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EXECUTIVE 

SUMMARY 

The thesis work originates from an optimization project carried out in Barilla 

Group supply chain area, specifically in Supply Chain Network Design department, 

where I conducted my internship.  

The project concerns the application of a multi-echelon safety stock optimization 

model on Barilla distribution network. To directly address the problem, the project 

includes the deployment of Llamasoft Supply Chain Guru, an integrated 

optimization software that provides optimization model packages. Supply Chain 

Guru Inventory Optimization model is investigated and tested for the first time in 

the company during this project. Specifically, Safety Stock Optimization model is 

applied with the objective to determine the optimal safety stock level in the 

network, minimizing the inventory holding cost related to the whole distribution 

network and to meet a target customer service requirement.  

The perspective is not restricted locally to customer-facing stages only, but it 

includes the whole multi-echelon distribution network, for an augmented and 

effective safety stock optimization.  

Supply Chain Guru Safety Stock Optimization consists of two stages. First, 

demand is studied based on a categorization schema developed by Syntetos and 

Boylan (2005), which classifies demand according to two variables: intermittency, 

that is how often demand occurs in a given period, and variation, that is how 
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different in quantity demand occurs in a given period. The mentioned classification 

framework is enforced in the model to associate a product demand to one of the 

four demand classes defined by the combination of the two categorization 

variables. Indeed, based on a two-axis matrix where demand intermittency and 

demand variation are the variables and specific threshold values for both variables 

are set, four possible demand classes are outlined: (1) smooth demand corresponds 

to a non-intermittent and stationary demand, (2) erratic demand defines a non-

intermittent and highly variable demand, (3) slow demand represents an 

intermittent and low variable demand and (4) lumpy demand occurs as non-

intermittent and highly variable demand.  

Demand analysis and classification anticipates safety stock optimization, so that 

demand statistics are computed, and lead time demand distribution may be 

defined, according to the demand class, becoming input information for the 

subsequent step.  

Once demand analysis has completed, the second stage, multi-echelon safety stock 

optimization, starts. Multi-echelon systems require appropriate optimization 

models that includes the interdependent variables in the analysis, providing with 

an effective optimized output at the whole network-level. Simchi-Levi and Zhao 

(2012) argue that three drivers have brought to positive results in the adoption of 

multi-echelon inventory optimization approaches: (1) the data availability about 

demand and lead time, (2) industries’ interest in implementing scientific methods 

in inventory management and (3) latest development of models and algorithms 

focused on inventory control in general multi-echelon systems. 

Specifically, in Supply Chain Guru software, Safety Stock Optimization is based on 

Graves and Willems (2000) Guaranteed-service model. Graves and Willems 

approach assumes that every stage quotes a guaranteed service time to its 

immediate downstream stage, after which the requested item is available. The 

service times are the decision variables of the model objective function that 

minimizes the inventory holding cost at all network levels, to meet a target 
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customer service requirement. The result is an optimal safety stock level assuming 

a holistic supply chain perspective.  

The model has been built, entering input data concerning actual sourcing network, 

replenishments, lead times and costs. Demand has been entered as historical 

demand series, with the objective to test demand analysis functionality on actual 

demand information. The plan is to substitute historical demand with forecast 

demand information, for the operating need to assess the optimal safety stock level 

given the expected demand, with the corresponding forecasting error, in the future 

period. 

The applied multi-echelon safety stock optimization model should be evaluated by 

Barilla supply chain planning unit, considering the existing single-echelon safety 

stock optimization method implemented so far in the inventory planning unit. At 

the current project phase, a quantitative analysis of model results has not been 

feasible, since the multi-echelon-based model works with demand input 

information that are actual historical data, while the single-echelon-based method 

is founded on forecast demand data. The asymmetry of input data between the two 

methodologies led to the impossibility to run a quantitative analysis of results and 

a model evaluation at this project phase. 

Nonetheless, Supply Chain Guru optimization model appears a significant 

resource for future inventory planning processes for qualitative considerations. 

Demand analysis integrated with safety stock optimization allows the 

understanding of demand patterns for a more accurate determination of stock 

levels. The operating role potentially covered by the new optimization model may 

be combined also with a strategic role: the tool structure enables what-if analysis 

concerning the inventory network. Thus, although the actual model validation has 

not been carried out so far, the project has brought to a significant acquaintance 

with the software logic and with the optimization model construction that frame 

the multi-echelon safety stock optimization model as potential key resource for the 

development of inventory planning in Barilla network.  
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CHAPTER 1 

CASE STUDY: BARILLA 

1.1 Introduction 

Barilla Group is an Italian company operating in the food sector at global level. 

Specifically, two business areas are defined within the company: meal solutions, 

including pasta and sauces, and bakery. With a turnover of 3,468 million Euros in 

2017, the Group stands out as leader for pasta worldwide, for sauces in continental 

Europe, for bakery in Italy and France and for crispbread in Northern Europe.  

Meal solution business represents the major business area for sales, counting for 

53.9 percent of annual turnover. Bakery, concentrated mainly in Italian and 

French markets, contributes to 45.6 percent of company’s turnover. The remaining 

0.5 percent of sales is obtained by other business areas. (Barilla Sustainability 

Report 2018). 

The Group products are clustered among 13 brands and marketed in more than 

100 countries. Twenty-eight production sites are located in 9 countries, to meet the 

global demand.  

At geographical level, company’s main market is Italy, which contributes to 45,3 

percent of turnover, followed by U.S., France, Germany, Turkey. 
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1.2 Food Industry: an Overview 

The food represents a strategic arena for the Italian manufacturing sector: 

composed of 58413 firms located in the national territory, it generated a turnover 

of 137 billion Euros in 2017 (ISTAT).  

It has the second ranking position in the Italian manufacturing sector, after 

metalworking, impacting on total industry turnover by 12%. 

Besides, Italian food production has increased by +1.7% in 2017 compared to the 

previous year, clearly confirming the economic upswing observed in the latest 

years. The main driver of the sector economic revamping is the rise in exports: in 

2017 Italian food exports reached almost 32 billion Euros, weighing almost one 

fourth of the total industry turnover and in the last decade exports recorded a 75-

percent upturn, three times higher than the total food industry value growth. 

European Union countries mainly pull Italian food export (almost two thirds of the 

total value), while U.S. is the main extra-EU market. The recent results 

demonstrate that food industry plays a key role as “Made in Italy” ambassador and 

that the foreign markets represent more and more an encouraging arena for Italian 

food sector.  

To briefly disclose the supply side of agri-food sector may be oversimplifying, due 

to the width of its good range. Since Barilla operates in sectors that mainly deal 

with agricultural sectors, such as cereal sector (for semolina and soft wheat flour), 

its underlying supply chain structure is presented below. 

Pasta industry, part of cereal macro-sector, implies (1) durum wheat grain 

production and commercialization, (2) semolina production and (3) pasta 

production.  

Durum wheat producers and their different collective entities (such as agricultural 

consortiums, associations and cooperatives) sustain the production and the 

commercialization of the basic agricultural product. Also private traders, 
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supported with wheat storage structures, are key players in the commercialization 

phase. 

First processing sector includes the durum wheat milling and the production of 

flours. From this process bran results as a by-product and it is generally dispatched 

to animal feeding. 

The second processing sector is composed of pasta producers (both industrial and 

artisan). Pastry and bakery producers, differently, use soft wheat flour as main raw 

material. 

The commercialization and distribution occur mostly through the Mass Market 

Retailers and it is often managed directly by big pasta industrial groups with the 

production for private labels. 

1.3 Barilla History 

“Basically, we are pasta makers and bakers; this is the line of work 

our family has pursued over the last four generations, with the help of 

outstanding coworkers. It is the only line of work we can and try to 

improve every day” 

Guido Barilla 

Barilla was founded in 1877 by Pietro Barilla, who opened a bread and pasta shop 

in Parma. 

In 1910 industrialization was carried on by Pietro’s sons, Gualtiero and Riccardo, 

with a 80-worker factory, which had a production capacity of 8 tons of pasta and 2 

tons of bread per day. 

In 1936 Pietro, Riccardo’s son, launched the commercial network and six 

continuous presses were introduced, aggregating kneading machine and press 

functions for the first time. 

Since the end of World War II the company faced a period of change, which led to 

the path to become the first food company in Italy. Gianni and Pietro Barilla 
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organized the corporate management in a structure manner: Gianni focused on 

production and administration, while Pietro dealt with market and public relations 

and communication. 

In the same years, the company strategy decide to free production from state 

supply, especially dedicated to Italian army, and to focus on commercial market 

only. 

The business decision implied a reshaping, specifically in management mind and 

this brought Pietro to fly to U.S., to look for new stimuli. 

Back to Italy after two years (1952), three relevant and brave decisions were taken 

at business level: 

- Interruption of fresh bread production, to favour the exclusive focus on 

durum wheat and egg pasta brands; 

- Sales network strengthening and a modern distribution network 

development; 

- Starting a generous investment policy on communication and 

advertisement, aimed at shaping an established and sticky logo. 

Barilla distribution network evolved also due to the development of national 

highway network.  

From the production point of view, several key changes occurred. In 1957 the 

existing production site was rebuilt, and in 1965 a new factory was introduced in 

Rubbiano, located in Parma district, for bread stick and rusks production. Italian 

market responds confirmed Pietro Barilla’s insights and in 1968 a new plant was 

built in Pedrignano with the most modern pasta machineries at that time (it 

consisted of a 120-meter-long production line). 

In the early seventies, Barilla brothers decided to sell the majority of capital to an 

American multinational corporation, Grace, as a consequence of a critical moment 

spread in the whole country. 

Corporate expansion strategy did not stop: Voiello entered the company’s brand 

portfolio and a mill in Altamura (in Puglia region) was acquired. In 1975 Mulino 
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Bianco brand was born, marked with a typically American style, based on product 

diversification. Since its introduction, the brand had been conceived for sweet 

bakery, rusks and breadsticks only. In 1977 it included also sweet snacks, cracker 

and “Pan Carrè” (sliced bread). 

The product mix expansion with short-shelf-life items determined a restructuring 

also at distribution level, to guarantee a higher customer replenishment frequency. 

In 1979 Barilla shares were bought back by Pietro, who gave rise to a new 

development phase. First, he wanted to revamp pasta, with innovative 

communication campaigns. He promoted many acquisitions, both in Italy (Pavesi) 

and abroad (Misko and Filiz). In 1993 Pietro was succeeded by his three sons – 

Guido, Luca and Paolo, who followed father’s business expansion strategy, 

acquiring WASA, a leading brand in dry bread industry, and opening the first pasta 

production plant in U.S. in 1999. 

The new millennium started with another acquisition: Harrys, a strong brand in 

French soft bread industry (2003). In parallel company’s entrepreneurial mind-set 

sought new opportunities in non-core businesses, founding Academia Barilla in 

2004, an international project focused on Italian culinary culture safeguard and 

promotion. Pursuing the mission to embody and spread Italian cuisine in the 

world, Barilla opened some Barilla Restaurants overseas. It is remarkable to 

mention also Barilla’s visionary spirit and social commitment that led to the birth 

of Barilla Center for Food & Nutrition Foundation, a scientific research hub aimed 

at studying food and its connections with social, economic and environmental 

sustainability for the promotion of wellbeing and health of people and Planet.  

1.4 Barilla Brands and Products 

Barilla offer is classified in two main business areas: 

 Meal Solutions: pasta, sauces and ready meals; 

 Bakery: sweet and savoury bakery products. 
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Pasta can be further divided in different categories: 

 Durum wheat semolina pasta (long-cut, short-cut, spoon pasta) 

 Egg pasta (lasagne, noodles and tortellini) 

 Whole wheat pasta 

 Five-cereal pasta 

Sauces are divided in the following typologies: 

 Ready sauces; 

 Red Sauces (Tomato-based); 

 Pesto; 

 “Pestati”; 

 Ragù or Bolognese sauces. 

Bakery encompasses a varied assortment of products, such as:  

 Biscuits; 

 Rusks; 

 Soft bread; 

 Sweet and savoury snacks; 

 Cakes; 

 Crackers. 

 

In Meal Solutions market Barilla Group owns several brands. 

 Barilla is the global established brand for pasta and sauces. It is symbol of quality, 

Italian style and wholesomeness worldwide. 

Voiello was born in 1879 as small pasta shop in Torre Annunziata, located in Naples 

area. The brand is an icon for Neapolitan pasta tradition, retraced in the shapes 

and durum wheat quality. It is perceived as a premium brand in pasta market and 

it entered in Barilla brand portfolio in 1973. 
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Filiz is one of the top pasta producer in Turkey, and it has belonged to Barilla Group 

since 1994.  

Since 1927 Misko has been a Greek established pasta brand. Symbol of local 

tradition and quality, it was acquired by Barilla Group in 1991. 

Yemina and Vesta are two brands in Mexican pasta market, respectively since 1952 

and 1966. They became Barilla-owned brands following a joint venture with 

Herdez Group in 2002.   

Casa Barilla is an Italian fast casual restaurant chain expressing the best of Italian 

cuisine at affordable prices. Launched in New York City in 2013, Casa Barilla 

Restaurants serve wholesome meals in three locations in New York and in two 

locations in South California.  

Academia Barilla was born in 2013 as culinary institute and divulgation center for 

Italian gastronomic heritage. It offers food specialties, books, cooking classes and 

food tours.  

Cucina Barilla is a brand for a new e-business focused on the commercialization 

of a unique smart oven and ready-meals that can be prepared with it. 

 

Bakery products are gathered under the following brands: 

Mulino Bianco was established in 1975 and since then it has been part of Italian 

food culture and of Italian families’ diet. This brand is marked by simple, 

wholesome bakery products in all categories.  

Pavesi brand was founded in 1937 by Mario Pavesi, an Italian inventive baker and 

entrepreneur in the city of Novara. The wide range includes sweet and savoury 

bakery products and pastries, recognized by a unique taste and that rely on well-

developed production technologies. In 1992 Barilla acquired the brand.  
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As leader brand in soft bread and breakfast goods sector in France, Harry’s  has 

two main key success factors: innovation and quality. Five plants are located in 

France and dedicated to Harry’s product line manufacturing. 

Founded in 1919 in Sweden, Wasa is one of the strongest brand in crispbread 

sector, especially in Northern Europe markets. Barilla acquired it in 1999. 

Pan di Stelle was launched in 1983 as Mulino Bianco breakfast biscuit. Since 2007, 

it has become a stand-alone brand with the introduction of sweet snacks and a 

cake, marked with Pan di Stelle uniqueness. 

Gran Cereale is the father of whole grain and natural biscuits, born as part of 

Mulino Bianco’s family in 1989. Today the brand offers a wide range of different 

bakery products, including muesli, sweet snacks and biscuits. 

It is important to mention also F.I.R.S.T. Retailing S.p.A., a specialized structure 

that operates in retail services. 

 

Figure 1: Barilla Group brands divided in (from right) Meal Solutions, Bakery and other brands 
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1.5 Barilla Supply Chain Profile 

Fisher (1997) considers a double function of a company supply chain. The physical 

function is linked to physical process and flow, including the transformation from 

raw material to finished goods and distribution. The second function is market 

mediation that aims at granting that supply variety matches market requests.  

Fisher (1997) constrains its model to demand uncertainty only, which generates 

two possible effective supply chain strategies: an efficient supply chain may be 

applied to functional product, whose demand is steady and therefore predictable 

with a long product life cycle, while a responsive one is suitable for innovative 

products, which present a relatively short product life cycle and fluctuating 

demand. 

Lee (2002) offers an augmented framework based on Fisher’s study, adding supply 

uncertainty as variable to assess the optimal supply chain strategies.  

Product supply side may be classified as either stable or evolving. Mature 

manufacturing processes and technologies together with rooted supply bases 

characterize a stable supply. Differently, an evolving supply is exposed to 

systematic changes and so it has to cope with remarkable complexity at 

technological level and higher uncertainty at margin level.  

In Barilla the supply chain is responsible for designing, developing and managing 

the industrial network needed to support the company’s strategy, and thus it 

assures: 

- A profitable and innovative business development; 

- The maximization of return on investment; 

- The target service level for customers and the target safety and quality for 

its products. 

Lee’s framework can be applied to Barilla supply chain, to disclose the key features 

characterizing both company’s supply and demand and to consider the appropriate 

supply chain strategy. 
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Demand side can be analysed both in terms of product characteristics and in terms 

of demand patterns. Barilla, operating in agri-food sector, deals with a mature 

environment where demand is relatively steady and predictable compared to other 

businesses. Nonetheless, although the product demand at end-consumer level 

results not fluctuating, Barilla position along the supply chain exposes it to 

bullwhip effect, which can be expressed as the amplification of order variability as 

one goes upstream in the supply chain (Lee, 2000). Barilla, as manufacturer, falls 

into demand patterns that result more erratic than the ones faced by retailers.  

Since the nineties the Italian company has attempted to mitigate demand 

uncertainty with the implementation of a collaborative supply chain planning with 

customers, specifically Vendor-Managed-Inventory system. Barilla is responsible 

for managing planning processes of its major clients (all large retailers in Italy and 

few retailers in France, Belgium and Switzerland), reducing clients’ procurement 

and planning costs and granting a higher service level through a complete 

supplier’s visibility on demand, stocks, promotions data. Barilla benefits from a 

centrally coordinated supply chain model since the upstream bullwhip effect is 

largely mitigated and consequently it can perform more efficiently (logistic cost 

decrease) and effectively (ensure a higher service level). 

Besides the characteristics of demand, demand uncertainty is related to the type of 

product the company deals with. Barilla product range width is about 8000 SKUs, 

a medium value that yields complexity. Product life cycle is on average long: being 

the agri-food sector not characterized by short-selling season, food products have 

on average 5-year-long life. Barilla products generally have a low profit margin and 

a low obsolescence risk. 

The demand-related drivers reveal that Barilla is positioned on the left-handed 

quadrant with respect to demand uncertainty axis. 

From the supply point of view, Barilla exposure is restricted to raw material supply 

and to finished good supply, for the outsourced production. 
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In pasta industry Barilla adopts a vertical integration strategy: durum wheat is 

purchased from local suppliers, which is stocked and afterwards milled internally 

to make up specific semolina mixtures for pasta production. Only 20% of total dry 

semolina volume comes from external sources, for flexibility purposes. Barilla 

purchasing strategies favour the selection of local raw material suppliers, located 

in the areas of mills and plants. Raw materials purchased by the company are 

mainly food products, such as wheat, flour, tomatoes, cocoa and so they are not 

based on complex manufacturing processes and they are not exposed to technology 

evolution.  

