments made by Fujita in these early stages of the research received a huge impulse from 

the NCAR. The Agency allowed the Scientist to record real field measurement of the thunderstorms 

with Doppler radars.  Three Radar projects were then executed by the team leading to proof the 

existence of downburst, measure the wind fields first in the macroscale of the phenomenon and 

then in the microscale for studying the velocity structure. 
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Figure 1-1: Pattern of uprooted threes. Adapted from: (Wilson and Wakimoto 2001) 

 

Figure 1-2:Airflow at the instant of the Flight 66 incident. Adapted from: (Wilson and Wakimoto 2001). 
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The first of these projects was the North Illinois Meteorological Research on Downburst, NIMROD, 

carried out in the north of Illinois during the spring and summer of 1978. In the project, the radars 

were located at 60km between each other. Even though the relatively large distance between the 

radars did not allow to measure the three-dimensional structure of the airflow, the measures were 

able to capture a downburst event. It’s worth noting here how at that time, the occurrence of 

downburst was not ascertained and therefore there was a strong need of evidences proving their 

existence. In particular, the first downburst registered by the aforementioned project was on May 

1978. The corresponding doppler radar record is shown Figure 1-3 (Bull-eye). In total 50 downbursts 

were recorded by the NIMROD project.  

 

Figure 1-3: Doppler Radar of the first downburst record. Adapted from: (Wilson and Wakimoto 2001). 

The successful results of the NIMROD project permitted the further development of the radar 

project Joint Airport Wind Shear (JAWS). The main feature of this project was the radar spacing of 

12-28km. The project was made during the spring and summer of 1982 in Denver Colorado area 

where the microbursts are very frequent. Due to the relatively close spacing of the radar units, the 

observation of the three-dimensional structure of the airflows was possible together with the 

description of the wind profile by means of the range-height indicators (RHI). Figure 1-4 shows the 

structure of a downburst that caused the landing abort of two commercial flights. In total 186 

downbursts were recorded by the JAWS project.  
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Figure 1-4: Downburst vertical structure. Adapted from: (Wilson and Wakimoto 2001) 

The third project was the Microburst and Severe Thunderstorms (MIST), carried out in Alabama 

during the summer of 1986 with three doppler radars spaced at 13 to 25 km. Unfortunately, 1986 

was a draught year in the southeast of the United States. Nevertheless, a couple of downbursts were 

captured and well registered during the project. Among those, it is possible to highlight the so-called 

Monrovia microburst in which, due to a favorable chain of situations, it was possible to capture the 

entire behavior of downburst together with a proof of the mechanism for early warning procedure 

of the downburst. This latter is based on the observation of the downburst echo or radar signature 

that occurs few minutes before the event materialization.   

The studies conducted by Fujita and the teams of NCAR and the University of Chicago were 

significant for the discovery of the downburst. In addition, the radar projects NIMROD, JAWS and 

MIST allowed to a description of the airflows related with downburst velocity fields and the three-

dimensional structure together with the procedure of early warning to prevent accidents like those 

of the Flight 66. In fact, the results of the research of the team lead to a training program in the 

aeronautical community to mitigate the casualties of downburst in this sector, reducing the 

accidents to zero between 1985 to 1994.  

The studies on the downburst velocity fields are not related only to aeronautical applications, since 

civil structures are also affected by the high intensity outflows of this phenomenon. Further 

developments departing from the discoveries of Fujita, which were essential to arrive at the 

definitions of the downburst’s effects on structural elements available nowadays, will be briefly 

reviewed in this document (§ 2.5).  
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1.3 Scope of the Current study 

 

The action of downburst outflows over civil structures is not well covered by the building codes as 

it is for synoptic winds. Now the design code including a basic model for the application of 

downburst is the Australian New Zeeland standard for Overhead line design (AS/NZS 7000 2010). 

The state-of-the-art research on this topic is divided in three major branches: the simulations in the 

CFD based on the numerical solution of the Navier-Stokes equations, the analytical or semi-

analytical models based on stochastic dynamics and the reproduction of downburst inside wind 

tunnels.  There is also a further sub-class of the analytical models, which can be identified in the 

models stemming from the work of (Kwon and Kareem 2009). These models provide a code-like-

approach based on the developments available for synoptic winds with some differences to account 

for the non-stationarity of downburst outflows.  

Since the effect of the downburst outflow wind fields can have a major impact on large structures 

and infrastructures, such as power line systems and bridges, the scope of this study is to provide 

information on the dynamic response of civil structures submitted to simulated downburst wind 

velocity fields.  

The developments needed to achieve the goals of this research, involve the definition of a 

downburst wind field model. This must account for all the parameters and effects able to reproduce 

a real measurement of this phenomenon. Moreover, the model must respect the available literature 

on the downburst definition. Therefore, the scope of this thesis is to make a first step towards a 

unified methodology able to describe a downburst wind field for structural calculation purposes. 

In addition, the structural response of the system will be assessed in time and frequency domain. 

Basically, the idea is to guarantee data consistency and profit from the characteristics of both 

approaches for further steps of the research. It is necessary to develop a Finite Element model able 

to perform both types of analysis and account for the aerodynamic effects. It should be highlighted 

that the results of both methodologies will be compared, for some archetypal case studies, to 

evidence the accuracy on the structural response evaluation and to check the dependence of the 

same on the damping ratio and the dynamic sensitivity of the system. 

Finally, the comparison between the effect on the structural response of downburst wind velocity 

fields will be compared with those coming of the standard Atmospheric Boundary Layer model 

available in design codes. This with aim of assess the increment in the failure probability, defined as 

the reach of limit state (not necessarily collapse), of a structure due the effect of the downburst 

outflow velocity field. 
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1.4 Thesis organization 

 

This thesis is divided in chapters with specific purposes. Each one provides the theoretical aspects 

and, in cases where applicable, the numerical examples involved in the developments of the 

objectives explained in the scope of the thesis. Therefore, special sections will be developed to the 

definition of the wind velocity field, to the structure simulation and response and others to the 

results comparison.  

 

Chapter 1 provides a global and historical overview of the downburst phenomenon and the general 

framework of the thesis. This chapter, therefore corresponds to an introductory definition of the 

developments that will be made later inside the body of the thesis.  

Chapter 2 provides the state of the art, i.e. the available models for defining the downburst wind 

velocity field and the comparison between the different options defined in the literature. The main 

goal of this chapter is to define the downburst phenomena not only from a meteorological point of 

view, but also, from an engineering one. Therefore, in its development there will be found the 

similitudes and differences between the variety of models highlighting which models provides a 

better definition of each specific downburst parameter. From a practical point of view, In this 

chapter there will be showed the techniques implemented for the wind simulation in the literature 

dealing with this subject, the parameters defined and some relevant results in terms of the 

simulated wind fields. 

On Chapter 3 the results of the different models will be checked and compared to obtain a specific 

view of each parameter involved in the definition of the downburst model. A very important aspect 

that will be exposed in this chapter is the unified notation and the development of a model for wind 

velocity simulation of the downburst.  

The most important aspect that will be considered in the comparison is the capability of the models 

to reproduce available records of downburst signals, such as, the classical Andrews Airforce Base 

(Fujita 1985) and the records of WP (Wind and Ports) and WPS (Wind Ports and Sea) projects (Solari, 

et al. 2017). To this aim several parameters must also be considered, as an overview: the vertical 

profile of velocity, radial diffusion or intensification functions (time and space), the amplitude 

modulating function, the turbulence definition (including integral length scales and power spectral 

densities) and the coherence functions. 

In Chapter 4 the aerodynamic effects of downburst on a reduced structural model with a single 

degree of freedom (SDOF) will be assessed. The study of this type of structure enables to 

concentrate on the wind field definition since the simple structural response could be modelled very 

easily. Moreover, the application of modal approach in case of classically damped structures (please 

notice that this might not be the case for systems sensitive to aeroelastic effects), leads to a 

decomposition of the many dynamic degrees of freedom into many decoupled systems of SDOF that 
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could be analyzed independently and the superimposed i.e. the SDOF response proposed in chapter 

4 can be extended to MDOF if special requirements are fulfilled.  

In Chapter 4, the analysis of the system will be made in both frequency and time domain. A 

parametric study varying the mechanical parameters: damping ratio and natural frequency, will be 

developed for different downburst simulated wind fields. This with the aim of studying the dynamic 

the effect of the downburst on the structures by changing the original parameters controlling the 

problem, damping and period ratio. Special provisions for the error measurements and accuracy of 

the testing will be also provided. 

Chapter 5 presents a comparison between the downburst wind velocity model and the traditional 

atmospheric boundary layer model. The aim of this chapter is to assess the probability of 

exceedance of a certain limit state. In this chapter it will be proposed a methodology to verify how 

much the performance of a system designed with the usual design rules is capable of resist a 

downburst outflow inside the framework of the probable scenarios.   

The analysis of MDOF systems will be provided in Chapter 6. The aim of this chapter is to study the 

case of structures for which the decoupling of the equations of motion into singe DOF systems with 

the modal approach is not feasible due to the aeroelastic effects. Therefore, definitions for the wind 

induced vibrations will be provided, as well as, the aeroelastic decomposition in mean velocity 

effects, turbulent effects and the aeroelastic matrixes coupling the wind effects with the structural 

response i.e. aeroelastic damping and stiffness matrix.  

All the provisions of aeroelasticity will be considered since important civil structures such as cables 

and bridges due to their high flexibility have shown large sensibility to these effects, due to their 

natural frequencies closer to those of the turbulent wind excitation.  

Also, on chapter 6 there will be given the definitions for the Finite Element tool developed for solving 

MDOF systems, accounting for modal analysis, generation of the aerodynamic forces and solution 

of the dynamic problem by Direct integration of the equations of motion (Newmark Method). 
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CHAPTER 2. STATE OF THE ART 
 

Downbursts belong to a class of meteorological phenomena known as High Intensity Wind event 

(HIW) and are typically associated with thunderstorms. (Byers and Braham 1949) define 

thunderstorms as an atmospheric phenomenon composed by cells of air, their mechanism can be 

divided in three major stages occurring in period from 30 to 60 minutes. First step is the convective 

updraft of warm air accumulating mass forming a large size cumulus at high elevations, this updraft 

transports also warm moist. When the amount of mass reaches a critical point, the moisture starts 

to densify and cool until the updraft is halted and becomes instable (the cumulus becomes a 

cumulonimbus) and a downdraft of cold air occurs. Finally, the thunderstorm dissipates energy 

though a downdraft of cool air, the downburst is the divergent outflow generated after the 

impinging of the downdraft with the surface of the earth (Chay and Letchford 2002).  Moreover, 

according to (Fujita 1985) downbursts are those downdrafts of cold air that impinges on the ground 

producing a radial outflow and a vortex ring. 

A graphical representation of the downburst formation could be seen in Figure 2-1 and Figure 2-2. 

In both images it could be seen the evolution of the two last stages of the thunderstorm from left 

to right. The first on the left refers to the arrival of the critical point and starting of the downdraft 

of the cumulus, the central and right-hand pictures show the impinging and the later divergence of 

the flow in radial directions. Conversely, on Figure 2-3 there is a global representation of the 

downdraft divergence in the radial direction. 

It is important to state that the downburst has properties from the mother thunderstorm that will 

define its behavior. Therefore together with the diverging radial outflow there is the mother storm 

tracking velocity that moves the downburst at a certain speed and direction (Oliver 1992) adding a 

constant component to the movement that must be vectorially added to the radial one (Holmes and 

Oliver 2000).  

Moreover, the outflow wind field close to impact point behaves differently than the typical 

atmospheric boundary layer i.e. the downbursts are characterized to be outflows having short 

duration, and particularly transient, non-synoptic, non-stationary and high intensity wind fields 

(Caracoglia and Le 2017).  For the simulation of the aerodynamic effect the non-stationarity of wind 

field creates a total change in the way the turbulence and mean wind speed are considered in the 

formulation, mainly because the available studies on synoptic wind fields show that Atmospheric 

boundary layer winds are characterized by a constant mean velocity (in the observation period of 

10min to 1 hour) ) (Van der Hooven 1957) and stationary turbulence i.e. its statistical properties do 

not change on time.  
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Figure 2-1: Schematic downburst formation. Adapted from (Fujita 1985) 

 

Figure 2-2: Captured downburst formation 

 

Figure 2-3: 3D scheme of downburst. Adapted from (Robert, 2014) 
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Several models to describe the properties of the downburst and effectively simulate their outflow 

wind field are available in the literature.  Even though, each author gives an original orientation to 

the specific research and therefore every model developed is different from the other, three major 

groups can be distinguished.  

The first group corresponds to the simulations made with CFD computer codes. From a practical 

point of view, this group encloses three possible models for the description of the downburst. The 

so-called Ring Vortex model, consisting on the outflow ring that is formed during the descendent 

downdraft of cool air (Ivan 1986) (Vicroy 1992). The impinging jet model proposed originally by 

(Fujita 1985), and used later in several other models, is based on the idealization of the downdraft 

as the impulsive jet impinging into a wall or flat surface creating a divergent outflow, just as the 

downburst phenomenon. The last model type is the Cooling Source model, composed by a dry, non-

hydrostatic, sub-cloud and axisymmetric model (Mason, et al. 2009).  

The second group corresponds to the contributions of the team of the University of West Ontario 

(UWO), who developed a unique tool for the simulation of downburst wind fields, a wind chamber 

or wind tunnel called de the WindEEE which allows for the controlled reproduction of the downdraft 

and divergent outflow of the downburst. Even though, the scope of this study is not capable to 

reproduce their reach, the results of their test will be considered in the simulated downburst wind 

fields used in the following chapters. In general, the parameters such as critical angle of 

approximation and loading conditions of the UWO studies (Elawady 2016) could be implemented 

for the case of study of powerlines systems in a further step of the research.  

The third group corresponding to empirical models based on the observation of real downburst 

records. Those are going to be the models studied herein. In general, the feasibility of the 

reproducing this type of models makes their implementation simple and allows the development of 

a further routine or methodology for engineering applications that can be then implemented in 

design codes.  The models available in the literature for this aim are based on the laws of probability 

defining the downburst non-stationarity by means of the suitable numerical models, the 

implementation of the evolutionary spectra proposed by (Priestley 1965) is a common factor in the 

majority of those models and is one of the crucial parameters defining the problem since is the one 

describing the major difference between the downburst outflow velocity field and the traditional 

atmospheric boundary layer model i.e. it accounts for the non-stationarity. 
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2.1 Wind Engineering Concepts 

 

Before starting the study of the available models a few concepts related to the behavior of the 

Downburst and general ideas of wind engineering will be given.  

 

2.1.1 Wind velocity standard decomposition 

 

The dynamic forces acting in an immersed body, such as those acting on a structure exposed to the 

action of the wind, can be defined as shown in Figure 2-4. The forces depend in general on the 

aerodynamic coefficients (see also CHAPTER 6), the air density for standard civil engineering 

conditions (ρ=1.25 kg/m3) the exposure area and the relative wind velocity between the flow and 

the structure movement. From the set of parameters governing the aerodynamic behavior of the 

system, as shown in Equation 2-1, those depending on the incoming wind flow are the relative 

velocity V(t) and the relative angle of attack α i.e. the air density and exposure area B (defined by 

structure shape) are almost constant for civil engineering applications. Therefore, special provisions 

must be given for the wind velocity and the aerodynamic drag, lift and moment coefficients (Cd Cl 

Cm, respectively) for defining the structural response.  

A foreword: even though for the description of downburst the wind velocity due to the non-

stationarity is not strictly the same as for synoptic winds inside the framework of the Atmospheric 

Boundary Layer model, the same approach for the decomposition of the wind velocity used for 

standard application has been widely adapted in the literature (Solari, et al. 2017) (Canor, et al. 

2016) (Chen and Letchford 2004)  (Caracoglia and Le 2017) therefore,  will also be followed herein.    

 

Figure 2-4: wind forces over immersed body 

Equation 2-1 
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As already described before, the downburst can be idealized as a downdraft that impinges the 

ground creating an intense radial outflow (Fujita 1990) (Fujita 1985). According to the available 

studies of the literature (Solari, et al. 2017), the radial velocity can be expressed as a decomposition 

of a mean V𝑚𝑒𝑎𝑛(z, t) and a turbulent V′(z, t) components Equation 2-2. The particularity of the 

downburst wind field is due to the time variant mean value, since generally the mean value is 

considered as a static parameter for synoptic winds. 

Equation 2-2  

V(z, t) = V𝑚𝑒𝑎𝑛(z, t) + V′(z, t) 

 

It can be highlighted a dependence of both the wind velocity field components (mean and turbulent) 

on the height over the ground z and time t. The studies have shown that the mean velocity can be 

conceived as a slowly varying mean  since it is associated to a low frequency content, while the 

turbulent component is characterized by a high frequency content (Chen and Letchford 2004) 

(Solari, et al. 2017) (Caracoglia and Le 2017).   

The slowly varying mean component, then, can be decomposed in time and space as a vertical 

profile multiplying a time varying function as in Equation 2-3. 

 

Equation 2-3 

V𝑚𝑒𝑎𝑛(z, t) = V𝑧(z) ∗ γ(t) 

 

In the further developments the provisions for the definition of the vertical profile V𝑧(z) and the 

time modulation function γ(t), will be detailed. 

Regarding the turbulent velocity component, the classical definition for synoptic winds using a 

Power Spectral Density function is also valid as will be explained in the § 3.5.  A modification shall 

be applied however, to consider the non-stationarity of the problem which makes a time 

dependence of the statistical spectral moments. Therefore, a time modulating function a(t) is 
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introduced in the model of the wind velocity field affecting a stationary gaussian random 

process v′(z, t). A possible scheme of the wind could be as given in  Equation 2-4. 

Equation 2-4 

V(z, t) = V𝑧(z) ∗ γ(t) + a(t) ∗ v′(z, t) 

Whenever the amplitude modulation function is taken constant and equal to the unit, the turbulent 

component corresponds to a classical zero mean stochastic process, that can be described through 

the standard procedures available for the synoptic winds. 

 

2.1.2 An introduction to the modelling of turbulence  

 

Wind phenomena inside the atmospheric boundary layer are characterized by an inherent 

turbulence, produced by the collision of air particles with obstacles present in the terrain and 

topography. For the case of downburst, the turbulence is also produced by the impinging jet itself 

i.e. the impact of the downstream flow with the ground generate a full turbulent flow.  

This chaotic and irregular motion, can only be described by the laws of the probability, therefore 

might be better studied using a stochastic approach rather than a deterministic one.  

 

2.1.2.1 Taylor hypothesis 

 

The turbulent flow present in the wind field can be represented as the superposition of whirls of 

different sizes. Those irregular swirls of motion are known as eddies. From a practical point of view, 

to obtain the data at different points within the same eddy and at same time is not an easy task. 

Therefore, the hypothesis proposed by Taylor in 1938 is usually stated: the eddy turbulent 

properties are assumed to be frozen. Therefore, the measurement of one point at two different 

times can be used to approximately model the behavior of the turbulent wind component. A 

graphical representation of this idea is sketched in Figure 2-5.  

 

Figure 2-5: Taylor hypothesis 
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2.1.2.2 Autocorrelation and Cross correlation function 

 

The autocorrelation function provides the measure of how much a signal is close to itself but offset 

a certain time window, τ. Graphically, the meaning of this function is represented in Figure 2-6, while 

in Figure 2-7 the autocorrelation function for typical random signals is given.  

  

 

Figure 2-6: Representation of Autocorrelation function 

The autocorrelation function can be computed as follows: 

Equation 2-5 

𝑅𝑥𝑥(𝜏) = lim
𝑇→∞

1

𝑇
∫ 𝑥(𝑡) ∗ 𝑥(𝑡 + 𝜏)𝑑𝑡
𝑇

0

 

Properties of the autocorrelation function 

• For zero-time window, 𝜏=0, the autocorrelation function is the mean square value, 𝜓𝑥
2, of 

the process. 

• The autocorrelation function is an even function. 

• The autocorrelation function is always decreasing.  

Equation 2-6 

{
 
 

 
 𝑅𝑥𝑥(𝜏 = 0) = lim

𝑇→∞

1

𝑇
∫ 𝑥(𝑡) ∗ 𝑥(𝑡 + 0)𝑑𝑡 = 𝜓𝑥

2
𝑇

0

 (𝑎)

𝑅𝑥𝑥(𝜏) = 𝑅𝑥𝑥(−𝜏)                                                          (𝑏)

𝑅𝑥𝑥(0) ≥ 𝑅𝑥𝑥(𝜏)                                                             (𝑐)

 

It is usual to represent the autocorrelation function in its non-dimensional form:  
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Equation 2-7 

𝑅𝑥𝑥̅̅ ̅̅ ̅(𝜏) =
𝑅𝑥𝑥(𝜏)

𝑅𝑥𝑥(0)
=
𝑅𝑥𝑥(𝜏)

𝜓𝑥
2 → −1 ≤ 𝑅𝑥𝑥̅̅ ̅̅ ̅(𝜏) ≤ 1 

 

Equation 2-8 

{
𝑅𝑥𝑥̅̅ ̅̅ ̅(𝜏) = 1;𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

𝑅𝑥𝑥̅̅ ̅̅ ̅(𝜏) = 0; 𝑛𝑜 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
 

 

Figure 2-7 Random signals and their autocorrelation function 

Considering two different time histories (e.g. the records of the same physical process at two 

different points in space, or the input and output processed of a mechanical system) it is possible to 

define the cross-correlation as the function giving a measure of how the two signals are related to 

each other. Analogously with what was already defined for the autocorrelation function, the cross-

correlation can be defined as:  

  

 Equation 2-9 

𝑅𝑥𝑦(𝜏) = lim
𝑇→∞

1

𝑇
∫ 𝑥(𝑡) ∗ 𝑦(𝑡 + 𝜏)𝑑𝑡
𝑇

0
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2.1.2.3 Integral length scale 

 

An important parameter linked to the Taylor hypothesis is the so-called integral length scale, Lv. This 

parameter gives a measure of the length of an eddy for which the hypothesis of frozen turbulence 

properties can be assumed to be valid. The Integral length scale can be defined by means of the 

cross-correlation and autocorrelation functions.   

The integral length scale is a measure of the size of the vortex in the wind, it depends on the 

turbulent component measured (longitudinal, transversal or vertical) and the direction (x,y,z). The 

expression defining this parameter is given in Equation 2-10. 

Equation 2-10 

𝐿𝑣
𝑥 = ∫ 𝑅𝑣𝑣(𝑟𝑥)𝑑𝑟𝑥

∞

0

 

Rvv (rx) represent the space cross-correlation function of two point separated by a distance rx.  In 

general, there could be found 9 different length scales as Table 2-1: Integral length scales. 

Table 2-1: Integral length scales 

Longitudinal component v 𝐿𝑣
𝑥  𝐿𝑣

𝑦
 𝐿𝑣

𝑧  

Transversal component u 𝐿𝑢
𝑥  𝐿𝑢

𝑦
 𝐿𝑢

𝑧  

Vertical component w 𝐿𝑤
𝑥  𝐿𝑤

𝑦
 𝐿𝑤

𝑧  

 

For the single point in space the wind coordinates v, u and w named respectively longitudinal, 

transversal and vertical components are as shown in Figure 2-8. 

With the Taylor hypothesis for the assessment of the eddy properties, it is possible to use the 

available measurements in only one point. In this way, with the well-known time correlation 

function Rv(τ) for the computation of the integral time scale 𝑇𝑣
𝑥(𝑧), Equation 2-11. The integral 

length scale will be related to the integral time scale by means of the mean wind velocity as shown 

in Equation 2-12. The variation of the mean velocity with height of the ground couples the integral 

length and time scales with the height. 

Equation 2-11 

𝑇𝑣
𝑥(𝑧) = ∫ 𝑅𝑣(𝑧, 𝜏)𝑑𝜏

∞

0

 

Equation 2-12  

𝐿𝑣
𝑥(𝑧) = 𝑇𝑣

𝑥(𝑧) ∗ 𝑉(𝑧) 
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Figure 2-8: Wind components: reference system. 

 

For the synoptic winds there are empirical expressions to obtain the integral length scale, as those 

provide by Eurocode 1 very similar to the one given for example in ASCE 7, Equation 2-13.  

Equation 2-13 

𝐿𝑣
𝑥(𝑧) = 300 ∗ (

𝑧

200
)𝛼 

Since the physical mechanisms at the origin of the downburst are strongly different compared with 

the ones of the atmospheric boundary layer winds and gusts, the use of the available empirical 

formulas to compute the integral length scales are not useful. Experimental tests must be performed 

to obtain this parameter (G. Solari, M. Burlando, et al. 2015). In the present work the integral length 

scale are given in § 3.5. 

2.1.2.4 Power spectral density 

 

Analogously to the autocorrelation function which gives the description of signal on the time 

domain, the Power Spectral Density, gives the description of the signal in the frequency domain. 

The PSD function gives a measure of how the energy content of a signal is distributed among the 

different vibration frequencies. Furthermore, the PSD (𝑆𝑥𝑥) is the Fourier transform of the 

autocorrelation function Equation 2-14. For engineering purposes, the use of the unilateral PSD 

(𝐺𝑥𝑥) is widely adapted (Figure 2-9). The latter can be defined as Equation 2-15. 

 

Equation 2-14 

𝑆𝑥𝑥(𝑓) = ∫ 𝑅𝑥𝑥(𝜏)𝑒
−𝑖2𝜋𝑓𝜏𝑑𝜏

+∞

−∞
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Equation 2-15 

{
 
 

 
 𝐺𝑥𝑥(𝑓) = 0 𝑓𝑜𝑟 𝑓 < 0

𝐺𝑥𝑥(𝑓) = 2𝑆𝑥𝑥(𝑓) 𝑓𝑜𝑟 𝑓 ≥ 0

𝐺𝑥𝑥(𝑓) = 2∫ 𝑅𝑥𝑥(𝜏)𝑒
−𝑖2𝜋𝑓𝜏𝑑𝜏

+∞

−∞

 

 

Figure 2-9: PSD & Unilateral PSD 

 

From the properties of the autocorrelation function it is possible to recover those of the PSD.  

Equation 2-16 

𝑅𝑥𝑥(0) = 𝜓𝑥
2 = ∫ 𝑆𝑥𝑥(𝑓)𝑑𝑓 →  ∫ 𝐺𝑥𝑥(𝑓)𝑑𝑓 = 𝜓𝑥

2
+∞

0

+∞

−∞

 

The area below the curve of the PSD is the mean square value. For the case of a zero-mean process, 

this area is the variance of the process. In addition, for very small interval of frequency the Equation 

2-17 gives the mean square value for the interval comprised between f and f+Δf. 

Equation 2-17 

𝐺𝑥𝑥(𝑓) ∗ ∆𝑓 = 𝜓𝑥
2(𝑓) 

Gxx(f) is a real quantity. 

Equation 2-18 

𝐺𝑥𝑥(𝑓) = 2∫ 𝑅𝑥𝑥(𝜏)𝑒
−𝑖2𝜋𝑓𝜏𝑑𝜏

+∞

−∞

→ 2∫ 𝑅𝑥𝑥(𝜏)[cos(2𝜋𝑓𝜏) − 𝑖𝑠𝑖𝑛(2𝜋𝑓𝜏)]𝑑𝜏
+∞

−∞

 

 

Analyzing the right side: 

Equation 2-19 

∫ 𝑅𝑥𝑥(𝜏)𝑠𝑖𝑛(2𝜋𝑓𝜏)𝑑𝜏 =  ∫ 𝑅𝑥𝑥(𝜏)𝑠𝑖𝑛(2𝜋𝑓𝜏)𝑑𝜏 + ∫ 𝑅𝑥𝑥(𝜏)𝑠𝑖𝑛(2𝜋𝑓𝜏)𝑑𝜏
+∞

0

0

−∞

+∞

−∞
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Since the autocorrelation function is an even function Equation 2-6 b) and the sine function is an 

odd function with sin (2πft) =-sin (-2 πft), the sine function cancels itself in the developments of the 

integral, cancelling the imaginary component of the PSD function as well. On other hand, the cosine 

is an even function therefore it doubles itself in the integration process. Therefore, the Unilateral 

PSD is greater than zero and can be obtained as Equation 2-20. 

 

Equation 2-20 

𝐺𝑥𝑥(𝑓) = 2∫ 𝑅𝑥𝑥(𝜏) cos(2𝜋𝑓𝜏)𝑑𝜏
+∞

−∞

→ 4∫ 𝑅𝑥𝑥(𝜏) cos(2𝜋𝑓𝜏) 𝑑𝜏
+∞

0

 

 

The turbulent component of the wind velocity is supposed to be a stationary Gaussian random 

process with zero mean. To this aim, several spectra are available in the literature. One of the 

spectrums widely used in the wind field application is the so-called Von Karman Spectrum given in 

Equation 2-21. The expression of the PSD is in the normalized form.  

Equation 2-21 

𝑓 ∗ 𝑆𝑥𝑥(𝑓)

𝜎𝑥
2

=
4 ∗ (

𝑓𝐿𝑣
𝑥

�̅�(𝑧)
)

[1 + 70.8(
𝑓𝐿𝑣

𝑥

�̅�(𝑧)
)2]5/6

⁄  

 

It is worth noting that the same definition of PSD functions is valid for non-stationary random 

process by considering the amplitude modulating function as defined by (Priestley 1965). 

 

Eurocode 1 provides an analogous expression for the definition of the non-dimensional PSD 

function.  

Equation 2-22 

𝑓 ∗ 𝑆𝑥𝑥(𝑓)

𝜎𝑥
2

=
6.8 ∗ (

𝑓𝐿𝑣
𝑥

�̅�(𝑧)
)

[1 + 10
𝑓𝐿𝑣

𝑥

�̅�(𝑧)
]5 3⁄

⁄  

2.1.2.5 Cross Power Spectral Density and Coherence function 

 

Again, considering two random process x(t) and y (t) it is possible to define the cross-power spectral 

density CPSD, as the Fourier transform of the cross-correlation function. 
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Equation 2-23 

𝐺𝑥𝑦(𝑓) = 2∫ 𝑅𝑥𝑦(𝜏)𝑒
−𝑖2𝜋𝑓𝜏𝑑𝜏

+∞

−∞

 

Introducing the Coherence as the function describing the statistical dependence between the two 

signals described in the former paragraph, it might be possible to recall in an alternative way the 

CPSD. Is important now to remark that, the statistical dependency is due to the spatial dimension 

of the swirls in the wind field and the Taylor hypothesis. The coherence function could be obtained 

as shown in Equation 2-24. 

Equation 2-24 

𝑐𝑜ℎ𝑥𝑦(𝑓) = √
|𝐺𝑥𝑦(𝑓)|

2

𝐺𝑥𝑥(𝑓) ∗ 𝐺𝑦𝑦(𝑓)
 

Or conversely,  

Equation 2-25 

𝐺𝑥𝑦(𝑓) = 𝑐𝑜ℎ𝑥𝑦(𝑓)√𝐺𝑥𝑥(𝑥, 𝑓) ∗ 𝐺𝑦𝑦(𝑦, 𝑓) 

While the CPSD is a complex quantity, the coherence function is real. The former might be expressed 

in terms of the modulus and phase or as the sum of an imaginary (out of phase) and real (in phase) 

part. In chapter 6.1 Wind Field  it will be exposed the Coherence function used in the models 

available to define the Downburst wind field. 

The classical expression, also the simplest one, to recall the coherence function is an empirical 

formulation proposed by Davenport (Davenport 1968). 

Equation 2-26 

𝑐𝑜ℎ𝑥𝑦(𝛥𝑦, 𝑓) = exp [−cy ∗
∆𝑦 ∗ 𝑓

�̅�
] 

With Cy being the non-dimensional decay constant, the typical value for this parameter is 10, 

whether for synoptic or not-synoptic winds.  And 𝛥𝑦 stands for the separation between the points 

in study.  

 

2.1.3 Evolutionary Power spectrum 

 

The evolutionary spectrum characterizes a random process with statistical properties that change 

with time i.e. a non-stationary process. In a very brief description, it is possible to state that the 

evolutionary spectrum generalizes the concept of the power spectrum i.e. a process with the same 

probability distribution over the time line to a process in which the probability distribution varies 

with time. This could be seen graphically in Figure 2-10 and Figure 2-11. 
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Figure 2-10: Representation of power spectrum for stationary process. 
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Figure 2-11: Representation of evolutionary spectra for non-stationary process. a) Evolutionary Spectrum b) time sections 

It often happens that the assumption of stationarity of random process is not verified in practice. In 

fact, downbursts are an example of a non-stationary process. It is necessary to extend the concept 

of the PSD, as a function describing the energy distribution over the frequency content of a signal, 

to the case of non-stationary process. This can be achieved with the definitions that will be provided 

in the following.    

Considering a discrete non-stationary process, 𝑋(𝑡), characterized by an evolutionary spectrum as 

that shown in Figure 2-11, the following relation can be written: 

Equation 2-27 

𝑋(𝑡) = {
𝑋1(𝑡), 𝑡 < 𝑡1
𝑋2(𝑡), 𝑡 ≥ 𝑡1

 

Where 𝑋1(𝑡) and 𝑋2(𝑡) are assumed to be two stationary process with different autocovariance 

functions. t is the time variable and t1 is a given instant of time. For a known t1 it is possible to 

estimate two PSD functions: one valid for the interval  𝑡 < 𝑡1, 𝑋
1(𝑡), and other valid for the interval 

 𝑡 ≥ 𝑡1, 𝑋
2(𝑡). 

If the process of Equation 2-27 is characterized by further time instants 𝑡2, …, 𝑡𝑛,  it can be described 

by more stationary PSD functions 𝑋3(𝑡), … , 𝑋𝑛(𝑡) belonging to the non-stationary process 𝑋(𝑡) as 

in Equation 2-28. Therefore, it is possible to discretize the latter into n stationary process with PSD 

functions 𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑛(𝑡).  
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Equation 2-28 

𝑋(𝑡) =

{
 
 

 
 
𝑋1(𝑡), 𝑡1 > 𝑡

𝑋2(𝑡), 𝑡2 > 𝑡 ≥ 𝑡1
𝑋3(𝑡), 𝑡3 > 𝑡 ≥ 𝑡2

⋮
𝑋𝑛(𝑡), 𝑡𝑛−1 > 𝑡 ≥ 𝑡𝑛

 

Therefore, it is possible to generalize the concept to a time-dependent spectrum.  

2.1.3.1 Preliminary definitions of stationary process 

The random process in discrete form can be obtained by the following relation: 

Equation 2-29 

𝑥(𝑗)(𝑡) = ∑ 𝑋𝑛
(𝑗)

+∞

𝑛=−∞

𝑒𝑖2𝜋𝑛∆𝑓𝑡 

 

Where 𝑋𝑛
(𝑗)

 is the n-th harmonic component of the random process (Equation 2-30): 

 Equation 2-30 

 

𝑋𝑛
(𝑗)
=
1

𝑇
∫ 𝑥(𝑗)(𝑡)𝑒−𝑖2𝜋𝑛∆𝑓𝑡𝑑𝑡; ∆𝑓 =

1

𝑇

+𝑇 2⁄

−𝑇 2⁄

 

Where the frequency interval is ∆𝑓 and 𝑇 is the associated time window. Replacing Equation 2-30 

in Equation 2-29, it is obtained:  

Equation 2-31 

𝑥(𝑗)(𝑡) = ∑ 𝑒𝑖2𝜋𝑛∆𝑓𝑡∆𝑓∫ 𝑥(𝑗)(𝑡)𝑒−𝑖2𝜋𝑛∆𝑓𝑡𝑑𝑡
+𝑇 2⁄

−𝑇 2⁄

+∞

𝑛=−∞

 

For the case in which the 𝑇 → ∞, the frequency interval becomes smaller ∆𝑓 → 𝑑𝑓 and 𝑛∆𝑓 → 𝑓. 

Therefore, the following integrals can be obtained:  

Equation 2-32 

 

𝑋(𝑗)(𝑓) = ∫ 𝑥(𝑗)(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
+∞

−∞

; (𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚) 

Equation 2-33 

 

𝑥(𝑗)(𝑡) = ∫ 𝑋(𝑗)(𝑓)𝑒𝑖2𝜋𝑓𝑡𝑑𝑓
+∞

−∞

; (𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚) 
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Besides, based on the previous equations, it is possible to define the following expression, presented 

in Equation 2-34 (Perotti 2017): 

Equation 2-34 

𝑑𝜑𝑥(𝑓) = lim
𝑇→∞

1

𝑇
∫ 𝑥(𝑗)(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡 
+𝑇 2⁄

−𝑇 2⁄

 

Hence, the Equation 2-33 becomes: 

Equation 2-35 

 

𝑥(𝑗)(𝑡) = ∫ 𝑒𝑖2𝜋𝑓𝑡𝑑𝜑𝑥(𝑓)
+∞

−∞

 

Denoting the statistic expected value of x as E[x], the autocorrelation function, for a time window τ 

going from time instant t1 to time instant t2, is defined as:  

Equation 2-36 

𝑅𝑥(𝜏 = 𝑡2 − 𝑡1) = 𝐸[𝑥
∗(𝑡)𝑥(𝑡 + 𝜏)] 

With x* denoting complex conjugate.   

The time instants t1 and t2 are associated to the frequencies f1 and f2. Replacing Equation 2-35, 

evaluated at the time instants t1 and t2, in Equation 2-36, it is obtained:  

Equation 2-37 

𝑅𝑥(𝜏) = 𝐸 [∫ 𝑒−𝑖2𝜋𝑓1𝑡𝑑𝜑∗𝑥(𝑓1)
+∞

−∞

∫ 𝑒𝑖2𝜋𝑓2(𝑡+𝜏)𝑑𝜑𝑥(𝑓2)
+∞

−∞

]

= ∫ 𝑒𝑖2𝜋𝑓2𝜏
+∞

−∞

∫ 𝑒𝑖2𝜋𝑡(𝑓2−𝑓1)
+∞

−∞

𝐸[𝑑𝜑𝑥(𝑓2)𝑑𝜑
∗
𝑥
(𝑓1)]  

Introducing the following definition (Perotti 2017): 

Equation 2-38 

𝑆�̅�(𝑓2)𝑑𝑓2 = ∫ 𝑒𝑖2𝜋𝑡(𝑓2−𝑓1)
+∞

−∞

𝐸[𝑑𝜑𝑥(𝑓2)𝑑𝜑
∗
𝑥
(𝑓1)]  

With 𝑆�̅�(𝑓) the stationary power spectrum of the x(t) process. Replacing Equation 2-38 in Equation 

2-37, it is obtained:  

Equation 2-39 

𝑅𝑥(𝜏) = ∫ 𝑒𝑖2𝜋𝑓2𝜏
+∞

−∞

𝑆�̅�(𝑓2)𝑑𝑓2   

The process 𝑑𝜑𝑥(𝑓) is orthogonal and the following relation can be written: 

Equation 2-40 
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𝐸[𝑑𝜑𝑥(𝑓2)𝑑𝜑
∗
𝑥
(𝑓1)] = 𝛿(𝑓1 − 𝑓2)𝑆�̅�(𝑓2)𝑑𝑓1𝑑𝑓2 

Where the 𝛿(𝑓), is the Dirac-delta function equal to 1 when f1=f2, and 0 elsewhere. For the case 

f1=f2.  It is possible to write:  

Equation 2-41 

𝐸[|𝑑𝜑𝑥|
2] = 𝑆�̅�(𝑓)𝑑𝑓 

Dividing by df: 

 Equation 2-42 

𝑆�̅�(𝑓) =
𝐸[|𝑑𝜑𝑥|

2]

𝑑𝑓
 

 From Equation 2-42 it is possible to recall that the units of 𝑑𝜑𝑥  are the square root of the frequency 

[√𝑑𝑓]. 

Based on the previous equations, it can be observed the definition of 𝑑𝜑𝑥(𝑓) (Equation 2-34), its 

units (Equation 2-42), and the orthogonality property (Equation 2-40). 

2.1.3.2 Non-stationary process 

Supposing a zero mean stochastic process x(j)(t), which is continuous, complex valued, and exists for 

the real time interval -∞<t< +∞. The process can adopt the following representation:  

Equation 2-43 

𝑥(𝑗)(𝑡) = ∫ 𝛹(𝑡, 𝑓)𝑋(𝑗)(𝑓)𝑒𝑖2𝜋𝑓𝑡𝑑𝑓
+∞

−∞

 

In which, 𝑋(𝑗)(𝑓) is a stationary spectral representation of 𝑥(𝑗)(𝑡). 𝛹(𝑡, 𝑓) belongs to a family or 

set of functions (Priestley 1965), which works as a modulating function that accounts for the 

variation of the spectral properties with time and frequency. For the case of stationary process, 

𝛹(𝑡, 𝑓) assumes a value equal to the unity. Therefore, it is important to remark the stationary 

nature of the 𝑒𝑢𝑙𝑒𝑟 𝑜𝑟 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝑒𝑥) function makes it suitable to describe the stationary 

process but not capable to reproduce the non-stationarity.  

In fact, the decomposition of the complex exponential as a sum of sine and cosine waves gives the 

interpretation of energy distribution over a frequency content. However, the stationary behavior of 

the sine and cosine waves only allows the description of stationary process. To consider the case of 

non-stationary process, it is necessary to use functions with also non-stationarity, but without the 

loss of the oscillatory behavior (to avoid the loss of the physical interpretation).  
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2.1.3.3 Evolutionary power spectra 

The variance of the process X(t) can be computed as shown in Equation 2-44. Since this parameter 

contents the square of the amplitude of the signal, it gives a measure of the energy content at time 

t. Then, Equation 2-44 represents the decomposition of the total energy of the signal as the 

contribution of each frequency f. 

