
Master Thesis – Etienne Preveraud de Vaumas 

Dynamic Stability of pillars of cable stayed bridges 

  

 1/92 

 

 

POLITECNICO DI MILANO 

SCHOOL OF CIVIL, ENVIRONMENTAL AND URBAN ENGINEERING 

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 

 

 

Master of Science in Civil Engineering 

ON THE DYNAMIC STABILITY OF CABLE-STAYED 

BRIDGE PYLONS 

 

 

Graduation thesis by :  

Etienne Preveraud de Vaumas 

 

Supervisor :  

 Professor Antonio Capsoni 

ABC Dept.  -  Politecnico di Milano 

 

 

 

 

Academic Year 2017/2018 



Master Thesis – Etienne Preveraud de Vaumas 

Dynamic Stability of pillars of cable stayed bridges 

  

 2/92 

 

 

ABSTRACT 

 

Single Pylons of cable-stayed bridges are slender structural systems submitted to high 

compressive forces. Under these conditions, a stability analysis must be performed in order to ensure 

proper safety margins with respect to buckling. 

A model of such a structure has been recently studied by A. Giavoni in his dissertation “On the 

Stability of Pylons in Single Cable Stayed Bridges” [7]. In this latter work, the tilting effect in the cables 

occurring in a displaced (adjacent) equilibrium configuration is replaced by equivalent springs 

providing an inherent stabilisation mechanism. The present study in turn conceives the pylon-stays 

system as in Giavoni, extending the analysis to dynamic stability considerations focused on fan-like 

configuration for the stays of the bridge, as the harp arrangement requires more complex 

computation. The pylon geometry is therefore modelized by a clamped column with a spring at the 

top that provides the restoring force previously mentioned. 

The design process imposes to analyse the structural resistance of the pylon under static forces, 

a factored superposition of dead loads and live loads (such as traffic or wind). However, it has been 

highlighted first by Bolotin in his book “The Dynamic Stability of Elastic Systems” [2] that premature 

lack of stability could occurs when the dynamic nature of some loads is considered. Indeed, in case of 

dynamic loading, for certain values of the amplitude-pulsation parameters of the load, an instable 

behaviour can be reached for level of compression lower than the first buckling load. 

The objective of this study is to apply the theory developed by Bolotin to the synthetic pylon-

stays model presented by Giavoni to understand to what extent dynamic instabilities could occur.  

A Matlab program has been created in order to perform high order analysis for a large set of 

parameters (load shape, damping, static loading, geometry, …). After a validation of this program with 

cases already presented in the literature, the effect of these parameters is studied to understand their 

effect on instability regions corresponding to couple amplitude-frequency of the perturbation for 

which the system diverges. The stiffness of the spring that modelled the influence of the stays has 

either a stabilising or destabilising effect for medium values. 
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The influence of the base (static) load contribution and damping are seen as beneficial for the 

stability of the system, reducing the size of the instability area.  

As a result of the analysis performed, it appears that if real loading conditions are considered, 

the variation of the loads applied on the bridge (traffic) is high enough to induce dynamic instability 

only for light steel structures, presenting a low damping of 2% and a high participation of traffic load 

in the global loading of the deck.  
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ABSTRACT 

 

I piloni dei ponti strallati sono elementi strutturali snelli sottoposti ad elevate forze di 

compressione. In queste condizioni, è necessario eseguire un'analisi di stabilità al fine di garantire 

adeguati margini di sicurezza rispetto al buckling. 

Un modello di tale struttura è stato recentemente studiato da A. Giavoni nella sua tesi "Sulla 

stabilità dei piloni in ponti a cavo singolo" [7]. In quest'ultimo lavoro, l'effetto di inclinazione nei cavi 

che si verifica in una configurazione di equilibrio spostata (adiacente) è sostituito da molle equivalenti 

che forniscono un meccanismo intrinseco di stabilizzazione. Anche il presente studio concepisce il 

sistema piloni-cavi come in Giavoni, estendendo l'analisi a considerazioni di stabilità dinamica 

focalizzate sulla configurazione a forma di ventaglio dei cavi del ponte, in quanto la configurazione ad 

arpa richiede un calcolo più complesso. La geometria del pilone è quindi modellata tramite una colonna 

incastrata con una molla nella parte superiore che simula la forza di richiamo precedentemente 

menzionata. Il processo di progettazione impone di analizzare la resistenza strutturale del pilone in 

condizioni statiche, ovvero sotto carichi permanenti e variabili (come il traffico ed il vento) fattorizzati. 

Tuttavia, è stato messo in evidenza per primo da Bolotin nel suo libro "La stabilità dinamica dei sistemi 

elastici" che una prematura perdità di stabilità potrebbe verificarsi considerando la natura dinamica di 

alcuni carichi. Infatti, in presenza di un carico dinamico, per determinati valori di ampiezza-pulsazione 

del carico, è possibile raggiungere un comportamento instabile per un livello di compressione inferiore 

al primo carico di buckling. 

L'obiettivo di questo studio è quello di applicare la teoria sviluppata da Bolotin al modello 

sintetico piloni-cavi presentato da Giavoni per comprendere fino a che punto potrebbero verificarsi 

instabilità dinamiche. 

È stato creato un programma in Matlab per eseguire analisi di ordine superiore per un ampio 

set di parametri (forma del carico, smorzamento, carico statico, geometria, ...). Dopo la validazione del 

codice di calcolo attraverso casi studio già presenti in letteratura, l’influenza di tali parametri è studiata 

al fine di comprenderne gli effetti su regioni di instabilità corrispondenti a coppie ampiezza-frequenza 

della perturbazione per cui il sistema diverge. La rigidezza della molla che modella l'influenza dei cavi 

ha un effetto sia stabilizzante che instabilizzante per valori medi. 
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L'influenza del contributo del carico di base (statico) e dello smorzamento è considerata 

vantaggiosa per la stabilità del sistema, riducendo le dimensioni dell'area di instabilità. 

Come risultato delle analisi effettuate, sembra infatti che se si considerano condizioni di carico 

reali, la variazione dei carichi applicati sul ponte (traffico) è sufficientemente alta da indurre instabilità 

dinamica solo per strutture leggere in acciaio, con un basso smorzamento del 2% e un'elevata 

partecipazione del carico di traffico nel carico globale del ponte. 
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1 THE CABLE-STAYED BRIDGE SYSTEM 

A cable-stayed bridge consists in a continuous girder hanged by stays directly linked to the piers 

of the structure, on contrary to suspended bridge, where the hangers that support the deck are 

attached to a suspension cable that carry most of the loading. This type of bridges is used for short to 

high span, from less than 100 m up to over 1000m, a range of increasing lengths which is quickly 

uncovered by girder solutions but still at the lower bound of cost competitiveness of suspension 

bridges [10].  

 

Figure 1.1 : Diagram of cable-stayed (bottom) and suspension (up) bridge 

1.1 Historical background 

Despite a first example of design of cable stayed bridges was found in the work of the Venetian 

Fausto Veranzio (“Machinae Novae, in 1595), this type of bridge started to be widely used in the 19th 

century for footbridges (e.g. Dryburgh Abbey Bridge in Scotland, 1817) or coupled with suspension 

bridge system (Albert Bridge in London, 1872). 
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Figure 1.2 : First use of cable-stayed technology. Veranzio concept (top) – Albert Bridge (bottom) 

Some technological and theoretical breakthroughs in the 20th century amplified the potentiality 

of the use of cable-stayed bridges. Among these, the improvement of the steel grades and a better 

understanding of the mechanics of the system (sagging effect of the cables, hyperstatic description of 

the structure, …). The first modern concrete-decked cable-stayed bridge was designed by the french 

Albert Caquot, from the prestigious Ecole National des Ponts et Chaussées in 1952. His bridge over 

Donzère-Mondragon canal , with a main span of 81m for a total length of 160m use for the first time 

pretensioned cables to support the deck.  
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Figure 1.3 : Donzère-Mondragon bridge, France 

Other the last sixty years, structure more and more sophisticated has been achieve thanks to an 

optimization of the material used, sophistication of the design tools and a better understanding of the 

dynamic behavior of the deck. The slenderness of the cable stayed bridges, that is by definition a light 

structure, constantly increases with spans exceeding 1000m : the Russky Bridge in Vladivostok (2012) 

is today the longest cable-stayed bridge in the world, with a mid-span of 1104 meters. 

 

Figure 1.4 : Russky Bridge, Russia 
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1.2 General presentation 

A cable stayed bridge is composed of four main elements, as shown in the figure 1.5 : 

1. The girder, in steel or reinforced concrete. 

2. The stay cables used to support the deck 

3. The towers, also called pylons, submitted to compression  

4. Two end abutments, associated with backstay cables  

 

Figure 1.5 : Main components of a cable-stayed bridge 

Dead and live load in the main span are transferred in tension in from the cable stays into the 

backstay cable fixed in the anchor block. Due to the inclination of the cables, the girder takes the 

horizontal component of the force in the cables, and so is submitted to compression. The end piers act 

as a reaction point to equilibrate these compressive forces and compensate uplift actions.  Cables are 

in traction and pylons and deck in compression, that fit well with the material and mechanical behavior 

of each element.  

 

Figure 1.6 : Stress transfer for a load on the mid-span 

Loads in the side span are transferred to the top of the pier through the cable stay. However, 

the backstay is no longer able to equilibrate this force in traction, the effect of this loading induces 
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indeed a reduction of the tensile force in the backstay. In these conditions, the two mechanism that 

allow a resistance to the live load in the side span are the flexural rigidity of the deck and the pylons.  

 

Figure 1.7 : Stress transfer for a load on the side-span 

Intermediate supports could be installed under the side span to increase the flexural rigidity by 

decreasing the free length, as it has been done for Oberkasseler Bridge in Germany (Fig. 1.8). 

 

 

 

Figure 1.8 : Oberkasseler Bridge, Germany (top) – Intermediate support on the side span (bottom) 
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One of the main advantages of the cable stayed bridges is that the bending moment in the deck 

is limited. Indeed, all the stresses are transmitted by traction and compression of the elements, that 

allow small flexural stiffness and so high slenderness of the deck particularly. This advantage has a 

major effect on the aesthetic of the structure.  

1.3 Fan and Harp system 

Three main configurations for the cable layout are used for the construction of cable stayed 

bridges, presented in Figure 1.9. 

In the harp arrangement, the cables are parallel and so attached to different points of the pylons. 

This configuration presents a better harmony and nice appearance. However, the pylons are subjected 

to higher bending moment since the stabilization backstay cable is still fixed on the top of the pylon, 

not facing anymore the cable submitted to the tensile force due to the live load. Taller pylons are 

needed, and the deck is submitted to higher level of compression. This configuration cannot fit with 

long span bridges that will induce pylons too high and a cable cross section too large. The Oberkasseler 

Bridge in Germany, previously presented is a good example of such structure (Fig. 1.8) 

 

Figure 1.9 : Cable stayed bridge systems: pure fan system (top) - Harp system (center) – Semi-fan 

system (bottom) 



Master Thesis – Etienne Preveraud de Vaumas 

Dynamic Stability of pillars of cable stayed bridges 

  

 20/92 

 

 

In the fan arrangement, all the cables are fixed on the top of the pylon(s). The angle between 

the cable and the deck is maximized, and so the horizontal component of the tensile force in the cables, 

that is transmitted by compression in the girder, is minimized. The cross section of the cables is also 

reduced, that allow a cost optimization of the structure. However, with an increasing number of cables, 

the anchorage on the top of the pylons becomes heavier, more difficult to design and install. What’s 

more, adding mass on the top of the pylon is not beneficial for the seismic behavior of the structure. 

This configuration is possible for a limited number of stays, and so for a small or medium mid-span. 

The Palais-de-Justice footbridge in Lyon is a proper example of asymmetric fan arrangement with a 

single pylon.  

 

Figure 1.10 : Palais-de-Justice footbridge, France 

The semi-fan arrangement is an intermediate solution between harp and fan configuration. It 

solves the anchorage constraint of the fan arrangement and  present cables less inclined, and so more 

resisting than the fan arrangement. This configuration is systematically used for very large mid-span 

bridges. A famous example of this configuration is the Viaduc de Millau (Fig. 1.11) in the south of 

France, 7-pylons bridge who broke several records as the highest pylon in the world (343m) and the 

longest girder of cable stayed bridges (2460m). 