Durum wheat is the major raw material purchased by the company (37% of 

purchase value) and it represents the quality input for Barilla finished product 

(based on a semolina and water dough). The company developed Barilla 

Sustainable Farming policy that promotes more efficient cropping systems, in 

order to obtain safe and high-quality agricultural products, protecting and 

improving the environment and the social and economic conditions of farmers. An 

integrated supply chain relies on collaboration with farmers, supported in 

planning multiyear sustainable cultivation systems and guaranteeing commercial 

possibility to all the products of the crop rotation. The raw materials, on which 

Barilla Sustainable Farming is active, are cereals (durum wheat, soft wheat), 

tomatoes (for sauces), sugar and vegetable oils. In 2015 Italy Barilla Sustainable 

Farming project resulted in a 26% durum wheat valuable production improvement 

(measured in Euros/hectare), and a 6.4% direct cost reduction (measured in 

Euros/hectare), beyond the environmental impact reduced by 8.3% (Carbon 

Footprint measured in CO2 tons/Durum Wheat tons). The benchmark analysis was 

performed with common cropping systems. 

Following Lee’s Framework, Barilla supply chain profile could be positioned in the 

upper-left quadrant facing relatively low uncertainty both from demand and 

supply side (Figure 2). 

The recommended supply chain strategy emerged from Lee’s model is the lean 

strategy, which is in line with the actual company’s supply chain strategy. Indeed, 
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the centralization of the global supply chain management in the headquarter 

demonstrates the will to control and to optimize all the supply chain processes. 

Moreover, the main projects carried out by supply chain planning divisions are 

focused on optimization. Safety stock optimization project belongs to a set of 

initiatives that pursue a cost minimization objective. 

 

Figure 2: Graphical representation of Lee's Model adopted for analyzing Barilla supply chain 
strategy. 

1.6 Barilla Supply Chain Organization Structure 

The business process units embedded in Barilla Group Supply Chain are the 

followings. 

Operations and Manufacturing Strategy 
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This business unit is responsible for designing manufacturing objectives and for 

allocating capital investment based on the set priorities. It also defines production 

structure components, such as the resources, the processes and the IT services.  

Supply Chain Design, Planning and Customer Service 

Logistics network structure – supply, production and distribution network – is 

responsibility of this business unit. Specifically, the planning function is performed 

at daily level for operating activities (for instance the daily transportation 

planning), at tactical level (for instance the identification of optimal level of stock), 

and at strategic level (for instance the identification of facilities location).  

Recalling Lee’s studies, the fragmentation of supply chain planning process 

consists in the disaggregation of core planning activities, carried out by several 

players along the supply chain, thus it consists in the creation of more than one 

decisional centers that make decision individually even if they belong to the same 

supply chain (Lee et al., 1997). 

Logistics 

This business unit coordinates and manages the outsourced logistics services. The 

responsibilities are to monitor the activities performed by external logistics 

providers, through performance evaluation, benchmarking and control. 

Purchasing 

The activities under the responsibility of this business units are related to the 

upstream supply chain and specifically they are the selection of new potential 

suppliers, the vendor rating activity, through the suppliers’ performance 

evaluation. Moreover, purchasing unit identifies the impact of law and regulations 

and develops benchmarking activity implemented on existing suppliers. 

Technical Development 

It is responsible for the development processes of company’s production plants. It 

coordinates and manages maintenance, plants’ tests, packaging standardization 

and installation activities. 
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People, Safety, Environment and Energy 

This business unit outlines both short-term and long-term actions required to 

guarantee company’s activity sustainability concerning Health and Safety, Fire 

Prevention, Environment and Energy.  

 

1.7 Barilla Distribution Network 

Barilla has a mixed distribution network consisting of two levels, based 

respectively on primary and secondary transportation.  

Plant warehouses, representing the central warehouses, are connected both with 

hubs and customers’ distribution centres through primary transportation. Pure 

direct flows and mixed direct flows to customers represent more than three 

quarters  of shipped volumes in Italian market.  

At this level transportation is carried out with FTL (Full Truck Load) shipments, 

through a semi-trailer (or a trailer). For logistics cost optimization reasons, trailers 

are accurately loaded to maximize either volume or weight saturation1, compatibly 

with customers’ orders and hubs’ replenishments. Direct shipment is the main 

channel for vendor-managed-inventory system, a collaborative supply chain 

approach implemented by Barilla since the nineties with some big customers. This 

system involves not only the national distribution, but also the distribution of some 

European customers.  

One-echelon distribution network is the second most exploited approach to serve 

customers and it is based on regional warehouses, generally called hubs. Regional 

warehouses have a main role in postponing the order preparation along the 

network, decreasing the order cycle time and also primary transportation costs.  

                                                   
1 Depending on transportation mean typology there are both weight and volume limitations. For 

example, the maximum weight for trailers allowed by Italian law is 25 tons. 
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Indeed, the whole product range is stocked in regional warehouses, since they are 

strategically located to serve the demand of a defined geographical area. Differently 

from most plant warehouses, which are used to stock products coming from the 

bordering plant, hubs are used to raise product range consolidation, being 

replenished periodically by all production sites, co-packers and auxiliary 

warehouses. Auxiliary warehouses represent extra storage area temporarily rented 

by the company to deal with demand picks during specific periods of the year. They 

are usually located in strategic areas close to central or regional warehouses, in 

order to minimize transportation costs. 

Second-echelon distribution network is composed of transit points, since the main 

driver is represented by secondary transportation cost reduction. This type of 

distribution is carried out with Less Than a Full Truckload that allows frequent 

hauls for delivering small-sized orders.  

Although secondary distribution has a cost per transported unit higher than 

primary one, it allows benefits in terms of flexibility of both carried volumes 

(primary distribution is restricted to loaded material levels higher than some 

standards defined by the company’s strategy) and accessible locations (articulated 

lorries used in primary distribution have big dimensions, which are not always 

compatible with customers’ warehouses). 

Shorter travel distances of secondary transportation are permitted by strategic hub 

and transit point allocations to serve a certain customer geographical area. Barilla 

does not manage the second-echelon distribution, but by external logistics 

providers do. 

To complete Barilla distribution network outlook, it is necessary to remark the role 

of co-packers. The company strategy relies on outsourcing part of production to 

cope with limitations either on production capacity or on production technologies 

(for instance, gluten-free products have strict requirements in terms of 

technologies and their production is sourced from selected suppliers). Indeed, co-

packers are specific suppliers of either semi-finished or finished goods, and they 

respond to strict and specific terms, explicitly required by Barilla.  
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Co-packer presence affects negatively distribution network complexity, since it has 

to deal with two extra types of flows: 

a. Direct flows from co-packers to plant warehouses, which are central 

warehouses (especially when supplied goods are semi-finished and so 

components, which will be further reworked in plants); 

b. Direct flows from co-packers to hubs (although they occur occasionally). 

Figure 3 shows a mixed network that may be representative of Barilla’s distribution 

network structure (although the number of elements does not correspond to the 

real one).  

It consists of: 

 Plants (most of them supported by internal warehouses, in light blue); 

 Auxiliary warehouses that are exploited for limited time periods to gain 

extra storage capacity; 

 Co-packer plants from which products are moved either to plant 

warehouses or hubs or customers; 

 Regional warehouses (or hubs); 

 Customers, who are distinguished between big retailers (with their own 

distribution centres, in green), and smaller ones (with minor points of sale, 

represented by the cart in Figure 3). 
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Figure 3: Barilla Distribution Network. 

 

The figure structure defines also the connections among the different nodes: 

 Blue arrows stand for stock transfer orders (STOs), hauls to replenish hubs 

or auxiliary warehouses and hauls for receiving goods from outsourced 

production. 

 Red arrows are optimized orders, managed through vendor-managed-

inventory system that implies direct shipments from central warehouses to 

customer distribution centers. 

 Green arrows stand for traditional orders, not handled through a 

collaborative supply chain approach but still based on primary 

transportation. Traditional orders are fulfilled either by plant warehouses 

or auxiliary warehouses. 

 Dotted arrows are orders not managed by Barilla, but by external logistics 

providers that exploit their transit points to reach the final points of 

delivery.  
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1.7.1 Production Plants 

Barilla Italian production network is made up of 10 plants2 (mills dedicated to 

durum wheat semolina production are excluded) and each of them is specialized 

in only one of company’s product categories: 

 Meal solutions (four plants); 

 Bakery (six plants). 

Meal solution plants are further divided in three pasta plants and one sauce plant. 

To comprehend Italian Barilla production network, Figure 4 shows Italian map 

populated with production sites specifically marked with different colours, 

according to the type of production (as reported in the legend below).   

 

Figure 4: Barilla Production Network in Italy. 

                                                   
2 In Rubbiano site there are two separate buildings, one dedicated to sauce production and the other 

one to bakery.  
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In addition to Italian sites, Barilla network includes 12 production plants in the 

rest of the world, located specifically in France (dedicated to Harry’s bakery 

production), Germany, Sweden (for Wasa dry bread production), Greece, Turkey, 

Russia, U.S. and Mexico (for pasta production). Most plants aim at satisfying the 

demand of their own geographical area (also with specific products). 

As previously mentioned, internal production is supported also by external 

producers, called co-packers. The decision to outsource production sometimes is 

related to new launched products, that need to test the market and their 

profitability for a potential in-house production. Company strategy adopts a buy 

option rather than a make option, generally when demand level is not high enough 

to justify the internalization of specific production processes, but it is positive 

enough to be achieved through an outsourced supply.  

Outsourced volume weighs on global Barilla production for less than 10%, and it is 

sourced from several co-packers worldwide (mostly located in Italy). 

1.7.2 Hubs 

Regional warehouses/hubs in Barilla network are located in multiple local demand 

areas and they are designed especially for a prevalent picking function (the 

selective retrieval of unit loads from high-level unit loads or single pieces/cases 

from racks or plastic crates, for the customer purchase order fulfilment). 

Their strategic role stands in the ability to ensure an average three-day order 

dispatching time, differently from auxiliary and central warehouses that generally 

have longer order-cycle-times. 

Barilla second distribution network level consists of 12 hubs in Europe. In Italy 

seven hubs have been located with the objective to optimize distribution flows, 

constrained by production sites and final delivery points. Figure 5 illustrates 

Barilla regional warehouses in Italy. 
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Figure 5: Barilla Regional Warehouses in Italy. 

 

The main drivers behind the decision to implement a second level of regional 

warehouses in the network are: 

a. To guarantee an adequate service level in terms of time. By positioning 

stocked items closer to the final destination, Barilla can serve customers in 

shorter time frame. Order-cycle-time on average decreases. 

b. To cut secondary transportation costs. Customer orders may be fulfilled 

with the hub stocked items, making the order processing start closer to final 

destinations.  

c. To ensure an adequate service level in terms of availability to replenish 

small customers with the whole product range. 

While points (a) and (b) of the list above are very intuitive, point (c) may require 

an additional disclosure.  Both plant warehouses and auxiliary warehouses store 

mostly their “own” products (or the products of plants that replenish auxiliary 

warehouses). On the contrary, each hub is replenished by all plant/auxiliary 
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warehouses, in order to meet the demand allocated to that specific hub. Thus, hubs 

contain generally the complete product range available for the distribution to 

customers. Indeed, the items managed by Barilla hubs are on average 800, with 

slight differences due to some distinct phenomena (for instance, products 

dedicated to specific geographical areas increase or reduce the number of handled 

trade units in a specific location). 

In conclusion, following the points raised about Barilla distribution network, it 

seems clear that it reveals both strengths and weak elements. From one hand the 

stock fragmentation along multiple distribution levels allows great flexibility in 

terms of availability and delivery time, but on the other hand this causes higher 

inventories and handling costs, raising complexity in managing the distribution 

network (due to motion of goods from first to second network level). 

Specifically, the present work aims at assessing the optimal safety stock level in 

Barilla hubs, in order to guarantee the target service level, expressed in terms of 

order fill rate, acknowledging the complexity of both the examined network and 

demand. 
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CHAPTER 2 

CURRENT INVENTORY 

MANAGEMENT AND 

PLANNING SYSTEM 

2.1 Current Inventory Management and Control 

System 

Inventory management represents a key issue for companies, since it concerns the 

assessment of the quantity to produce/order and the time to start the production 

or to issue the order. In Barilla the inventory planning system is based on Time 

Phased Order Point (TPOP), a technique that determines the inventory quantity to 

order, considering both forecasted orders and actual client orders.  

This approach results appropriate for finished products with an independent 

demand, which are all goods, whose demand derives solely and directly from the 

market requests, or which are functional to production processes, but not 

necessarily related to the finished product quantity (for instance, the lubricant for 

machineries is a material with independent demand).  

Independent demand, being pulled by the market, must be estimated for 

production-related and inventory-related reasons. 
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TPOP system is based on the assumption that the inventory replenishment should 

be executed when the available inventory level results insufficient to guarantee the 

fulfilment of future requests. To determine the inventory level, both actual client 

orders and forecasts are considered in the analysis. Forecasted volumes are defined 

also taking into account external factors, such as seasonality, trends and 

promotions.   

Besides, Time Phased Order Point (TPOP) is a computerized replenishment 

technique that assumes the time horizon partition in single periods, known as time 

buckets, which can be day or week long. The tool structure is based on Material 

Requirement Planning (MRP), which determines the quantity of each single 

required component, based on the bill of materials of finished products and on the 

production plan. 

Nonetheless, while MRP technique is implemented on items with dependent 

demand, which derives directly from the master production schedule, (for instance 

item codes included in finished good bills of materials), TPOP approach can be 

applied also to products with independent demand. 

Specifically, TPOP permits to manage stocks considering future product demand 

without referring to a reorder point. Using this technique, information are 

organized in tables and partitioned along time buckets (Table 1).  

Time Bucket 1 2 3 

Forecast Requirements    

Scheduled Orders    

On Hand    

Planned Shipments    

 

Table 1: TPOP technique structure 
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In view of an actual need, the replenishment order is executed considering both 

the scheduled orders and the inventory on hand, so that the latter does not drop 

below the defined safety stock level.  

The main advantage linked to TPOP system is the visibility about the demand as 

far as the time planning goes. Indeed, in fixed-order size systems replenishment 

orders are triggered by a pre-defined order point and this procedure implies to 

keep a certain quantity of stock although it is not actually needed. Differently, 

TPOP can dynamically schedule demand and supply information, and, based on 

these input data, it recommends new order actions. TPOP can handle forecast 

errors and variations in demand very good, while holding stock level low (Martin, 

1995). 

A relevant information to take into consideration is the replenishment lead time, 

since the replenishment order should be scheduled so that the ordered quantity is 

replenished exactly when the inventory level goes below the set safety stock level. 

The necessity to include the time factor in the stock replenishment planning is a 

key characteristics of Time Phased Order Point technique. 

The implementation of the inventory planning technique occurs through the use of 

information systems such as SAP APO (SAP Advanced Planning and 

Optimization), which is a SAP specific module that offers an integrated set of 

functionalities to plan and execute supply chain processes.  

Based on some input data, the system elaborates the DRP (Distribution 

Requirement Planning) daily, which provides the basis for integrating supply chain 

inventory information and physical distribution activities with the manufacturing 

planning and the control system (Vollman 1997). Specifically, DRP aims at 

determining which products, in which quantity and in which locations, are 

required to move to meet a certain future demand (partially expressed through the 

actual orders entered by Barilla customers in SAP and partially expressed as 

forecast demand). The overall objective is to minimize stock-outs, to reduce order 

costs, to optimize transportation and to minimize stock level. 
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The input information required by the inventory planning system are the 

followings: 

a. The forecast demand; 

b. The available inventory level; 

c. The target inventory level; 

d. The replenishment lot size; 

e. The replenishment lead time considered as the elapsed time between the 

client order submission and the order arrival at the replenishment 

destination site. 

Given the available stock levels in the locations, the system performs a subsequent 

automatic process, called deployment that either confirms or denies the 

replenishment requests generated with the DRP. After the confirmation of the 

needed replenishments, the available stock levels are allocated to all hubs. 

2.2 Current Safety Stock Optimization Model 

The necessity to have a method for assessing the optimal stock level is clear, since 

the target stock level is a required input information for the inventory planning 

process, disclosed in section Capitolo 2. Specifically, in the existing inventory 

planning system an ad-hoc developed model determines the safety stock level in 

Italian regional warehouses. 

The mentioned model is based on Hadley and Within safety stock formula, which 

assumes both demand and lead time as two stochastic and independent variables. 

Specifically, the existing model determines safety stock level as a function of  

forecast demand, forecasting error, replenishment lead time and its variability, 

subject to the target service level.  

The decision regarding the substitution of historical demand with the 

corresponding forecast demand was mainly driven by the fact that the considered 

items are highly sensitive to commercial activities such as promotions. Thus, since 

the inclusion of historical demand could not take into consideration all future 
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demand patterns, forecast demand resulted a correct input parameter for the 

estimation of safety stock level. 

Moreover, some specifications about replenishment frequency should be outlined. 

The inventory review for Barilla regional warehouses occurs with a daily frequency. 

Nonetheless, replenishments are not carried out necessarily every day to all 

locations, mainly because some regional warehouses are located at relatively long 

distances from the sourcing points, and so daily replenishments to these sites 

would result too economically demanding. The decision to perform 

replenishments to these warehouses, deals with the comparison between the 

transportation costs (with a narrow focus on truck unsaturation cost) and the cost 

of lost sales due to stock-out. If unsaturation cost results by far higher than the lost 

sale cost, the replenishment is put off, pending new orders placed by the 

considered destination. 

Based on the disclosed as-is environment, replenishment frequency emerges as a 

key parameter to include in the estimation of stock level. In the existing safety stock 

optimization model a periodic inventory control system is assumed under the 

hypothesis that a period 𝑇 could reflect the average time elapsed between two 

replenishments at the same destination site.  

The following equation presents the safety stock (SS) formula applied to a periodic 

control system, used in the model: 

𝑆𝑆 = 𝑘 ∗ 𝜎𝐷,𝐿𝑇+𝑇 

𝜎𝐸𝐷,𝐿𝑇+𝑇 represents the standard deviation of forecasting error during period 𝐿𝑇 +

𝑇. 

Specifically 𝜎𝐸𝐷,𝐿𝑇+𝑇 can be expresses as: 

𝜎𝐸𝐷,𝐿𝑇+𝑇 = √𝑀𝑆𝐸 ∗ (𝐿𝑇 + 𝑇) + 𝜎𝐿𝑇
2 ∗ 𝐸𝐷2 

Where  
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- 𝑘 represents the value of the standardized variable z, to which corresponds 

a certain cumulative probability equal to the service level.  