Equation 2-44 

  

𝜎𝑋
2 ≡ 𝑅𝑡,𝑡 = ∫ Ψ2(𝑓, 𝑡)

+∞

−∞

𝑆𝑥̅̅ ̅(𝑓)𝑑𝑓 

Where the Evolutionary Power Spectrum (EVPS) can be defined as Equation 2-45 (Perotti 2017): 

Equation 2-45 

𝐸𝑉𝑆𝑥(𝑓, 𝑡) = Ψ
2(𝑓, 𝑡)𝑆�̅�(𝑓) 

In addition, to standardize the definition of the EVPS, the amplitude modulating function, Ψ, is 

normalized to have unit value at zero time (Equation 2-46); and, therefore, its Fourier transform will 

have unit integrals. More information of these developments can be found in (Priestley 1965). 

Equation 2-46 

Ψ(𝑓, 𝑡 = 0) = 1 

2.1.3.4 Uniformly modulated process 

Considering a non-stationary process 𝑥(𝑡), with the following representation:  

Equation 2-47 

𝑥(𝑡) = 𝐶(𝑡)𝑥(𝑜)(𝑡) 

With 𝑥(𝑜)(𝑡) being a stationary process with zero mean and spectrum  𝑆�̅�(𝑓). The function C(t) (with 

C(0)=1) has a Fourier transform whose modulus has an absolute maximum at the origin. Since 

𝑥(𝑜)(𝑡) is stationary, it is possible to write:  

𝑥(𝑜)(𝑡) = ∫ 𝑒𝑖2𝜋𝑓𝑡𝑑𝜑𝑥(𝑓)
+∞

−∞

 

Like in Equation 2-41, 𝑑𝜑𝑥(𝑓) is an orthogonal process and Equation 2-40 is still valid (Perotti 2017):  

Equation 2-48 

𝐸|𝑑𝜑𝑥(𝑓)|
2 = 𝑆�̅�(𝑓)𝑑𝑓 

Hence, the uniformly modulated non-stationary process is defined in Equation 2-49 (analogous to 

the previous Equation 2-43):  
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Equation 2-49 

𝑥(𝑡) = ∫ 𝐶(𝑡) 𝑒𝑖2𝜋𝑓𝑡𝑑𝜑𝑥(𝑓)
+∞

−∞

 

If the evolutionary power spectrum given in Equation 2-45 were associated to the family of functions 

Ψ(f, t)={C(t)}, it could be rewritten as:  

Equation 2-50 

𝐸𝑉𝑆𝑥(𝑓, 𝑡) = |𝐶(𝑡)|
2𝑆�̅�(𝑓) 

Therefore, it is possible to define the uniformly modulated process as a special case of the non-

stationary process, in which all the spectral components are only modulated over the time, i.e. the 

dependency of the amplitude modulating function on frequency is negligible. 

The studies made on the downburst records express the possibility of defining their turbulence as a 

uniformly modulated non-stationary random field process.  

 

2.1.3.5 Evolutionary frequency response function 

 

To obtain the response, 𝑦(𝑡), of a mechanical system subjected to an input excitation, 𝑥(𝑡), it is 

important to define the system associated Frequency Response Function FRF, 𝐻, also known as 

Transfer Function TF. This is the function that measures how the structural system modifies the 

amplitude and offset the phase of the input signal Figure 2-12. Analogous to the linear 

transformation of signals made by the filters. 

 

 
Figure 2-12: FRF function. 

For the case in which the input signal is associated to a non-stationary stochastic random process 

the concept of the FRF function shall be extended to the evolutionary spectrum. 

 

Supposing the dynamic equilibrium equation of an oscillator, subjected excitation 𝑥(𝑡) associated 

to a non-stationary random process as defined in Equation 2-51. Its response 𝑦(𝑡) can be obtained 

by Equation 2-52.  

Equation 2-51 

𝑥(𝑡) = ∫ Ψ(𝑓, 𝑡)𝑒𝑖2𝜋𝑓𝑡𝑑𝜑𝑥(𝑓)
∞

−∞
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Equation 2-52 

𝑦(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
𝑡

0

 

Where the ℎ(𝑡 − 𝜏) is the impulse response function evaluated in the time window 𝑡 − 𝜏 . 

By squaring the quantities of Equation 2-52, taking the average through all the realizations (Perotti 

2017) is possible to handle the problem in the frequency domain.  

Equation 2-53 

𝜎𝑌
2 = 𝐸[𝑦2(𝑡)] = 𝐸 [|∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏

𝑡

0

|

2

] 

Replacing Equation 2-51 in Equation 2-53:  

Equation 2-54 

𝐸[𝑦2(𝑡)] = 𝐸 [|∫ ∫ Ψ(𝑓, 𝑡)𝑒𝑖2𝜋𝑓𝑡𝑑𝜑𝑥(𝑓)
∞

−∞

ℎ(𝑡 − 𝜏)𝑑𝜏
𝑡

0

|

2

]

= |∫ Ψ(𝑓, 𝑡)ℎ(𝑡 − 𝜏)𝑒𝑖2𝜋𝑓𝑡𝑑𝜏   
𝑡

0

|

2

 𝐸[|𝑑𝜑𝑥|
2] 

Hence, the evolutionary power spectrum of the response can be written as follows: 

Equation 2-55 

𝐸𝑉𝑆𝑌(𝑓, 𝑡) = |𝐻(𝑓, 𝑡)|
2𝑆�̅�(𝑓) 

 

Where the generalized transfer function, 𝐻(𝑓, 𝑡), respect to the family of functions Ψ(𝑓, 𝑡) is 

defined as:  

Equation 2-56 

𝐻(𝑓, 𝑡) = ∫ Ψ(𝑓, 𝑡 − 𝜏)ℎ(𝜏)𝑒−2𝜋𝑓𝜏𝑑𝜏
𝑡

0

 

 

Because of the causality property the response is equal to zero for all the times t < 0, corresponding 

to values t < 𝜏 within the integral Equation 2-56: then, it is possible to assume that the upper bound 

of the integral Equation 2-56 tends to infinity. 

The lower bound of the integral Equation 2-56 can be assumed equal to minus infinity if whether t 

is required to evaluate the vibrations of the system far from the time t, such that the initial 

conditions can be neglected or the excitation before the initial time is zero.  

Therefore, Equation 2-56 becomes:  
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Equation 2-57 

𝐻(𝑓, 𝑡) = ∫ Ψ(𝑓, 𝑡 − 𝜏)ℎ(𝜏)𝑒−2𝜋𝑓𝜏𝑑𝜏
+∞

−∞

 

 

For the case of uniformly modulated process Equation 2-57 becomes Equation 2-58 and equation 

Equation 2-55 becomes Equation 2-59:  

Equation 2-58 

𝐻(𝑓, 𝑡) = ∫ 𝐶(𝑡 − 𝜏)ℎ(𝜏)𝑒−2𝜋𝑓𝜏𝑑𝜏
+∞

−∞

 

 

Equation 2-59 

𝐸𝑉𝑆𝑌(𝑓, 𝑡) ≅ |𝐻(𝑓)|
2𝐸𝑉𝑆𝑋(𝑓, 𝑡) = |𝐻(𝑓)|

2|𝐶(𝑡)|2⏞          𝑆�̅�(𝑓) 

Grouping the terms by side of the stationary spectrum 𝑆�̅�(𝑓) is possible to obtain the evolutionary 

power spectral density of the response as:  

Equation 2-60 

𝐸𝑉𝑆𝑌(𝑓, 𝑡) ≅ |𝐻(𝑓, 𝑡)|
2𝑆�̅�(𝑓) 

 

And to approximate the EFRF to:  

 

Equation 2-61 

𝐻(𝑓, 𝑡) ≅ 𝐻(𝑓)𝐶(𝑡) 
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2.2 Sampling information 

 

The Fourier analysis is the tool allowing the transformation from time to frequency domain. For non-

periodic signals, it works by lapping copies of the signal in the time axis every time window T 

(corresponding to record duration). Graphically it is shown in Figure 2-13. Briefly explaining, the 

generated signal goes from zero to T inside the time window, but the Fourier analysis artificially 

repeats M times the signal to make the approximation with series of sines and cosines.  

All the harmonics contained in the signal are multiple of the first harmonic. Therefore, the first 

harmonic will give the spacing in frequency domain known as the frequency resolution and by 

definition it is the inverse of the time window Equation 2-62. Thus, the higher the time window the 

better the resolution in frequency. 

Equation 2-62 

∆𝑓 =
1

𝑇
 

 

Figure 2-13: Fourier analysis representation 

The sampling frequency corresponds to the frequency on which the data is gathered or as in this 

case simulated. An important parameter linked to this one, is the so-called Nyquist frequency 

computed as Equation 2-63. This one describes the range of frequencies until which it will be 

possible to see a representative data on the frequency domain i.e. harmonics or signals with 

frequency content greater than Nyquist frequency could not be seen due to symmetry of the 

spectral representation-mirroring (Figure 2-14: Nyquist frequency- mirror). 

 

Equation 2-63 

𝑓𝑁𝑦 =
𝑓𝑠𝑎𝑚𝑝
2
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Figure 2-14: Nyquist frequency- mirror 

The sampling in time is the inverse of the sampling frequency Equation 2-64. It is very important for 

the integration of the equations of motion since it ensures the accuracy and, in some cases, also the 

stability of the numerical solution. Therefore, for the developments of the present study its 

definition and so the sampling frequency will be governed by the Newmark method requirements 

rather than the sampling or frequency representation of the signal.  

Equation 2-64 

∆𝑡 =
1

𝑓𝑠𝑎𝑚𝑝
 

To check if the sampling definitions are well done the number of points between frequency and 

time must coincide. 

Equation 2-65 

{
 

 𝑁 =
𝑇

∆𝑡

𝑁 =
𝑓𝑠𝑎𝑚𝑝

∆𝑓

 

2.3 Models based on CFD analysis 

 

There are many studies available in the literature to reproduce numerically the downburst behavior 

using the Computational Fluid Dynamic tools (CFD). Mainly three different techniques have been 

used to this aim, either the Ring vortex model, the Impinging jet model or the Cooling source model. 

A graphical description of each type is given in Figure 2-15. 
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Figure 2-15: CFD models for downburst. Adapted from (Elawady 2016). 

2.3.1 Impinging jet 

 

This corresponds to original model suggested by (Fujita 1985) to describe the downburst behavior. 

It is based on the analogy between the downdraft impacting with the ground and an impulsive jet 

impinging with a wall or flat surface (Shehata, et al. 2005) (Hangan, et al. 2003). 

 The impinging jet simulations inside the framework of the CFD are capable to reproduce the mean 

velocity field of the downburst. However, either the truculence neither the translation velocity can 

be accurately captured with this type of simulations. 

From the studies presented in (Shehata, et al. 2005) it is possible to highlight two components: the 

vertical profile of the wind velocity as that shown in Figure 2-16 and an intensification function 

normalized with the reference velocity Figure 2-17. 



Description and Simulation of Thunderstorms Downburst and Their Effect on Civil Structures 

 

49 
 

 

Figure 2-16: Vertical profile using CFD. Adapted from (Shehata, et al. 2005) 

 

 

Figure 2-17: Peak horizontal velocity (Vref) at 10m height. Adapted from (Shehata, et al. 2005) 

Finally, a representation of a structural response (axial force in the leg of a latticed tower - research 

case of study) produced by the wind field over the structure is presented in the study of (Shehata, 

et al. 2005) as shown in Figure 2-18. The importance of this structural parameter is that it gives a 

measure of the mean wind velocity acting on the tower, in addition the author provides also a 

comparison with the value obtained by standard atmospheric boundary layer model. 
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Figure 2-18: Axial force in leg element of tower. Adapted from (Shehata, et al. 2005) 

 

2.3.2 Vortex ring model 

 

This type of model reproduces the vortex formed during the downdraft of cool air. It is worth to 

stress that the ring vortex model application to reproduce downburst (according to Savory 2001) 

showed to be not capable of correctly describing the wind field near to the ground after the 

downdraft impact (Elawady 2016). 

 

2.3.3 Cooling source model 

 

This type of models is based on the simulation of the downdraft by means of a temperature change 

which affects the buoyancy term of the energy conservation equation (Mason, et al. 2009) (Vermire, 

et al. 2011).  

The simulation of downburst wind fields with the cooling source model allows to reproduce 

accurately the wind velocity field features in the region near to the surface (Mason, et al. 2009) 

(Vermire, et al. 2011) . it is worth noting that the simulations made by (Vermire, et al. 2011) the 

translation component was considered, (Mason, et al. 2009) on the other hand neglect their effects 

by stating that the environmental effects are almost invariable for engineering applications. 
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The typical representation of a downburst simulated in with the cooling source model could be seen 

in Figure 2-19 and Figure 2-20. 

 

Figure 2-19: Downburst formation with cooling source model. Adapted from (Mason, et al., Numerical simulation of 
downburst winds 2009) 

 

Figure 2-20: Downburst formation with cooling source model. Adapted from (Vermire, et al. 2011) 

The mean velocity field is correctly reproduced with this method. A typical simulation of the vertical 

profile could be seen Figure 2-21. Regarding the radial diffusion function, it is possible to make 

reference to the term umax/ustrom  from (Mason, et al. 2009)  showed in Figure 2-22. 
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Figure 2-21 Vertical Profile. Adapted from  (Vermire, et al. 2011) 

 

Figure 2-22: Intensification function. Adapted from (Mason, et al. 2009) 
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2.4 Models based on Wind Tunnel testing 

 

The wind dome or wind chamber WindEEE is the facility used by the University of Western Ontario 

(UWO) to generate thunderstorms and tornados. It is a hexagonal chamber with maximum width of 

25 [m] and height of 3.8 [m]. To generate downbursts, the chamber pressurizes air in an upper 

plenum and then it releases the air which impinges with the ground of the chamber. A typical 

downburst formation adapted from (Elawady 2016) can be seen in Figure 2-23. 

 

Figure 2-23: Typical downburst generated in WindEEE Chamber. Adapted from: (Elawady 2016) 

To measure the downburst simulated wind fields, the UWO team use two sets of Cobra probes with 

sampling frequency of 156 Hz. Therefore, the velocity field rather than been generated by means of 

analytical expressions is fully measured by the reproduction of the phenomena. A typical recording 

of downburst wind velocity outflows generated inside WindEEE chamber are given in Figure 2-24. 

 

 

Figure 2-24: Generic simulation of downburst wind field. Adapted from: (Elawady 2016) 
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It is important to highlight that in Figure 2-24 two downburst records, named as Test 1 and Test 2, 

were over imposed to check data consistency. Basically, both signals show high relationship 

between each other and according to (Elawady 2016) the error is lower than 3%. The delay between 

the two signals is associated to human control of the WindEEE mechanisms.  

By means of a moving average technique the wind velocity record is decomposed into slowly varying 

mean and a turbulent component, similar to what is implemented in (G. Solari, M. Burlando, et al. 

2015). The particular definition of this approach is the cutting frequency, taken as 1.5 the vortex 

shedding frequency. According to (Elawady 2016) the moving average frequency was 1.15 [Hz], for 

a Strouhal number of 0.35 [-] a downburst diameter of 3.2 [m] and radial velocity of 7 [m/s]. a typical 

decomposition of a record can be seen in Figure 2-25.  

 

 

Figure 2-25: Generic wind decomposition. Adapted from: (Elawady 2016) 

During the research it was performed a parametric study with the aim of reporting the critical 

configurations of downburst location which make the higher structure internal forces for power line 

systems. In addition, it was also assessed the Dynamic Amplification Factor of the structural 

response.  

It was basically found that for guyed towers, the critical angle of attack ϴ (as defined in Figure 2-26)  

is that aligned with the power line track and producing no conductor forces. For self-supported 

towers the worst condition is an angle of attack orthogonal to the line track, producing the higher 

transversal forces in the cables. Finally, for the critical situation in the cross arms of the towers the 

downburst must attack in an angle of 52[°] respect to the orthogonal segment to the tower in 

consideration.  
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Figure 2-26: Downburst geometrical definitions. Adapted from (Elawady 2016) 

The Dynamic Amplification Factor (DAF) in the study was computed by splitting the structural 

response into the background and resonant parts of process. To extract the background response, 

the above-mentioned moving average technique was applied. Then the PSD function of the 

response was computed to finally obtain the resonant respond. The results show that the maximum 

DAF expected is 1.23 (23% of resonant response) for the base moment. 

Since the nature of this model is based on experimental testing and it reproduces the phenomena, 

the expressions for an analytical simulation of the generic downburst wind fields cannot be directly 

obtained. However, it will be useful for defining the critical configuration of downburst actions in 

the cases of study and a measure of the DAF but not a significant contribution to the simulation of 

the wind outflow.     

 

2.5 Empirical models  

 

Aiming at providing a common framework for the comparison of the different models of downburst 

available in the literature, the similar components of each model will be placed inside categories. In 

a very general way, all the models coincide in a decomposition of the wind velocity in a slowly 

varying mean value and a turbulent component.  Then the mean value is divided in a vertical profile 

and a radial diffusion function (whether of time, space or both). The turbulent component is handled 

as the zero mean random process with an evolutionary PSD. The concept of the amplitude 

modulating function allows to make the relation between stationary and non-stationary spectra 

(Priestley 1965). 

 

Once the description of the wind field components is done, is time for the generation of the 

simulated wind fields, again a common point in the empirical models. However, many techniques 

among those available in the literature are used and every author has preference for a particular 

one. Finally, the verification of the simulated wind filed is performed by comparing them with real 
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measurements of downburst from radar recordings. The latter aspect is crucial since provides the 

actual validation of the model, i.e. if a model is feasible to implement with less computational effort 

than others but is not able to reproduce the real recorded behavior of the downburst, it cannot be 

considered as useful.  

 

Besides the wind field definition, another important parameter is the structural response 

assessment. Again, every author has his own way to solve the dynamic problems. Whether in the 

time domain or frequency domain.  

Therefore, the methodology of comparison by categories will rely on the following:  

• Model description.  

• Overview of the techniques implemented. 

• Radial diffusion function. (time or space). 

• Power Spectral density for turbulence definition. 

• Amplitude modulating function. 

• Coherence function. 

• Generation of the wind field 

• Structural response. 

• Model validation with real data. 

 

2.5.1 Vertical profile 

 

One the most important aspects defining the downburst velocities is its nosed vertical profile, 

differing from the logarithmic one, which is characteristic of the Atmospheric Boundary layer winds. 

Since the models giving a description of the vertical profile of the downburst velocity field are 

presented and compared in the literature available for the other models as starting point, an initial 

comparison of those will be presented first.   

 The first aspect to verify in the construction of the downburst model is the vertical distribution of 

the radial velocity component. The principal models describing the vertical profile were proposed 

by Osegura and Bowles (Osegura and Bowles 1988), Vicroy (Vicroy 1992) and Wood and Kwok 

(Wood and Kwok 1998). 

The model of Osegura and Bowles approximates the real behavior that satisfies the requirements 

of fluid mass continuity i.e. the mass of the fluid remains constant therefore the rate of mass 

entering into the system is the same going out   

 Equation 2-66. One important aspect of this model is the fact that it does not directly include within 

the set of the model parameters the maximum (registered or probable) velocity of the storm. The 

latter, however, can be easily related to the model parameters, as it will be shown in the following.  
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 Equation 2-66 

∂ρ

∂t
+ ∇ ∙ (ρu) = 0 

The vertical distribution of the wind velocity field according to this model can be computed 

according to Equation 2-67.  

 

Equation 2-67 

𝑉(𝑧) = (
𝜆𝐷2

2𝑟
) [1 − 𝑒

−(
𝑟
𝐷
)
2

](𝑒−𝑧/𝑧
∗
− 𝑒−𝑧/𝜖) 

The profile gives the velocity at any height Z depending on the distance to the downburst center r. 

D, represents the characteristic radius of the downburst which is multiplied by a scale factor λ with 

unit inverse of second [1/s], z* stands for the characteristic height and ε is a characteristic height in 

the boundary layer in. All distances in meters. Regarding the maximum velocity of the given the 

profile it can be seen in Equation 2-68, where the �̅�(𝑧𝑚𝑎𝑥) depends on the characteristic heights 

of the boundary layer z* & ε, the given numeric value is valid for 200[m] and 30[m] of both 

parameters respectively. 

Equation 2-68 

𝑉𝑚𝑎𝑥 = (
𝜆𝐷2

2𝑟
) [1 − 𝑒

−(
𝑟
𝐷
)
2

]�̅�(𝑍𝑚𝑎𝑥) → (
𝜆𝐷2

3.3𝑟
) [1 − 𝑒

−(
𝑟
𝐷
)
2

] 

The models introduced by Wood and Vicroy are similar in the sense that both consider directly the 

maximum velocity (Vmax) that is expected or registered in the thunderstorm downburst and that 

neglect any possible contribution coming from relative position of the downburst respect to the 

observation point. Therefore, while the Osegura vertical distribution of horizontal velocity 

component depends on the position to the thunderstorm downburst center, the other models are 

depending on the characteristics of the wind itself, making them more suitable for implementation 

purposes. 

The expression to obtain the Vicroy and Wood model are given in Equation 2-69 and Equation 2-70 

respectively.  

Equation 2-69 

𝑉(𝑧) = 1.22 ∗ 𝑉𝑚𝑎𝑥 ∗ [𝑒
−0.15𝑧/𝑧𝑚𝑎𝑥 − 𝑒3.2175/𝑧𝑚𝑎𝑥] 

Equation 2-70 

𝑉(𝑧) = 1.55 ∗ 𝑉𝑚𝑎𝑥 ∗ (
𝑧

𝛿
)
1/6

[1 − erf (0.7
𝑧

𝛿
)] 

The height for which occurs the maximum velocity is zmax, Vmax stands for the reference mean 

velocity of the process and δ is the height where V(z) is half of Vmax. 
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Graphically the three profiles could be seen in Figure 2-27. A better description of the same will be 

given in § 3.2.1 

 

Figure 2-27: Vertical profiles of downburst 

2.5.2 Model: Holmes & Oliver 2000 

 

2.5.2.1 Description of the model 

 

The model developed by (Holmes and Oliver 2000) presents a description of the outflow winds of 

downbursts by means of the horizontal component of the wind velocity arriving from the center of 

the storm to an arbitrary observation point. This could be considered as one of the first attempts to 

build a model for engineering simulation of this phenomenon. The main objective of the model is to 

reconstruct the anemometer records of the Andrews Air Force Base (AFB) and to develop a 

methodology to assess the effect of downburst on power line systems.  

A foreword on this model: this is based on the hypothesis that downbursts can be represented as 

an impinging jet flow that crashes against a wall or flat surface causing a divergent flow from the 

center of the downburst or impact point, giving rise to a radial component of the outflow (Hjelmfelt 

1998).  

The model gives an expression for the horizontal component (parallel to the ground) of the wind 

speed and orientation in a traveling downburst. This is achieved by making the vector summation 

of the radial component from the impinging jet model with the translation speed of the mother 

storm that carries the downburst. This definition clearly matches the records of the downburst 

available and therefore has been widely used in the models developed after its introduction. 

Even though this model does not provide all the same components than the others, is important to 

bring it in for evaluation since it is one of the earliest definitions of the downburst wind field and 

serves as foundation for the later models.  
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2.5.2.2 Techniques implemented 

 

Deterministic computation of the outflow and tracking components to a further description of the 

downburst wind velocity’s horizontal component. No turbulence included therefore non-special 

techniques for wind generation or integrations of the equations of motion. 

 

2.5.2.3 Vertical profile  

 

The model provides only a description of the wind component parallel to the ground. Vertical 

profiles were not specified in its construction. 

 

2.5.2.4 Radial diffusion function 

 

The mean value is computed as the vector summation of the radial component and the translational 

one.  

Radial velocity 

The horizontal profile is divided in two zones, the first is the so-called “stagnation region”, where 

the velocity increases linearly until a point of maximum. In the second zone, the velocity profile 

exhibits an exponential decreasing. The model can be seen in Figure 2-28,adapted from (Holmes 

and Oliver 2000). 

 

Figure 2-28: Horizontal profile Holmes 2000 

The radial velocity as function of time and the distance between the observation point and the 

downburst center can be computed as follows: 
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Equation 2-71 

V𝑟 = {
Vr,max ∗ exp[−t/T] ∗ (x/r𝑚𝑎𝑥) , x < r𝑚𝑎𝑥

Vr,max ∗ exp[−t/T] ∗ exp[−
𝑥 − r𝑚𝑎𝑥

𝑅
]2, x ≥ r𝑚𝑎𝑥

 

 

Where: Vr,max is the maximum velocity registered, rmax is the value of the radial coordinate where 

the maximum value of velocity occurs. R is 50% of rmax. Small t is the time of the downburst and 

capital T is a time constant. 

 

Translation velocity 

The mother thunderstorm to which the downburst belongs has a mean wind speed tracking 

component that moves the downdraft and consequently the outflow.  Evidence of this velocity 

component were found by (Oliver 1992) who described it as the environmental velocity. The study 

developed by Oliver, consisted in the recording of the wind fields at two close observation stations 

in Sidney (the stations of Bankstown and Mascot, located at a relative distance of 18 km). If a unique 

downburst event produced the “strongest” records in both stations, it was possible to obtain the 

time that the storm took for covering the distance between the two stations.  From (Holmes and 

Oliver 2000) it is possible to obtain a summarized table with the important information:  

 

Figure 2-29: Table of summary for identification of tracking velocity. Adapted from (Oliver 1992) 

Vector summation 

With a clear definition of the horizontal wind components is possible then to represent them in 

graphical form to then introduce their vector summation.  
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Figure 2-30: Wind components from Holmes 2000 

  

 

Denoting with Vc the combined velocity from the vector summation computed with the Cosine rule 

and ϴ the angle measured between the downburst track and the radial component of the velocity, 

we can introduce the following equation: 

Equation 2-72 

𝑉𝑐
2 = 𝑉𝑟

2 + 𝑉𝑡2 + 2𝑉𝑟 ∗ 𝑉𝑡 ∗ 𝑐𝑜𝑠𝜃 

The angle of approximation φ of the combined velocity respect to the observation point, then, can 

be calculated as:  

Equation 2-73 

Cos ϕ =
𝑉𝑐
2 + 𝑉𝑡2 − 𝑉𝑟

2

2𝑉𝑐𝑉𝑡
 

 

2.5.2.5 Turbulence: Power spectral density 

 

No turbulence introduced 

 

2.5.2.6 Coherence function 

 

No turbulence introduced 

 

2.5.2.7 Generation of the time histories 

 

The model allows for the definition of a mean velocity function that varies on time (or space 

coordinate x) for a fixed reference value of velocity Vr,max. Therefore, it is possible to construct one 
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the components involved in the wind velocity decomposition, the time history (shown in Figure 

2-31)  can be compared with a representative record of downburst, such as the AFB reference time 

history.   

 

 

Figure 2-31: Simulated wind speed Holmes 2000 

2.5.2.8 Structural response 

Not applicable 

 

2.5.2.9 Data consistency 

 

The model provided in Figure 2-28 for the impinging jet model was compared with data gathered 

from the radar observations of downburst (Hjelmfelt 1998) observing a good match in the radial 

component description with the measured data giving in this way a validation of the consistency of 

the empirical definition of this function. The comparison adapted from (Holmes and Oliver 2000) is 

given in Figure 2-32. 
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Figure 2-32: Data check of impinging jet model 

Regarding the confrontation of the mean velocity profile with the tendency of the AFB record, it is 

possible to see a satisfactory matching between the empirical model and the results of the 

measurements in general terms. However, going to the details, a discrepancy in the angle of 

approximation could be found, this fact could be disregarded since the mean wind speed was 

projected in a correct way. 

From Figure 2-31 and Figure 2-33 it is possible to see that the model captures the first peak of the 

downburst and the crossing of the storm eye. It is worth noting that the time axis is going from right 

to left, contrary to the standard convention for representing the time axis in civil engineering 

applications.  

 

Figure 2-33: Andrews AFB downburst- AIRFORCE ONE event 1983 



Politecnico di Milano 

 

64 
 

2.5.2.10 Observations and conclusions 

 

This model is important for the development of the further ones, since its distribution of horizontal 

wind speed acts as a time function for the description of the mean wind velocities given a reference 

value for this parameter.    

A typical foot print of the downburst wind velocity computed by this model can be seen in  

 

Figure 2-34: Downburst foot print-Adapted from (Holmes and Oliver 2000) 

2.5.3 Model: Chen & Letchford2004 

 

2.5.3.1 Description of the model 

 

The model is a deterministic-stochastic hybrid model, consisting in the decomposition of the 

downburst velocity field as the summation of a slowly varying mean with a non-stationary stochastic 

turbulent component. It is based on the definition of downburst given by Fujita 1985, and the study 

is aimed to reproduce the wind simulation with radar registration of the events made during the 

programs JAWS and NIMROD. 

This model corresponds to one of the first full models for downburst analytical description 

introducing the turbulent component in the formulation and proposing a generation of the wind 

velocity time histories using the cross power spectral density. This model is therefore used as basis 

for later developments on the field.  
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2.5.3.2 Overview of the Techniques implemented 

 

Spectral Representation Method SRM for generation of time histories using CPSD. Based on the 

Sinozhuka-Deodatis method (Shinozuka and Deodatis 1991) (Deodatis 1989).  

 

2.5.3.3 Vertical profile  

 

In Figure 2-35 it is shown a comparison made of the three available models for vertical profiles made 

by Chen. 

 

Figure 2-35: Comparison between downburst vertical profiles. Adapted from Chen 

 

2.5.3.4 Radial diffusion function 

 

This model uses as departing point for the horizontal stagnation function the description of Holmes 

(Holmes and Oliver 2000).  However, it uses the radial component based in space coordinates rather 

than time. The radial component is: 

Equation 2-74 

V𝑟 = {
V𝑟,𝑚𝑎𝑥 (x/r𝑚𝑎𝑥) , x < r𝑚𝑎𝑥

V𝑟,𝑚𝑎𝑥 ∗ exp[−
𝑥 − r𝑚𝑎𝑥

𝑅
]2, x ≥ r𝑚𝑎𝑥

 

 

Keeping the same notation already given for (Holmes and Oliver 2000) definition given in § 2.5.2 . 

Additionally, the translation velocity is a given value in this process Vt(t). 

Introducing do as the distance between the downburst center and the observation point and e the 

eccentricity between this and the straight line defining the track of the downburst, the radial 
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coordinate at any time will be the distance given by current time and the tracking velocity with 

respect to the initial conditions (do, e). The radial velocity vector will be then:  

 

Equation 2-75 

𝑉𝑟(𝑡) =
𝑥

|𝑥|
∗ 𝑉𝑟(|𝑥|) 

With x being only function of time. For fixed initial conditions and hypothesis of constant tracking 

velocity. 

The combined velocity at any time will be given by the vector summation of the tracking and the 

radial components.  

Equation 2-76 

V𝑐(t) = V𝑟(t) + Vt 

Introducing the horizontal profile function as a function of time, so-called time function as:  

Equation 2-77 

f(t) =
|𝑉𝑐(𝑡)|

𝑀𝑎𝑥|𝑉𝑐(𝑡)|
 

 

This time function shapes the mean velocity profile over time for a given maximum value depending 

on the vertical profile due to the normalization. The maximum value of the envelope function will 

be given for the alignment of the radial component and the tracking one.  

Finally, the mean value will be given by the reference velocity at the height z from the vertical profile 

V(z) and the time intensification function f(t):  

Equation 2-78 

V𝑚𝑒𝑎𝑛(z, t) = V(z) ∗ f(t) 

2.5.3.5 Power Spectral density for turbulence definition. 

 

The turbulence in this model was defined by means of the double-sized normalized power spectral 

density proposed by (Kaimal 1972) the expression is given in Equation 2-79. 

Equation 2-79 

𝑆𝑣′   (𝑧, 𝑓) =
200𝑣𝑠

2

2

𝑧

𝑉(𝑧)

1

[1 + 50
𝑓 𝑧
𝑉(𝑧)

]5/3

1

6𝑣𝑠
2

 

Where the term vs accounts for shear velocity of the flow, the value recommended by the author is 

1.76[m/s]. z, accounts for the height of the observation point and f accounts the frequency. 
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It is worth noting that the spectrum used for the simulation inside this thesis work depends on the 

frequency (In Hz) and not on the circular frequency (In Rad/sec) as presented originally by the 

author. Therefore, both representation of the spectrum depending on frequency and circular 

frequency are presented in Figure 2-36. 

                 

                                                                                                    

                                     (a)                                                                                         (b) 

Figure 2-36: Kaimal’s Power Spectrum vs a) frequency b) circular frequency  

 

2.5.3.6 Amplitude modulating function. 

 

The studies from Wind Science and Engineering Research Center on the Evolutionary Power Spectral 

Density have shown that the deviation of the turbulent component of the downburst wind velocity 

field is close to the 25% of the mean velocity at the same time instant. This allows to assume that 

the frequency structure of the turbulence does not changes on time i.e. the turbulence can be 

represented as an amplitude-modulated stationary process based in PSD. 

 

The amplitude modulating function, a, proposed by (Chen and Letchford 2004) is a fraction of the 

mean velocity function as shown in Equation 2-80. 

Equation 2-80 

a(z, t) = 0.25 V𝑚𝑒𝑎𝑛(z, t) 

With the amplitude modulating function, Chen-model allows to directly write the Evolutionary PSD 

as: 

Equation 2-81 

 

EVSv′(t, z, f) = |a(z, t)|
2Sv′(z, f) 
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Replacing Equation 2-80 in Equation 2-81 

Equation 2-82 

 

EvSv′(t, z, f) = |0.25 V𝑚𝑒𝑎𝑛(z, t)|
2Sv′(z, f) 

 

2.5.3.7 Coherence function. 

 

Inside the model the Cross Power Spectral density is introduced in the same way explained in § 

2.1.2, brought for convenience in Equation 2-83.  Moreover, the coherence function implemented 

is the classical one proposed by (Davenport 1968) Equation 2-84. 

 

Equation 2-83 

𝑆𝑣𝑣′(𝑧1, 𝑧2𝑓) = 𝑐𝑜ℎ(𝛥𝑧, 𝑓)√𝑆𝑣′1(𝑧1, 𝑓) ∗ 𝑆𝑣′2(𝑧2, 𝑓) 

Equation 2-84 

𝑐𝑜ℎ(𝛥𝑧, 𝑓) = exp [−cz ∗
∆𝑧 ∗ 𝑓

�̅�(𝑧1, 𝑧2)
] 

With Cz being the non-dimensional decay constant, the typical value for this parameter is 10, 

whether for synoptic or not-synoptic winds.  And 𝛥𝑧 stands for the separation between the points 

in study at heights z1 and z2 in meters. And �̅�(𝑧1, 𝑧2) is the average velocity between both points.  

 

The evolutionary cross power spectral density is given by:  

𝐸𝑉𝑆𝑣𝑣′(𝑡, 𝑧1, 𝑧2, 𝑓) = 𝑎(𝑧1, 𝑡) ∗ 𝑎(𝑧2, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑐𝑜ℎ(𝛥𝑧, 𝑓)√𝑆𝑣′1(𝑧1, 𝑓) ∗ 𝑆𝑣′2(𝑧2, 𝑓) 

 

2.5.3.8 Generation of the wind field 

 

The generation of the random velocities of the wind outflow are made by using the Spectral 

Representation Method SRM proposed by (Shinozuka and Deodatis 1991).  The generation is made 

for the case of stationary wind velocity field and then converted into a non-stationary field by means 

of the amplitude modulating function as explained in § 2.1.3 Evolutionary Power spectrum. 

The cross-spectral density matrix Svv’(f) is Hermitian, then, it can be represented through the 

product of two triangular matrices with the Cholesky factorization Equation 2-85. From now on the 

notation of frequency will change from natural frequency f to circular frequency ω. 

Equation 2-85 
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Svv′(ω) = H(ω)H̅
𝑇(ω) 

With H(ω) being a lower triangular matrix. Among the properties of the cross-spectral density is its 

complex value, therefore H(ω) can be represented in complex notation as an amplitude and a phase 

as:  

Equation 2-86 

Hjk(ω) = |Hjk(ω)|𝑒
𝑖𝜃𝑗𝑘(𝜔) 

With j and k indicating the point, j going from 1 to the number of points and k going from 1 to j. 

always j≥k. The phase is then:  

Equation 2-87 

θjk(ω) = tan
−1{ 

𝐼𝑚[𝐻𝑗𝑘(𝜔)]

𝑅𝑒[𝐻𝑗𝑘(𝜔)]
}     

Then the wind velocity stochastic process can be simulated by superposition of harmonic series of 

frequencies, with the number of frequency points (steps), N tending to infinity. 

Equation 2-88 

v′(zj, t) = 2 ∑∑|𝐻𝑗𝑚(𝜔𝑚𝑙)|√∆𝜔

𝑁

𝑙=1

 𝑐𝑜𝑠[𝜔𝑚𝑙𝑡 − 𝜃𝑗𝑚(𝜔𝑚𝑙) + 2𝜋𝑅𝑛𝑑(0,1)]

𝑗

𝑚=1

 

With m and l are pointers for the points and frequencies respectively. ∆𝜔 the frequency resolution 

given by the Nyquist (Or cut-off) frequency over the number of points. Rnd is the random phase 

running from 0 to 2π. And the generic frequency 𝜔𝑚𝑙 is given by:  

Equation 2-89 

𝜔𝑚𝑙 = (l − 1)∆𝜔 +
𝑚

𝑛
∆𝜔 

The process results extremely demanding from a computational effort point of view. 

2.5.3.9 Downburst wind velocity time history 

 

After the sum of the mean and the fluctuating part the time history that Chen-model produces is 

like that shown in Figure 2-37. 
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Figure 2-37: Typical time History of Chen model 

2.5.3.10 Structural response 

The structural response is evaluated by means of the integration of the equations of motion. Not 

specified method 

 

2.5.3.11 Model validation  

 

It can be seen that the mode proposed (Chen and Letchford 2004)can successfully reproduce a non-

synoptic wind event. Indeed, comparing the behavior of the simulated wind and the event 

registered Andrews FB 1983 (Figure 2-33) we can see that in both cases two peaks separated by a 

local minimum of wind velocities can be clearly recognized. This effect is due to the time function 

and the vector summation operations carried out to determine it. Basically, when the storm is 

approaching the observation point the translational and the radial components are summing up 

(first peak), after the crossing of the storms eye, the effect of the radial and translational 

components is counteracting and thus we see a reduction of the second peak.  It is worth noting 

that in the AFB record the time axis is growing from right to left while in the generic generation of 

wind speed of Chen-model is going from left to right as usual Figure 2-37. 
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2.5.4 MODEL: SOLARI 2017 

 

2.5.4.1 Model description 

 

The model proposed by Solari and the team of University of Genoa (Solari, et al. 2017) is based on 

real recordings of downburst outflows velocity fields gathered by Wind Ports and Wind Ports and 

Sea projects (WP & WPS). This model provides a decomposition based on the turbulence index Iu 

measured from the field recordings and considers the non-stationarity by adding two functions of 

time, one (γ(t)) for the horizontal profile of the mean velocity and the other (μ(t)) to modulate the 

gaussian stationary random field of the turbulence. The values that those functions can take come 

from the recordings. Regarding the vertical profile that one proposed by (Wood and Kwok 1998) is 

adopted. 

An important matter of this model is that it uses a slightly different procedure for the wind velocity 

decomposition compared with the one given in 2.1.1. The model takes the wind velocity, as usual, 

as the summation of a slowly varying mean value and a turbulent stochastic component. 

 

Equation 2-90 

V(z, t) = V𝑚𝑒𝑎𝑛(z, t) + v′(z, t) 

 

Z is the height where the velocity is computed, t is a time from 0 to ΔT with ΔT being a time interval 

between 10 to 60 minutes.  

The fluctuation is decomposed by considering a stationary gaussian random process with unit 

variance, v̅′(t), with a slowly varying standard deviation σv(z, t), as it is shown Equation 2-91. 

Equation 2-91 

v′(z, t) = σ𝑣(z, t)v̅′(z, t) 

 

By performing the standard process of extraction of the mean value and from the definition of 

turbulence intensity (Equation 2-92) the outflow velocity can be expressed in the way Equation 2-93  

Introducing the turbulence intensity, we obtain:  

Equation 2-92 

I𝑣(z, t) =
σ𝑣(z, t)

Vt(z, t)
 

 

Equation 2-93 
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V(z, t) = V𝑚𝑒𝑎𝑛(z, t)[1 + I𝑣(z, t)v̅′(z, t)] 

 

 

The mean value is decomposed in the product of a maximum velocity parameter and two non-

dimensional functions: one in time and the other in vertical distribution. The same is done for the 

turbulence intensity.  

Equation 2-94 

V𝑚𝑒𝑎𝑛(z, t) = V𝑚𝑎𝑥(h)α(z)γ(t) 

 

Equation 2-95 

I𝑣(z, t) = I�̅�(h)β(z)μ(t) 

 

 

Where:  

• α(t) is the vertical nosed profile from (Wood and Kwok 1998). 

• The vertical profile of the turbulence β(z) can be taken as 1 since the results from the 

recordings seems to neglect the dependency of the turbulence intensity with height. 

• γ(t) & μ(t) are the functions for the horizontal profile of the mean velocity and to modulate 

the gaussian stationary random field of the turbulence, respectively.  

• Iv̅(h)& Vmax(h) are respectively the reference turbulence intensity and the maximum 

possible velocity at the observation point with coordinates h.  