 



Master Thesis – Etienne Preveraud de Vaumas 

Dynamic Stability of pillars of cable stayed bridges 

  

 21/92 

 

 

Figure 1.11 : Viaduc de Millau, France 

1.4 Pylon 

Since the pylons act mainly in compression, towers nowadays are mainly built in concrete, more 

economical than steel. Usually, a cable layout with two curtains of cables is selected, especially for 

long-span bridges. The cables are fixed on each side of the girder. Two towers, connected by 

transversal beams to ensure the lateral stability, could be used (two typologies on the left, Fig. 1.12). 

An over solution consists in an A-shape tower with inclined cables, for a stiffer behavior concerning 

lateral loads (fourth typology, Fig. 1.12). This arrangement presents many advantages such as a high 

torsional stiffness of the overall system and a good aerodynamic stability. 

 

Figure 1.12 : Tower typologies 

In the case of a single plan cable arrangement (three typologies on the left, Fig. 1.12), the tower 

is sensitive to lateral buckling, so deformations out pf plane in case of large compressive loads. In 
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addition to that, the torsional stiffness of the structure has to be ensured only by the deck, no 

collaboration of the cables could be considered.  
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2 LATERAL STABILITY OF PYLONS 

2.1 Pylons instabilities 

As presented before, slender structures such as pylons of cable stayed bridges are subjected to 

high level of compression, potentially leading to stability issues, hence require a buckling analysis to 

estimate the maximal compression allowed. In such analysis, a constant compressive load is assumed, 

and a critical load is estimated. 

Two types of buckling have to be distinguished :  

• In plane buckling that is mainly prevented by a first order restoring stiffness given by the 

cables. The fact that the pylons could be way less stiff in the in-plane direction is a direct 

consequence of this stabilisation effect that has been illustrated e.g. by Margariti [6]. 

 

Figure 2.1 : Substitution of cables by equivalent spring (a). Undeformed and deformed geometry of 

pylons and cables (b) 

• Lateral buckling that correspond to an out-of-plane deformation of the pylons. Indeed, the 

main actions acting in the cables and pylons are treated as in-plane loading. However, second 

order effect can occur under out-of-plane deformation, due to perpendicular loadings. This 

will be the effect analysed in this study. 
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2.2 Static lateral stability 

Depending on the geometry of the pylons and the configuration of the stays, the structure will 

behave in a very different manner when it comes to lateral stability. If two curtains of cables are 

considered for the design with a H-shape pylon, the frame created by this configuration prevent any 

lateral buckling behaviour. If a A-shape pylon is designed with two curtains of cables crossing in the 

top of the piers, the cable gives a first order restoring stiffness to the structures (similarly to the in-

plane model described before) that is added with the frame effect in the pylon. In this case again, 

lateral instability will not be a critical design phenomenon. The critical case for lateral stability occurs 

for single plane cable arrangement. The cables provide a secondary restoring stiffness that partially 

stabilizes the system. This configuration presents the weakest resistance to buckling phenomena and 

is the main subject of this study.  

A static stability model has been developed by Giavoni [7], in the scope of his work “On the 

Stability of Pylons in Single Plane Cable Stayed Bridges” (2017). Giavoni presents several synthetic 

systems suitable to model the behavior of lateral buckling of single plane pylons. For each system, both 

the buckling and post-buckling behavior are studied. 

For the in-plane buckling presented before (Fig. 2.1), in-plane displacement entails an elongation 

or shortening of the cable length. Because of this effect, a restoring force is provided by the cable that 

act against this deformation. In the case of out-of-plane displacement, the length of the cables remains 

almost constant. However, since the tensile force acting in the cable is not parallel to the plan of the 

bridge, a restoring force appears to balance the out-of-plane displacement. In the figure 2.2, the axe 

B-E represent the undeformed plan of the cables. If a displacement δz occurs in the top of the pylons, 

the tensile force P in the cable could be decomposed into a normal force Pv and a restoring force Pt 

that is opposed to the displacement.  



Master Thesis – Etienne Preveraud de Vaumas 

Dynamic Stability of pillars of cable stayed bridges 

  

 25/92 

 

 

Figure 2.2 : Lateral load Pt resulting from a displacement out of the cable plane 

This restoring force is function of the compression of the pylon P and the height of the cable 

system h :  

𝑃𝑡 =
𝑃𝑣

ℎ
∗ 𝛿𝑧 = 𝑘(𝑃) ∗ 𝛿𝑧 (2. 1) 

Studying the fan arrangement where all the cables meet at the top of the pylon, Giavoni 

proposes three distinct systems to model properly this restoring force. In all the cases the pylon is 

modelled as a clamped column with various boundary conditions at the top featuring the restoring 

force previously mentioned. In the first model, the top of the pylon is connected to a rigid element 

hinged on the top. The rigid element represents the cables and the other extremity of the rigid element 

symbolize the deck that can move only vertically. A second model is computed, replacing the system 

cable plus deck by a central force. The third model considers the deck fixed and replaces the cables by 

a spring element, as it is suggested in the formula 2.1.  
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Figure 2.3 : Model developed for fan arrangement. Rigid link (left), Central force (middle), Equivalent 

spring (right) 

Buckling analysis shows that the three models behave in a similar way for static second order 

analysis. What is more, the effect of the restoring stiffness of the cables is not negligible: when 𝑟 = 𝐿 

the buckling load of the equivalent system is four times the one of a clamped column.  

The post-buckling behavior, in turn, differs from one model to another and is dependent upon 

the ratio 𝜂 = 𝑟/𝐿. However, since in cable stayed bridges the maximal level of compression in the 

pylon does not exceed 30% of the first buckling load, the nature of the post-critical behavior will not 

have an influence on the study which follows.  

A similar analysis is performed for the harp arrangement. In this case, the central force or spring 

system is defined all along the length of the column as shown in figure 2.4 :  
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Figure 2.4 : Model developed for harp arrangement. Central force (left), Equivalent spring (right) 

 

2.3 Scope of the thesis 

2.3.a Modelling of the system 

This study is focused on the analysis of systems submitted to lateral stability issues. As a matter 

of fact, the case of H-shaped or A-shaped pylon is not studied here, but instead the focus is on systems 

with a single pylon clamped at its basement. In order to facilitate the computation, it is also assumed 

that the pylon has a constant flexural stiffness along the height. 

The analysis is limited to the case of fan arrangement of cables. Indeed, in that case the model 

used for the restoring stiffness applies only the top boundary conditions of the system and does not 

enter into the fundamental equation governing the beam response. As a consequence, the 

compression is imposed from the top of the pylon and is supposed to be constant all along its thrust. 

Further analysis could be done to study the harp arrangement, featured by a linear restoring stiffness 

and a distributed compression in the column, whose static analysis has been presented in [7].  

Since the restoring stiffness of the cable is way larger in the in-plane direction (𝐾𝑒𝑞,𝑥) than in the 

out-of-plane direction (𝐾𝑒𝑞,𝑦), the eigen-frequencies and buckling loads in the in-plane and out-of-
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plane  directions have significantly different values. In this condition, the two directions are uncoupled, 

and the lateral stability of the system is studied in an independent way, with no participation of the in-

plane behaviour. This uncoupling holds so far as the buckling behaviour only is concerned. 

 

Figure 2.5 : Uncoupling of the in-plane and out-of-plane behavior  

 

As it will be shown in the following parts, the equation ruling the system are complex and closed 

form solutions are either complex or cannot be reached. Two sub systems will be studied first, which 

correspond to the limit cases of this modelling : 𝐾𝑒𝑞,𝑦 = 0 (cantilever) and 𝐾𝑒𝑞,𝑦 = ∞(straight rod). 

At this point is worth noting that most of the beam analysis performed in terms of dynamic 

stability in the literature referred to simply supported boundary conditions.  

 

 

Figure 2.6 : Limit cases : clamped column (K=0, top) – clamped-hinged column (K=infinite, bottom) 
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2.3.b Dynamic loading 

It has been observed that periodical variation of the compressive load around a mean value P0 

can produce a premature loss of stability for some critical frequencies of dynamic loading: buckling 

occurs for values way lower than the static buckling capacity of the system. This effect is due to a 

coupling between the dynamic loading of the system and the characteristic buckling deformation of 

the structure and is called dynamic instability. In the case of a cable stayed bridge, several causes may 

induce a periodic variation of the compressive load on the pillars of the bridge, induced by the tension 

in the cables :  

• Live loads  

• Wind effect on the deck 

• Seismic behaviour  

It is assumed that the compressive load is periodic and that the perturbation on this signal is 

smaller than the average value. The frequency of the perturbation could depend either on the load 

applied (live load), either on the bridge response for dynamic loads (eigenfrequency of wind or seismic 

analysis) :  

𝑃(𝑡) =  𝑃0 + 𝑃𝑡 ∗ 𝜙(𝑡) (2. 2) 

 

 

Figure 2.7 : Axial loading of the pillar in case of a harmonic disturbance 
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In this study, it is assumed that the most significative periodic load on these is due to traffic. In 

reinforced concrete and composite section bridges they can represent up to 20-25% of the total load 

applied on the deck, but for light bridges, like orthotropic plates ones, it can be up to 50% of the total 

load applied on the deck. 

According to Fryba in [5], the characteristic pulsation of a vehicle crossing a bridge is equal to its 

speed divided by the length of the bridge. Bridge with a small to medium span are considered here 

(100m to 400m) since long span bridges, with higher pylons, present  A-shape or H-shape pylons to 

avoid any instability problems. Speed from 0 to 40 m/s are assumed for a road bridge. In these 

conditions, the loading could take frequencies from 0Hz to 0.4Hz, after Fryba’s formula.  

Pylons of bridges have usually a natural frequency around 1Hz. So, a range from 0.5Hz to 1.5Hz 

is assumed now on. 

Seismic behaviour and aerodynamic analysis for slender structures demand more advanced 

analysis.  

 

2.4 Plan of the study 

As previously recalled, the theory of dynamic stability in structural mechanic has been 

developed for a first and consistent way by Bolotin [2]. The phenomena described are governed by 

complex equations, including high order cross derivative due to second order effect and time related 

component like inertia induced by the dynamic analysis. Method of analysis and approximation have 

been also proposed by Bolotin to be able to solve these systems.  

The objective of this study is to propose a model featuring the behaviour of a bridge pylon under 

variable compressive load with the goal to understand its dynamic stability. Different level of 

complexity will be assumed, considering the top boundary condition of the pylon, the properties of 

the load, properties of the system in term of stiffness, damping. The main idea so is to extent the 

theory created mainly by of Bolotin to fully analyse a system that has not been studied yet.  

A presentation of the theory of Bolotin is first done, including general periodic loading of the 

structure and damping influence on the results. Then, this theory is applied on the system chosen to 

model the behaviour of a pylon of cable stayed bridge: a clamped column with a spring on the top 

inducing a restoring force created by the cables. Dynamic properties and static buckling properties of 
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the system analysed and the two subcases corresponding to the limit cases presented before are given 

in the fourth part. 

In order to perform high order analysis for a large number of parameters, a Matlab program has 

been computed. It is presented and validated in the fifth part of this study, that allow to perform the 

analysis presented below. The following steps are followed in order to make an exhaustive analysis of 

the clamped-spring column that model a pylon with a fan arrangement of cables :   

• Influence of the stiffness of the spring on the instability area for a perfectly harmonic load 

• Influence of the static load on the results obtained 

• Introduction of the damping in the calculation for a perfectly harmonic load 

• Influence of the static load level on the area of stability with damping 
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3 PRESENTATION OF BOLOTIN’S ANALYSIS 

3.1 Hypothesis of the analysis 

In “The Dynamic Stability of Elastic Systems”, Bolotin proposed a method for detecting dynamic 

instability conditions for the case of a column submitted to a periodical load. The objective of this 

analysis is to determine for which loading characteristics a premature instability of the system occurs 

(i.e. for a compression lower than the buckling load). The idea is to draw an ill-diagram such as the one 

presented in the figure below to show instability regions. 

Two main parameters are identified :  

• In the x-axis, the ratio between the pulsation of the perturbation 𝜃 and the free-vibration 

natural pulsation 𝛺. 

• The excitation parameter 𝜇 in the y-axis, which function of the amplitude of the compressive 

load variation 𝑃𝑡, the static compression 𝑃0 and the first buckling load 𝑃𝑐𝑟. 

Instabilities occurs in hatched areas, i.e. for couples (𝜇; 𝜃/2𝛺) for which a premature instability 

happens even if the maximal compression in the column is lower than the first buckling load. 