- 𝐸𝐷 is the forecast demand, 

- 𝑀𝑆𝐸 =
1

𝑛−1
∑(𝐷𝑡 − 𝐹𝑡)2 , expressing demand unpredictability, 

- 𝐿𝑇 is the replenishment lead time  

- 𝜎𝐿𝑇
2  expresses the lead time variability 

- 𝑇 is the average time elapsed between two replenishments. 

𝑘 value, the service level factor, is equal to the standardized variable 𝑍, derived 

from the demand mean in the period (𝜇) and from the demand standard deviation 

(𝜎), as showed in the following formula: 

𝑍 =
𝑥 − 𝜇

𝜎
 

In practice the determination of 𝑍 value is done through empirical tables that relate 

Z value to the corresponding cumulative probability, representing the stock-out 

probability. Given the target service level, which must be selected in a way that it 

is in line with the company strategic objectives, k value can be determined with the 

explained methodology.  

The following assumptions are true for the development of the existing safety stock 

model: 

- The distribution of the demand is normal; 

- The cost of order issuance is constant; 

- The production cost is constant; 

- The stocking locations has no storage capacity constraints. 

In short, the safety stock optimization model implemented so far is explained by 

Figure 6, with the corresponding model input information (pointed out with blue 

arrows) and the model output (pointed out with the red arrow). 
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Figure 6: Current Safety Stock Optimization Model. 

2.3 Criticalities of the Existing Model 

The current model for determining the optimal safety stock level in Barilla regional 

warehouses results to be the first structured methodology implemented in the 

company for that purpose. In short, it is a single-echelon safety stock allocation 

model, based on the assumptions that demand and lead times are stochastically 

independent variables in the system and that demand is normally distributed. 

Besides, it assumes a periodic inventory control system, to express replenishment 

frequencies that vary depending on the specific replenishment lane in Barilla 

network. 

Analysing the model structure and underlying assumptions, some critical points 

emerge. 

First, normally distributed demand is an assumption valid for the whole range of 

items in the model, which includes different items both from a product-life-cycle 

perspective and from a sales volume perspective. Indeed, the considered set of 

items comprises items with relatively homogeneous demand in terms of quantity 

and demand occurrence, but also other items, with either shorter life-cycles or 

demand seasonality or further factors that affect their demand pattern making it  

not normally distributed. Thus, the assumption of demand normal distribution 

may fit many items considered in the model, but could not be appropriate to 
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represent demand distribution of other items, whose demand presents significant 

variations in terms of quantity and in terms of occurrence.  

Second, the implemented safety stock optimization model is based on a single-

echelon system structure, which considers only the key parameters related to the 

storage location in question, such as replenishment lead time, customer service 

level etc.. This approach neglects the interdependence of some variables (such as 

inventory holding costs and service level) between different stages located at 

different levels of the distribution network, and for this reason it may bring on 

unnecessary safety stocks. 

Beside the inventory optimization model, some specifications about its 

implementation should be disclosed. 

The existing model has been developed using Microsoft Excel What-if Analysis, 

being the most appropriate working tool for the project purpose among the 

available softwares at the moment of the model building. The Excel model is 

structured in a way, such that the user fills each single required field with an ad-

hoc calculated value and activates the model run through the Excel function “what-

if analysis – goal seek”. The input data entry is carried out manually every time 

that data change and a that  a new model run is required to determine safety stock 

level. The model run implies a processing time of some hours, given the handled 

amount of data, and it is carried out for one location at a time. That means, that 

safety stock allocation is determined not simultaneously for all considered stocking 

locations (Barilla regional warehouses in practical terms), but the model runs for 

one single location only at a time.   

Given the significant amount of data to handle in the model, the utilization of 

Microsoft Excel turns out as constraint for different aspects. 

First, the model setting is not structured and so not straightforward to follow. Since 

the user is required to enter manually all input data, the user knowledge and 

experience about the model is a key element for the correct and complete input 

data entry. The lack of a standardization of input data entry process can lead to 
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higher risks of errors in the process, and it may also discourage new users’ adoption 

and confidence.  

Second, the software storage and computational capacity represents a relevant 

constraint for the model employment, especially assuming a medium-term 

perspective with an increasing number of storage locations to monitor and to 

embed in the optimization model. In practical terms, the current amount of data 

that the optimization model has to handle, running the what-if analysis 

functionality, generates relatively long processing time that lower the overall 

model flexibility. 

In summary, the existing safety stock optimization model results to be a correct 

methodology to determine the level of safety stock at the regional warehouses in 

Barilla network. Indeed it considers forecast demand and not historical demand, 

allowing to consider commercial activity effects on demand and other time-related 

factors that could not be fully included in the past demand pattern. Forecast 

accuracy is measured through Mean Squared Error (MSE), expressing the variance 

of forecast from the actual demand. On the other side, replenishment lead time is 

assumed as a stochastic variable and also its variability is considered in the model. 

Both demand and lead time are taken as stochastic parameters and so they are 

taken into account both with their expected values and standard deviations values.  

Nonetheless, the existing optimization model shows some critical gaps both in 

terms of model structure and in terms of implementation. These could represent a 

starting point for further improvement regarding the safety stock optimization in 

Barilla regional warehouses, as it will be disclosed in 0 3. 
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CHAPTER 3 

OBJECTIVES AND 

METHODOLOGIES 

3.1 Project Objective  

Safety stock optimization project belongs to a set of supply chain planning 

initiatives narrowly focused on efficiency-driven objectives. It is consistently part 

of the company supply chain strategy that aims at achieving higher efficiency 

levels, minimizing costs and meeting a certain customer service requirement. 

The project generates in Barilla Supply Chain Network Design department, a 

strategic supply chain planning unit focused on the development of optimization 

projects for Barilla production and distribution network. Specifically, safety stock 

optimization has a distribution-related scope, while other ongoing optimization 

projects deal with Barilla production network.  

As it will be further explained in section 3.2, the safety stock optimization project 

arises from operating needs, first. Indeed the application of a new validated 

optimization model is planned to be a decision support system for Barilla operating 

distribution planning unit for the allocation of safety stocks throughout the 

company network.  

If the model is proven to fit Barilla distribution and inventory network, and to be 

implementable in the operating activities related to stock planning and allocation, 
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it is planned to be utilized for a strategic function, besides the operating one. 

Indeed, Barilla supply chain network design unit expects to utilize the new safety 

stock optimization model as a network design tool.  

Specifically, the strategic unit projects considers the inventory optimization model 

an additional means, which, integrated to other existing network sourcing 

optimization models, can be implemented for  what-is analysis on Barilla local and 

global supply chain system. The idea is to have multiple available optimization 

models that, employed in an integrated way, could monitor the whole company 

supply chain network and could enable what-if analysis for the allocation of either 

production or distribution nodes and for the study of production and distribution 

capacity balance. 

The pilot project objective was identified in the application of a multi-echelon 

safety stock optimization model on Barilla distribution network. Specifically, a first 

project scope was restricted to Barilla regional warehouses, which are seven in Italy 

and five in the rest of Europe.  

The validation of the model consists in assessing whether a multi-echelon safety 

stock optimization model may be applied to real Barilla distribution network, 

whether the model can be consistent with the current operating inventory planning 

policy and whether it actually bring economic benefits compared to the as-is stock 

allocation.  

Therefore, the project hypothesis to evaluate is that a multi-echelon safety stock 

optimization developed with Supply Chain Guru on-shelf models, could result an 

appropriate methodology to integrate in Barilla inventory planning process.  

Indeed, the final objective is to enable an integrated process for assessing the 

optimal level of safety stock in Barilla network, by not restricting the scope to the 

downstream nodes taken as single entities, but by running a comprehensive 

optimization analysis on the whole network to determine a safety stock placement 

that minimizes inventory holding costs and that guarantees a target customer 

service requirement at the same time.  
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Moreover, given the high potentialities of the on-shelf optimization software 

Supply Chain Guru, a study on safety stock optimization could achieve surely new 

findings such as safety stock allocation outputs, given the item demand patterns 

and parameters related to their flows along the network. 

3.2 Methodologies  

The existing safety stock optimization system, as outlined in section 2.2, is a single-

echelon model based on the assumptions that demand and lead times are two 

independent and stochastic variables. Still, if from one hand the model provides 

with a structured and scientific method for safety stock allocation based on Hadley 

and Within formula (substituting historical demand with forecast demand), from 

the other hand some points related to the model structure and to its 

implementation are critical. 

Specifically, the fact that the existing model is based on a single-echelon system 

represents a limitation compared to a multi-echelon model that could represent 

better the real Barilla distribution network, considering the interdependences of 

some variable performances between the different echelons. A multi-echelon 

system, indeed, does not allocate the optimal stock level to a single stage, but 

assuming an holistic supply chain perspective, determines the optimal stock level 

at each stocking location in the model, with the objective to minimize the overall 

inventory holding cost and to meet a given customer service level. 

With a medium and long-term perspective, the process of safety stock optimization 

is expected to be carried out in an integrated way for the whole supply chain and 

this raise the possibility of a multi-echelon safety stock optimization structure.  

In order to check whether with a multi-echelon structure implementation, safety 

stock optimization could result beneficial compared to the actual stock level, a 

model simulation has been assumed necessary.  
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The plan for a model simulation implied the definition of the appropriate working 

tool. The identification process of the model tool has interested both Microsoft 

Excel and a second on-hand software, Supply Chain Guru.  

Supply Chain Guru, as disclosed in-depth in section 0, is an integrated 

optimization software developed by Llamasoft, Inc.. Recently Barilla supply chain 

planning department has invested in Supply Chain Guru licence, for carrying out 

supply chain optimization projects and what-if analysis concerning either 

production or distribution system capacity. Specifically, Inventory Optimization 

technology is an optimization model embedded in the software that provides with 

a structured logic for solving the safety stock allocation problem in a multi-echelon 

network.  

On the other hand, Microsoft Excel provides with ready-to-deploy optimizers, 

whose computational capacity represents a limitation for the development of 

complex optimization models. 

Given the constraints incurred with the implementation of the existing 

optimization model in Microsoft Excel, the need to find an alternative, structured 

and powerful tool combined with the availability of optimization packages to test, 

lead the supply chain planning unit to select Supply Chain Guru as working tool 

for testing a new safety stock optimization model.  

The preliminary phase that followed the selection of the working tool dealt with a 

comprehensive and significant study of Supply Chain Guru.  

A theoretical virtual manual, provided by the software company, represented a key 

resource to refer to for the understanding of the software logic and structure. The 

research was not limited to Llamasoft online guidebook only, but it involved a 

scientific literature review related to supply chain management and planning. 

Specifically, the thematic areas that have been covered throughout a scientific 

literature study mainly dealt with demand categorization and inventory 

optimization (with a narrow focus on safety stock). Indeed, as it will be described 

in Chapter 4, Supply Chain Guru integrates a demand analysis phase into the safety 
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stock optimization model for an understanding of demand patterns with the 

purpose to allocate the optimal stock level consistently with the item-specific 

demand characteristics.  

The scientific literature analysis resulted a key and necessary activity for the 

software theoretical logic comprehension, providing a knowledge basis regarding 

demand analysis for stock control policies, in a first phase, and regarding inventory 

optimization models in a subsequent phase. 

A consistent abstract research led to a sufficient mastery of the topics, fundamental 

for fostering the confidence with the optimization model rationale.  

Thus, the process related to the familiarization with the optimization model was 

initiated with a structured theoretical literature analysis, which put the basis for a 

second step: the operating experience with the tool. 

Also at this stage, the reference to backup material turned out crucial for the 

understanding of the model tables and their input parameters. Indeed, a daily and 

constant application to the working tool supported by online practical material, 

including a guidebook, tutorials and user-forums, contributed to a gradual 

consistent knowledge about the software optimization model.    

Also the exchange and the information sharing with colleagues facilitated the 

assimilation of some concepts and some software-related competence enrichment. 

Moreover, Barilla distribution planning division has been involved into the project, 

as supporting function providing some relevant information about stocks and 

distribution network, and contributing to the analysis of the stock optimization 

model in question, by assuming a strictly operating perspective.  

3.3 The Working Tool: Supply Chain Guru 

Supply Chain Guru is an integrated software, developed by Llamasoft for 

optimizing supply chain networks, transportation routing and safety stock. It also 

provides simulation functionality. The software can boast multiple strengths that 
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make it very attractive to big companies seeking founded tools for supporting 

network design and optimization decisions.  First, it has a user-friendly interface 

based on Microsoft Office: Supply Chain Guru tables can be handled using 

Microsoft Excel, Microsoft Access and Microsoft SQL Server, facilitating the 

injection of massive amount of data. Second, the software is an integrated platform 

for running different optimization packages, focusing on different supply chain 

network areas. The user can generate an optimization model on a network as a 

whole (optimizing both production and distribution), on transportation routing 

and on inventory. These optimization packages may apply on the same input 

project, providing the user with multiple accurate optimized output related to the 

network under analysis. A certain degree of model flexibility is given by custom 

constraints regarding production, flow, transportation, storage capacity. 

Moreover, the software platform embeds more than one solver able to perform 

linear and dynamic programming algorithms, that will be further disclosed in 

section 4.3.4. Among the different software optimization models, Inventory 

Optimization has been selected for the project purpose, since it responded to the 

specific  project objectives. Inventory optimization includes three different sub-

models:  

a. Safety Stock Optimization aims at defining an optimal level of safety stock 

over the whole network, utilizing a variant of Guaranteed-service model 

algorithm developed by Graves and Willems for multi-echelon safety stock 

optimization problem. 

b. Safety Stock Infeasibility Diagnosis is used for detecting potential 

infeasibility causes in running safety stock optimization. 

c. Service Level Optimization is recommended optimization model to apply 

on an optimized network (defined by Safety Stock Optimization, which 

generates the safety stock placement), with the objective to optimize the 

service level for every product at a customer-facing node to reach specific 

goals, such as profit maximization, cost minimization or achievement of a 

revenue level target.  
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Besides, Safety Stock Optimization output may be simulated with Inventory 

Simulation technology, which allows to test the performance of optimized policy 

values, resulted from Safety Stock Optimization model. 

In the undertaken project Safety Stock Optimization model has been 

implemented, with the support of Safety Stock Infeasibility Diagnosis technology 

to facilitate the identification of infeasibility causes, when infeasibility occurred in 

the developed model. 



 

47 

 

CHAPTER 4 

INVENTORY OPTIMIZATION 

AND SUPPLY CHAIN GURU 

Given that Supply Chain Guru represented a powerful tool for a potential 

optimization project, tackling the level of inventories in the company-owned 

regional warehouses, the high-level logic behind Safety Stock Optimization model 

represents a draft for the project methodology followed.   

The first stage of the model is represented by demand analysis, which provides with 

relevant demand statistics and with a categorization of input demand according to 

two variables: intermittency and variability. To run a successful demand analysis 

the model must be inputted with customer demand data, either in form of 

historical demand series or of forecast demand. In addition to this, since demand 

analysis is performed throughout the whole distribution network and it is not 

restricted only to the most downstream node that serves the final customer, 

information about supply chain network must be entered for allowing a demand 

propagation. Indeed, from the customer-facing facility customer demand is 

propagated backwards based on user-defined network of nodes (physical plants 

and/or warehouses) and arcs (routes that connect the nodes for the movement of 

products), so that the software is able to allocate (and subsequently to analyze) 

demand on each single node. Figure 7 provides a representation of the whole 

process, identifying the required user-defined input information in red, the model 

operation in blue and the operation output in green.  
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Demand analysis outputs represent necessary information for the second main 

model stage: inventory optimization. The determination of optimal inventory level, 

distinguished among safety stock, cycle stock and in-transit stock, requires further 

information about the network and about the target service level guaranteed to the 

market. Specifically, given the stocking sites of the network, so defining which 

nodes are eligible for stocking products, the optimization requires replenishment 

lead time mean value and variability, inventory costs, and the target service level 

to determine the optimal level of safety stock. Additional SSO model output are 

recommended inventory management policies based on each product demand 

pattern and statistics relative to lead time demand.  
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Figure 7: Structure of Safety Stock Optimization model in Supply Chain Guru 

 

The following sections are structured in a specific order, so that initially a general 

outlook on how an SSO Model can be developed in Supply Chain Guru is given, 

disclosing which are the necessary input data and where these elements are 

injected in the optimization model. Given a comprehensive structure of the model, 

the methodology is deepened by explaining the steps of SSO Model: demand 

analysis and multi-echelon safety stock optimization. 
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4.1 Building Inventory Optimization Models on SCG 

This chapter discloses which are the required input information for an inventory 

optimization model and how they are embedded in the SCG model. Besides the 

description of necessary input data, a general structure of SCG input tables will be 

provided in the following sections.  

4.1.1 Demand 

The most important driver for developing an SSO Model in Supply Chain Guru is 

customer demand, which can be assumed either as historical or forecasted. 

Customer Demand Table is the main table where demand series is injected, based 

on customer-product-date combination. The retrievable information in this table 

are that a final customer requests a definite quantity of a product on a specific date.  

If the demand source is not historical but is forecast-based, demand is entered in 

User-Defined Customer Demand Profile Table, a specific input table where 

forecast demand period is defined with mean value and standard deviation of 

forecast error in a given period of time. The decision concerning the type of forecast 

error measurement is taken by the user, who may express forecasting error based 

on his preferences.  

Briefly, a set of possible measurements to express forecast error is provided: 

- Mean Absolute Deviation (MAD) measures the absolute deviation of 

forecast value from the actual one. 

𝑀𝐴𝐷 =
∑|𝐷𝑡 − 𝐹𝑡|

𝑛
 

- Mean Absolute Percentage Error (MAPE) expresses the absolute deviation 

of forecast value from the actual value as a percentage of the actual demand 

value. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝐷𝑡 − 𝐹𝑡|

𝐷𝑡
 

- Mean Squared Error (MSE) measures the variance of forecast error. 
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𝑀𝑆𝐸 =
1

𝑛
∑(𝐷𝑡 − 𝐹𝑡)2 

Being not as straightforward and intuitive as other forecast error 

measurements like MAD and MAPE, Root Mean Squared Error (RMSE) is 

used to express the standard deviation of forecast error. 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸
2

= √
1

𝑛
∑(𝐷𝑡 − 𝐹𝑡)2 

4.1.2 Products 

Finished products reported in the demand tables and semi-finished products 

included in the model are defined in the Products Table. In this table a generic 

product registry may be built with specific information like unit cost, unit price, 

unit weight, unit volume, product type (discrete or continuous) and shipping class 

(variable used for LTL transportation mode). The level of detail of product 

information included in Products Table may vary depending on user’s needs. 