The final expression for the velocity field finally reads as follows: 

Equation 2-96 

V(z, t) = V𝑚𝑎𝑥(h)α(z)γ(t)[1 + I�̅�(h)β(z)μ(t)v̅′(z, t)] 

 

2.5.4.2 Overview of the techniques implemented 

 

The model used for the definition of the wind velocity field is a hybrid deterministic-stochastic with 

deterministic mean value and stochastic turbulent fluctuation. The simulation uses a Monte Carlo 

Algorithm based on the spectral representation method using the Fast Fourier Transform and 

Proper Orthogonal Decomposition.  
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To obtain the standard deviation from the data it was made a moving average filter with moving 

average period of 30 sec. 

 

2.5.4.3 Vertical profile  

 

The function α(z) builds the vertical profile based on (Wood and Kwok 1998). This function depends 

on the height Z, the height in which the velocity is half of its value Z* (6*Zm) and Zm is the height 

for which the velocity is maximum.  The function is given as:  

Equation 2-97 

 

The velocity will be given by: 

Equation 2-98 

�̅�𝑚𝑎𝑥(𝑧) = V𝑚𝑎𝑥 ∗ 𝛼(𝑧) 

In the definition of the model there were contemplated different heights of the wind velocity 

maximum occurrence [25,50,75,100]. Moreover, with the aim of appreciating in detail the maximum 

effects and the dissipation of the downburst wind velocity fields respect to height two different 

scales for the vertical profile where studied, one for medium height (100m) Figure 2-38. (b)  and 

other for large height (600m) Figure 2-38. (a) respectively.  

 

Figure 2-38: Velocity vertical profile for Solari’s model (a) scale of 600m (b) scale of 100m. Adapted from (Solari, et al. 
2017) 

The analysis of the data shows that the function β(z) is a constant value 1, thus has a negligible 

contribution. 
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2.5.4.4 Radial diffusion function of time 

 

The time function of the mean velocity γ(t) was extracted from 93 recorded downbursts studied 

during the WP and WPS projects. The measured functions are shown in Figure 2-39. It is important 

to highlight that the time line is placed in such a way that the zero time corresponds for the recording 

of the maximum wind velocity. 

 

Figure 2-39: γ(t) from the 93 records. Adapted from (G. Solari, M. Burlando, et al. 2015) 

 

2.5.4.5 Power spectral density 

 

Within the framework of the monitoring projects WPS and WP, Solari and coworkers gathered real 

data of the thunderstorm downburst occurring in the network of some European ports. The analysis 

of this information shows that the spectrum that matches better the description of the turbulent 

component of the downburst wind filed among those studied on (Solari and Piccardo 2001) is the 

PSD shown in Equation 2-99. Where the along wind turbulent component is denoted as, 𝑣.. 

 

Equation 2-99 

𝑆𝑣′ (𝑧, 𝑓) =
6.868 

𝐿𝑣
𝑉𝑧(𝑧)

[1 + 10.302
𝑓𝐿𝑣
𝑉𝑧(𝑧)

]5/3
 

Where the term 𝐿𝑣 is the integral length scale in the along wind direction. From (G. Solari, M. 

Burlando, et al. 2015) the value adopted for this parameter is 34.6 m. It is worth noting that this 

quantity is very small compared with that of the synoptic winds (G. Solari, M. Burlando, et al. 2015).  

The Vz (z) stands for the velocity of the vertical profile at the observation point height z.    
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The normalized PSD is shown in Figure 2-40 

 

Figure 2-40: Solari-model normalized PSD 

 

2.5.4.6 Amplitude modulating function 

 

The amplitude modulating function μ(t) was, as anticipated, measured from the 93 records of 

downbursts of the projects WP and WPS. The time line in those functions is synchronized with the 

γ(t) so that both registers start at the same time, therefore the zero in the former functions coincides 

with the -250 seconds of the latter and the peak is at the mid time.  

The recorded functions are shown in Figure 2-41. 
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Figure 2-41: μ(t) functions from records of downbursts. Adapted from (G. Solari, M. Burlando, et al. 2015) 

2.5.4.7 Coherence function 

 

The coherence function accounted in the model is a 1-dimension coherence functions like the 

classical proposed by (Davenport 1968). The two points along the vertical dimension have 

coordinates z and z’. 

 

Equation 2-100 

Cohvv′(z, z′, f) = exp{ 
2 𝑓 𝐶𝑣|𝑧 − 𝑧′|

𝑉𝑧(𝑧) + 𝑉𝑧(𝑧′)
} 

2.5.4.8 Generation of wind field 

 

The fluctuation component was simulated with a Monte Carlo algorithm based on power spectral 

representation. The techniques implemented are the FFT for computing the components of the 

harmonics in the spectra and the Proper Orthogonal Decomposition to factorize the Power Spectral 

Density matrix of the fluctuation.  

The sampling parameters used in the simulation are reported in Table 2-2. 

Table 2-2: Sampling data 

Parameter Value Units  

Time interval T 600 Sec 
Frequency resolution, Δf 1/600 Hz 
Time step, Δt 0.1 Sec 
Sampling frequency, Fsamp 10 Hz 
Nyquist frequency, Fcut 5 Hz 
Number of simulations, N 1000 und 
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A typical time history of the wind velocity turbulent component could be seen in Figure 2-42. 

 

 

Figure 2-42: Solari model’s turbulent component. Adapted from (Solari, et al. 2017). 

 

2.5.4.9 Downburst wind velocity time history 

 

For building the complete time histories of the wind velocity field in the model there were over 

imposed the 1.000 Monte Carlo Simulations with the 93 measured pairs of μ(t)& γ(t) and the 4 

vertical profiles defining the mean velocity. In total 372.000 thunderstorms outflows velocity fields 

where analyzed inside their study. A typical generation of those mentioned is shown in Figure 2-43. 

 

 

Figure 2-43: Solari-model Time history of Wind velocity. Adapted from (Solari, et al. 2017). 

 

 



Politecnico di Milano 

 

78 
 

2.5.4.10 Structural response 

 

The structural response was obtained by the integration of the equations of motion in time domain. 

 

2.5.4.11 Model Validation  

 

It is possible to appreciate that the model does not capture the crossing of the storm eye, this might 

be because the original target time histories do not capture it either (Figure 2-44). Moreover, the 

amplitude of the wind velocities is neither the same for both records. It’s important to compare the 

phenomena observed by Solari and that observed from Fujita. 

 

 

Figure 2-44: Time history of downburst registered from WP & WPS. Adapted from (Solari, et al. 2017). 
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2.5.5 MODEL: CARACOGLIA 2017 

 

2.5.5.1 Description of the model 

 

The model proposed by (Caracoglia and Le 2017) provides a procedure for simulating the wind field 

of the downbursts outflows based on the record of the Andrews AFB event (Fujita 1985).The model 

formulation is close to that proposed by (Chen and Letchford 2004) adding some assumptions:  

• The downburst translates along a straight line, which corresponds to the thunderstorm 

track. 

• Translation velocity is constant and independent from the height. 

• Downburst track is parallel to the body axis. 

• Average horizontal wind direction of the total wind velocity is constant during the storm 

evolution.     

The mean velocity is given by the vector summation of the tracking component and of the radial 

one. 

The vertical profiles implemented in the model are those proposed by (Wood and Kwok 1998) and 

(Vicroy 1992) already discussed in § 2.5.1. It is important to highlight that Wood’s model represents 

better the downburst wind field when the maximum radial velocity is near to ground while the 

profile proposed by Vicroy is more appropriate for the case of maximum radial velocity at high 

elevations. 

2.5.5.2 Techniques implemented 

 

Spectral Representation Method based on both the Cholesky decomposition and/or the proper 

orthogonal decomposition of the Cross-Spectral density matrix. 

   

2.5.5.3 Radial diffusion function 

 

The mean velocity inside this model was as usual computed as the vector summation of the radial 

component and the tracking component. The main characteristic of the mean velocity of this model 

can be found in its radial component, in which there are introduced a time-dependent and a space 

dependent intensification functions. The radial velocity going from the downburst to the 

observation point could be found as:  

Equation 2-101 

𝑉𝑟(𝑧, 𝑡) = 𝛱(𝑡) 𝑉𝑧(𝑧) 𝐼(𝑟) 
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In which, 𝛱(𝑡) is the time intesification function and 𝐼(𝑟) the space intesinfication function. They 

can be computed as follows:  

Equation 2-102 

𝛱(𝑡) = {

𝑡

𝑡𝑜
, 𝑡 ≤ 𝑡𝑜

𝑒𝑥𝑝(−
𝑡 − 𝑡𝑜
𝑇

), 𝑡 > 𝑡𝑜

 

 

Equation 2-103 

𝐼(𝑟) = {

𝑟

𝑟𝑚𝑎𝑥
, 𝑟 ≤ 𝑟𝑚𝑎𝑥

𝑒𝑥𝑝[(−
𝑟 − 𝑟𝑚𝑎𝑥
𝑟∗

)2], 𝑟 > 𝑟𝑚𝑎𝑥

 

 

Where T is the total time duration of the phenomenon, t is the current time of observation and to 

is the time at which the radial velocity reaches its maximum. The radial coordinate in which the 

downburst outflow reaches it maximum value is noted as rmax and 𝑟∗ is one half of this distance. 

 

2.5.5.4 Power Spectral Density 

 

The PSD Svv’ of the point with coordinates P (xp,yp,zp) used in this model: 

Equation 2-104 

𝜔 𝑆𝑣𝑣′(𝜔, 𝑃)

2𝜋 𝜎𝑣
2(𝑧)

=
0.6𝑋(𝜔, 𝑃)

(2 + 𝑋2)5/6
 

 

With ω standing for the circular frequency, the variance of the process is written as 𝜎𝑣
2(𝑧) and X 

from Equation 2-105. 

Equation 2-105 

𝑋(𝜔, 𝑃) =
1600 𝜔

2𝜋 𝑉𝑡(𝑡, 𝑃)
 

 

2.5.5.5 Amplitude modulating function 

 

The evolutionary spectral representation of the downburst outflow fluctuation is made by 

modulating the amplitude of the standard stationary random process. To reproduce the Andrews 
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AFB record of the Downburst (Fujita 1985) the model implements three families of functions for 

achieving the modulation. The families proposed are Cosine-like, Exponential-like and Sawtooth-

like, the latter is a multilinear group of functions which emulates the shape a sawtooth. 

 

Equation 2-106 

𝐶𝑜𝑠𝑖𝑛𝑒 − 𝐿𝑖𝑘𝑒:  𝐴𝑐𝑜𝑠(𝑃, 𝑡) = [1 −
𝑐𝑜𝑠(2𝜋/𝑡𝑜)

2
]𝜂 

Equation 2-107 

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 − 𝐿𝑖𝑘𝑒:  𝐴𝑒𝑥𝑝(𝑃, 𝑡) = 𝛼𝑜 𝑡𝛽𝑜𝑒−𝜆𝑡 

Equation 2-108 

𝑆𝑎𝑤𝑡𝑜𝑜𝑡ℎ − 𝐿𝑖𝑘𝑒: 

 

 

 

For further details in the definition of the parameters governing the functions refer to (Caracoglia 

and Le 2017). 

A typical generation of turbulence modulated with the functions given in Equation 2-106 to Equation 

2-108 could be seen in Figure 2-45. 
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Figure 2-45: Caracoglia- plot of amplitude modulating functions. Adapted from (Caracoglia and Le 2017). 

2.5.5.6 Coherence function 

 

The coherence function is the usual proposed by (Davenport 1968).} 

 

2.5.5.7 Generation of wind field 

 

A typical generation of wind velocity field of downburst with this model could be seen in Figure 2-46. 

 

Figure 2-46: Typical Generation with Model-Caraclogia. Adapted from (Caracoglia and Le 2017). 
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2.5.5.8 Structural response 

 

The structural response was computed using the Garleking Wavelet Method for solving the 

equations of motion. 

2.5.5.9 Model validation  

 

The Figure 2-47 represents the matching between the families of amplitude modulating functions 

and the original record the AFB event.  

 

  

Figure 2-47: Comparison between amplitude modulating functions and AFB record.  Adapted from (Caracoglia and Le 
2017). 

It is important to highlight that the function which better describes the recorded time history is the 

multilinear Sawtooth-Like family.   

 

The time history given in Figure 2-46 of a generic simulation of the wind velocity filed of the 

downburst outflow is not fully coinciding with the AFB record i.e. the model does not represent the 

second peak of the downburst tracking that is appreciable in the original record. 

2.5.5.10 Observations 
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The author of this model expresses the need of the evaluation of a unified model for solving the 

equations of motion for the non-stationary downburst outflows over slender structures in which 

there is the coupling between the aerodynamics and the velocities of the body i.e. consider the 

aeroelastic phenomenon.   

 

2.5.6 MODEL: CANOR CARACOGLIA DENÖEL 2016 

 

2.5.6.1 Model description.  

 

To test a procedure of analysis in the frequency domain for slender structures subjected to non-

stationary phenomena, it was developed a model (Canor, et al. 2016) of the downbursts outflows 

to provide an example of non-stationary wind effects.  Therefore, this model was not based strictly 

in the reproduction of a specific record but to produce a valid, general representation of the 

downburst wind field. Additionally, it gives a practical selection of functions to define a downburst 

model.  

 

The wind velocity is decomposed through the standard procedure. The mean velocity was as usual 

given by the vector summation of the radial and the tracking component. Regarding the vertical 

profile, there were implemented the provisions given by (Wood and Kwok 1998). 

 

2.5.6.2 Overview of the techniques implemented. 

 

Numerical evaluation of the convolution integral between the impulse response function and the 

amplitude modulating function. Decomposition of the complex matrix of the frequency response 

function. 

2.5.6.3 Radial diffusion function. (time or space). 

 

The function shaping the radial component and therefore the mean velocity is varying with the 

radial coordinate. The used function is based in the model of (Holmes and Oliver 2000) Equation 

2-109, with the inclusion of a sign function on the radial coordinate Equation 2-110.  

Equation 2-109 

𝑣𝑟(𝑟) = 𝑉𝑟,𝑚𝑎𝑥 ∗ {

𝑟

𝑟𝑚𝑎𝑥
, 0 < 𝑟 < 𝑟𝑚𝑎𝑥

𝑒𝑥𝑝(−
(𝑟 − 𝑟𝑚𝑎𝑥)

2

𝑅𝑟2
), 𝑟 ≥ 𝑟𝑚𝑎𝑥
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Equation 2-110 

𝑽𝑟 =
𝑟

|𝑟|
𝑣𝑟(|𝑟|) 

 

Where Vr,max is the maximum velocity of the process and its radial coordinate from the stagnation 

point is rmax and Rr is a scaling length. 

The mean component is obtained as the usual vector summation of radial and tracking component  

Equation 2-111 

𝑉(𝑡) = |𝑉𝑟 + 𝑉𝑡| 

The envelope function of the mean velocity component is obtained by normalizing Equation 2-111 

to one in the time interval [0,T] with T the duration of the phenomenon and Vt the constant tracking 

component.  

 

2.5.6.4 Power Spectral density for turbulence definition. 

 

The power spectral density used in this model is the Von Karman spectrum. In its dimensional form 

the spectrum is given in Equation 2-112 

Equation 2-112 

𝑆𝑣(𝑓, 𝑧) =
4𝐿𝑣(𝑧)

𝑉𝑧(𝑧)

𝜎𝑣
2

[1 + 70.78(
𝑓 𝐿𝑣(𝑧)
𝑉𝑧(𝑧)

)2]5/6
 

 

The variance can be obtained from the mean velocity and the turbulence intensity as was already 

showed for other models. Regarding the turbulence intensity and integral length scale the model 

uses the definitions of (Eurocode1 n.d.) Equation 2-113 & Equation 2-114. 

Equation 2-113 

𝐼𝑣(𝑧) = 𝐼𝑣10(
10

𝑧
)1/6 

Equation 2-114 

 

𝐿𝑣(𝑧) = 300(
𝑚𝑎𝑥(𝑧, 2)

200
)0.52 

The Von Karman PSD is plotted on Figure 2-48. 
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Figure 2-48:Von Karman’s PSD 

 

2.5.6.5 Amplitude modulating function. 

 

The amplitude modulating function according to this model is the same functions as that shaping 

the mean velocity and can be seen in Figure 2-49. 

 

Figure 2-49: Amplitude modulating function 
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2.5.6.6 Coherence function. 

 

The coherence function implemented in the model for the points at height Zi and Zj  is that proposed 

by (Davenport 1968). 

 

Equation 2-115 

𝐶𝑜ℎ(𝑓, 𝑧𝑖 , 𝑧𝑗) = 𝑒𝑥𝑝 [
2 𝐶𝑟 𝑓 |𝑧𝑖 − 𝑧𝑗|

𝑉𝑧(𝑧𝑖) + 𝑉𝑧(𝑧𝑗)
] 

  

 

 

2.5.6.7 Generation of the wind field 

 

Since the scope of the research was to evaluate the structural response in the frequency domain, in 

the report of the model it was not given any generic simulation of the downburst wind field. 

However, for the validation of the model there were made 600 generations of the outflow using a 

Monte Carlo simulation, not shown in the publication.  

2.5.6.8 Structural response. 

 

The evolutionary power spectral density of the response (in modal coordinates) was computed by 

the evaluating the evolutionary transfer function 𝐺(𝑡, 𝑡𝑜, 𝜔) and the standard stationary power 

spectral density of the buffeting force 𝑆𝑝(𝜔)  as shown in Equation 2-116. The index * stands for 

complex conjugate. 

Equation 2-116 

𝑆𝑞(𝑡, 𝑡𝑜, 𝜔) = 𝐺(𝑡, 𝑡𝑜, 𝜔)𝑆𝑝(𝜔) 𝐺
∗(𝑡, 𝑡𝑜, 𝜔) 

To obtain the evolutionary transfer function several approaches were implemented in the model 

for further information on this topic refer to (Canor, et al. 2016). 

 

2.5.6.9 Model validation. 

 

No comparisons where made with real recorded downburst in the report of the model.  However, 

the model validation was made comparing the structural response computed by the frequency 

domain with those of the time domain having a good consistency between the two approaches.  
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CHAPTER 3. DOWNBURST OUTFLOW MODEL 
 

The empirical models exposed in § 2.5 will be compared in this chapter. It is important to recall that 

the models based on the CFD simulations, as well as, those based on the reproduction of the 

downburst outflow in the wind tunnel are out of the scope of this thesis.  

The components of the wind velocity field associated to downbursts that will be examined in this 

chapter are the velocity decomposition, the vertical profile, the mean velocity, the turbulent power 

spectrum, the amplitude modulating function and the coherence function.  

After the selection of the different components, it will be explained the artificial generation 

procedure for simulating the wind velocity field implemented in this study. The generated outflows 

differ from the single point in space based in the PSD and the multi-point generation which must 

account for the spatial correlation and therefore is based on the Cross-PSD of the turbulence. 

 

3.1 Wind velocity decomposition 

 

The standard wind velocity decomposition, already exposed in the § 2.1.1, is valid for the description 

of the downburst implemented in this study. The important passages will be repeated here for 

convenience.  

The velocity is represented as the sum of the slowly varying-mean, V𝑚𝑒𝑎𝑛(z, t), and the fluctuating, 

V′(z, t), components: 

Equation 3-1  

V(z, t) = V𝑚𝑒𝑎𝑛(z, t) + V′(z, t) 

The term slowly-varying is referred to a mean velocity component which varies with a frequency 

much lower than the frequency content of the turbulence.  The mean velocity for a fixed observation 

point with reference height z, can be represented as the velocity of the vertical profile at the height 

z (Vz) modulated by a function which carries the evolution of the mean velocity with time γ(t). 

Equation 3-2 

V𝑚𝑒𝑎𝑛(z, t) = V𝑧(z) ∗ γ(t) 

 

From the studies of (Solari, et al. 2017) and (Canor, et al. 2016) in which the turbulence is modulated 

by a function depending on time only and according to § 2.1.3.3 it is possible to represent the 

fluctuating component as a slowly varying-uniformly modulated non-stationary process.  With the 

following expression valid: 
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Equation 3-3 

V′(z, t) = v′(z, t) ∗ a(t) 

 

With a(t) analogous to the C(t) function defined in § 2.1.3.3 and v′(z, t) a stationary random process. 

The velocity field of Equation 3-1 can be expressed as:  

Equation 3-4 

V(z, t) = V𝑧(z) ∗ γ(t) + a(t) ∗ v′(z, t) 

 

3.2 Vertical profile 

 

3.2.1 Comparison 

 

The experiment conducted by (Chen and Letchford 2004) gives a comparison of the three empirical 

(Wood and Kwok 1998) (Vicroy 1992) (Osegura and Bowles 1988) models for the vertical profile. In 

the report Chen provided a set of parameters to define the profiles with the same common 

characteristics. These set of parameters is listed in Table 3-1.  

 

Table 3-1: Parameters to define vertical profile 

Parameter Osegura Vicroy Wood 

r [m] 1121   
D [m] 1000   
z*[m] 200   
ε[m] 30   

λ[1/sec] 0.414   
Vmax[m/s] 80 80 80 
zmax [m] 65 67 73 

δ [m]   400 

 

Graphically it is possible to appreciate the characteristics of the vertical profiles in Figure 3-1. On 

the other hand, Figure 3-2 shows the standard boundary layer vertical profile with the same 

reference velocity.  Figure 3-3 shows the superposition of the four profiles. 

In first instance it is possible to appreciate the difference in the shape of both functions. While the 

ABL model provides a logarithmic trend tending to a limit value (gradient velocity) the downburst 

model has a nosed shape with maxima at mid-height elevation flowed by high rate decay. 



Politecnico di Milano 

 

90 
 

 

Figure 3-1:Vertical nosed profile of downburst empirical models 

 

 

Figure 3-2: equivalent velocity profile for boundary layer model 
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Figure 3-3:Vertical profile comparison 

Since the downburst wind field is characterized by a mid-height maximum, it will affect in greater 

measure (compared with synoptic winds) medium rise structures between 30 and 120 m, such as, 

transmission lines systems, bridges and communication towers.  

According to Figure 3-1 it is important to state that Osegura model is always providing lower velocity 

values compared with the other two models, so it could be used as lower bound for the vertical 

distribution of the wind velocity profile within the downburst. In addition, the implementation of 

this model results complex since it is governed by many empirical parameters. 

 Therefore, it become important to pay more attention to the other two models available. In Figure 

3-1 It can be appreciated how Wood’s model envelopes the other vertical profiles until a certain 

height from which Vicroy’s model gives greater values. Thus, it could be possible to state that while 

the former is more conservative for cases in which the maximum radial velocity is located near the 

ground, the latter is suitable for cases in which the maximum velocity occurs at higher elevations. 

(Caracoglia and Le 2017). 

 

3.2.2 Selection 

 

For the application of the present study the model that was chosen for the defining the vertical 

profile was Vicroy’s model (Vicroy 1992). Because it gives a mid-evaluation of the other two vertical 

profiles and requires less parameters for its implementation. The expression of the vertical profile 

is then:  

Equation 3-5 

𝑉(𝑧) = 1.22 ∗ 𝑉𝑚𝑎𝑥 ∗ [𝑒
−0.15𝑧/𝑧𝑚𝑎𝑥 − 𝑒3.2175/𝑧𝑚𝑎𝑥] 
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3.2.3 Observations 

 

For the implementation of a standard procedure for the analytical model of the thunderstorm 

downburst phenomenon, it is essential to define empirically or adopt by statistical distributions the 

values for the maximum radial velocity (Vmax) and the associated height Zmax Therefore, it is 

important to aim a further research in the construction of a downburst aeolian map as it has been 

already implemented for synoptic winds.  

 

3.3 Tracking path 

 

The observations made by (Oliver 1992) of different downbursts that took place in Australia has 

shown that a significant component of the horizontal wind velocity comes from the translation 

speed of the mother storm or “environmental” speed, 𝑉𝑡.  From the data recorded in the field it was 

possible to obtain a measure on this parameter. It is brought here for convenience on Figure 3-4. 

adapted from (Holmes and Oliver 2000). 

 

Figure 3-4: Table of summary for identification of tracking velocity. Adapted from (Oliver 1992). 

Before defining the effect of the translation velocity, 𝑉𝑡, on the downburst wind velocity field some 

restrictions must be applied to this parameter to avoid leaving it as an open parameter. 

3.3.1 Hypothesis  

 

First, the downburst must be idealized for the case of study. A model defining the tracking path and 

the set of wind properties must be accounted. Therefore, it is useful to make some hypothesis on 

the wind field of the storm. The simulation of the downburst even though is constrained to the study 

of the structural response on the severe situation, it might not lose the sense of the characteristics 

observed in real measurements and reported in the available literature (Solari, et al. 2017), (Holmes 

and Oliver 2000) i.e. the downburst mean velocity should have the shape of the available records. 

The hypothesis on the wind velocity field of simulation are:  

• The wind can attack the structure at any point in the 3D space. 

• The mother storm track could follow any possible track.  

• The downburst storm can completely pass through 2D plane during the simulation. 

• The tracking speed of the mother storm is constant during the period of observation. 
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The graphical representation of the wind velocity model can be seen in Figure 3-5.  

 

 

Figure 3-5 Graphical representation of downburst & structure model (Observation points) 

 

3.3.2 Initial conditions and geometric quantities 

 

Having defined the hypothesis of the downburst track and its effects over the structure, it is 

important to define now the wind characteristics. There are, as expected, specific settings that must 

be fixed to get a coherent definition of the wind velocity field for all the generic points inside the 

structure.  

For the generic point i inside the 2D plane of observation, the initial coordinates related to the 

downburst center are xo, yo and Z which defines respectively the abscissa, eccentricity and height. It 

is worth noting that during the simulation of the wind velocity field, while the height of each generic 

point remains constant, the x & y-coordinates varies with the time as shown in Figure 3-6. 

The set of this parameters is important in the definition of the wind velocity field for both types of 

analysis (time and frequency), since those parameters will define not only the time history at every 

point but also, the amplitude modulating function a(t) which affects the distribution of the 

frequencies in the EPSD over the time.  

The variation of the x-coordinate of the downburst center with time will be influenced by the 

tracking velocity of the mother storm according to (Holmes and Oliver 2000).  
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Figure 3-6: Downburst track plan view 

 

Equation 3-6 

𝑥(𝑡) = 𝑐𝑜𝑠(𝜗)𝑉𝑡 ∗ 𝑡 

And the y-coordinate: 

Equation 3-7 

𝑦(𝑡) = 𝑠𝑖𝑛(𝜗)𝑉𝑡 ∗ 𝑡 

In matrix notation: 

Equation 3-8 

Dwb Center = [
𝑥𝑖(𝑡)
𝑦𝑖(𝑡)
𝑍

] = 𝑉𝑡 ∗ 𝑡 [
𝑐𝑜𝑠(𝜗)
𝑠𝑖𝑛(𝜗)
0

] , 𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑖𝑎𝑙 𝑃0 = [
𝑥𝑜
𝑦𝑜
𝑍
] 

After a generic time t the position of the downburst center respect to the observation point could 

be taken as:  

Equation 3-9 

𝑃𝑡(𝑡) = [
𝑥(𝑡)
𝑦(𝑡)
𝑍

] = [
𝑥𝑜
𝑦𝑜
𝑍
] − 𝑉𝑡 ∗ 𝑡 [

𝑐𝑜𝑠(𝜗)
𝑠𝑖𝑛(𝜗)
0

] 

Where 𝑃0 are the initial coordinates of the downburst center and 𝑃𝑡(𝑡)those at the generic time t. 

Due to the difference in spatial location of each generic point respect to the downburst center, there 

is, as expected, a difference in the approximation angle. The approximation angle is important for 

the definition of the velocity components and the estimation of the intensification functions (time 

and space). For the case of the MDOF in addition, also the aeroelastic effect is affected by the wind 

approximation angle, since the aerodynamic components of the forces differ from the wind 

reference frame to the correspondent of the structure. 
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Special considerations taken inside the model will be explained at the decomposition stage of the 

aeroelastic effects for each case of study, since those differ from the structural characteristics.  

The radial coordinate of the movement at initial time is: 

Equation 3-10 

r𝑜
2 = y𝑜

2 + 𝑥𝑜
2 

 

3.4 Mean velocity 

 

The definition of the mean velocity that will be implemented in this study considers the three-

dimensional airflow structure of the downburst. It differs from the models available in the literature 

since those account only for a bidimensional structure of the wind velocity field.  The mean wind 

velocity presented in the following depends on the referent velocity at the height of the observation 

point modulated by the two intensification functions in time and space, As proposed by (Caracoglia 

and Le 2017).   

It is worth noting that the nature of the intensification functions will make the mean velocity to be 

a dynamic quantity. In addition, it will be slowly varying in time with respect to the frequency 

content of fluctuating component. Therefore, the mean velocity is not going to be a constant 

parameter as it is for the classical synoptic winds.  

Looking at the models available in literature, it is possible to observe that the authors differ in the 

way the intensification function is defined. It will be useful then, to group the proposed functions 

according to their nature. In the models proposed by (Chen and Letchford 2004) (Caracoglia and Le 

2017) and (Canor, et al. 2016) the intensification functions are computed based on the (Holmes and 

Oliver 2000) and the impinging jet  hypothesis.  In the model proposed by Solari (Solari, et al. 2017), 

the function is measured from 93 records of downbursts. On the other hand, the applications of CFD 

and wind tunnel show the shape resultant from the model hypothesis, therefore it is possible to 

state that it is a result rather than an input.   

 

3.4.1 Intensification function from impinging jet model (Radial diffusion) 

 

The intensification function γ(t) shaping the mean wind profile comes from the vector summation 

of two components, the radial velocity component and the translational velocity component. The 

former is the idealization of the outflow as the distribution of an axisymmetric impinging jet Figure 

3-7 (Poreh y Cermak 1959) and the latter is “environmental” velocity coming from the mother storm 

(Oliver 1992) already defined in § 3.3.  
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Figure 3-7: Impinging Jet model from for downburst. Adapted from (Caracoglia and Le 2017)  

 

According to (Holmes and Oliver 2000) the wind velocity behavior of the impinging jet model can be 

represented as linearly increasing from the center of impact (storm eye) until the region where it 

reaches the maximum velocity the so-called stagnation point. After this region, the behavior is closer 

to an exponential decrease in a zone known as the wall jet or diverging region. The radial r-

coordinate is the distance between the storm center and the observation point and introducing rmax 

as the stagnation point coordinate we can delimit the regions and compute the space intensification 

function, 𝐹𝑠(𝑟), as: 

Equation 3-11 

𝐹𝑠(𝑟) = {
(𝑟/𝑟𝑚𝑎𝑥), 𝑟 < 𝑟𝑚𝑎𝑥

𝑒−𝛼, 𝑟 ≥ 𝑟𝑚𝑎𝑥
 

With: 

Equation 3-12 

𝛼 = (
𝑟 − 𝑟𝑚𝑎𝑥

𝑅
)2 

Denoting with R the radial length scale of the thunderstorm downburst, that from empirical 

measurements could be taken as the half of rmax. The final evaluation of this function could be seen 

in Figure 3-8 adapted from (Chen and Letchford 2004).  



Description and Simulation of Thunderstorms Downburst and Their Effect on Civil Structures 

 

97 
 

 

Figure 3-8: Radial velocity profile 

In addition, the downburst intensity evolves with time (Caracoglia and Le 2017). Therefore, a time 

intensification function 𝐹𝑡(𝑡) shall be introduced to the radial velocity Equation 3-13 .  

Equation 3-13 

𝐹𝑡(𝑡) = {
(𝑡/𝑡𝑜), 𝑡 ≤ 𝑡𝑜
𝑒−𝜂 , 𝑡 > 𝑡𝑜

 

With: 

Equation 3-14 

𝜂 =
𝑡 − 𝑡𝑜
𝑇

 

Where T is the total duration of the record, t is the time variable and to the time instant in which 

the wind velocity reaches it maximum value. 

The mean radial velocity component, 𝑉𝑟(𝑟, 𝑧, 𝑡), is computed by Equation 3-15. 

Equation 3-15 

𝑉𝑟(𝑟, 𝑧, 𝑡) = 𝑉𝑧(𝑧) ∗ 𝐹𝑠(𝑟) ∗ 𝐹𝑡(𝑡) 

With the idealized tracking path given in § 3.3 it is possible to compute the radial coordinate of a 

point in space, with respect to the downburst center at any time as:  

Equation 3-16 

r2(t) = (y𝑜 − 𝑠𝑖𝑛(𝜗)𝑉𝑡 ∗ 𝑡)
2 + (x𝑜 − 𝑐𝑜𝑠(𝜗)𝑉𝑡 ∗ t)

2 

Where  𝑉𝑡 is the tracking velocity of the mother storm already defined in § 3.3.  

Finally, the angle of approximation to the generic point-I of coordinates (𝑥𝑜𝑖 , 𝑦𝑜𝑖) could be 

determined as follows: 

Equation 3-17 

𝛽𝑖(𝑡) = acos (
𝑥𝑜𝑖 − 𝑐𝑜𝑠(𝜗)𝑉𝑡 ∗ 𝑡

𝑟(𝑡)
) −  𝜗 
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The vectoral notation for the radial velocity becomes:  

Equation 3-18 

𝑉𝑟(⃗⃗⃗⃗  ⃗𝑡)1 =
𝑟

|𝑟|
∗ 𝑉𝑟(𝑟, 𝑧, 𝑡) 

The expression giving the combined velocity, 𝑉𝑐(𝑡), can be obtained by the cosine law (Caracoglia 

and Le 2017) Equation 3-19. The dependency on the height of the observation point z, is neglected 

since the tracking speed is the constant over the height. 

Equation 3-19 

𝑉𝑐(𝑡)
2 = 𝑉𝑟(𝑡)

2 + 𝑉𝑡
2 + 2 ∗ 𝑉𝑟(𝑡) ∗ 𝑉𝑡 ∗ 𝐶𝑜𝑠𝛽(𝑡) 

And finally, the time function can be simply the normalization of the horizontal velocity component.  

Equation 3-20 

γ(𝑡) =
|𝑉𝑐(𝑡)|

|max (𝑉𝑐(𝑡))|
 

3.4.2 Intensification function from records 

 

The time function given by Solari (Solari, et al. 2017) comes from the study of records of downburst 

gathered by the WP and WPS projects. There were extracted 93-time histories of full-scale 

measurements in the field. The 93-time histories of γ(t) can be seen in Figure 3-9. The thick lines 

represent the mean values, the abscissa of all time histories is shifted to obtain the maximum value 

(1) at time zero.   

 

Figure 3-9: Y(t) function. Adapted from (G. Solari, M. Burlando, et al. 2015) 

Since the intensification function gives the shape to the mean wind velocity, it also influences the 

final shape of the generated time history. It is possible to see a generic simulation of the wind 

                                                           
1 The radial coordinate dependence on time makes the Vr also function of time 
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velocity field provided by the study of (Solari, et al. 2017).  The result of this model can be referred 

as real downburst wind field since it is taken from the actual records of the phenomena, even though 

the turbulent component was generated with a Monte Carlo simulation.  

 

Figure 3-10: Solari's model time history generation. Adapted from (Solari, et al. 2017). 

3.4.3 Selection 

 

In conclusion, the mean wind velocity that will be taken in this study is that given by the impinging 

jet model and close to the model of (Caracoglia and Le 2017) i.e. a reference velocity coming from 

the vertical profile moderated by  intensification functions in time and space, as it was anticipated. 

An expression similar to (Solari, et al. 2017) cannot be implemented in the present study since it 

requires the record of downbursts velocity fields that are not available now.  

The Equation 3-21 expresses the mean velocity field.  

Equation 3-21 

𝑉𝑚𝑒𝑎𝑛(𝑧, 𝑡) = 𝑉𝑧(𝑧) ∗ 𝛾(𝑡) 

With 𝛾(𝑡) from Equation 3-20. 

3.5 PSD function & Integral length scales 

 

The power spectral density function that will be selected is the Von Karman spectrum. This spectrum 

has been widely used for the description of stationary wind velocity fields. Therefore, its 

implementation and characteristics are well known from a practical point of view. The expression 

giving the Von Karman PSD will be brought here for convenience:  

Equation 3-22 

𝑆𝑣(𝑓, 𝑧) =
4𝐿𝑣(𝑧)

𝑉𝑧(𝑧)

𝜎𝑣
2

[1 + 70.78(
𝑓 𝐿𝑣(𝑧)
𝑉𝑧(𝑧)

)2]5/6
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The variance can be obtained from the mean velocity and the turbulence intensity as was already 

showed for other models. Regarding the turbulence intensity and integral length scale the model 

(Canor, et al. 2016) suggest to use the definitions of (Eurocode1 n.d.) Equation 3-23 & Equation 3-24. 

Equation 3-23 

𝐼𝑣(𝑧) = 𝐼𝑣10(
10

𝑧
)1/6 

Equation 3-24 

 

𝐿𝑣(𝑧) = 300(
𝑚𝑎𝑥(𝑧, 2)

200
)0.52 

 

However, for the integral length scales and turbulence intensity of downburst it results more 

accurate to adopt the values proposed by (G. Solari, M. Burlando, et al. 2015). Those come from real 

data gathered on the WP project. Therefore, they give a better representation of the downburst 

phenomenon compared with that obtained with standard expressions for synoptic winds.  

The identification of the integral length scales of the records was made using an inverse relation of 

the PSD function. From the practical point of view, it consisted in measuring the integral length scale 

fitting the measured PSD with that given theoretically. Graphically it could be seen in Figure 3-11.  

It is worth noting that the measurements were made in ports and the associated terrain category is 

category 0 related to sea or costal area exposed to open sea inside the framework of Eurocode 1. 

Therefore, this study will be limited to the application of this type of terrain category since this will 

affect the energy content in the PSD function. 

 

Figure 3-11: Fit of PSD function for Lv=30m. adapted from Solari 2015. 
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From the different stations of the WP project it was possible to recall the average values and the 

statistical characteristics of the entire population of the integral length scales computed as before. 

The data is reported in Figure 3-12. 

 

Figure 3-12: Table of Integral length scales. Adapted from Solari 2015. 

The recommendation of  (Solari, et al. 2015) is to use the mean value for the integral length scale 

and the turbulence intensity of 34.6 [m] and 0.12 [-] respectively.   

It is worth noting that the values of the integral length scale proposed for thunderstorms are very 

small compared with the ones of synoptic winds (120-180 m). This can be attributed to the down-

drafted and divergent characteristics of the downburst which tend to produce small sized eddies 

compared with synoptic winds. 

The approximated relations for the other integral length scales could be taken as: 

Equation 3-25 

𝐿𝑢
𝑥 ≈ 0.25 𝐿𝑣

𝑥       𝐿𝑤
𝑥 ≈ 0.1 𝐿𝑣

𝑥    (𝑎) 

𝐿𝑣
𝑦
≈ 0.3 𝐿𝑣

𝑥       𝐿𝑣
𝑧 ≈ 0.2 𝐿𝑣

𝑥      (𝑏) 

Finally, the Von Karman PSD is plotted on Figure 3-13. 
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Figure 3-13:Von Karman’s PSD 

3.6 Amplitude modulating function 

 

One important aspect, still debated in the scientific community, is the definition of the amplitude 

modulating function. Each empirical model presented in § 2.5  has a different function to describe 

it. Highlighting the most important contributions on this topic three different type of functions will 

be presented in the following. 

3.6.1 μ(t) function (Solari, et al. 2017) 

 

In the model proposed by Solari the function to modulate the turbulent component was μ(t). It was 

obtained from records of the WP and WPS projects. The 93-time histories recorded of this function 

are presented in Figure 3-14.  

 

Figure 3-14: Solari's μ(t) function. Adapted from (G. Solari, M. Burlando, et al. 2015). 
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However, due to high fluctuation and randomness of μ(t) an attempt to reproduce it will not be 

practical for the matters of this thesis.  

 

3.6.2 Family of functions (Caracoglia and Le 2017) 

 

To describe the amplitude modulating function (Caracoglia and Le 2017) proposes three different 

family of functions. Those were implemented to comparatively assess which one fits better in the 

behavior of the Andrews AFB thunderstorm. The expression provided by their study to compute the 

modulating functions were given in § 2.5.5.5 and graphically the comparison could be appreciated 

in Figure 2-45: Caracoglia- plot of amplitude modulating functions. 

Analyzing the data proposed by the author, it is possible to conclude that the best group of functions 

to describe the modulating behavior is the so-called Sawtooth-like functions. Recalling the 

expression of this family of functions as recalled in Equation 3-26 and shown in Figure 3-15. 

Equation 3-26 

𝐴(𝑡) =

{
 
 
 
 
 

 
 
 
 
 

𝑖1                                                         0 ≤ 𝑡 ≤ 𝑡1

[
1 − 𝑖1

(𝑡𝑚𝑎𝑥1 − 𝑡1)
] (𝑡 − 𝑡1) + 𝑖1     𝑡1 < 𝑡 ≤ 𝑡𝑚𝑎𝑥1

[
𝑖2 − 1

(𝑡2 − 𝑡𝑚𝑎𝑥1)
] (𝑡 − 𝑡𝑚𝑎𝑥1) + 1     𝑡𝑚𝑎𝑥1 < 𝑡 ≤ 𝑡2

[
1 − 𝑖2

(𝑡𝑚𝑎𝑥2 − 𝑡2)
] (𝑡 − 𝑡2) + 𝑖2     𝑡2 < 𝑡 ≤ 𝑡𝑚𝑎𝑥2

[
𝑖3 − 1

(𝑡3 − 𝑡𝑚𝑎𝑥2)
] (𝑡 − 𝑡𝑚𝑎𝑥2) + 𝑖1     𝑡𝑚𝑎𝑥 < 𝑡 ≤ 𝑡3

𝑖4                                                               𝑡3 < 𝑡 ≤ 𝑇
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Figure 3-15: Family of amplitude modulating functions. Adapted from (Caracoglia and Le 2017) 

3.6.3 Functions depending on the mean velocity (Chen and Letchford 2004) (Canor, et al. 

2016)  

 

On the model developed by Chen (Chen and Letchford 2004) is described the modulation function 

as one quarter of the mean velocity profile. This value gives a rise to a good representation of the 

turbulence component. However, since it depends on the mean value directly, for very strong 

downbursts the numeric results could reach high values. Analogously Yang (Yang y Hong 2016) 
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describes this function as 0.08 to 0.11 of the mean velocity, this seems more accurate compared 

with  (Chen and Letchford 2004) since the coefficient is lower.  