 

Figure 3.1 : Areas of instability of a simply supported beam 

Bolotin limits his analysis to systems and loads coping with the following hypothesis :  

• Only linear elastic domain is considered. Indeed, the equations already mix time dependant 

terms and high order analysis due to the second order effect implicate in the process. Adding 

non-linearity prevent any resolution methods simple enough.  
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• The column is considered slender enough to use Euler-Bernoulli theory. In fact, for columns 

not slender, some elastoplastic effects might occur before the buckling, and so the previous 

hypothesis of elasticity would not be respected.   

• General boundary conditions are considered for both sides of the column. 

• The compressive load is decomposed into two parts: a static loading 𝑃0 and a harmonic 

component with a pulsation 𝜃: 𝑃(𝑡) =  𝑃0 + 𝑃𝑡 ∗ cos (𝜃 ∗ 𝑡). 

 

The method will be hereby exposed taking into account the additional following hypothesis, in 

order to simplify the calculation but also to gain in generality for some aspects :  

• The flexural stiffness is assumed constant along the entire column 

• The forces are conservative 

• The theory of Bolotin will be extended to any even-periodic loads, not only to perfectly 

harmonic excitation. The periodicity of the load will allow to decompose the load into a Fourier 

expansion and the hypothesis of an even-loading entails a decomposition in cosine terms only. 

The analysis of an odd loading will entail only a time shift of a quarter of a period.  

𝑃(𝑡) = 𝑃0 + ∑ 𝑝𝑞 cos(𝑞 ∗ 𝜃 ∗ 𝑡)

∞

𝑞=1

 

• The influence of the damping on the area of stability will be investigated in a second time. 

 

3.2 Fundamental equation 

Following these hypotheses, one can obtain the fundamental equation (3.1) that governs the 

dynamic stability problem of the compressed column. Three terms are easily identified: the inertia 

force, the restoring force associated to the flexural stiffness 𝐸𝐼 and the second order effect generated 

by the compression force:  

m ∗
∂2v

∂t2
+ EI ∗

∂4v

∂x4
+ P(t) ∗

∂2v

∂x2
= 0 (3. 1) 

 

In order to solve this equation, a classic method will be used, recurrent in dynamic or stability 

analysis: the deflection will be decomposed other a known base of vectors. Since this analysis deal with 
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dynamic instability, two bases are suitable: the eigenmodes of the free vibration analysis and the 

buckling modes. Both bases present similar properties, even if coming from different equations: they 

represent a complete set of vectors in the solution space and each vector satisfies the boundary 

conditions. Bolotin adopts the free-vibration eigenmodes for his analysis (but the buckling modes can 

be alternatively adopted) by expanding the solution in the form 

𝑣(𝑥, 𝑡) = ∑𝑓𝑖(𝑡) ∗ 𝜑𝑖(𝑥)

∞

𝑖=1

(3. 2) 

 

Here 𝜑𝑖  is the ith eigenmode of the system, associated to the pulsation 𝜔𝑖. This solution is 

substituted into the previous equation 3.1 and, after a few rearrangements, one gets:  

∑[
1

𝜔𝑖
2 ∗

𝜕2𝑓𝑖
𝜕𝑡2

+ 𝑓𝑖 − 𝑃(𝑡) ∗ ∑ 𝑎𝑖𝑘𝑓𝑘

∞

𝑘=0

]

∞

𝑖=1

∗ 𝜑𝑖(𝑥) = 0 (3. 3) 

with :  

𝑎𝑖𝑘 =
1

𝜔𝑖
2 ∗ ∫

𝑑𝜑𝑖

𝑑𝑥
∗

𝑑𝜑𝑘

𝑑𝑥
𝑑𝑥

𝑙

0

(3. 4) 

The three contributions mentioned above are easily recognized in the equation 3.3. Because of 

the derivation of the eigenfunctions, some coupling appears between the equations. Indeed, the term 

𝑎𝑖𝑘  is assimilated to the projection of the derivative of the eigenmode i other the base of 

eigenfunctions. From now, a finite number of eigenmodes n will be retain for the analysis. 

The equality has to be true for any position x and time t, so the term multiplying each 

eigenfunction 𝜑𝑖  has to be null. A set of ODEs in time is thus obtained, satisfied by the functions 𝑓𝑖(𝑡). 

If a matrix form is adopted, the following equation is obtained :  

𝑪 ∗
𝜕2𝒇

𝜕𝑡2
+ [𝑰𝒅 − 𝑃(𝑡) ∗ 𝑨] ∗ 𝒇 = 0 (3. 5) 

With :  

𝐴 = (

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

)  𝐶 = (

1

𝜔𝑖
2  0

 ⋱  

0  
1

𝜔𝑛
2

)  𝑓 = ( 
𝑓1(𝑡)

⋮
𝑓𝑛(𝑡)

 ) 
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3.3 Determination of the stability region 

A characterisation of the solution is performed, showing that the functions 𝑓𝑖(𝑡) that satisfy this 

equation are pseudo periodic, product of an exponential part and a periodic component. The solution 

is stable if this function is bounded, i.e. if does not show an exponential increase. Bolotin showed that 

the limit between stable and unstable areas coincide with solutions purely periodic with a period equal 

to 𝑇 and 2𝑇, 𝑇 being the period of the dynamic load.  

In other words, the stability limits are defined by the sets of parameters (couple Amplitude-

Pulsation of the compressive force) for which periodic functions with period 𝑇 and 2𝑇 are solutions. In 

order to obtain a numerical characterisation of the boundaries, Fourier expansion of solution 𝑓𝑇 and 

𝑓2𝑇 are computed into the equation :  

𝑓2𝑇(𝑥) = ∑ (𝑎𝑘 sin
𝑘𝜃𝑡

2
+ 𝑏𝑘 cos

𝑘𝜃𝑡

2
)

∞

𝑘=1,3,5

(3. 6) 

𝑓𝑇(𝑥) =
1

2
𝑏0 + ∑ (𝑎𝑘 sin

𝑘𝜃𝑡

2
+ 𝑏𝑘 cos

𝑘𝜃𝑡

2
)

∞

𝑘=2,4,6

(3. 7) 

Once these solutions are substituted into the governing equation and imposed to hold for any 

time 𝑡, the coefficient in front of each terms cos
𝑘𝜃𝑡

2
 and sin

𝑘𝜃𝑡

2
 has to be equal to zero. In these 

conditions, the following set of equations is obtained :  

 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑒𝑟𝑖𝑜𝑑 2𝑇, 𝑓𝑜𝑟 𝑘 = 1, 3, 5… : 

(𝑰𝒅 − 𝑃0 ∗ 𝑨 −
𝑘2

4
∗ 𝜃2 ∗ 𝑪) ∗ 𝑎𝑘 −

1

2
∗ ∑ 𝑝𝑞 ∗ (𝑠𝑖𝑔𝑛(2 ∗ 𝑞 − 𝑘) ∗ 𝑎|𝑘−2∗𝑞| + 𝑎|𝑘+2∗𝑞|) ∗ 𝑨

𝑛

𝑞=1

= 0  

(𝑰𝒅 − 𝑃0 ∗ 𝑨 −
𝑘2

4
∗ 𝜃2 ∗ 𝑪) ∗ 𝑏𝑘 −

1

2
∗ ∑ 𝑝𝑞 ∗ (𝑏|𝑘−2∗𝑞| + 𝑏|𝑘+2∗𝑞|) ∗ 𝑨

𝑛

𝑞=1

= 0  

 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑒𝑟𝑖𝑜𝑑 𝑇, 𝑓𝑜𝑟 𝑘 = 2, 4, 6… (𝑠𝑖𝑛𝑒 𝑡𝑒𝑟𝑚𝑠) ∶   

(𝑰𝒅 − 𝑃0 ∗ 𝑨 − (2𝑘)2 ∗ 𝜃2 ∗ 𝑪) ∗ 𝑎𝑘 −
1

2
∗ ∑ 𝑝𝑞 ∗ (𝑠𝑖𝑔𝑛(2 ∗ 𝑞 − 𝑘) ∗ 𝑎|𝑘−2∗𝑞| + 𝑎|𝑘+2∗𝑞|) ∗ 𝑨

𝑛

𝑞=1

= 0 
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𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑒𝑟𝑖𝑜𝑑 𝑇, 𝑓𝑜𝑟 𝑘 = 0, 2, 4, 6… (𝑐𝑜𝑠𝑖𝑛𝑒 𝑡𝑒𝑟𝑚𝑠) ∶   

(𝑰𝒅 − 𝑃0 ∗ 𝑨 − (2𝑘)2 ∗ 𝜃2 ∗ 𝑪) ∗ 𝑏𝑘 −
1

2
∗ ∑ 𝑝𝑞 ∗ (𝑏|𝑘−2∗𝑞| + 𝑏|𝑘+2∗𝑞|) ∗ 𝑨

𝑛

𝑞=1

= 0 

These sets of equation admit a non-trivial solution if the following determinants are equal to 

zero :  

det (𝐷12𝑇) = 0 (3. 8) 

|

|
𝑰𝒅 − 𝑃0 𝑨 −

1

4
𝜃2𝑪 +

1

2
𝑝1𝑨 −

1

2
𝑝1𝑨 +

1

2
𝑝2𝑨 −

1

2
𝑝2𝑨 +

1

2
𝑝3𝑨 …   

−
1

2
𝑝1𝑨 +

1

2
𝑝2𝑨 𝑰𝒅 − 𝑃0 𝑨 −

9

4
𝜃2𝑪 +

1

2
𝑝3𝑨 −

1

2
𝑝1𝑨 +

1

2
𝑝4𝑨 …   

−
1

2
𝑝2𝑨 +

1

2
𝑝3𝑨 −

1

2
𝑝1𝑨 +

1

2
𝑝4𝑨 𝑰𝒅 − 𝑃0 𝑨 −

25

4
𝜃2𝑪 +

1

2
𝑝5𝑨 …   

… … … ⋱   

|

|

= 0 

 

det (𝐷22𝑇) = 0 (3. 9) 

|

|
𝑰𝒅 − 𝑃0 𝑨 −

1

4
𝜃2𝑪 −

1

2
𝑝1𝑨 −

1

2
𝑝1𝑨 −

1

2
𝑝2𝑨 −

1

2
𝑝2𝑨 −

1

2
𝑝3𝑨 …   

−
1

2
𝑝1𝑨 −

1

2
𝑝2𝑨 𝑰𝒅 − 𝑃0 𝑨 −

9

4
𝜃2𝑪 −

1

2
𝑝3𝑨 −

1

2
𝑝1𝑨 −

1

2
𝑝4𝑨 …   

−
1

2
𝑝2𝑨 −

1

2
𝑝3𝑨 −

1

2
𝑝1𝑨 −

1

2
𝑝4𝑨 𝑰𝒅 − 𝑃0 𝑨 −

25

4
𝜃2𝑪 −

1

2
𝑝5𝑨 …   

… … … ⋱   

|

|

= 0 

 

det (𝐷1𝑇) = 0 (3. 10) 

|

|

|

𝑰𝒅 − 𝑃0 𝑨 −𝑝1𝑨 −𝑝2𝑨 −𝑝3𝑨 …   

−
1

2
𝑝1𝑨 𝑰𝒅 − 𝑃0 𝑨 − 𝜃2𝑪 −

1

2
𝑝2𝑨 −

1

2
𝑝1𝑨 −

1

2
𝑝3𝑨 −

1

2
𝑝2𝑨 −

1

2
𝑝4𝑨 …   

−
1

2
𝑝2𝑨 −

1

2
𝑝1𝑨 −

1

2
𝑝3𝑨 𝑰𝒅 − 𝑃0 𝑨 − 4𝜃2𝑪 −

1

2
𝑝4𝑨 −

1

2
𝑝1𝑨 −

1

2
𝑝5𝑨 …   

−
1

2
𝑝3𝑨 −

1

2
𝑝2𝑨 −

1

2
𝑝4𝑨 −

1

2
𝑝1𝑨 −

1

2
𝑝5𝑨 𝑰𝒅 − 𝑃0 𝑨 − 9𝜃2𝑪 −

1

2
𝑝6𝑨 …   

… … … … ⋱   

|

|

|

= 0 

 

det (𝐷2𝑇) = 0 (3. 11) 
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|

|
𝑰𝒅 − 𝑃0 𝑨 − 𝜃2𝑪 +

1

2
𝑝2𝑨 −

1

2
𝑝1𝑨 +

1

2
𝑝3𝑨 −

1

2
𝑝2𝑨 +

1

2
𝑝4𝑨 …   

−
1

2
𝑝1𝑨 +

1

2
𝑝3𝑨 𝑰𝒅 − 𝑃0 𝑨 − 4𝜃2𝑪 +

1

2
𝑝4𝑨 −

1

2
𝑝1𝑨 +

1

2
𝑝5𝑨 …   

−
1

2
𝑝2𝑨 +

1

2
𝑝4𝑨 −

1

2
𝑝1𝑨 +

1

2
𝑝5𝑨 𝑰𝒅 − 𝑃0 𝑨 − 9𝜃2𝑪 +

1

2
𝑝6𝑨 …   

… … … ⋱   

|

|

= 0 

These determinants are polynomial function of the pulsation of the dynamic load θ . The 

resolution of these equations will give a relationship between this pulsation and the amplitude of the 

perturbation, characterise by the coefficient p1, p2, …, pn. From that analysis, a stability map can be 

determined as a function of θ and a perturbation parameter.  