4.1.3 Network 

This section discloses the adopted methodology to model and frame a production 

and distribution network given the structure of SSO Model in SCG.  Input data are 

entered among different input tables, namely Sites Table, Customers Table, 

Production Policies Table, Site and Customer Sourcing Tables and Inventory 

Policies Table.  

Sites Table contains all physical nodes included in the model network, regardless 

their ownership and their position along the supply chain and in the distribution 

network. Thus, each production plant, co-producer plant, supplier plant, 

warehouse, are defined in Sites Table, if included in the model. In parallel, 

customers sites are to be defined in the designated Customers Table with possible 

additional information about their site location, their organization and site 

sourcing policy.  
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Given the physical nodes of the network, input data about where each product is 

produced are provided in Production Policies Table: for each product requested in 

the Customer Demand Table the model is provided with information about where 

the given product originates along the network and the corresponding production 

frequency, expressed as the number of days between two consecutive production 

cycles of the same product. The production site of a given demanded product, 

represents the point of origin of the product sourcing flow along the network.  

 

 

Figure 8: Supply Chain Guru Production Policies Table. 

 

The possible sourcing lanes of the distribution network are defined in Site 

Sourcing Policies Table: from its production site, where a given product originates, 

to the final customer that requested the item, the product is moved along specific 

routes within the network that must be determined in Site Sourcing Policies Table. 

In this way the model is provided with a fixed production and distribution network 

structure: given a product that is demanded by the final customer, the model is 

able to retrace backwards its sourcing network, from the customer-facing node to 

the corresponding production site. While Site Sourcing Policies Table gathers 

input data about sourcing lanes within the internal network, Customer Sourcing 

Policies Table is another input table showing the sourcing lanes for each demanded 

product from the customer-facing node to the final customer touchpoint. 
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Figure 9: Supply Chain Guru Site Sourcing Policies Table. 

 

Once the distribution network is defined in the model through the methodology 

described above, the model requires input information about storage policies, 

specifically defined in Inventory Policies Table. The table is structured based on a 

period-site-product combination, so that each table line expresses that a given 

node handles a specific item, since the site can be either the production site of the 

given item (as prescribed in Production Policies Table) or a warehouse where the 

item is temporarily stocked to reach the final customer (as prescribed in Site 

Sourcing Policies Table). The considered node can be entered as “stocking site”, 

where the given product may be physically stored. Indeed, any “stocking site” 

among the existing sites in the model is eligible for having stocks of the product in 

consideration.  

 

 

Figure 10: Supply Chain Guru Inventory Policies Table. 

 

Figure 11 is a simplified network representation composed of three nodes, covering 

three different roles (production plant, warehouse and customer delivery location) 

and linked through a blue and a green arrow, which prescribe the movement of 
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products along the network. The grey dotted lines connect the physical and real 

network elements to the corresponding SCG input tables where these elements are 

entered in a general SSO model. 

 

Figure 11: Building a Network with Supply Chain Guru Input Tables 

4.1.4 Lead Times 

Lead time values are necessary input information for determining the optimal level 

of safety stock to buffer against demand and replenishment lead time variability. 

Being lead time of a stage the time-length of a process performed at that stage, 

given that all input items are available to start the process, the same concept entails 

different activities run during this time-window. In Supply Chain Guru, and 

specifically in an SSO model, replenishment lead time does not assume a single 

value and expression, but it is broken down into multiple lead time parts, related 

to the different activities occurring in a general replenishment lead time.  

Consider a site 𝑖 in a general network, where 𝑖 represents a stocking node and a 

non-production node for a given product 𝑥. Based on a static and defined sourcing 

network, product 𝑥 is replenished in site 𝑖 from an upstream site 𝑗. Based on these 

assumptions, Supply Chain Guru assumes a Sourcing Lead Time, as the amount 

of time needed for site 𝑗 to prepare the order for replenishing site 𝑖 of product 𝑥. 

Sourcing Lead Time starts with the replenishment order receipt and finishes when 

the order is ready to be shipped. It is entered in Supply Chain Guru on a sourcing 



 

55 

 

lane basis and also based on ordered product in the specific input table Site 

Sourcing Policies Table, where the sourcing lanes are defined in the model. 

Namely, Sourcing Lead Time field may be populated with a discrete number value 

or alternatively as a Gaussian normal distribution, expressed as N(µ,σ). 

Transportation Lead Time is the second lead time component that follows 

sourcing lead time from a conceptual point of view. Indeed, it represents the 

amount of transportation time needed to replenish the destination site. Thus, 

recalling the previous example, product 𝑥 takes a positive transportation lead time 

from the moment the order is available in site 𝑗 for the shipment and the moment 

it is received by the downstream site 𝑖. Since it is a value affected by distance and 

transportation mode, which depend on the specific lane, Transportation Lead 

Time can be expressed based on the possible transportation routes within the 

network defined in the model in Supply Chain Guru. Specifically in Supply Chain 

Guru, the input table Transportation Policies Table is populated by the user with 

all possible transportation lanes for any demanded product and for every 

transportation lane a Transportation Lead Time value is entered in form of a 

discrete value or of a Gaussian normal distribution N(µ,σ), to express its average 

value and its variability.  

Besides, in every stocking site defined in the model there will be an inventory 

review frequency that expresses how often available inventory level is controlled to 

assess whether an order of a demanded product is required to fulfil a downstream 

order (that, in case of a multi-echelon network, could be the final customer order 

in a customer-facing site or a an order issued by a downstream node). This 

information is embedded in the concept of Review Period in Supply Chain Guru, 

specifically entered in the Inventory Policies Table. It can assume hourly, daily, 

weekly, monthly values or alternatively it can be “continuous”, meaning that 

inventory level is reviewed every time a new order is received at the stocking site.  

In production plants the stock replenishment of a given product does not imply 

any inter-site flows, but it is fulfilled by in-site production. The fixed production 

time of product 𝑥 occurred in site 𝑗 it is expressed as Fixed Order Time in Supply 
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Chain Guru. It is a fixed time, since it is determined regardless the production 

quantity of the considered product. Table 2 reports the lead times defined in 

Supply Chain Guru and the corresponding input tables of SSO Model where the 

lead time values are entered by the user. 

SSO Model Input Tables Lead Time Components 

Site Sourcing Policies Table Site Sourcing Lead Time 

Customer Sourcing Policies Table Customer Sourcing Lead Time 

Production Policies Table Fixed Order Time 

Transportation Policies Table Transportation Lead Time 

Inventory Policies Table Inventory Review Period 

 

Table 2: Lead time components in Supply Chain Guru tables 

 

Once the multiple components of replenishment lead time in Supply Chain Guru 

have been disclosed, it is possible to introduce briefly how the total replenishment 

lead time is built during the optimization.  

Two distinct types of Immediate Lead Time are built up by the optimization 

software: for those stocking sites that coincide with the production location of a 

given product, ILT (Immediate Lead Time) is the sum of Fixed Order Time (fixed 

production time of the product, regardless its production quantity) and Inventory 

Review Period. Indeed, the replenishment is carried out without the need of 

external sourcing, since the product is produced in the same node. Differently, for 

those nodes that are stocking sites only for a given product, ILT is given by the sum 

of Sourcing Lead Time, Transportation Lead Time and Review Period. Sourcing 

and Transportation Lead Times are values that are affected by the sourcing 

network and so by the sites’ couple (the upstream node that is called for fulfilling 

the replenishment and downstream node that receives the replenishment), while 

Review Period is determined by the downstream site only.  
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Recalling the previous example, where site 𝑖 is the downstream node that requests 

a replenishment of product x to site 𝑗, Immediate Lead Times of the different 

stocking sites may be written as follows: 

𝐼𝐿𝑇𝑗,𝑖 = 𝑆𝑜𝑢𝑟𝑐𝑖𝑛𝑔 𝐿𝑇𝑗,𝑖 + 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝐿𝑇𝑗,𝑖 + 𝑅𝑒𝑣𝑖𝑒𝑤 𝑃𝑒𝑟𝑖𝑜𝑑𝑖  

  

𝐼𝐿𝑇𝑗 = 𝐹𝑖𝑥𝑒𝑑 𝑂𝑟𝑑𝑒𝑟 𝑇𝑖𝑚𝑒𝑗 +  𝑅𝑒𝑣𝑖𝑒𝑤 𝑃𝑒𝑟𝑖𝑜𝑑𝑗 

 

 

Figure 12: Replenishment Lead Time in Supply Chain Guru 

 

 

4.1.5 Inventory Holding Costs 

The optimal safety stock level to protect against demand and replenishment lead 

time variability is determined to guarantee a specific service level minimizing the 

overall cost. This implies that the model must be provided with data about 

inventory costs.  

The economic value of inventory may be expressed as input datum in two different 

possible fields: Product Value, expressing the unitary economic value of a product 
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regardless its stocking location along the network, or alternatively Inventory 

Product Value, which assumes a product monetary value varying according to the 

stocking site where it is placed. In other words, Inventory Product Value embeds 

different economic components or inventory that depend on the storage site, such 

as unitary handling costs or unit storage cost. Inventory Product Value is a field of 

Inventory Policies Table, which reports that a given site of the network is a 

stocking site for a specific product, at a precise cost (expressed through Inventory 

Product Value). Product Value is a field in Product Table.  

Thus, in order to express the inventory value that actually varies according to the 

stocking site where the product is located, Inventory Product Value field is 

preferred. Which inventory cost component to include in Inventory Product Value 

is a user’s decision. 

The fact that Inventory Product Value or Product Value are the only input 

monetary values necessary for the optimization objective function lies on the 

assumption that supply chain network is fixed through defined sourcing, inventory 

and transportation policies entered in the corresponding model input tables. Being 

transportation routes and modes static for every inter-site movement of goods, 

there is no option for exceptional transportation policy associated to an additional 

cost. Transportation costs do not impact directly in the inventory optimization, but 

only the cost components that are embedded in Inventory Product Value are 

included in the objective function of the model optimization. 

4.1.6 Service Level 

Service Requirement presents the target service level that the stocking site (in a 

given period and for a given item) must guarantee to its downstream sites, 

regardless they are either customers or internal nodes. 

Service level can be determined as a relation of the number of time periods that 

accept stock shortages and the total number of considered periods, or alternatively 

as the admitted probability of shortage occurrence. SCG supports four different 
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service measurements to express service level in the model, which are listed and 

further disclosed below: 

- Probability of not Stocking Out 

- Quantity Fill Rate or Item Fill Rate 

- Undershoot 

- Ready Rate 

Probability to avoid stock out method is based on the assumption that demand 

during lead time is normally distributed with mean EDLT and standard deviation 

σDLT. 

Given Order Point 𝑂𝑃, and the coefficient of the expected service level 𝑘, the 

probability to avoid stock out 𝑃𝑆𝑂 is expressed with the following formula: 

𝑃𝑆𝑂 = 𝑃(𝐷𝐿𝑇 < 𝑂𝑃) = 𝑃(𝐷𝐿𝑇 − 𝐸𝐷𝐿𝑇 < 𝑆𝑆) = 𝑃 (
𝐷𝐿𝑇 − 𝐸𝐷𝐿𝑇

𝜎𝐿𝑇
< 𝑘) = 𝑃(𝑧 < 𝑘) 

With 𝑧 being standard normal distribution with mean equal to 0 and standard 

deviation equal to 1. 

The second supported service measurement, Fill rate, is an indicator measuring 

the capability to meet customers’ requests through inventory on hand. Item fill rate 

is a fill rate at item/SKU level and can be expressed through the following formula: 

𝐼𝐹𝑅 = 1 −
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑖𝑛 𝑎 𝐶𝑦𝑐𝑙𝑒

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐷𝑒𝑚𝑎𝑛𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎 𝐶𝑦𝑐𝑙𝑒
 

A replenishment cycle corresponds to the lead time starting with the arrival of 

replenishment order quantity Q and ending with the consumption of the same 

quantity. The expected shortage at the end of replenishment lead time 𝐸𝑆𝐶𝑒 can be 

expressed as: 

𝐸𝑆𝐶𝑒 = −(𝑅𝑂𝑃 − 𝜇𝐿𝑇𝐷) × {1 − 𝑛𝑜𝑟𝑚𝑑𝑖𝑠𝑡 (
𝑅𝑂𝑃 − 𝜇𝐿𝑇𝐷

𝜎𝐿𝑇𝐷
)} + 𝑛𝑜𝑟𝑚𝑑𝑖𝑠𝑡 (

𝑅𝑂𝑃 − 𝜇𝐿𝑇𝐷

𝜎𝐿𝑇𝐷
) × 𝜎𝐿𝑇𝐷 

Where 𝑅𝑂𝑃 represents the reorder point quantity and 𝜇𝐿𝑇𝐷 and 𝜎𝐿𝑇𝐷 stand for 

respectively mean and standard deviation of lead time demand. 
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As we will see in 0, Item Fill Rate is the service measurement selected for 

expressing service level in the SSO Model developed in Barilla, since it is a 

currently accepted and utilized indicator for company performance measurement. 

Undershoot is the third service measurement available in a SSO model in SCG. 

Namely, undershoot is defined as the amount of inventory below the reorder point. 

Basically, this method assumes that the replenishment lead time beginning 

corresponds to an Inventory Position (IP) below the reorder point by the 

undershoot value. Thus, when considering the presence of undershoot, the reorder 

point should be enough high to cover the demand during the replenishment lead 

time and undershoot. The adjusted lead time demand mean and the adjusted lead 

time demand variance, respectively 𝜇𝐿𝑇𝐷
∗  and 𝜎𝐿𝑇𝐷

∗  are expressed as follows: 

𝜇𝐿𝑇𝐷
∗ = 𝜇𝐿𝑇𝐷 + 𝑈𝑛𝑑𝑒𝑟𝑠ℎ𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 

𝜎𝐿𝑇𝐷
∗ = 𝜎𝐿𝑇𝐷 + 𝑈𝑛𝑑𝑒𝑟𝑠ℎ𝑜𝑜𝑡 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

Moreover, the service indicator (Undershoot) is formulated as: 

𝑈 =
(𝐸𝑆𝐶𝑒 − 𝐸𝑆𝐶𝑏)

𝑄
 

Where 𝐸𝑆𝐶𝑒 and  𝐸𝑆𝐶𝑏 are the expected shortage respectively at the end and at the 

beginning of a replenishment cycle. 𝑄 is the replenishment order quantity. 

Undershoot (𝑈) adjusts the expected shortage during a cycle according to the 

magnitude of the replenishment order (𝑄). 

Ready rate is another indicator to express service level. Specifically, it is defined as 

the fraction of time when the net inventory is positive (Silver et al., 1998), meaning 

that the rate represents the portion of demand periods, in which demand is 

immediately served because of sufficient on-hand inventory. Ready-rate (𝑅𝑅) is 

calculated as follows: 

𝑅𝑅 = 1 −
𝑁𝑠𝑡𝑜𝑐𝑘𝑜𝑢𝑡

𝑁𝑡𝑜𝑡𝑎𝑙
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Where 𝑁𝑠𝑡𝑜𝑐𝑘𝑜𝑢𝑡 corresponds to the number of time buckets with stockouts, and 

𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of time buckets. 

4.2 First Stage: Demand Analysis 

The initial step of the model implies demand analysis with the objective to 

formulate profiles of each product demand variability throughout the network, a 

classification for the demand, and other advanced statistics useful to comprehend 

the demand. Classic techniques and theories concerning safety stock calculation 

assume a normal distribution of demand and supply. Actually, most demand is not 

normal, but it has a certain variability level and is not homogenously distributed 

along different time periods.  

Supply Chain Guru is powered with Adaptive Intelligent Inventory Optimization 

(AI+IO) technology, a Llamasoft algorithm for demand classification that gives the 

possibility to analyse and classify product demands, with the purpose to take 

decisions regarding stocks and inventory policies based on a highly segmented 

supply chain perspective.  

Safety Stock Optimization model starts with an analysis of inputted demand that 

carries out two consecutive functions: 

a. Demand Characterization  

b. Demand Classification  

4.2.1 Demand Characterization 

Demand is initially studied for the formulation of demand statistics. Demand 

characterization implies four progressive steps, which are further disclosed in the 

next sections. 

a. Demand Aggregation 

b. Demand Propagation 

c. Statistics Formulation 

d. Outlier Analysis 
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Demand Aggregation 

In the first phase, site demand is an aggregated of many customers’ demand flows 

allocated to one or more downstream sites during a certain time bucket. The 

number of demand flows that is allocated to a site and the aggregation time bucket 

affect the aggregated demand statistics and the related risk pooling effect.  

Indeed, the longer time bucket, the greater demand flow number allocated to a site 

and the higher risk pooling effect. Eventually, the higher risk pooling effect, the 

lower the relative safety stock level. The aggregation of demand for the analysis is 

a user-defined option. 

The available aggregation period options are three in the model: 

a. Day – Excluding weekend days and non-work days, demand series are 

aggregated at daily basis. 

b. Week – Demand analysis gathers data from all days in a week (from Sunday 

to Saturday), excluding non-work days and generating an aggregated 

weekly demand. 

c. Month – Demand is aggregated monthly, combining demand data from all 

working days in a month, based on the calendar. 

Demand Propagation 

Aggregated demand is propagated to all nodes in the distribution network for 

determining every site demand profile. First, a fixed sourcing and production 

network must be clearly defined in the software, through Production Policies Table 

and Sourcing Policies Tables, so that customer demand can be correctly 

propagated upstream from the downstream units. 

Two methods are available to perform the demand propagation and the user is 

given the choice to select one of them according to the inputted demand 

information. The methods are the following: 

•   Demand Series Propagation. This approach does not estimate demand of 

upstream sites using a formula propagation, but it simply derives site demand 
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given the demand series in Customer Demand Table. The methodology provides 

robust and accurate results, preventing the accumulation of errors with the 

purpose to calculate demand statistics at site level. The implementation of demand 

series propagation is feasible on all types of demand, regardless its intermittency 

and size. Nonetheless, a demand series is strictly required to run demand series 

propagation and the running time is proportional to demand size.  

Demand series Propagation and Formula-based Propagation methods share the 

same assumption that continuous inventory review policy is assumed to exist in 

every site of the network.  

A very simplified example follows, to disclose the basic implementation of 

demand-series propagation method. Assume a fixed distribution network, showed 

in Figure 13, composed of two customers (CZ1 and CZ2), served respectively by two 

regional warehouses (RW1 and RW2). A single production plant (PP1) replenishes 

both regional warehouses.  