 

On the other hand, (Canor, et al. 2016) suggest using as time envelope for the PSD the same function 

enveloping the mean velocity, the so-called intensification function γ(t).  

 

3.6.4 Selection 

 

The Sawtooth-like family of functions from Caracoglia present a cumbersome approach to define 

the amplitude modulating functions, as it requires the implementation of a multilinear model.   

On the other hand, the randomness of μ(t) leaves its implementation feasible only if the data from 

the records are available. Moreover, this requires the use of the coherent γ(t) from the WP and WPS 

records i.e. those functions could not be used without the other. 

From the practical point of view, it results attractive to use the same γ(t) function to describe both 

mean value and amplitude modulating function as proposed by (Canor, et al. 2016). Moreover, since 

the intensification function is normalized its magnitude will not be affected by reference velocity of 

the downburst as it happens for the models of Chen (Chen and Letchford 2004) and Yang (Yang y 

Hong 2016). 

Therefore, the amplitude modulating function can be defined as:  

Equation 3-27 

𝑎(𝑡) = 𝛾(𝑡) 

from now on, due to the equivalence between both functions the intensification function and the 

amplitude modulating function will be often called as a(t) in the notation of this document. 
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Finally, after deciding the amplitude modulating function, a typical plot of it can be seen in Figure 

3-16. 

 

Figure 3-16: Amplitude modulating function 

3.7 Spatial Coherence function 

 

The correlation represents the statistical dependence between two signals of the same stochastic 

process. The correlation could be defined by means of the coherence as the function. Since no 

discrepancies were given in the description of this parameter the classical spatial coherence 

function proposed by (Davenport 1968) will be used in this study.  

  Equation 3-28 

𝑐𝑜ℎ𝑖𝑗(𝑥𝑖 , 𝑥𝑗, 𝑧𝑖, 𝑧𝑗, 𝑓) = exp [−2 ∗ C ∗
‖𝑋𝑖𝑗‖ ∗ 𝑓

𝑉max_𝑖 (𝑧𝑖) + 𝑉max_𝑗(𝑧𝑗)
] 

With C being the non-dimensional decay constant, the typical value for this parameter is 10, 

whether for synoptic or not-synoptic winds. The operator ‖𝑋𝑖𝑗‖ stands for the Euclidean norm of 

point-i & point-j which represents the distance between the points. 

3.8 Cross Power Spectrum function 

 

Recalling  the analysis of two random process xi(t) and xj(t) correlated to each other and belonging 

to the same process, but relative to different points in space, It is possible to define the Cross Power 

Spectral Density CPSD as the Fourier transform of the cross-correlation function, as defined in the 

paragraph § 2.1.2.5. 
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Equation 3-29 

𝑆𝑥𝑖𝑥𝑗 = ∫ 𝑅𝑥𝑖𝑥𝑗(𝜏)𝑒
−2𝑖𝜋𝑓𝜏𝑑𝜏

+∞

−∞

 

 

Alternatively, for the case of wind engineering applications of random processes correlated in space 

it is possible to obtain the CPSD from the definition of the coherence function. It shall be first 

computed the PSD of the realizations (Sxi, Sxj…, Sxn) and the spatial coherence function between the 

points according to Equation 3-28. The expression to obtain the CPSD is therefore:  

Equation 3-30 

𝑆𝑥𝑖𝑥𝑗 = 𝐶𝑜ℎ𝑖𝑗√𝑆𝑥𝑖 ∗ 𝑆𝑥𝑗 

 

All the terms 𝑆𝑥𝑖 and 𝑆𝑥𝑖𝑥𝑗 are function of frequency. Special reference must be done with respect 

to the non-synoptic wind fields i.e. the statistical properties of the CPSD function (𝑆𝑥𝑖𝑥𝑗) are no more 

stationary. Therefore, the dimension of time must be introduced in the evaluation of the function, 

the Evolutionary Cross Power Spectral Density function ECPSD (𝐸𝑉𝐶𝑆𝑥𝑖𝑥𝑗) could be seen in a discrete 

way as the variation of the CPSD function in different instants of time.  

Equation 3-31 

𝐸𝑉𝐶𝑆𝑥𝑖𝑥𝑗(𝑓, 𝑡) = {𝑆𝑥𝑖𝑥𝑗(𝑓, 𝑡 = 𝑡1)|𝑆𝑥𝑖𝑥𝑗(𝑓, 𝑡 = 𝑡2)|⋯ |𝑆𝑥𝑖𝑥𝑗(𝑓, 𝑡 = 𝑡𝑛)} 

   

The spectral density terms of Equation 3-31 can be obtained as § 2.1.3.2 . However, for the cross-

spectral density terms, the procedure of Equation 3-32 must be applied. 

Equation 3-32 

𝐸𝑉𝐶𝑆𝑥𝑖𝑥𝑗 = 𝐶𝑜ℎ𝑖𝑗√𝐸𝑉𝑆𝑥𝑖 ∗ 𝐸𝑉𝑆𝑥𝑗    (a) 

𝐸𝑉𝐶𝑆𝑥𝑖𝑥𝑗 = 𝐶𝑜ℎ𝑖𝑗√|𝑎𝑖(𝑡)|2𝑆𝑥𝑖 ∗ |𝑎𝑗(𝑡)|
2
𝑆𝑥𝑗      (b) 

𝐸𝑉𝐶𝑆𝑥𝑖𝑥𝑗 = |𝑎𝑖(𝑡) ∗ 𝑎𝑗(𝑡)| ∗ {𝐶𝑜ℎ𝑖𝑗√𝑆𝑥𝑖 ∗ 𝑆𝑥𝑗}      (c) 

It is worth noting that the amplitude modulating functions in the Equation 3-32 (b) and (c) are 

different for the point-i and the point-j since each one has different initial conditions and 

coordinates.  
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3.9 Generation for Single-Point 

 

3.9.1 Deterministic mean 

 

It will be made a generation of the wind velocity field in a single point to give an example of the 

implemented model. The sampling information of the analysis is reported in Table 3-2, while the 

downburst parameters are given in Table 3-3. 

Table 3-2: Sampling parameters 

parameter Expression Value Units 

Sampling freq, fsamp -   20 [Hz] 

Nyquist freq, Fny fsamp/2 10 [Hz] 

Sampling time, dt 1/fsamp 0.05 [sec] 

Frequency resolution, df 1/T 2𝑥10−3 [Hz] 

Time window, T 1/df 500 [sec] 

Sampling points, n T/dt 10.000 [-] 

Time vector, t [0:dt:T-dt] - [sec] 

 

Table 3-3: Parameters to define horizontal component 

Parameter Value 

Integral length scale Lv 34.6 [m] 
Max velocity Vmax 80 [m/s] 
Track velocity Vt 12 [m/s] 

Height of max velocity Zmax 67 [m] 
Downburst diameter D=rmax 1000 [m] 

Initial X coordinate xo -2500 [m] 
Initial Y coordinate yo 150 [m] 

 

With the given information it was possible to build the vertical profile in Figure 3-17, the mean 

velocity profile shown in Figure 3-18 and its correspondent time function is shown in Figure 3-19. 
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Figure 3-17: Vertical profile 

 

  

Figure 3-18: Mean velocity component 
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Figure 3-19: Time function a(t) 

3.9.2 Random turbulence 

 

The random fluctuating part of the wind outflow is reproduced by a Monte Carlo algorithm based 

in the Power Spectral Density. As it was stated before, the PSD function that will be used in this 

study is the Von Karman PSD. Recalling its definition for convenience in Equation 3-33. Where the 

velocity component 𝑣′ is the turbulence in the along wind direction. 

Equation 3-33 

𝑆𝑣′𝐾(𝑓, 𝑧) =
4 𝐿𝑣
𝑉(𝑧)

𝐼𝑣𝑉(𝑧)
2

(1 + 70.78 (
𝑓 𝐿𝑣
𝑉(𝑧)

))

5
6

 

Where the term V(z) is the vertical profile of the wind speed that for this case will be taken as Vmax. 

The frequency vector is represented as f.  The turbulence intensity adopted is 0.12 and the integral 

length scales are reported Table 3-4. 

Table 3-4: Integral length scales 

Direction x y z 

Longitudinal component v 34.6 10.38 6.92 

Transversal component u 8.65 2.59 1.73 

Vertical component w 3.46 1.038 0.692 
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The generation of time histories for the fluctuating part of the wind outflow uses the harmonic 

superposition method. This approach corresponds to the inverse Fourier transform of the power 

spectrum as Equation 3-34. Moreover, the signal discretization is contained on the frequency vector, 

therefore every term in the frequency vector 𝑓𝑖 is a harmonic of the frequency step (δf).  

 

Equation 3-34 

𝑣′(𝑡) = ∑ 𝐴𝑖 ∗ 𝑠𝑒𝑛(2𝜋𝑓𝑖 𝑡 + 𝜑)

𝑙𝑒𝑛𝑡𝑔ℎ (𝑓)

𝑖=1

 

Where the angle 𝜑 is the phase. As it was explained before, the PSD is giving a measure of the energy 

of the system. These can be transformed into the amplitude of the signal for every harmonic 𝐴𝑖. 

However, this function is not containing any information regarding the phase 𝜑 of the harmonics. 

Therefore, a random generation from 0 to 2π of this parameter was carried out in this analysis. 

Considering a single harmonic signal of amplitude 𝐴𝑖, the variance of the random variable will be 

𝐴𝑖
2/2. For a given frequency interval (from fo to fo + δf ) the contribution to second spectral moment 

(variance) given by the harmonic fi in the middle of interval (valid for δf sufficient small) will be given 

by Equation 3-35 and represented in Figure 3-20. 

 

Figure 3-20:Shape of Unilateral PSD 

Equation 3-35 

𝜎2 = ∫ 𝐺𝑣′(𝑓) ∗ 𝑑𝑓
𝑓𝑜+𝛿𝑓

𝑓𝑜

≅ 𝐺𝑣′(𝑓𝑜) ∗ 𝛿𝑓  
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To get the amplitude of the generic harmonic 𝑖 of 𝛿𝑓, it is necessary to transform the PSD available 

into a power spectrum. Then, with the properties of the variance (Equation 3-36) it is possible to 

obtain the amplitude of the harmonic at frequency 𝑓𝑖.  As it was explained before, the superposition 

of the harmonics gives the description of the simulated wind velocity field (Equation 3-34).   

Equation 3-36 

{
𝐺𝑣′(𝑓) = 2 ∗ 𝑆𝑣′(𝑓) ∗ 𝑑𝑓   𝑃𝑜𝑤𝑒𝑟 𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚

𝐴𝑖 = √𝐺𝑣′ (𝑓 = 𝑓𝑖) ∗ 2  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 
 

 

Figure 3-21 provides an example a single random generation. 

 

 

Figure 3-21: Turbulence random generation 

After summing it up with the mean component it is possible to obtain a full random generation of 

the thunderstorm downburst wind velocity field, this can be seen on Figure 3-22. 
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Figure 3-22: Random generation of Wind velocity field  

 

Considering the generated time history, it is useful to describe how the model was able to capture 

the behavior of downburst velocity field comparing it with data registered by (Fujita 1985) for the 

case reported in Figure 2-33: Andrews AFB downburst- AIRFORCE ONE event 1983.   

 

• From zero to 50 seconds it is possible to see that only the tracking velocity of the mother 

thunderstorm is captured i.e. the arrival of the downburst is captured by the model. 

• At approximately 120 seconds is possible to see the first peak which corresponds to 

maximum wind velocity, this is produced by the synchronization between the tracking 

velocity and the radial component. Figure 3-23. 

• Then, between 200 and 250 seconds it is the zero-crossing, the minimum velocity possible 

which corresponds to the eye of storm passing at its closet distance to the observation 

point. At this stage the radial component counterbalances the tracking. 

• After the zero crossing, at 300 seconds is the second peak, referring again to the maximum 

wind velocity component of the impinging jet model but this time opposing the tracking 

speed since the downburst is getting away from the observation point. Figure 3-24. 
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• By last is the absence of radial component, once again only tracking speed could be seen in 

the time history. 

• This behavior evidences a clear dependence on the initial coordinates X0 and Y0. 

• Clearly the amplitude modulation function described in the previous chapters, shapes 

correctly the generated time history. 

 

Figure 3-23: Synchronization process of wind components 

 

 

Figure 3-24: Desynchronization process of wind components 
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Due to the non-ergodicity of the process, one generic simulation is not representative of the wind 

velocity field. Therefore, the simulation procedure must be performed several times to obtain a vast 

amount of time histories of the turbulent component (statistic population) that becomes 

representative of the downburst wind velocity field.  

3.10 Generation for Multi-Point 

 

The generation of the Multi-Point follows the same procedure of the Single-Point. 

To provide an example of application, a structure as that shown Figure 3-25 was analyzed over the 

effect of a downburst outflow. The wind field was generated in the grid points of the structure. The 

geometry of the grid is regular, with 5[m] story height and 6[m] span between columns.  

 

3.10.1 Deterministic mean 

 

While the sampling parameters are those given in Table 3-2 for SDOF, the downburst wind field 

parameters for MDOF are those reported in Table 3-5: Downburst simulation parameters, 

graphically  Figure 3-26. 

Table 3-5: Downburst simulation parameters 

PARAMETER VALUE 

Integral length scale Lv 34.6 [m] 

Max velocity Vmax 80 [m/s] 

Track velocity Vt 12 [m/s] 

Height of max velocity Zmax 67 [m] 

Downburst diameter D=rmax 1000 [m] 

Intial Xo -2500 [m] 

Initial yo 150 [m] 

Angle of tracking theta 2° 10° 15° 30° 
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Figure 3-25: 2D frame with 3D downburst. Front view 

 

Figure 3-26: Downburst track. Plan view 

 

 

A representative sample of the mean velocity profiles and the angle of approximation for the points 

in the diagonal of the grid identified as P1, P2, P3, P4, P5 for different angles of downburst track are 

given from Figure 3-27 to Figure 3-31. 
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For theta =2° 

 

 

Figure 3-27: Mean velocity and approximation angle for track angle of 2° 
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For theta =10° 

 

  

 

 

  

Figure 3-28: Mean velocity and approximation angle for track angle of 10° 
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For theta =15° 

  

Figure 3-29: Mean velocity and approximation angle for track angle of 15° 

 

 

For theta= 30° 

 

  

Figure 3-30: Mean velocity and approximation angle for track angle of 30° 
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For theta= 45° 

 

 

 

Figure 3-31: Mean velocity and approximation angle for track angle of 45° 

 

3.10.2 Random Turbulence  

 

The random process of the turbulence could be represented as an n-variate stochastic vector 

process V(t) in which n is the number of points where the wind effect is discretized over the 

structure. The V(t), can be decomposed into a summation of n n-variate fully coherent normal 

vectors Yj(t) independent of each other as shown in Equation 3-37. 

Equation 3-37 

𝑽(𝑡) =∑𝒀𝑗(𝑡)

𝑛

𝑗=1

 

To perform what is given in Equation 3-37, (Di Paola and Gullo 2001) proposed to decompose the 

cross-PSD matrix into the basis of the eigenvectors of the matrix itself. Calling Ψ a matrix containing 

the eigenvectors of cross-PSD matrix the following relationship may hold: 

Equation 3-38 

𝜳(𝜔)𝑻𝑪𝑺𝑣′ (𝜔)𝜳(𝝎) = 𝜦(𝜔) 

Where 𝑪𝑺𝑣′ (𝜔) is the cross-PSD matrix and 𝜦(𝜔) is a diagonal matrix containing the eigenvalues 

λj (j=1, 2, …, n) of the 𝑪𝑺𝑣′ (𝜔) matrix associated with the ψj(ω) eigenvector. 

The vectors Yj(t) assume the following:  
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Equation 3-39 

𝒀j(t) = ∫ 𝝍𝑗(𝜔)√ 𝜆𝑗(𝜔)
+∞

−∞

 𝑒𝑖𝜔𝑡𝑑𝐵𝑗 

With 𝑑𝐵𝑗 accounting for a zero mean normal complex process having orthogonal increments 

Equation 3-40 

𝐸[𝑑𝐵𝑗] = 0;    𝑑𝐵𝑗 = 𝑑𝐵𝑗
∗ 

𝐸[𝑑𝐵𝑗(𝜔𝑟)𝑑𝐵𝑗(𝜔𝑠)] = 𝛿𝜔𝑟 𝜔𝑠 𝛿𝑗𝑘𝑑𝜔𝑟 

 

In Equation 3-40 the term 𝛿𝑝𝑞 is the so-called Kronecker delta (𝛿𝑝𝑞 = 0 𝑓𝑜𝑟 𝑝 ≠ 𝑞; 𝛿𝑝𝑞 =

1 𝑓𝑜𝑟 𝑝 = 𝑞 ). And the symbol * denotes complex conjugate. 

 

In discretized way the vectors Yj(t) can be written in the form:  

Equation 3-41 

𝒀𝑗(𝑡) = ∑ 𝝍𝑗(𝜔𝑘)√𝜆𝑗 (𝜔𝑘)∆ω 𝑒
𝑖𝜔𝑘𝑡𝑃𝑘

(𝑗)

𝑁

𝑘=−𝑁

 

Where N∆ω is the cutoff frequency. 𝑃𝑘
(𝑗)

 is a zero mean normal complex random variable, which 

fulfill the following orthogonality condition: 

Equation 3-42 

𝐸 [𝑃𝑘
(𝑗)
 𝑃𝑟
(𝑠)
] = 𝛿𝑗𝑠 𝛿𝑘𝑟;    𝑃𝑟

(𝑠)
= 𝑃−𝑟

(𝑠)∗ 

Taking the only real form of  𝒀𝑗(𝑡): 

Equation 3-43 

𝒀𝑗(𝑡) = 2∑𝝍𝑗(𝜔𝑘)√𝜆𝑗 (𝜔𝑘)∆ω(cos𝜔𝑘𝑡 𝑅𝑘
(𝑗)
− sin𝜔𝑘𝑡 𝐼𝑘

(𝑗)
)

𝑁

𝑘=1

 

The 𝑅𝑘
(𝑗)

and 𝐼𝑘
(𝑗)

 terms stands for the real and the imaginary parts of 𝑃𝑟
(𝑠)

 respectively.  

The simulation of the random field suggests that once the modal decomposition is made, the vector 

𝑽(𝑡) containing the generated turbulence in the n-points can be assembled as the sum of the n 

independent random process whose PSD functions are the λj(ω) denotes as 𝑊𝑗(𝑡).  

 Equation 3-44 

𝑽(𝑡) =∑𝝍𝑗 𝑊𝑗(𝑡)

𝑛

𝑗=1
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From Equation 3-39 it is possible to analogously determine the 𝑊𝑗(𝑡) as:  

Equation 3-45 

𝑊𝑗(𝑡) = ∫ √ 𝜆𝑗(𝜔)
+∞

−∞

 𝑒𝑖𝜔𝑡𝑑𝐵𝑗 

3.10.2.1 Numerical Example 

 

Following the procedure explained before it was possible to build a Monte Carlo simulation of the 

wind velocity field for 20 points of the structure showed in Figure 3-25. Examples of the generic 

simulations could be seen on Figure 3-32 and the full velocity outflow including the slowly varying 

mean Figure 3-33. 

 

 

Figure 3-32: Turbulent component of generic point 

 

 

Figure 3-33: Full velocity outflow of generic point 
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CHAPTER 4. SDOF SYSTEM ANALYSIS 
 

To study the dynamic response of the structures subjected to downburst outflows it can be 

necessary first to analyze the case of a single degree of freedom structure. The system will be 

analyzed in time domain and frequency domain to compare both approaches and verify the 

consistency of the results. Moreover, it will be executed a parametric study based on the damping 

and natural frequencies of the structure to measure the dependency of the response on these two 

characteristics. 

The main idea driving to the development of the analysis with the two approaches is to take 

advantage from the features of both. The frequency domain analysis provides a faster assessment 

of the structural response compared with the time domain analysis. The former does not require 

the solution of several scenarios of simulated wind velocities as it is required by the latter. However, 

the time domain analysis provides a robust methodology to solve the equations of motion which is 

capable to handle non-linear problems. 

 

4.1 Structure  

 

A structural system as that shown in Figure 4-1 was studied under the action of a downburst wind 

which activates only the horizontal movement of the lumped mass.  

 

 

Figure 4-1: a) Simple Structure b) equivalent SDOF system 

The equation describing the motion of a single degree of freedom, also known as equation of 

motion, gives the equilibrium of the dynamic forces to which the structure is submitted at any time 

and is given by the Equation 4-1. 

Equation 4-1 

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹(𝑡) 
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The first term of the left hand side of Equation 4-1 refers to inertia forces given by the product of 

the mass and the acceleration of the body, the second term refers to forces related to the viscous 

damping, the third to the elastic restoring forces given by the product of stiffness and the 

displacement. On the other hand, the right side of the equation contains the terms associated to 

the dynamic exciting force. For this case the exciting force is given by the pseudo-static and the 

buffeting effects of the thunderstorm downburst wind field acting on the structure.  

 

4.2 Aerodynamic Forces 

 

To compute the aerodynamic forces on the structure, an approach widely implemented for synoptic 

winds is that proposed by (Davenport 1962). The aerodynamic force (Equation 4-3) is given by the 

components of the wind velocities. 

For a single point in the space (free to move only in one direction) the wind force (Equation 4-3) is 

given by means of the aerodynamic drag coefficient 𝐶𝐷 and the relative velocity wind 𝑉𝑟𝑒𝑙(𝑧, 𝑡) 

between the incoming wind and movement of the structure Equation 4-2. 

Equation 4-2 

𝑉𝑟𝑒𝑙(𝑧, 𝑡) = [𝑉(𝑧, 𝑡) − �̇�(𝑡)] 

Equation 4-3 

𝐹(𝑡) =
1

2
𝜌𝐶𝐷𝐴[𝑉𝑟𝑒𝑙]

2 

Where the density of the air is taken as 𝜌 and the body reference area 𝐴. 

The decomposition of wind field velocity is taken according to § 3.1- Equation 3-4, brought here for 

convenience:  

Equation 4-4 

𝑉(𝑧, 𝑡) = 𝑉𝑚𝑎𝑥 ∗ 𝛼(𝑧) ∗ 𝛾(𝑡) + 𝑎(𝑡)𝑣′(𝑡) 

For the case of a fixed height, the dependence on z can be disregarded. Introducing the reference 

height of the observation point, Zref, it is possible to express the reference mean velocity, 𝑉𝑚, at the 

same point as:   

Equation 4-5 

𝑉𝑚 = 𝑉𝑚𝑎𝑥 ∗ 𝛼(𝑧)|𝑧=𝑧𝑟𝑒𝑓   

And the Equation 4-4 becomes: 

Equation 4-6 

𝑉(𝑡) = 𝑉𝑚 ∗ 𝛾(𝑡) + 𝑎(𝑡) ∗ 𝑣′(𝑡) 
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From § 3.6.4 it is possible to recall that the intensification function, 𝛾(𝑡), and the amplitude 

modulating function, 𝑎(𝑡), can be taken as the same (see e.g.: Canor et al., 2016), i.e.: 

Equation 4-7 

𝛾(𝑡) = 𝑎(𝑡) 

Regarding the square of the relative velocity: 

Equation 4-8 

𝑉𝑟𝑒𝑙(𝑡)
2 = [𝑉𝑚 ∗ 𝛾(𝑡) + 𝑎(𝑡) ∗ 𝑣′(𝑡) − �̇�(𝑡)]

2   (a) 

Or conversely: 

𝑉𝑟𝑒𝑙(𝑡)
2 = 𝑉2(𝑡) − 2𝑉(𝑡)�̇�(𝑡) + �̇�2(𝑡)   (b) 

Replacing Eq. 4-6 in (b): 

𝑉𝑟𝑒𝑙(𝑡)
2 = [𝑉𝑚 ∗ 𝑎(𝑡) + 𝑎(𝑡) ∗ 𝑣

′(𝑡)]2 − 2[𝑉𝑚 ∗ 𝑎(𝑡) + 𝑎(𝑡) ∗ 𝑣′(𝑡)]�̇�(𝑡) + �̇�
2(𝑡)   (c) 

𝑉𝑟𝑒𝑙(𝑡)
2 = 𝑎2(𝑡)[𝑉𝑚 + 2 ∗ 𝑉𝑚 ∗ 𝑣

′(𝑡) + 𝑣′
2(𝑡)] − 2𝑎(𝑡)[𝑉𝑚 + 𝑣′(𝑡)]�̇�(𝑡) + �̇�

2(𝑡)   (d) 

 

Since the turbulent component of the wind velocity and the body velocity are small compared 

with the mean velocity component it is possible to neglect the effect of the terms associated to 

their square, and approximate the relative velocity as: 

Equation 4-9 

𝑉𝑟𝑒𝑙(𝑡)
2 = [𝑉𝑚 ∗ 𝑎(𝑡)]

2 + 2𝑎(𝑡)2𝑉𝑚 ∗ 𝑣
′(𝑡) − 2𝑎(𝑡)𝑉𝑚 ∗ �̇�(𝑡)    

 

The aerodynamic force is then given by: 

Equation 4-10 

𝐹(𝑡) =
1

2
𝜌𝐶𝐷𝐴 ∗ [𝑉𝑚 ∗ 𝑎(𝑡)]

2 + 𝜌𝐶𝐷𝐴𝑎(𝑡)
2𝑉𝑚 ∗ 𝑣

′(𝑡) − 𝜌𝐶𝐷𝐴𝑎(𝑡)𝑉𝑚 ∗ �̇�(𝑡) 

 

Dividing the force component according to their effect and nature it is possible to obtain three 

different forces. The force associated to the mean velocity component also taken as the pseudo-
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static mean force, 𝐹𝑠(𝑡). The dynamic force or buffeting force coming from the turbulence of the 

wind field, 𝐹𝑑(𝑡).The effect of the body velocity creates an aerodynamic-damping,  𝐹𝑟(𝑡). 

Equation 4-11 

𝐹𝑠(𝑡) =
1

2
𝜌𝐶𝐷𝐴 ∗ [𝑉𝑚 ∗ 𝑎(𝑡)]

2 

Equation 4-12 

𝐹𝑑(𝑡) = 𝜌𝐶𝐷𝐴𝑎(𝑡)
2𝑉𝑚 ∗ 𝑣

′(𝑡) 

Equation 4-13 

𝐹𝑟(𝑡) = 𝜌𝐶𝐷𝐴𝑎(𝑡)𝑉𝑚 ∗ �̇�(𝑡) 

 

The dynamic exciting force is given by:  

Equation 4-14 

𝐹(𝑡) = 𝐹𝑠(𝑡) + 𝐹𝑑(𝑡) − 𝐹𝑟(𝑡) 

The problem could be solved as the contribution of two parts, one pseudo-static component 

produced by the mean wind field and giving rise to an equilibrium condition, 𝑥𝑚(𝑡) and the dynamic 

part 𝑥𝑑 associated to the turbulent component of wind which will give rise to a vibration around the 

equilibrium condition.  The problem is summarized in Equation 4-16. 

The dynamic effect of the pseudo static component is negligible (in fact β<<1 as it will be explained 

§ 4.7.3). Therefore, it is possible to approximate the aeroelastic damping component of Equation 

4-13 to:  

Equation 4-15 

𝐹𝑟(𝑡) ≅ 𝜌𝐶𝐷𝐴𝑎(𝑡)𝑉𝑚⏞        
𝑔(𝑡)

∗ �̇�𝑑(𝑡) = 𝑔(𝑡)�̇�𝑑(𝑡) 

With 𝑔(𝑡) a function which encloses the time-variation of the aeroelastic component. 

Equation 4-16 

{
 
 

 
 

𝑥(𝑡) = 𝑥𝑚(𝑡) + 𝑥𝑑(𝑡)
 

𝐾 𝑥𝑚(𝑡) = 𝐹𝑠(𝑡) 𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑠𝑡𝑎𝑡𝑖𝑐
 

𝑀 ∗ �̈�𝑑(𝑡) + [𝐶 + 𝑔(𝑡)]�̇�𝑑(𝑡) + 𝐾 ∗ 𝑥𝑑(𝑡) = 𝐹𝑑(𝑡) 𝐷𝑦𝑛𝑎𝑚𝑖𝑐
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4.3 Time domain analysis 

 

Basically, for the time domain analysis multiple time histories of the turbulent component of the 

wind speed were generated using a Monte Carlo algorithm based on the PSD of wind turbulent 

component. Then, those velocity times histories were transformed into dynamic exciting forces 

acting on the SDOF structure according to Equation 4-10. 

With the dynamic forces and the computed structure parameters it was possible to define the 

equation of motion as shown in Equation 4-1 and divide its components as shown in Equation 4-16. 

Regarding the slowly varying mean, it was accounted with the solution of the pseudo-static problem 

which will give rise to an equilibrium position around which the wind turbulent component will 

vibrate. 

The second part of  Equation 4-16, corresponding to the solution for the turbulent wind force, was 

solved numerically by means of the direct integration of the equations of motion with the so-called 

Newmark method. 

 

4.3.1 Generation of time histories 

 

The generation of the velocity fields follows the same procedure explained and developed in the § 

3.9.2.  

 

4.3.2 Direct Integration of the equations of motion 

 

In the previous developments it was explained how the multiple time histories of the turbulent 

component of the wind velocity field were generated, once again it is remarked that a huge amount 

of realizations was generated to be representative of the wind field. However, it is also required this 

effort to be done on the structural response identified on this step by the displacement of the top 

of the beam.  

In other words, for every single realization of the turbulence it was performed the integration of the 

equations of motion to solve the part b of Equation 4-16 and to obtain the structural response of 

the system under the wind action as the summation of the pseudo-static equilibrium condition and 

the vibrations of the dynamic component.  

To this purpose the method developed of direct integration of the equations of motion by Newmark 

(Chopra 2012) was implemented.  This method computes numerically the structural response of a 

system by solving step by step on time the equations of motion of the system. The important aspects 

in the implementation of this method are the size of the time step, the selection of the β and γ 
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coefficients and the initial conditions. The selection of this parameters for the case of study will be 

explained in the following developments (Equation 4-20 and Equation 4-21). 

 

 

• Initial conditions 

 

The system is supposed to be at rest before the application of the wind field and therefore the 

homogeneous initial conditions can be indicated as follows: 

Equation 4-17 

{
𝑥(𝑡 = 0) = 0 
�̇�(𝑡 = 0) = 0 

 

The initial value of the acceleration and the external force is not necessarily equal to zero, the initial 

acceleration must be computed as follows: 

Equation 4-18 

�̈�(𝑡 = 0) =
𝐹(𝑡 = 0)

𝑚
 

• Selection of the β and γ coefficients 

 

The selection of this coefficients defines the terms of the Taylor succession that will be considered 

to approximate the acceleration derivative within the time steps. In other words, they define the 

variation (or derivative) of the acceleration inside the discretized time step. From the practical point 

of view, for the case γ=1/2 and β=1/4 the acceleration is constant on each time step, and for the 

case γ=1/2 and β=1/6 the acceleration is linear on each time step. 

To ensure the numerical stability of the algorithm, on the development of this study the case of 

constant acceleration was selected and therefore γ=1/2 and β=1/4. Because is unconditionally 

stable. 

• Definition of the time step 

 

This aspect is crucial for the convergence and accuracy of the method. Due numerical instability of 

the step by step methods for long time steps is possible to obtain unstable results giving rise to 

spurious data. The Newmark method is stable if: 

Equation 4-19 

𝑡𝑠𝑡𝑒𝑝

𝑇𝑛
≤

1

𝜋√2

1

√𝛾 − 2𝛽
 



Description and Simulation of Thunderstorms Downburst and Their Effect on Civil Structures 

 

129 
 

With 𝑡𝑠𝑡𝑒𝑝 representing the time step and  𝑇𝑛 the natural period of the system. 

For the case of constant acceleration, the ratio on the right-hand side of Equation 4-19 becomes 

infinity and therefore is unconditionally stable. However, this not occurs for the case in which the 

acceleration is linear inside the discretized time step. 

Having all the structural parameters already defined and the set of method parameters, it is possible 

to extend the process given in (Chopra 2012) for the case of time-varying aeroelastic effects.  

 

1. Initial Computations: 

Equation 4-20 

{
 
 

 
 𝑎1(𝑡) =

𝑚

𝛽 ∗ 𝑡𝑠𝑡𝑒𝑝
2 +

𝛾 ∗ [𝑐 + 𝑔(𝑡)]

𝛽 ∗ 𝑡𝑠𝑡𝑒𝑝
;          𝑎2(𝑡) =

𝑚

𝛽 ∗ 𝑡𝑠𝑡𝑒𝑝
+ (

𝛾

𝛽
− 1) [𝑐 + 𝑔(𝑡)]

𝑎3(𝑡) = (
1

2𝛽
− 1)𝑚 + (

𝛾

2𝛽
− 1) [𝑐 + 𝑔(𝑡)]

𝐾 = 𝑘 + 𝑎1(𝑡)

 

 

2. Computations for the time step 𝑡𝑖: 

Equation 4-21 

{
 
 
 

 
 
 

𝐹�̂�(𝑖 + 1) = 𝐹𝑑(𝑖 + 1) + 𝑎1(𝑖)𝑥𝑑(𝑖) + 𝑎2(𝑖)𝑥�̇�(𝑖) + 𝑎3(𝑖)�̈�𝑑(𝑖)

𝑥𝑑(𝑖 + 1) =
𝐹�̂�(𝑖 + 1)

�̂�

�̇�𝑑(𝑖 + 1) =
𝛾

𝛽 ∗ 𝑡𝑠𝑡𝑒𝑝
[𝑥𝑑  (𝑖 + 1) − 𝑥𝑑(𝑖)] + (1 −

𝛾

𝛽
)𝑥�̇�(𝑖) + (1 −

𝛾

2𝛽
) �̈�𝑑(𝑖)

�̈�𝑑(𝑖 + 1) =
1

𝛽 ∗ 𝑡𝑠𝑡𝑒𝑝
2
[𝑥𝑑(𝑖 + 1) − 𝑥𝑑(𝑖)] −

1

𝛽 ∗ 𝑡𝑠𝑡𝑒𝑝
�̇�𝑑(𝑖) − (

1

2𝛽
− 1) �̈�𝑑(𝑖)

 

 

 

 

4.4 Aeroelastic Damping Study 

 

To measure the effect of the aeroelastic damping on the overall response of the structure, it was 

studied the behavior of a SDOF system submitted to downburst wind velocity field. There were 

implemented four different strategies to simulate the aerodynamic damping of the system. The 

downburst wind velocity field used in the evaluation is described through the same 2.000 Monte 

Carlo generations that will be used in the parametric study to keep consistency between the data.  
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The following four strategies for the modelling of the aerodynamic damping will be considered in 

this work for comparison purposes: 

 

1. Time varying aeroelastic damping. This strategy fully accounts for the non-stationarity of 

the wind velocity outflow as it is given in Equation 4-15 brought here for convenience. 

Equation 4-22 

𝐹𝑟(𝑡) = 𝜌𝐶𝑑𝐴𝑎(𝑡)𝑉𝑚 ∗ �̇�𝑑(𝑡) 

 

2. Constant-zero valued aeroelastic damping component. In this case the aeroelastic 

component of the wind is disregarded. Equation 4-23 is obtained from Equation 4-13 by 

imposing that a(t)=0  t, i.e: 

Equation 4-23 

𝐹𝑟(𝑡) = 𝜌𝐶𝑑𝐴𝑎(𝑡)𝑉𝑚 ∗ �̇�𝑑(𝑡) → 𝑎(𝑡) = 0 → 0 

 

3. Constant-maximum valued aeroelastic damping component, referent to the extreme value 

obtained for a constant amplitude modulating function with unit value as given in Equation 

4-24. 

Equation 4-24 

𝐹𝑟(𝑡) = 𝜌𝐶𝑑𝐴𝑎(𝑡)𝑉𝑚 ∗ �̇�𝑑(𝑡) → 𝑎(𝑡) = 1 → 𝜌𝐶𝑑𝐴𝑉𝑚 ∗ �̇�𝑑(𝑡) 

 

4. Constant-mean valued aeroelastic damping component, referent to the average value 

obtained for a constant amplitude modulating function with mean value as given in 

Equation 4-25. 

Equation 4-25 

𝐹𝑟(𝑡) = 𝜌𝐶𝑑𝐴𝑎(𝑡)𝑉𝑚 ∗ �̇�𝑑(𝑡) → 𝑎(𝑡)̅̅ ̅̅ ̅̅ = 𝑀𝑒𝑎𝑛[𝑎(𝑡)] → 𝜌𝐶𝑑𝐴𝑎(𝑡)̅̅ ̅̅ ̅̅ 𝑉𝑚 ∗ �̇�𝑑(𝑡) 

The structural parameters used in the simulation are reported in Table 4-1: Structure simulation 

parameters. 

Table 4-1: Structure simulation parameters 

Parameter Symbol Value Unit 

Damping ratio  𝜁 2  [%] 

Mass m 235 [kg] 

Stiffness 𝑘 9.722𝑥104  [N/m] 
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Circular natural frequency 𝜔𝑛 20.831 [rad/sec] 

Natural frequency 𝑓𝑛 3.315 [hz] 

Damping coefficient 𝑐 196.228 [kg/s] 

Drag coefficient Cd 2.1 [-] 

 

With the scope of giving a graphical representation only, in Figure 4-2 it is presented the normalized 

time varying damping coefficient, 𝑔𝑛(𝑡), associated to the wind coming from Equation 4-22  

normalized with the structural damping coefficient, Equation 4-26. From the figure it is possible to 

observe that the maximum contribution of the wind associated damping is going to be equal to 60% 

of that coming from the structural components and by extracting the mean value of the same it is 

possible to observe an average contribution less than the 20%.  

Equation 4-26 

𝑔𝑛(𝑡) =
𝑔(𝑡)

𝐶
 

 

Figure 4-2: Normalized-Aeroelastic damping coefficient 

  



Politecnico di Milano 

 

132 
 

4.4.1 Graphical Result Comparison 

  

The analysis of the results is made based on their statistical properties. The outcomes were given 

from 2.000 Monte Carlo simulations of the wind velocity field. Therefore, it results attractive to 

verify the time varying spectral moments of the complete sample. However, and with the aim of 

providing a simple idea of the process, the comparison of a generic simulation is given in Figure 4-3. 

From the graphical analysis of the picture it is not possible to distinguish a remarkable difference 

between the four approaches. Only possible to notice a slightly higher peak in the approach with 

disregarded aerodynamic damping (* symbol, a=0), as expected. 

The time varying: maximum, mean and variance (Equation 4-27), from the N=2.000 Monte Carlo 

simulations at each instant of time, 𝑡𝑖, are given from Figure 4-4 to Figure 4-6. From a qualitative 

and graphical point of view, the results of the four approaches fit on a same tendency. Relatively 

small discrepancies could be easily noticed; however, it is possible to appreciate the simulation with 

constant-maximum value of amplitude modulating function shows a lower response than the other 

approaches. In addition, the response neglecting the aeroelastic damping seems to follow closer the 

tendency of the actual response computed with the time varying aerodynamic damping. 

With the graphical comparison it was possible to build a macro-structure of the behavior of the 

spectral moments and statistical properties of the response. However, in order to establish a 

complete comparison of the results it is necessary to check the numerical data. 

Equation 4-27 

 

{
 
 

 
 
𝑀𝑎𝑥𝑋𝑑(𝑡𝑖) = 𝑀𝑎𝑥[𝑥𝑑(𝑁, 𝑡 = 𝑡𝑖)]

 
𝑀𝑒𝑎𝑛𝑋𝑑(𝑡𝑖) = 𝑀𝑒𝑎𝑛[𝑥𝑑(𝑁, 𝑡 = 𝑡𝑖)]

 
𝑉𝑎𝑟𝑋𝑑(𝑡𝑖) = 𝑉𝑎𝑟[𝑥𝑑(𝑁, 𝑡 = 𝑡𝑖)]



 

 

Figure 4-3: Generic simulation time history comparison 
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Figure 4-4: Comparison of Time varying maximum 
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Figure 4-5: Comparison of Time varying mean 
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Figure 4-6: Comparison of Time varying variance
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4.4.2 Numerical Result Comparison 

 

The maximum fluctuating response for all the 10.000 simulated instants of time and 2.000 

generated Monte Carlo histories are reported in Table 4-2. For the mean value Table 4-3 gives an 

analogous information. 

Table 4-2: Maximum response Table 4-3: Mean response 
 

Approach Value Unit 

1 0.1252 [m] 

2 0.129 [m] 

3 0.1055 [m] 

4 0.1206 [m] 

 

Approach Value Unit 

1 2.0177e-6 [m] 

2 2.0178e-6 [m] 

3 2.0174e-6 [m] 

4 2.0176e-6 [m] 

 

The maximum value of the response computed with the full time-varying aeroelastic damping are 

closer to those computed neglecting its effect (approaches 1 and 2 respectively). Therefore, a final 

measure must be done in the error of these two approaches to verify the possibility of neglecting 

this effect.  Regarding the mean, since its value is very small closer to zero it works as benchmarking 

test to proof the assumption of zero mean stochastic process. 