 

3.4 Normalization of the problem 

Considering the very large number of parameters of this analysis, added to the parameters of 

the system studied (mass, stiffness, …), some normalized values has to be set to have results readable. 

The goal is to compare two configurations, two systems, two types of loading, so a normalisation is 

needed.  

Two analysis parameters are introduced in the following. 

First, the amplitude of the perturbation has to be properly defined. While studying the simple 

case of a compression varying harmonically around an average value 𝑃0, Bolotin proposed to define 

an excitation parameter 𝜇 corresponding to the ratio between the amplitude of the perturbation and 

the difference between the average value and the first buckling mode. In this case, 𝜇 is equal to 0 if 

the compression is constant (static case) and take the maximal value of 0.5 when the compressive 

force reaches for any time step the buckling force :  

𝑃(𝑡) = 𝑃0 + 𝑃𝑡 ∗ cos(𝜃 ∗ 𝑡) (3. 12) 

𝜇 =
𝑃𝑡

0.5 ∗ (𝑃𝑐𝑟 − 𝑃0)
(3. 13) 

A generalisation of the definition of this parameter is proposed, considering that the 

compressive force is now a general periodic force. The two limit cases described just before are still 

valid, and the value of the 𝜇 coefficient is defined as follow :  

𝑃𝑔𝑒𝑛(𝑡) = 𝑃0 + ∑ 𝑝𝑞 cos(𝑞 ∗ 𝜃 ∗ 𝑡)

∞

𝑞=1

(3. 14) 
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𝜇𝑔𝑒𝑛 =
max( |𝑃(𝑡) − 𝑃0| , 𝑡 ∈ [0; 𝑇] )

0.5 ∗ (𝑃𝑐𝑟 − 𝑃0)
(3. 15) 

 

 

Figure 3.2 : Compressive load for various values of µ 

 

The same method is applied for the pulsation of excitation: from an absolute value θ, a ratio is 

defined, taking as a reference the behaviour of the system without excitation. Here the reference case 

corresponds to a system under static loading only, so with all the coefficients 𝑝𝑞 equal to 0. Hence, 

from the previous determinants, the following system is obtained: 

 

| 𝑰𝒅 − 𝑃0 𝑨 −
1

4
(𝑘𝜃)2𝑪 | = 𝟎      ∀𝒌 (3. 16) 

 

The system is solved taking the first eigenmode as a reference, so for k = 1. If n eigenmodes are 

analysed (so if the dimension of the matrix A is n), the previous system gives n roots associated to each 

eigenmode : Ω1, Ω2, …, Ωn. The set of pulsations found correspond in fact to the pulsation of a loaded 

column under free vibrations.  
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| 𝑰𝒅 − 𝑃0 𝑨 − Ω2𝑪 | = 𝟎 (3. 17) 

 

Then, for various values of k, the following relationships is found :  

Ω𝑖𝑘 =
Ω𝑖

𝑘
    ∀𝑘 (3. 18) 

 

As a conclusion, the first area of instability for each eigenmode i is centred around the eigen 

pulsation  2Ωi, Then, the pulsation of the following areas of stability are fractions of this fundamental 

frequency. In the following analysis, the graphs are normalized, using as the x-axis the ratio between 

the pulsation and the first eigen pulsation of the first stability area :  

𝜃∗  =  
𝜃

2Ω1

(3. 19) 

 

3.5 Comments about the order of analysis 

As said before, a finite number n of eigenmodes is considered for the analysis. The matrix A 

represents the coupling between each of these eigenmodes, and so its size is n*n. For each eigenmode, 

a set of instability areas will be defined. In the following graph, the analysis is done for a simply 

supported column. The first area of stability of the three first eigenmodes is represented below. Only 

the first area of stability is analysed here. 

The accuracy of the method is good, pushing forward the number of eigenmodes in the analysis 

does not change the area of the first mode.  
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Figure 3.3 : Instability area for the three first eigenmodes – simply supported beam 

 If no coupling occurs between the modes, all the extra diagonal terms of the matrix A are equal 

to zero and the system could be uncoupled: the effect of the load could be analysed independently for 

each mode. This occurs if the basis of eigenmode is orthogonal, basically in the case of the simply 

supported column where the eigenmodes are purely sinusoidal.  

Second parameter of the analysis: the size m of the Fourier expansion for the solution f. 

According to this order of analysis, the size of the determinant will grow, improving the accuracy of 

the results but also increasing the order of polynomial to be solved from equations 3.8 to 3.11. Since 

the order grows, new solutions of the system are computed, and so for each eigenmode several areas 

of stability are found.  

• The higher order chosen, the more instability areas for one eigenmode. In the graph below, 

computations are made respectively for m = 2 (red) and m = 4 (black). 

• The precision of the computation depends also largely on the order chosen. To have a precise 

estimation of the stability area for the order m, computation until the order m+2 is needed as 

shown in the following graph: the errors between the red and black curbs is not negligible.   
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Figure 3.4 : Instability areas for the first eigenmode of the simply supported beam – fourth order 

analysis 

As a conclusion, the choice of the number n of eigenmode studied and the order m of the Fourier 

expansion have an influence on the number of instability areas obtained, that will be n*m, and on the 

accuracy of the results. Here below the case of n = 2 eigenmodes analysed until the third order (m = 

3): the six area of stability are clearly identified.  
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Figure 3.5 : Instability areas for the simply supported beam – 2 eigenmodes – 3rd order analysis 

 

3.6 Influence of Damping on the dynamic stability 

3.6.a General consideration 

In order to describe with more accuracy the behavior of the systems considered, a model of the 

energy dissipation is added in the analysis through a linear viscous damping behavior. The dissipation 

should act against the exponential increase of the lateral deflection occurring in case of instability and 

so should have a stabilization effect on the global behavior. 

Indeed, the boundaries of the stability areas correspond to a purely harmonic component (case 

1), separating solution that go to zero (case 3, stable) and solution that goes to infinite (case 2, 

instable).  
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Figure 3.6 : Time evolution of the solution of the problem – limit (left), unstable (middle), stable (right) 

 

Figure 3.7 : Influence of the damping on the stability areas 

When damping is taken into consideration, the pure harmonic solution that characterize the 

boundaries of the stability area is damped, and so these points fall into the stable solution 

corresponding to the case 3. New boundaries are defined (in red), included in the previous instable 

area.  
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3.6.b Computation of the new boundaries 

An analytical characterization of these new boundaries is now done. The damping action of the 

column is added into the fundamental equation. An additional dissipative force is added to the 

fundamental equation that becomes :  

𝜕2𝑣

𝜕𝑡2
+ 𝜔2 ∗

𝜕4𝑣

𝜕𝑥4
+

𝑃(𝑡)

𝑚
∗

𝜕2𝑣

𝜕𝑥2
+ 2 ∗ 𝜉 ∗ 𝜔 ∗

𝜕𝑣

𝜕𝑡
= 0 (3. 20) 

 

With 𝜉 the damping ratio of the structure. Following the prescription of the Eurocode 8, a single 

damping ratio is assumed for the all structure. This damping ratio is equal to :  

• 2% for welded steel 

• 4% for bolted steel 

• 5% for reinforced concrete 

• 2% for prestressed concrete 

As it has been done in the part 2.2, the equation is projected on the base of free vibration 

eigenvectors of the system. A matrix equation is obtained, with 𝜺 the energy dissipation matrix : 

𝑪 ∗
𝜕2𝒇

𝜕𝑡2
+ 2 ∗ 𝑪 ∗ 𝜺 ∗

𝜕𝒇

𝜕𝑡
+ [𝑰𝒅 − 𝑃(𝑡) ∗ 𝑨] ∗ 𝒇 = 0 (3. 21) 

 

Assuming that this matrix is diagonal is equivalent to say that there is no transfer of energy done 

by the resisting forces between the different forms of vibration. In other words, it means that the 

dissipation for each eigenmode is uncoupled. In fact, experimental results show that the extra-diagonal 

terms of this damping matrix are small enough to be neglected. The final form of this matrix is 

presented below :  

𝜀 = (
𝜉 ∗ 𝜔1  0

 ⋱  
0  𝜉 ∗ 𝜔𝑛

) (3. 22) 

 

The two periodic solution with a period equal to T and 2T are then injected in the system :  
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𝑓2𝑇(𝑥) = ∑ (𝑎𝑘 sin
𝑘𝜃𝑡

2
+ 𝑏𝑘 cos

𝑘𝜃𝑡

2
)

∞

𝑘=1,3,5

(3. 23) 

𝑓𝑇(𝑥) =
1

2
𝑏0 + ∑ (𝑎𝑘 sin

𝑘𝜃𝑡

2
+ 𝑏𝑘 cos

𝑘𝜃𝑡

2
)

∞

𝑘=2,4,6

(3. 24) 

In a same way as for the part 3.2 treating of dynamic stability of system with no damping, the 

limit of dynamic stability is defined when the following determinant are equal to zero. For the sake of 

clearness, the compressive load is here a pure harmonic component : 𝑃(𝑡) =  𝑃0 + 𝑃𝑡 ∗ cos (𝜃 ∗ 𝑡). 

When damping is considered, the previous determinant D1_T and D2_T are now coupled (respectively 

D1_2T and D2_2T). Two matrices are introduced, corresponding to the damping action on the system 

:  

𝐸𝑇 = (

−𝟐𝜽 ∗ 𝑪 ∗ 𝜺 0 0 …   
0 −𝟒𝜽 ∗ 𝑪 ∗ 𝜺 0 …   
0 0 −𝟔𝜽 ∗ 𝑪 ∗ 𝜺 …   
… … … ⋱   

) (3. 25) 

 

𝐸2𝑇 = (

−𝜽 ∗ 𝑪 ∗ 𝜺 0 0 …   
0 −𝟑𝜽 ∗ 𝑪 ∗ 𝜺 0 …   
0 0 −𝟓𝜽 ∗ 𝑪 ∗ 𝜺 …   
… … … ⋱   

) (3. 26) 

 

The boundaries are defined with determinant of the two matrix D_T and D_2T presented below :  

det (𝐷𝑇) = |
𝐷1𝑇 𝐸𝑇

−𝐸𝑇
𝑡 𝐷2𝑇

| = 0 (3. 27) 

det (𝐷2𝑇) = |
𝐷12𝑇 𝐸2𝑇

−𝐸2𝑇
𝑡 𝐷22𝑇

| = 0 (3. 28) 

Similarly to what is done in the case of no damping, these polynomial equations need to be 

solved in order to find the critical couple amplitude-frequency of the loading for which an instability 

occurs. 
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3.6.c Effect of the normalization of the system 

The damping has an influence on the pulsation of a loaded column under free vibrations. Indeed, 

this characteristic value Ω𝑖  that is used then to normalise the x-axis of the stability diagram is calculated 

as the eigen-pulsation of the system with no dynamic loads as follow : 

| 𝑰𝒅 − 𝑃0 𝑨 − Ω2𝑪 | = 𝟎 (3. 29) 

The dissipation adds a contribution for this system, that becomes :  

| 𝑰𝒅 − 𝑃0 𝑨 − Ω2𝑪 − 𝜺𝟐𝑪 | = 𝟎 (3. 30) 

This entail a new definition for the free vibration pulsation, depending on the dissipation matrix 𝜺. The 

pulsation is slightly shifted to take a smaller value. However, since the value of the damping does not 

exceed 5% in the analysis, this effect is negligible for the further computation.  