 

Figure 13: Demand Series Propagation Example 
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Customer demand series is showed in the Table 3: 

Site Product Order Time Order Quantity 

CZ1 PRODUCT A 2/01/2018 2 

CZ2 PRODUCT A 2/01/2018 2 

CZ1 PRODUCT A 3/01/2018 4 

CZ2 PRODUCT A 5/01/2018 6 

CZ2 PRODUCT A 6/01/2018 2 

CZ1 PRODUCT A 6/01/2018 7 

CZ1 PRODUCT A 8/01/2018 1 

CZ2 PRODUCT A 8/01/2018 5 

 

Table 3: Demand Series Propagation Example 

 

Orders issued by the regional warehouses RW1 and RW2 reflect customer 

demands. Specifically, the production plant PP1 receives the following order series, 

noting that orders placed at PP1 of the same product on the same day are summed 

up. 

 

Sourcing 

Site 
Product Order Time 

Order 

Quantity 

PP1 PRODUCT A 1/01/2018 0 

PP1 PRODUCT A 2/01/2018 4 

PP1 PRODUCT A 3/01/2018 4 

PP1 PRODUCT A 4/01/2018 0 

PP1 PRODUCT A 5/01/2018 6 

PP1 PRODUCT A 6/01/2018 9 

PP1 PRODUCT A 7/01/2018 0 

PP1 PRODUCT A 8/01/2018 6 
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Table 4: Demand Series Propagation Example 

 

Demand series of PP1 is used to calculate demand statistics: 

Site PP1 

Product PRODUCT A 

Demand Mean 3,625 

Demand Standard Deviation 3,378 

Non-Zero Demand Mean 5,8 

Non-Zero Demand Standard 

Deviation 
2,049 

Inter-Demand Interval Mean 1,4 

 

Table 5: Demand Series Propagation Example 

 

Inter-demand interval, knows also as ADI (Average Demand Interval), can be 

calculated as the ratio between the summation of intervals between non-zero 

demand periods and the summation of non-zero demand periods. ADI formula is 

expressed as follows: 

𝐴𝐷𝐼 =  
∑ 𝜏𝑖

𝑁
𝑖=1

𝑁
 

Where 𝜏𝑖is the interval between two consecutive non-zero demands and 𝑁 is the 

occurrence of non-zero demand along the time series. 
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The example is reported to provide a basic idea about how demand, provided at 

customer-level and on series-basis, may be propagated along a network, from the 

downstream unit to the upstream units.  

•   Formula Propagation. The alternative method for demand propagation aims 

at allocating demand at each site of the network, starting from customer demand 

acceptable statistics. While demand-series propagation method deals with demand 

series, this approach is used when demand series is not available and so demand 

is allocated based on customer demand statistics. Formula propagation is typically 

used with forecast demand data, which usually are not expressed in series but in 

statistical values. Advantages related to this method are mainly related to the fact 

that at operational level, it can propagate demand with no need of an historical 

series, resulting appropriate for forecast demand. Moreover, its running time is 

independent from demand size. On the other hand, some critical issues might arise 

implementing formula propagation method. First, to handle extremely slow-

moving items in the demand is impossible using this approach. Moreover, the 

accumulation of errors represents a relevant problem, since propagation is based 

on statistical values that are already approximations and so the propagated 

demand at upstream levels might yield significant errors. 

To comprehend more the logic behind formula-based propagation approach, a 

simplified example, similar as the one used for demand-series propagation, is 

presented below. A fixed network is assumed to have a single production site (PP1) 

that replenishes two customer-facing sites (RW1 and RW2) with product A. RW2 

specifically serves two customers, facing with different demands. The network 

structure is represented in Figure 14. 
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Figure 14: Demand Formula Propagation Example 

 

Input data about customer demand are available not as historical series, but with 

statistical values, as showed in Table 6. 

 

Node Demand Mean µ 
Demand Standard 

Deviation σ 

CZ1 160 40 

CZ2 230 62 

CZ3 144 58 

 

Table 6: Demand Formula propagation Example 

 

Given input demand mean and standard deviation values, formula-based 

propagation is implemented to generate the site demand statistics, as follows: 
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RW1 Demand Mean 𝜇𝑅𝑊1 and Standard Deviation 𝜎𝑅𝑊1: 

𝜇𝑅𝑊1 = 𝜇𝐶𝑍1 

𝜎𝑅𝑊1 = 𝜎𝐶𝑍1 

RW2 Demand Mean 𝜇𝑅𝑊2 and Standard Deviation 𝜎𝑅𝑊2: 

𝜇𝑅𝑊2 = 𝜇𝐶𝑍2 + 𝜇𝐶𝑍3 

𝜎𝑅𝑊2 = √𝜎𝐶𝑍2
2 + 𝜎𝐶𝑍3

22
 

PP1 Demand Mean 𝜇𝑃𝑃1 and Standard Deviation 𝜎𝑃𝑃1: 

𝜇𝑃𝑃1 = 𝜇𝑅𝑊1 + 𝜇𝑅𝑊2 

𝜎𝑃𝑃1 = √𝜎𝑅𝑊1
2 + 𝜎𝑅𝑊2

22
 

With these formulas, demand site statistics are calculated: 

Node Demand Mean µ 
Demand Standard 

Deviation σ 

RW1 160 40 

RW2 374 84.9 

PP1 534 93.9 

 

Figure 15: Demand Formula Propagation Example 

 

Formula-based propagation method, although it favors the risk pooling effect 

dealing with statistical values, is appropriate for analyzing forecasted demand 

data, typically expressed in average numbers. In this case forecasted demand 

information are entered in the specific input demand User-defined Site Forecast 

Profile Table and formula propagation method is selected in the demand 

analysis. 
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Outlier Analysis 

Running demand analysis potential outliers are detected through thresholds 

represented by non-zero demand standard deviation and non-zero demand mean 

values. Respectively non-zero demand mean µ𝑁𝑍 is computed as the average 

demand size during the period at the given site, excluding zero demand records 

that occur in time series. Similarly, non-zero standard deviation 𝜎𝑁𝑍 is the standard 

deviation of demand size during the period at the given site, excluding zero 

demand records of the considered time series. Thus, for every site j where demand 

of item i is allocated, non-zero demand mean and standard deviation are computed 

respectively with the following formulas: 

µ𝑁𝑍 =
∑ 𝐷𝑒𝑚𝑎𝑛𝑑𝑖,𝑗

𝑁
𝑖=1

𝑁𝑁𝑍 − 1
 

𝜎𝑁𝑍 = √
∑ (𝐷𝑒𝑚𝑎𝑛𝑑𝑖,𝑗 − µ𝑁𝑍)2𝑁

𝑖=1

𝑁𝑁𝑍 − 1
  

Outlier analysis is triggered through non-zero standard deviation: if 𝜎𝑁𝑍 ≥ 10, 

outlier analysis starts. 

An outlier 𝐷𝑚𝑎𝑥 in a given aggregation period is detected if 𝐷𝑚𝑎𝑥 is equal to or 

greater than ten times the non-zero demand mean from the rest of demand smaller 

than 𝐷𝑚𝑎𝑥. 

If 𝐷𝑚𝑎𝑥 ≥ 10 ∗ �̅�𝑁𝑍,𝑖, 𝐷𝑚𝑎𝑥  , where �̅�𝑁𝑍,𝑖 is non-zero demand allocated to site i, 

excluding Dmax, Dmax   is determined as outlier by the software. 

As the outlier is identified, a user-defined model option determines whether: 

a. Outliers are still included in demand statistics. 

b. Outliers are substituted with non-zero demand mean �̅�𝑁𝑍,𝑖 computed with 

demand data smaller than the outlier Dmax. Outliers are therefore excluded 

from demand statistics, since adjusted demand is generated.  



 

70 

 

4.2.2 Demand Classification 

Following demand characterization, demand classification is the process that 

clusters demanded items into demand categories with the purpose to identify the 

optimal demand forecasting method and inventory control policy for each item. In 

literature many different demand categorization approaches exist and they can be 

grouped mainly in the following macro-areas: 

- Approaches based on variance partition (Williams 1984) 

- Approaches based on characteristics of demand shape (Bartezzaghi et al. 

1999, Zotteri, 2000) 

- Approaches based on forecasting accuracy. 

It is important to remark that AI+IO demand classification method implemented 

in Safety Stock Optimization model relies on the scientific studies of Syntetos et 

al. (2015) for approaches based on the accuracy of forecasting procedure. 

Nonetheless each approach will be briefly disclosed, with the purpose to enhance 

the key characteristics and the key differences with the demand classification 

method utilized in the model. 

Approaches based on variance partition are based on Williams contribution that 

developed a categorization method that divides demand variance during lead time 

𝑣𝑎𝑟(𝐷𝐷𝐿𝑇) into causal parts as the following: (1) the number of customer orders 

occurring in consequent units of time having mean n and variance 𝑣𝑎𝑟(𝑛); (2) the 

order sizes, having mean x and variance 𝑣𝑎𝑟(𝑥); (3) the lead time, having mean 𝐿 

and variance 𝑣𝑎𝑟(𝐿). 

Given that (1), (2) and (3) are assumed to be independent and identically 

distributed random variables, demand variance is described by the following 

equation:  

𝑣𝑎𝑟(𝐷𝐷𝐿𝑇) = 𝑥2𝐿 𝑣𝑎𝑟(𝑛) + 𝑛𝐿 𝑣𝑎𝑟(𝑥) +  𝑛2𝑥2𝑣𝑎𝑟(𝐿) 

By expressing 𝑣𝑎𝑟(𝐷𝐷𝐿𝑇) formula with squared coefficient of variation 𝐶𝑉𝐷𝐷𝐿𝑇
2 , it 

results as 
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𝐶𝑉𝐷𝐷𝐿𝑇
2 =

𝐶𝑉𝑛
2

𝐿
+

𝐶𝑉𝑥
2

𝑛𝐿
+ 𝐶𝑉𝐿

2 

The sizes of three terms 
𝐶𝑉𝑛

2

𝐿
, 

𝐶𝑉𝑥
2

𝑛𝐿
, 𝐶𝑉𝐿

2 composing the squared coefficient of variation 

of demand during lead time are used as variables to define different demand 

pattern categories. According to authors Williams and Eaves and Kingsman, the 

specific variable thresholds used to define categories vary depending on the market 

sector and item type. 

Approaches based on demand shape characteristics have been investigated by 

Bartezzaghi and Zotteri. The authors analyzed demand intermittency proposing 

two dimensions of demand distribution: 

- Demand distribution asymmetry calculated as the third standardized 

moment of probability distribution;  

- The multimodality distribution, or coexistence of more than one mode. 

The study carried out by the authors demonstrated that the higher the right 

asymmetry of demand distribution, the higher intermittence in the demand and so 

the higher stock level to guarantee a given service level. Despite the authors’ 

achieved results, no categorization on demand patterns has been provided. 

The third macro-method in demand categorization literature may be defined as 

approaches based on forecasting accuracy procedure. This methodology considers 

intermittency as key dimension in demand analysis. Intermittent demand appears 

sporadically, with some time periods showing no demand at all. Moreover, when 

demand occurs, it may not be for a single unit or a constant size (Syntetos and 

Boylan, 2005). 

Croston developed the first intermittent demand specific method, based on inter-

demand interval (𝑝𝑡) and demand size, when demand occurs (𝑧𝑡). The author 

assumes that demand sizes follow the normal distribution (with mean 𝜇 and 

variance 𝜎2) and that therefore inter-demand intervals are geometrically 

distributed (with mean 𝑝).  
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Syntetos and Boylan demonstrated that Croston’s estimator was biased and 

proposed an adjustment factor to make Croston method unbiased. 

Syntetos et al.  suggests a demand categorization approach based on three methods 

of scientific literature: (a) Croston’s method, designed specifically to forecast 

intermittent demand, (b) a correction of Croston’s estimator, developed by 

Syntetos and Boylan and (c) simple exponential smoothing (SES).  

Syntetos et al. method assesses demand categories through the comparison of MSE 

computed from each considered method to assess areas of higher accuracy. 

Intermittency and variability are the demand parameters for classifying demand 

patterns. Specifically, as shown in Figure 16, the two-axis matrix based on the 

squared coefficient of variation of demand size (𝐶𝑉2) and the average inter-

demand interval (𝑝𝑡), outlines four demand categories: erratic, lumpy, smooth and 

intermittent (but not very erratic), delimited by cutoff values for the two demand 

categorization variables, determined by Syntetos and Boylan’ study.  
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Figure 16: Demand categorization matrix developed by Syntetos and Boylan. 

 

 

If 𝑝 ≥ 1.32 demand is said to be lumpy, when 𝐶𝑉2 ≥ 0.49 and intermittent when 

𝐶𝑉2 < 0.49. Indeed, a demand with a relatively low occurrence during a given 

aggregation period, is further classified as lumpy, if it is highly variable in terms of 

quantity, or intermittent, if quantity remains relatively steady, based on 𝐶𝑉2cut-

off value defined by the authors.  

Differently, given that 𝑝 < 1.32 demand is said to be erratic, when 𝐶𝑉2 ≥ 0.49 and 

smooth when 𝐶𝑉2 < 0.49. The left-handed quadrants of the matrix represent, 

therefore, non-intermittent demand, further distinguished in erratic and smooth 

respectively if demand quantity variability is high and low, given the 𝐶𝑉2cut-off 

value defined by the authors.  



 

74 

 

Syntetos and Boylan’ cut-off values for demand categorization variables make the 

theoretical schema an operational method for demand classification, implemented 

in Supply Chain Guru in inventory optimization models.  Figure 17 represents a 

flow chart that specifically shows the process of demand classification in the 

software.  

 

Figure 17: Demand Classification Flow Chart. Supply Chain Guru ® Documentation 

 

 Starting from the first column of  Figure 17, initially demand is categorized in 

terms of frequency: if demand occurs less than three times in a given period, it is 

defined as Extremely Slow and no demand statistics formulation is performed. The 

primary requirement for triggering demand characterization is that demand 
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occurs at least three times in a period. Extremely slow-moving items are excluded 

from safety stock optimization, since they do not reach a minimum demand 

occurrence level that justifies physical safety stock levels. 

Throughout demand characterization process, demand propagation, statistics 

formulation and outlier analysis are performed, and after that demand 

classification starts.  

First, demand intermittency is studied with the measurement of mean inter-

demand interval (𝑝). The cut-off value determined by Syntetos and Boylan for this 

parameter is utilized to distinguish intermittent demand from non-intermittent 

demand. Following non-intermittent demand path, demanded items are classified 

as Erratic if their demand results highly variable and as Smooth if their demand 

results stationary. Squared coefficient of demand variation (𝐶𝑉2) is the variable 

utilized to define Erratic and Smooth demand classes.  

 

Figure 18: Graphical representation of smooth and erratic demand patterns. Supply Chain Guru 
® Documentation 

 

Variability is captured in intermittent demand with the measurement of non-zero 

demand standard deviation 𝜎𝑁𝑍. Highly variable demand is an intermittent 

demand with a non-zero demand standard deviation equal to or greater than four. 

Differently low variable demand is an intermittent demand with a non-zero 

demand standard deviation lower than four. 
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Figure 19: Graphical representation of low and highly variable demand patterns. Supply Chain 
Guru ® Documentation 

 

Both highly and low variable demand are further classified in either Slow or 

Lumpy, using the squared coefficient of demand variation (𝐶𝑉2) and the same cut-

off value used for non-intermittent demand. Intermittent demand may be further 

categorized as Clumped if it is (almost) constant, given a non-zero demand 

standard deviation close to zero.  

 

Figure 20: Graphical representation of slow and lumpy demand patterns. Supply Chain Guru ® 
Documentation 

 

In summary, demand classification in Supply Chain Guru categorizes demand in 

one of the following nine demand profiles: 

- Extremely Slow. Demand occurrence is very low (lower than three). 

- Extremely Variable. Demand is assessed as extremely variable if the ratio 

between demand standard deviation and demand mean, namely coefficient 
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of demand variation, is greater than or equal to 5. Highly variable demand 

implies significant safety stock level that will be quantified in safety stock 

optimization output. 

- Extremely Small. Demand with a non-zero demand mean lower than 1 is 

defined as not sufficiently high to allocate safety stock.   

- Non-intermittent – Smooth. Demand is stationary and occurs at high 

frequency. 

- Non-intermittent – Erratic. Demand occurs frequently in the period with 

significant variability. 

- Intermittent – Highly Variable – Slow. Intermittent demand occurs with 

less regularity than non-intermittent demand and presents a high quantity 

variability expressed by non-zero demand standard deviation with a relative 

low variation expressed by squared coefficient of demand variation. 

- Intermittent – Highly Variable – Lumpy. Demand occurrence is irregular, 

and the distribution presents high variability. 

- Intermittent – Low Variable – Slow. Demand presents infrequent 

occurrences with a relatively low quantity variability in its distribution. 

- Intermittent –Low Variable – Lumpy. Demand is irregular in terms of 

occurrence along the period and it results highly dispersed, although non-

zero demand standard deviation does not remark a high variability. 

Based on demand statistics and demand classes, a lead time demand distribution 

is determined. 

4.2.3 Demand Analysis Output 

At the end of demand characterization process, demand analysis provides a set of 

demand statistics, reported in the following output tables: 

- Aggregated Customer Demand Tables. These tables report aggregated 

demand and outliers, in case that outliers have been detected during the 

outlier analysis. 
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- Demand Profile Tables. Demand classes and demand statistics are defined 

in these output tables on a period-product-site combination. 

Demand profiles are presented respectively in Customer Demand Table for 

customer demand and in Site Demand Table for upstream-site demand, 

determined through demand propagation. In both Demand Profile Tables demand 

statistics values and demand classes are reported on scenario-site-product-period 

combination. This means that the demand is not left restricted to the customer-

facing node of the distribution network, but for every product, the demand 

allocated to a given site during a specific time window is described through 

calculated demand statistics values and a demand class. 

Specifically, the most remarkable statistics computed for customer aggregated 

demand are: 

- Non-zero Demand Mean (𝝁𝑵𝒁). Average product demand value during 

the period at a given node. The formula excludes aggregation periods in 

which demand does not occur (zero-demand records are not considered in 

the calculation). 

- Non-zero Demand Standard Deviation (𝝈𝑵𝒁). Standard deviation of 

a product demand during the period at a given node. Zero-demand records 

are excluded. 

- Demand Mean (𝝁𝑫). Average product demand value per aggregation 

period allocated at a given node. 

- Demand Standard Deviation (𝝈𝑫).  Standard deviation of a product 

demand allocated at a given site. 

- Inter-Demand Interval Mean (𝒑).  Average number of aggregation 

periods occurring between two consecutive aggregated demand records in 

the time series.  