4.4.3 Normalized Root Mean Squared Error 

 

The root mean squared error, RMSE, is useful to determine how two signals are close to each other. 

it can be computed as shown in Equation 4-28. In which N is the length of the discretized signals,  

𝑋𝑟𝑒𝑓 is the reference signal and 𝑋𝑖  the signal to be verified.  

Equation 4-28 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑖 − 𝑋𝑟𝑒𝑓)

2𝑁
1

𝑁
 

 

It is usually normalized with the range of the reference signal to give relative value to this parameter 

as shown in Equation 4-29. 

Equation 4-29 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑀𝑎𝑥(𝑋𝑟𝑒𝑓) − 𝑀𝑖𝑛(𝑋𝑟𝑒𝑓)
   (𝑎) 
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𝑁𝑅𝑀𝑆𝐸 [%] =
𝑅𝑀𝑆𝐸

𝑀𝑎𝑥(𝑋𝑟𝑒𝑓) − 𝑀𝑖𝑛(𝑋𝑟𝑒𝑓)
∗ 100   (𝑏) 

 

To give a measure of how much the structural response is affected by neglecting the aeroelastic 

damping, it will be computed the NRMSE of the of complete statistical population of this signal 

(2.000 Monte Carlo Simulations) with those of the response with the time-varying aeroelastic 

damping effect. 

Three different NRMSE will be computed to compare both responses:  

• 𝑁𝑅𝑀𝑆𝐸𝑚𝑎𝑥: Obtained from the maximum response of the 2.000 simulations.   

 

The reference signal 𝑋𝑟𝑒𝑓,𝑚𝑎𝑥 for this case, will be given by the maximum response from the 

complete population at each instant of time, 𝑡𝑖, coming from the response of approach 1. 

Equation 4-30 

𝑋𝑟𝑒𝑓,𝑚𝑎𝑥(𝑡 = 𝑡𝑖) = max [𝑥𝑑,𝑎𝑝𝑝𝑜𝑟𝑎𝑐ℎ1(𝑡 = 𝑡𝑖)] 

 

The secondary signal 𝑋𝑖,𝑚𝑎𝑥 for this case, will be given by the maximum response from the complete 

population at each instant of time, 𝑡𝑖, coming from the response of approach 2. 

Equation 4-31 

𝑋𝑖,𝑚𝑎𝑥(𝑡 = 𝑡𝑖) = max [𝑥𝑑,𝑎𝑝𝑝𝑜𝑟𝑎𝑐ℎ2(𝑡 = 𝑡𝑖)] 

The root mean squared error for this case will be given by:  

Equation 4-32 

𝑅𝑀𝑆𝐸𝑚𝑎𝑥 = √
∑ (𝑋𝑖,𝑚𝑎𝑥 − 𝑋𝑟𝑒𝑓,𝑚𝑎𝑥)

2𝑁
1

𝑁
 

And the normalized expression: 

Equation 4-33 

𝑁𝑅𝑀𝑆𝐸𝑚𝑎𝑥 =
𝑅𝑀𝑆𝐸𝑚𝑎𝑥

𝑀𝑎𝑥(𝑋𝑟𝑒𝑓,𝑚𝑎𝑥) −𝑀𝑖𝑛(𝑋𝑟𝑒𝑓,𝑚𝑎𝑥)
∗ 100 

 

• 𝑁𝑅𝑀𝑆𝐸𝑚𝑒𝑎𝑛: Obtained from the mean response of the 2.000 simulations.   
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The reference signal 𝑋𝑟𝑒𝑓,𝑚𝑒𝑎𝑚 for this case, will be given by the mean response from the complete 

population at each instant of time, 𝑡𝑖, coming from the response of approach 1. 

Equation 4-34 

𝑋𝑟𝑒𝑓,𝑚𝑒𝑎𝑛(𝑡 = 𝑡𝑖) = mean [𝑥𝑑,𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ1(𝑡 = 𝑡𝑖)] 

 

The secondary signal 𝑋𝑖,𝑚𝑒𝑎𝑛 for this case, will be given by the mean response from the complete 

population at each instant of time, 𝑡𝑖, coming from the response of approach 2. 

Equation 4-35 

𝑋𝑖,𝑚𝑒𝑎𝑛(𝑡 = 𝑡𝑖) = mean [𝑥𝑑,𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ2(𝑡 = 𝑡𝑖)] 

The root mean squared error for this case will be given by:  

Equation 4-36 

𝑅𝑀𝑆𝐸𝑚𝑒𝑎𝑛 = √
∑ (𝑋𝑖,𝑚𝑒𝑎𝑛 − 𝑋𝑟𝑒𝑓,𝑚𝑒𝑎𝑛)

2𝑁
1

𝑁
 

And the normalized expression: 

Equation 4-37 

𝑁𝑅𝑀𝑆𝐸𝑚𝑒𝑎𝑛 =
𝑅𝑀𝑆𝐸𝑚𝑒𝑎𝑛

𝑀𝑎𝑥(𝑋𝑟𝑒𝑓,𝑚𝑒𝑎𝑛) − 𝑀𝑖𝑛(𝑋𝑟𝑒𝑓,𝑚𝑒𝑎𝑛)
∗ 100 

 

• 𝑁𝑅𝑀𝑆𝐸𝑣𝑎𝑟: Obtained from the variance of the response of the 2.000 simulations.   

 

The reference signal 𝑋𝑟𝑒𝑓,𝑣𝑎𝑟 for this case, will be given by the variance of the response from the 

complete population at each instant of time, 𝑡𝑖, coming from the response of approach 1. 

Equation 4-38 

𝑋𝑟𝑒𝑓,𝑣𝑎𝑟(𝑡 = 𝑡𝑖) = Var [𝑥𝑑,𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ1(𝑡 = 𝑡𝑖)] 

 

The secondary signal 𝑋𝑖,𝑣𝑎𝑟 for this case, will be given by the variance of the response from the 

complete population at each instant of time, 𝑡𝑖, coming from the response of approach 2. 

 

Equation 4-39 

𝑋𝑖,𝑣𝑎𝑟(𝑡 = 𝑡𝑖) = 𝑉𝑎𝑟 [𝑥𝑑,𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ2(𝑡 = 𝑡𝑖)] 

The root mean squared error in this case will be given by:  
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Equation 4-40 

𝑅𝑀𝑆𝐸𝑣𝑎𝑟 = √
∑ (𝑋𝑖,𝑣𝑎𝑟 − 𝑋𝑟𝑒𝑓,𝑣𝑎𝑟)

2𝑁
1

𝑁
 

And the normalized expression: 

Equation 4-41 

𝑁𝑅𝑀𝑆𝐸𝑣𝑎𝑟 =
𝑅𝑀𝑆𝐸𝑣𝑎𝑟

𝑀𝑎𝑥(𝑋𝑟𝑒𝑓,𝑣𝑎𝑟) − 𝑀𝑖𝑛(𝑋𝑟𝑒𝑓,𝑣𝑎𝑟)
∗ 100 

 

The errors are reported in Table 4-4. 

Table 4-4: Normalized Mean Squared Errors 

 

 

 

 

 

The error computed between the two approaches confirms the similitude between the response of 

both signals already evidenced in the graphical assessment. Therefore, it is possible to state that for 

the specific problem herein studied the aeroelastic damping effect (coming from Equation 4-13)  

could be neglected in the computation of the structural response, and Equation 4-14 can be 

approximated to: 

Equation 4-42 

𝐹(𝑡) ≅ 𝐹𝑠(𝑡) + 𝐹𝑑(𝑡) 

  

 

It is now important to include the effect of the natural frequency into consideration since the model 

so far studied has fixed mechanical properties. 

  

Error Value Unit 

𝑁𝑅𝑀𝑆𝐸𝑚𝑎𝑥 0.7248 [%] 

𝑁𝑅𝑀𝑆𝐸𝑚𝑒𝑎𝑛 0.2315 [%] 

𝑁𝑅𝑀𝑆𝐸𝑣𝑎𝑟 1.3090 [%] 
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4.4.4 Study on Natural Frequency 

 

The before studied system is referred to a single natural frequency as reported in Table 4-1. 

Therefore, in order to extend the conclusion to a more general case, it is necessary to study the 

behavior of the aeroelastic damping as function of the natural frequency of the oscillator.  

For the analysis it will be used as reference signal the turbulent response of the oscillator with the 

time varying aeroelastic component (approach 1) Equation 4-22. The response of the system will be 

characterized by variable ∆𝑖(𝑓𝑛) as function of the natural frequency, 𝑓𝑛(Equation 4-43). The index 

𝑖, going from 2 to 4, denotes the approach for the aeroelastic damping determination.  

 

Equation 4-43 

∆𝑖(𝑓𝑛) =
|𝑋𝑟𝑒𝑓(𝑓𝑛) − 𝑋𝑖(𝑓𝑛)|

𝑋𝑟𝑒𝑓(𝑓𝑛)
 

Where 𝑋𝑟𝑒𝑓(𝑓𝑛) is the variance response of the system computed with approach 1 and 𝑋𝑖(𝑓𝑛) is the 

variance response of the system computed with the approach 𝑖. 

The result of the study could be seen in Figure 4-7. It is possible to observe that for low natural 

frequency systems in range of 0.1 to 1 [Hz], as long structures (cables, tall buildings and bridges), 

the characteristic variable ∆ has a peak evidencing a large difference between the time-varying 

aeroelastic damping and those assuming constants values. In addition, this difference is higher for 

the approaches 2 and 3 with a(t) equal to the extreme values (zero and maximum).  

The results of the current study allow to conclude that the time-varying aeroelastic response is only 

negligible for structures with structural damping ratio of 2% and first natural frequencies greater 

than 1.5 [Hz]. For frequencies greater than this the characteristic variable ∆ tends to a stabilize, 

showing a trustable response measured with the constant aeroelastic damping approaches.   

For structures with natural frequencies in the range of ∆ lower than 1.5 [Hz] the best approximation 

is to use a constant aeroelastic damping associated to the mean value of the modulating function 

a(t). 
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Figure 4-7: Dynamic effect on the aeroelastic damping behavior. 

The results of the analysis allow to disregard the aeroelastic damping component in the analysis. 

With this option it will be possible to reduce the computational effort involved in the computation 

of the frequency response function H(f) § 4.6.1 for the Direct Frequency Domain Analysis that will 

be explained in the following developments.  

Regarding the time domain analysis, in order to give a representation of the equations of motion 

compatible with the obtained results of the current paragraph,  the effect of the aeroelastic damping 

will be disregarded and the Equation 4-16 is going to be simplified as follows:  

Equation 4-44 

{
𝐾 𝑥𝑚(𝑡) = 𝐹𝑠(𝑡) 𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑠𝑡𝑎𝑡𝑖𝑐

 
𝑀 ∗ �̈�𝑑(𝑡) + 𝐶 ∗ �̇�𝑑(𝑡) + 𝐾 ∗ 𝑥𝑑(𝑡) = 𝐹𝑑(𝑡) 𝐷𝑦𝑛𝑎𝑚𝑖𝑐
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4.5 Direct frequency domain analysis 

  

The direct frequency domain analysis is an alternative method for computing the structural 

response of a system subjected to a stochastic input. This approach computes the PSD of the 

response starting from the PSD of the aerodynamic force. From the practical point of view, it avoids 

the generation of huge amounts of data and reduces the computational effort related to the 

numerical evaluation of the equations of motion for every realization. Moreover, it allows for a 

deeper understanding of the physics of the problem. 

On the other hand, this type of analysis may become very complex for MDOF systems as it requires 

to evaluate and invert the frequency response function matrix, as well as, the construction of the 

PSD including the Cross-PSD terms which considers the correlation between the excitation of the 

different degrees of freedom.  

The non-stationarity of the problem is accounted for by exploiting the theory of the evolutionary 

spectra firstly developed by  (Priestley 1965) and already described in in § 2.1.3.  

 

4.5.1 Formulation of the Evolutionary Power Spectral Density (EVPSD) 

 

The evolutionary PSD function according to § 2.1.3 for the uniformly modulated process depends 

on the stationary PSD function and the amplitude modulating function. In Equation 4-45 is reported 

the spectral representation of the turbulence. 

Equation 4-45 

𝐸𝑉𝑆𝑣′ (𝑡, 𝑓) = |𝑎(𝑡)|
2𝑆𝑣′(𝑓) 
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A graphical representation of the downburst EVPSD is reported in Figure 4-8. 

 

Figure 4-8:EVPSD of turbulent component 

4.5.2 Structural frequency response function 

 

The structure effect can be regarded as a filter. Therefore, to assess the structural response it will 

be used the procedure stablished in § Evolutionary frequency response function2.1.3.5. The 

structural frequency response function for the traditional stationary excitations is given in Equation 

4-46 (noted as H(f) see §4.6.1) it can be also computed as the Fourier transform of the Impulse 

response function of the structure Equation 4-47 (noted as H1(f) see §4.6.1).  

 

Equation 4-46 

𝐻(𝑓) = [𝑘 + 𝑖2𝜋𝑓𝑐 − (2𝜋𝑓)2𝑚]−1 

Alternatively,  

Equation 4-47 

𝐻1(𝑓) = ∫ ℎ(𝑡 − 𝜏)𝑒−𝑖2𝜋𝑓𝑡𝑑𝜏
+∞

−∞

 

With the impulse response function (Chopra 2012): 

Equation 4-48 

{
ℎ(𝑡 − 𝜏) =

1

𝑚 ∗ 𝜔𝐷
𝑒−𝜁𝜔𝑛(𝑡−𝜏) ∗ sin(𝜔𝐷 ∗ (𝑡 − 𝜏))  𝑓𝑜𝑟 𝑡 ≥ 𝜏,

ℎ(𝑡 − 𝜏) = 0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
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Where, t is the current time and τ is the initial time of the impulse, therefore 𝑡 − 𝜏 is the time 

window between the observation period and the impulse application.  And 𝜔𝐷 is the damped 

circular frequency of the system, Equation 4-49. 

Equation 4-49 

𝜔𝐷 = −𝜔𝑛 (𝜁 ±  𝑖√1 − 𝜁
2) 

With  𝜔𝑛, the circular natural frequency and  𝜁, the damping ratio.  

4.5.3 EPSD of the structural response 

 

The power spectrum associated to stationary input signal of the aerodynamic force,  𝑆𝑝(𝑓),  can be 

computed as Equation 4-50.  

Equation 4-50 

𝑆𝑝(𝑓) = 𝐴𝐷0
2𝑆𝑣′(𝑓) 

Being 𝑆𝑣′(𝑓) the stationary power spectrum associated to the turbulent component of the wind 

velocity field.  

The term 𝐴𝐷𝑜 stands for terms in the pseudo-static component of the aerodynamic force which 

allows to transform wind turbulent velocity into forces applied on the degrees of freedom of the 

structure. For this case and according to Equation 4-10, 𝐴𝐷𝑜 is going to be the terms multiplying the 

turbulent velocity:  

  

𝐴𝐷𝑜 = 𝜌 𝐶𝑑 𝐴 max (𝑉𝑐) 

The associated uniformly modulated non-stationary process is of the form: 

Equation 4-51 

𝑝(𝑡) = ∫ 𝑎(𝑡) 𝑒𝑖2𝜋𝑓𝑡𝑑𝜑𝑝(𝑓)
+∞

−∞

 

 

Where 𝑑𝜑𝑝(𝑓) is associated to 𝑆𝑝(𝑓) as defined in § 2.1.3.3 and Equation 4-51 is analogous to the 

before developed Equation 2-48.   

Equation 4-52 

 

𝐸|𝑑𝜑𝑝(𝑓)|
2
= 𝑆𝑝(𝑓)𝑑𝑓 
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According to § 2.1.3.5 (Equation 2-52), the response signal of a system (turbulent component of the 

displacement, in this case 𝑥𝑑(𝑡)) is related to the input signal 𝑝(𝑡) by means of the following 

relation:  

Equation 4-53 

𝑥𝑑(𝑡) = ∫ 𝑝(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
𝑡

0

 

Replacing Equation 4-51 in Equation 4-53 it is possible to obtain:  

Equation 4-54 

𝑥𝑑(𝑡) = ∫ ∫ 𝑎(𝜏) 𝑒𝑖2𝜋𝑓𝜏𝑑𝜑𝑝(𝑓)
+∞

−∞

ℎ(𝑡 − 𝜏)𝑑𝜏
𝑡

0

 

Analogously to § 2.1.3.5: By squaring the quantities of Equation 4-54 and taking the average through 

all the realizations (Perotti 2017), it is possible to handle the problem in the frequency domain.  

Equation 4-55 

𝜎𝑥𝑑
2 = 𝐸[𝑥𝑑

2(𝑡)] = 𝐸 [|∫ ∫ 𝑎(𝜏)𝑒𝑖2𝜋𝑓𝑡𝑑𝜑𝑝(𝑓)
∞

−∞

ℎ(𝑡 − 𝜏)𝑑𝜏
𝑡

0

|

2

]

= |∫ 𝑎(𝜏)ℎ(𝑡 − 𝜏)𝑒𝑖2𝜋𝑓𝑡𝑑𝜏   
𝑡

0

|

2

 𝐸 [|𝑑𝜑𝑝|
2
] 

Hence, the evolutionary power spectrum of the response can be written as follows: 

Equation 4-56 

𝐸𝑉𝑆𝑥𝑑(𝑓, 𝑡) = |𝐻2(𝑓, 𝑡)|
2𝑆𝑝(𝑓) 

 

Where the generalized transfer function or evolutionary frequency response function EFRF, 𝐻2(𝑓, 𝑡), 

with respect to the family of functions 𝑎(𝑡), is defined as (analogous to Equation 2-57) :  

Equation 4-57 

𝐻2 (𝑓, 𝑡) = ∫ 𝑎(𝑡 − 𝜏)ℎ(𝜏)𝑒−2𝜋𝑓𝜏𝑑𝜏
+∞

−∞

 

 

Looking to the variation of ℎ(𝑡) (for a reference structure with fn=3.35Hz and ζ=2%) and 𝑎(𝑡), it is 

possible to state that while the former decays rapidly to zero as 𝜏 increases, the latter is almost 

constant in the range where ℎ(𝑡) is not negligible. In Figure 4-9 a) the ℎ(𝑡)  function is plotted for a 

10 second period, the function decays to zero in approximately 2 seconds, range of time for which 
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𝑎(𝑡) on Figure 4-9 b) has change from 0.992 to 0.993 almost constant. Therefore, the process could 

be represented as a slowly-varying uniformly modulated process. 

 

  

Figure 4-9: a) Impulse Response Function fn=3.35hz ζ=2% b) amplitude modulating function 

According to § Evolutionary frequency response function2.1.3.5, Equation 2-59,For uniformly 

modulated process the EVPSD of the response could be approximated to:  

Equation 4-58 

𝐸𝑉𝑆𝑥(𝑓, 𝑡) ≅ |𝐻(𝑓)|
2𝐸𝑉𝑆𝑝(𝑓, 𝑡) 

Where 𝐸𝑉𝑆𝑝(𝑓, 𝑡) 

Equation 4-59  

𝐸𝑉𝑆𝑝(𝑓, 𝑡) = |𝑎(𝑡)|
2𝐴𝐷𝑜

2 𝑆𝑣′(𝑓) 

A typical spectrum of the response could be as that seen in the Figure 4-10.  

The validity of the approximation for the uniformly modulated process (Equation 4-54) will be 

verified in § 4.6.1. 
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Figure 4-10: EVPSD of the displacement 

4.6 Data consistency checks 

 

4.6.1 Frequency response function 

 

To verify the approximation introduced in Equation 4-58 a test was performed to check the validity 

of the same.  The advantage of using the properties of the uniformly modulated process is to avoid 

the calculation of the convolution integral which can involve a huge computational effort, whenever 
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numerically performed. It is important to clarify that the natural frequency of the system was set to 

be 0.5 [Hz] and the observation time within the test was set to be 200 [sec]. 

The test procedure consists in the comparison of the frequency response function computed with 

three different approaches. The objective is to highlight possible errors associated with the 

procedure, the algorithm and the numerical integration rule, to finally select the procedure which 

leads to the better description of the evolutionary frequency response function. 

Approach 1 

The first approach is the analytical evaluation of the frequency response function as provided in 

Equation 4-46. The evaluation of the evolutionary frequency response function EFRF is done 

according to § 2.1.3.5, Equation 2-60, for slowly-varying uniformly modulated process. 

Equation 4-60 

𝐻(𝑓, 𝑡) ≅ |𝑎(𝑡)| ∗ 𝐻(𝑓) 

Approach 2 

The second approach consists in the numerical evaluation of the Fourier transform of the impulse 

response function as shown in Equation 4-47. Analogously, the time variance of the transfer function 

is added by taking the amplitude modulating function in the evaluation of it.  

Equation 4-61 

𝐻1 (𝑓, 𝑡) ≅ |𝑎(𝑡)| ∗ 𝐻1(𝑓) 

Comparing the results of the two approaches, it is possible to evidence the error associated with 

the numerical evaluation of the integral Equation 4-47. Graphically the overlapping of both functions 

is given in Figure 4-11. The information shown in Figure 4-11 is a time section (t=152 sec) of the EFRF 

of the two approaches. The time interval used for the numerical evaluation of the integral (Equation 

4-47) was 0.05 [sec] 

 

Figure 4-11. Graphic comparison of Transfer functions, t=152 [sec] dt=0.05[sec] 
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With the aim of reducing the numerical integration error in the process, the resolution of the 

analysis was incremented accounting for a time step of 0.01[sec].  This procedure leads to a more 

precise evaluation of the numeric integration. Once again there were plotted the evolutionary EFRF 

for both approaches in a fixed instant of time (t=152 sec), as expected the difference between both 

functions was considerably reduced. Therefore, it is possible to state that increasing the resolution 

reduces the difference between the EFRF, this property will be useful in a later step.  

 

Figure 4-12: Graphical comparison, increased resolution, t=152 [sec]. dt=0.01[sec] 

Approach 3 

The third approach consists in a numerical evaluation of convolution integral between the impulse 

response function and the amplitude modulating function Equation 4-57.  

The integral below was solved for every time and for every frequency. 

Equation 4-62 

𝐻2(𝑓, 𝑡) = |∫ 𝑎(𝑡 − 𝜏) ∗ ℎ(𝜏) ∗ 𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏
+∞

−∞

| 

In Figure 4-13 it is provide a graphical comparison of the three approaches for evaluating the EFRF, 

the time section plotted correspond to t=152 [sec] and the time step involved in the analysis was 

0.2[sec].  
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Figure 4-13: Comparison of FRF of the three approaches, t=152 [sec]. dt=0.2[sec] 

 

Important comments must be done on the information shown in Figure 4-13. Since the evolutionary-

FRF computed with approach 2 coincided with that of approach 3 there is an overlapping of the two 

functions and therefore it is possible to see only one of them. In addition, due to the computational 

effort involved in the process, the attempt shown in the figure was made with low frequency 

resolution. 

Increasing the resolution to a time step of 0.1 [sec] it was possible to obtain the results reported in 

Figure 4-14.  

 

Figure 4-14: FRF comparison Increasing resolution, t=152 [sec] dt=0.1[sec] 
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Comparing the results of Figure 4-14 and Figure 4-13 is possible to see the tendency of reducing the 

error related to the numerical evaluation of the integrals i.e. there is convergence of the approaches 

associated with the increase in the resolution of the analysis. 

It is possible to conclude that the evaluation of the EFRF with the three approaches, whether 

numerical or approximated gives similar results. Therefore, and for the sake of simplicity, it will be 

used in this study the approach #1 corresponding to the approximated evaluation of the EFRF by 

means of the properties of the slowly-varying uniformly modulated process.  

Finally, it will be given the so-called surface plot of the EFRF. For both principal cases analytical 

(approach 1) and numerical (approach 3) the plots are registered in Figure 4-15 and                           

Figure 4-16 respectively.  

   

Figure 4-15: EFRF Analytical                            Figure 4-16: EFRF Function Numerical 

 

Analyzing both images, it was possible to observe that the order of magnitude and the shape of both 

surfaces coincides.  
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4.7 Parametric Study: Rigid (High frequency) structures 

 

4.7.1 Study of the variance 

 

The frequency domain analysis is a useful tool for measuring the statistical spectral moments of the 

structural response. Therefore, a possible validation between time domain and frequency domain 

results can be done by the study of variance of the response computed with the two methods.  

From the properties of the PSD function it is possible to obtain the RMS of a signal. Moreover, due 

to the definition made in the wind velocity decomposition, in which the slowly varying mean 

component was extracted from the signal leaving the turbulent component as a stochastic zero-

mean process, it is possible to obtain directly the variance from the PSD. 

The time-varying variance of the process could be computed for each time 𝑡𝑖, as follows: 

Equation 4-63 

σf𝑥(𝑡𝑖)
2 = RMS𝑥 − μ𝑥(= 0) = ∫ 𝐸𝑉𝑆𝑥(𝑓, 𝑡𝑖)𝑑𝑓

+∞

−∞

 

On the other hand, the time domain analysis for the multiple Monte Carlo simulations give rise to a 

wide amount of data, that in general can be processed to obtain the statistical spectral moments of 

the response. Due to the non-stationarity and the loss of ergodicity in the random wind field, several 

realizations must be performed and integrated in the time domain by numerical approximations. To 

obtain an expression of the variance of the turbulent displacement response, comparable with that 

given in Equation 4-63 for frequency domain a procedure similar to than on Equation 4-64 was 

implemented for each step in the time domain. With N equal to the number of simulations,  μ(𝑡𝑖,𝑁) 

the mean value of all the simulations at time instant 𝑡𝑖. 

 

Equation 4-64 

σt𝑥(𝑡𝑖)
2 =∑

(𝑋(𝑡𝑖,𝑁) − μ(𝑡𝑖,𝑁))
2

N

𝑁

𝑖=1

 

The results of the time-varying variance where compared after several examinations changing 

different parameters of the simulation. The study was aimed to highlight the difference between 

the two methods and its dependence on the structural and downburst features i.e. natural 

frequencies, stiffness and damping ratios and incoming wind fields. 
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4.7.2 Error Measurement 

 

To define a metric or standardize the comparison on the variance of the structural response 

computed with the frequency domain and time domain analysis (Equation 4-63 and Equation 4-64 

respectively), two different approaches were implemented. The first one is based on the difference 

of the peak response, while the second is based on the normalized mean quadratic error NRMSE. 

The reference value for the SDOF analysis will be the frequency domain response since it was 

computed analytically. There was, however, the introduction of numerical integration for the 

evaluation of the variance since the computer code evaluates the integrals as discrete instead of 

continuous. On the other hand, the time domain analysis was performed numerically by means of 

the direct integration of the equations of motion.  

The peak index provides a fast estimation of the comparison as it gives the ratio between the 

maximum value of the variance computed with the two analyses. The Equation 4-65 provides the 

computations needed to get this checking parameter. Due to its definition, this allows to obtain a 

target measure of the difference between the two approaches.  

 

Equation 4-65 

Index =
𝑚𝑎𝑥(σt𝑥

2)

𝑚𝑎𝑥(σf𝑥
2)

 

The root mean square error RMSE was computed for each point inside the time discretization 

obtaining the total error involved in the numerical evaluation of the variance on time domain 

compared to that of the analytical variance of the response on the frequency domain.  The error 

was computed as: 

 

Equation 4-66 

RMSE = √
∑ (σf𝑥(𝑡𝑖)

2 − σt𝑥(𝑡𝑖)
2)2𝑁

1

𝑁𝑇
 

With NT equal to the number of time discretization points. 

The error was normalized with respect to the range of the reference variable i.e. the variance of the 

response computed in the frequency domain Equation 4-67. 

Equation 4-67 

NRMSE =
𝑅𝑀𝑆𝐸

𝑀𝑎𝑥(σf𝑥(𝑡𝑖)
2) −𝑀𝑖𝑛(σf𝑥(𝑡𝑖)

2)
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This type of error allows to measure how two signals differ from each other and therefore will give 

an accurate full measure of the comparison between the two approaches.  

 

4.7.3 Canonical form of the equation of motion 

 

To set the original parameters governing the equations of motion, the first step is to identify them.  

To do so, the equation of motion given in Equation 4-44 (Dynamic) should be taken into its canonic 

form to highlight the properties of its components.  Starting from Equation 4-1 dividing by the mass. 

 Equation 4-68 

�̈�𝑑 +
𝑐

𝑚
�̇�𝑑 +

𝑘

𝑚
𝑥𝑑  =

𝐹(𝑡)

𝑚
 

Stablishing:  

Equation 4-69 

{
 
 

 
 
𝐹(𝑡) = 𝐹�̅� ∗ 𝑓𝑡(𝑡)

 
𝐹�̅� = 𝜌𝐶𝐷𝐴𝑉𝑚

 
𝑓𝑡(𝑡) = 𝑎(𝑡)

2𝑣′(𝑡)

 

 

With 𝐹𝑜̅̅̅̅  a pseudo-static component of the dynamic force and 𝑓𝑡(𝑡) a modulating function giving the 

time variation of the aerodynamic force. 

The Equation 4-68 can be written as:   

Equation 4-70 

�̈�𝑑 +
𝑐

𝑚
�̇�𝑑 +

𝑘

𝑚
𝑥𝑑 =

𝐹�̅�
𝑚
𝑓𝑡(𝑡) 

Replacing the expression of the natural frequency and damping coefficient from Equation 4-71 and 

Equation 4-72 on Equation 4-70 and taking into account that the associated pseudo-static 

component of the dynamic response is denoted as 𝑥𝑑𝑜. It is possible to write the canonical form of 

the equation of motion as Equation 4-73. 

Equation 4-71 

2𝜋𝑓𝑛 = 𝜔𝑛 = √
𝑘

𝑚
 

Equation 4-72 

𝑐 = 2 ∗ 𝜁 ∗ 𝑚 ∗ 𝜔𝑛 



Politecnico di Milano 

 

156 
 

Equation 4-73 

�̈�𝑑 + 2𝜁𝜔𝑛�̇�𝑑 +𝜔𝑛
2𝑥𝑑 = 𝑥𝑑𝑜 𝜔𝑛

2 𝑓𝑡(𝑡) 

With  

𝑥𝑑𝑜 =
𝐹�̅�
𝑘

 

From the canonical form of the equation of motion Equation 4-73 it is possible to highlight that the 

governing variables are the damping 𝜁 and the natural frequency 𝜔𝑛.  

4.7.4 Reference period of the downburst 

 

A further development could be made for studying the dynamic sensitivity by introducing the 

reference period of the slowly-varying mean downburst. This reference period can be assessed from 

the mean velocity of the pointwise structure in the space already given in § 3.9.1  the downburst 

reference period 𝑇𝑟𝑒𝑓 will be given by the time window between the two peaks.  

  

Figure 4-17: Mean velocity component 

The dynamic sensitivity of the system is then given by the ratio of the natural period and the 

reference period:  

Equation 4-74 

𝛽 =
𝑇𝑛

𝑇𝑟𝑒𝑓
<<1 

Where 𝑇𝑛 stands for the natural period: 
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Equation 4-75 

𝑇𝑛 =
2𝜋

𝜔𝑛
 

Supposing a fixed downburst wind velocity field the reference period will be constant and the 

dynamic sensitivity parameter 𝛽 will be only function of the natural period. It is worth stressing that 

the slowly varying mean feature of the downburst is verified since the values that the  𝛽 parameter 

can adopt are much lower than the unity.   

4.7.5 Parameters and set 

 

According to the latter definitions it is useful to parametrize the equation of motion based on the 

damping and the dynamic sensitivity. Therefore, two parameters will be introduced. Cm is going to 

be the parameter affecting the damping and Cb that of the dynamic sensitivity.  

Equation 4-76 

𝐶𝑏 =
𝛽

𝛽𝑏
 

𝐶𝑚 =
𝜁

𝜁𝑏
 

With 𝛽𝑏 𝑎𝑛𝑑 𝜁𝑏 the basic values of the dynamic sensitivity and damping ratio for the analysis. Their 

values used for the analysis are given in Table 4-7. 

For implementation reasons it will be used a Ck coefficient introduced directly on the stiffness of 

the system. Therefore, it is needed a relationship between the Ck stiffness coefficient and the Cb 

dynamic sensitivity coefficient. 

Equation 4-77 

𝐶𝑘 = [
2𝜋

𝑇𝑟𝑒𝑓 𝐶𝑏 𝛽 𝜔𝑛,𝑏
]

2

(𝑎) 

Replacing the 𝛽 and 𝜔𝑛,𝑏: 

𝐶𝑘 = [
1

 𝐶𝑏 
]
2

(𝑏) 

Where the base natural frequency,  𝜔𝑛,𝑏 is that making Ck=1 when also Cb=1. 

In total 2.000 Monte Carlo simulations for the downburst incoming wind field were performed, 

together with 10 variations of the Cb parameter and 9 variations of the Cm parameter. The equations 

of motion were numerically integrated 180.000 times and 90 analysis in frequency domain were 

performed to compare. The values of the parameters Cb and Cm are reported in Table 4-5 and Table 

4-6 respectively.  
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The downburst reference period 𝑇𝑟𝑒𝑓 was 180 [sec], for the determination of the natural periods 

the structure data is given in § 4.7.6. It is important to highlight that the evaluation domain (natural 

periods and damping ratios) given in Table 4-5 and Table 4-6 was selected to test the methodology 

rather than provide a realistic application. A further study with structural parameters inside the 

reference values for flexible structures subject to wind actions will be provided in § 4.8. 

Table 4-5: Values of the parameter Cb 

Cb [-] Ck [-] Natural period [sec] 𝜷 [-] 

0,0625 4 0,1546 0,000104 

0,1875 2,30940 0,2034 0,000314 

0,3125 1,7888 0,2312 0,000523 

0,4375 1,5118 0,2514 0,000733 

0,5625 1,3333 0,2678 0,000942 

0,6875 1,20604 0,2815 0,001152 

0,8125 1,10940 0,2935 0,001361 

0,9375 1,03279 0,3042 0,001571 

1,0625 0,97014 0,3139 0,001780 

1,1875 0,917662 0,3228 0,001990 

Table 4-6: Values of the parameter Cm 

Cm [-] ζ [-] 

0,4 0,008 

0,6 0,012 

0,8 0,016 

1 0,02 

1,2 0,024 

1,4 0,028 

1,6 0,032 

1,8 0,036 

2 0,04 
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4.7.6 Structure input parameters 

 

To develop the numerical values of the components in Equation 4-1, reference is herein made to 

the cross section shown in Figure 4-18, which corresponds to the structure on Figure 4-1. to obtain 

the values associated with the mass and the stiffness. The dynamic exciting force given by the wind 

filed can be computed according to Equation 4-10. 

 

 

Figure 4-18: Cross section 

 

The damping ratio is given in Equation 4-78, where Cm is a parameter controlling the damping ratio 

to control its effect over the response and 𝜁𝑏  is the base damping ratio (given in Table 4-7). 

Equation 4-78 

 

𝜁 = 𝐶𝑚 ∗ 𝜁𝑏 

 

The lumped mass is given by the half of the total mass of the system, computed as shown in Equation 

4-79.   

Equation 4-79 

𝑚 =
1

2
∗ 𝜌𝑠𝑡𝑒𝑒𝑙 ∗ 𝐵 ∗ 𝐻 ∗ 𝐿 

With ρsteel been the density of the material (7850 kg/m3) and B, H and L are the dimensions of the 

beam.  



Politecnico di Milano 

 

160 
 

The stiffness on the other hand was computed as shown in Equation 4-80. Where the coefficient Ck, 

will be used as control parameter for the development of a further parametric study and the base 

stiffness Kb will be that given by the horizontal movement of the beam. 

Equation 4-80 

𝑘 = 𝐶𝑘 ∗ 𝐾𝑏 = 𝐶𝑘 ∗ 12
𝐸𝐼

𝐿3
 

Where E is the elastic modulus of the material (210 Gpa) and I is the inertia of the square section.   

The fundamental or natural frequency of the system correspond to the free vibration frequency of 

the structure and is computed according to Equation 4-81. 

Equation 4-81 

2𝜋𝑓𝑛 = 𝜔𝑛 = √
𝑘

𝑚
= 20.831√𝐶𝑘[𝑟𝑎𝑑/𝑠] 𝑜𝑟 3.315√𝐶𝑘 [ℎ𝑧] 

The structural damping was determined in Equation 4-82. 

Equation 4-82 

𝑐 = 2 ∗ 𝜁 ∗ 𝑚 ∗ 𝜔𝑛 

Table 4-7: Structure simulation parameters 

Parameter Symbol Value Unit 

Base Damping ratio  𝜁𝑏 2  [%] 

Damping ratio 𝜁 0.02 Cm [-] 

Mass m 235 [kg] 

Base Stiffness 𝑘𝑏 9.722𝑥104 [N/m] 

Stiffness 𝑘 9.722𝑥104 𝐶𝑘 [N/m] 

Circular natural frequency 𝜔𝑛 20.831√𝐶𝑘 [rad/sec] 

Natural frequency 𝑓𝑛 3.315√𝐶𝑘 [hz] 

Base circular natural frequency  𝜔𝑛𝑏 20.831 [rad/sec] 

Damping coefficient 𝑐 196.228 ∗ 𝐶𝑚 ∗ √𝐶𝑘 [kg/s] 

Drag coefficient CD       2.1 [-] 

Downburst reference period 𝑇𝑟𝑒𝑓 180 [sec] 

Base Dynamic sensitivity 𝛽𝑏 1.658x10^-3 [-]  
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4.7.7 Downburst input parameters 

The parameters defining the downburst for this section of study will be the same as those used in § 

3.9 for the generation of single point in space. Therefore, the slowly varying mean and the generic 

turbulent component are those already given in § 3.9.1 and § 3.9.2 respectively. 

The input data for the downburst characteristics are given in Table 4-8. 

Table 4-8: Downburst simulation parameters 

PARAMETER VALUE 

Integral length scale Lv 34.6 [m] 

Max. Radial velocity Vmax 80 [m/s] 

Track velocity Vt 12 [m/s] 

Height of max velocity Zmax 67 [m] 

Downburst diameter D=rmax 1000 [m] 

Intial Xo -2500 [m] 

Initial yo 150 [m] 

Angle of tracking theta 0° 

With a(t) defined as: 

𝑎(𝑡) =
|𝑉𝑟(𝑡)

2 + 𝑉𝑡
2 + 2 ∗ 𝑉𝑟(𝑡) ∗ 𝑉𝑡 ∗ 𝐶𝑜𝑠𝛽(𝑡)|

max[𝑉𝑟(𝑡)
2 + 𝑉𝑡

2 + 2 ∗ 𝑉𝑟(𝑡) ∗ 𝑉𝑡 ∗ 𝐶𝑜𝑠𝛽(𝑡)]
 

With the provided input data and using the procedure of analysis in the time domain it was possible 

to evaluate the response. To give a graphical representation of the response, a generic output time 

history corresponding to a single generation can be seen in Figure 4-19. This contains the slowly 

varying equilibrium conditions and a random response to turbulent component. 

 

Figure 4-19: Displacement time history  
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4.7.8 Results 

 

4.7.8.1 Peak Index of the variance 

 

The peak index of the variance defined as § 4.7.2 Equation 4-65 is used to give a fast estimation of 

the difference between the variance computed by two approaches i.e. time domain approach and 

approximated frequency domain approach for slowly varying uniformly-modulated process. The 

results of this index evaluated for the complete set of parameters is given in Figure 4-20. 

 

Figure 4-20: Peak Index of the variance comparison β(1.04x10-4 to 1.99x10-3) ζ(0.8 to 4 [%]). 

 

The values that this indicator adopts vary between 1.0346 to 1.2709 for the pairs damping ratio and 

dynamic sensitivity of (0.8%, 1.04e-7) and (4%, 0.0014) respectively. 

 

4.7.8.2 NRMSE of the variance 

 

The Normalized Root Mean Square of the variance comparison defined as § 4.7.2 Equation 4-67 is 

used to give a full estimation of the difference between the variance computed by two approaches. 

The results of this index evaluated for the complete set of parameters is given in Figure 4-21. 
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Figure 4-21: NRMSE of the variance comparison β(1.04x10-4 to 1.99x10-3) ζ(0.8 to 4 [%]). 

The values that this indicator adopts vary between 0.0625 to 0.2162 for the pairs damping ratio and 

dynamic sensitivity of (1.2%, 1.04e-7) and (4%, 0.002) respectively. 

 

4.7.8.3 Graphical comparison of the variance 

 

The graphical representation of the case giving the lower value of the peak index is shown in Figure 

4-22. It is possible to appreciate that both lines representing the variance computed in frequency 

domain (with the approximation for slowly varying uniformly modulated process) and in time 

domain show a very good agreement for this case. It can be observed that while the approximated 

frequency domain approach is characterized by a continuous smooth line in the variance, that one 

coming from the time domain shows a fluctuating behavior. It is worth to stress that the fluctuation 

in the latter approach is reduced by increasing the number of Monte Carlo simulations as explained 

in the section of the convergence check.  

The graphical representation of the case giving the biggest value of the peak index is shown in Figure 

4-23. It is possible to appreciate that even though both functions present a similar time structure 

i.e. time of the peaks and the minimums, the values of the variance of the time domain approach 

are greater than those coming from the approximated frequency domain. Showing a dependence 

of the peak index on the natural period and damping ratio. 
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Figure 4-22: Graphical comparison of the variance β=1.04e-4 ζ=0.8% 

 

Figure 4-23: Graphical comparison of the variance β=1.36e-3 ζ=4% 

The variation of the peak index inside the domain of study is close to 23%. 

The graphical representation of the case giving the lower value of the normalized root mean squared 

error is shown in Figure 4-24. As in the case of Figure 4-22, the result of the analysis by the two 

approaches in time and frequency showed to be consistent evidencing a good matching between 

the variance calculated with the two methods. However, for the case giving the greatest value of 

the NRMSE (shown in Figure 4-25) the similarities of both responses differ, reporting an increase of 
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the variance coming from the time domain approach compared with that of the aproximated 

frequency domain.  