Ω̅ = √Ω2 − 𝜺𝟐 (3. 31) 

 

Figure 3.8 : Reference pulsation shift due to the damping ratio 
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4 DYNAMIC AND BUCKLING PROPERTIES OF THE SYSTEM STUDIED 

As presented in part 2, three systems are considered (cantilever, straight rod, cantilever-spring), 

from the simplest to the more complex in terms of computation. In addition to that, a review of the 

simply supported column is made since literature ([2] and [8]) use this case as a reference for dynamic 

stability analysis. The idea of the study is to apply the different methods of analysis of the dynamic 

stability equation.  

 

4.1 Simply supported column 

The system of a simply supported column (condensed ss) has been deeply analysed by Bolotin. 

Thanks to a purely sinusoidal free vibration mode shape, it presents the advantage of a total 

uncoupling between time and position in the fundamental equation. It allows an easy numerical 

integration to build then the stability diagram. The buckling modes and free vibration modes (or 

eigenmode) are identical, that allow not to make any distinction in the equations.    

 

Figure 4.1 : Presentation of the simply supported system 

 

𝜑𝑘(𝑥) = 𝑣𝑒(𝑥) = sin (
𝑘 ∗ 𝜋 ∗ 𝑥

𝑙
) (4. 1) 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝑙2
(4. 2) 

 

4.2 Cantilever – spring 

As explained before, the pillar of a bridge could be modeled as a cantilever column with an 

equivalent spring at the top that represents the restoring force of the cables on the system. This model 
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is the center of the analysis done in this report. The idea is to understand the influence of this stiffness 

on the global behavior of the column. 

 

Figure 4.2 : Presentation of the clamped-spring system 

 

In order to normalize the analysis and reduce the number of parameters of the system, a relative 

stiffness is defined, related to the flexural rigidity EI of the column, similarly to what is done in [6] :  

𝑘𝑒𝑞 =
𝐾 ∗ 𝑙3

𝐸 ∗ 𝐼
(4. 3) 

The free vibration analysis results are given in [9] :  

 

𝜑𝑘(𝑥) = (cos (
𝛼𝑘 ∗ 𝑥

𝑙
) − 𝑐𝑜𝑠ℎ (

𝛼𝑘 ∗ 𝑥

𝑙
)) −

cos(𝛼𝑘) + cosh(𝛼𝑘)

sin(𝛼𝑘) + sinh(𝛼𝑘)
∗ (sin (

𝛼𝑘 ∗ 𝑥

𝑙
) − 𝑠𝑖𝑛ℎ (

𝛼𝑘 ∗ 𝑥

𝑙
))

(4. 4)

 

𝑊𝑖𝑡ℎ ∶   1 +
1

cos(𝛼𝑘) cosh(𝛼𝑘)
−

𝑘𝑒𝑞

𝛼𝑘
3
∗ (tanh(𝛼𝑘) − tan(𝛼𝑘)) = 0 (4. 5) 

 

The buckling analysis results are obtained following the method given in “Meccanica delle 

Strutture Vol.3” by Corradi Dell’Acqua [4]:  

𝑣𝑒(𝑥) = 𝐴 + 𝐵𝑥 + 𝐶 ∗ sin(𝛼𝑘 ∗ 𝑥) + 𝐷 ∗ cos(𝛼𝑘 ∗ 𝑥) (4. 6) 

𝑊𝑖𝑡ℎ 𝛼𝑘  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 ∶ sin(𝛼𝑘 ∗ 𝑙) − [𝛼𝑘 ∗ 𝑙 −
(𝛼𝑘 ∗ 𝑙)3

𝑘𝑒𝑞
] ∗ cos(𝛼𝑘 ∗ 𝑙) = 0 (4. 7) 

𝐴𝑛𝑑 𝐴, 𝐵, 𝐶 𝑎𝑛𝑑 𝐷 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 ∶  

[
 
 
 
 
 
1 0 0 1
0 1 𝛼𝑘 0

1 1 sin(𝛼𝑘 ∗ 𝑙) cos(𝛼𝑘 ∗ 𝑙)

1
𝑙

𝑘𝑒𝑞

(1 − (𝛼𝑘 ∗ 𝑙)2) sin(𝛼𝑘 ∗ 𝑙) cos(𝛼𝑘 ∗ 𝑙)
]
 
 
 
 
 

. [

𝐴
𝐵
𝐶
𝐷

] = [

0
0
0
0

]

(4. 8)
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The effect of the stiffness parameter on the dynamic stability of the system is the main key of 

the global analysis. According to the previous analysis, the critical buckling and dynamic parameter α 

is estimated for various values of the relative stiffness, as shown on the graph below. A transition 

stiffness equal to 20 is identified and selected for later, further, analysis.  

 

 

Figure 4.3 : Evolution of the buckling and dynamic parameter function of the relative stiffness of the 

spring  

This graph shows clearly a stabilisation of the properties for very low or very high stiffness. That 

correspond to the two limit cases mentioned before :  

• The cantilever (clamped-free, condensed cf) corresponding to the case K = 0 

• The straight rod (clamped-simply supported, condensed cs) corresponding to the case K = 

infinity 

4.3 Limit cases 

The two cases previously mentioned are analysed here. A simpler formulation of the buckling 

mode is available for both cases in []. For the eigenmodes and the buckling mode of the rod, it could 

be obtained from the limit analysis of the previous formula 4.4 :  
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Figure 4.4 : Presentation of the clamped system 

𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑚𝑜𝑑𝑒 ∶   𝑣𝑒(𝑥) = 1 − cos (
𝑘 ∗ 𝜋 ∗ 𝑥

2 ∗ 𝑙
) (4. 9) 

 

 

Figure 4.5 : Presentation of the clamped-hinged system (also called rop) 

 

 𝑅𝑜𝑑 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝑚𝑜𝑑𝑒 ∶  𝑣𝑒(𝑥) = sin (
𝛼 ∗ 𝑥

𝑙
) −

sin(𝛼)

sinh(𝛼)
∗ 𝑠𝑖𝑛ℎ (

𝛼 ∗ 𝑥

𝑙
) (4. 10) 

 

𝑊𝑖𝑡ℎ ∶   tanh( 𝛼) − 𝛼 = 0 (4. 11) 
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5 ANALYSIS OF THE MODEL  

5.1 Validation of the program used for the analysis 

5.1.a Presentation of the program 

In order to analyse systems not manageable through hand calculations, a Matlab program has 

been built to perform the analysis. The inputs of the program are the following :  

• Geometrical parameter : boundary condition of the beam, length, mass, stiffness, damping.  

• Loading : axial static load Po, live load shape (harmonic, square signal, …) 

• The program is also able to perform several analyses with one of these parameters changing. 

• Order of analysis : number of eigenmodes considered and order of the Fourier analysis of the 

solution 

Once these parameters defined, the program follows automatically these steps to obtain the 

stability map of the system :  

• Fourier analysis of the load 

• Computation of the buckling load modes 

• Computation of the free-vibration pulsations and eigenmodes.  

• Definition of the matrix A, C and E 

• Definition of the normalized parameters µ and Ωi 

• Computation and resolution of the determinants D_T and D_2T 

• Plotting of the solution 

A validation of this program has to be done before starting more advanced computation about 

the systems studied. A validation procedure is proposed by Huang in [8] for the case of simply 

supported column, that allow to make a validation of this extended Bolotin method.  

Three cases available in the literature are studied in order to validate this program :  

• First harmonic excitation 𝑝(𝑡) = cos (𝑡), analysis of the first region of instability 
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• Effect of the damping on the result, analysis of the two first region of instability 

• Effect of a rectangular wave, analysis of the first four region of instability 

5.1.a Harmonic excitation  

The simplest case of a simply supported beam submitted to a perfect harmonic load has been 

studied by both Beliaev [1] and Bolotin [2]. An estimation of the boundary of the first region of stability 

is proposed. The graph below is obtained with the Matlab program computed. Some differences are 

highlighted, due to the fact that Baliaev and Bolotin set some approximation in order to obtain a result 

from hand calculations.  

𝐵𝑒𝑙𝑖𝑎𝑒𝑣′𝑠 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 ∶  
𝜃

2𝛺
= 1 ±

𝜇

2
(5. 1) 

𝐵𝑜𝑙𝑜𝑡𝑖𝑛′𝑠 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 ∶  
𝜃

2𝛺
= √1 ± 𝜇 (5. 2) 

 

 

Figure 5.1 : Comparison of the computation with Bolotin and Beliaev’s formula 
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In [8], Huang compared his method with the two previous formulas and check the accuracy of 

his results with a time integration of the ruling equation for the conditions of the point A1 in the 

following graph. The program computed gives similar results than Huang, who achieve to give the best 

estimation of the stability region.  

 

Figure 5.2 : Comparison of Huang results with Bolotin and Beliaev’s formula 

5.1.b Effect of the damping 

Introducing a damping ratio in the equations has been studied by Briseghella [3] who gives an 

estimation of the two first region of instability assuming a damping of 4.7% in the column. The formula 

is compatible with Bolotin’s assumption in the case of a damping ratio equal to zero (see the previous 

paragraph). A confrontation with the program computed is done and some variation are shown.  

𝐹𝑖𝑟𝑠𝑡 𝑟𝑒𝑔𝑖𝑜𝑛 ∶  
𝜃

2𝛺
= √1 ± √𝜇2 − 𝜉2 (5. 3) 

 

𝑆𝑒𝑐𝑜𝑛𝑑 𝑟𝑒𝑔𝑖𝑜𝑛 ∶  
𝜃

2𝛺
=

1

2
√1 − 𝜇2 ± √𝜇4 − 4𝜉2 ∗ (1 − 𝜇2) (5. 4) 

 

In the method set by Huang, that fit perfectly with the results obtained by the Matlab program 

computed, these differences are also highlighted. A time integration has been done for regions where 

Huang and Briseghella disagree (points B1 and B2) and it appears that Huang theory is more reliable 
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to predict the region of instability. The following graph is obtained with the Matlab program computed. 

Once again, the results are in accordance with Huang work.  

 

Figure 5.3 : Comparison of Huang results with Briseghella’s formula 

 

Figure 5.4 : Comparison of the computation with Briseghella’s formula 
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5.1.c Rectangular wave  

The results for a periodic load are studied to validate the program based on Bolotin Method. Xie 

[12] proposed an analytical solution of the instability region of a simply  supported beam submitted to 

a rectangular periodical load with an amplitude of 𝑝𝑡. There is a perfect correlation between Xie’s 

solution, the computation done in Huang’s article (top) and the one calculated in this work (bottom). 

To be noticed in these equations and graphs  𝑝𝑡 = 2 ∗ 𝜇 is assumed. 

 

Figure 5.5 : Figure 5.6 : Comparison of Huang results with Xie’s formula 

 

Figure 5.7 : Comparison of the computation results with Xie’s formula 
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5.2 Analysis of the limit cases 

5.2.a Cantilever Column 

In the following graph, the first eigenmode and buckling mode have been represented for 

several values of 𝐾𝑒𝑞. It is worth noticing that for the two extreme cases, the eigenmodes and the 

buckling mode are really similar (independently from the sign). For the dynamic stability analysis, using 

the buckling mode instead the eigenmode should induce a minor error on the final result.  

 

Figure 5.8 : Comparison between buckling and free-vibration mode – clamped column 

 

The buckling mode of the clamped beam present a specificity: it is the composition of a constant 

and a perfect harmonic component. During the calculation of the matrix A, the constant term 

disappears (because differentiated in the integral) and the coefficients 𝑎𝑖𝑘  are equal to the integral of 

two cosine function with a different pulsation → equal to zero. So by assuming that the bucking mode 

and the eigenmodes are equivalent, the system is uncoupled and easy to analyse.   
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Indeed, after computation, for the clamped column the results are really close. It means that 

the shape of the stability area of the clamped beam in the normalized diagram (µ ; θ/2Ω) is similar to 

the one of the simply supported beam.  