- Non-zero Demand Squared Coefficient of Variation (𝑪𝑽𝑵𝒁
𝟐). It is a 

measurement of demand variability with respect to demand mean. Its 

formula, recalled in the equation below, does not include aggregation 

periods with zero-demand.  
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𝐶𝑉𝑁𝑍
2 = (

𝜎𝑁𝑍

𝜇𝑁𝑍
)

2

 

4.3 Second Stage: Multi-Echelon Inventory 

Optimization 

Demand analysis completion sets the stage for the subsequent main step: multi-

echelon inventory optimization. Given the allocation of demand throughout the 

whole distribution network and the corresponding demand statistics and classes, 

the demand-related information are available as new input data for the optimal 

safety stock placement. 

Besides demand analysis output, replenishment lead time, replenishment 

frequency, production frequency, unit inventory value, target service level and 

stocking nodes are the necessary input information to run multi-echelon inventory 

optimization.  

The basic structure of multi-echelon inventory optimization phase may be 

explained by Figure 21, showed below.  

Based on demand classes and statistics, the model defines lead time demand 

distribution for every node: daily demand mean and standard deviation are scaled 

to formulate lead-time demand parameters and to assess its distribution. 

Target service level and other optional model constraints, together with lead-time 

demand distribution are used to build a safety stock curve and after that the solver 

seeks safety stock coverage and corresponding service time values that result to 

provide the optimal safety stock level. 
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Figure 21: Graphical representation of Multi-Echelon Inventory Optimization. Supply Chain Guru 
® Documentation. 

 

In general, the number of echelons in a supply chain network raises the complexity 

in inventory control, since more stochastic components should be considered in 

decision-making processes. Safety stock allocation problem in a multi-level 

distribution network is addressed in Supply Chain Guru, using an optimization 

algorithm based on Guaranteed-Service Model (GSM). 

In GSM approach, each echelon is assumed to guarantee a service time to its 

downstream echelon. The model objective is to determine the optimal service 

times for each network level to minimize the total inventory cost, assuring a target 

customer service level. 

The following sections are structured so to provide theoretical overviews of multi-

echelon networks and Guaranteed-service Model, as solution method for multi-

echelon safety stock optimization problem. The objective is to better disclose the 
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logic behind Supply Chain Guru optimization approach, that will be further 

explained. 

4.3.1 Multi-Echelon Networks 

Current real-world supply chains often comprise multiple stages at different 

echelon to carry out both assembly and distribution processes. These systems 

require an effective inventory management with the objective to minimize the total 

inventory costs looking at the whole network, assuring to satisfy a customer service 

requirement.  

Multi-echelon supply chains may be defined as networks consisting of nodes, 

representing the stages, linked by arcs, showing the relationships and the material 

flow direction between two stages. An upstream node (predecessor) is directly 

connected to a downstream node (successor) through an arc, if the upstream stage 

is a direct supplier of the downstream stage.  

Based on the combinations of nodes and arcs, different multi-echelon topologies 

may exist and can be classified as follows, in increasing order of complexity: 

- Serial systems 

- Assembly systems 

- Distribution systems 

- General systems (acyclic and cyclic). 

Serial systems (Figure 22.a) are the simplest structures: each node has no more 

than one predecessor and successor. Assembly systems (Figure 22.b) have 

limitations related to the number of successors only: each node has no more than 

one successor. Differently, distribution systems (Figure 22.c) have limitations 

regarding the number of predecessors: each node cannot have more than one 

predecessor. General systems are the result of a synthesis between assembly and 

distribution systems, with no restrictions on arcs. General systems can be further 

divided in cyclic and in acyclic systems. General cyclic systems (Figure 22.e) allow 

returns of goods from a downstream stage to an upstream stage, resulting in cycles 
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in the network structure. Contrarily, general acyclic systems (Figure 22.d) do not 

envisage closed loops, and thus arcs connect predecessors to successors in one 

direction only.  

 

Figure 22: Multi-echelon system topologies. Representation inspired by Eruguz (2014 ). 

 

 

As Willems (2008) study demonstrates, real-world supply chains are structured as 

general systems. Specifically, examples of general cyclic systems may be some 

chemical and pharma supply chains, since products are composed of products 

generated at downstream stages. 

4.3.2 Multi-Echelon Safety Stock Optimization 

Given the description of multi-echelon systems, multi-echelon optimization 

represents a complex problem, since it implies a high number of interdependent 
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decision variables and the adoption of non-linear functions. The problem also is 

dependent to the number of distribution levels and to the connection types 

between the different levels, resulting a challenging scenario for computational 

models.  

Specifically, multi-echelon safety stock optimization represents one of the focuses 

related to multi-echelon inventory optimization problem. With the target to 

protect against demand and lead time uncertainty, safety stock level should be 

optimally set at each stocking node to meet a given customer service level, 

minimizing the inventory cost. Single-echelon safety stock optimization is the 

definition of safety stock level at a given site, considering only the variables related 

to the specific site (such as replenishment lead time from the upstream stages, 

demand of downstream level, site-related inventory holding cost, customer service 

level etc.). This approach has been widely studied in the literature (see Silver et al., 

1998; Zipkin, 2000) and largely implemented, still it neglects the 

interdependencies of parameters between multiple echelons of a network, if they 

exist.  

Differently, multi-echelon safety stock optimization determines the optimal safety 

stock level, based on a holistic supply chain perspective, including all echelons and 

interdependent variables in the analysis.  

Single-echelon and multiple-echelon optimization approaches are compared 

graphically in Figure 23. 
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Figure 23: Single-Echelon Optimization versus Multi-Echelon Optimization. Representation 
inspired by Klosterhalfen (2010). 

 

4.3.3 Guaranteed-Service Model 

Guaranteed-service approach is a solution method widely studied in literature that 

addresses the problem of safety stock allocation in a multi-stage network.  

GSM approach assumes that each echelon quotes a service time to its downstream 

echelon, after which the requested item is always available. To make this 

assumption hold, the demand is considered bounded in the model. Service times 
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are the decision variables to determine, in order to meet a certain customer service 

requirement, minimizing the overall inventory holding cost. 

Simpson (1958) represents the first attempt for formulating GSM for multi-

echelon systems, and specifically considering a serial system. After some decades, 

the mathematical model has been interest for new studies about safety stock 

allocation: almost 80% of the existing works have been published between 2004 

and 2014 (Eruguz, 2014). Specifically, Graves and Willems (2000) formulate GSM 

algorithm for multi-echelon general systems. 

Guaranteed-Service Model Assumptions 

To describe the assumptions in Guaranteed-Service Model, Eruguz (2014) is taken 

as reference work. 

The multi-echelon network consists of a set of nodes, denoted by N and a set of 

arcs, denoted by A. A scalar 𝜃𝑖𝑗 for a couple of nodes (𝑖, 𝑗) defines the set of input 

units that the upstream node 𝑖 requires to get one output unit at the downstream 

node 𝑗, if 𝑖 and 𝑗 are connected by a direct arc. 

The set of nodes N may be further categorized in three subsets: 

- The set of supply stages NS includes all stages with no predecessors. 

- The set of demand stages ND includes all stages with no successors. 

- The set of internal stages NI includes all stages with at least one predecessor 

and one successor. 

Assume a node 𝑗 ∉ ND, resulting either a supply stage or an internal stage of the 

system. For each 𝑗, ND(𝑗) denotes the set of demand stages connected to node 𝑗 

through a direct arc. 

The Guaranteed-Service model presented below refers to Graves and Willems 

(2000) version. The assumptions considered valid in this model are the followings: 

1. Time is phased in periods of equal length. Planning horizon is assumed 

infinite in the model. 
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2. Each stage can issue orders when a time period starts (that means that all 

stages have a review period of one-period length). Inventory control at each 

stage is based on periodic-review, order-up-to policy. 

3. Lead time is deterministic, constant in time and an integer value (multiple 

of the unit period). The lead time at the customer-serving stage includes 

one-period long review period. 

4. No storage capacity constraint is assumed at each stage. 

5. External suppliers have unconstrained capacity. 

6. Inventory holding cost is assumed with a linear structure. 

7. Customer demand is allocated to the most downstream node (demand 

stage). Hence, the external demand 𝑑𝑗(𝑡) occurring at demand stage 𝑗 ∈ ND 

is identically and independently distributed (i. i. d.) on [0, ∞), with a mean 

𝜇𝑗 and a standard deviation 𝜎𝑗 in each period.  

Non-demand stages do not have external demand, but they respond to 

internal demand coming from their immediate successors. Thus, demand 

𝑑𝑖(𝑡) at non-demand stage 𝑖 ∈ NS ∪ NI in period 𝑡 is equal to the sum of 

orders issued by its immediate downstream stage. Demand 𝑑𝑖(𝑡) at non-

demand stages may be expressed by the formula: 

𝑑𝑖(𝑡) = ∑ 𝜃𝑖𝑗

𝑗:(𝑖,𝑗)∈𝐴

𝑑𝑗(𝑡) 

8. The model assumes a bounded demand with an increasing and concave 

function 𝐷𝑗(𝜏𝑗) for each stage 𝑗 ∈ N and for each period 𝜏𝑗 =  1,2, . . . , 𝑀𝑗, 

given that 𝑀𝑗 stands for the maximum time occurring between the order and 

the reception of the considered item at stage 𝑗 (called maximum 

replenishment time). Maximum replenishment time 𝑀𝑗 is computed by the 

formula: 

 

𝑀𝑗 =  𝐿𝑗 +  𝑚𝑎𝑥{𝑀𝑖|𝑖 ∶  (𝑖, 𝑗) ∈ 𝐀} 

 



 

87 

 

Where 𝐿𝑗 represents the average lead time at each stage 𝑗, being the average 

process time at stage 𝑗, given that all required input items are available to 

start the process at that stage. 

In this framework, for any period 𝑡 ≥ 𝜏𝑗 and for every node 𝑗 ∈ N the 

following is considered true: 

𝐷𝑗(𝜏𝑗) ≥ 𝑑𝑗(𝑡 − 𝜏𝑗 , 𝑡) 

Noting that 

𝑑𝑗(𝑡 − 𝜏𝑗 , 𝑡) = 0 𝑓𝑜𝑟 𝑡 − 𝜏𝑗 ≥ 𝑡 

𝑑𝑗(𝑡 − 𝜏𝑗 , 𝑡) = ∑ 𝑑𝑗(𝑇)

𝑡

𝑇=𝑡−𝜏𝑗+1

 𝑓𝑜𝑟 𝑡 − 𝜏𝑗 ≤ 𝑡 

In summary, demand bounds represent the maximum demand that is 

covered by safety stock. When demand exceeds 𝐷𝑗(𝜏𝑗) over the net 

replenishment time 𝜏𝑗, safety stock is not enough to buffer against the 

demand surplus.  

The original GSM does not include explicit measures for meeting demand 

excesses, not covered by safety stock. It does not calculate monetary costs 

of such measures, but it relies on the concept of operating flexibility. 

Companies should envisage this potential situation and provide with 

specific corrective actions to minimize losses. 

Nonetheless recent studies aimed at finding solutions for the gap of GSM 

with uncovered demand surplus. Rambau and Schade (2010), for instance, 

introduced a stochastic programming variant of GSM, proposing entire 

recourses for delays and uncovered demand. 

9. Each node 𝑗 ∈ N ensures an outbound service time 𝑠𝑗
𝑜𝑢𝑡 to its immediate 

successor node, such that the demand 𝑑𝑗(𝑡) occurring at node 𝑗 in period 𝑡 

is entirely met at period 𝑡 + 𝑠𝑗
𝑜𝑢𝑡. In parallel an inbound service time 𝑠𝑗

𝑖𝑛 

denotes the time that each node 𝑗 has to wait to obtain all requested input 

items from predecessors 𝑖 such that (𝑖, 𝑗) ∈ A to start the process at node 𝑗. 

The condition that the process cannot begin at any stage if all necessary 

input items are available at that stage, implies that  
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𝑠𝑗
𝑖𝑛 ≥ 𝑠𝑗

𝑜𝑢𝑡for all arcs (i, j) ∈ A. 

 

Outbound and inbound service times result the decision variables in GSM: 

they are determined so that the overall inventory holding cost is minimized 

and that a target customer service requirement is met.  

Service times assume integer values, and they can be multiples of the unit 

time bucket. 

The underlying assumptions of GSM approach are outlined in Table 7. 

Graves and Willems (2000) Guaranteed Service Model Assumptions 

External Demand Stationary and bounded 

Lead Times  Known and constant 

Capacity Constraint Not considered 

Service Time 
Constant and equal for all successors 

of one stage 

Inventory Management Policy 

Periodic review and order-up-to 

inventory policy. Review period is set 

equal for all stages 

Countermeasures for uncovered 

demand and delays 
Not explicitly considered 

 

Table 7: Summary of original GSM assumptions. Representation inspired by Eruguz (2014) 

 

Guaranteed-Service Model Inventory Dynamics 

Based on the model assumptions, the underlying inventory dynamics of GSM may 

be disclosed.  
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The demand 𝑑𝑗(𝑡) occurring at stage 𝑗 is observed at the beginning of period 𝑡, and 

this triggers an order issued by stage 𝑗 corresponding to the demand 𝑑𝑗(𝑡).  

The ordered quantity is available at stage 𝑗 at period 𝑡 + 𝑠𝑗
𝑖𝑛 + 𝐿𝑗.  

Equally stage 𝑗 promises to fulfill the demand at period  𝑡 + 𝑠𝑗
𝑜𝑢𝑡.  

If the replenishment order corresponding to the demand 𝑑𝑗(𝑡) is carried out after 

the period in which 𝑑𝑗(𝑡) is served, stage 𝑗 requires enough available inventory to 

cover this demand. In other words, if 𝑠𝑗
𝑖𝑛 + 𝐿𝑗 > 𝑠𝑗

𝑜𝑢𝑡 the inventory level at stage 𝑗 

should be sufficient to satisfy the demand over the period 𝜏𝑗 = 𝑠𝑗
𝑖𝑛 + 𝐿𝑗 − 𝑠𝑗

𝑜𝑢𝑡, 

which goes by the name of “net replenishment time” at stage 𝑗. 

We assume that for any period 𝑡 ≤ 0 demand 𝑑𝑗(𝑡) is equal to 0 and the initial 

inventory level 𝐼𝑗(0) at stage 𝑗 is equal to 𝑆𝑗 ≥ 0. 

Graves and Willems (2000) proposed a balance equation for the net inventory level 

𝐼𝑗(𝑡) at stage 𝑗 at the end of period 𝑡, that is: 

𝐼𝑗(𝑡) =  𝑆𝑗 − 𝑑𝑗(𝑡 − 𝑠𝑗
𝑖𝑛 − 𝐿𝑗 , 𝑡 − 𝑠𝑗

𝑜𝑢𝑡) 

The interval 𝑡 − 𝑠𝑗
𝑖𝑛 − 𝐿𝑗  stands for the last replenishment collected at stage 𝑗 by 

time 𝑡, while  𝑡 − 𝑠𝑗
𝑜𝑢𝑡 represents the last demand fulfilled by stage 𝑗 by time 𝑡. This 

is equal to say that at any time stage 𝑗 should hold inventory to cover the time 𝑠𝑗
𝑖𝑛 +

𝐿𝑗 − 𝑠𝑗
𝑜𝑢𝑡, which is equal to its net replenishment time. 

The order-up-to level 𝑆𝑗 should be equal to the upper demand bound 𝐷𝑗(𝜏𝑗). Given 

this condition, the expected inventory level 𝐸[𝐼𝑗(𝑡)] can be determined as follows: 

𝐸[𝐼𝑗(𝑡)] =  𝐷𝑗(𝜏𝑗) − 𝜏𝑗𝜇𝑗 

Where 𝜇𝑗 denotes the demand mean at stage 𝑗 and 𝜏𝑗 is the net replenishment time 

of stage 𝑗. The expected inventory level 𝐸[𝐼𝑗(𝑡)] corresponds to the safety stock level 

kept at stage 𝑗. 
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Guaranteed-Service Model Mathematical Formulation 

Given the assumption (6) of linear inventory holding cost structure, the GSM 

problem to determine the optimal inbound and outbound service times that 

minimize the total inventory cost of the network can be formulated with the 

following objective function: 

 

𝑃0: 𝑚𝑖𝑛 ∑ ℎ𝑗

𝑗∈𝑵

{𝐷𝑗(𝜏𝑗) − 𝜏𝑗𝜇𝑗}  
(1) 

 

Such that 

𝜏𝑗 = 𝑠𝑗
𝑖𝑛 + 𝐿𝑗 − 𝑠𝑗

𝑜𝑢𝑡 ∀𝑗 ∈ 𝐍  (a) 

 

𝑠𝑖
𝑜𝑢𝑡 ≤ 𝑠𝑗

𝑖𝑛  ∀(𝑖, 𝑗) ∈ 𝐀 (b) 

 

𝑠𝑗
𝑜𝑢𝑡 ≤ 𝑠𝑗

𝑐𝑙𝑖𝑒𝑛𝑡 ∀𝑗 ∈ 𝐍𝐃 (c) 

 

𝜏𝑗, 𝑠𝑗
𝑜𝑢𝑡, 𝑠𝑗

𝑖𝑛 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  ∀𝑗 ∈ 𝐍  (d) 

 

In the objective function ℎ𝑗  denotes the unit inventory holding cost at stage 𝑗, while 

(a), (b), (c), (d) define the constraints to the objective function. Once the problem 

𝑃0 is solved, the optimal order-up-to level 𝑆𝑗
∗ is determined with the equation  𝑆𝑗

∗ =

𝐷𝑗(𝜏𝑗
∗), in which 𝜏𝑗

∗ corresponds to the optimal net replenishment time at stage 𝑗. 

The solution method adopted in Graves and Willems (2000) is the dynamic 

programming, which is largely used for optimization problems. 

The GSM version disclosed so far refers to Graves and Willems (2000) study, 

which considers Simpson (1958)’s work and extends it for general multi-echelon 
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systems. Table 7 summarizes the main assumptions of Graves and Willems (2000). 

Nonetheless, the underlying assumptions have been interests of several 

researchers, who published their works focused on the relaxation of GSM 

assumptions. For instance, see Graves and Willems (2008) and Neale and Willems 

(2009) for the extension of GSM with non-stationary demand assumption. 

Relaxation on lead time assumptions has been examined in Inderfurth (1993), 

Minner (2000) and Humair et al. (2013). In this work, the original GSM has been 

presented with the purpose to disclose the basic logic behind the model for the 

understanding of the industrial application through Supply Chain Guru. 