 

Figure 4-24: Graphical comparison of the variance β=1.04e-4 ζ=1.2% 

 

Figure 4-25: Graphical comparison of the variance β=1.99e-3 ζ=4% 

The variation of the NRMSE inside the domain of study is close to 15%. 
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4.7.8.4 Monte Carlo Convergence Check 

 

With the purpose of checking the consistency of the Monte Carlo simulations a convergence test 

was performed. The test consisted in the revision of the statistical properties of the response 

parameters obtained in the time domain by incrementing the number of simulations. 

The value of peak of the variance by increasing the number of simulations with a fixed value of the 

natural period of 0.1546 [sec] and damping ratio ζ of 2% is shown in Figure 4-26. 

From the figure it is possible to appreciate that the peak value of variance for this case is converging 

to a value of 3.268e-5 from 1.600 simulations. 

 

 

Figure 4-26: Convergence check for maximum value of variance in time domain 

The value of the mean of the variance by increasing the number of simulations with a fixed value of 

the natural period of 0.1546 [sec]and damping ratio ζ of 2% is shown in Figure 4-27. 
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Figure 4-27: Convergence check for mean value of variance in time domain 

From the figure it is possible to appreciate that the mean value of variance for this case has not yet 

converge at 2.000 simulations. However,  the slope at the 2.000 simulations is close to be horizontal 

arriving to a value about 4.854e-6. 

The value of the index parameter comparing the variance from the time domain analysis with that 

of the  approximated frequency domain by increasing the number of simulations with a fixed value 

of the natural period of 0.1546 [sec]and damping ratio ζ of 2% is shown in Figure 4-28. 

 

Figure 4-28: Convergence check for Index parameter of the comparison 
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From the figure it is possible to appreciate that the index parameter of the comparison for this case 

is converging to a value of 1.11 from 1700 simulations. 

The value of the NRMSE comparing the variance from the time domain analysis with that of the 

approximated frequency domain by increasing the number of simulations with a fixed value of the 

natural period of 0.1546 [sec] and damping ratio ζ of 2% is shown in Figure 4-29. 

 

Figure 4-29: Convergence check for NRMSE of the comparison. 

From the figure it is possible to appreciate that the NRMSE of the comparison for this case is 

converging to a value of 0.024 from 1.000 simulations. 
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4.7.9 Conclusions 

 

The development of the parametric study showed a correspondence between the response coming 

from the time domain analysis and that coming from the approximated frequency domain analysis 

(for slowly varying uniformly modulated process) depend on the structural parameters i.e. natural 

frequencies (periods) and damping ratios.  

Inside the domain of study, the ratio between the peak of the variance vary from 1.0346 to 1.2709 

corresponding to a difference of 3 to 27%. On the other hand, the NMRSE went from 0.0625 to 

0.2162 corresponding to 6 to 21%. It is worth stressing that both parameters agree in the order of 

magnitude of the difference between the two before-mentioned approaches. 

The range of the peak index is close to 24%, while that of the NMRSE is 15%. This fact evidences that 

the incongruency in the variance of the response computed with the time domain method 

compared to that of the approximated frequency domain is concentered in the peaks rather than 

the entire development of the signals.  

The possible explanations for the difference could be ascribed to the approximation of the 

evolutionary frequency response function for the slowly varying uniformly modulated process in the 

frequency domain approach. It is recommended to extend the study with the evaluation of the 

convolution integral for the EFRF. This case will be further developed in the section 4.8.3 of the 

present document. 

This discrepancy, however, could not be attributed to the statistic population of the random 

variable. It is important to highlight that the convergence test of the Monte Carlo simulations 

showed that the maximum value of the variance coming from the time domain analysis, the peak 

index and the NMRSE are converging to 3.268e-5 [m2], 1.11 [-] and 0.024 [-] respectively.  

The methodology was tested. However, to completely assess the comparison between the 

frequency and time domain approaches it is important to extend the study for structures with 

natural frequencies and damping ratios inside the reference values for flexible structures submitted 

to wind actions. 
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4.8 Parametric Study: Flexible (Low frequency) structures 

 

With the aim of comparing the time domain approach (proposed in § 4.3 Time domain analysis) with 

the frequency domain approach (proposed in § 4.5) for the case of flexible structures subjected to 

downburst wind outflows, It will be performed a study similar to § 4.7 with different input 

parameters. 

 

4.8.1 Parameter set 

 

The parameters input data is given in Table 4-9 and table 4-10. 

Table 4-9: Values of the parameter Cb 

Cb [-] Ck [-] Tn,Natural period [sec] 

6,839 0,382 0.5 

109,322 0,095 1 

68348 0,0038 5 

1093546 0,000956 10 

 

Table 4-10: Values of the parameter Cm 

Cm [-] ζ [-] 

0,05  0,001 

0,25  0,005 

0,5  0,01 

0.75  0,015 

 

While the structural input parameters are reported in Table 4-11, the downburst parameters are 

reported in Table 4-12. 
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Table 4-11: Structure simulation parameters 

Parameter Symbol Value Unit 

Base Damping ratio  𝜁𝑏 2  [%] 

Damping ratio 𝜁 0.02 Cm [-] 

Mass m 235 [kg] 

Base Stiffness 𝑘𝑏 9.722𝑥104 [N/m] 

Stiffness 𝑘 9.722𝑥104 𝐶𝑘 [N/m] 

Circular natural frequency 𝜔𝑛 20.831√𝐶𝑘 [rad/sec] 

Natural frequency 𝑓𝑛 3.315√𝐶𝑘 [hz] 

Base circular natural frequency  𝜔𝑛𝑏 20.831 [rad/sec] 

Damping coefficient 𝑐 196.228 ∗ 𝐶𝑚 ∗ √𝐶𝑘 [kg/s] 

Drag coefficient CD       2.1 [-] 

Downburst reference period 𝑇𝑟𝑒𝑓 180 [sec] 

Base Dynamic sensitivity 𝛽𝑏 1.658x10^-3 [-]  

 

 Table 4-12: Downburst simulation parameters 

PARAMETER VALUE 

Integral length scale Lv 34.6 [m] 

Max. Radial velocity Vmax 80 [m/s] 

Track velocity Vt 12 [m/s] 

Height of max velocity Zmax 67 [m] 

Downburst diameter D=rmax 1000 [m] 

Intial Xo -2500 [m] 

Initial yo 150 [m] 

Angle of tracking theta 0° 
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4.8.2 Results 

 

4.8.2.1 Peak Index of the variance 

 

The peak index of the variance defined as § 4.7.2 Equation 4-65 is used to give a fast estimation of 

the difference between the variance computed by two approaches, i.e. time domain approach and 

approximated frequency domain for slowly varying uniformly modulated process. The results of this 

index evaluated for the complete set of parameters is given in Figure 4-30. 

The results of the peak index are in the order of 10 to 40% difference between the variances in the 

range of natural periods between 0.5 [sec] and 1 [sec]. For the cases of  5 [sec] and 10 [sec] of natural 

periods the peak of the variance in the frequency domain seems to be  greater than that of the time 

domain. 

4.8.2.2 NRMSE of the variance 

 

The Normalized Root Mean Square of the variance comparison defined as § 4.7.2 Equation 4-67 is 

used to give a full estimation of the difference between the variance computed by two approaches. 

The results of this index evaluated for the complete set of parameters is given in Figure 4-31. 

 

Figure 4-30: Peak Index of the variance comparison Tn(0.5 to 10) ζ(0.1 to 1.5 [%]). 
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Figure 4-31: NRMSE of the variance comparison Tn(0.5 to 10) ζ(0.1 to 1.5 [%]). 

The NRMSE seems to behave in the same order of magnitude of the peak index i.e. 10 to 40% for Tn 

between 0.5 and 1[sec]. In addition, it increases for natural periods of 5 and 10[sec], evidencing a 

remarkable difference between the two approaches when the resonant response is excited. 

4.8.2.3 Graphical comparison of the variance 

 

For natural periods of 0.5 [sec] there is remarkable difference between the two approaches for 

damping ratio of 0.1%. By increasing the damping ratio, it is possible to observe that the fit between 

both approaches improves, as it can be observed from Figure 4-32 to Figure 4-35. 
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Figure 4-32:Var. Comp. Tn=0.5 sec ζ=0.1% 

 

Figure 4-33:Var. Comp. Tn=0.5 sec ζ=0.5% 
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Figure 4-34:Var. Comp. Tn=0.5 sec ζ=1% 

 

Figure 4-35:Var. Comp. Tn=0.5 sec ζ=1.5% 

For natural period of 1 [sec] it is observed a similar behavior compared with 0.5 [sec] by increasing 

the damping ratio. The variance comparison for the different cases is given from Figure 4-36 to 

Figure 4-39.  

It is important to state that the fit of the variance of the two approaches for both natural periods (1 

and 0.5 sec) seems to be in the same order and it could be also verified with the analysis of the error 

indicators of Figure 4-30 and Figure 4-31 (peak index and NRMSE).  
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Figure 4-36:Var. Comp. Tn=1 sec ζ=0.1% 

 

Figure 4-37:Var. Comp. Tn=1 sec ζ=0.5% 
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Figure 4-38:Var. Comp. Tn=1 sec ζ=1% 

 

Figure 4-39:Var. Comp. Tn=1 sec ζ=1.5% 

With the analysis of the first two natural periods it has been exposed the dependency of the results 

on the damping ratio. As it can be seen from the figures, for damping ratios of 0.5% and superior 

the variance computed with the approximate frequency domain approach coincides with that of the 

time domain. Therefore, it is possible to state that the reliability of the results obtained with the 

approximate frequency domain approach is not guaranteed for damping ratios close to 0.1%. 
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For natural periods of 5 and 10 [sec] the associated natural frequencies are 0.2 and 0.1 [Hz] 

respectively. If reference is made to the Von Karman spectrum in Figure 4-40, it possible to see that 

the natural frequencies fall inside the range where the wind turbulence signal has more associated 

energy. Therefore, the response is governed by the resonant component.  

 

Figure 4-40:Von Karman spectrum 

In Figure 4-41 and Figure 4-42 there are reported the cases of resonant response with low damping 

condition with natural periods of 5 and 10 [sec] respectively and damping ratio of 0.1%. From the 

figures it is possible to verify a remarkable difference between the two approaches (approximate 

frequency domain and time domain) as evidenced from the analysis of the error indexes (Figure 

4-30 and Figure 4-31). 

 

Figure 4-41:Var. Comp. Tn=5 sec ζ=0.1% 



Description and Simulation of Thunderstorms Downburst and Their Effect Over Long Structures 

 

179 
 

 

Figure 4-42:Var. Comp. Tn=10 sec ζ=0.1% 

By increasing the damping, the difference of the two signals tend to reduce. The result can be seen 

from  Figure 4-43 to Figure 4-46. 

 

Figure 4-43:Var. Comp. Tn=5 sec ζ=1% 
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Figure 4-44:Var. Comp. Tn=5 sec ζ=1.5% 

 

Figure 4-45:Var. Comp. Tn=10 sec ζ=1% 
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Figure 4-46:Var. Comp. Tn=10 sec ζ=1.5% 

 

A possible explanation for this behavior lays on the assumption made of slowly varying uniformly 

modulated process. From (Priestley 1965) for this type of non-stationary process the amplitude 

modulating function of the spectral representation of the response is the same as the input signal,  

Equation 4-83 equivalent to Equation 2-59. 

Equation 4-83 

𝐸𝑉𝑆𝑌(𝑓, 𝑡) ≅ |𝐻(𝑓)|
2𝐸𝑉𝑆𝑋(𝑓, 𝑡) 

 

However, this assumption is valid if the amplitude modulating function a(t) is almost constant for 

the range in which the impulse response function h(t) is varying.  This assumption was successfully 

verified for the case of structures with damping ratios of 2% and natural frequencies of 3.3 [Hz] in § 

4.5.3  and § 4.6.1.  

In order to extend the results to the case of low-damped flexible structures it will be computed the 

impulse response function for some of the cases within the parametric study. The results, given 

from Figure 4-48 to Figure 4-49 will be compared with the amplitude modulation function coming 

from the downburst outflow is given in Figure 4-47. 



Politecnico di Milano 

 

182 
 

 

Figure 4-47:Amplitude modulating function 

 

Figure 4-48:Impulse response function for Tn=0.5 sec ζ=0.1% 

From Figure 4-48 it is possible to see that the period of oscillation of the low-damped system goes 

from 0 to 200 [sec]. Range in which the amplitude modulating function has reached the maximum 

and complete an oscillation cycle i.e. not constant. Therefore, it is possible to state that the 

assumption of slowly varying uniformly modulated process is not fulfilled in this case.   
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However, by increasing the damping from 0.1 to a 1% it is possible to see a remarkable improvement 

in the behavior of the approximate solution. In Figure 4-49 the period of oscillation goes from 0 to 

less than 50 [sec] range for which the amplitude modulating function is almost constant. 

 

Figure 4-49:Impulse response function for Tn=0.5 sec ζ=1% 

A different situation occurs when the resonant response is obtained. As it can be seen in Figure 4-50 

and Figure 4-51. The oscillation period of the impulse response function covers the entire 500 [sec] 

time window. Therefore, the assumption of slowly varying uniformly modulated response cannot 

be verified for this type of systems. 
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Figure 4-50:Impulse response function for Tn=10 sec ζ=0.1% 

 

Figure 4-51:Impulse response function for Tn=10 sec ζ=1% 
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With the before-mentioned comparison between the amplitude modulating function and the 

impulse response function for low-damped flexible structures it is possible to state that the slowly 

varying uniformly modulated process assumption that was adopted to evaluate the system response 

is no longer valid. Therefore, the frequency domain analysis should be performed by evaluating the 

generalized transfer function (Equation 4-57) without approximations. As an example, the response 

of the system will be computed by numerically evaluating the convolution integral of Equation 4-57 

in the “worst scenario” for the approximate frequency domain approach, i.e. Tn= 10[sec] and ζ=0.1%. 

 

4.8.3 Numerical approach 

 

In order to prove the validity of the methodology for the case of low-damped flexible structures, the 

response in frequency domain of oscillator with Tn= 10[sec] and ζ=0.1% will be computed using the 

full evaluation of the response i.e. evaluating the generalized transfer function H2(f,t) as it is given 

in Equation 4-57. Therefore, the evolutionary spectrum of the response will be computed with the 

full application as given in Equation 4-56. 

The evaluation of Equation 4-57 is herein tackled by using a numerical integration rule. This is, of 

course, related to a quite huge computational effort, which, however, could be avoided at least 

reduced by adopting analytical or semi-analytical integration strategies.  

The associated variance computed on the time domain for the case of study is that given in Figure 

4-52. 

 

Figure 4-52: Variance computed for the time domain Tn=10[sec], ζ=0.1% 
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The variance of the frequency domain was computed according to Equation 4-63. And the 

superposition of the variance computed by the two approaches is given in the following figure:  

 

Figure 4-53: Comparison of the Variance computed for the time domain and frequency domain Tn=10[sec], ζ=0.1% 

From the figure it is possible to see that the variance coming the two approaches match in behavior 

and order of magnitude. Therefore, the frequency domain methodology proposed herein is verified 

for the case of low-damped flexible structures. 

4.8.4 Response evaluation on time domain 

 

To extend the previous results, it will be performed a final check in the relation of: input / output 

signals computed with the time domain approach. It is important to remark that the assessment of 

the response in the time domain was tested and benchmarked with the examples given in the book 

(Chopra 2012) and with the commercial code Sap2000 - Annex A. 

The test consists in verify the turbulent component of a generic response coming from the 2.000 

Monte Carlo simulations and compare it with its correspondent turbulent force. The turbulent 

displacement is the Xd(t) component of Equation 4-16 and its associated turbulent force is the Fd(t) 

component of the Equation 4-12.  

The scope of the test is to verify how much the amplitude modulating function of the input signal is 

transformed by the system in the output signal. The analysis is made by observation of the graphical 

representations given from Figure 4-54 to Figure 4-59. 
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Comparing the time histories of the response it is possible to observe the following:  

For the value used in § 4.7 Tn=0.32 [sec] and ζ=2% reported in Figure 4-54. The envelope of both 

signals is the same. 

 

Figure 4-54: Input/output comparison. Tn=0.32 sec and ζ=2%. 

Increasing the natural period to Tn=0.5 sec and ζ=2% as in Figure 4-55, the envelope of both signals 

do not substancially differ. 

 

Figure 4-55: Input/output comparison. Tn=0.5 sec and ζ=2%. 
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However, if the damping ratio is decreased it starts to appear a difference between the modulating 

function of response compared with that of the input. In Figure 4-56 it is plotted the case of Tn= 0.5 

[sec] and ζ=0.5%. 

 

 

Figure 4-56: Input/output comparison. Tn=0.5 sec and ζ=0.5%. 

If the damping ratio is decreased to very low values (0.1%) the difference starts to be more clear as 

it can be seen in Figure 4-57 for Tn= 0.5 [sec] and ζ=0.1%. Even though the similarity of modulating 

functions of both signals has been lost, some equalities could be seen. 

 

 

Figure 4-57: Input/output comparison. Tn=0.5 sec and ζ=0.1%. 
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Accounting for the effect of the resonant response, it is possible to see a complete difference 

between the two signals regardless the damping ratio. The relationship is as shown in Figure 4-58 

and Figure 4-59. 

 

Figure 4-58: Input/output comparison. Tn=10 sec and ζ=2%. 

 

 

Figure 4-59: Input/output comparison. Tn=10 sec and ζ=0.1%. 

With graphical analysis of the time histories, it is possible to verify that for structures associated to 

small damping ratios and low natural frequencies the amplitude modulating function of the 

response differs to that of the input signal. Therefore, the assumption of slowly varying uniformly-

modulated process of the response cannot be fulfilled and for its assessment it must be 

implemented an approach as that of paragraph 4.8.3. 
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These results, hence, further strengthen the conclusion reached in the previous section (4.8.3): in 

the case of slightly damped flexible structures it is recommended to compute the convolution 

integral Equation 4-57 without introducing approximations. 

4.8.5 Conclusions 

 

To recall the response in the frequency domain of a system submitted to downburst outflow, the 

random process of the structural response can be catalogued as slowly varying uniformly modulated 

non-stationary process, if the resonant component has not a major contribution in the overall 

response and the system has a damping ratio of at least 0.5% according to the study developed 

herein.  

For the case of slightly-damped flexible structures it was demonstrated that the approximation of 

uniformly modulated process for the evaluation of the response is no longer valid. Therefore, it is 

recommended to solve the problem by numerical evaluation of the generalized transfer function. 

The system response evaluated with the latter approach, indeed, showed a very good agreement 

with the results coming from the time domain approach. 
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CHAPTER 5. ASSESSMENT OF FAILURE PROBABILITY 
 

5.1 Scope of the analysis 

 

This study was made to compare the effects of the wind velocity fields computed with the traditional 

Atmospheric Boundary Layer model (ABL) and those of the downburst wind model. A simple 

reduced structure of one degree of freedom was first analyzed to obtain a representative 

description of the behavior. It is proposed to extend the results of the present study for more 

complex MDOF structures, in further step of the research.  

To give a quantitative measurement for the comparison, the adopted criteria was related to the 

maximum velocities coming from both approaches (ABL & Downburst) and their associated failure 

probability. The latter can be associated to the overpassing of a certain limit state (even in elastic 

range) defined for the case of study. It is worth noting that the failure probability here is not 

necessarily related to a specific non-linear collapse mechanism.   

 

5.2 Case of study 

 

The first attempt for comparing both phenomena is the assessment of the failure probability of 

system of SDOF Figure 5-1(c). The system represents a tall chimney as that shown in Figure 5-1 (a). 

Due to the simple dynamic behavior of the structure, as an inverted pendulum, the structural 

response can be reduced, as a first approximation, to an equivalent SDOF as shown in Figure 5-1 (b).  

 

Figure 5-1 Structure reduced model a) Real structure b) equivalent 1mode structure c) equivalent 1dof system 
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5.3 Limit state 

 

The failure probability in this study is related to the exceedance of limit displacement of the tip of 

the structure. The limit displacement is linked to the elastic limit of the moment at the base by 

means of the structural internal forces. 

For the case of a square cross section the elastic limit bending moment, 𝑀𝑒 , is given by:  

Equation 5-1 

𝑀𝑒 =
𝐹𝑦′  ∗ 𝐼𝑦

ℎ/2
→ 𝐹𝑦′   ∗ 𝑊𝑒 

Where 𝐹𝑦′  is the effective yielding limit of the material and 𝑊𝑒 the limit elastic section modulus, 𝐼𝑦 

is the section inertia and ℎ the height. 

For the cantilever beam the tip displacement 𝛿𝑡𝑖𝑝 and bending moment 𝑀 according to Figure 5-2 

are given in Equation 5-2. 

                  

Figure 5-2: Structural behavior of cantilever beam 

Equation 5-2 

𝛿𝑡𝑖𝑝 =
𝑃𝐿3

3𝐸𝐼
 ,   𝑀 = 𝑃𝐿 →  𝛿𝑡𝑖𝑝 =

𝑀𝐿2

3𝐸𝐼
 

For the elastic limit the tip displacement, 𝛿𝑡𝑖𝑝,𝑒can be obtained as follows: 

Equation 5-3 

𝛿𝑡𝑖𝑝,𝑒 =
𝑀𝑒𝐿

2

3𝐸𝐼
 

The limit displacement 𝛿𝐿𝑖𝑚 for the analysis will be taken as fraction of the elastic limit, therefore 

Equation 5-3 becomes:  
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Equation 5-4 

𝛿𝑙𝑖𝑚 = 𝜆 ∗ 𝛿𝑡𝑖𝑝,𝑒 

With 𝜆 a multiplier lower than 1 used for test calibration. 

5.4 Deterministic component (mean) 

 

The pseudo-static component of the structural response computed as Equation 4-16 will be 

compared with the limit displacement. This will give a brief approximation (neglecting dynamic 

effects) of the stress state under the deterministic component of the wind velocity. 

 

5.5 Failure Probability and Reliability Index 

 

The probability of exceedance of the limit displacement 𝛿𝐿𝑖𝑚 is characterized by the variable 𝛳,𝑖𝑛 as 

shown in Equation 5-5 (Biondini 2018). The index 𝑖𝑛 accounts for the generic Monte-Carlo 

simulation. The variables 𝑋𝑚 and 𝑋𝑑,𝑖𝑛 are respectively the pseudo-static and turbulent components 

of the displacement computed according to § 4.3 Time domain analysis.  

 

Equation 5-5 

𝛳,𝑖𝑛 =
𝛿𝑙𝑖𝑚

𝑋𝑚 +max (𝑋𝑑,𝑖𝑛)
 

The probability of failure 𝐹𝑃 is defined as number of simulations exceeding the limit value (or 

analogously rend 𝛳,𝑖𝑛<1) divided over the total number of Monte-Carlo simulations, N, Equation 

5-6. 

Equation 5-6 

𝐹𝑃 =
𝑁𝐹

𝑁
 

With NF the number of simulations exceeding the limit value.  
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5.6 Atmospheric Boundary Layer Model 

 

For the analysis it is first computed the failure probability for a reference ABL wind. It is supposed 

that the structure is located in the city of Genova Region of Liguria, Italy. No topographic effects will 

be introduced in the reference velocity at the tip of the structure. The terrain category will be chosen 

as 0 i.e. Sea or coastal area exposed to open sea. The parameters used for the simulation of ABL 

model are reported in Table 5-1. 

Table 5-1: ABL model parameters 

Parameter Symbol Value 

Basic Velocity Vb 30[m/s] 
Roughness length Zo 0.03 [m] 

Integral length scale Lv 111.81 [m] 
Turbulence intensity Iv 0.15  

Height of point Z    15 [m] 
Reference velocity at tip Vref    32.51 [m/s] 
Number of simulations N 2.000 [und] 

 

The vertical profile for the ABL model is following the logarithmic rule Equation 5-7. The profile is as 

that shown in Figure 5-3. In the figure it is highlighted the acting velocity at the reference height 

Equation 5-7 

𝑉(𝑧) = 𝑉𝑏 ∗ 0.19 (
𝑧𝑜

0.05
)
0.07

𝐿𝑁 (
𝑧

𝑧𝑜
) 

 

Figure 5-3: Vertical profile ABL model  
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5.7 Equivalent Downburst model 

 

For the estimation downburst failure probability there were used different values of the maximum 

velocity of the downburst vmax (as defined in § 3.4). The equivalent downburst outflow is that giving 

the same failure probability of the reference ABL model. 

The comparison is made in terms of the velocity of both wind fields and in their probability of 

occurrence. For this latter parameter, it is worth stressing that while for the case of the winds 

coming from the ABL it is possible to use the available aeolian maps, for the downburst the only 

accessible data base is that one reported on the WP (Wind and ports) and WPS (Wind Ports and Sea) 

projects in the zone of Liguria, Italy (Solari, et al. 2015).  

It is important to remark that the characteristic velocity of downburst model defined in § 3.4 is the 

maximum radial velocity. This velocity is reached at the certain height, Zmax, not necessarily equal 

the reference height of the tip of the cantilever, Zref, therefore a modification according to the 

vertical profile should be included in the computations. In addition, there is also the effect of the 

tracking velocity of the mother storm which is vectorially added to the maximum radial component.  

Finally, the maximum velocity of the downburst at the reference point must be computed for every 

velocity profile. The parameters used for the simulation of downburst outflow are reported in Table 

5-2. 

Table 5-2: Parameters to define downburst outflow 

Parameter Value 

Integral length scale Lv 34.6 [m] 
Turbulence intensity Iv                       0.12  

Max Radial velocity vmax {25.0 27.5 28.5 30.0 32.5} [m/s] 
Ref. radial velocity {24.03 26.4 27.4 28.8 31.2} [m/s] 
Track velocity Vt 12 [m/s] 

Vmax* {35.9 38.3 39.3 40.6 43.1} [m/s] 
Height of max velocity Zmax 22.5 [m] 
Downburst diameter D=rmax 1.000 [m] 

Intial Xo -2.500 [m] 
Initial yo 150 [m] 

Number of simulations, N 2.000 

 

From Figure 5-4 to Figure 5-13 it is possible to appreciate the vertical and radial diffusion profiles of 

the downburst models used in the current study. In the figures are highlighted the maximum radial 

velocity vmax and the maximum downburst velocity Vmax*. 
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Figure 5-4: Vertical profile vmax=25 m/s 

 

Figure 5-5: Mean velocity vmax=25 m/s 
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Figure 5-6: Vertical profile vmax=27.5 m/s 

 

Figure 5-7: Mean velocity vmax=27.5 m/s 
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Figure 5-8: Vertical profile vmax=28.5 m/s 

 

Figure 5-9: Mean velocity vmax=28.5 m/s 
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Figure 5-10: Vertical profile vmax=30 m/s 

 

Figure 5-11: Mean velocity vmax=30 m/s 
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Figure 5-12: Vertical profile vmax=32.5 m/s 

 

Figure 5-13: Mean velocity vmax=32.5 m/s 
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5.8 Test Setting 

The material selected for the simulation is structural steel S235. The properties of the material are 

reported in Table 5-3. The damping ratio of the system is taken as 2%. 

Table 5-3: Material simulation parameters 

Parameter Symbol Value Unit 

Young Modulus  𝐸 210 [GPa] 

Poisson Ratio 𝜈 0.2 [-] 

Density ρ 7.850 [kg/m3] 

Shear modulus 𝐺 87,5 [GPa] 

Effective Yield Limit Fy’=0.85*F 

y 

199,750 [MPa] 

 

The geometric properties of the system are reported in Table 5-4. 

Table 5-4: Cross section simulation parameters 

Parameter Symbol Value Unit 

Area  𝐴 0.25  [m2] 

Width B 0.5 [m] 

Height H 0.5 [m] 

Length L 15 [m] 

Inertia in y-y’ direction 𝐼𝑦 5.21e-3 [m4] 

Inertia in z-z’ direction 𝐼𝑧 5.21e-3 [m4] 

Elastic section modulus We 2.08e-2 [m3] 

Natural frequency fn 2.587 [Hz] 
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The limit displacement is reported in Table 5-5. 

Table 5-5: Limit displacement 

Parameter Symbol Value Unit 

Elastic limit moment Me 4161.458333 [kN*m] 

Calibration multiplier λ 0.0265 [-] 

Limit displacement δlim 0.0075 [m] 

5.9 Results 

Evaluating the response associated to the mean component of the velocity, the pseudo-static 

response, it is possible to get a measure of the safety coefficient of the defined limit displacement. 

The results are reported in the Table 5-6. 

Table 5-6: Safety Coefficient 

Model Model Velocity Max Mean Vel. SF Unit 

ABL 30 32.5 0,349 [%] 

DWB 25 35.9 0,427 [%] 

DWB 27.5 38.3 0,486 [%] 

DWB 28.5 39.3 0,510 [%] 

DWB 30 40.6 0,548 [%] 

DWB 32.5 43.1 0,615 [%] 

Introducing the dynamic amplification factor, DYN, as the ratio between the turbulent component 

and the pseudo static. The failure probability For the different velocities is reported in Table 5-7 and 

graphically in Figure 5-14. 

Table 5-7: Failure probability 

Model Model Velocity Max Mean Vel. DYN  Value Unit 

ABL 30 32.5 1,86  0,56 [%] 

DWB 25 35.9 0,84  0,081 [%] 

DWB 27.5 38.3 0,85  0,532 [%] 

Range of the equivalent DWB model 

DWB 28.5 39.3 0,86  0,757 [%] 

DWB 30 40.6 0,87  0,957 [%] 

DWB 32.5 43.1 0,89  1 [%] 
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Comparing the dynamic amplification factor, DYN, of the synoptic winds computed with the ABL 

model with that of the DWB model is possible to see that the former is more than two times greater 

than the latter. A possible reason for this behavior lays inside the Von Karman PSD function which 

depends on the integral length scale and the turbulence intensity, as well as, on the mean velocity.  

Even though the mean velocities of both models are in the same order of magnitude, the integral 

length scales of the ABL model are greater than those of the DWB and the turbulence intensity of 

the ABL model is 25% higher than that of the downburst. 

 

Figure 5-14: Downburst failure probability vs vmax 

 

The equivalent downburst model will have a reference radial velocity of 27.7 [m/s] while the ABL 

model will be related to a basic velocity, 𝑉𝑏, of 30 [m/s]. While the maximum mean velocity at the 

reference point is 32.3 [m/s] for the ABL model, it is approximately 39 [m/s] for DWB model. 

From (Solari, et al. 2015) it is possible to obtain the record of peak velocity measured in the same 

zone supposed for the development of the case of study; city of Genova Region of Liguria, Italy. The 

results are reported in Figure 5-15.  

 

 

Figure 5-15: Peaks of downburst wind fields from WP and WPS.Aadapted from (Solari, et al. 2015) 
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The maximum velocities reported on Figure 5-15 are in the range of 30 to 35 [m/s]. Since the 

maximum velocity of the equivalent DWB model is close to 39 [m/s], it is possible to notice none of 

the recorded DWB inside the framework of the WP and WPS projects exceed the maximum velocity 

of the so-defined equivalent downburst model. Two main reasons for this behavior can be 

explained. First is the associated return period of the aeolian maps considered in the design rules of 

Eurocode1 but not in the available records of downburst, it is recommended to perform a statistical 

analysis on this parameter for downburst models in a further step of the research. A second reason 

is the case of study, according to (Holmes and Oliver 2000) wind outflow of downburst has a greater 

impact over long structures because the acting diameter related to this phenomena (≈ 4[𝑘𝑚]) is 

larger than the acting length of the winds coming from the ABL (≈200[m]). 
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CHAPTER 6. MDOF SYSTEM ANALYSIS 
 

6.1 Wind Field Simulation 

 

On CHAPTER 4 SDOF SYSTEM ANALYSIS, it was so far explained the procedure for the analysis of 

single degree of freedom structure. for the MDOF systems there must be introduced the 

relationships for analyzing spatial structures in 3-dimensions rather than point like structures. 

 

The wind field description adopted will be that already described in § 3.10.   

 

6.2 Structural Description 

 

For the evaluation of the response of the MDOF system the space dimensions must be added to the 

SDOF reduced systems given in Numeral 4.3 Time domain analysis, therefore the scalar quantities 

of the mass, stiffness, damping, and natural frequency must be handled in matrix format.  In the 

following, a brief introduction to the provisions and characteristics of the matrices will be explained 

together with the modal approach and the Newmark integration method of the equations of 

motion. 

6.2.1 Mass matrix 

 

The inertia forces fIj acting on the structure components are function of the element mass and the 

acceleration ẍ(t).  In Figure 6-1 it is shown a representation of the equilibrium condition of the 

structure, the coefficients mij are the inertia forces in the node-j due to the application of a unit 

acceleration at node-i. 

Equation 6-1 

fIj = m1j ∗ ẍ1 +m2j ∗ ẍ2+. . . +mnj ∗ x ̈ n  
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Figure 6-1 Inertia forces 

 

Equation 6-1 could be represented in matrix form as: 

Equation 6-2 

[

𝑓1
⋮
𝑓𝑗

] = [

𝑚11 ⋯ 𝑚1𝑛
⋮ ⋱ ⋮
𝑚𝑛1 ⋯ 𝑚𝑛𝑛

] ∗ [
ẍ1
⋮
ẍn

] (𝑎) 

fI = M ∗ ẍ     (𝑏) 

The mass matrix is symmetric, therefore mij=mji.  

There are two different approaches to define the mass of the structures, assumed mode method 

and lumped masses. While the former presents a more physical continuous mass distribution along 

the elements the latter represent a simplified discretized or point mass on the DOF’s. While The 

assumed mass mode is more precise in the approximation of the mass system, the lumped mass 

approaches provides a simple definition of the mass from a practical point of view. 

The two approaches were implemented in the development of the model for the MDOF analysis to 

profit of the advantages of one or the other according to structural necessities. Therefore, both 

methods will be explained herein.  

 

6.2.1.1 Assumed mode method-Consistent mass matrix.  

 

This method is based on an approximation (assumption) of the deformed shape of the structure 

with Hermite shape functions, supposing the velocities will follow the same shape of the 

displacements. Very briefly the idea of the method is to obtain the gradient of kinetic energy 

associated with the mass and the velocity. The mass matrix could be expressed as coefficient matrix 

of the quadratic form associated to the kinetic energy of the system. 



Description and Simulation of Thunderstorms Downburst and Their Effect Over Long Structures 

 

207 
 

Equation 6-3 

u̇(x, t) = u̇(t) ∗ ψ(x) 

Equation 6-3 shows the decomposition of the velocity in space and time as a function of time and 

the ψ(x) shape function on space.  The Kinect energy is therefore:  

Equation 6-4 

𝑇(u̇) = 1/2 {∫𝜌 [ u̇(t) ∗ ψ(x)] ∗ [ u̇(t) ∗ ψ(x)]dl}           (a) 

𝑇(u̇) = 1/2 u̇(t) {∫𝜌 [ψ(x)𝑇 ∗ ψ(x)]dl }  u̇(t)     (b) 

𝜕𝑇(u̇)

𝜕u̇(t)
= ∫𝜌 [ψ(x)𝑇 ∗ ψ(x)]dl u̇(t)     (c) 

For the Lagragian equation it is need the gradient of the kinetic energy Equation 6-5 (a), and the 

consistent mass matrix Equation 6-5 (b).  

Equation 6-5 

𝑑.

𝑑𝑡
[
𝜕𝑇( u̇)

 𝜕u̇(t)
] = ∫𝜌 [ψ(x)𝑇 ∗ ψ(x)]dlu̇(t)     (a) 

𝑀 = ∫𝜌 [ψ(x)𝑇 ∗ ψ(x)]dl      (b) 

As it was explained before the consistency mass matrix is given by the quadratic form of the Hermite 

shape functions.  

The definition of the previous ψ functions depends on the approximation of the displacement field 

according to the characteristics of the Finite Elements used in the model of the structure. for the 

case of Timoshenko elements, typical FE used for simulations of beams the shape functions are 

Hermite polynomial of third degree. The choose of this type of element instead of the Euler-Bernulli 

classical elements is the capability of the former to reproduce the shear deformability and the 

rotational inertia of the elements. Special considerations must be done in the case of shear locking 

for this type of elements, as the implementation of reduced integration scheme (Corigliano 2005).    

The mass matrix adapted from (Gavin 2016) is the following:  
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Equation 6-6 

M

=
𝜌𝐴𝐿

840

[
 
 
 
 
 
 
 
 
280 0 0 140 0 0

 312 + 588ϕ+ 280ϕ
2
(44 + 77ϕ+ 35ϕ

2
) 𝐿 0 108 + 252ϕ+ 175ϕ

2
−(26 + 63ϕ+ 35ϕ

2
) 𝐿

   (8 + 14ϕ+ 7ϕ
2
) 𝐿2 0 (26 + 63ϕ+ 35ϕ

2
) 𝐿 − (6 + 14ϕ+ 7ϕ

2
) 𝐿2

   280 0 0

  𝑆𝑌𝑀  312 + 588ϕ+ 280ϕ
2

−(44 + 77ϕ+ 35ϕ
2
) 𝐿

      (8 + 14ϕ+ 7ϕ2) 𝐿2 ]
 
 
 
 
 
 
 
 

 

 

Where ϕ is a function considering the shear deformability, depends on the shear correction factor 

χ, a coefficient that allows accounts for the non-uniform shear distribution on the cross section 

allowing to approximate the integration scheme. The ϕ could be obtained as: 

ϕ =
12𝐸𝐼

𝐺(𝐴/𝜒)𝐿^2
 

For rectangular sections 𝜒 is equal to 6/5 while for circular cross sections is equal to  10/9.  

 

6.2.1.2 Lumped mass matrix 

 

The lumped mass matrix provides a respectable and simple approximation for the mass distribution, 

Figure 6-1 Inertia forces shows a typical lumped mass scheme. It is worth noting that this is method 

is widely used for the implementation of commercial computer codes.  

The important concept in the construction of a lumped mass matrix is the conservation of the 

momentum i.e. quantity of movement. Figure 6-2 shows a distribution of the masses of a beam 

element through its end nodes. 

 

Figure 6-2: Lumped mass 

The parameter α (Felippa 2013) accounts for the conservation of momentum. If the choice of this is 

taken to match the inertia of the element rotating on its midpoint, α will take values of -1/24. The 

best value for α is zero leading to a singular matrix already which, as told before, is not suitable for 



Description and Simulation of Thunderstorms Downburst and Their Effect Over Long Structures 

 

209 
 

the structural analysis needing the inversion of the matrix (or use static condensation disregarding 

damping related to mass-less DOF’s). To account for this problem, a possibility is to reduce the size 

of problem during the modal analysis stage disregarding an amount of modes greater or equal to 

the defect (size-rank) of the mass matrix.   

 

6.2.2 Stiffness matrix 

 

The elastic restoring forces are those equilibrating the applied forces relative to the resultant 

displacements xj on the DOF’s of the structure (Chopra 2012). Again, applying a unit displacement 

in the DOF-j while the others are restrained it is possible to recall the elastic restoring forces as:  

Equation 6-7 

fej  = k1j ∗ x1 + k2j ∗ x2+. . . +knj ∗ xn 

 

Graphically the elastic forces could be represented as follows: 

 

 

Figure 6-3: elastic restoring forces 

The reaction force on the DOF j due to an application of a force in the DOF i is the stiffness coefficient 

kij.  The matrix representation of the stiffness matrix is given in Equation 6-8. 

 

Equation 6-8 

[

𝑓𝑒1
⋮
𝑓𝑒𝑗

] = [
𝑘11 ⋯ 𝑘1𝑛
⋮ ⋱ ⋮
𝑘𝑛1 ⋯ 𝑘𝑛𝑛

] ∗ [

x1
⋮
xn
] (𝑎) 

𝑓𝑒 = K ∗ 𝑥 (𝑏) 
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The stiffness matrix of a structure is symmetric kij=kji and positive definite, therefore non-singular 

and all the terms in the diagonal are positive.  

For the description of structural scheme, the Finite Element Method was implemented i.e. the 

structural elements are subdivided and the space integration was computed numerically by 

approximating the displacement with Hermite functions. As was explained before, the select FE for 

the simulation of beams was the Timoshenko element since it can capture the shear deformability 

of the beam and the rotational inertia.    The family of shape functions used according to (Felippa 

2013) (Corigliano 2005) (Gavin 2016).  For a 2D beam element the description of the DOF is given in 

Figure 6-4. 

 

 

Figure 6-4: Reference frame for beam 2D DOF 

The shape functions defining the displacement field are given in Equation 6-9 while the stiffness 

matrix is Equation 6-10. 
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Equation 6-9 

 

Equation 6-10 

 

K =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

 
12

1 + 𝜙

𝐸𝐼

𝐿3
6

1 + 𝜙

𝐸𝐼

𝐿2
0 −

12

1 + 𝜙

𝐸𝐼

𝐿3
6

1 + 𝜙

𝐸𝐼

𝐿2

  
4 + 𝜙

1 + 𝜙

𝐸𝐼

𝐿
0 −

6

1 + 𝜙

𝐸𝐼

𝐿2
2 − 𝜙

1 + 𝜙

𝐸𝐼

𝐿

   
𝐸𝐴

𝐿
0 0

  𝑆𝑌𝑀  
12

1 + 𝜙

𝐸𝐼

𝐿3
−

6

1 + 𝜙

𝐸𝐼

𝐿2

     
4 + 𝜙

1 + 𝜙

𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Extending the case for 3D space elements a couple of modifications must be included. The scheme 

of degrees of freedom changes to that shown in  Figure 6-5.  The introduction of further angle of 

inclination.  