 

 

Figure 5.9 : Comparison between simply supported and clamped column 

5.2.b Clamped-hinged Column 

In the same way as for the clamped beam, the eigenmode and buckling mode of the clamped-

hinged system are really similar, that allows to use one or the other with a minor error induced :  
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Figure 5.10 : Comparison between buckling and free-vibration mode – clamped-hinged column 

For the clamped hinged column, another approximation is made that simplify future 

computations and gives results good enough. For this case, it could be noticed that the eigenmodes of 

the system are close to the one of a simply supported beam. As a matter of fact, the coefficient in the 

matrices of the analysis will be close and the stability regions should be relatively similar, as shown in 

figure X :  

 

Figure 5.11 : Comparison between clamped-hinged and simply-supported column in terms of free-

vibration mode  
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Figure 5.12 : Comparison between simply supported and clamped-hinged column 

 

5.3 Identification of the parameters of the study 

Two types of parameters govern the system :  

• Geometric parameters : the flexural rigidity, the length of the column, the relative stiffness of 

the spring at the end of the column; 

• Loading parameters : the mean value (or static load), the amplitude and the pulsation of the 

compressive load 𝑃𝑡 . 

The goal of the analysis is to understand the effect of each of these parameters on the dynamic 

stability behavior. As mentioned before, the amplitude of the perturbation and the pulsation of the 

force are chosen for the description of the stability diagram. Then, the effect of all the other 

parameters need to be analyzed: how the stability diagram changes with the length, the stiffness… 

Thanks to a logic construction of the equations, a few parameters have no effects on the results.  

• The length of the column does not influence the shape of stability function. As a matter of fact, 

the buckling and dynamic mode has been adimensionalized by assuming standardized 

eigenvectors and buckling mode. The buckling loads and the eigen frequency change but since 

the diagram has been normalized by using 
𝜃

2Ω1
 and µ, the effect is balanced.  
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• In the same way, the linear mass m of the column and the flexural rigidity do not affect the 

shape of the stability area. Because of the introduction of a relative stiffness, these values have 

no impact anymore on the mode shape. As the length, it will affect the eigen pulsation but 

since the ill diagram is normalized, no effect is noticed. 

In the following analysis, the following parameters will have an effect on the width and the 

position of the instability areas :  

• The relative stiffness is the first key element of the system. Varying from 0 to infinite, i.e. from 

a free edge to a hinged edge, its stabilization or destabilization effect is the key element of this 

thesis and will be studied in the following part.  

•  The second parameter is the static load applied to the system. Varying from zero to the first 

buckling load, it should affect the shape of stability area : for high values of P0, the maximal 

amplitude of perturbation is smaller, but the system is also closer to the first buckling mode. 

• Finally, the damping has to be analyzed, inducing a stabilization of the dynamic stability 

behavior. A coupling between the static load and the damping is observed and analyzed.  
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6 INFLUENCE OF THE RELATIVE STIFFNESS 

6.1 Method and Hypothesis of analysis  

In order to study the influence of the relative stiffness, the simplest case of loading has to be 

considered first: cosine wave with no static load. Then the effect of the loading will be investigated in 

part 7. The following computation choices are made :  

• The static compression is set equal to 0 

• The perturbation is a pure harmonic function : 𝑃(𝑡) =  𝑃𝑡 ∗ cos (𝜃 ∗ 𝑡) 

• The four first eigenmodes are considered in order to see a possible evolution. 

• If possible, the Fourier expansion of the solution is pushed until the third order to have a first 

stability area defined with a good  precision. 

• 30 step values of relative stiffness are analyzed, ranging from 0.13 to 60000, with an 

exponential increase. These two extreme cases are associated to the clamped column and the 

clamped-hinged column. All the following graphs will be expressed in function of ln(k) in order 

to have an appropriate scale to analyze the system.  

 

6.2 Stability area for various stiffness 

According to the method previously exposed, the influence of the relative stiffness on the 

instability areas is analyzed. As expected, both limit cases (red and blue curves) behave quite similarly, 

as exposed in the part 5. For intermediate relative stiffness, the shape of the area of instability is 

different, showing a stabilization or destabilization effect depending on the eigenmode considered. 

For the first eigenmode, the two limit cases (clamped in blue, clamped-hinged in red) correspond 

to an external boundary of the region of instability. K has a positive influence on the system : the area 

of stability is less wide.  
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Figure 6.1 : Influence of the stiffness of the spring on the first eigenmode areas of stability 

For the second eigenmode and all the following eigenmode, the contrary is observed : the limit 

cases create an internal boundary of the stability areas and almost all the intermediate relative 

stiffness value entail a destabilization of the system.  
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Figure 6.2 : Influence of the stiffness of the spring on the second eigenmode areas of stability 

The boundaries of the first area of instability of each eigenmode are almost linear. As a matter 

of fact, the width of the area for the maximal excitation parameter µ = 0.5 allow to characterize the 

behavior of the system. This width is given in the following graph, for the five first eigenmodes. For the 

first eigenmode, a decrease is observed for medium values of K. It means that the width of the stability 

area is narrower. So a stabilization effect occurs. On the over hand, for all the eigenmodes higher than 

one, the width of the instability area is higher than the limit cases that behave quite similarly. In this 

case, the system is less stable than the extreme case since the instability areas are bigger. 

The quantity 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖  control this width of  the instability area. Indeed, an approximate 

expression of the width is given in equation (6.1). 𝑃𝑐𝑟 is related to the buckling mode and 𝑎𝑖𝑖  is related 

to the free-vibration behavior. This duality stability-free vibration characteristic is the origin of the 

particular behavior for the first eigenmode, as it will be shown latter.  

∆𝜃

2𝛺1
= 𝜇 ∗ (

𝛺𝑖

𝛺1
) ∗ 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖 (6. 1) 
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Figure 6.3 : Width of the area of stability for various eigenmodes and values of stiffness 

 

6.3 Analysis of the difference of behavior between the eigenmodes 

The origin of this singularity for the first eigenmode has to be investigated. The first hypothesis 

is that this effect occurs because of the coupling between the different eigenmodes. In order to test 

this hypothesis, the program is modified in order to take into account only the diagonal coefficient of 

the matrix A. 
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Figure 6.4 : Comparison of results obtained from coupled (top) and uncoupled (bottom) 

 

It appears that the coupling plays a limited role in the width of the stability area.  

The stability areas have similar width with or without considering this effect. To be more precise, 

the coupling emphasizes a little bit the phenomenon but is not the origin of the problem. This result 

allows to simply study the uncoupled system to dig and find the origin of the difference. 

With this condition, it is possible to solve the system analytically, considering only the first area 

of stability and the first order for the Fourier expansion of the solutions f_T and f_2T. The boundaries 

of the instability region are defined accordingly to this equation :  
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𝐷12𝑇 = 𝐷22𝑇 = 0 (6. 2) 

| 𝑰𝒅 −
1

4
𝜃2𝑪 ±

1

2
𝑃𝑡𝑨 | = 𝟎 (6. 3) 

Since A is considered as diagonal, the matrix  𝑰𝒅 −
1

4
𝜃2𝑪 ±

1

2
𝑃𝑡𝑨 is diagonal, that allows to find 

easily the roots. Using the definition of A, C and µ, one can obtain the following equation.  

1 −
1

4
𝜃2 ∗

1

𝜔𝑖
2
± 𝜇 ∗ 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖 = 0 (6. 4) 

The width of the instability region is defined as the difference between the two roots due to the 

± sign :  

∆𝜃 = 2 ∗ 𝜔𝑖 ∗ (√1 + 𝜇 ∗ 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖 − √1 − 𝜇 ∗ 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖  ) (6. 5) 

A Taylor development is assumed for the roots. The term 𝜇 ∗ 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖can go up to 0.5 but the 

Taylor development is still good enough and the analysis done here is qualitative. Another point : since 

the static load is zero here, the eigen pulsation 𝜔𝑖 and the characteristic pulsation of the stability 

region 𝛺𝑖 are equal.  

∆𝜃

2𝛺1
= 𝜇 ∗ (

𝛺𝑖

𝛺1
) ∗ 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖 (6. 6) 

 

In this formula, if a focus is made on the product 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖, it is noticeable that the behaviour is 

really similar to the global one presented before. The following graph shows once again stabilisation 

for the first eigenmode and destabilization for the others. The ratio (
𝛺𝑖

𝛺1
) is here to adjust the modulus 

of the ∆𝜃 but play a negligible role for its variation.  

 



Master Thesis – Etienne Preveraud de Vaumas 

Dynamic Stability of pillars of cable stayed bridges 

  

 67/92 

 

 

Figure 6.5 : Evolution of the product Pcr*aii with the stiffness 

 

So a focus is finally made on the product 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖  that is the cause of the irregular behaviour of 

the first mode. In fact, 𝑃𝑐𝑟 is a growing function with k while the coefficient 𝑎𝑖𝑖  is a decreasing function. 

Depending for which values of k the transition occurs, the product will behave differently.   

 

 

Figure 6.6 : Evolution of the first buckling mode with the stiffness of the spring 
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Figure 6.7 : Evolution of the coefficient a11 with the stiffness of the spring 

 

To have a view of the critical range of k for which there is a dramatic of properties, the derivative 

of the function is computed. In fact the transition of Pcr occurs between the one of the first and the 

second coefficient of the matrix A, corresponding to the behaviour of the first and second eigenmode.  

 

 

Figure 6.8 : Variation of the buckling load and aii parameter with the stiffness of the spring 
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• For i = 1, the product 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖  start to decrease (and so do the width of the instability region) 

because of the term a11. Then, approaching kcr, Pcr start to raise and re-equilibrate the 

product : There is a STABILISATION EFFECT 

• For i > 1, the product increase first around the value kcr and then decrease under the impulse 

of aii. In this case, the system is DESTABILIZED and then go back to normal.  

As said before, the product 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖  is the key to understand the stabilisation/destabilisation 

process of the system. Then the other parameters (A matrix non-diagonal, no Taylor approximation, 

higher order of analysis, introduction of a static compressive load) will complexify the analysis and 

have an effect on the amplitude of the width. But the variation are ruled by the analysis done before.  

As a conclusion of this part, the phenomenon studied here is mixing dynamic and stability 

aspect. Since both effects have different characteristic values, the interval where one parameter is 

varying and the other not create instable behaviours, that could benefit to the system or make it 

unstable.  
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7 INFLUENCE OF THE STATIC LOAD Po 

7.1 Hypothesis 

In the previous part, the case of a purely harmonic force has been studied, with a static 

compression equal to zero. The influence of the stiffness of the spring has been studied, showing that 

:  

• The two limit cases converge to the same behaviour, corresponding to the one of a simply 

supported beam.  

• For a transition range of stiffness, for K between 1 and 5000, a stabilization/destabilization 

occurs 

Once the influence of the relative stiffness analyzed, the next phase is to see if the input of a 

static load has an effect on the trend observed before, a stabilization or destabilization effect. In order 

to study that, the previous hypotheses are kept except that :  

• The static compression is no longer equal to zero. Six values  are tested, from 0 to 0.5*Pcr  

• The relative stiffness is set as a constant this time. Three cases are considered : k = 0.1 ; K = 20 

and K = 60000. It corresponds to the three specific cases : the first one is the clamped column, 

the second one an intermediate stiffness for which some stabilization/destabilization effects 

have been observed and finally the case of infinite stiffness corresponding to the clamped-

hinged column.  

In the following analysis, three cases will be studied :  

• K → 0 : cantilever 

• K → infinite : cantilever-simply supported 

• K = 20 : transition stiffness 

The maximal static compression considered will be equal to 50% of the first buckling load. The 

width of the instability area is calculated for the maximal perturbation parameter µ=0.5, as done in 

the previous part. So, the maximal amplitude of the compression force is Pcr, the first buckling load, 

in all these cases. What change is the relative weight between the static and the dynamic compression 

load. The definition of µ is recalled below:  
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𝜇 =
𝑃𝑡

0.5 ∗ (𝑃𝑐𝑟 − 𝑃0)
(7. 1) 

A focus is made on the first area of stability related to each eigenmode. However, in order to 

gain in precision, the computation is made until the third order for the Fourier expansion of the 

solution f(t).  

7.1 Matlab output for the width of the areas of stability 

7.1.a Verification of the linear dependence with µ 

The linear dependence with the parameter µ is verified for the three cases considered (K=0, 

K=20 and K=infinite). In order to focus on the effect of µ, all the other parameters are fixed. The first 

area of stability is studied, so the ratio (
𝛺𝑖

𝛺1
) goes to one. The parameter µ vary from 0 to its maximal 

value 0.5. The analysis is pushed until the third order in terms of Fourier expansion of the solution f in 

order to gain in precision for the boundaries of the first area of stability.  