4.3.4 Multi-Echelon Safety Stock Optimization in Supply 

Chain Guru 

Supply Chain Guru embeds Safety Stock Optimization model, appropriate for a 

multi-echelon network. This model, as already mentioned, is founded on GSM 

approach. Specifically, based on the objective function (1) reported in the previous 

subsection, Supply Chain Guru obtains the optimal safety stock level at each stage 

of the network. 

Indeed, the key parameters for the GSM optimization objective function may be 

retraced in SCG Safety Stock Optimization. 

First, unit inventory holding cost ℎ𝑗  is expressed in the software with two possible 

fields: Product Value and Product Inventory Value. They are both input fields, but 

the main difference between them is that Product Inventory Value denotes the unit 

item value at a specific stage (namely “site” in the software), while Product Value 

corresponds to unit item value regardless the stage where it is stored. Product 

Inventory Value is preferred to Product Value when there exists a cost difference 

in terms of storage location. If Product Inventory Value field is populated, it 

overrides Product Value and it is considered the unit inventory cost in the 

optimization objective function.  
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Second, net replenishment time 𝜏𝑗 corresponds to time in which demand occurs 

and it should be covered by safety stock at stage 𝑗. This concept appears in Supply 

Chain Guru too and it goes by the name of “Coverage”. Recalling the net 

replenishment time formula, coverage can be expressed as: 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝜏𝑗 = 𝑠𝑗
𝑖𝑛 + 𝐿𝑗 − 𝑠𝑗

𝑜𝑢𝑡 

Inbound 𝑠𝑗
𝑖𝑛 and outbound 𝑠𝑗

𝑜𝑢𝑡 service times are the decision variables of the 

objective function and they assume integer values. Note that for any pair of stages 

(𝑖, 𝑗) connected by a direct arc, which specifies that node 𝑖 is the predecessor of 

stage 𝑗, the inbound service time 𝑠𝑗
𝑖𝑛 at stage 𝑗 is equal to the outbound service time 

𝑠𝑖
𝑜𝑢𝑡 quoted by stage 𝑖. In other words,  𝑠𝑗

𝑖𝑛 = 𝑠𝑖
𝑜𝑢𝑡. Moreover, the outbound service 

time 𝑠𝑖
𝑜𝑢𝑡 that any stage 𝑖 promises, is common for any immediate downstream 

stage 𝑗 of stage  𝑖.  

The outbound service time 𝑠𝑗
𝑜𝑢𝑡 = 0 for any 𝑗 ∈ ND. The assumption states that the 

most downstream stages, which serve directly external customers, promise a null 

service time to its clients. Note that service times do not include transit time.   

About lead time parameter 𝐿𝑗, the concept of immediate lead time ILT can be 

recalled from Capitolo 4. Indeed, immediate lead time consists of the different lead 

time components, depending on the type of node.  

Specifically, if stage 𝑗 is a production stage for the item 𝑘, the immediate lead time 

𝐼𝐿𝑇𝑘𝑗 is computed as follows: 

𝐼𝐿𝑇𝑘𝑗 = 𝐹𝑖𝑥𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑘𝑗 + 𝑅𝑒𝑣𝑖𝑒𝑤 𝑃𝑒𝑟𝑖𝑜𝑑𝑘𝑗 

Differently, if stage 𝑗 is not a production stage for the item 𝑘, but it is replenished 

by an upstream stage 𝑖, the immediate lead time 𝐼𝐿𝑇𝑘𝑗 is formulated as: 

𝐼𝐿𝑇𝑘𝑗 = 𝑆𝑜𝑢𝑟𝑐𝑖𝑛𝑔 𝐿𝑇𝑘𝑖𝑗 + 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝐿𝑇𝑘𝑖𝑗 + 𝑅𝑒𝑣𝑖𝑒𝑤 𝑃𝑒𝑟𝑖𝑜𝑑𝑘𝑗 
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If item 𝑘 directly flows to the stage 𝑗 from more than one sourcing point, a multiple 

sourcing policy applies and a fraction of sourcing quantity is associated to each 

sourcing node.  

Thus, coverage (or net replenishment time) can be expressed with the following 

formula, in which the lead time component is replaced by the corresponding 

immediate lead time: 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑘𝑖𝑗 = 𝑠𝑗
𝑖𝑛 + 𝐼𝐿𝑇𝑘𝑖𝑗 − 𝑠𝑗

𝑜𝑢𝑡 

Supply Chain Guru provides with two different solution techniques for Multi-

Echelon Inventory Optimization problem:  

- Dynamic programming. This method is selected for limited-size models and 

tree structure networks (general acyclic multi-echelon systems).  

- Linear programming. This method is selected for complex networks, since 

it can handle general cyclic multi-echelon systems. 

The selection of one solution technique depends on the complexity and on the size 

of the problem. 

Multi-Echelon Inventory Optimization Output 

In the previous sections, the second stage of Multi-Echelon Safety Stock 

Optimization in Supply Chain Guru has been disclosed, through an introductory 

overview on the theoretical bases about both multi-echelon systems and 

Guaranteed-service model, followed by an explanation of the software 

optimization model components and logic.  

In this section, the output of Multi-echelon Inventory Optimization model is 

presented. 

The key inventory-related output elements are: 

- Safety stock, expressed in the quantity unit of measure defined by the 

user, is determined through the optimization objective function (1). 
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- Safety stock (Days of Stock); it is the number of days of supply as safety 

stock to protect against either demand or lead time variations. It is derived 

from: 

𝑆𝑆 (𝐷𝑂𝑆) =
𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘 (𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦)

𝐷𝑎𝑖𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 𝑀𝑒𝑎𝑛 (
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦

𝐷𝑎𝑦 )
 

Where 𝐷𝑎𝑖𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 𝑀𝑒𝑎𝑛 (𝐷𝐷𝑀) =
(𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑) 𝐷𝑒𝑚𝑎𝑛𝑑 𝑀𝑒𝑎𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑖𝑛 1 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑
 

- Coverage (in days); it is obtained through the optimization that 

determines the optimal service times. 

- Cycle Stock (in quantity); Supply Chain Guru calculates the cycle stock 

level of a given item at a given site with the following formula: 

𝐶𝑆 =
𝑚𝑎𝑥(𝑀𝑂𝑄, 𝑅𝐹 × 𝐷𝐷𝑀)

2
 

Where 𝑀𝑂𝑄 is the Minimum Order Quantity and 𝑅𝐹 is the replenishment 

frequency. 

The reported output parameters are only few of the set of information provided by 

Supply Chain Guru, which is not wholly explained in this section, because not 

strictly within the project scope.  

Further model optimization output results in the recommendation of specific 

inventory control policies, based on the demand class to which a product demand 

belongs. 

The process steps Safety Stock Optimization in Supply Chain Guru follows are (1) 

through demand analysis demand statistics and demand classes are defined for 

any product demand (2) Lead time demand is therefore examined and a lead time 

demand distribution is estimated (3) Inventory control policies are specifically 

recommended according to the demand class (4) Inventory control policies 

parameters, such as reorder point and reorder quantity, are determined as well. 
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Table 8 summarizes the combinations between demand class, defined in demand 

analysis, lead time distribution type and the recommended policies for inventory 

management.  
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Demand Class 

Lead Time 

Demand 

Distribution 

Recommended 

Inventory 

Management 

Policy 

Recommended 

Inventory 

Review System 

Extremely Slow  Make-to-order 
 

Smooth Normal 

Reorder Point, 

Reorder Quantity 

(R,Q) 

Continuous 

Erratic Gamma 
Reorder Point, Order 

up-to (s,S) 
Continuous 

Low Variable – Slow 

(with unitary batch 

size) 

Gamma Base stock Continuous 

Low Variable – Slow 

(with batch size >1) 
Gamma 

Reorder Point, 

Reorder Quantity 

(R,Q) 

Continuous 

Highly Variable – 

Slow 
Gamma 

Reorder Point, Order 

up-to (s,S) 
Periodic 

Lumpy (with unit 

batch size) 

Negative 

Binomial/Gamma 

Periodic review 

order-up-to 
Periodic 

Lumpy (batch 

size>1) 

Negative 

Binomial/Gamma 

Reorder Point, 

Reorder Quantity 

(R,Q) 

Continuous 

Extremely Small  Not necessary 

 

Extremely Variable   

 

 

Table 8: Recommended Inventory Control Policies for Demand Classes. Supply Chain Guru ® 
Material 
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Specifically, Reorder Point Policy is an inventory control policy that implies the 

placement of a replenishment order when the inventory position goes below a 

specific inventory threshold, namely reorder point (R). A necessary condition for 

the implementation of reorder point policy is a continuous review period, which 

guarantees that when the inventory level gets below the reorder point, it is 

immediately detected. The reorder quantity (Q) is defined as well as the reorder 

point (R). Reorder Point policy is appropriate for smooth demand class and for 

fast-moving items, for which economies of scale in the supply network are high. 

Supply Chain Guru computes reorder point (R) and reorder quantity (Q) of a given 

item 𝑘 at any stage 𝑗 as follows: 

𝑅𝑘,𝑗 = 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 𝐷𝑒𝑚𝑎𝑛𝑑 𝑀𝑒𝑎𝑛𝑘,𝑗 + 𝑆𝑆𝑘,𝑗 

𝑄𝑘,𝑗 =  Minimum Replenishment Quantity = max(𝑀𝑂𝑄, 𝑅𝐹𝑖𝑗 × 𝐷𝐷𝑀𝑘,𝑗) 

Where 𝑅𝐹𝑖𝑗 corresponds to the replenishment frequency from the upstream stage 

𝑖 to its immediate downstream stage 𝑗, while 𝐷𝐷𝑀𝑘,𝑗 corresponds to the daily 

demand mean of item 𝑘 at stage 𝑗. 

Another appropriate model with continuous inventory review systems is Reorder 

Point, order-up-to Policy. This policy implies a reorder point, namely 𝑠, as in the 

previously mentioned policy. When the inventory position (𝐼𝑃) undergoes the set 

reorder point 𝑠, a replenishment of quantity 𝑆 − 𝐼𝑃 is requested. The system does 

not work with a constant reorder quantity, but with a fixed order-up-to inventory 

level (𝑆). This inventory management policy is suitable for handling highly-

variable demand items, since demand variations are dealt with order-up-to level 

(𝑆) and the reorder timing decision is dealt with reorder point (𝑠). Supply Chain 

Guru computes the policy parameters for item 𝑘, stored at stage 𝑗 as follows: 

𝑠𝑘,𝑗 = 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 𝐷𝑒𝑚𝑎𝑛𝑑 𝑀𝑒𝑎𝑛𝑘,𝑗 + 𝑆𝑆𝑘,𝑗 

𝑆𝑘,𝑗 = 𝑠𝑘,𝑗 + Minimum Replenishment Quantity = 𝑠𝑘,𝑗 + max(𝑀𝑂𝑄, 𝑅𝐹𝑖𝑗 × 𝐷𝐷𝑀𝑘,𝑗) 
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With a periodic inventory review system, Min Max system (or order-up-to level 

policy) is suitable for managing items with an intermittent-demand that is highly 

variable along time (classified as “Lumpy” items in demand analysis). The 

inventory position (𝐼𝑃) is controlled periodically (every 𝑇 periods), and when 𝐼𝑃 is 

detected to be below a minimum threshold (s), a replenishment order of variable 

quantity is placed. The replenishment quantity is set so that an order-up-to level is 

reached. This policy permits the consolidation of replenishment shipments and 

may be not appropriate with fast-moving items, since periodic review does not 

guarantee a short reaction time. 

Base-stock policy is a different inventory control policy that assumes a 

replenishment order placement any time that a demand occurs, without 

considering batching. This is consistent with slow-moving and highly-valuable 

products and with negligible scale economies. A recommended condition for the 

implementation of such policy is the presence of a continuous inventory review 

system, so that the system reactivity is facilitated.  

Safety Stock Optimization collects the overall output data in two main tables: 

- Inventory Policy Summary Table; 

- Inventory Policy Details Table.  

While Inventory Policy Summary Table gathers all general output information 

based on a site-product combination, Inventory Policy Details table shows the 

details about service times and coverage for each product-site combination. 
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CHAPTER 5 

IMPLEMENTATION 

5.1 Multi-Echelon Inventory Optimization Pilot 

Model 

The investigation of optimal level for safety stock in Barilla distribution network 

has been performed through Safety Stock Optimization model of Supply Chain 

Guru software. In order to test its validity as a tool and its responsiveness to the 

company’s needs, a model application was required. 

The Inventory Optimization model in Supply Chain Guru has been built on a single 

time period and based on actual input data about Barilla supply chain, referring to 

a time period of one year, starting from January 2017 to December 2017.  

Specifically, a pilot regional warehouse has been selected from Barilla distribution 

network so that it could be representative of all others. Indeed, the shipped 

quantity from this hub is significant (more than 15000 tons per year) and the 

number and categories of handled items is in line with the other six regional 

warehouses in Italy. 

The model has been populated with as-is supply chain data, with the purpose to 

benchmark model output inventory values with the values assessed through the 

current inventory control system of the company, and for a final validation of the 
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model itself. The details and reasons of the considered system boundaries will be 

disclosed in the following sections. 

5.1.1 Demand 

The demand inserted in the model considers the demand allocated and served by 

one hub, which has been taken as reference for the pilot model. Demand series has 

been provided on daily basis and considering actual customer orders received from 

January 2017 to December 2017. The selected quantity unit of measure was boxes, 

since it is the unit of measure used in the operating functions for calculating 

product stocks. 

5.1.2 Products 

By being replenished by most of company’s plants and by being designed to cover 

the whole customers’ demand in specific geographical areas, Barilla regional 

warehouses usually handle the whole product range, encompassing all Group 

brands marketed in Italy (Barilla, Mulino Bianco, Pavesi, Wasa, Barilla Food 

Service). The average number of shipped trade units from hubs is 800.  

However, some specific item categories have been removed from the considered 

demand. 

Items that have been launched by Barilla during the calendar year have not been 

included, since their demand could not be distributed along the whole year, 

causing misleading results in demand analysis. For the same reason, those 

products, whose production has been stopped during the year have been excluded 

from the model demand. 

Moreover, among all trade units there are specific items labelled as “item in 

allocation”, which are sold in specific periods of the year with no significance in 

their demand series, since they are associated to exclusive events or trade 

promotional campaigns. For example, they can be products given for free to trade 

customers, together with a quantity promotion on sales. 
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Given their demand singularity and their irregularity in the inventory level, they 

have been excluded from the demand analysis. 

Among all items handled in hubs, a broad category is represented by repacked 

items, specific products that are sold as repacked to trade customers for 

commercial or marketing reasons. Repacked items ordered volumes have been 

included from the model demand, since they often significantly impact on the total 

outbound volumes of the corresponding base item. For instance, 1 repacked item 

A could be composed of three boxes of product A. Since demand for repacked items 

is increasing more and more in the food retail distribution, it is significant not to 

exclude volumes of these products from the analysis. 

Generally, the demand database has been determined in such a way that 

considered items could have substantial sales volumes, and that results on demand 

patterns could be significant. Indeed, since demand for few items occurred less 

than three times in a year with not significant quantity, these items were removed 

from the model demand. 

5.1.3 Network 

From a geographical point of view Italian distribution network represents the 

study focus, and more specifically SSO is restrained to Barilla regional warehouses, 

or hubs, which amount to seven. The network injected in the model has been built 

in such a way that could support and serve the demand of the area covered by the 

pilot hub. 

Plant warehouses are included in the model and the software computes inventory 

levels and recommended inventory policies also for their inventories, given the 

demand restricted to the hub only. 

Additional production sites in the model are represented by foreign company 

plants as well as co-producers, or co-packers, being the points of origin for some 

specific products requested in Italian market. Most co-packers are located in Italy, 
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while foreign Barilla plants are located in Europe and they are connected to Italian 

nodes through road transportation. 

Additionally, auxiliary warehouses represent accumulation points in the real 

network, which support central warehouses, by providing extra storage area. They 

are sourced by both internal plants and co-packers and they often replenish the 

same plant warehouses. Two main reasons drove the decision to exclude auxiliary 

warehouses from the optimization model.  

First, their presence generates closed loops in terms of flows that are not supported 

by the Safety Stock Optimization tool.  

Second, every year Barilla drafts and signs a contract with 3PL that determines 

storage area to be rent and the annual storage tariffs for each auxiliary warehouse. 

The number and the choice of auxiliary warehouses differ from year to year, 

according to annual storage needs, and so, including these nodes within the model 

network, the strategic perspective of the optimization model would be 

undermined. 

Safety Stock Optimization holds the model assumption that the stocking nodes 

have unconstrained storage and throughput capacity. 

Through geocoding capabilities, Supply Chain Guru provides with a map of the 

sites entered in the model, and Figure 24, extracted from the software visual 

outputs, shows the geographical distribution of the model nodes (green triangles). 
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Figure 24: Geocoding of Model Sites. Supply Chain Guru® 

5.1.4 Lead Times  

Lead times have been calculated on lane basis. Lead time mean and standard 

deviation have been computed based on data regarding all actual shipments 

occurred in the calendar year 2017. 

Sourcing lanes have been traced based upon historical data, to build actual 

sourcing flows of each demanded item. Thus, given the historical (real) sourcing 

network, all items flowing from one specific upstream node to a downstream one 

present the same lead time mean, lead time standard deviation. Replenishment 

frequency has been calculated as the ratio between the number of historical 

shipments of a given item occurred for a specific lane and the total number of 

working days for shipments in 2017. The replenishment frequency has been 

determined on item and lane basis, resulting an accurate value for expressing how 
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often an item is on average shipped from one site to a destination site in Barilla 

network.  

The computation of lead times has included all journeys occurred from one node 

to another. No differentiation has been applied to “urgent” shipments, which are 

the ones that anticipate delivery by one day upon extraordinary customer requests. 

This decision was mainly driven by their negligible incidence on total number of 

journeys performed on a specific lane (around 1 percent of all trips). 

Recalling that the optimization model splits lead time in sub components, such as 

Sourcing Lead Time, Transportation Lead Time, Review Period, Production Lead 

Time, the methodology adopted to determine these lead times is presented below.  

Immediate Lead Time (𝐼𝐿𝑇𝑗,𝑖) of a non-production site 𝑖 replenishment from an 

upstream site 𝑗 corresponds to the sum of Sourcing LT, Transportation LT and 

Review period, as reported by the following formula: 

𝐼𝐿𝑇𝑗,𝑖 = 𝑆𝑜𝑢𝑟𝑐𝑖𝑛𝑔 𝐿𝑇𝑗,𝑖 + 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝐿𝑇𝑗,𝑖 + 𝑅𝑒𝑣𝑖𝑒𝑤 𝑃𝑒𝑟𝑖𝑜𝑑𝑖  

Figure 25 illustrates how immediate lead time for a given lane is built up, assuming 

it is common for all items moved along the lane from 𝑖 to site 𝑗 and assuming that 

site 𝑗 is not a production stage. Note that 𝑆𝐿𝑇𝑗𝑖 corresponds to sourcing lead time,  

𝑇𝐿𝑇𝑗𝑖 corresponds to transportation lead time and 𝑅𝑃𝑖 corresponds to inventory 

review period. 