The shape functions defining the displacement field are the same for the flexural and transversal 

displacements. For the torsional effects considering the uniform torsion theory (St Venant.) is 

enough by using the standard 6 DOF FE neglecting the warping effect (Vlasov theory) this approach 

is only valid because the structural cross section to be studied here in are double symmetric. 

Therefore, the shape functions of the axial behavior (ψ1 and ψ4 of 2D) could describe the behavior, 

considering only the change of E young modulus with G shear modulus.  

The final scheme for stiffness matrix is given by (Biondini 2017). The same approach could be applied 

for the mass matrix,  Equation 6-11 a) & b) shows the matrixes of stiffness and mass respectively for 

the 3D beam element. 
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Figure 6-5: Reference frame for beam 3D DOF  
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Z-dof with the inertia in y and shear function in z. Y-dof with inertia along Z and shear function of y 

Equation 6-11 

K =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 0 0 0 −

𝐸𝐴

𝐿
0 0 0 0 0

 
12

1 + 𝜙𝑧

𝐸𝐼𝑦

𝐿3
0 0 0

6

1 + 𝜙𝑧

𝐸𝐼

𝐿2
0 −

12

1 + 𝜙𝑧

𝐸𝐼

𝐿3
0 0 0

6

1 + 𝜙𝑧

𝐸𝐼

𝐿2

  
12

1 + 𝜙𝑦

𝐸𝐼𝑧

𝐿3
0 −

6

1 + 𝜙𝑦

𝐸𝐼

𝐿2
0 0 0 −

12

1 + 𝜙𝑦

𝐸𝐼𝑧

𝐿3
0 −

6

1 + 𝜙𝑦

𝐸𝐼

𝐿2
0

    
𝐺𝐽

𝐿
0 0 0 0 0 −

𝐺𝐽

𝐿
0 0

    
4 + 𝜙𝑦

1 + 𝜙𝑦

𝐸𝐼

𝐿
0 0 0

6

1 + 𝜙𝑦

𝐸𝐼

𝐿2
0

2 − 𝜙𝑦

1 + 𝜙𝑦

𝐸𝐼

𝐿
0

     
4 + 𝜙𝑧

1 + 𝜙𝑧

𝐸𝐼

𝐿
0 −

6

1 + 𝜙𝑧

𝐸𝐼

𝐿2
0 0 0

2 − 𝜙𝑧

1 + 𝜙𝑧

𝐸𝐼

𝐿

      
𝐸𝐴

𝐿
0 0 0 0 0

      𝑆𝑌𝑀  
12

1 + 𝜙𝑧

𝐸𝐼𝑦

𝐿3
0 0 0 −

6

1 + 𝜙𝑧

𝐸𝐼

𝐿2

         
12

1 + 𝜙𝑦

𝐸𝐼𝑧

𝐿3
0

6

1 + 𝜙𝑦

𝐸𝐼

𝐿2
0

           
𝐺𝐽

𝐿
0 0

           
4 + 𝜙𝑦

1 + 𝜙𝑦

𝐸𝐼

𝐿
0

            
4 + 𝜙𝑧

1 + 𝜙𝑧

𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(𝑎) 
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M

=
𝜌𝐴𝐿

840

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

280 0 0 0 0 0 140 0 0 0 0 0

 312 + 588ϕz+ 280ϕz
2

0 0 0 (44 + 77ϕz+ 35ϕz
2
)𝐿 0 108 + 252ϕz+ 175ϕz

2
0 0 0 − (26 + 63ϕz+ 35ϕz

2
)𝐿

  312 + 588ϕy+ 280ϕy
2

0 (26 + 63ϕy + 35ϕy
2
)𝐿 0 0 0 108 + 252ϕy+ 175ϕy

2
0 (44 + 77ϕy + 35ϕy

2
)𝐿 0

   280𝐿2 0 0 0 0 0 140𝐿2 0 0

     (8 + 14ϕy+ 7ϕy
2
) 𝐿2 0 0 0 − (26 + 63ϕy+ 35ϕy

2
)𝐿 0 − (6 + 14ϕy+ 7ϕy

2
) 𝐿2 0

      (8 + 14ϕz+ 7ϕz
2
) 𝐿2 0 (26 + 63ϕz + 35ϕz

2
)𝐿 0 0 0 − (6 + 14ϕz+ 7ϕz

2
) 𝐿2

      280 0 0 0 0 0

      𝑆𝑌𝑀  312 + 588ϕz+ 280ϕz
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0 0 0 − (44 + 77ϕz+ 35ϕz
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)𝐿

          312 + 588ϕy+ 280ϕy
2

0 (44 + 77ϕy + 35ϕy
2
)𝐿 0

         280𝐿2 0 0

          (8 + 14ϕy+ 7ϕy
2
) 𝐿2 0

             (8 + 14ϕz+ 7ϕz
2
) 𝐿2 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (𝑏) 
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6.2.3 Transformation of coordinates 

 

The stiffness and mass matrixes have been so far defined in the local reference frame of the 

elements. With the aim of giving a uniform definition of the full set of elements composing the 

structure, the structure itself has a reference frame of coordinates not necessarily equal to each 

element local reference. Therefore, a transformation rule uniform for every element must be 

implemented (Biondini 2017).  

It is worth noting that the for the definition of an element in the space it is necessary to define the 

coordinates of three points. Points 1 and 2 correspond to the end nodes i-point and j-point already 

defined, while the point #3 stands for the giving the direction to the local axis in the global 

reference frame. The definition of this point inside the code, is automatically computed by the 

algorithm for every element.  

 

 

Figure 6-6: Generic element 3point definition 

According to Figure 6-6 the x-coordinate and z-coordinate of point 3 are the those of the mid-point 

of the generic element. Regarding the y-coordinate, it can be any generic ordinate inside the 

orthogonal plane of the element shadowed in Figure 6-6. The definition of the latter is made inside 

the computer code by means of trigonometric relations. 

Transformation matrix is based in the cosine directors.  
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Equation 6-12 

 

To get the Cosine directors it is needed first to define the Euclidian metrics: 

Equation 6-13 

{
‖𝑋𝑖𝑗‖ = √𝑥𝑖𝑗

2 + 𝑦𝑖𝑗
2 + 𝑧𝑖𝑗

2 = 𝑙𝑖𝑗

‖𝑥12 ∧ 𝑥13‖ = √(𝑦21𝑧31 − 𝑦31𝑧21)
2 + (𝑧21𝑥31 − 𝑧31𝑥21)

2 + (𝑥21𝑦31 − 𝑥31𝑦21)
2 = 2𝐴123

  

 

Equation 6-14 

Cx′ =
𝑋12
‖𝑋12‖

=
1

𝑙12
∗ [
𝑥2 − 𝑥1
𝑦2 − 𝑦1
𝑧2 − 𝑧1

] (𝑎) 

Cz′ =
𝑥12 ∧ 𝑥13
‖𝑥12 ∧ 𝑥13‖

=
1

2𝐴123
∗ [

𝑦21𝑧31 − 𝑦31𝑧21
𝑧21𝑥31 − 𝑧31𝑥21
𝑥21𝑦31 − 𝑥31𝑦21

] (𝑏) 

Cy′ = Cz′ ∧ 𝐶𝑥′ = [
𝐶𝑧′𝑦𝐶𝑥′𝑧 − 𝐶𝑥′𝑦𝐶𝑧′𝑧

𝐶𝑧′𝑧𝐶𝑥′𝑥 − 𝐶𝑧′𝑥𝐶𝑥′𝑧
𝐶𝑧′𝑥𝐶𝑥′𝑦 − 𝐶𝑥′𝑥𝐶𝑧′𝑦

] (𝑐) 

 

 Recalling the DOF’s distribution of the generic element of Figure 6-5 in the global reference frame,  

renaming those DOF’s in the local reference frame a representation as that shown in Figure 6-7 for 

displacement and forces is valid:  

 

Figure 6-7: Displacements and forces on the degrees of freedom 
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The displacements and forces can be regarded as:  

 

{
𝑆′ = [𝑢1 𝑣1 𝑤1|𝑟𝑥1 𝑟𝑦1 𝑟𝑧1|𝑢2 𝑣2 𝑤2|𝑟𝑥2 𝑟𝑦2 𝑟𝑧2]

𝑇 𝑖𝑛 𝑙𝑜𝑐𝑎𝑙 𝑅. 𝐹.

𝑆 = [𝑥1 𝑥2 𝑥3|𝑥4 𝑥5 𝑥6|𝑥7 𝑥8 𝑥9|𝑥10 𝑥11 𝑥12]
𝑇 𝑖𝑛 𝑔𝑙𝑜𝑏𝑎𝑙 𝑅. 𝐹.

 

{
𝑓′ = [𝑛1 𝑡𝑦1 𝑡𝑧1|𝑚𝑥1 𝑚𝑦1 𝑚𝑧1|𝑛2 𝑡𝑦2 𝑡𝑧2|𝑚𝑥2 𝑚𝑦2 𝑚𝑧2]

𝑇 𝑖𝑛 𝑙𝑜𝑐𝑎𝑙 𝑅. 𝐹.

𝐹 = [𝑓1 𝑓2 𝑓3|𝑓4 𝑓5 𝑓6|𝑓7 𝑓8 𝑓9|𝑓10 𝑓11 𝑓12]
𝑇 𝑖𝑛 𝑔𝑙𝑜𝑏𝑎𝑙 𝑅. 𝐹.

 

Introducing the full transformation matrix T as:  

Equation 6-15 

𝑻 = [

𝑻𝒐 𝟎 𝟎 𝟎
𝟎 𝑻𝒐 𝟎 𝟎
𝟎 𝟎 𝑻𝒐 𝟎
𝟎 𝟎 𝟎 𝑻𝒐

] 

Where the 𝟎 are matrixes of 3x3 the same size as To. The transformation matrix an orthonormal 

matrix. The transformation rule from local to global reference frame is:  

 

Equation 6-16 

{
𝑺 = 𝑻 𝒔′
𝑭 = 𝑻 𝒇′

 

The stiffness matrix in terms of the global reference frame can be obtained as:  

 

Equation 6-17 

𝑲 = 𝑻 𝑲′ 𝑻𝑇 

       

6.2.4 Eigenvalue problem: free vibration 

 

The movement of MDOF systems in free vibration is important for the description of the natural 

frequencies and the vibration shapes. The governing equation for the system is:  

 

Equation 6-18 

𝐌 �̈� + 𝐊𝐱 = 𝟎 

The Equation 6-18 represent N homogenous differential equations assembled by means of the mass 

and the stiffness matrixes. N also represents the degrees of freedom of the structure.  The Equation 

6-18 could be handled as an eigenvalue problem of N equations as Equation 6-19 (a), the solution 

of which give the natural frequencies (ωn) and the modal shapes (ϕn) (Equation 6-19 (b) ). 
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Equation 6-19 

[𝐊 − ω𝑛
2𝐌]𝛗n = 0 (a) 

det[𝐊 − ω𝑛
2𝐌] = 0 (b) 

In the expansion of the determinant (Equation 6-9b) of it is obtained a polynomial of order N and 

base ωn. The solution of Equation 6-19 (b) has N roots all positive since the mass and the stiffness 

matrixes are positive definite. Moreover, the N roots define the natural frequencies of the structure. 

Once the ωn values are known it could be possible to obtain the modal shape ϕn related to each 

natural frequency by means of Equation 6-19 (a).  The ωn
2 values are known as eigenvalues while 

the ϕn are known as eigenvectors. 

It is worth noting that the eigenvalues and eigenvectors associated to Equation 6-18 could be a 

grouped in matrix format.  The assemble of the mode shapes is a square matrix known as The Modal 

Matrix Equation 6-20 (a) contains the eigenvectors organized coherently with the eigenvalues, by 

its way the assemble of the eigenvalues is a diagonal matrix known as The Spectral Matrix Equation 

6-20 (b). 

 

Equation 6-20 

 

𝛟 = [φjn] = [

φ11 ⋯ φ1n
⋮ ⋱ ⋮
φn1 ⋯ φnn

] (a) 

𝛀𝟐 = [
ω1
2   
  ⋱  
  ωn

2
] (b) 

It has been so far proved (Chopra 2012) that the modes have the property of create an orthogonal 

base then, the multiplication of different two mode vectors will give zero as result Equation 6-21.  

In a further step and due to the above-mentioned property, the multiplication of the stiffness and 

mass matrixes with the modal matrix will give rise to diagonal matrixes.  

Equation 6-21 

𝛗n
𝑇 ∗ 𝛗r = 0, 𝑛𝑟 

 

Equation 6-22 

𝐊 = 𝛟𝑻𝐤 𝛟                 𝐌 = 𝛟𝑻𝐦 𝛟           

The diagonal terms inside the matrixes are given by:  
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Equation 6-23 

K𝐧 = 𝛗n
𝑇 𝐤 𝛗n               𝐌𝐧 = 𝛗n

𝑇 𝐦 𝛗n            

 

The solution of  Equation 6-19 (a) giving the eigenvectors finds the relative shape values, therefore 

any proportional value to φn stills being an eigenvector of the system because the equation is still 

being satisfied. This allows to scale the modal shapes such that a particular term in the equations 

has a certain control value, this process is known as normalization. For the present document the 

normalization process will be performed such that the modal mass matrix becomes an identity, 

unless a particular problem requires a different definition. 

Equation 6-24 

M𝐧 = [αn ∗ 𝛗n
𝑇] 𝐦 [αn ∗ 𝛗n]  = 𝟏              𝐌 = [𝜶 ∗ 𝛟𝑇] 𝐦 [𝛂 ∗ 𝛟] =  𝐈           

It might be useful to introduce a scale factor (α) to rend the mass terms in Equation 6-22 and 

Equation 6-23 as the desired normalization Equation 6-24. To do so the scale factor must be:  

Equation 6-25 

αn =
1

√𝑀𝑛
;   𝜶 = [

α1
⋮
αn
] 

Using the normalized modal matrix is then possible to recall the stiffness matrix in the mass 

normalized form as the spectral matrix. Equation 6-26. 

Equation 6-26 

𝐊 = [𝜶 ∗ 𝛟𝑇] 𝐤 [𝛂 ∗ 𝛟] = 𝛀𝟐        

 

6.2.5 Damping matrix 

 

There are many mechanisms providing energy dissipation inside the structures such as the frictional 

forces of the connections, the hysteretic behavior of the material, the interaction between soil and 

foundations or the contact with a viscous material (aerodynamic or hydrodynamic damping) and of 

course the addition of damping devices. All of those could be idealized as an equivalent viscous 

damping. With this hypothesis, it is possible to relate the external forces associated to the velocity 

vj of a structure with the damping forces needed to equilibrate the system as shown in Figure 6-8: 

Damping forces. 
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Figure 6-8: Damping forces 

 

The damping forces could be represented as given in Equation 6-27. Then, the coefficient cij 

represent the reaction force in the node i for the application of a unit velocity at node j. 

 

Equation 6-27  

fdj = C1j ∗ v1 + C2j ∗ v2+. . . +Cnj ∗ vn 

 

In matrix format 

Equation 6-28 

[

𝑓𝑑1
⋮
𝑓𝑑𝑗

] = [
𝐶11 ⋯ 𝐶1𝑛
⋮ ⋱ ⋮
𝐶𝑛1 ⋯ 𝐶𝑛𝑛

] ∗ [

v1
⋮
vn
] (𝑎) 

𝑓𝑑 = C ∗ 𝑣  (𝑏) 

 

 

To define the damping matrix in the structures there are many accepted methods as the Rayleigh 

damping or the Caughey damping. All of those always inside the classical damping reference frame.  

Herein it will be explained the procedure adopted in this document for the definition of the damping 

which is the well-known modal approach also classical.  
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The modal approach for the definition of the damping is based on the damping ratios ζ. It starts 

from the definition of the modal damping matrix as:  

Equation 6-29 

𝐂 = 𝛟𝑻𝐜 𝛟 

Due to the orthogonality of the modes C is diagonal and the generic term inside the matrix could be 

computed as:  

Equation 6-30 

Cn = ζn(2Mnωn) 

The damping ratios could be computed from experimental data, however a common practice in 

engineering is to use fixed values according with the type structure (Newmark 1982) i.e. for buildings 

composed by steel frames with welded connection ζ is 2-3% (Frictional behavior) and for those 

composed by reinforced concrete (with remarkable cracking) ζ varies from 3-5% (hysteretic 

dissipation).  For the long structures subjected to wind actions such as bridges and cables for power 

line systems (and other structures with flexible dynamic behavior), the values that ζ can adopt are 

much lower in a range less than 0.5%. 

Taking advantages of the properties of modal vectors and inverting the Equation 6-29 is possible 

then to write a pragmatic expression for the computation of the damping matrix as (Chopra 2012):  

Equation 6-31  

𝐜 = 𝐦 (∑
2𝜁𝑛𝜔𝑛
𝑀𝑛

𝑁

𝑛=1

φ𝑛φ𝑛
𝑇)𝐦 

This approach ensures that damping ratio for all the modes is going the be kept constant 

6.2.6 Modal coordinates and superposition 

 

The modal matrix is composed by N independent vectors that could be used as base to define any 

other vector of size N. Therefore, any displacement vector x could be expressed in terms of its modal 

expansion as: 

Equation 6-32 

𝐱 =∑𝝋𝒓 ∗ 𝒒𝒓 = 𝝓𝒒

𝑵

𝒓=𝟏

 

The terms qr are scalar multipliers called modal coordinates and the vector q is the assemble of the 

coordinates. 

The modal coordinates are relative to the so-called Lagragian coordinates arising when the dynamic 

problem is derived from the energy conservation rather than an equilibrium approach. 
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In the case of classical damping the modal analysis allows to solve the equations of motion as N 

decupled SDOF equations of the form given in Equation 6-33 .  The modal coordinates are then 

found for each single system and with Equation 6-32 is possible to recall the displacement vector in 

natural coordinates. 

Equation 6-33 

Mn q̈n  +  Cn q̇n  + Kn qn = Pn(t) 

In the case of the aeroelastic phenomena there are some cases in which the link between the 

damping of the structure and the damping of wind effects gives rise to a coupling of the equations 

of motion in modal coordinates not allowing to write the systems as Equation 6-33. Therefore, the 

modal analysis will only act as a tool for reducing the size of the problem from the N DOF in natural 

coordinates to the M<N dynamic degrees of freedom in modal coordinates. 

 

6.3 Aeroelastic effects on slender structures 

 

The wind effects over bluff bodies are governed by the buffeting force, i.e. the aerodynamic 

component of the wind force due to the turbulent fluctuations in the incoming flow. This action is 

produced by the impinging of the turbulent wind particles with the body, giving rise also to a 

turbulent force component dependent of the body shape and the wind velocity characteristics.  

For the case of slender bodies, the effect of the turbulent wind could be remarkably important due 

to the dynamic components of the wind actions that could not be approximated by the equivalent 

static force methods. Moreover, a coupling between the aeroelastic components with the damping 

and stiffness may arise for this type of structures, suggesting a highly dynamic effect that must be 

carefully studied. Considering the cross section of a deformable-slender body submitted to wind 

actions as shown in Figure 6-9,  some important facts could be highlighted: the aerodynamic action 

applied to the j-th sectional model (Equation 6-54 to Equation 6-61) could be easily extended to the 

global behavior with the correct assembly procedure, the quantities actually acting on the structure 

depend on the incoming wind velocities and the approximation angle 𝛽(𝑡) given by Equation 3-17.  

The action will be first derived in the wind reference system and then translated to the structure 

reference system.  Calling the turbulent wind components u(t) aligned with the mean wind vector 

(along wind) and v(t) the cross-wind component orthogonal to the mean velocity vector, it is 

possible to write the expression for the instantaneous forces acting on the body as:  

Equation 6-34 

{
𝐹𝐷(𝑧, 𝑡) = 0.5𝜌𝐵(𝑧)𝐶𝐷(𝜓)𝑉𝑟𝑒𝑙

2   (𝑎)

𝐹𝐿(𝑧, 𝑡) = 0.5𝜌𝐵(𝑧)𝐶𝑙(𝜓)𝑉𝑟𝑒𝑙
2     (𝑏)
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Figure 6-9 Slender body with wind actions 

 

The term Vrel stands for the relative velocity between the incoming wind flow and the body motion, 

is this component actual velocity giving rise to aeroelastic effects, could be compute as Equation 

6-35. On the other hand, the instantaneous angle of attack ψ represents the wind velocity 

components on the reference frame of the structure motion which gives the direction of the relative 

velocity. The latter could be computed from trigonometric relations as Equation 6-36. 

 

 

Equation 6-35 

𝑉𝑟𝑒𝑙
2 = (V(t) + u(t) − ẋ)2 + (𝑣(𝑡) − �̇�)2 

 

Equation 6-36 

ψ(z, t) = atan[
𝑣(𝑡) − �̇�

V(t) + u(t) − ẋ
] 

 

The forces of Equation 6-34 could be represented for convenience in the wind reference frame as: 

Equation 6-37 

{
𝐹𝑢(𝑧, 𝑡) = 0.5𝜌𝐵(𝑧)𝑉𝑟𝑒𝑙

2 [𝐶𝐷(𝜓)𝐶𝑜𝑠𝜓 − 𝐶𝑙(𝜓)𝑠𝑖𝑛 𝜓]  (𝑎)

𝐹𝑣(𝑧, 𝑡) = 0.5𝜌𝐵(𝑧)𝑉𝑟𝑒𝑙
2  [𝐶𝐷(𝜓)𝑠𝑖𝑛𝜓 + 𝐶𝑙(𝜓)𝑐𝑜𝑠 𝜓]  (𝑏)
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The wind actions are not necessary passing through the centroid of the cross section therefore a 

moment action also arises.  

Equation 6-38 

Fm(z, t) = 0.5𝜌𝐵
2(𝑧)𝐶𝑚(𝜓)𝑉𝑟𝑒𝑙

2   

The forces acting in the structure are given in Figure 6-10. 

 

 

Figure 6-10:Aerodynamic forces acting in a bluff body in body reference system 

Considering the rotation of the body: 

 

Equation 6-39 

{

𝐹𝑢(𝑧, 𝑡) = 0.5𝜌𝐵(𝑧)𝑉𝑟𝑒𝑙
2 [𝐶𝐷(𝛼)𝐶𝑜𝑠𝜓 − 𝐶𝑙(𝛼)𝑠𝑖𝑛 𝜓]  (𝑎)

𝐹𝑣(𝑧, 𝑡) = 0.5𝜌𝐵(𝑧)𝑉𝑟𝑒𝑙
2  [𝐶𝐷(𝛼)𝑠𝑖𝑛𝜓 + 𝐶𝑙(𝛼)𝑐𝑜𝑠 𝜓]  (𝑏)

𝐹𝑚(𝑧, 𝑡) = 0.5𝜌𝐵
2(𝑧)𝐶𝑚(𝛼)𝑉𝑟𝑒𝑙

2

 

With the relative angle of attack 

α(t) = θ(t) + ψ(t) 

The aerodynamic coefficients defining the transformation rule between wind velocities and forces 

must be measured in experimental test.  Those coefficients give a relationship between the 

associated forces and the wind velocity components. However, their non-linear dependence on the 

angle of attack α (accounting for ψ and the body rotation) couples them with the turbulent 

components and the body configuration. With the aim of providing a suitable approach to define 

buffeting forces, a linearization approach by means of the Queasy Steady Theory will be introduced 
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herein as its widely used for this type of applications. A foreword: the QST is valid for reduced 

velocities greater than 15 (Diana 2018).  

 

The linearized QST approach supposes a linear variation of the aerodynamic coefficients over a static 

equilibrium condition Equation 6-40. Therefore, the aerodynamic forces acting in a generic section 

of the body become linear. All of this based on the hypothesis of small oscillations over the 

equilibrium configuration which allows to approximate the variation of the coefficients by means of 

the Taylor expansion of the coefficients as expressed in Equation 6-41.  

 

Equation 6-40 

{

�̅� = 𝑥 − 𝑥𝑜
�̅� = 𝑦 − 𝑦𝑜
�̅� = 𝜃 − 𝜃𝑜

 

With yo, zo and θo representing the equilibrium condition. 

Equation 6-41 

CD(α) = CD(α = 0) +
∂CD
∂α

|0𝛼 = CDo + 𝐾𝑑𝛼       (𝑎) 

Cl(α) = Cl(α = 0) +
∂Cl
∂α
|0𝛼 = 𝐶𝑙𝑜 + 𝐾𝑙𝛼              (𝑏) 

Cm(α) = Cm(α = 0) +
∂Cm
∂α

|0𝛼 = 𝐶𝑚𝑜 + 𝐾𝑚𝛼  (𝑐) 

Supposing then, that the mean velocity component is greater than the turbulent is possible also to 

approximate Eq. 3-36 as follows:  

Equation 6-42 

ψ(z, t) =
v − ẏ̅ − B1(z)θ̇̅

𝑉
  (𝑎) 

sin ψ = ψ       (b) 

cos ψ = 1      (c) 

 

 

Equation 6-43 

𝑉𝑟𝑒𝑙
2 = V2(t) + 2V u(t) − 2V ẋ̅ 

A further comment must be done with respect to the reference width B1(z), it represents the 

characteristic dimension of the cross section, its definition is referred to empirical and experimental 
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data and its trustful implementation must be done inside the approach of Corrected Quasi Steady 

Theory (Diana 2018), leading to different values for the three dimensions B1y B1z and B1θ. In case 

the CQST is not implemented or the experimental test are not available a good approximation is to 

leave B1y and B1z as zero and B1θ as B(z) 

 

The forces could be expressed as: 

Equation 6-44 

{
 
 

 
 
𝐹𝑢(𝑧, 𝑡) = 0.5𝜌𝐵(V

2(t) + 2V u(t) − 2V ẋ̅)[(𝐶𝐷𝑜 +𝐾𝑑𝛼 ) − (𝐶𝑙𝑜 + 𝐾𝑙𝛼)𝜓]  (𝑎)
 

𝐹𝑣(𝑧, 𝑡) = 0.5𝜌𝐵(V
2(t) + 2V u(t) − 2V ẋ̅) [(𝐶𝑙𝑜 + 𝐾𝑙𝛼)𝜓 + (𝐶𝑙𝑜 + 𝐾𝑙𝛼)]  (𝑏)

 
𝐹𝑚(𝑧, 𝑡) = 0.5𝜌𝐵

2(V2(t) + 2V u(t) − 2V ẋ̅)[𝐶𝑚𝑜 + 𝐾𝑚𝛼]                             (𝑐)

 

 

Developing the algebraic expression and neglecting the second order terms in angle of attack it is 

possible to obtain a set of expression that could be grouped by their behavior and characteristics.  

  

The terms associated with the mean velocity are the equilibrium components, normally for synoptic 

winds with constant mean value of velocity gives rise to static components associated with the mean 

wind speed, for the case of downburst the mean gives rise to instantaneous equilibrium positions.  

  

 

Equation 6-45 

{
 
 

 
 
𝐹𝑢𝑞(𝑧, 𝑡) = 0.5𝜌𝐵V

2(t)𝐶𝐷𝑜   (𝑎)
 

𝐹𝑣𝑞(𝑧, 𝑡) = 0.5𝜌𝐵V
2(t)𝐶𝑙𝑜      (𝑏)

 
𝐹𝑚𝑞(𝑧, 𝑡) = 0.5𝜌𝐵

2V2(t)𝐶𝑚𝑜  (𝑐)

 

 

The terms associated with the turbulence wind component gives rise to the aerodynamic forces,  

Equation 6-46 

{
 
 

 
 
𝐹𝑢𝑑(𝑧, 𝑡) = 𝜌𝐵 V [u(t)𝐶𝐷𝑜 − 0.5𝑣(𝑡)𝐶𝑙𝑜 ]  (𝑎)

 
𝐹𝑣𝑑(𝑧, 𝑡) = 𝜌𝐵V [u(t)𝐶𝑙𝑜 + 0.5𝑣(𝑡)𝐶𝑙𝑜 ]  (𝑏)

 
𝐹𝑚𝑑(𝑧, 𝑡) = 𝜌𝐵V [u(t)𝐶𝑚𝑜 + 0.5𝐵𝐾𝑚]   (𝑐)
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Those terms associated with the rotation (in general displacement) of the body, give rise to an 

aerodynamic stiffness. Special care must be done to this part of the equation since its effect over 

the global stiffness matrix leads to a non-symmetrical matrix which for very particular cases could 

produce 2 degree of freedom instability (flutter instability) (e.g. when the slope of the moment 

coefficient is positive making the associated frequency of torsional mode equals to the vertical for 

a certain wind speed level, then the movement of one degree of freedom is in resonance with the 

other introducing energy to the system).  

Equation 6-47 

{
 
 

 
 
𝐹𝑢𝑘(𝑧, 𝑡) = 0.5𝜌𝐵 V

2 [Kd θ̅]  (𝑎)
 

𝐹𝑣𝑘(𝑧, 𝑡) = 0.5𝜌𝐵 V
2 [Kl θ̅]  (𝑏)

 
𝐹𝑚𝑘(𝑧, 𝑡) = 0.5𝜌𝐵 V

2 [BKm θ̅]   (𝑐)

 

The terms associated with the velocity of the body are known as damping forces. As well as for the 

stiffness coefficients, the damping ones could produce instability. The one degree of freedom 

instability associated with this force arises when the lift or the moment coefficient have a negative 

slope and their associated terms are higher (in absolute value) than those of the structural damping 

giving rise to a negative damping coefficient which could be translated into a vibration with 

increasing amplitude rather than dissipation of energy. A foreword: since the drag coefficient is 

always positive it is not possible to have 1 dof instability for the horizontal motion.   

Equation 6-48 

{
 
 

 
 𝐹𝑢𝑟(𝑧, 𝑡) = −0.5𝜌𝐵𝑉(𝑡)[2 𝐶𝐷𝑜 ẋ̅ + (𝐾𝑑 − 𝐶𝑙𝑜 )�̇̅�   +  𝐵1𝑥 (𝐾𝑑 − 𝐶𝑙𝑜 ) �̇̅� ]     (𝑎)

 

𝐹𝑣𝑟(𝑧, 𝑡) = −0.5𝜌𝐵𝑉(𝑡)[2 𝐶𝑙𝑜  ẋ̅ + (𝐾𝑙 + 𝐶𝐷𝑜)�̇̅�   +  𝐵1𝑦 (𝐾𝑙 + 𝐶𝐷𝑜) �̇̅� ]  (𝑏)
 

𝐹𝑚𝑟(𝑧, 𝑡) = −0.5𝜌𝐵𝑉(𝑡)[2 𝐶𝑚𝑜  ẋ̅ + 𝐵𝐾𝑚 �̇̅�   +  𝐵1𝜃 𝐾𝑚 �̇� ]    (𝑐)

 

 

The previous derivations allows to define the forces given from  Equation 6-45 to Equation 6-48 in 

the wind reference frame aligned with the mean velocity component, however in order to perform 

the structural analysis it is better to use the forces oriented in the structural reference frame 

assigned at the correspondent degrees of freedom. To this aim, a couple of relations between the 

two reference systems must be introduced Equation 6-49-Equation 6-50 .  

Equation 6-49 

Fjx = Fu cosβj(t) − Fv sinβj(t)  (a) 

Fjy = Fu sinβj(t) + Fv cosβj (t) (b) 

Equation 6-50 

ẋ̅ = Ẋ cosβj(t)  + Ẏ sinβj(t)  (a) 
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�̇̅� = −Ẋ  sinβj(t)  + Ẏ cosβj(t)   (b) 

 

Further and for the sake of simplicity, the matrix notation will be introduced in the above defined 

relations. The aerodynamic force could be written as the assemble of its components Equation 

6-51. The array of the turbulent wind velocity components  Equation 6-52. 

Equation 6-51 

𝐅𝐀 = [

𝐹𝑥
𝐹𝑦
𝐹𝜃

] 

 Equation 6-52 

𝐛 = [
𝑢
𝑣
] 

With respect to the structures movements a further comment must be done, the equations 

provided herein correspond to an effective section of the complete structure that could be easily 

extended to the global application by means of simple rules that will be explained afterward. For 

frame bodies analyzed with FEM tools its necessary to define the vector of equivalent nodal forces 

which includes the acting force in its respective degree of freedom, in the case of three-dimensional 

structures for every point there are 6 degrees of freedom as shown in  Figure 6-5. However, due to 

hypothesis of wind action over a plane 3.3.1 there will be only three force components for the wind 

action: transversal, longitudinal and torsional; the flexural (bending only) and axial equivalent nodal 

forces will not be directly excited by the wind action. Finally, the movement vectors of the structure 

will be Equation 6-53. 

 

Equation 6-53 

�̅� =

[
 
 
 
 
 
 
�̅�
�̅�
�̅�
𝜑𝑥̅̅ ̅̅

𝜑𝑦̅̅ ̅̅

𝜑𝑧̅̅ ̅̅ ]
 
 
 
 
 
 

;          �̇̅� =

[
 
 
 
 
 
 
 ẋ̅
ẏ̅
ż̅
φx̅̅ ̅̇̅

φy̅̅ ̅̇̅

φz̅̅ ̅̇̅ ]
 
 
 
 
 
 
 

;     𝑿𝒐 =

[
 
 
 
 
 
 
𝑥𝑜
𝑦𝑜
𝑧𝑜
𝜑𝑥𝑜
𝜑𝑦𝑜
𝜑𝑧𝑜]

 
 
 
 
 
 

;     𝑤𝑖𝑡ℎ 𝜃 = 𝜑𝑥        

 

The contribution to the global aerodynamic forces of the structure’s j-th sectional division (or node 

of the FEM mesh) on the structural reference frame are then:  

• Pseudo-static force for equilibrium configuration: 

Equation 6-54 

𝐅𝐪, j = 𝐐𝐬, j 𝐗o 
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Equation 6-55 

𝐐𝐬, j = 0.5ρBjLjV(t)𝑗
2

[
 
 
 
 
 
𝐶𝐷 𝑐𝑜𝑠 − 𝐶𝑙  𝑠𝑖𝑛
𝐶𝐷 𝑠𝑖𝑛 + 𝐶𝑙  𝑐𝑜𝑠

0
0
0

𝐵𝑗 𝐶𝑚 ]
 
 
 
 
 

 

 

• Aerodynamic forces turbulent component: 

Equation 6-56 

𝐅𝐝, j = 𝐀m, j 𝐛 

Equation 6-57 

𝐀m,j = ρBjVj (t) Lj

[
 
 
 
 
 
𝐶𝐷 𝑐𝑜𝑠 − 𝐶𝑙 𝑠𝑖𝑛 −0.5[𝐶𝑙 − 𝐾𝑑]𝑐𝑜𝑠 + [𝐶𝐷 +𝐾𝑙]𝑠𝑖𝑛

𝐶𝐷 𝑠𝑖𝑛 + 𝐶𝑙  𝑐𝑜𝑠 −0.5[𝐶𝑙 − 𝐾𝑑]𝑠𝑖𝑛 + [𝐶𝐷 + 𝐾𝑙]𝑐𝑜𝑠
0 0
0 0
0 0

𝐵𝑗 𝐶𝑚 0.5 𝐵𝑗 𝐶𝑚 ]
 
 
 
 
 

 

 

• Aerodynamic stiffness: 

Equation 6-58 

𝐅𝐤,j = 𝑲a,j �̅� 

 

Equation 6-59 

𝑲a,j = 0.5ρBjLjV(t)𝑗
2

[
 
 
 
 
 
0 0 0 𝐾𝑑  𝑐𝑜𝑠 − 𝐾𝑙  𝑠𝑖𝑛 0 0
0 0 0 𝐾𝑑  𝑠𝑖𝑛 + 𝐾𝑙  𝑐𝑜𝑠 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 𝐵𝑗 𝐾𝑚 0 0]

 
 
 
 
 

 

 

• Aeroelastic damping: 

Equation 6-60 

𝐅𝐫,j = 𝑪a,j �̇̅� 

𝑪a,j = 0.5ρBjVj(t)Lj* 
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[
 
 
 
 
 
 
 
 
2𝐶𝐷 𝑐𝑜𝑠

2 + (𝐶𝑙 + 𝐾𝑑)𝑐𝑜𝑠 𝑠𝑖𝑛 + −2𝐶𝑙  𝑠𝑖𝑛
2 + (𝐶𝐷 + 𝐾𝑙)𝑐𝑜𝑠 𝑠𝑖𝑛 − 0 0 0 𝐵1𝑥 (𝐾𝑑 − 𝐶𝑙𝑜 )𝑐𝑜𝑠 −  

(𝐶𝐷 − 𝐾𝑙)𝑠𝑖𝑛
2 (𝐶𝑙 − 𝐾𝑑)𝑐𝑜𝑠2    𝐵1𝑦 (𝐾𝑙 + 𝐶𝐷𝑜) 𝑠𝑖𝑛

2𝐶𝑙 𝑐𝑜𝑠2 + (𝐶𝐷 +𝐾𝑙)𝑐𝑜𝑠 𝑠𝑖𝑛 + −2𝐶𝐷 𝑠𝑖𝑛
2 + (𝐶𝑙 + 𝐾𝑑)𝑐𝑜𝑠 𝑠𝑖𝑛 − 0 0 0 𝐵1𝑥 (𝐾𝑑 − 𝐶𝑙𝑜 ) 𝑠𝑖𝑛 +

(𝐶𝑙 − 𝐾𝑑)𝑠𝑖𝑛
2 (𝐶𝐷 − 𝐾𝑙)𝑐𝑜𝑠

2    𝐵1𝑦 (𝐾𝑙 + 𝐶𝐷𝑜) 𝑐𝑜𝑠
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

𝐵(2𝐶𝑚 𝑐𝑜𝑠 − 𝐾𝑚 𝑠𝑖𝑛) 𝐵(2𝐶𝑚 𝑠𝑖𝑛 − 𝐾𝑚 𝑐𝑜𝑠) 0 0 0 𝐵1𝜃 𝐾𝑚 ]
 
 
 
 
 
 
 
 

 

 

Equation 6-61 

𝐅a dyn,j = 𝐀m,j 𝐛𝐣  −  𝑪a,j �̇̅�, j −  𝑲a, j �̅�, 𝑗 

The final scheme of the equations of motion:  

𝐌 �̈̅� + [𝐂 + 𝑪a]�̇̅� + [𝐊 + 𝑲a]�̅� =  𝐀m 𝐛   

6.4 Time domain analysis 

The structural response in time domain is computed by means of the direct integration of the 

equations of motion.  To this aim the same approach exposed for scalar quantities in §4.3.2 is 

extended to matrix notation in modal coordinates in the following. 

To ensure the accuracy and numerical stability of the method the same provisions explained in 

§4.3.2 for the time step apply for MDOF systems, as well as, the prescription of the values for β and 

γ. 

1. Modal transformation: 

 

Equation 6-62: 

 

With the suffix 0 denoting the initial value for t=0. 

2. Initial Computations: 
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Equation 6-63: 

{
 
 

 
 𝒂𝟏 =

𝑴

𝛽 ∗ 𝑡𝑠𝑡𝑒𝑝
2 +

𝛾 ∗ 𝑪

𝛽 ∗ 𝑡𝑠𝑡𝑒𝑝
;          𝒂𝟐 =

𝑴

𝛽 ∗ 𝑡𝑠𝑡𝑒𝑝
+ (

𝛾

𝛽
− 1)𝑪

𝒂𝟑 = (
1

2𝛽
− 1)𝑴+ (

𝛾

2𝛽
− 1)𝐶

�̂� = 𝑲 + 𝒂𝟏

 

3. Computations for every time step: 

 

Equation 6-64 

{
 
 
 

 
 
 

�̂�(𝑖 + 1) = 𝑷(𝑖 + 1) + 𝒂𝟏𝒒(𝑖) + 𝒂𝟐�̇�(𝑖) + 𝒂𝟑�̈�(𝑖)

𝒒(𝑖 + 1) =
�̂�(𝑖 + 1)

�̂�

�̇�(𝑖 + 1) =
𝛾

𝛽 ∗ 𝑡𝑠𝑡𝑒𝑝
[𝒒(𝑖 + 1) − 𝒒(𝑖)] + (1 −

𝛾

𝛽
) �̇�(𝑖) + (1 −

𝛾

2𝛽
) �̈�(𝑖)

�̈�(𝑖 + 1) =
1

𝛽 ∗ 𝑡𝑠𝑡𝑒𝑝2
[𝒒(𝑖 + 1) − 𝒒(𝑖)] −

1

𝛽 ∗ 𝑡𝑠𝑡𝑒𝑝
�̇�(𝑖) − (

1

2𝛽
− 1) �̈�(𝑖)

 

The computer code was benchmarked with sap2000 and the examples of (Chopra 2012). 

6.1 Direct frequency domain analysis 

 

In the current study the frequency domain analysis was not fully implemented for the case of MDOF 

systems because of the computational effort involved in the construction of the Frequency 

Response Function accounting for the time-varying aeroelastic effects. Therefore, it is strongly 

recommended to perform this analysis in a further step of the research. 

The non-linear behavior of the problem does not allow to completely apply the frequency domain 

approach. To perform this type of analysis is necessary to linearize the problem and proceed as 

shown by (Canor, et al. 2016) 
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6.2 Numerical Application 

 

To give an example of the structural response of MDOF system submitted to the action of the 

downburst 3D- outflows and of the numerical procedure implemented in the present work, a simple 

application will be presented in this section. The structure to analyze is that already introduced in 

§3.10 and brought here for convenience in Figure 6-11.  

 

 

Figure 6-11: 2D frame with 3D downburst. a) Front view. b) Plan view 
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6.2.1 Structure parameters 

The structure is idealized to be a square section made of solid steel. The material parameters Table 

6-1. 