The area of stability for the various values of µ are presented below. Since the coefficient µ is 

fixed, the analysis is done function of the ratio 
𝑃0

𝑃𝑐𝑟
, going from 0 to a maximal value of 0.5.   

 

Figure 7.1 : Influence of the static load rate on the first area of stability, mu being constant 
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The width of the area of stability for the maximal ratio  
𝑃0

𝑃𝑐𝑟
= 0.5 is computed for the three 

values of K. The following graph represent this width function of the value of the coefficient µ. As 

expected, the behaviour is linear for the three cases considered.  

 

 

Figure 7.2 : Width of the first area of stability for various values of K and µ 

 

7.1.b Stability map of the first eigenmode for various values of Po 

The stability maps of the three cases related to the first eigenmode are presented below. No 

major effect is observed for the two limit cases.  
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Figure 7.3 : Instability areas for various values of Po – K=0 (top left) ; K=inf (top right) ; K=20 (bottom) 

The following graph presents the width of the first area of stability function of the static 

compression rate Po/Pcr. The two limit cases K=0 and K=infinite present a constant behaviour: the 

compression load has no influence on it. For the transition case K=20, two main observations. First, 

the width of the instability area is smaller than the two limit cases, that is coherent with the analysis 

made in the previous part. Then, it is clear that raising the weight of the static load (and so decreasing 

the dynamic contribution) is beneficial for the stability of the system : the width of the instability region 

decreases. 

 

Figure 7.4 : Width of the area of stability of the first eigenmode function of the static loading Po 

0,00

0,10

0,20

0,30

0,40

0,50

0 0,1 0,2 0,3 0,4 0,5 0,6W
id

th
 o

f 
th

e 
ar

ea
 Δ

θ
/2

*Ω
1

Po/Pcr static compression rate

First mode area of stability width - Influence of 
P0

K=0 K=20 K=inf



Master Thesis – Etienne Preveraud de Vaumas 

Dynamic Stability of pillars of cable stayed bridges 

  

 74/92 

 

7.1.c Stability map of the second eigenmode for various values of Po 

The case of the second area of stability is now studied. The evolution of the width of the stability 

areas is presented in the following graph. Here, the transition case is less stable than the two limit 

cases, in adequation with the analysis done in part 5. The three systems show a stabilisation when Po 

raises : the width of the instability region decreases for the three cases.  

 

Figure 7.5 : Width of the area of stability of the second eigenmode function of the static loading Po 

In a same way as it was presented in the previous part, the stability behaviour of eigenmodes 

with an order higher or equal than 3 follow the same trend than the second eigenmode. Here below 
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second eigenmode.  
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Figure 7.6 : Width of the area of stability of the third eigenmode function of the static loading Po 

 

7.2 Analytical computation for the width of the areas of stability 

7.2.a Computation of the model 

In order to explain this effect, a simplified model will be set. It is assumed that the coupling 

between the eigenmode has a limited effect on the behaviour. So the equations could be uncoupled 

as it has been done in the previous part. The width of the instability region is estimated in a similar 

way (determinant equal to 0 and Taylor development of the solution) but here Po has to be taken into 

account :  

∆𝜃

2𝛺1
= 𝜇 ∗ (

𝛺𝑖

𝛺1
) ∗

𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖 − 𝑃0 ∗ 𝑎𝑖𝑖

1 − 𝑃0 ∗ 𝑎𝑖𝑖

(7. 2) 

 

To be noticed : if Po = 0, the formula found in the previous part is recovered. 𝛺𝑖 depends on 𝑃0, 

according to the following formula. Here A is diagonal so  𝛺𝑖 could be computed  

| 𝑰𝒅 − 𝑃0 𝑨 − Ω2𝑪 | = 𝟎 (7. 3) 

𝛺𝑖 = 𝜔𝑖 ∗ √1 − 𝑃0 ∗ 𝑎𝑖𝑖 (7. 4) 

One can obtain the final formula for the width of the stability area of the ith eigenmode :  
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∆𝜃

2𝛺1
= 𝜇 ∗ (

𝜔𝑖

𝜔1
) ∗ √

1 − 𝑃0 ∗ 𝑎𝑖𝑖

1 − 𝑃0 ∗ 𝑎11
∗
𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖 − 𝑃0 ∗ 𝑎𝑖𝑖

1 − 𝑃0 ∗ 𝑎𝑖𝑖

(7. 5) 

This formula is then analysed for the first area of stability of the first, second and third 

eigenmode to see the evolution with the stiffness and static loading. 

7.2.b Analysis of the influence of Po on the first eigenmode 

Once again, the key parameter is the product 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖. If the product is close to 1, the ratio 

𝑃𝑐𝑟∗𝑎𝑖𝑖−𝑃0∗𝑎𝑖𝑖

1−𝑃0∗𝑎𝑖𝑖
 will tend to 1 and the width of the instability region will be equal to the following result, 

independent from the compressive static ratio :  

∆𝜃

2𝛺𝑖
= 𝜇 ∗ (

𝛺𝑖

𝛺1
) (7. 6) 

So for the first eigenmode where i = 1 : 

∆𝜃

2𝛺1
= 𝜇 (7. 7) 

In the cases studied, 𝑃𝑐𝑟 ∗ 𝑎11 takes the following values :  

 

Simply 
Supported 

K=0    
Clamped 

K=20 
Transition 

K=infinite  
Rod 

Pcr*a11 1 0,93 0,59 0,97 

Table 7.1 : Value of Pcr*a11 for the four systems studied 

For the simply supported beam, it has been shown by Bolotin that the static ratio has no impact 

and the uncoupling between modes is perfect. In the case of the clamped column and the rod, the 

product 𝑃𝑐𝑟 ∗ 𝑎11 is close to 1, so the behaviour should be independent from the static compression 

rate, that is verified in the graph presented before : the width is constant and equal to µ = 0.5.  

In the case of the transition, the product 𝑃𝑐𝑟 ∗ 𝑎11 is smaller than one, so the ratio  

𝑃𝑐𝑟∗𝑎11−𝑃0∗𝑎11

1−𝑃0∗𝑎11
 decrease with Po : the system gains in stability. In fact, it seems reasonable to say that 

reducing the weight of the dynamic part effect of the system should be beneficial to its stability, since 

the term of inertia reduces.  
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7.2.c Stabilization effect of Po on the width of the stability area 

The previous calculations done to explain the behaviour of the first instability area are still valid. 

So the width of the second instability region is given by the following formula :  

∆𝜃

2𝛺1
= 𝜇 ∗ (

𝜔2

𝜔1
) ∗ √

1 − 𝑃0 ∗ 𝑎22

1 − 𝑃0 ∗ 𝑎11
∗
𝑃𝑐𝑟 ∗ 𝑎22 − 𝑃0 ∗ 𝑎22

1 − 𝑃0 ∗ 𝑎22

(7. 8) 

The critical load Pcr is still the same but the coefficient 𝑎22 is in fact way smaller than 𝑎11 since 

the eigenfrequency of the second free vibration mode is larger than the one of the first mode. So the 

product 𝑃𝑐𝑟 ∗ 𝑎22 decrease drastically for the two limit cases :  

 

 

Simply 
Supported 

K=0    
Clamped 

K=20 
Transition 

K=infinite  
Rod 

Pcr*a11 1 0,16 0,86 0,35 

 Table 7.2 : Value of Pcr*a22 for the four systems studied 

So the three cases show a decreasing width of the second instability region. This result could be 

extended to any mode higher than the second one, since the coefficient 𝑎𝑖𝑖  decreases for eigenmodes 

of high order i. An additional remark : if the three previous curbs are normalized, ie divided by its 

maximal value (for Po = 0), one can see that the three cases shows almost the same decrease rate :  

 

Figure 7.7 : Normalized width of the area of stability of the second eigenmode function of the static 

loading Po 
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In fact, the stabilization effect of the first term with K of the following equation is balanced by 

the destabilization due to the second ratio, and so the rate of decrease is almost equal for all the values 

of stiffness K, as shown in the graph presented before. 

∆𝜃

∆𝜃𝑚𝑎𝑥
= √

1 − 𝑃0 ∗ 𝑎22

1 − 𝑃0 ∗ 𝑎11
∗

1 −
𝑃0

𝑃𝑐𝑟
⁄

1 − 𝑃0 ∗ 𝑎22

(7. 9) 

Effects compensating, the final output present a regularity that is providential, probably not 

physical or maybe as a second or third order effect that explain de low variations.  

Asa conclusion of this part, the global trend of the stability area is to decrease when the static 

load increase. In fact, the static load is a way to decrease the relative importance of the periodic load 

that become, instead of being a primary effect, a secondary load, a perturbation of something more 

stable.  

 

  



Master Thesis – Etienne Preveraud de Vaumas 

Dynamic Stability of pillars of cable stayed bridges 

  

 79/92 

 

 

8 INFLUENCE OF DAMPING 

The damping is a key parameter for the analysis of the dynamic stability of a system. Indeed, 

since the instability correspond to an exponential increase of the deflexion of the column along time, 

the effect could be counter-act by a dissipation in the system high enough. Two sources of damping 

could be considered :  

• Natural damping of the system generated by thermal effect of cyclic straining, friction in the 

structural fasteners, opening and closing of micro-cracks in the material, especially concrete 

• Viscous dampers set in order to dissipate a massive amount of energy, with the possibility of 

focusing the effect on specific dangerous eigenmodes 

In the case of this analysis, the first situation is considered. As said in the second part, the 

Eurocode prescribe values for damping, going from 2% for welded steel structures to 5% for reinforced 

concrete structures.  

8.1 Parameters limit 

Pillars of cable stayed bridges are submitted to limited compression load in order to avoid the 

buckling of the structure :  

• 1 - The total compression of the pillars (dead loads plus live loads) won’t exceed 30% of the 

first buckling mode 

• 2 - The live loads represent up to 25% of the total compression in the structure for reinforced 

concrete and composite sections and do not exceed 50% of the total compression in case of 

light bridges. 

These two assumptions limit the frame of the analysis in terms of maximal static load Po and 

perturbation parameters µ. The first assessment entails that the static load can’t neither excess 30% 

of the first buckling load. The consequence of the second assessment is that the live load can’t exceed 

15% of the first buckling mode. Since these live loads are the source of the dynamic perturbation  of 

the system, that gives a limit for the parameters µ. In the worst case where the live loads represent 

half of the total compression and where the total compression is equal to 30% of Pcr, a maximal value 

of µ is obtained :  
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𝜇𝑚𝑎𝑥 =
𝑃𝑡

2 ∗ (𝑃𝑐𝑟 − 𝑃0)
=

15% ∗ 𝑃𝑐𝑟

2 ∗ (𝑃𝑐𝑟 − 15% ∗ 𝑃𝑐𝑟)
= 0.09 (8. 1) 

 

The value 𝜇𝑚𝑎𝑥 = 0.09 is selected as a limit for the rest of the analysis.  

8.2 Stability analysis of the first eigenmodes with damping 

An analysis of the first eigenmode is done for a damping equal to 2% with various values of 

stiffness K, in order to obtain the maximal order of Fourier expansion of the solution needed to fully 

analyze the phenomenon. Indeed, for high order of expansion, the influence of the damping is so 

important than the instability occurs only for values of µ higher than 0.09.  

In order to analyze this phenomenon, Bolotin introduce a new parameter, called critical 

excitation parameter µ*. It is defined as “the minimum value of the excitation parameter for which 

the occurrence of undamped vibrations is still possible”. If this critical value is higher than 0.09, the 

area of instability won’t concern the structure considered.  

 

Figure 8.1 : Influence of the damping on instability area 

 

The stability map related to the three first areas of the first eigenmodes is represented below. 

It is clear that for any values of K, only the first area of instability could affect the system studied. 

Indeed, the critical excitation parameter µ*of the second and third area of stability is out of the 
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maximal value attainable. One can notice that medium values of stiffness tend to stabilize the system 

(in red and blue the two limit cases K=0 and K=infinite). This effect will be analyzed later 

 

Figure 8.2 : Instability area related to the first eigenmode with 2% of damping and various values of k 

 

It has been shown that almost a few loading conditions of the bridge meet the first area of 

stability of the first eigenmode that is the biggest one. The analysis is done for the first area of stability 

of the second and third eigenmode, the results are presented in the two graphs below.  