 

Figure 25: Immediate Lead Time composition 
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The annual mean and standard deviation values of Sourcing Lead Time and 

Transportation Lead Time have been formulated for every inter-site lane and for 

the route from the hub to final customer. Sourcing Lead Time has been assumed 

as the amount of time elapsed between actual order creation date and actual order 

loading date. Transportation LT was assumed as the amount of time elapsed 

between an actual order loading date and the actual arrival date. Inventory Review 

Period was entered as a common interval value for every stocking site in the 

network, since the inventory control is centralized.  

Recalling that Immediate Lead Time (𝐼𝐿𝑇𝑗,𝑖) of a production site 𝑖 replenishment 

from an upstream site 𝑗 is the sum of Fixed Production Time and Review period, 

as showed in the formula: 

𝐼𝐿𝑇𝑗,𝑖 = 𝐹𝑖𝑥𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑗,𝑖 + 𝑅𝑒𝑣𝑖𝑒𝑤 𝑃𝑒𝑟𝑖𝑜𝑑𝑖 

Fixed Production Time has been set equal to all production sites, since it neglects 

the lot size and can be approximated to a value common for all plants. 

5.1.5 Inventory Holding Costs 

The optimization algorithm requires a unitary product cost as input datum. 

LLamasoft considers Product Value or alternatively, Product Inventory Value, if 

entered in Inventories Policies Input Table, as unit cost variable for the objective 

function. The main difference is that Product Inventory Value expresses a value 

for the item considering the stocking site where it is located, since Inventory 

Policies Table reports input information regarding a specific demanded item 

stocked in a specific site of the network.  

Differently Product Value, which is entered in Product Table, is unique for each 

item, regardless its stocking position along the distribution network. Since 

inventory-related costs vary according to storage locations along Barilla 

distribution network and since these costs impact on inventory value (and 

therefore also on safety stock value), Product Inventory Value becomes a 

significant field to be specified in the model.  
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With the purpose to express how product inventory-related cost changes from 

node to node in the real network, Product Inventory Value has been built by 

summing unit storage cost (𝑆𝐶), unit inbound and unit outbound handling costs 

(𝐼𝐻𝐶 and 𝑂𝐻𝐶), as shown in the following formula: 

𝑃𝐼𝑉𝑥,𝑦 =  ∑ 𝑆𝐶𝑥,𝑦, 𝐼𝐻𝐶𝑥,𝑦, 𝑂𝐻𝐶𝑥,𝑦  for every item 𝑥 located in node 𝑦. 

In the model optimization this value overrides Product Value, which was conceived 

as generic Cost of Good Produced (COGP) and so lacking of valuable information 

for an inventory allocation problem. 

5.1.6 Service Level 

Among the available service definition options, Item Fill Rate was selected. The 

choice was mainly driven by the actual adoption of IFR as service performance 

indicator by Barilla, making it easy to determine and to express as a target value 

for the purpose of the model. 

Quantity fill rate is calculated as the ratio between shipped quantity and ordered 

quantity of a given item during a given time frame. Barilla is not responsible for 

delivering and transporting goods to final customer, since these activities are 

carried out by a logistics provider. For this reason, the considered performance 

indicator is expressed as the ratio between shipped quantity and ordered quantity, 

as shown below: 

𝐼𝐹𝑅𝑖 =
𝑇𝑜𝑡. 𝑆ℎ𝑖𝑝𝑝𝑒𝑑 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑖

𝑇𝑜𝑡 𝑂𝑟𝑑𝑒𝑟𝑒𝑑 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑖
 

5.1.7 Model Constraints 

Inventory Optimization in Supply Chain Guru provides with multiple model 

constraints that may be defined to enrich the model specificity, according to the 

user’s needs.  

The objective function is subject to the customer service requirement, pointed out 

at site-product level. Besides, there was the necessity to enter a constraint 
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concerning the maximum stock coverage. Indeed, by handling perishable goods, 

Barilla inventory planning has to consider the maximum number of days that each 

item can be held as inventory to be eligible for the sale.  

The maximum stock coverage value is determined on item basis by Barilla 

inventory planning unit, considering the item deadline for disposal that depends 

both on the product ingredients (raw materials) and on the required time for 

distribution. This constraint value becomes extremely relevant in the inventory 

planning of fresh-bakery products that have demanding times, to not end up with 

inventory adjustments.  

A new constraint as “maximum stock coverage” has been introduced in the model 

to ensure that the optimal safety stock level did not exceed the maximum number 

of days of stock, set for distribution-related issues. 

The maximum stock coverage constraint is defined in the input “Inventory Policies 

Table” in the field “Max Safety Stock DOS”. This constraint can be specified on each 

item stored at a given stocking site in the model.  

The input parameters in the implemented Safety Stock Optimization model are 

summarized in Table 9.  
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Input Element Input Model Datum 

Customer Demand 

Demand Type Historical Demand Series 

Time Period Calendar Year 2017 

Market Region Italy Market 

Demand Boundaries Demand allocated to the pilot hub 

Products 

Business Category Food 

Brand All Barilla brands marketed in Italy 

Number of SKUs Around 450 SKUs 

Network 

Number of Network Nodes Around 30 

Type of Sites Barilla and suppliers’ plants, warehouses 

Replenishment Frequency Defined on item basis 

Sourcing Policy Single/Multiple sourcing policies 

Site Capacity Constraint None 

Demand-serving node One single regional warehouse 

Inventories 

Unit Inventory Holding Cost Product Inventory Value 

Inventory Review Period Common to all nodes 

Max Safety Stock DOS Constraint Set on item basis 
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Customer Service Level 

Service Requirement  Item Fill Rate 

 

Table 9: SSO Model implementation: input information 

5.2 Results 

The application of the multi-echelon safety stock optimization has implied many 

activities for input data entry, disclosed in the previous section.  

So far, the sourcing network has been fixed in the optimization tool, with the data 

concerning actual production, replenishments and lead times referred to the 

considered period. Demand has been entered as historical series on daily basis, 

considering also the outbound volumes in form of repacked items.  

5.2.1 Demand Analysis 

To facilitate the understanding of demand analysis results, a classification was 

applied to the demanded items based on the total shipped quantity from the 

considered hub. Demanded items entered in the model have been clustered in the 

following categories: 

- AA, including those items generating 50% of total shipped quantity. 

- A, including those items that contribute to generate 80% of total shipped 

quantity. 

- B, including those items that contribute to generate 95% of total shipped 

quantity. 

- C, including those items that contribute to the remaining 5% of total shipped 

quantity. 

The classification was based on the outbound volumes included in the demand 

model, measured in boxes, being the unit of measure utilized for outbound 

shipments from Barilla depots.  
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The classification was done for analysis-related purposes and not as a specific 

activity required by the optimization model.  

 

Demand analysis has been run on a weekly basis, that implies that the aggregation 

period taken for formulating demand statistics and assessing demand classes is 

one week. 

Specifically, a five-working-day week has been considered as time bucket, given 

that customer orders occur from Monday to Friday only. The decision to assume a 

weekly aggregation period for running the demand analysis in Supply Chain Guru 

was driven mainly by two reasons.  

First, the ability to obtain an acute study able to capture demand patterns in 

greater detail than a monthly-based analysis, which would pool more demand 

records and would not identify significant demand variations for analysis 

purposes. Indeed, since historical demand input data have been entered as daily 

series in the model, a weekly bucket phasing of demand can still ensure significant 

quantities to be representative for a demand pattern study, highlighting potential 

features such as intermittency and variation. 

Second, since the safety stock optimization model is expected to be working with 

forecasted ordered quantity, the model simulation would have more significance 

in adopting the same time bucket as the forecast demand, which is a weekly input 

information. Thus, a weekly-based demand analysis could reveal consistent 

outcomes with the expected utilization of the optimization model.  

Demand analysis, run on a five-day weekly bucket, revealed that in general, most 

items (more than 90%) included in the analysis, show a non-intermittent demand 

pattern, meaning that their demand occurs relatively frequently in all periods.  
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Figure 26: Demand Analysis Output [weekly buckets]: Demand Classes and Item Classes 

 

Specifically over half of total items present a smooth demand pattern, 

characterized by non-intermittency and low variation in terms of quantity, fitting 

a normal distribution.  

The second main class that gathers 40% of total items is erratic, which outlines that 

these items present a relatively high quantity variability along time. Specifically, 

the safety stock allocation problem will consider erratic demand, by assuming a 

non-normal lead time demand distribution in the calculation of safety stocks, and 

for these items significant findings and variations from the existing optimization 

model output may emerge.  

Non-intermittent demand is captured in some C-class items only and this could be 

explained by the fact that C-class items are the ones with lower demand volumes 

shipped from the pilot hub and the ones that are requested less frequently by the 

market.  
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As a proof of the weekly demand phasing significance, demand analysis has been 

run on monthly basis too to confirm that, pooling demand quantity in longer time 

buckets, the analysis output would capture less quantity variation and categorize 

more product demands as normally distributed.  

5.2.2 Safety Stock Optimization 

A preliminary comparison has considered the optimal safety stock level defined by 

Supply Chain Guru and the actual safety stock level. To allow this, as service level 

to enter in the optimization model, the actual item fill rate referred to the pilot 

regional warehouse in the considered period has been assumed.  

First, historical data about stock level in the pilot hub have been extracted for each 

considered item. Secondly, since the actual stock level resulted the sum of cycle 

stock and safety stock, it was necessary to calculate the actual cycle stock in the 

reference year. Cycle stock (𝐶𝑆) are determined as follows: 

𝐶𝑆 =  
𝑄

2
 

Where 𝑄 is the average replenishment quantity. 

To determine the cycle stock level in the reference year, the data regarding the 

actual inbound volumes of each item in the considered hub have been extracted. 

For each item, the sum of replenished quantity and the occurrence of the 

replenishments (the number of inbound shipments of the given site) have been 

calculated. The extracted data have been extracted and calculated, using boxes as 

unit of measure, since it was the same utilized in Supply Chain Guru model. 

The actual cycle stock level has been determined as the ratio between the total 

inbound volumes and the number of replenishments, divided by 2, as showed in 

the following equation: 

𝐶𝑆𝑖,𝑇 = (
𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑏𝑜𝑢𝑛𝑑 𝑣𝑜𝑙𝑢𝑚𝑒𝑠𝑖,𝑇

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑟𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡𝑠𝑖,𝑇
) ×

1

2
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Subtracting the actual cycle stock level (𝐶𝑆𝑖,𝑇) from the actual stock level (𝑇𝑜𝑡 𝑆𝑖,𝑇), 

the actual average safety stock level in quantity (𝑆𝑆𝑖,𝑇) is given. 

𝑆𝑆𝑖,𝑇 = 𝑇𝑜𝑡 𝑆𝑖,𝑇 − 𝐶𝑆𝑖,𝑇 

For comparison-purposes, it was necessary to convert of safety stock quantity into 

days of stock, since the stock level in the regional warehouses are expressed in days 

of stock (DOS) in Barilla inventory planning system. The actual days of safety stock 

(𝑆𝑆 𝐷𝑂𝑆𝑖) has been determined dividing the average safety stock quantity by the 

average daily stock consumption of the given item in the considered hub. This 

value has been calculated dividing the total item demand allocated to the 

considered regional warehouse by the total number of working days in the given 

period.  

𝑆𝑆 𝐷𝑂𝑆𝑖 =
𝑆𝑆𝑖,𝑇

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑎𝑖𝑙𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖,𝑇
 

The relation of the model actual days of safety stock with the actual days of safety 

stock revealed that the model provides a stock level on average lower than the 

actual level. The reasons behind the difference are to be retrieved in those effects 

that affect stock level and that either are not included in the current model or that 

are difficult to be considered in optimization modelling. Specifically the causes that 

may explain the difference are: 

a. The actual stock level is a result of demand forecasting and forecasting 

error, while the model stock level output is founded on the inputted 

historical demand and its variability only.  

b. Replenishment delays and anticipations lead to respectively lower and 

raise the expected stock level in a given time period. 

c. The push effect, caused by anticipating some item volumes shipments with 

the objective to maximize the transportation mean saturation and 

minimize transportation costs. 
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d. The inventory adjustments due to demand over forecasting are product 

quantities stored at the regional warehouse for covering a certain forecast 

demand, which resulted overestimated compared to the actual one. 

e. The effect of customer returned goods implies that customer may decline 

delivered products some specific reasons and this quantity is stocked in 

the regional warehouse closest to the customer. 

While points (b), (c), (d), (e) are those factors related to the operating activities in 

the distribution and inventory system that are not possible to be modelled in a 

theoretical framework such as safety stock optimization model, point (a) 

underlines the misalignment of the stock calculation methodology between the two 

stock values in analysis. Indeed, being that the applied Supply Chain Guru safety 

stock optimization assesses the optimal stock level considering the historical 

demand as input information, its results cannot be evaluated compared to the 

actual stock level, which is based on forecast demand values.  

The asymmetry of input data nature between the two methodologies used for 

determining the safety stock level (the actual level determined by demand forecast, 

while the model output based on historical demand) captures the impossibility for 

the evaluation of Supply Chain Guru model results at this project phase.  

A second comparison carried out for the study of the model results has considered 

the existing safety stock optimization model output with Supply Chain Guru model 

result. To allow the comparison, the service level entered in Supply Chain Guru 

model has been the same as the target service level assumed in the existing single-

echelon safety stock model. The service level measurement is common to both 

optimization models: item fill rate has been adopted in both cases, allowing the 

alignment of the optimization models in terms of service requirement parameter.  

This relation between two theoretical and optimized values could result more 

appropriate, given that the values are not altered by operating factors, retrieved in 

the determination of actual stock level. Nonetheless, the input data for assessing 

the optimal safety stock levels differ between the single-echelon-based 

methodology and the multi-echelon-based one. Indeed, the asymmetry between 
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the demand input information still remains: the current optimization model 

considers a forecast demand, while Supply Chain Guru optimization model has 

been applied with the historical demand as input data.  

The absence of a benchmark appropriately aligned in terms of input data with the 

applied Supply Chain Guru model output, led to the impossibility to carry out an 

objective and structured quantitative result analysis in this phase of the project. 

Indeed, the very next step for a quantitative evaluation of the multi-echelon safety 

stock optimization results is to enter forecast demand as input data. When the 

application of Supply Chain Guru model integrates the forecast demand and 

forecasting error as variables for the determination of optimal safety stock level, 

the result analysis will consider its output with the optimal safety stock values 

being both based on forecast demand information.  

From the as-is application of a multi-echelon safety stock optimization model on 

Barilla distribution network, some considerations that may be assumed as true are 

qualitative premises only.  

First, the new approach assumes a holistic supply chain perspective in the analysis, 

recognizing the interdependence of some variables performances (such as 

inventory holding costs and service level) between two sites located at different 

echelons in the system and allocating the optimal level of stock avoiding redundant 

quantities. Differently, the currently implemented model in Barilla is an 

optimization method that allocates a specific safety stock level, that is the optimal 

quantity given the site-specific parameters, but it is not necessarily optimal for the 

whole distribution network. 

Second, demand analysis tool represents an additional strength of the multi-

echelon safety stock optimization model, which integrates the understanding of 

demand patterns for enabling an appropriate stock allocation, considering 

intermittency and variation of demand. This functionality allows to not assume 

that all item demands are normally distributed, but it captures the demand 

characteristics (intermittency and quantity variation) that should be considered in 

the safety stock allocation problem. The application of demand analysis on the 
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historical demand series entered in the model, showed that the pilot regional 

warehouse handles mostly with non-intermittent-demand items, which result less 

difficult to manage in the inventory control and planning, compared to 

intermittent-demand. Nonetheless, more than one third of items emerge as erratic 

items, characterized by high occurrence in a given period and relatively high 

quantity variability. These findings about demand patterns are taken into account 

in the lead time demand distribution, an input variable in the assessment of 

optimal safety stock level. Thus, a future entry of demand forecast in the model will 

imply the analysis of forecast demand, as it has been applied to historical demand, 

providing significant demand-specific outcomes to be used as input parameters in 

the inventory optimization.  

Beside the structural optimization model potentials, also the adopted working tool 

represents a key resource for future developments of the safety stock optimization 

process in Barilla supply chain planning system. Indeed, the application of Supply 

Chain Guru Safety Stock Optimization (SSO), if assessed as valid and beneficial 

methodology for Barilla inventory planning system, may be significant for carrying 

out operating tasks in the inventory planning process with enhanced flexibility, 

given the solvers performing both dynamic programming and linear programming 

for the problem resolution.  

Moreover, the model scaling opportunity for future project upgrading, such as the 

inclusion of the whole Barilla secondary distribution network in the optimization, 

is a key strength to consider for the model evaluation. The operating role 

potentially covered by the new optimization model may be combined with a 

strategic function: the tool structure enables what-if analysis concerning the 

inventory network and it could be utilized in strategic studies concerning Barilla 

supply chain in an integrated way with other applied network optimization models. 
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CHAPTER 6 

CONCLUSIONS AND NEXT 

STEPS 

The application of a multi-echelon safety stock optimization model on Barilla 

distribution network has been initiated during this year in the Supply Chain 

Network Design unit, through a pilot modelling on one regional warehouse.  

Being a pilot model concerning the application of an inventory optimization model 

with a new tool, most of the project development has dealt with the acquaintance 

with the software logic and with the model construction. A satisfactory model 

building has been achieved, putting the basis for the next steps of the project for 

the final definition of a safety stock optimization model as it is expected to work. 

Next steps will imply the forecast demand data entry in the model, so that the 

optimization model is definitely provided with the appropriate input data for its 

real utilization. With the objective to evaluate its results in a quantitative way, the 

target service level to enter in the optimization model is the same as the service 

level utilized in the existing safety stock optimization methodology. This will 

ensure symmetric input data between the two models, allowing an objective and 

valid methodology for a quantitative result analysis. If the model will be validated, 

further project developments will imply its application to all seven regional 

warehouses in Italy and afterwards to the four Barilla depots in Europe. The model 

is expected to meet the operating needs in the allocation of safety stock throughout 
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Barilla distribution network, and if the validated model works on the whole 

distribution network (considering either Italian distribution network, or European 

distribution network) it would be exploited for what-if analysis concerning Barilla 

supply chain network for strategic studies. 
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