Table 6-1: Material simulation parameters 

Parameter Symbol Value Unit 

Young Modulus  𝐸 210  [GPa] 

Poisson Ratio 𝜈 0.2 [-] 

Density ρ 7.850 [kg/m3] 

Shear modulus 𝐺 87,5 [GPa] 

All the elements of the structure are composed by the same cross section, a picture of the same 

could be seen in Figure 6-12. 

 

Figure 6-12: Cross section 

The geometric properties of the section are reported in Table 6-2. 

Table 6-2: Cross section simulation parameters 

Parameter Symbol Value Unit 

Area  𝐴 0.25  [m2] 

Inertia in y-y’ direction 𝐼𝑦 0.0052 [m4] 

Inertia in z-z’ direction 𝐼𝑧  0.0052 [m4] 

Shear coefficient 𝜒 5/6 [-] 

Shear correction factor 𝜙𝑦 0.0199 [-] 

Shear correction factor 𝜙𝑧 0.0199 [-] 
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The stiffness and the mass of the elements is computed in local reference frame considering the 

stiffness and mass matrixes provided in Equation 6-11. With the structural matrixes it is possible 

then to perform the modal analysis and build the modal damping matrix as explained in §6.2.4  

§6.2.5. The damping ratio ζ is taken as 2% for accepted value for steel structures.  

 

6.2.2 Aerodynamical Properties 

 

The cross sections are assumed to be squared. The drag coefficients were taken from the study of 

(Carassale, et al. 2012). It is worth noting that while the time-varying approximation angle of the 

downburst β(t) will induce changes in the angle of attack, the small rotations of the cross section 

will not induce a significant change in the same. Therefore, it is important to include the variation 

of the drag coefficient with the angle of attack as function of the approximation angle β(t) only since 

the former varies in time faster than the structural associated rotation.   

 

On Figure 6-13 there are reported the values of the Strouhal number for square cross section with 

rounded corner. The drag and lift coefficients are given in Figure 6-14 and Figure 6-15. For the case 

of study where no rounding corners were included the r/b ratio is equal to zero.  

 

 

Figure 6-13: Strouhal Number. Adapted from (Carassale, et al. 2012) 
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Figure 6-14: Drag coefficient for square section. Adapted from (Carassale, et al. 2012). 

 

Figure 6-15: Lift coefficient. Adapted from (Carassale, et al. 2012). 

 

6.2.3 Downburst Properties 

 

The parameters of the downburst outflow implemented in this section are the same already 

provided in § 3.10. Therefore, the mean velocity and the approximation angle together with the 

downburst parameters are those from §3.10.1 while the random turbulent components are those 

coming from the Monte Carlo simulation given in §3.10.2. 
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6.2.4 Response 

 

The structural response was computed according to § 6.4.  

The generic turbulent displacement could be seen Figure 6-16. 

  

Figure 6-16: Turbulent component of the displacement 

To consider the pseudo-static displacement in the response, it must be included the solution for the 

slowly varying mean force coming from Equation 6-55. The pseudo-static force depends strongly in 

the approximation angle. Therefore, the oscillatory nature of the cosine of the approximation angle 

produces an oscillatory response in the pseudo-static force. A generic response (displacement in the 

y-direction of a point in the right-hand superior corner) computed with beta angle Figure 6-17. A 

graphical representation of the structural response taking out the variation of the approximation 

angle is given in Figure 6-18 i.e. a response that could be compared with that one of the SDOF.   

6.1 Conclusions 

 

The computational tool developed to solve the dynamic problem is capable to account for the 

aeroelasticity phenomenon in time domain. The developed computer tool can generate the multi-

point three-dimensional wind structure of the downburst outflow using the strategy explained in § 

3.10.  Further developments must be done to account also for the frequency domain analysis.  

In order to extend the developments of this chapter it is recommended to apply the definitions here 

exposed to a large structure and evaluate its response.  Furthermore, it can be suggested to apply 

and generalize the methodology proposed in § CHAPTER 5 ASSESSMENT OF FAILURE PROBABILITY  

to evaluate the capabilities of a structure projected with the current design rules to resist the 

downburst wind velocity outflows. 
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Figure 6-17: Full displacement in y-direction with beta computed. 

 

Figure 6-18: Full displacement in y-direction with beta equal zero. 
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CONCLUSIONS 
 

After the developments of the current research it was possible to fully create a downburst wind 

velocity model. The mentioned model is capable to reproduce the three-dimensional structure of 

the outflow and apply its action to civil engineering structures. In addition, the model for the single 

point in space was successfully extended to more realistic multi-point structures.  

The model for single points in space is capable to analyze SDOF reduced systems, it can reproduce 

the available records of the downburst. It was so far explained in the chapter 3 of the present study 

how a generic simulation made with the current model can capture the behavior of the record 

Andrews Airforce Base (AFB) including the two peaks of the wind velocity field and the zero crossing 

of the mother storm. This study provides a solid benchmark to the model proving the accuracy of 

the same.  

For the case of MDOF systems the model is capable to fully reproduce the three-dimensional wind 

field for all the points of the structure. However, it shall be remarked that the since the hypothesized 

tracking path of the downburst affects the approximation angle, the outflow radial diffusion and the 

aeroelastic effects over the structure. It is recommended to perform a study on the latter parameter 

before starting a further step of analysis for MDOF structures.  

The study over the aeroelastic damping revealed that for the case of study, with 2% of structural 

damping ratio and natural frequency of 3.35 [Hz], the assumption of neglecting the aeroelastic effect 

is not only, the most conservative option, but also, the closest to the real aeroelastic effect.  

It is important to comment, however, that for the case of structures with associated natural 

frequencies lower than 1.5 [Hz] the aeroelastic component plays an important role and should not 

be neglected. For those cases even though it can be recommended to use the time-varying 

aeroelastic damping. A possible approximation can be to use a constant aeroelastic damping with 

value equal to the mean of the effect. 

The wind velocity field of the downburst of this study was artificially generated using a Monte Carlo 

algorithm. A test on the convergence of the Monte Carlo simulations was made to verify if sample 

composed by 2.000 realizations was enough to describe the phenomena. The results of the test 

show to be acceptable since the statistical properties tend to specific values between the analysis.  

From the parametric study in 4.7, it is possible to conclude that the two methods of analysis made 

in the frequency-domain and in the time-domain are in good agreement.  Discrepancies between 

the two approaches can be found, depending on damping and natural period of the structure if an 

approximate generalized transfer function based on the slowly varying uniformly modulated 

process assumption is considered in the computations. The results reported in sections 4.7 and 4.8 

showed that while the approximation assumption can be considered as valid for relatively rigid and 

damped structures, it fails in reproducing the behavior of lightly damped and flexible systems. In 

the latter case, hence, the convolution integral involved in the evaluation of the generalized transfer 

function should be evaluated without introducing approximations. This largely reconciles the 

prediction of the time domain and frequency domain approaches, as has been shown in section 

4.8.3.  
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It was also possible to successfully compare the effect of the downburst model with the traditional 

atmospheric boundary layer model. The scope of this comparison was to attempt a first step 

towards the definition of a methodology for checking if a structure correctly projected with the 

standard design rules for wind loads is capable to resist a probable scenario of a downburst outflow. 

In general terms it should be highlighted the dynamic factor of the response for synoptic winds 

seems, for the cases considered in this work, to be higher than that of the downburst because of 

the difference in the size of the integral length scales and the turbulence intensities.  

For the case of study of a tall structure (natural frequency of 2.58 Hz and damping ratio of 2%,) 

located in Genova and with basic velocity for the definition of the ABL model equal to 30 [m/s], it 

has been shown that the equivalent downburst producing the same effect has a model velocity of 

27.7 [m/s] with a tracking velocity of 12 [m/s]. The maximum velocities reached by the ABL and DWB 

models were 32.5 [m/s] and 39 [m/s] respectively. While useful to introduce a methodology, the 

application example, however, should be extend in a future research to cover a wider set of case of 

study. It could be in particular interesting to check the effects of the downburst on both lightly 

damped flexible structures and large structures (e.g. over-head power lines, bridges).  

For the MDOF systems it was possible to successfully develop a computational tool able to evaluate 

the dynamic response of a three-dimensional structure subjected to a multi-point downburst wind 

velocity outflow. The code works in time domain analysis by solving the equations of motion using 

a Newmark integration scheme. For the given case of study, it was possible to verify the three-

dimensional structure of the wind velocity field and asses the response of the system under the 

downburst action.  

Finally, it is recommended to extend the failure probability assessment to the case of study of MDOF 

structures to which the features of the downburst wind velocity field become critical compared with 

the ABL model.  

 

 

 

 

  



Politecnico di Milano 

 

240 
 

References 
AS/NZS 7000. 2010. Overhead line design- detailed procedure. Australian/New Zeland Standard. 

Biondini, F. 2017. "Class notes of Computational Structural Analysis." Stiffness matrix of Beam 

Elements. MIlano, Lombardia. 

Biondini, F. 2018. "Lecture Notes Relaibility class." Politecnico di Milano.  

Byers, HR, and RR Braham. 1949. "The Thunderstrom: final report of the thunderstrom project." US 

goverment pritning office.  

Canor, T, V Denoël, and L Caracoglia. 2016. "Perturbation methods in evolutionary spectral analysis 

for linear dynamics and equivalent statistical linearization." ELSEVIER, Probabilistic 

Engineering Mechanics Vol46 1-17. 

Caracoglia, L, and T Le. 2017. "Computer-based model for the transient dynamics of a tall building 

during digitally simulated Andrews AFB thunderstrom." ELSEVIER, Computers and Structures 

Vol 193 44-72. 

Carassale, L, A Freda, M Marrè Brunenghi, G Piccardo, and G Solari. 2012. "Experimental 

Investigation on the aerodynamic behavior of square cylinders with round corners." The 

seventh colloquim on bluff body aerodynamics and applications BBAA7.  

Chay, MT, and CW Letchford. 2002. "Pressure distributuons on a cubue in a simulated thunderstrom 

downburst-PartA: stationary donwburst observations." Journal of Wind Engineering and 

Industrial Aerdynamics 90:711-32. 

Chen, L, and C Letchford. 2004. "A deterministic-sthocastic hybrid model of downburst and its 

imparc on a cantilevered structure." ELSEVIER, Engineering Structures Vol 26 619-629. 

Chopra, Anil K. 2012. Dynamic of Structures 4th Edition. Berkeley: Pearson Education, Inc. 

Corigliano, A. 2005. Meccanica Computazzionale- Soluzione del problema elastico lineare. Bologna: 

Esculapio. 

Davenport, A. 1962. "Buffeting of a Suspension Bridge by Strom Winds." Journal of the Structural 

Division vol 88 ACSE 233-270. 

Davenport, A. 1968. "The dependance of the wind load upon meteorological parameters." 

Proceedings of International Seminar on Wind Effects on Buildings and Structures p.19-82. 

Denoël, V. 2004. Application des méthodes d'analyse stochastique à l'étude des effets du vent sur 

les structures du génie civil. Liege: Universite de Liege. 

Deodatis, G. 1989. "Simulation of ergodic multivariate stochastic process." Journal of Enginerring 

Mechanics ASCE Vol 122 778-787. 

Di Paola, M., and I. Gullo. 2001. "Digital generation of multivariate wind field processes." 

Probabilistic Engineering Mechanics ELSEVIER Vol 16 1-10. 



Description and Simulation of Thunderstorms Downburst and Their Effect Over Long Structures 

 

241 
 

Diana, G. 2018. "Lecture Notes in Wind Engineering." In Chapter 4: Immersed Bodies. Politecnico di 

Milano. 

—. 2018. "Lecture Notes: Wind Effects On Bridges." Wind Engineering lessons. Milano. 

Elawady, A. 2016. Development of Design Loads for Transmission Line Structures Subjected to 

Downburst Using Aeroleastic Testing and Numercial Modeling. London, Canada: PhD Thesis. 

Eurocode1. n.d. "Eurocode1 1991 1-4(1991): Actions on Structures Part 1-4: General Actions: Wind 

actions, CEN." 

Felippa, C. 2013. "Chapter 18 Matrix Finite Element Methods in Dynamics." (Course in Preparation) 

- Date TBA Chapter 18. 

Fujita, T. 1990. "Downburst: Meteorological features and wind field characteristics." J Wind Eng Ind 

Aerodyn 36:75-86. 

Fujita, T. 1985. "Downburst: microburst and macroburst." University of Chicago Press.  

Gavin, H. 2016. "Structural Element Stiffness, Mass, and Damping Matrices." CEE541 Structural 

dynamics Duke University.  

Hangan, H, D Roberts, Z Xu, and . 2003. "Downburst simulation, experimental an numerical 

challenges." 11th International Conference on Wind Engineering.  

Hawes, H, and D Dempsey. 1993. "Review of recent Australian transmission line failures due to high 

intensity winds." Porceedings of the task Force of High Intesnsity Winds on Transmission 

Lines, Buenos Aires 19-23. 

Hjelmfelt, MR. 1998. "Structure and lufe cycle of microburst outflows observerd in Colorado." 

Journal of Applied Meteorology Vol 27.  

Holmes, JD, and SE Oliver. 2000. "An empirical model of a downburst." ELSEVIER, Engineering 

Structures Vol 22 1167-1172. 

HYDRO ONE NETWORKS INC. 2006. Failur of towers 610 and 611, circuit X503-500kV guyed towers 

near the township of Waybaushene". Ontario: Faillure Investigation Report, Line 

Engineering. 

Ivan, M. 1986. "A ring-vortex downburst model for fligth simulations." Journal of Aricraft 23 232-

236. 

Kaimal, JC. 1972. "Spectral charactersitics of surface-layer turbulence." Journal of the Royal 

Meteorological Society, London Vol 98 563-89. 

Kanak, J. 2007. "Case of study of the 9 May 2003 windstrom in southwestern Slovakia." Atmos. Resm 

83 162-175. 

Kwon, D, and A Kareem. 2009. "Gust-front factor: New framework for wind load effects on 

structures." Journal of structural engineering ASCE Vol 135 712-732. 



Politecnico di Milano 

 

242 
 

Mason, M, G Wood, and D Fletcher. 2009. "Numerical simulation of downburst winds." Journal of 

Wind Engineering and Industrial Aerodynamics, ELSEVIER Vol 97 523-539. 

Mason, M, G Wood, and D Fletcher. 2009. "Numerical simulation of downburst winds." Journa of 

Wind Engineering and Industrial Aerodynamics Vol 97 523-539. 

McCarthy, P, and M Melness. 1996. "Severe weather elements associated with the september 5, 

1996 hydro tower failures near Grosee Isle, Manitoba, Canda." Manitoba Environmental 

Services Centre, Enviroment Canda.  

Newmark. 1982. "Earthquake Spectra and Design." Earthquake Engieering Research Institute.  

Oliver, SE. 1992. "Severe wind in New South Wales." Report prepared for Pacific Power by Bureau of 

Meteorology, Special Services Unit.  

Osegura, RM, and RL Bowles. 1988. "A simple analytic 3-dimensional downburst model based on 

boundary layer stagnation flow." NASA Technical Memorandum 100632.  

Perotti, F. 2017. "AN INTRODUCTION TO RANDOM VIBRATION OF STRUCTURES:Non – stationary 

models." Class notes.  

Perotti, F. 1990. "Structural Response to non-stacionary multi-support random excitation." 

Earthquake Engineering and strucutral dynamics VOL 19 513-527. 

Poreh, M, and JE Cermak. 1959. "Flow characteristics of a circular submerged jet impigning normally 

on a smooth boundary." Sixth annual conference on fluid mechanics, Austin Texas.  

Priestley, M. 1965. "Evolutionary Spectra and Non-stacionary Processes." Journal of the Royal 

Statistical Society. Series B(Methodological) Vol 27 204-237. 

Shehata, A, A El Damatty, and E Savory. 2005. "Finite Element modeling of transmission line under 

downburst loading." Finite Elements in Analysis and Design ELSEVIER Vol 42 71-89. 

Shinozuka, M, and G Deodatis. 1991. "Simulation of stochastic process by Spectral Representation." 

Applied Mechanis reviews Vol 44 191-204. 

Solari, G, and Piccardo. 2001. "Probabilistic 3-D turbulence modeling for gust buffeting of 

structures." ELSEVIER, Probabilistic Engineering Mechanics Vol 16 73-86. 

Solari, G, D Rainisio, and P De Gaetano. 2017. "Hybrid simulation of thunderstorm outflows and 

wind excited response of structures." Springer Scinece+Buisness Media Vol 52.  

Solari, G, M Burlando, P De G, and M Repetto. 2015. "Characteristics of thunderstorms relevant to 

the wind loading of structures." Eng Ind Aerodyn 143 62-77. 

Solari, M Burlando, P. De Gaetano, and MP. Repetto. 2015. "Characteritics of thunderstorms 

relevant to the wind of structures." Wind Structures Vol 20 763-791. 

University of Western Ontario UWO. n.d. 

https://www.eng.uwo.ca/windeee/research_publications.html . 



Description and Simulation of Thunderstorms Downburst and Their Effect Over Long Structures 

 

243 
 

Van der Hooven. 1957. "Power Sprecturm of horizontal wind speed in frequency range 0.0007 to 

900 cycles per hour." Journal of meteorology Vol 14 160-164. 

Vermire, B, O Leigh, and E Savory. 2011. "Improved modelling of donwburst outflows for wind 

engineering applications using cooling source apporach." Journal of Wind Engineering and 

Industrial Aerodynamics Vol 99 801-814. 

Vicroy, D. 1992. "Assesment of microburst models for downdraft estimation." Journal of Aircraft Vol 

29.  

Wilson, JW, and Roger Wakimoto. 2001. "The discrovery of donwburst: T.T. Fujita's Contribution." 

International Glosary of Hidrology Vol 82 49-62. 

Wilson, JW, RD Roberts, C Kessinger, and J McCarthy. 1984. "Microburst wind structure and 

evaluation of Doppler radar for airport wind shear detection." J Clim App Met Vol 23 898-

915. 

Wood, GS, and KCS Kwok. 1998. "An emperically derived estimate for the mean velocity profile of a 

thunderstrom downburst." 7th AWES Workshop, Auckland.  

Yang, SC, and HP Hong. 2016. "Nonlinear inelastic responses of transmission tower-line system 

under downburst wind." ELSEVIER, Engineering Structures Vol 123 490-500. 

 

 

  



Politecnico di Milano 

 

244 
 

APPENDIX A: Code benchmarking 
 

The first two benchmarks provided in the following are aimed to certify the effectiveness of the 

function MODAL1 which computes for a given mass matrix, stiffness matrix and damping ratio the 

eigenvalues, eigenmodes and the modal damping matrix. 

1. Eigenvalue Problem: From Pag. 432-Chopra DOS 4th Edition 

The structure reported in Image 1 is provided as an example of the modal analysis inside (Chopra 

2012). The masses and stiffnesses for the given shear frame are those showed, the term 𝑚 =

 0.259 𝑘𝑖𝑝 − 𝑠2/𝑝𝑙𝑢𝑔 and 𝑘 =  168 𝑘𝑖𝑝𝑠/𝑝𝑙𝑢𝑔 

 

Image 1: Structure for modal analysis. Adapted from Chopra 4th edition 

The structural matrixes of the system are:  

Expression 1 

𝑴 = 𝑚[
1   
 1  
  1/2

]     𝑲 =
𝑘

9
[
16 −7 0
−7 10 −3
0 −3 3

] 

The input data for solving the problem with the function MODAL1 of the computer code is given in  

 

Image 2: Structure input for modal Test 
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The first eigenvalue and eigenvector of the system reported in Chopra’s book are given in Expression 

2 and those computed by the code are reported in Expression 3. 

 

Expression 2 

𝜔1 = √𝜆1 = √144.14 = 12.006     𝝋1 = [
0.6377
1.2752
1.9122

] 

Expression 3 

𝜔1∗ = √𝜆1∗ = √144.1441 = 12.006     𝝋1∗ = [
0.6375
1.2750
1.9125

] 

Parameter Chopra Code Error[%] 

𝝋1(1) 0.6377 0.6375 0.03 

𝝋1(2) 1.2752 1.2750 0.015 

𝝋1(3) 1.9122 1.9125 0.015 

 

Comparing both approaches and taking as reference the value from (Chopra 2012) it is possible to 

verify the capability of the computer code to solve the eigenvalue problem showing an error less 

than 0.03%. 

 

2. Damping Matrix Construction From: Pag. 463 ex 11.4-Chopra DOS 4th edition 

To test the construction of the modal damping matrix, it was developed the given example in the 

topic of Chopras’s book. The structure to analyze is given in Image 3.  

 

 

Image 3:Structure for Damping benchmark 
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The structural matrixes of the system 

Expression 4 

𝑴 =
1

386
[
400   
 400  
  200

]     𝑲 = 610 [
2 −1 0
−1 2 −1
0 −1 1

] 

The modal information was reported in the example and compared with that computed by the code 

Expression 5 

𝝎𝑛 = [
12.57
34.33
46.89

]      𝝓 = [
0.401 0.803 0.401
0.695 0 −0.695
0.803 −0.803 0.803

] 

Expression 6 

𝝎𝑛∗ = [
12.5590
34.3118
46.8708

]     𝝓∗ = [
0.401 0.8021 0.401
0.6946 0 −0.6946
0.8021 −0.8021 0.8021

] 

 

For the computation of the modal damping matrix it was prescribed a non-dimensional damping 

ratio of 5% 

The modal matrix reported in the book for the three modes is that given in Expression 7 and that 

computed by the code Expression 8. 

Expression 7 

𝑪𝟏 = [
0.217 0.376 0.217 
 0.651 0.376 
  0.217

]     𝑪𝟐 = [
2.37 0 0.969
 0 0
  0.593

]  𝑪𝟑 = [
0.89 −1.40 0.81
 2.43 −1.4
  0.811

] 

𝑪 = [
3.4 −1.03 −0.159 
 3.08 −1.03 
  1.62

] 

Expression 8 

𝑪∗ = [
3.3968 −1.0264 −0.1588 
 3.0793 −1.0264 
  1.6190

] 

Parameter Chopra Code Error[%] 

C11 3.4 3.3968 0.09411765 

C12 -1.03 -1.0264 -0.34951456 

C13 -0.159 -0.1588 -0.12578616 

C22 3.08 3.0793 0.02272727 

C23 -1.03 -1.0264 -0.34951456 



Description and Simulation of Thunderstorms Downburst and Their Effect Over Long Structures 

 

247 
 

C33 1.62 1.619 0.0617284 

 

Comparing both approaches and taking as reference the value from (Chopra 2012) it is possible to 

verify the capability of the computer code to compute the modal damping matrix showing an error 

less than 0.35% in each component and 1.41% summing all components. 

The values computed for the modal analysis and the modal damping matrix from both approaches 

match. Therefore, it is verified that the MODAL1 function is correctly describing the behavior of the 

structure. The function code is given in the following:  

function [phi,lambda, MN,KN,CN,wn,fn]=MODAL1(m,k,n,zeta) 

  
[autoveco,autovalo]=eig(k,m); 
%mode organization 
[N,r1]=size(autoveco); 
incidence=zeros(N,2); 
autoval=zeros(N,N); 
autovec=zeros(N,N); 
LB1=zeros(N,1); 
for i=1:N 
   incidence(i,1)=i; 
   LB1(i)=autovalo(i,i); 
end 
LB2=sort(LB1); 
for i=1:N 

    
   for j=1:N 
       if LB1(i)==LB2(j) 
       index=j; 
       end 
    end    
   incidence(i,2)=index;       
end 
for i=1:N 
   ind=incidence(i,2); 
   autoval(ind,ind)=autovalo(i,i); 
   autovec(:,ind)=autoveco(:,i); 

    
end 
%Mass normalization 

  
 nautovec=zeros(size(autovec)); 
 for i=1:N 
     nautovec(:,i)=autovec(:,i)/sqrt(autovec(:,i)'*m*autovec(:,i)); 
 end 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   
 %HOW MANY MODES TO CONSIDER? 

  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
phi=zeros(N,n); 
lambda=zeros(n,n); 
for i=1:n 
    phi(:,i)=nautovec(:,i); 
    lambda(i,i)=autoval(i,i); 
end 
wn=(lambda.^(0.5)); 
fn=(lambda.^(0.5))/(2*pi); 
MN=(phi'*m)*phi; 
KN=(phi'*k)*phi; 
Ms=zeros(3,3); 
tol=10^(-4); 
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%modal damping superposition benchmark pag 463 chopra 
c=zeros(N,N); 

  
for i=1:n 
    c=c+(2*zeta*wn(i,i)/MN(i,i))*(m*(phi(:,i)*phi(:,i)'))*m; 

     
end 
CN=phi'*c*phi; 
for i=1:n 
    for j=1:n 
       Mij=MN(i,j); 
       Kij=KN(i,j); 
       Cij=CN(i,j); 
       if Mij<tol 
           MN(i,j)=0; 
       end      
       if Kij<tol 
           KN(i,j)=0; 
       end   
       if Cij<tol 
           CN(i,j)=0; 
       end   
    end 
end 
end 

 

The following benchmarks test the capability of the Newmark function to solve the equations of 

motion by means of the direct integration scheme of the so-called Newmark’s method.  

 

3. Newmark Method for SDOF from: Pag 178 Chopra DOS 4th edition  

A dynamic force as that given in Image 4 is applied to a single degree of freedom system Image 5.  

 

 

Image 4: Dynamic force for Newmark benchmark. Adapted from (Chopra 2012) 
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Image 5: SDOF structure 

The structural parameters were set according to the provisions of (Chopra 2012).  

 

Parameter Symbol Value Unit 

Mass m 0.2533 [kip-sec2/in] 

Stiffness 𝑘 10 [kip/in] 

Circular natural frequency 𝜔𝑛 6.283 [rad/sec] 

Damping ratio 𝜁 5 [%] 

Time step 𝛥𝑡 0.1 [sec]  

 

The initial conditions of the problem:  

Expression 9 

𝑢𝑜 = 0       �̇�𝑜 = 0        𝑃𝑜 = 0 

Following the procedure explained in § 4.3.2,  the solution of the problem given inside the text book 

for constant acceleration  (β=1/4 γ=1/2) is reported in Image 6 while that for linear acceleration 

(β=1/6 γ=1/2) in Image 7. 
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Image 6: Response for constant acceleration. Adapted from (Chopra 2012) 

 

Image 7: Response for linear acceleration. Adapted from (Chopra 2012) 

The data introduced in the computer code is given in Image 8. 

 

Image 8: Input parameters for SDOF benchmark  

The dynamic force could be seen in Image 9 
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Image 9: Input force 

The solution is given in Image 10 and Image 11. 

 

Image 10: Response for SDOF benchmark-constant acceleration 

 

Image 11: Response for SDOF benchmark-linear acceleration 
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Time u-constant acc u-linear acc 

0 0 0 

0,1 0,0436665968001118 0,0299839286142628 

0,2 0,232616513636352 0,219331309427338 

0,3 0,612062958627255 0,616602191668912 

0,4 1,08252521764122 1,11299781370026 

0,5 1,43092707443901 1,47818122356363 

0,6 1,42304922080044 1,46245569277727 

0,7 0,962158348751629 0,951412864283085 

0,8 0,190785913815418 0,127318087078159 

0,9 -0,604335358601955 -0,695381429463452 

1 -1,14412278585381 -1,22075244478284 

 

The error is of the time steps of the response is shown in the following:  

Time u-constant acc u-linear acc 

 Code Chopra Error[%] Code Chopra Error[%] 

0 0 0 0 0 0 0 

0,1 0.0437 0.0437 0.0765 0.0300 0.0300 0.0536 

0,2 0.2326 0.2326 0.0071 0.2193 0.2193 0.0143 

0,3 0.6121 0.6121 0.0061 0.6166 0.6166 0.0004 

0,4 1.0825 1.0833 0.0670 1.1130 1.1130 0.0002 

0,5 1.4309 1.4309 0.0019 1.4782 1.4782 0.0013 

0,6 1.4230 1.4230 0.0035 1.4625 1.4625 0.0030 

0,7 0.9622 0.9622 0.0043 0.9514 0.9514 0.0014 

0,8 0.1908 0.1908 0.0074 0.1273 0.1273 0.0142 

0,9 -0.6043 
-

0.6043 0.0059 
-0.6954 

-
0.6954 0.0027 

1 -1.1441 
-

1.1441 
0.0020 -1.2208 

-
1.2208 

0.0039 

  Total 0.182  Total 0.095 
 

The error computed is less than 0.2% therefore the capability of the code to assess the response by 

means of the integration of the equations of motion of SODF systems is verified.  
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4. Newmark Method for MDOF from:  Pag 678-679 Chopra DOS 4th edition 

 

A structure as that given in Image 12 a) submitted to a uniform dynamic force with time variation 

as that shown in  Image 12 b) was analyzed using the numerical scheme of the Newmark method. 

The result reported by (Chopra 2012) was compared with that coming from the computer code 

analysis. 

 

Image 12: Structure for MDOF Newmark method. Adapted from (Chopra 2012) 

The structural matrixes and the dynamic force distribution vector are: 

 

 

Parameter Symbol Value Unit 

Mass m 100 [kips/g*] 

Stiffness 𝑘 100 [kip/in] 

Dynamic excitation �̈�0 0.5 [g*] 

Damping ratio 𝜁 5 [%] 

Time step 𝛥𝑡 0.1 [sec]  

Cut Time td 1 [sec] 

*  the term g stands for the gravity constant 
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Solving for the first two modes of the structure it is possible to obtain:  

 

Image 13: Modal quantities. Adapted from (Chopra 2012) 

Normalizing the structural quantities to the modal coordinates.  

 

And the modal damping matrix: 

 

The solution in modal and natural coordinates using linear acceleration can be seen in graphically in 

Image 14 and numerically in Image 15. 

 

Image 14: Graphical Response of MDOF benchmark Adapted from (Chopra 2012) 
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Image 15: Response of MDOF benchmark Adapted from (Chopra 2012) 

The data introduced in the computer code is given in Image 16. 

    

Image 16: Input parameters for MDOF benchmark  

The solution is given in Image 17. 
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Image 17: Response for MDOF benchmark  

Time q1 q2 u5 

0 0 0 0 

0,1 -0,186865633807604 0,0416455532978688 -0,174275016382209 

0,2 -1,35975819055173 0,240060246107161 -1,33602151950221 

0,3 -3,77678463008510 0,376504092889729 -4,02371484055991 

0,4 -6,67357391080269 0,219284639272090 -7,59060073381859 

0,5 -8,53757607672224 -0,0701660360523685 -10,0887262678436 

0,6 -7,83265253540952 -0,206090269174448 -9,40847355976412 

0,7 -3,84614443873849 -0,201465161633760 -4,72800387785398 

0,8 2,74639268324389 -0,224006115223162 2,97960734413175 

0,9 9,90087734148697 -0,231434849516072 11,3625739848454 

1 14,8675125368108 -0,0677936695531881 17,3639526485609 

1,1 15,4583388920794 0,155106900328850 18,2971346259484 

1,2 11,5419718815220 0,0832374414465396 13,6264515670801 

1,3 4,48593966817822 -0,126331145050207 5,12507038829085 

1,4 -3,50382044617911 -0,0928179966700731 -4,20941584990312 

1,5 -10,0651950680919 0,0992322500763592 -11,6977797628692 

1,6 -13,3720289852520 0,0974080392820531 -15,5780903161438 
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1,7 -12,6352119189265 -0,0743610786516145 -14,8990660510939 

1,8 -8,27749983008625 -0,0978675093239892 -9,81355877012316 

1,9 -1,74833806772110 0,0520837179273239 -1,99436181093077 

2,0 4,94904734015376 0,0950179096727110 5,90678819305177 

 

The error computed for the displacement of the 5th DOF is as reported in the following:  

Time Chopra Code Error [%] 

0 0 0 0 

0,1 -0.1742 -0.1742750 0.0430634 

0,2 -1.3357 -1.3360215 0.0240712 

0,3 -4.0229 -4.0237148 0.0202551 

0,4 -7.5893 -7.5906007 0.0171390 

0,5 -10.0877 
-

10.0887263 
0.0101735 

0,6 -9.4087 -9.4084736 0.0024067 

0,7 -4.7301 -4.7280039 0.0443145 

0,8 2.9758 2.9796073 0.1279435 

0,9 11.3579 11.3625740 0.0411518 

1 17.3602 17.3639526 0.0216164 

1,1 18.2966 18.2971346 0.0029220 

1,2 13.6304 13.6264516 0.0289678 

1,3 5.1327 5.1250704 0.1486471 

1,4 -4.2003 -4.2094158 0.2170285 

1,5 -11.6901 
-

11.6977798 
0.0656946 

1,6 -15.5745 
-

15.5780903 
0.0230525 

1,7 -14.9016 
-

14.8990661 
0.0170045 

1,8 -9.8223 -9.8135588 0.0889937 

1,9 -2.0069 -1.9943618 0.6247541 

2,0 5.8944 5.9067882 0.2101689 

  Total 1.779 
 

The results reported in (Chopra 2012) coincide with those computed by the code. Therefore, it is 

verified that the function Newmark performs the numerical integration of the equations of motion.  

The function is given in the following:  
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function [u,v,ac]=newmark(m,k,c,Bt,Y,p,T,dt,t,N,uo,vo) 
% all quantities must enter whether in modal or natural coordinates 
% if input in MODAL ouput in MODAL, if input NATURAL output NATURAL 
% solution vectors 
 u=zeros(N,T/dt); 
 v=zeros(N,T/dt); 
 ac=zeros(N,T/dt); 
%intial conditions 
if uo==0 
 u(:,1)=zeros(N,1); 
else 
  u(:,1)=uo; 
end 
if vo==0 
 v(:,1)=zeros(N,1); 
else 
  v(:,1)=vo; 
end 
 %adapted from page 678 chopra 4th edition              
 ac(:,1)=m\(p(:,1)-c*v(:,1)-k*u(:,1)); 
 a1=1/(Bt*dt^2)*m+Y/(Bt*dt)*c; 
 a2=1/(Bt*dt)*m+(Y/Bt-1)*c; 
 a3=(1/(2*Bt)-1)*m+dt*(Y/(2*Bt)-1)*c; 
 Kn=k+a1; 

  
  for i=2:length(t) 
       Pi=p(:,i); 
       Pni=Pi+a1*u(:,i-1)+a2*v(:,i-1)+a3*ac(:,i-1); 
       u(:,i)=Kn\Pni; 
       v(:,i)=Y/(Bt*dt)*(u(:,i)-u(:,i-1))+(1-Y/Bt)*v(:,i-1)+dt*(1-

Y/(2*Bt))*ac(:,i-1); 
       ac(:,i)=1/(Bt*dt^2)*(u(:,i)-u(:,i-1))-1/(Bt*dt)*v(:,i-1)-(1/(2*Bt)-

1)*ac(:,i-1); 

    
 end  

     
end 
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APPENDIX B: SAP 2000 Dynamic testing 
1. Sap2000 control model for SDOF 

A sap2000 model was built to test the direct integration of the equations of motion, the results were 

successful obtaining the same result in terms of shape, maximum and minimum displacement. 

The model consists in a lumped mass with linked with a spring as shown in Figure 0-1 representing 

the structure shown already in  Figure 4-1b.  no further details of the modeling could be included 

since was a very simple one. 

 

 

 

Figure 0-1: Sap2000 model 

The values of mass are those provide in  Equation 4-79 and stiffness Equation 4-80, the test was 

performed used a stiffness parametric coefficient Ck of 0.5. The damping was simulated as constant 

damping ratio of 2% for all modes (even though there is only one). While the acting acceleration 

introduced in the Sap model corresponds to force of a white noise signal which was generated 

according to  4.3  divided by the mass of the system (Figure 0-2), the input signal for the time domain 

analysis was the white noise signal itself. 
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Figure 0-2: Acceleration time history Sap2000 model 

The result of the Sap model is given in Figure 0-3. The maximum displacement 7.023x10-4 and the 

minimum -7.305x10-4. Regarding the built-up code for the integration of equation motion, the result 

is given in Figure 0-4 with the maximum 7.0226e-04 and a minimum 7.3049e-04. 

The error involved between the two approaches could be computed as: 

𝑒𝑟𝑟𝑜𝑟 =
𝑀𝑎𝑥𝑆𝑎𝑝 −𝑀𝑎𝑥𝑇𝐷𝐴

𝑀𝑎𝑥𝑆𝑎𝑝
=
7.023 − 7.0226

7.023
= 0.005% 

This error could be given by the approximation of the scientific notation. In addition, comparing the 

shape of the responses is possible to see a complete match of both representations. Therefore, is 

possible to state that the algorithm of generation of equations of motion is fully calibrated and not 

error in the final response could come from this.  

 

 

Figure 0-3: Response displacement time history Sap2000 model 
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Figure 0-4: Response displacement time history TDA_SDOF model 
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2. Sap2000 control model for MDOF 

Computer Code Simulation 

A 3D frame structure as that shown in Image 18 submitted to harmonic dynamic force was analyzed 

using the computer code and the results were compared with those obtain with the commercial 

code Sap2000.  

 

Image 18: 3D frame for MDOF benchmark  

The structure nodes can be seen in Image 19 and the element Image 20. 
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Image 19: Node id-3D frame for MDOF benchmark  

 

Image 20: Elements id-3D frame for MDOF benchmark  

The structure is idealized to be a square section made of solid steel. The material parameters are 

reported as follows:  

 

Parameter Symbol Value Unit 

Young Modulus  𝐸 210.000.000  [kPa] 

Poisson Ratio 𝜈 0.2 [-] 

Density ρ 7.850 [kg/m3] 

Shear modulus 𝐺 87.500.000 [kPa] 

 

All the elements of the structure are composed by the same cross section, a picture of the same 

could be seen in Image 21 

 

Image 21 Cross section 
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The geometric properties of the section are reported in the following: 

 

Parameter Symbol Value Unit 

Area  𝐴 0.25  [m2] 

Inertia in y-y’ direction 𝐼𝑦 0.0052 [m4] 

Inertia in z-z’ direction 𝐼𝑧 0.0052 [m4] 

Shear coefficient 𝜒 5/6 [-] 

Shear correction factor 𝜙𝑦 0.0199 [-] 

Shear correction factor 𝜙𝑧 0.0199 [-] 

 

The damping ratio is taken as 2% for accepted value for steel structures.  

The dynamic force is applied in the node 6 in the positive y-direction, the time varying trend is as 

shown in Image 22. 

  

Image 22: Dynamic Force-3D frame for MDOF benchmark  

 

𝑃 = 100 ∗ 𝑠𝑖𝑛 (
1

2
∗ 𝑝𝑖 ∗ 𝑡) [𝑘𝑁] 
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The structural model introduced in the computer code could be seen in Image 23 

 

 

Image 23: Structure in MATLAB 

Solving the Eigenvalue problem for the first 10 modes it was possible to recall the natural 

frequencies as:  

Mode Frequency Period 

1 7,82660044864517 0,127769394459520 

2 7,82660044864577 0,127769394459510 

3 8,86521981053036 0,112800361567140 

4  20,5544087005782 0,0486513630514639 

5 24,1125819211889 0,0414721245227269 

6 24,1125819211889 0,0414721245227269 

7 25,6222644248781 0,0390285567043420 

8 30,3182497217688 0,0329834343729278 

9 60,7037435312858 0,0164734486182819 

10 71,4746144212041 0,0139909813868591 

 



Politecnico di Milano 

 

266 
 

 

 



Description and Simulation of Thunderstorms Downburst and Their Effect Over Long Structures 

 

267 
 

 

 



Politecnico di Milano 

 

268 
 

 

 



Description and Simulation of Thunderstorms Downburst and Their Effect Over Long Structures 

 

269 
 

 

The displacement at the 20th DOF corresponding to the y-direction of the 6th node is given in Image 

24.  

 

Image 24: Displacement 20th DOF. 

 

 

Model in Sap2000 

The material properties are those given in Image 25. 
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Image 25: Material properties Sap2000 

 

The sections properties are given in Image 26. 

  

Image 26: Section properties Sap2000 

The structural scheme is that shown in Image 27 a). The dynamic excitation is placed in the positive 

y-direction, as shown in Image 27 b). 

       

Image 27: Structure Sap2000 

The dynamic force is as shown in Image 28. 
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Image 28: Dynamic force Sap2000 

 

The modal information computed with Sap2000 are as follows: 

 

 

MODE Period Frequency 

1 0.1280 7.8125 

2 0.1280 7.8125 

3 0.1131 8.8403 

4 0.0488 20.4900 

5 0.0413 24.2252 

6 0.0413 24.2252 

7 0.0388 25.7679 

8 0.0329 30.3647 

9 0.0108 92.4531 

10 0.0107 93.5302 

11 0.0107 93.5302 

12 0.0106 94.7475 
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And the modal shapes:  
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The response computed with the direct integration of motion Image 29. 

 

 

Image 29:Displacement of the 9th point in y-direction 
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The error computed for the first 8 modes is reported in the following:  

mode Sap2000 Code Error [%] 

1 0.128 0.12776939 0 

2 0.128 0.12776939 0.1801606 

3 0.1131 0.11280036 0.2649323 

4 0.0488 0.04865136 0.3045839 

5 0.0413 0.04147212 0.4167664 

6 0.0413 0.04147212 0.4167664 

7 0.0388 0.03902856 0.5890637 

8 0.0329 0.0329834 0.2535999 

  Total 2.426 
 

The capability of the code to reproduce the dynamic response by means of the integrations of 

motion and to assess the modal information by solving the eigenvalue problem for 3D frames is 

verified as the error comparing the results of the code with the commercial code Sap2000 is less 

than 2.5%.  
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APPENDIX C: VARIANCE ANALYSIS GRAPHICS 
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