For the second eigenmode, depending on the values of K, the critical excitation parameter is out 

of the limit defined by this report. One can notice that for high values of K, and so for the clamped-

hinged column (blue curve), the stability of the system is ensured for what concern the second 

eigenmode. For the third eigenmode (and higher modes), no values of K destabilize enough the system 

and present a critical excitation parameter lower than 0.09. 

 

 



Master Thesis – Etienne Preveraud de Vaumas 

Dynamic Stability of pillars of cable stayed bridges 

  

 82/92 

 

  

 

Figure 8.3 : Instability area related to the second eigenmode (top) and third (bottom) with 2% of 

damping and various values of K 

In addition to these remarks, one could say that the stiffness has a major effect on the 

phenomenon studied, characterise by the width of the area and the critical excitation parameter. Once 

again, stabilisation/destabilisation occurs for the same reason that for the influence of the stiffness 
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with no damping : the variation of the product Pcr*aii with K. This will be proven in the followings 

paragraph.  

8.3 Analytical model with no static loading 

The objective is to find a formula that link the critical excitation parameters with the geometric 

and loading parameters of the system. Simplification will be  

8.3.a Influence of the coupling between the eigenmodes 

It has been shown that only the first area of stability has to be considered for this analysis, for 

each eigenmode. In order to simplify more the analysis and to be able to proceed to hand calculation 

to obtain an analytic formula to estimate the critical excitation parameter, the effect of coupling is 

investigated. The value of K=20, for which the coupling is supposed to be high, is selected. A 

comparison is made between coupled and uncoupled results for the two first eigenmodes. It is shown 

in the following graph that no coupling occurs. In this case, it will be possible to set the extra-diagonal 

terms of the matrix A equal to zero and to uncouple the system.  

 

Figure 8.4 : Comparison of the results with and without coupling between eigenmodes 
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8.3.b Estimation of the critical excitation parameter µ* 

As said before, a focus is made on the first area of stability, and so the determinant that define 

the boundaries could be bounded as follow. Since the coupling does not affect the results, the matrix 

A is diagonal, and it is possible to uncouple the system. In the following analysis, we’ll assume that the 

static load is equal to zero in order to simplify the calculations. 3 

det (𝐷22𝑇) = |
𝑰𝒅 − 𝑃0 𝑨 −

1

4
𝜃2𝑪 +

1

2
𝑝1𝑨 −𝜃𝑪𝜺

𝜃𝑪𝜺 𝑰𝒅 − 𝑃0 𝑨 −
1

4
𝜃2𝑪 −

1

2
𝑝1𝑨

| = 0 (8. 2) 

Using the normalized parameters presented before, the following polynomial function of θ is obtained 

and solved :  

||
𝟏 − (

𝜃

2𝛺
)
2

+ 𝝁 ∗ 𝑷𝒄𝒓 ∗ 𝒂𝒊𝒊 −
𝜃

2𝛺
∗ 4𝝃

𝜃

2𝛺
∗ 4𝝃 𝟏 − (

𝜃

2𝛺
)
2

− 𝝁 ∗ 𝑷𝒄𝒓 ∗ 𝒂𝒊𝒊

|| = 0 (8. 3) 

𝜃

2𝛺
= √1 − 2𝝃2 ± √(𝝁 ∗ 𝑷𝒄𝒓 ∗ 𝒂𝒊𝒊)

2 − 4𝝃2 + 𝝃4  (8. 4) 

Considering that ξ is small, the following formula is set :  

𝜃

2𝛺
= √1 ± √(𝝁 ∗ 𝑷𝒄𝒓 ∗ 𝒂𝒊𝒊)

2 − 4𝝃2  (8. 5) 

An estimation of the critical excitation parameter comes from this formula, corresponding to a 

minimization of the term √(𝝁 ∗ 𝑷𝒄𝒓 ∗ 𝒂𝒊𝒊)
2 − 4𝝃2. Once again, the product 𝑷𝒄𝒓 ∗ 𝒂𝒊𝒊 is the key 

parameter of the analysis, stabilising or destabilising the system. 

𝜇∗ =
2𝝃

𝑷𝒄𝒓 ∗ 𝒂𝒊𝒊

(8. 6) 

The accuracy of this formula is checked by comparing the critical excitation parameter obtained 

with high order analysis done by Matlab and this simplified formula. The check is done for the first and 

second eigenmode, for a damping of 2%. The analytical solution gives results with a high accuracy, with 

a maximal error equal to 3%.  

The stabilization effect of the first eigenmode is highlighted and explained here : once again the 

product  𝑷𝒄𝒓 ∗ 𝒂𝒊𝒊 rules the behaviour of the critical parameter. Similarly, for the second eigenmode 

one can notice a destabilisation effect for medium stiffness. To be noticed : the damping effect seems 
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to erase the coupling effect between eigenmodes. Indeed, these small terms seems to disappear when 

the damping is activated. And a high correspondence between the analytic values (uncoupled) and the 

numerical values (coupled) occurs. 

 

 

Figure 8.5 : Comparison between analytical and numerical results for the critical excitation parameter 

– first (top) and second (bottom) eigenmode 

 

Similarly, the linear dependence of the critical excitation parameter with the damping 

coefficient ξ is verified. Here below the evolution of this parameters for various values of stiffness :  
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Figure 8.6 : Evolution of the critical excitation parameter with the damping 

8.4 Influence of the static load on the critical excitation parameter 

The analysis made in the previous paragraph has been made with the hypothesis of a static 

loading equal to zero in order to focus first on the effect of the boundary conditions of the system, i.e. 

the stiffness K of the spring in the top of the column. This simplification hypothesis is removed, and a 

static load is assumed, going from 0 to 0.3*Pcr as exposed in the introduction of this part.  

The behaviour is presented in the figure 8.7 : a static compression rate stabilises the behaviour 

and amplify the effect of the damping. This effect is not negligible : indeed the critical excitation 

parameter increase up to 20% for a damping ratio of 2% and 5%. The case represented in the graph 

below correspond to a clamped-spring column with a reduced stiffness equal to K=20 and a damping 

ratio equal to 5%. The other system considered, clamped beam and clamped-hinged beam behave in 

a same way. It seems that the static load act as an additional damping to the system that induce two 

effect : a shift of frequencies and an increase of the critical excitation parameter.  
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Figure 8.7 : Influence of Po on the instability area for a 5% damping 

 

Investigations are made to find a formula that allows to estimate the critical excitation 

parameter, with the hypothesis of no coupling and a positive compressive load. This will complexify 

the analytic calculation, adding new terms to the expression and removing the hypothesis that the 

characteristic pulsation 𝛺1 is equal to the free vibration pulsation 𝜔1. The relationship between the 

two physical quantity is recalled below if the eigenmodes are uncoupled (and so the matrix A is 

diagonal) 

𝛺𝑖 = 𝜔𝑖 ∗ √1 − 𝑃0 ∗ 𝑎𝑖𝑖 (8. 7) 

 

Using the usual normalization parameters, the determinant used to estimate the critical 

excitation parameter becomes :  

det (𝐷2𝑇) = 0 (8. 8) 

|
|
1 − 𝑃0 ∗ 𝑎𝑖𝑖 − (

𝜃

2𝛺𝑖

)
2

∗ (
𝛺𝑖

𝜔𝑖

)
2

+ 𝜇 ∗ (𝑃𝑐𝑟 − 𝑃0) ∗ 𝑎𝑖𝑖 −
𝜃

2𝛺𝑖

∗ (
𝛺𝑖

𝜔𝑖

) ∗ 2𝜉

𝜃

2𝛺𝑖

∗ (
𝛺𝑖

𝜔𝑖

) ∗ 2𝜉 1 − −𝑃0 ∗ 𝑎𝑖𝑖 − (
𝜃

2𝛺𝑖

)
2

∗ (
𝛺𝑖

𝜔𝑖

)
2

− 𝜇 ∗ (𝑃𝑐𝑟 − 𝑃0) ∗ 𝑎𝑖𝑖

|
| = 0 
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This determinant is developed and solved. As it has been done in the previous subpart, since the 

damping is small, the terms in 𝜉4 have been neglected. A second order polynomial expression is 

obtained, in terms of 𝑥 = (
𝜃

2𝛺𝑖
)
2

. The critical excitation parameter is defined when this polynomial 

function admits a double root, so when its discriminant is equal to zero. The following expression is 

obtained :  

𝜇∗ =
2𝜉 ∗ √1 − 𝑃0 ∗ 𝑎𝑖𝑖

(𝑃𝑐𝑟 − 𝑃0) ∗ 𝑎𝑖𝑖

(8. 9) 

One can noticed that the formula is compatible with the expression found when no static load 

is assumed. In the case where the eigenmodes are truly uncoupled, i.e. for the case of the simply 

supported column (and with a limited degree of error for the clamped column and the rod), the 

product 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖  is equal to one. So, the formula becomes :  

𝜇∗ =
2𝜉

√1 − 𝑃0 ∗ 𝑎𝑖𝑖

(8. 10) 

The reliability of the relationship between the critical excitation parameter and the static load 

level is verified. Other the three systems studied, the maximal error is 6%, occurring for the clamped-

spring system for which the coupling between eigenmodes is not negligible.  

 

 

Figure 8.8 : Comparison between analytical and numerical results for the critical excitation parameter 

with an initial static load 
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8.5 Conclusion on the influence of the damping 

The behaviour of the system taking into account damping and static load is characterised by the 

critical excitation parameter µ*. A reliable estimation is given with the formula 8.6, that allows to give 

the following conclusions :  

• The damping has a stabilisation effect on the system. It reduces the size of areas of instability 

and impose a minimal level of dynamic loading under which no premature instability occurs.  

• The variation of the loads applied on the bridge (traffic) is not high enough to induce dynamic 

instability, except if a light bridge in steel is consider, so with a maximal dynamic loading 

parameter µ close to 0.09 and a damping ratio of 2%.  

• In this case, only the first area of stability of the two first eigenmodes cope with possible 

loading conditions.  

• Intermediate values of stiffness K tend to stabilise the first eigenmode and destabilise higher 

modes. This phenomenon depends, like in part 6, on the product 𝑃𝑐𝑟 ∗ 𝑎𝑖𝑖. 

• The static loading stabilises the system, increasing the critical excitation parameter up to 20% 

for a static load equal to a third of the first buckling mode.  
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9 CONCLUSION 

Dynamic stability is a complex phenomenon, mixing second order effect with time-dependant 

equation. Bolotin achieves to set equations and gives a method to characterise the couples of 

perturbation/frequency values of the load for which an unstable behaviour occurs. An application of 

this theory has been investigated in this study: the stability of a compressed beam, featuring the lateral 

stability of a pylon of cable stayed bridge. An equivalent model, formed by a clamped column with a 

spring at the top, has been designed in order to take into account the restoring force given by the 

cables of the bridge that stabilise the system.  

The dynamic stability analysis has been done for a large range of stiffness of the spring, various 

static load and the presence or not of damping. This allows to set the following conclusions :  

• The two extreme cases (clamped beam and clamped-hinged beam) behave similarly. They in 

fact present a low coupling between the mode and behave, with a limited error induced, like 

a simply supported column, a perfectly uncoupled system widely described in the literature 

• Depending on the eigenmode analysed, the stiffness of the spring has a significative stabilising 

(first eigenmode) or destabilizing effect (higher order eigenmodes). The width of the instability 

area depends on the ratio between the first buckling mode and the eigen pulsation of the 

mode considered. Since these two values do not vary similarly with respect to the stiffness K, 

it induces variations on the width that characterises the instability area.  

• The static load has a positive effect on the system, reducing the area of instability. When the 

static load raises, the relative importance of perturbation decreases, that explain the 

stabilisation process. 

• What is more, coupling between the damping and the static compressive load emphasize the 

stabilisation process. High rate of static load is beneficial for the question of dynamic stability.  

In a system like a cable-stayed bridge, the amplitude of perturbation due to traffic is relatively 

low compared to the weight of the structure itself. In fact, it has been shown that the problem of 

dynamic stability affects the pylons of cable stayed bridges only in the case of light steel structures 

that present a damping of 2%. Indeed, for most of the bridges, either the damping of the structure is 

high enough, or the perturbation Pt small enough, to have a critical excitation parameter µ* higher 

than any amplitude of dynamic loading due to traffic.  
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Considering this conclusion that justify the safety of most of the structures, pushing forward the 

analysis on the harp system would be interesting only in the case of light steel bridges. What is more, 

this study could be applied on system with higher perturbations on the compression load, probably 

more in an industrial field than civil engineering.  
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